
3700 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 14, JULY 15, 2015

Distributed Online Learning via Cooperative
Contextual Bandits

Cem Tekin, Member, IEEE, and Mihaela van der Schaar, Fellow, IEEE

Abstract—In this paper, we propose a novel framework for
decentralized, online learning by many learners. At each moment
of time, an instance characterized by a certain context may arrive
to each learner; based on the context, the learner can select one of
its own actions (which gives a reward and provides information)
or request assistance from another learner. In the latter case, the
requester pays a cost and receives the reward but the provider
learns the information. In our framework, learners are modeled
as cooperative contextual bandits. Each learner seeks to maximize
the expected reward from its arrivals, which involves trading
off the reward received from its own actions, the information
learned from its own actions, the reward received from the actions
requested of others and the cost paid for these actions—taking into
account what it has learned about the value of assistance from each
other learner. We develop distributed online learning algorithms
and provide analytic bounds to compare the efficiency of these
with algorithms with the complete knowledge (oracle) benchmark
(in which the expected reward of every action in every context is
known by every learner). Our estimates show that regret—the loss
incurred by the algorithm—is sublinear in time. Our theoretical
framework can be used in many practical applications including
Big Data mining, event detection in surveillance sensor networks
and distributed online recommendation systems.

Index Terms—Contextual bandits, cooperative learning, dis-
tributed learning, multi-user bandits, multi-user learning, online
learning.

I. INTRODUCTION

I N this paper we propose a novel framework for on-
line learning by multiple cooperative and decentralized

learners. We assume that an instance (a data unit), charac-
terized by a context (side) information, arrives at a learner
(processor) which needs to process it either by using one of
its own processing functions or by requesting another learner
(processor) to process it. The learner’s goal is to learn online
what is the best processing function which it should use such
that it maximizes its total expected reward for that instance.
A data stream is an ordered sequence of instances that can
be read only once or a small number of times using limited

Manuscript received August 25, 2013; revised April 09, 2014, December 12,
2014, andMarch 21, 2015; accepted April 16, 2015. Date of publicationMay 07,
2015; date of current version June 08, 2015. The associate editor coordinating
the review of this manuscript and approving it for publication was Prof. Sergios
Theodoridis. The work is partially supported by the grants NSF CNS 1016081
and AFOSR DDDAS. A preliminary version of this work appeared in Allerton
2013.
The authors are with the Department of Electrical Engineering, University of

California, Los Angeles (UCLA), Los Angeles, CA 90095-1594 USA (e-mail:
cmtkn@ucla.edu; mihaela@ee.ucla.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TSP.2015.2430837

computing and storage capabilities. For example, in a stream
mining application, an instance can be the data unit extracted by
a sensor or camera; in a wireless communication application,
an instance can be a packet that needs to be transmitted. The
context can be anything that provides information about the
rewards to the learners. For example, in stream mining, the
context can be the type of the extracted instance; in wireless
communications, the context can be the channel Signal to
Noise Ratio (SNR). The processing functions in the stream
mining application can be the various classification functions,
while in wireless communications they can be the transmission
strategies for sending the packet (Note that the selection of the
processing functions by the learners can be performed based on
the context and not necessarily the instance). The rewards in the
stream mining can be the accuracy associated with the selected
classification function, and in wireless communication they can
be the resulting goodput and expended energy associated with
a selected transmission strategy.
To solve such distributed online learning problems, we define

a new class of multi-armed bandit solutions, which we refer to
as cooperative contextual bandits. In the considered scenario,
there is a set of cooperative learners, each equipped with a set
of processing functions (arms1) which can be used to process the
instance. By definition, cooperative learners agree to follow the
rules of a prescribed algorithm provided by a designer given that
the prescriped algorithm meets the set of constraints imposed
by the learners. For instance, these constraints can be privacy
constraints, which limits the amount of information a learner
knows about the arms of the other learners.We assume a discrete
time model , where different instances and associ-
ated context information arrive to a learner.2 Upon the arrival
of an instance, a learner needs to select either one of its arms to
process the instance or it can call another learner which can se-
lect one of its own arms to process the instance and incur a cost
(e.g., delay cost, communication cost, processing cost, money).
Based on the selected arm, the learner receives a random reward,
which is drawn from some unknown distribution that depends
on the context information characterizing the instance. The goal
of a learner is to maximize its total undiscounted reward up to
any time horizon . A learner does not know the expected re-
ward (as a function of the context) of its own arms or of the other
learners’ arms. In fact, we go one step further and assume that a

1We use the terms action and arm interchangeably.
2Assuming synchronous agents/learners is common in the decentralized

multi-armed bandit literature [1], [2]. Although our formulation is for syn-
chronous learners, our results directly apply to the asynchronous learners,
where times of instance and context arrivals can be different. A learner may not
receive an instance and context at every time slot . Then, instead of the final
time , our performance bounds for learner will depend on the total number
of arrivals to learner by time .

1053-587X © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

TEKIN AND VAN DER SCHAAR: DISTRIBUTED ONLINE LEARNING VIA COOPERATIVE CONTEXTUAL BANDITS 3701

learner does not know anything about the set of arms available
to other learners except an upper bound on the number of their
arms. The learners are cooperative because they obtain mutual
benefits from cooperation—a learner’s benefit from calling an-
other learner may be an increased reward as compared to the
case when it uses solely its own arms; the benefit of the learner
asked to perform the processing by another learner is that it can
learn about the performance of its own arm based on its reward
for the calling learner. This is especially beneficial when cer-
tain instances and associated contexts are less frequent, or when
gathering labels (observing the reward) is costly.
The problem defined in this paper is a generalization of the

well-known contextual bandit problem [3]–[8], in which there
is a single learner who has access to all the arms. However,
the considered distributed online learning problem is signifi-
cantly more challenging because a learner cannot observe the
arms of other learners and cannot directly estimate the expected
rewards of those arms. Moreover, the heterogeneous contexts
arriving at each learner lead to different learning rates for the
various learners. We design distributed online learning algo-
rithms whose long-term average rewards converge to the best
distributed solution which can be obtained if we assumed com-
plete knowledge of the expected arm rewards of each learner for
each context.
To rigorously quantify the learning performance, we define

the regret of an online learning algorithm for a learner as the
difference between the expected total reward of the best decen-
tralized arm selection scheme given complete knowledge about
the expected arm rewards of all learners and the expected total
reward of the algorithm used by the learner. Simply, the regret
of a learner is the loss incurred due to the unknown system dy-
namics compared to the complete knowledge benchmark. We
prove a sublinear upper bound on the regret, which implies that
the average reward converges to the optimal average reward.
The upper bound on regret gives a lower bound on the conver-
gence rate to the optimal average reward.
The proposed framework can be used in numerous applica-

tions including the ones given below.
1) Example 1: Consider a distributed recommender system

in which there is a group of agents (learners) that are connected
together via a fixed network, each of whom experiences inflows
of users to its page. Each time a user arrives, an agent chooses
from among a set of items (arms) to offer to that user, and
the user will either reject or accept each item. When choosing
among the items to offer, the agent is uncertain about the user’s
acceptance probability of each item, but the agent is able to ob-
serve specific background information about the user (context),
such as the user’s gender, location, age, etc. Users with different
backgrounds will have different probabilities of accepting each
item, and so the agent must learn this probability over time by
making different offers. In order to promote cooperation within
this network, we let each agent also recommend items of other
agents to its users in addition to its own items. Hence, if the
agent learns that a user with a particular context is unlikely to
accept any of the agent’s items, it can recommend to the user
items of another agent that the user might be interested in. The
agent can get a commission from the other agent if it sells the
item of the other agent. This provides the necessary incentive to
cooperate. However, since agents are decentralized, they do not
directly share the information that they learn over time about

user preferences for their own items. Hence the agents must
learn about other agent’s acceptance probabilities through their
own trial and error.
2) Example 2: Consider a network security scenario in

which autonomous systems (ASs) collaborate with each other
to detect cyber-attacks. Each AS has a set of security solu-
tions which it can use to detect attacks. The contexts are the
characteristics of the data traffic in each AS. These contexts
can provide valuable information about the occurrence of
cyber-attacks. Since the nature of the attacks are dynamic,
non-stochastic and context dependent, the efficiency of the
various security solutions are dynamically varying, context de-
pendent and unknown a-priori. Based on the extracted contexts
(e.g., key properties of its traffic, the originator of the traffic
etc.), an AS may route its incoming data stream (or only the
context information) to another AS , and if AS detects a
malicious activity based on its own security solutions, it warns
AS . Due to the privacy or security concerns, AS may not
know what security applications AS is running. This problem
can be modeled as a cooperative contextual bandit problem in
which the various ASs cooperate with each other to learn online
which actions they should take or which other ASs they should
request to take actions in order to accurately detect attacks
(e.g., minimize the mis-detection probability of cyber-attacks).
The remainder of the paper is organized as follows. In

Section II we describe the related work and highlight the
differences from our work. In Section III we describe the
choices of learners, rewards, complete knowledge benchmark,
and define the regret of a learning algorithm. A cooperative
contextual learning algorithm that uses a non-adaptive partition
of the context space is proposed and a sublinear bound on its
regret is derived in Section IV. Another learning algorithm
that adaptively partitions the context space of each learner is
proposed in Section V, and its regret is bounded for different
types of context arrivals. In Section VI we discuss the necessity
of training phase which is a property of both algorithms and
compare them. Finally, the concluding remarks are given in
Section VII.

II. RELATED WORK

Contextual bandits have been studied before in [5]–[8] in a
single agent setting, where the agent sequentially chooses from
a set of arms with unknown rewards, and the rewards depend on
the context information provided to the agent at each time slot.
The goal of the agent is to maximize its reward by balancing
exploration of arms with uncertain rewards and exploitation of
the arm with the highest estimated reward. The algorithms pro-
posed in these works are shown to achieve sublinear in time re-
gret with respect to the complete knowledge benchmark, and the
sublinear regret bounds are proved to match with lower bounds
on the regret up to logarithmic factors. In all the prior work,
the context space is assumed to be large and a known simi-
larity metric over the contexts is exploited by the algorithms
to estimate arm rewards together for groups of similar contexts.
Groups of contexts are created by partitioning the context space.
For example, [7] proposed an epoch-based uniform partition of
the context space, while [5] proposed a non-uniform adaptive
partition. In [9], contextual bandit methods are developed for
personalized news articles recommendation and a variant of the

3702 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 14, JULY 15, 2015

UCB algorithm [10] is designed for linear payoffs. In [11], con-
textual bandit methods are developed for data mining and a per-
ceptron based algorithm that achieves sublinear regret when the
instances are chosen by an adversary is proposed. To the best of
our knowledge, our work is the first to provide rigorous solu-
tions for online learning by multiple cooperative learners when
context information is present and propose a novel framework
for cooperative contextual bandits to solve this problem.
Another line of work [3], [4] considers a single agent with a

large set of arms (often uncountable). Given a similarity struc-
ture on the arm space, they propose online learning algorithms
that adaptively partition the arm space to get sublinear regret
bounds. The algorithms we design in this paper also exploits
the similarity information, but in the context space rather than
the action space, to create a partition and learn through the parti-
tion. However, distributed problem formulation, creation of the
partitions and how learning is performed is very different from
related prior work [3]–[8].
Previously, distributed multi-user learning is only considered

for multi-armed bandits with finite number of arms and no con-
text. In [1], [12] distributed online learning algorithms that con-
verge to the optimal allocation with logarithmic regret are pro-
posed for the i.i.d. arm reward model, given that the optimal
allocation is an orthogonal allocation in which each user selects
a different arm. Considering a similar model but with Markov
arm rewards, logarithmic regret algorithms are proposed in [13],
[14], where the regret is with respect to the best static policy
which is not generally optimal for Markov rewards. This is gen-
eralized in [2] to dynamic resource sharing problems and loga-
rithmic regret results are also proved for this case.
A multi-armed bandit approach is proposed in [15] to solve

decentralized constraint optimization problems (DCOPs) with
unknown and stochastic utility functions. The goal in this work
is to maximize the total cumulative reward, where the cumula-
tive reward is given as a sum of local utility functions whose
values are controlled by variable assignments made (actions
taken) by a subset of agents. The authors propose a message
passing algorithm to efficiently compute a global upper confi-
dence bound on the joint variable assignment, which leads to
logarithmic in time regret. In contrast, in our formulation we
consider a problem in which rewards are driven by contexts, and
the agents do not know the set of actions of the other agents. In
[16] a combinatorial multi-armed bandit problem is proposed
in which the reward is a linear combination of a set of coef-
ficients of a multi-dimensional action vector and an instance
vector generated by an unknown i.i.d. process. They propose
an upper confidence bound algorithm that computes a global
confidence bound for the action vector which is the sum of the
upper confidence bounds computed separately for each dimen-
sion. Under the proposed i.i.d. model, this algorithm achieves
regret that grows logarithmically in time and polynomially in
the dimension of the vector.
We provide a detailed comparison between our work and re-

lated work in multi-armed bandit learning in Table I. Our coop-
erative contextual learning framework can be seen as an impor-
tant extension of the centralized contextual bandit framework
[3]–[8]. The main differences are: (i) training phase which is re-
quired due to the informational asymmetries between learners,
(ii) separation of exploration and exploitation over time instead
of using an index for each arm to balance them, resulting in

TABLE I
COMPARISON WITH RELATED WORK IN MULTI-ARMED BANDITS

three-phase learning algorithms with training, exploration and
exploitation phases, (iii) coordinated context space partitioning
in order to balance the differences in reward estimation due to
heterogeneous context arrivals to the learners. Althoughwe con-
sider a three-phase learning structure, our learning framework
can work together with index-based policies such as the ones
proposed in [5], by restricting the index updates to time slots
that are not in the training phase. Our three-phase learning struc-
ture separates exploration and exploitation into distinct time
slots, while they take place concurrently for an index-based
policy. We will discuss the differences between these methods
in Section VI. We will also show in Section VI that the training
phase is necessary for the learners to form correct estimates
about each other’s rewards in cooperative contextual bandits.
Different from our work, distributed learning is also con-

sidered in online convex optimization setting [17]–[19]. In all
of these works local learners choose their actions (parameter
vectors) to minimize the global total loss by exchanging mes-
sages with their neighbors and performing subgradient descent.
In contrast to these works in which learners share information
about their actions, the learners in our model does not share any
information about their own actions. The information shared in
our model is the context information of the calling learner and
the reward generated by the arm of the called learner. However,
this information is not shared at every time slot, and the rate
of information sharing between learners who cannot help each
other to gain higher rewards goes to zero asymptotically.
In addition to the aforementioned prior work, in our recent

work [20] we consider online learning in a decentralized social
recommender system. In this related work, we address the chal-
lenges of decentralization, cooperation, incentives and privacy
that arises in a network of recommender systems. We model
the item recommendation strategy of a learner as a combina-
torial learning problem, and prove that learning is much faster
when the purchase probabilities of the items are independent of
each other. In contrast, in this work we propose the general the-
oretical model of cooperative contextual bandits which can be
applied in a variety of decentralized online learning settings in-
cluding wireless sensor surveillance networks, cognitive radio
networks, network security applications, recommender systems,
etc. We show how context space partition can be adapted based
on the context arrival process and prove the necessity of the
training phase.

III. PROBLEM FORMULATION

The system model is shown in Fig. 1. There are learners
which are indexed by the set . Let

be the set of learners learner can choose from to

TEKIN AND VAN DER SCHAAR: DISTRIBUTED ONLINE LEARNING VIA COOPERATIVE CONTEXTUAL BANDITS 3703

Fig. 1. System model from the viewpoint of learners and . Here exploits
to obtain a high reward while helping to learn about the reward of its own

arm.

receive a reward. Let denote the set of arms of learner . Let
denote the set of all arms. Let .

We call the set of choices for learner . We use index to
denote any choice in , to denote arms of the learners, to
denote other learners in . Let ,
and , where is the cardinality operator. A summary
of notations is provided in Appendix B.
The learners operate under the following privacy constraint:

A learner’s set of arms is its private information. This is im-
portant when the learners want to cooperate to maximize their
rewards, but do not want to reveal their technology/methods.
For instance in stream mining, a learner may not want to reveal
the types of classifiers it uses to make predictions, or in network
security a learnermay not want to reveal howmany nodes it con-
trols in the network and what types of security protocols it uses.
However, each learner knows an upper bound on the number of
arms the other learners have. Since the learners are cooperative,
they can follow the rules of any learning algorithm as long as
the proposed learning algorithm satisfies the privacy constraint.
In this paper, we design such a learning algorithm and show that
it is optimal in terms of average reward.
These learners work in a discrete time setting ,

where the following events happen sequentially, in each time
slot: (i) an instance with context arrives to each learner

; (ii) based on , learner either chooses one of its
arms or calls another learner and sends ;3 (iii) for
each learner who called learner at time , learner chooses one
of its arms ; (iv) learner observes the rewards of all the

3An alternative formulation is that learner selects multiple choices from
at each time slot, and receives sum of the rewards of the selected choices. All
of the ideas/results in this paper can be extended to this case as well.

arms it had chosen both for its own contexts and for
other learners; (v) learner either obtains directly the reward of
its own arm it had chosen, or a reward that is passed from the
learner that it had called for its own context.4
The contexts come from a bounded dimensional

space , which is taken to be without loss of generality.
When selected, an arm generates a random reward
sampled from an unknown, context dependent distribution

with support in .5 The expected reward of arm
for context is denoted by . Learner incurs

a known deterministic and fixed cost for selecting choice
.6 For example for , can represent the cost

of activating arm , while for , can represent the
cost of communicating with learner and/or the payment made
to learner . Although in our system model we assume that
each learner can directly call another learner , our model
can be generalized to learners over a network where calling
learners that are away from learner has a higher cost for
learner . Learner knows the set of other learners and
costs of calling them, i.e., , but does not know
the set of arms , , but only knows an upper bound
on the number of arms that each learner has, i.e., on
, . Since the costs are bounded, without loss of

generality we assume that costs are normalized, i.e.,
for , . The net reward of learner from a choice is
equal to the obtained reward minus cost of selecting the choice.
The net reward of a learner is always in .
The learners are cooperative which implies that when called

by learner , learner will choose one of its own arms which it
believes to yield the highest expected reward given the context
of learner .
The expected reward of an arm is similar for similar contexts,

which is formalized in terms of a Hölder condition given in the
following assumption.
Assumption 1: There exists , such that for all

and for all , we have
, where denotes the Euclidian norm in .

We assume that is known by the learners. In the contextual
bandit literature this is referred to as similarity information [5],
[22]. Different from prior works on contextual bandit, we do not
require to be known by the learners. However, will appear
in our performance bounds.
The goal of learner is to maximize its total expected reward.

In order to do this, it needs to learn the rewards from its choices.
Thus, learner should concurrently explore the choices in
to learn their expected rewards, and exploit the best believed
choice for its contexts which maximizes the reward minus cost.
In the next subsection we formally define the complete knowl-
edge benchmark. Then, we define the regret which is the perfor-
mance loss due to uncertainty about arm rewards.

4Although in our problem description the learners are synchronized, our
model also works for the case where instance/context arrives asynchronously
to each learner.

5Our results can be generalized to rewards with bounded support for
. This will only scale our performance bounds by a

constant factor.
6Alternatively, we can assume that the costs are random variables with

bounded support whose distribution is unknown. In this case, the learners will
not learn the reward but they will learn reward minus cost which is essentially
the same thing. However, our performance bounds will be scaled by a constant
factor.

3704 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 14, JULY 15, 2015

A. Optimal Arm Selection Policy With Complete Information
We define learner ’s expected reward for context as

, where .
This is the maximum expected reward learner can pro-
vide when called by a learner with context . For learner ,

denotes the net reward of choice
for context . Our benchmark when evaluating the performance
of the learning algorithms is the optimal solution which selects
the choice with the highest expected net reward for learner for
its context . This is given by

(1)

Since knowing requires knowing for ,
knowing the optimal solution means that learner knows the
arm in that yields the highest expected reward for each
.

B. The Regret of Learning
Let be the choice selected by learner at time .

Since learner has no a priori information, this choice is only
based on the past history of selections and reward observa-
tions of learner . The rule that maps the history of learner
to its choices is called the learning algorithm of learner
. Let be the choice vector at
time . We let denote the arm selected by learner
when it is called by learner at time . If does not call
at time , then . Let and

. The regret of learner with respect to the
complete knowledge benchmark given in (1) is given
by

where denotes the random reward of choice
for context at time for learner , and the ex-

pectation is taken with respect to the selections made by the
distributed algorithm of the learners and the statistics of the
rewards. For example, when and ,
this random reward is sampled from the distribution of arm .
Regret gives the convergence rate of the total expected re-

ward of the learning algorithm to the value of the optimal solu-
tion given in (1). Any algorithm whose regret is sublinear, i.e.,

such that , will converge to the optimal
solution in terms of the average reward. In the subsequent sec-
tions we will propose two different distributed learning algo-
rithms with sublinear regret.

IV. A DISTRIBUTED UNIFORM CONTEXT
PARTITIONING ALGORITHM

The algorithm we consider in this section forms at the begin-
ning a uniform partition of the context space for each learner.
Each learner estimates its choice rewards based on the past his-
tory of arrivals to each set in the partition independently from
the other sets in the partition. This distributed learning algorithm
is called Contextual Learning With Uniform Partition (CLUP)
and its pseudocode is given in Figs. 2–4. For learner , CLUP is
composed of two parts. The first part is the maximization part

Fig. 2. Pseudocode for CLUP algorithm.

(see Fig. 3), which is used by learner to maximize its reward
from its own contexts. The second part is the cooperation part
(see Fig. 4), which is used by learner to help other learners
maximize their rewards for their own contexts.
Let be the slicing parameter of CLUP that determines

the number of sets in the partition of the context space . When
is small, the number of sets in the partition is small, hence

the number of contexts from the past observations which can
be used to form reward estimates in each set is large. How-
ever, when is small, the size of each set is large, hence the
variation of the expected choice rewards over each set is high.
First, we will analyze the regret of CLUP for a fixed and
then optimize over it to balance the aforementioned tradeoff.
CLUP forms a partition of consisting of sets
where each set is a -dimensional hypercube with dimensions

. We use index to denote a set in
. For learner let be the set in which belongs

to.7
First, we will describe the maximization part of CLUP. At

time slot learner can be in one of the three phases: training
phase in which learner calls another learner with its context

7If is an element of the boundary of multiple sets, then it is randomly
assigned to one of these sets.

TEKIN AND VAN DER SCHAAR: DISTRIBUTED ONLINE LEARNING VIA COOPERATIVE CONTEXTUAL BANDITS 3705

Fig. 3. Pseudocode for the maximization part of CLUP algorithm.

Fig. 4. Pseudocode for the cooperation part of CLUP algorithm.

such that when the reward is received, the called learner can up-
date the estimated reward of its selected arm (but learner does
not update the estimated reward of the selected learner), explo-
ration phase in which learner selects a choice in and updates
its estimated reward, and exploitation phase in which learner
selects the choice with the highest estimated net reward.
Recall that the learners are cooperative. Hence, when called

by another learner, learner will choose its arm with the highest
estimated reward for the calling learner’s context. To gain the
highest possible reward in exploitations, learner must have an
accurate estimate of other learners’ expected rewards without
observing the arms selected by them. In order to do this, be-
fore forming estimates about the expected reward of learner ,
learner needs to make sure that learner will almost always
select its best arm when called by learner . Thus, the training
phase of learner helps other learners build accurate estimates
about rewards of their arms, before learner uses any rewards
from these learners to form reward estimates about them. In con-
trast, the exploration phase of learner helps it to build accurate
estimates about rewards of its choices. These two phases indi-
rectly help learner to maximize its total expected reward in the
long run.

Next, we define the counters learner keeps for each set in
for each choice in , which are used to decide its current

phase. Let be the number of context arrivals to learner
in by time (its own arrivals and arrivals to other

learners who call learner) except the training phases of learner
. For , let be the number of times arm is se-
lected in response to a context arriving to set by learner by
time (including times other learners select learner for their
contexts in set). Other than these, learner keeps two coun-
ters for each other learner in each set in the partition, which it
uses to decide training, exploration or exploitation. The first one,
i.e., , is an estimate on the number of context arrivals to
learner from all learners except the training phases of learner
and exploration, exploitation phases of learner . This is an esti-
mate because learner updates this counter only when it needs to
train learner . The second one, i.e., , counts the number
of context arrivals to learner only from the contexts of learner
in set at times learner selected learner in its exploration

and exploitation phases by time . Based on the values of these
counters at time , learner either trains, explores or exploits
a choice in . This three-phase learning structure is one of the
major components of our learning algorithm which makes it dif-
ferent than the algorithms proposed for the contextual bandits in
the literature which assigns an index to each choice and selects
the choice with the highest index.
At each time slot , learner first identifies . Then, it

chooses its phase at time by giving highest priority to ex-
ploration of its own arms, second highest priority to training
of other learners, third highest priority to exploration of other
learners, and lowest priority to exploitation. The reason that ex-
ploration of own arms has a higher priority than training of other
learners is that it can reduce the number of trainings required by
other learners, which we will describe below.
First, learner identifies its set of under-explored arms:

(2)

where is a deterministic, increasing function of which
is called the control function. We will specify this function later,
when analyzing the regret of CLUP. The accuracy of reward es-
timates of learner for its own arms increases with , hence
it should be selected to balance the tradeoff between accuracy
and the number of explorations. If this set is non-empty, learner
enters the exploration phase and randomly selects an arm in

this set to explore it. Otherwise, learner identifies the set of
training candidates:

(3)

where is a control function similar to . Accuracy
of other learners’ reward estimates of their own arms increase
with , hence it should be selected to balance the pos-
sible reward gain of learner due to this increase with the re-
ward loss of learner due to number of trainings. If this set is
non-empty, learner asks the learners to report

. Based in the reported values it recomputes as
. Using the updated values, learner

identifies the set of under-trained learners:

(4)

3706 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 14, JULY 15, 2015

If this set is non-empty, learner enters the training phase and
randomly selects a learner in this set to train it.8 When
or is empty, this implies that there is no under-trained
learner, hence learner checks if there is an under-explored
choice. The set of learners that are under-explored by learner
is given by

(5)

where is also a control function similar to . If this
set is non-empty, learner enters the exploration phase and ran-
domly selects a choice in this set to explore it. Otherwise, learner
enters the exploitation phase in which it selects the choice with
the highest estimated net reward, i.e.,

(6)

where is the sample mean estimate of the rewards learner
observed (not only collected) from choice by time , which

is computed as follows. For , let be the set of
rewards collected by learner at times it selected learner while
learner ’s context is in set in its exploration and exploitation
phases by time . For estimating the rewards of its own arms,
learner can also use the rewards obtained by other learners at
times they called learner . In order to take this into account, for

, let be the set of rewards collected by learner
at times it selected its arm for its own contexts in set union
the set of rewards observed by learner when it selected its arm
for other learners calling it with contexts in set by time .

Therefore, sample mean reward of choice in set for
learner is defined as . An
important observation is that computation of does not
take into account the costs related to selecting choice . Reward
generated by an arm only depends on the context it is selected
at but not on the identity of the learner for whom that arm is
selected. However, the costs incurred depend on the identity of
the learner. Let be the estimated net
reward of choice for set . Of note, when there is more than
one maximizer of (6), one of them is randomly selected. In order
to run CLUP, learner does not need to keep the sets in
its memory. can be computed by using only
and the reward at time .
The cooperation part of CLUP operates as follows. Let

be the learners who call learner at time . For each ,
learner first checks if it has any under-explored arm for ,
i.e., such that . If so, it randomly selects
one of its under-explored arms and provides its reward to learner
. Otherwise, it exploits its arm with the highest estimated re-
ward for learner ’s context, i.e.,

(7)

8Most of the regret bounds proposed in this paper can also be achieved by
setting to be the number of times learner trains learner by time ,
without considering other context observations of learner . However, by re-
computing , learner can avoid many unnecessary trainings especially
when own context arrivals of learner is adequate for it to form accurate esti-
mates about its arms for set or when learners other than learner have already
helped learner to build accurate estimates for its arms in set .

A. Analysis of the Regret of CLUP
Let , and let denote logarithm in base
. For each set (hypercube) let ,

, for , and ,
, for . Let be the con-

text at the center (center of symmetry) of the hypercube
. We define the optimal choice of learner for set as

. When the set is clear from
the context, we will simply denote the optimal choice for set
with . Let

be the set of suboptimal choices for learner for hypercube at
time , where , are parameters that are only used
in the analysis of the regret and do not need to be known by the
learners. First, we will give regret bounds that depend on values
of and and then we will optimize over these values to find
the best bound. Also related to this let

be the set of suboptimal arms of learner for hypercube at
time , where . Also when the
set is clear from the context we will just use . The arms in

are the ones that learner should not select when called
by another learner.
The regret given in (1) can be written as a sum of three com-

ponents: , where
is the regret due to trainings and explorations by time

, is the regret due to suboptimal choice selections in
exploitations by time and is the regret due to near op-
timal choice selections in exploitations by time , which are
all random variables. In the following lemmas we will bound
each of these terms separately. The following lemma bounds

.
Lemma 1: When CLUP is run by all learners with parameters

, , and
,9 where and , we have

where

(8)

Proof: Since time slot is a training or an exploration
slot for learner if and only if

, up to time , there can be at most
exploration slots in which an arm in is selected by
learner , training slots in which learner se-
lects learner , exploration slots in which
learner selects learner . Since

for all , the realized (hence expected) one slot loss

9For a number , let be the smallest integer that is greater than or
equal to .

TEKIN AND VAN DER SCHAAR: DISTRIBUTED ONLINE LEARNING VIA COOPERATIVE CONTEXTUAL BANDITS 3707

due to any choice is bounded above by 2. Hence, the result fol-
lows from summing the above terms and multiplying by 2, and
the fact that for any .
From Lemma 1, we see that the regret due to explorations is

linear in the number of hypercubes , hence exponential
in parameter and .
For any and , the sample mean repre-

sents a random variable which is the average of the independent
samples in set . Let Ξ be the event that a suboptimal
arm is selected by learner , when it is called
by learner for a context in set for the th time in the exploita-
tion phases of learner . Let denote the random variable
which is the number of times learner selects a suboptimal arm
when called by learner in exploitation slots of learner when
the context is in set by time . Clearly, we have

Ξ (9)

where is the indicator function which is equal to 1 if the
event inside is true and 0 otherwise. The following lemma
bounds .
Lemma 2: Consider all learners running CLUP with param-

eters , ,
and , where and . For any

if holds for
all , then we have

Proof: Consider time . Let
be the event that learner ex-

ploits at time .
First, we will bound the probability that learner selects

a suboptimal choice in an exploitation slot. Then, using this
we will bound the expected number of times a suboptimal
choice is selected by learner in exploitation slots. Note that
every time a suboptimal choice is selected by learner , since

for all , the realized
(hence expected) loss is bounded above by 2. Therefore, 2
times the expected number of times a suboptimal choice is
selected in an exploitation slot bounds . Let be
the event that choice is chosen at time by learner . We have

. Adopting the
standard probabilistic notation, for two events and ,

is equal to . Taking the expectation

(10)

Let be the event that at most samples in are
collected from suboptimal arms of learner in hypercube . Let

. For a set , let denote the
complement of that set. For any , we have

(11)

for some . This implies that

Since for any , , we have for
any suboptimal choice ,

(12)

by Chernoff-Hoeffding bound since on event at least
samples are taken from each choice. Similarly, we have

(13)

which follows from the fact that the maximum variation of ex-
pected rewards within is at most and on event

at most observations from any choice comes from a
suboptimal arm of the learner corresponding to that choice. For

, when

(14)

the three inequalities given below

together imply that , which implies
that

(15)

Using the results of (12) and (13) and by setting

(16)

3708 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 14, JULY 15, 2015

we get

(17)

and
(18)

All that is left is to bound . Applying the union
bound, we have

We have (Recall
from (9)). Applying the Markov inequality we

have . Recall that

Ξ , and

Ξ

When (14) holds, the last probability in the sum above is equal
to zero while the first two probabilities are upper bounded by

. This is due to the training phase of CLUP by
which it is guaranteed that every learner samples each of its
own arms at least times before learner starts forming
estimates about learner . Therefore for any , we
have Ξ
for the value of given in (16). These together imply that

Ξ . Therefore
from the Markov inequality we get

for any and hence,

(19)

Then, using (15), (17)–(19), we have
, for any . By (10), and by

the result of Appendix A, we get the stated bound for .

Each time learner calls learner , learner selects one of its
own arms in . There is a positive probability that learner
will select one of its suboptimal arms, which implies that even
if learner is near optimal for learner , selecting learner may
not yield a near optimal outcome. We need to take this into ac-
count, in order to bound . The next lemma bounds the
expected number of such happenings.
Lemma 3: Consider all learners running CLUP with param-

eters , ,

and , where and . For any
if holds for

all , then we have

for .
Proof: The proof is contained within the proof of the last

part of Lemma 2.
We will use Lemma 3 in the following lemma to bound

.
Lemma 4: Consider all learners running CLUP with param-

eters , ,
and , where and . For any

if holds for
all , then we have

Proof: At any time , for any and , we
have . Similarly for
any , and , we have

.
Let . Due to the above inequalities, if a near optimal

arm in is chosen by learner at time , the
contribution to the regret is at most . If
a near optimal learner is called by
learner at time , and if learner selects one of its near optimal
arms in , then the contribution to the regret is at most

. Therefore, the total regret due to near
optimal choices of learner by time is upper bounded by

by using the result in Appendix A. Each time a near optimal
learner in is called in an exploitation
step, there is a small probability that the arm selected by learner
is a suboptimal one. Given in Lemma 3, the expected number

of times a suboptimal arm is chosen by learner for learner in
each hypercube is bounded by . For each such choice,
the one-slot regret of learner can be at most 2, and the number
of such hypercubes is bounded by .
In the next theorem we bound the regret of learner by com-

bining the above lemmas.
Theorem 1: Consider all learners running

CLUP with parameters ,
, and

. Then, we have

TEKIN AND VAN DER SCHAAR: DISTRIBUTED ONLINE LEARNING VIA COOPERATIVE CONTEXTUAL BANDITS 3709

for any sequence of context arrivals , .
Hence, , for all , where
is given in (8).

Proof: The highest orders of regret that come from train-
ings, explorations, suboptimal and near optimal arm selections
are , and . We need
to optimize them with respect to the constraint

, which is assumed in Lemmas 2
and 4. The values that minimize the regret for which this con-
straint holds are , , ,

and . Result follows from sum-
ming the bounds in Lemmas 1, 2 and 4.
Remark 1: Although the parameter of CLUP depends

on and hence we require as an input to the algorithm,
we can make CLUP run independently of the final time and
achieve the same regret bound by using a well known doubling
trick (see, e.g., [5]). Consider phases , where
each phase has length . We run a new instance of algorithm
CLUP at the beginning of each phase with time parameter .
Then, the regret of this algorithm up to any time will be

. Although doubling trick works well in
theory, CLUP can suffer from cold-start problems. The algo-
rithm we will define in the next section will not require as an
input parameter.
The regret bound proved in Theorem 1 is sublinear in time

which guarantees convergence in terms of the average reward,
i.e., . For a fixed , the regret be-
comes linear in the limit as goes to infinity. On the contrary,
when is fixed, the regret decreases, and in the limit, as goes
to infinity, it becomes . This is intuitive since increasing
means that the dimension of the context increases and there-

fore the number of hypercubes to explore increases. While in-
creasing means that the level of similarity between any two
pairs of contexts increases, i.e., knowing the expected reward of
arm in one context yields more information about its accuracy
in another context.

B. Computational Complexity of CLUP
For each set , learner keeps the sample mean of

rewards from choices, while for a centralized bandit
algorithm, the sample mean of the rewards of arms
needs to be kept in memory. Since the number of sets in
is upper bounded by , the memory requirement
is upper bounded by . This means that
the memory requirement is sublinearly increasing in and thus,
in the limit , required memory goes to infinity. How-
ever, CLUP can be modified so that the available memory pro-
vides an upper bound on . However, in this case the re-
gret bound given in Theorem 1 may not hold. Also the ac-
tual number of hypercubes with at least one context arrival de-
pends on the context arrival process, hence can be very small
compared to the worst-case scenario. In that case, it is enough
to keep the reward estimates for these hypercubes. The fol-
lowing example illustrates that for a practically reasonable time
frame, the memory requirement is not very high for a learner
compared to a non-contextual centralized implementation (that
uses partition). For example for , , we
have . If learner learned through

samples, and if , , for all
, learner using CLUP only needs to store at most 40000

Fig. 5. An illustration showing how the partition of DCZA differs from the
partition of CLUP for . As contexts arrive, DCZA zooms into regions of
high number of context arrivals.

samplemean estimates, while a standard bandit algorithmwhich
does not exploit any context information requires to keep 10000
sample mean estimates. Although, the memory requirement is 4
times higher than the memory requirement of a standard bandit
algorithm, CLUP is suitable for a distributed implementation,
learner does not require any knowledge about the arms of other
learners (except an upper bound on the number of arms), and it
is shown to converge to the best distributed solution.

V. A DISTRIBUTED ADAPTIVE CONTEXT
PARTITIONING ALGORITHM

Intuitively, the loss due to selecting a suboptimal choice for a
context can be further minimized if the learners inspect the re-
gions of with large number of context arrivals more carefully,
instead of using a uniform partition of . We do this by intro-
ducing the Distributed Context Zooming Algorithm (DCZA).

A. The DCZA Algorithm
In the previous section, the partition is formed by CLUP

at the beginning by choosing the slicing parameter . Differ-
ently, DCZA adaptively generates the partition based on how
contexts arrive. Similar to CLUP, using DCZA a learner forms
reward estimates for each set in its partition based only on the
history related to that set. Let be learner ’s partition of
at time and denote the set in that contains .
Using DCZA, learner starts with , then divides
into sets with smaller sizes as time goes on and more contexts

arrive. Hence the cardinality of increases with . This di-
vision is done in a systematic way to ensure that the tradeoff
between the variation of expected choice rewards inside each
set and the number of past observations that are used in reward
estimation for each set is balanced. As a result, the regions of
the context space with a lot of context arrivals are covered with
sets of smaller sizes than regions of contexts space with few
context arrivals. In other words, DCZA zooms into the regions
of context space with large number of arrivals. An illustration
that shows partition of CLUP and DCZA is given in Fig. 5 for

. As we discussed in the Section II the zooming idea
have been used in a variety of multi-armed bandit problems
[3]–[8], but there are differences in the problem structure and
how zooming is done.

3710 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 14, JULY 15, 2015

The sets in the adaptive partition of each learner are chosen
from hypercubes with edge lengths coming from the set

.10 We call a -dimensional hypercube which
has edges of length a level hypercube (or level set). For
a hypercube , let denote its level. Different from CLUP,
the partition of each learner in DCZA can be different since
context arrivals to learners can be different. In order to help
each other, learners should know about each other’s partition.
For this, whenever a new set of hypercubes is activated by
learner , learner communicates this by sending the center
and edge length of one of the hypercubes in the new set of
hypercubes to other learners. Based on this information, other
learners update their partition of learner . Thus, at any time
slot all learners know . This does not require a learner
to keep different partitions. It is enough for each learner
to keep , which is the set of hypercubes
that are active for at least one learner at time . For
let be the first time is activated by one of the learners
and for , let be the first time is activated for
learner ’s partition. We will describe the activation process
later, after defining the counters of DCZA which are initialized
and updated differently than CLUP.

, counts the number of context arrivals
to set of learner (from its own contexts) from times

. For , counts the number
of times arm is selected in response to contexts arriving
to set (from learner ’s own contexts or contexts
of calling learners) from times . Similarly

, is an estimate on the context arrivals to
learner in set from all learners except the training phases of
learner and exploration, exploitation phases of learner from
times . Finally, counts the number of
context arrivals to learner from exploration and exploitation
phases of learner from times . Let ,

be the set of rewards (received or observed) by learner
at times that contribute to the increase of counter and

, be the set of rewards received by learner
at times that contribute to the increase of counter . We
have for . Training,
exploration and exploitation within a hypercube is controlled
by control functions and

, which depend on the level of
hypercube unlike the control functions , and

of CLUP, which only depend on the current time. DCZA
separates training, exploration and exploitation the same way as
CLUP but using control functions , ,
instead of , , .
Learner updates its partition as follows. At the end

of each time slot , learner checks if exceeds a
threshold , where is the parameter of DCZA that is
common to all learners. If , learner
will divide into level hypercubes and will
note the other learners about its new partition . With
this division is de-activated for learner ’s partition. For
a set , let be the time it is de-activated for learner ’s
partition.

10Hypercubes have advantages in cooperative contextual bandits because
they are disjoint and a learner can pass information to another learner about its
partition by only passing the center and edge length of its hypercubes.

Similar to CLUP, DCZA also have maximization and coop-
eration parts. The maximization part of DCZA is the same as
CLUP with training, exploration and exploitation phases. The
only differences are that which phase to enter is determined by
comparing the counters defined above with the control functions
and in exploitation phase the best choice is selected based on the
sample mean estimates defined above. In the cooperation part
at time , learner explores one of its under-explored arms or
chooses its best arm for for learner using the
counters and sample mean estimates defined above. Since the
operation of DCZA is the same as CLUP except the differences
mentioned in this section, we omitted its pseudocode to avoid
repetition.

B. Analysis of the Regret of DCZA

Our analysis for CLUP in Section IV was for worst-case con-
text arrivals. This means that the bound in Theorem 1 holds
even when other learners never call learner to train it, or other
learners never learn by themselves. In this section we analyze
the regret of DCZA under different types of context arrivals. Let

be the number of level hypercubes of learner that
are activated by time . In the following we define two extreme
cases of correlation between the contexts arriving to different
learners.
Definition 1: We call the context arrival process, solo arrivals

if contexts only arrive to learner , identical arrivals if
for all , .

We start with a simple lemma which gives an upper bound on
the highest level hypercube that is active at any time .
Lemma 5: All the active hypercubes at time have

at most a level of .
Proof: Let be the level of the highest level active

hypercube. We must have , otherwise the highest
level active hypercube’s level will be less than . We have,

.
In order to analyze the regret of DCZA, we first bound the

regret due to trainings and explorations in a level hypercube.
We do this for the solo and identical context arrival cases sepa-
rately.
Lemma 6: Consider all learners that run DCZA with pa-

rameters and
. Then, for any level hypercube the regret of

learner due to trainings and explorations by time is bounded
above by (i) for solo context arrivals, (ii)

for identical context arrivals (given
,).11
Proof: The proof is similar to Lemma 1. Note that when

the context arriving to each learner is the same and ,
, we have for all

whenever for all .
We define the set of suboptimal choices and arms for learner

in DCZA a little differently than CLUP (suboptimality depends
on the level of the hypercube but not on time), using the same
notation as in the analysis of CLUP. Let

(20)

11In order for the bound for identical context arrivals to hold for learner we
require that , . Hence, in order for the bound for identical
context arrivals to hold for all learners, we require for all .

TEKIN AND VAN DER SCHAAR: DISTRIBUTED ONLINE LEARNING VIA COOPERATIVE CONTEXTUAL BANDITS 3711

be the set of suboptimal choices of learner for a hypercube ,
and

(21)

be the set of suboptimal arms of learner for hypercube , where
.

In the next lemma we bound the regret due to choosing sub-
optimal choices in the exploitation steps of learner .
Lemma 7: Consider all learners running DCZAwith parame-

ters , and
. Then, we have

Proof: The proof of this lemma is similar to the
proof of Lemma 7, thus some steps are omitted.
and are defined the same way as in Lemma 7.

denotes the event that at most samples in
are collected from the suboptimal arms of learner

in , and . We have
.

Similar to Lemma 7, we have

Letting

we have

Since ,

Similar to the proof of Lemma 7, we have

Ξ

Hence,

In the next lemma we bound the regret of learner due to
selecting near optimal choices.
Lemma 8: Consider all learners running DCZAwith parame-

ters , and
. Then, we have

Proof: For any and , we have
. Similarly

for any , and , we have
.

As in the proof of Lemma 7, we have Ξ
. Thus, when a near optimal learner

is called by learner at time , the con-
tribution to the regret from suboptimal arms of is bounded
by . The one-slot regret of any near optimal arm
of any near optimal learner is
bounded by . The one-step regret of
any near optimal arm is bounded by

. The result is obtained by taking the
sum up to time .
Next, we combine the results from Lemmas 6, 7 and 8 to

obtain regret bounds as a function of the number of hypercubes
of each level that are activated up to time .
Theorem 2: Consider all learners running DCZA with pa-

rameters , and
. Then, for solo arrivals, we have

where , for solo
arrivals and for identical arrivals and

.
Proof: The result follows from summing the results of

Lemmas 6, 7 and 8 and using Lemma 5.
Although the result in Theorem 2 bounds the regret of DCZA

for an arbitrary context arrival process in terms of ’s,
it is possible to obtain context arrival process independent re-
gret bounds by considering the worst-case context arrivals. The
next corollary shows that the worst-case regret bound of DCZA
matches with the worst-case regret bound of CLUP derived in
Theorem 1.
Corollary 1: Consider all learners running DCZA with pa-

rameters , and

3712 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 14, JULY 15, 2015

. Then, the worst-case regret of
learner is bounded by

where , and are given in Theorem 2.
Proof: Since hypercube remains active for at most

context arrivals within that hypercube, combining the results of
Lemmas 7 and 8, the expected loss in hypercube in exploita-
tion slots is at most , where is defined in The-
orem 2. However, the expected loss in hypercube due to train-
ings and explorations is at least for some constant

, and is at most as given in Lemma 6.
In order to balance the regret due to trainings and explorations
with the regret incurred in exploitation within we set .
In the worst-case context arrivals, contexts arrive in a way

that all level hypercubes are divided into level hypercubes
before contexts start arriving to any of the level hypercubes.
In this way, the number of hypercubes to train and explore is
maximized. Let be the hypercube with the maximum level
that had at least one context arrival on or before in the worst-
case context arrivals. We must have

Otherwise, no hypercube with level will have a context
arrival by time . From the above equation we get

. Thus,

VI. DISCUSSION

A. Necessity of the Training Phase
In this subsection, we prove that the training phase is neces-

sary to achieve sublinear regret for the cooperative contextual
bandit problem for algorithms of the type CLUP and DCZA
(without the training phase) which use (i) exploration control
functions of the form , for constants , ;
(ii) form a finite partition of the context space; and (iii) use the
sample mean estimator within each hypercube in the partition.
We call this class of algorithms Simple Separation of Explo-
ration and Exploitation (SSEE) algorithms. In order to show
this, we consider a special case of expected arm rewards and
context arrivals and show that independent of the rate of explo-
rations, the regret of an SSEE algorithm is linear in time for
any exploration control function 12 of the form
for learner (exploration functions of learners can be different).
Although, our proof does not consider index-based learning al-
gorithms, we think that similar to our construction in Theorem

12Here is the control function that controls when to explore or exploit
the choices in for learner .

3, problem instances which will give linear regret can be con-
structed for any type of index policy without the training phase.
Theorem 3: Without the training phase, the regret of any

SSEE algorithm is linear in time.
Proof: We will construct a problem instance for which the

statement of the theorem is valid. Assume that all costs ,
, are zero. Let . Consider a hypercube .

We assume that at all time slots context arrives to learner
1, and all the contexts that are arriving to learner 2 are outside
. Learner 1 has only a single arm , learner 2 has two arms
and .With an abuse of notation, we denote the expected reward
of an arm at context as . Assume that the
arm rewards are drawn from and the following is true for
expected arm rewards:

(22)

for some , , where the value of will be spec-
ified later. Assume that learner 1’s exploration control function
is , and learner 2’s exploration control function
is for some , .13
When we have , when called by learner 1 in its ex-

plorations, learner 2 may always choose its suboptimal arm
since it is under-explored for learner 2. If this happens, then in
exploitations learner 1 will almost always choose its own arm
instead of learner 2, because it had estimated the accuracy of
learner 2 for incorrectly because the random rewards in ex-
plorations of learner 2 came from . By letting , we
also consider cases where only a fraction of reward samples of
learner 2 for learner 1 comes from the suboptimal arm . We
will show that for any value of , there exists a problem
instance of the form given in (22) such that learner 1’s regret is
linear in time. Let be the event that time is an exploitation
slot for learner 1. Let be the sample mean reward
of arm and learner 2 for learner 1 at time respectively. Let
be the event that learner 1 exploits for the th time by choosing
its own arm. Denote the time of the th exploitation of learner 1
by .Wewill show that for any finite , .
We have by the chain rule

(23)

We will continue by bounding . When
the event happens, we know
that at least of re-
ward samples of learner 2 for learner 1 comes from . Let

,
and , for . Given

, we have . Consider the
event . Since on , learner 1 selected at
least times (given that is large enough such that
the reward estimate of learner 1’s own arm is accurate),
we have , using a Chernoff bound.
Let () be the number of times learner 2 has
chosen arm () when called by learner 1 by time . Let

() be the random reward of arm () when it is

13Given two control functions of the form , , we can
always normalize them such that one of them is and the other one is

, and then construct the problem instance that gives linear regret
based on the normalized control functions.

TEKIN AND VAN DER SCHAAR: DISTRIBUTED ONLINE LEARNING VIA COOPERATIVE CONTEXTUAL BANDITS 3713

chosen for the th time by learner 2. For , ,
let and

. On the event
, we have . Since

,
We have

(24)

If

(25)

then, it can be shown that the right hand side of (24) is less than
. Thus given that (25) holds, we have .

But on the event , (25) holds at
when . Note that if we
take , and the
statement above holds for a problem instance with

. Since at any exploitation slot , at least sam-
ples are taken by learner 2 from both arms and , we have

and
by a Chernoff bound (again for large enough as in the proofs
of Theorems 1 and 2). Thus

. Hence
, and . Contin-

uing from (23), we have

for all . This result implies that with probability greater than
one half, learner 1 chooses its own arm at all of its exploitation
slots, resulting in an expected per-slot regret of .
Hence the regret is linear in time.

B. Comparison of CLUP and DCZA
In this subsection we assess the computation and memory re-

quirements of DCZA and compare it with CLUP. DCZA needs
to keep the sample mean reward estimates of choices for
each active hypercube. A level active hypercube becomes in-
active if the context arrivals to that hypercube exceeds . Be-
cause of this, the number of active hypercubes at any time
may be much smaller than the number of activated hypercubes
by time . In the best-case, only one level hypercube experi-
ences context arrivals, then when that hypercube is divided into
level hypercubes, only one of these hypercubes experiences
context arrivals and so on. In this case, DCZA run with
creates at most hypercubes (using Lemma
5). In the worst-case (given in Corollary 1), DCZA creates at
most hypercubes. Recall that for any and ,
the number of hypercubes of CLUP creates is .
Hence, in practice the memory requirement of DCZA can be
much smaller than CLUP which requires to keep the estimates
for every hypercube at all times. Finally DCZA does not require
final time as in input while CLUP requires it. Although CLUP
can be combined with the doubling trick to make it independent

of , this makes the constants that multiply the time order of the
regret large.

VII. CONCLUSION
In this paper we proposed a novel framework for decentral-

ized, online learning by many learners. We developed two novel
online learning algorithms for this problem and proved sub-
linear regret results for our algorithms. We discussed some im-
plementation issues such as complexity and the memory re-
quirement under different instance and context arrivals. Our the-
oretical framework can be applied to many practical settings
including distributed online learning in Big Data mining, rec-
ommendation systems and surveillance applications. Coopera-
tive contextual bandits opens a new research direction in on-
line learning and raises many interesting questions: What are
the lower bounds on the regret? Is there a gap in the time order
of the lower bound compared to centralized contextual bandits
due to informational asymmetries? Can regret bounds be proved
when cost of calling learner is controlled by learner ? In other
words, what happens when a learner wants to maximize both the
total reward from its own contexts and the total reward from the
calls of other learners.

APPENDIX A
A BOUND ON DIVERGENT SERIES

For , , .
Proof: See [23].

APPENDIX B
FREQUENTLY USED EXPRESSIONS

Mathematical Operators:
• : Big O notation.
• : Big O notation with logarithmic terms hidden.
• : indicator function of event .
• or : complement of set .
Notation Related to Underlying System:
• : Set of learners. .
• : Set of arms of learner . .
• : Set of learners except . .
• : Set of choices of learner . .
• : Set of all arms.
• : Context space.
• : Dimension of the context space.
• : Expected reward of arm for context .
• : Expected reward of learner ’s best arm for context

.
• : Cost of selecting choice for learner .
• : Expected net reward of learner
from choice for context .

• : Best choice (highest expected net reward) for
learner for context .

• : Best arm (highest expected reward) of learner for
context .

• : Hölder constant. : Hölder exponent.
Notation Related to Algorithms:
• : Control functions.
• : Index for set of contexts (hypercube).
• : Number of slices for each dimension of the context
for CLUP.

• : Partition of for CLUP.

3714 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 14, JULY 15, 2015

• : Learner ’s adaptive partition of at time for
DCZA.

• : Union of partitions of of all learners for DCZA.
• : The set in that contains .
• : Set of learners who are training candidates of
learner at time for set of learner ’s partition.

• : Set of learners who are under-trained by learner
at time for set of learner ’s partition.

• : Set of learners who are under-explored by learner
at time for set of learner ’s partition.

• : Set of learners who are training candidates of
learner at time for set of learner ’s partition.

REFERENCES
[1] K. Liu and Q. Zhao, “Distributed learning in multi-armed bandit with

multiple players,” IEEE Trans. Signal Process., vol. 58, no. 11, pp.
5667–5681, 2010.

[2] C. Tekin andM. Liu, “Online learning in decentralized multi-user spec-
trum access with synchronized explorations,” in Proc. IEEEMILCOM,
2012, pp. 1–6.

[3] R. Kleinberg, A. Slivkins, and E. Upfal, “Multi-armed bandits in metric
spaces,” in Proc. 40th Annu. ACM Symp. Theory Comput., 2008, pp.
681–690.

[4] S. Bubeck, R.Munos, G. Stoltz, and C. Szepesvari, “X-armed bandits,”
J. Mach. Learn. Res., vol. 12, pp. 1655–1695, 2011.

[5] A. Slivkins, “Contextual bandits with similarity information,” in
Proc. 24th Annu. Conf. Learn. Theory (COLT), Jun. 2011, vol. 19, pp.
679–702.

[6] M. Dudik, D. Hsu, S. Kale, N. Karampatziakis, J. Langford, L. Reyzin,
and T. Zhang, “Efficient optimal learning for contextual bandits,” 2011,
ArXiv preprint arXiv:1106.2369 [Online]. Available: http://arxiv.org/
abs/1106.2369

[7] J. Langford and T. Zhang, “The epoch-greedy algorithm for contex-
tual multi-armed bandits,” Adv. Neural Inf. Process. Syst., vol. 20, pp.
1096–1103, 2007.

[8] W. Chu, L. Li, L. Reyzin, and R. E. Schapire, “Contextual bandits with
linear payoff functions,” in Proc. 14th Int. Conf. Artif. Intell. Statist.
(AISTATS), Apr. 2011, vol. 15, pp. 208–214.

[9] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-bandit
approach to personalized news article recommendation,” in Proc. 19th
Int. Conf. World Wide Web, 2010, pp. 661–670.

[10] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Mach. Learn., vol. 47, pp. 235–256,
2002.

[11] K. Crammer and C. Gentile, “Multiclass classification with bandit feed-
back using adaptive regularization,” Mach. Learn., vol. 90, no. 3, pp.
347–383, 2013.

[12] A. Anandkumar, N. Michael, and A. Tang, “Opportunistic spectrum
access with multiple players: Learning under competition,” in Proc.
IEEE INFOCOM, Mar. 2010.

[13] C. Tekin and M. Liu, “Online learning of rested and restless bandits,”
IEEE Trans. Inf. Theory, vol. 58, no. 8, pp. 5588–5611, 2012.

[14] H. Liu, K. Liu, and Q. Zhao, “Learning in a changing world: Restless
multiarmed bandit with unknown dynamics,” IEEE Trans. Inf. Theory,
vol. 59, no. 3, pp. 1902–1916, 2013.

[15] R. Stranders, L. Tran-Thanh, F. M. D. Fave, A. Rogers, and N. R.
Jennings, “DCOPs and bandits: exploration and exploitation in decen-
tralised coordination,” in Proc. 11th Int. Conf. Autonom. Agents Multi-
agent Syst.—Volume 1, 2012, pp. 289–296.

[16] Y. Gai, B. Krishnamachari, and R. Jain, “Combinatorial network opti-
mization with unknown variables: multi-armed bandits with linear re-
wards and individual observations,” IEEE/ACM Trans. Netw., vol. 20,
no. 5, pp. 1466–1478, 2012.

[17] S. S. Ram, A. Nedic, and V. V. Veeravalli, “Distributed stochastic
subgradient projection algorithms for convex optimization,” J. Optim.
Theory Appl., vol. 147, no. 3, pp. 516–545, 2010.

[18] F. Yan, S. Sundaram, S. Vishwanathan, and Y. Qi, “Distributed
autonomous online learning: regrets and intrinsic privacy-preserving
properties,” IEEE Trans. Knowl. Data Eng., vol. 25, no. 11, pp.
2483–2493, 2013.

[19] M. Raginsky, N. Kiarashi, and R.Willett, “Decentralized online convex
programming with local information,” in Proc. Amer. Control Conf.
(ACC), 2011, pp. 5363–5369.

[20] C. Tekin, S. Zhang, andM. van der Schaar, “Distributed online learning
in social recommender systems,” IEEE J. Sel. Topics Signal Process,
vol. 8, no. 4, pp. 638–652, Aug. 2014.

[21] H. Liu, K. Liu, and Q. Zhao, “Learning in a changing world:
Non-Bayesian restless multi-armed bandit,” Univ. of Cali-
fornia—Davis, Tech. Rep., 2010.

[22] R. Ortner, “Exploiting similarity information in reinforcement
learning,” in Proc. 2nd ICAART, 2010, pp. 203–210.

[23] E. Chlebus, “An approximate formula for a partial sum of the divergent
p-series,” Appl. Math. Lett., vol. 22, no. 5, pp. 732–737, 2009.

Cem Tekin (M’13) received the B.Sc. degree in
electrical and electronics engineering from the
Middle East Technical University, Ankara, Turkey,
in 2008, the M.S.E. degree in electrical engineering:
systems, M.S. degree in mathematics, Ph.D. degree
in electrical engineering: systems from the Univer-
sity of Michigan, Ann Arbor, in 2010, 2011 and
2013, respectively. He is an Assistant Professor in
Electrical and Electronics Engineering Department
at Bilkent University, Turkey. From February 2013
to January 2015, he was a Postdoctoral Scholar at

University of California, Los Angeles. His research interests include machine
learning, multi-armed bandit problems, data mining, multi-agent systems and
game theory. He received the University of Michigan Electrical Engineering
Departmental Fellowship in 2008, and the Fred W. Ellersick award for the best
paper in MILCOM 2009.

Mihaela van der Schaar (F’10) is Chancellor
Professor of Electrical Engineering at University
of California, Los Angeles. Her research interests
include network economics and game theory, online
learning, dynamic multi-user networking and com-
munication, multimedia processing and systems,
real-time stream mining. She is an IEEE Fellow,
a Distinguished Lecturer of the Communications
Society for 2011–2012, the Editor in Chief of IEEE
TRANSACTIONS ON MULTIMEDIA and a member
of the Editorial Board of the IEEE JOURNAL ON

SELECTED TOPICS IN SIGNAL PROCESSING. She received an NSF CAREER
Award (2004), the Best Paper Award from IEEE TRANSACTIONS ON CIRCUITS
AND SYSTEMS FOR VIDEO TECHNOLOGY (2005), the Okawa Foundation Award
(2006), the IBM Faculty Award (2005, 2007, 2008), the Most Cited Paper
Award from EURASIP: Image Communications Journal (2006), the Gamenets
Conference Best Paper Award (2011) and the 2011 IEEE Circuits and Systems
Society Darlington Award Best Paper Award. She received three ISO awards for
her contributions to the MPEG video compression and streaming international
standardization activities, and holds 33 granted U.S. patents.

