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ABSTRACT

ON FEDERATED LEARNING OVER WIRELESS
CHANNELS WITH OVER-THE-AIR AGGREGATION

Ozan Aygün

M.S. in Electrical and Electronics Engineering

Advisor: Tolga Mete Duman

July 2022

A decentralized machine learning (ML) approach called federated learning (FL)

has recently been at the center of attention since it secures edge users’ data and

decreases communication costs. In FL, a parameter server (PS), which keeps

track of the global model orchestrates local training and global model aggregation

across a set of mobile users (MUs). While there exist studies on FL over wireless

channels, its performance on practical wireless communication scenarios has not

been investigated very well. With this motivation, this thesis considers wireless

FL schemes that use realistic channel models, and analyze the impact of different

wireless channel effects.

In the first part of the thesis, we study hierarchical federated learning (HFL)

where intermediate servers (ISs) are utilized to make the server-side closer to the

MUs. Clustering approach is used where MUs are assigned to ISs to perform

multiple cluster aggregations before the global aggregation. We first analyze the

performance of a partially wireless approach where the MUs send their gradients

through a channel with path-loss and fading using over-the-air (OTA) aggrega-

tion. We assume that there is no inter-cluster interference and the gradients from

the ISs to the PS are sent error-free. We show through numerical and experi-

mental analysis that our proposed algorithm offers a faster convergence and lower

power consumption compared to the standard FL with OTA aggregation. As an

extension, we also examine a fully-wireless HFL setup where both the MUs and

ISs send their gradients through OTA aggregation, taking into account the effect

of inter-cluster interference. Our numerical and experimental results reveal that

utilizing ISs results in a faster convergence and a better performance than the

OTA FL without any IS while using less transmit power. It is also shown that

the best choice of cluster aggregations depends on the data distribution among
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the MUs and the clusters.

In the second part of the thesis, we study FL with energy harvesting MUs with

stochastic energy arrivals. In every global iteration, the MUs with enough energy

in their batteries perform local SGD iterations, and transmit their gradients using

OTA aggregation. Before sending the gradients to the PS, the gradients are scaled

with respect to the idle time and data cardinality of each MU, through a cooldown

multiplier, to amplify the importance of the MUs that send less frequent local

updates. We provide a convergence analysis of the proposed setup, and validate

our results with numerical and neural network simulations under different energy

arrival profiles. The results show that the OTA FL with energy harvesting devices

performs slightly worse than the OTA FL without any energy restrictions, and

that utilizing the excess energy for more local SGD iterations gives a better

convergence rate than simply increasing the transmit power.

Keywords: Distributed machine learning, federated learning, wireless channels,

path-loss, fading channels, energy harvesting communications.



ÖZET

KABLOSUZ KANALLAR ÜZERİNDEN HAVADA
BİRLEŞTİRME İLE FEDERE ÖĞRENME

Ozan Aygün

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Danışmanı: Tolga Mete Duman

Temmuz 2022

Federe öğrenme (FL) adı verilen merkezi olmayan makine öğrenimi (ML)

yaklaşımı, kullanıcıların verilerini güvence altına aldığı ve iletişim maliyetlerini

azalttığı için son zamanlarda ilgi odağı olmuştur. FL’de, global modelin kaydını

tutan bir parametre sunucusu (PS), bir dizi mobil kullanıcı (MU) arasında yerel

eğitimi ve global model toplamasını düzenler. Kablosuz kanallar üzerinden FL ile

ilgili çalışmalar mevcut olmakla birlikte, pratik kablosuz iletişim senaryolarındaki

performansı çok iyi araştırılmamıştır. Bu motivasyonla, bu tez, gerçekçi kanal

modelleri kullanan ve farklı kablosuz kanal etkilerinin etkisini analiz eden kablo-

suz FL şemalarını ele almaktadır.

Tezin ilk bölümünde, sunucu tarafını MU’lara daha yakın hale getirmek

için ara sunucuların (IS’ler) kullanıldığı hiyerarşik federe öğrenmeyi (HFL) in-

celiyoruz. Kümeleme yaklaşımı, küresel toplamadan önce çoklu küme topla-

maları gerçekleştirmek için MU’ların IS’lere atandığı durumlarda kullanılır. İlk

olarak, MU’ların gradyanlarını havadan (OTA) toplama kullanarak yol kaybı

ve sönümlemeli bir kanal üzerinden gönderdiği kısmen kablosuz bir yaklaşımın

performansını analiz ediyoruz. Kümeler arası girişim olmadığını ve IS’lerden

PS’ye olan gradyanların hatasız gönderildiğini varsayıyoruz. Önerilen algorit-

mamızın OTA toplamalı standart FL’ye kıyasla daha hızlı yakınsama ve daha

düşük güç tüketimi sunduğunu sayısal ve deneysel analizlerle gösteriyoruz. Bir

uzantı olarak, hem MU’ların hem de IS’lerin gradyanlarını kümeler arası girişimin

etkisini dikkate alarak OTA toplama yoluyla gönderdiği tamamen kablosuz bir

HFL kurulumunu da inceliyoruz. Sayısal ve deneysel sonuçlarımız, IS’lerin kul-

lanılmasının, daha az iletim gücü kullanırken herhangi bir IS’siz OTA FL’den

daha hızlı bir yakınsama ve daha iyi bir performans ile sonuçlandığını ortaya

koymaktadır. Ayrıca, küme kümelemelerinin en iyi seçiminin, MU’lar ve kümeler
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arasındaki veri dağılımına bağlı olduğu da gösterilmiştir.

Tezin ikinci bölümünde, stokastik enerji gelişleri ile enerji hasadı MU’ları ile

FL’yi inceliyoruz. Her global yinelemede, pillerinde yeterli enerjiye sahip MU’lar

yerel SGD yinelemelerini gerçekleştirir ve gradyanlarını OTA toplamasını kul-

lanarak iletir. Gradyanları PS’ye göndermeden önce, daha az sıklıkta yerel

güncellemeler gönderen MU’ların önemini artırmak için gradyanlar, bir bekleme

süresi çarpanı aracılığıyla her bir MU’nun boşta kalma süresi ve veri kardinalite-

sine göre ölçeklendirilir. Önerilen kurulumun yakınsama analizini sağlarız ve

sonuçlarımızı farklı enerji varış profilleri altında sayısal ve sinir ağı simülasyonları

ile doğrularız. Sonuçlar, enerji toplama cihazlarına sahip OTA FL’nin her-

hangi bir enerji kısıtlaması olmaksızın OTA FL’den biraz daha kötü performans

gösterdiğini ve fazla enerjiyi daha fazla yerel SGD yinelemeleri için kullanmanın,

yalnızca iletim gücünü artırmaktan daha iyi bir yakınsama oranı sağladığını

göstermektedir.

Anahtar sözcükler : Dağıtılmış makine öğrenmesi, federe öğrenme, kablosuz kanal-

lar, yol kaybı, sönümleme kanalları, enerji hasatı ile haberleşme.
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Chapter 1

Introduction

1.1 Overview

Extensive amounts of collected data from various devices such as mobile phones

and Internet-of-things (IoT) sensors have enabled the accelerating rise of machine

learning (ML) algorithms. Traditionally, ML algorithms require all the data to

be collected at a cloud server for model training, which raises concerns regarding

privacy, cost, and latency. Firstly, data owners may be sensitive about sharing

their personal data; secondly, the increasing quality and volume of collected data

results in higher communication costs; and finally, solutions that work in real-

time are faced with latency issues. To overcome these problems, a decentralized

approach called federated learning (FL) has been introduced, where models are

trained locally instead of using a centralized server.

In FL, several data owners, called mobile users (MUs), are selected at each

iteration based on some criteria such as their computing capability, available

power, and location. The parameter server (PS) sends the current global model

to the selected MUs. Each of these MUs trains a local model by carrying out

multiple stochastic gradient descent (SGD) iterations using its own data and

computing power. Then, each MU sends only the weight updates to the PS,

1



which performs model aggregation to update the global model. These steps are

repeated until a convergence criterion is met.

Despite its superiority over traditional ML, adverse channel effects in wireless

setups and increased communication costs pose challenges for the feasibility of

conventional FL in practical scenarios. To address the communication cost con-

cerns, over-the-air (OTA) aggregation has become a popular method thanks to

its efficient strategy that allocates all the MUs to the same bandwidth, thereby

handling the transmission and aggregation of the gradient updates simultane-

ously (over the air). For this framework, one approach to deal with the channel

effects (particularly when there is no transmit side channel state information) is

to increase the number of receive antennas at the PS. Nevertheless, the disparity

among the channel gains is still a critical concern, e.g., when some MUs are far

away from the PS, as this would introduce bias across the updates.

1.2 Contributions of the Thesis

In this thesis, we investigate the performance of OTA FL while taking wireless

channel effects into account. Specifically, we study on the convergence rate and

the performance of different OTA FL schemes.

We first propose a hierarchical federated learning (HFL) with OTA aggrega-

tion, where intermediate servers (ISs) are employed in areas where the number

of MUs is high to form cluster-like structures. In the proposed approach, MUs

carry out multiple SGD iterations before transmitting their model differences to

their corresponding IS using OTA aggregation. After several cluster aggregation

steps between ISs and their corresponding MUs, global aggregation is made at

the PS, using the IS cluster updates. We provide a theoretical analysis on the

convergence rate of the proposed algorithm with different number of cluster aggre-

gations to show that a hierarchical structure gives a faster convergence than the

conventional FL with OTA aggregation which does not employ any intermediate

servers.
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We then extend our study on OTA HFL to a fully-wireless case where both the

cluster and global aggregations are performed using OTA computing. Moreover,

we remove the assumption that the interference in a cluster aggregation comes

only from the MUs inside the cluster, i.e., we include the inter-cluster interference

due to all the MUs. We present a detailed analysis and study the performance of

the proposed approach with different data distributions and datasets.

In the last part of the thesis, we focus on OTA FL with energy harvesting MUs.

In this case, the MUs collect the required energy for both local computations and

transmissions from their ambient environment. We start our analysis with energy

harvesting MUs equipped with unit batteries where the energy arrivals are based

on a Bernoulli process or a uniform process with a pre-defined length. We con-

duct a theoretical analysis of energy harvesting OTA FL with Bernoulli energy

arrivals and compare it with the performance of OTA FL with full participation.

We also extend the energy harvesting OTA FL approach to a case where the MUs

can have finite battery levels, and the energy is used both for local computations

and gradient transmissions. We propose two different power consumption policies

where the excess energy is either used to increase the number of local SGDs, or

to increase the transmit power for the OTA aggregation. We show through a

theoretical analysis that utilizing the excess energy for additional local computa-

tions gives a faster convergence rate than utilizing it to increase the transmission

power.

Our results in this thesis are reported in two conference papers (one published,

one accepted), and an additional manuscript submitted for publication:

• O. Aygün, M. Kazemi, D. Gündüz, T. M. Duman, “Hierarchical over-the-

air federated edge learning” in IEEE Int. Conf. Commun. (ICC), Seoul,

South Korea, May 2022. [1]

• O. Aygün, M. Kazemi, D. Gündüz, T. M. Duman “Over-the-air federated

learning with energy harvesting devices” IEEE Glob. Telecommun. Conf.

(GLOBECOM), Rio de Janeiro, Brazil, Dec. 2022. [2]

• O. Aygün, M. Kazemi, D. Gündüz, T. M. Duman “Over-the-Air Federated

3



Edge Learning with Hierarchical Clustering” IEEE Trans. Wireless Com-

mun., 2022 (under review). Available: https://arxiv.org/pdf/2207.09232.pdf

[3]

1.3 Thesis Outline

In Chapter 2, we provide the motivation behind OTA FL by firstly explaining the

fundamentals regarding FL with its literature review, then introducing the more

practical approaches such as the communication model of OTA FL and its hierar-

chical version. In Chapter 3, we explain the design and the system model of our

basic HFL setup with OTA communications in cluster aggregation, and error-free

transmission for the global aggregation. We also provide its convergence analysis

and experimental results with different datasets and data distributions. In Chap-

ter 4, we propose an extended version of the previous algorithm to a more realistic

model where OTA aggregation is used in both cluster and global aggregation steps

with inter-cluster interference included in the cluster aggregation stage. Similar

to before, we also provide the convergence analysis and experimental results to

verify our work and compare with the other schemes. In Chapter 5, we work on

OTA FL using energy harvesting devices, and provide an algorithm for MUs who

have unit-sized battery with either deterministic or stochastic energy arrivals.

Moreover, we provide a convergence analysis for the MUs with stochastic energy

arrivals and report its experimental results with different setups. We also work on

an extension of energy harvesting OTA FL where the MUs have discrete energy

arrivals between two consecutive global iterations based on a Poisson process. We

take into account the energy costs of local SGD computations and gradient trans-

missions separately, and propose different energy consumption profiles where the

excess energy is used either for increasing the number of local computations or

increasing the transmit power, and provide theoretical results to compare differ-

ent scenarios. Finally, in Chapter 6, we conclude our work and provide possible

future research directions.

4
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Chapter 2

Preliminaries and Literature

Review

In this chapter, we provide the basic preliminaries and a literature review re-

quired for the material in this thesis. Firstly, federated learning is introduced

in detail. Secondly, wireless FL is explained to set the framework for the subse-

quent chapters. Then, hierarchical FL schemes are discussed as background on

Chapters 3 and 4. Finally, energy harvesting devices with different capabilities

are introduced as preliminaries for the proposed solutions in Chapter 5.

The chapter is organized as follows. In Section 2.1, federated learning scheme

with error-free transmission is presented. In Section 2.2, wireless FL schemes

including OTA aggregation is explained. In Section 2.3, hierarchical FL approach

is described. In Section 2.4, preliminaries regarding energy harvesting devices

with limited battery are given. The chapter is concluded in Section 2.5.
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2.1 Federated Learning

The abundance of generated data has been essential for the rapid advancements

in machine learning (ML) in different domains. Traditionally, ML relies on accu-

mulating all the data at a server to train the input data and give a representative

model. An example of the traditional ML model is given in Figure 2.1 where

the participating users send their data to a cloud server to obtain a global model

that represents all the users’ data. The server shares the resulting model with

the users after the training.

Data Data Data

Data Data

User 1

Data Data DataDataData

User 2 User 3
 User 4 User 5

Global Data Global Model

Figure 2.1: Illustration of a traditional ML system model.

Recent work on ML has shown that there may be concerns about data privacy,

communication costs, and latency. Firstly, users may be reluctant to share their

data since they want to ensure that their sensitive information is safe. Secondly,

the sensor devices produce data with a much higher quality than ever before,

which requires more time or higher rates for transmission. Thirdly, applications

that need to operate in real-time might be affected by the latency since their

performance depends on the model response of the simultaneously collected data.

To overcome these problems, a decentralized approach called federated learning

(FL) has been introduced, where models are trained locally instead of using a

centralized server.
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In FL, several data owners, called mobile users (MUs), are selected at each

iteration based on some criteria such as their computing capability, available

power, and location. The parameter server (PS) sends the current global model

to the selected MUs. Each of these MUs trains a local model by carrying out

multiple stochastic gradient descent (SGD) iterations using its own data and

computing power. Then, each MU sends only the weight updates to the PS,

which performs model aggregation to update the global model. These steps are

repeated until a convergence criterion is met.

2.1.1 System Model

User 1

Data Data DataDataData

User 2 User 3
 User 4 User 5

Global Model

Model Parameters

Local Data

Local Model

Figure 2.2: FL system model.

In [4], McMahan et. al. introduced federated learning (FL) where model training

with the user data can be done without collecting them at a centralized server.

The objective of FL is to minimize a loss function F (θ) with respect to the model

weight vector θ ∈ R2N , where 2N is the model dimension. The system consists

of M MUs and a PS as depicted in Fig. 2.2. The dataset of the m-th MU is

7



denoted as Bm, and we define B ≜
∑M

m=1 |Bm|. We have

F (θ) =
M∑

m=1

|Bm|
B

Fm(θ), (2.1)

where Fm(θ) ≜ 1
|Bm|

∑
u∈Bm

f(θ, u), with f(θ, u) denoting the corresponding loss

of u-th data sample. In every global iteration, the MUs carry out τ user iterations

on their own, and then send the model updates to the corresponding PSs for the

global aggregation. At the j-th user iteration, the weight update is performed

employing stochastic gradient descent (SGD) for the m-th MU is as follows

θj+1
m (t) = θj

m(t)− ηjm(t)∇Fm(θ
j
m(t), ξ

j
m(t)), (2.2)

where ηjm(t) is the learning rate, ∇Fm(θ
j
m(t), ξ

j
m(t)) denotes the stochastic gradi-

ent estimate for the weight vector θj
m(t) and a randomly sampled batch of data

samples ξjm(t) from the dataset of the m-th MU at the t-th global and j-th user

iteration. The PS performs model aggregation using the local updates to ob-

tain an updated global model and sends the new model back to the MUs for the

next iteration. The first proposed aggregation method is called FedAvg, proposed

in [5], which finds the global model for the next global iteration as

θPS(t+ 1) =
M∑

m=1

|Bm|
B

θτ
m(t). (2.3)

The steps given in (2.2) and (2.3) are repeated until a desirable accuracy is

obtained.

Alternatively, one can also send local gradients to the parameter server for

convenience. That way, the global model is not lost, instead, it is updated in

every global iteration. In this case, after performing τ local SGD iterations, each

MU calculates its model difference to be sent to the PS as

∆θm(t) = θτ+1
m (t)− θ1

m(t). (2.4)

The global update rule is

∆θPS(t) =
M∑

m=1

|Bm|
B

∆θPS,c(t). (2.5)

8



After the global aggregation, the model at the PS is updated as

θPS(t+ 1) = θPS(t) + ∆θPS(t). (2.6)

Throughout the thesis, we will consider the FL notion for which the gradients are

sent to PS.

2.1.2 Literature Review on Federated Learning

FL has gained a significant attention because of its privacy preserving nature, and

utilizing computation at the edge to address the latency problem while offloading

the data to the server [4]. One of the first FL algorithms that is proposed is called

FedAvg, where the global aggregation is performed via a simple averaging of the

local weights received from the MUs [5]. Since not all the MUs can have equal

amount of data samples, a weighted averaging operation with respect to the data

cardinality is used in order not to bias the system towards the MUs with more

data samples. Therefore, the authors in [5] have added a weight depending on

the number of data samples each MU has, and normalizing those weights with

respect to the total number of data samples contributing to the aggregation.

In practical applications, not all the MUs have the same amount of data diver-

sity, i.e., some MUs might only have data samples with only a small portion of all

the available labels, which creates a non-independent and identically distributed

data distribution scheme across the MUs. To overcome the data distribution issue

and reduce the bias toward some labels, the authors in [6] have proposed to use

the data distribution of MUs to weigh them based on how independent and iden-

tically distributed (i.i.d.) their data is when compared to the other MUs using the

earth mover’s distance [7], and achieved a performance increase when the MUs

have non-i.i.d. data distribution. If an MU’s data distribution is too skewed when

compared to the others, a small percentage of the data sharing is requested from

the MU to the PS to support the global aggregation process. They show that

with 5% data sharing, a performance increase can be observed with both i.i.d.

and non-i.i.d. data distributions. Similar to this scheme, [8] introduces another

method to compare the variance of the local models among different MUs using
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maximum mean discrepancy (MMD) to decrease the bias towards the MUs that

have skewed data distributions [9]. Using the global model as a reference during

their local training process, they aim to minimize the MMD loss between the

local and global models. There are also studies supporting that more local SGD

iterations at the edge before the global aggregation can give higher accuracies

and achieve faster convergence when compared to the case where only a single

SGD iteration is performed, but at the risk of being stuck at the local minima

values in non-i.i.d. settings, see, for instance, [6].

Local gradients calculated at the MUs can have different mean and variance

values, depending on the neural network architecture employed. Using the ob-

servation that most parameter values are sparsely distributed and close to zero,

another approach called edge stochastic gradient descent (eSGD) is proposed to

reduce the amount redundant gradient transmissions [10]. Only a portion of the

gradients are sent, and the algorithm determines the importance of current train-

ing gradients based on improvements in loss value. Positive hidden weights are

given to important parameters. Small gradient values are accumulated as residual

values and once their residuals reach a threshold, they are chosen to replace the

least important hidden weights. To reduce the communication costs, [11] pro-

poses to assign relevancy scores to the updates from each MU. The local update

is performed only if it is above a predefined relevancy score threshold. They show

that while guaranteeing its convergence, the conventional FL accuracies can be

acheved with significantly less number of communication rounds.

One of the main reasons that FL is chosen over traditional ML is that it

protects the user data, i.e., the local data do not need to be offloaded to a cloud

server. Despite its advantages in terms of privacy, recent studies show that there

can be concerns regarding the privacy and security of the MUs, especially when

there are malicious participants among the MUs whose intentions are to infer

the user data from the shared local models [12], or to provide the PS with false

information [13].

One of the approaches that can jeopardize the privacy of the system rely

on the fact that local models represent the local data, and an adversary user
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can regenerate a victim user’s data by obtaining the representative model and

utilizing generative models such as generative adversarial networks (GANs) [14].

By training two different networks for both generating the data and discriminating

between fake and real data, it is possible to mimic the data of target users by

using their neural network model. Authors in [15] explore this idea to introduce

malicious participants into the system in order to infer the unshared data from the

local model. Results show that it is possible to generate the local data with a high

accuracy. A possible approach to increase the user privacy is to use differential

privacy techniques [16]. In [17], the authors propose to add some “noise” to the

local updates before sending them to the PS in order to increase the privacy of the

system. As a more established approach, encryption can also be used to increase

the data privacy [18].

Security is another important issue that needs to be studied at in order to

preserve the reliability of the FL system. Even though a malicious participant

does not give any privacy issues, it can still disturb the system by sending false

information, or no information at all. One approach that needs to be dealt with is

the “data poisoning attacks”, where a malicious participant sends dirty-label data

in order to confuse the PS [19]. It is possible to almost completely falsify the PS

even with a small number of samples when compared to the total amount of data,

so one needs to be aware of the possibility that the incoming labels might not

be correct. Another way of exploiting this issue is to perform “model poisoning

attack” where the sent model is entirely false, and its only purpose is to misguide

the PS into a wrong direction [20]. It is shown that model poisoning attacks are

much more effective than the data poisoning attacks since they directly modify

the global model [21].

2.2 Wireless FL

Since the edge users are usually far away from the PS, the gradients need to

be sent through wireless channels. However, one needs to be aware that the

amount of required bandwidth increases linearly with the number of participating
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users. Therefore, the required bandwidth becomes extremely high in settings that

include a large number of MUs. To address the communication cost concerns,

over-the-air (OTA) aggregation [22] has become a popular method thanks to

its efficient strategy that allocates all the MUs to the same bandwidth, thereby

handling the transmission and aggregation of the gradient updates simultaneously

(over the air). Even though we lose the values of individual gradient values coming

from different MUs, the PS does not need the individual values since they will be

added up for the global aggregation.

Despite its benefits over traditional ML, adverse channel effects in wireless

setups pose challenges for the feasibility of conventional FL in practical scenarios.

Because of the interference effects when OTA aggregation is used, the performance

of wireless FL with a single antenna becomes poor. Adverse effects of the wireless

channel can be reduced by increasing the number of receive antennas at the PS.

In [23], authors show that the interference and noise terms can be alleviated as the

number of receive antennas increases. They show that even when the tranmitter

side has no channel state information (CSI), and the receiver has imperfect CSI,

a good performance can still be achieved.

2.2.1 System Model

We now consider the scheme referred as wireless FL that uses OTA aggregation,

for which the links between the MUs and the PS are modeled as wireless channels.

Since a common wireless medium is used in local aggregations, noisy versions

of the model updates ∆θPS(t) are received at the PS. In our setup, the PS is

equipped with K antennas, and we assume perfect CSI at the receivers and no

CSI at the MUs.

In wireless FL, in order to increase the spectral efficiency, the model differences

are grouped to form a complex vector ∆θcx
m (t) ∈ CN with the following real and
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imaginary parts

∆θre
m (t) ≜

[
∆θ1m(t),∆θ2m(t), . . . ,∆θNm(t)

]T
, (2.7a)

∆θim
m (t) ≜

[
∆θN+1

m (t),∆θN+2
m (t), . . . ,∆θ2Nm (t)

]T
. (2.7b)

The received signal at the PS for the k-th antenna at the t-th global iteration

can be represented as

yPS,k(t) = Pt

M∑
m=1

hm,k(t) ◦∆θcx
m (t) + zPS,k(t), (2.8)

where Pt is a multiplier at the t-th global iteration used to adjust the average

transmitted power, “◦” denotes the element-wise product, zPS,k(t) ∈ CN with

i.i.d. entries znPS,k(t) ∼ CN (0, σ2
z). The channel coefficients are modelled as

hm,k(t) =
√
βm gm,k(t), (2.9)

where gm,k(t) ∈ CN with entries gnm,k(t) ∼ CN (0, σ2
h) (i.e., Rayleigh fading), βm

is the large-scale fading coefficient modeled as βm = (dm)
−p, where p represents

the path loss exponent, and dm denotes the distance between the m-th MU and

the PS.

Knowing the CSI perfectly, the PS combines the received signals as

yPS(t) =
1

K

K∑
k=1

( M∑
m=1

hm,k(t)
)∗

◦ yPS,k(t). (2.10)
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For the n-th symbol, the combined signal can be written as

ynPS(t) =
1

K

K∑
k=1

( M∑
m=1

hn
m,k(t)

)∗
ynPS,k(t) (2.11)

= Pt

M∑
m=1

( 1

K

K∑
k=1

|hn
m,k(t)|2

)
∆θn,cxm (t)︸ ︷︷ ︸

yn,sig
PS (t) (signal term)

+
Pt

K

M∑
m=1

M∑
m′=1
m′ ̸=m

K∑
k=1

(hn
m,k(t))

∗hn
m′,k(t)∆θn,cxm′ (t)

︸ ︷︷ ︸
yn,itf
PS (t) (interference term)

+
1

K

M∑
m=1

K∑
k=1

(hn
m,k(t))

∗znPS,k(t)︸ ︷︷ ︸
yn,no
PS (t) (noise term)

. (2.12)

Aggregated model differences can be recovered by

∆θ̂nPS(t) =
1

PtMσ2
hβ̄

Re{ynPS(t)}, (2.13a)

∆θ̂n+N
PS (t) =

1

PtMσ2
hβ̄

Im{ynPS(t)}, (2.13b)

where β̄ =
∑M

m=1 βm. After estimating the model difference values, the model

update is written as

θPS(t+ 1) = θPS(t) + ∆θ̂PS(t), (2.14)

where ∆θ̂PS(t) =
[
∆θ̂1PS(t) ∆θ̂2PS(t) · · · ∆θ̂2NPS(t)

]T
.

The OTA FL framework above can be implemented using orthogonal

frequency-division multiplexing (OFDM) in a practical and efficient manner since

an OFDM based implementation makes the user synchronization and over-the-

air data aggregation very simple. We also note that even though the ML model

dimensions may be large, the amount of time needed for the transmission is prac-

tical. As an example, consider a scenario where the available bandwidth is 100

MHz with a subcarrier spacing of 120 kHz. Therefore, there are 8192 subcarri-

ers for each OFDM word. Looking at the previous works on OTA FL, some of
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the most demanding neural network architectures have model dimensions around

300000 [23], corresponding to around 150000 complex symbol transmissions. Us-

ing this setup, we need around 18 OFDM words to transmit one gradient vector

from the MU to the PS. Each OFDM word is of duration as 1
120kHz

≈ 0.01 ms. In

practice, a cyclic prefix will also be needed, but it will not increase the OFDM

word length drastically. For 18 OFDM words, we will only need around 0.2 ms,

hence we conclude that the OTA FL is applicable to a real setup where OFDM

is employed, and the symbol durations are not that high, even in scenarios when

the neural network model is complex.

2.2.2 Literature Review on Wireless FL

Bandwidth is a serious issue in wireless communication schemes since it is one

of the most scarce resources that needs to be used carefully. In multi-user sce-

narios, the amount of required bandwidth increases linearly with the number of

participants. With this motivation, wireless FL has drawn a significant attention,

thanks to the OTA aggregation process where the gradients can be sent through

the same wireless medium since only their sum is needed and they do not need to

be restored separately at the receiver side [24,25]. By utilizing OTA aggregation,

the gradient transmission and aggregation can be handled simultaneously over-

the-air, while using the channel bandwidth efficiently. In [26], the authors have

introduced this concept as broadband analog aggregation (BAA), compared its

performance with FL using orthogonal frequency division multiplexing (OFDM)

as well as a device scheduling algorithm based on the distance to the PS to show

that similar performances can be obtained while using less bandwidth.

Authors in [22] combine the ideas of OTA aggregation, gradient sparsification,

and low rank approximation with digital and analog approaches. In the digital

scheme called digital-distributed stochastic gradient descent (D-DSGD), gradi-

ents are clipped, where a pre-defined number of largest and smallest gradient

values in local models are set to zero, then the means of the positive and negative

gradients are calculated, and all the gradient values are equated to the mean of
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the positive-valued gradients if it is greater than the mean of the negative-valued

gradients, and vice versa. The system also keeps track of the difference between

the actual gradients and the sparsified version of the gradients, which will be

sent to the PS. Before calculating the sparsified gradients, this accumulated error

vector is added on top of the local gradients in order to keep track of the spar-

sification error. Finally, the gradients are sent digitally to the PS for the global

aggregation. In order to demonstrate the performance of the OTA aggregation,

authors also propose the analog version of this method, called analog-distributed

stochastic gradient descent (A-DSGD), in which similar sparsification and error

accumulation approaches are used, but the gradients are sent in an uncoded man-

ner. Before transmitting the gradients, the gradient vector is multiplied with a

pseudo-random matrix whose seed is known by both the MUs and the PS, in

order to get a low-rank approximation of the local gradients. Then, the final

form is transmitted using OTA aggregation and an estimate of the global up-

date is obtained by using an approximate message passing (AMP) algorithm [27].

They derive the convergence rate of the algorithm and show that the proposed

A-DSGD algorithm performs better than its digital version.

Inspired from [22], recent works in wireless FL also apply model compression

in order to use wireless resources more effectively. In [28], the authors aim to

decrease the convergence time while lowering the global loss. First, they apply

a probabilistic device selection approach where the heterogeneous devices have

different probabilities to participate in the federation. Then, they solve an opti-

mization problem which aims to have the highest number of participating devices

possible, while keeping the transmission delay to the PS low. Finally, they apply

random lattice quantization in order to reduce the length of the transmitted vec-

tor to the PS [29]. They show through simulations that they are able to obtain

a faster convergence while keeping the loss similar to the uncompressed cases.

Other works on model compression in FL models can also be found in [30–34].

For setups with lots of heterogeneous devices, one needs to be aware that the

interference can be high when OTA aggregation is employed, and the required
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channel bandwidth becomes extremely high in setups where the orthogonal chan-

nel resources are used. Therefore, device scheduling and selection are also im-

portant aspects of wireless FL where the subset of devices are adjusted based

on their available computing power, energy, distance, data and gradient qual-

ity [35, 36]. In [37], a scheduling algorithm is considered where they choose the

participating users based on the quality of the local update and wireless chan-

nel reliability. They also show the relationship between the scheduling thresholds

and their effects on the performance through simulations. Similar to [37], authors

in [38] compare the importance of channel awareness and the quality of gradient

updates in scheduling, and show the situational uses of different scheduling ap-

proaches. There are also other approaches such as those taking the age of the

update into account while adjusting the scheduling policy [39], or those choosing

the devices in such a way that convergence takes the least amount of time [40].

Another direction in wireless FL is to analyze practical schemes taking into

account more realistic wireless channels, similar to [41, 42]. For example, the

authors in [37] remove the assumption that the transmission of the global model

from the PS to the MUs are ideal, and analyze the convergence rate of the FL

system with a noisy downlink. Similarly, in [43], the uplink is modeled as the

multiple access fading channel, and the downlink is modeled as a fading broadcast

channel, where the transmitted gradients are calculated based on federated dis-

tillation [44]. OTA FL with heterogeneous data distribution at MUs is another

challenge that is studied in [45] where the authors provide a convergence rate

analysis and develop performance guarantees.

In OTA aggregation setups, since the MUs use a shared wireless medium, in-

terference becomes a serious issue that needs to be dealt with [46]. The authors

in [23] consider a wireless FL setup where the PS has multiple receive anten-

nas. By using a single-input multiple-output (SIMO) communication setup, and

employing combining techniques at the receiver side with no CSI at the trans-

mitters, the authors show that increasing the number of receive antennas at the

PS improves the performance, and ideally, the noise and interference terms can

be mitigated fully as the number of antennas go infinity. The analyses are also

extended to the imperfect CSI scenario at the receiver.
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2.3 Hierarchical FL

In FL, not all the users are located in a dense environment, and they can be

far away from the PS. The distance between the MUs and the PS increases the

communication costs for the wireless setups, and the overall latency. Therefore,

a hierarchical FL setup can been used in order to reduce the latency and the

communication costs, where intermediate servers (ISs) are employed in areas

where the number of MUs is high to form cluster-like structures [47]. The MUs

carry out multiple SGD iterations before transmitting their model differences to

their corresponding ISs. After several cluster aggregation steps between ISs and

their corresponding MUs, global aggregation is made at the PS, using the IS

cluster updates.

2.3.1 System Model

The objective HFL is similar to FL where the aim is to minimize a loss function

F (θ) with respect to the model weight vector θ ∈ R2N . Our system consists of

C clusters each containing an IS and M MUs as depicted in Fig. 2.3.

The dataset of the m-th MU in the c-th cluster is denoted as Bc,m, and we

define B ≜
∑C

c=1

∑M
m=1 |Bc,m|. We have

F (θ) =
C∑
c=1

M∑
m=1

|Bc,m|
B

Fc,m(θ), (2.15)

where Fc,m(θ) ≜ 1
|Bc,m|

∑
u∈Bc,m

f(θ, u), with f(θ, u) denoting the loss function

corresponding to parameter vector θ and data sample u.
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Figure 2.3: HFL system model.

We consider a hierarchical and iterative approach consisting of global, cluster,

and user iterations to minimize (2.15). In every cluster iteration, the MUs carry

out τ user iterations using their local datasets, then send their model updates to

their corresponding ISs for cluster aggregation. I cluster iterations are performed

at each IS before all the updated models are forwarded to the PS for global

aggregation. Consider the j-th user iteration of the i-th cluster iteration of the

t-th global iteration by the m-th user in the c-th cluster. The weight update is

performed employing SGD as follows:

θi,j+1
c,m (t) = θi,j

c,m(t)− ηi,jc,m(t)∇Fc,m(θ
i,j
c,m(t), ξ

i,j
c,m(t)), (2.16)

where ηi,jc,m(t) is the learning rate, ∇Fc,m(θ
i,j
c,m(t), ξ

i,j
c,m(t)) denotes the stochastic

gradient estimate for the weight vector θi,j
c,m(t) and a randomly sampled batch

of data samples ξi,jc,m(t) sampled from the dataset Bc,m. Initially, θ1,1
c,m(t) =

θi
IS,c(t),∀i ∈ [I], where [I] ≜ {1, 2, . . . , I}, and θ1

IS,c(t) = θPS(t), where θPS(t) is
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the global model at the PS at the t-th global iteration and θi
IS,c(t) denotes the

local model of the IS in the c-th cluster at the i-th cluster iteration. The purpose

of employing ISs is to accumulate the local model differences within each cluster

more frequently over smaller areas before obtaining the global model θPS(t) for

the next global iteration. Also, note that ∇Fc,m(θ
i,j
c,m(t), ξ

i,j
c,m(t)) is an unbiased

estimator of ∇Fc,m(θ
i,j
c,m(t)), i.e., Eξ

[
∇Fc,m(θ

i,j
c,m(t), ξ

i,j
c,m(t))

]
= ∇Fc,m(θ

i,j
c,m(t)),

where the expectation is over the randomness due to the SGD.

After τ user iterations, each MU calculates its model difference to be sent to

its corresponding IS as

∆θi
c,m(t) = θi,τ+1

c,m (t)− θi
IS,c(t). (2.17)

Then, the cluster aggregation at the c-th cluster is performed as

θi+1
IS,c(t) = θi

IS,c(t) +
1

M

M∑
m=1

∆θi
c,m(t). (2.18)

After completing I cluster iterations in each cluster, ISs send their model differ-

ences to the PS, which can be written as

∆θPS,c(t) = θI+1
IS,c(t)− θPS(t). (2.19)

The global update rule is ∆θPS(t) = 1
C

∑C
c=1∆θPS,c(t). Using recursion, we

conclude that

∆θPS(t) =
1

MC

C∑
c=1

M∑
m=1

I∑
i=1

∆θi
c,m(t). (2.20)

After the global aggregation, the model at the PS is updated as θPS(t + 1) =

θPS(t) + ∆θPS(t).

2.3.2 Literature Review on HFL

HFL has recently been investigated due to its latency reducing, energy efficient,

and more reliable nature. For the ideal communication model, [48] have proposed

the clustering of local updates to obtain convergence in less number of global

iterations. Their results with different hyperparameter setups show that the
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proposed hierarchical scheme outperforms the conventional FL with only MUs

and PS. As a more specific approach, [49] focuses on HFL with non-i.i.d. data

distribution among the MUs. Since each cluster may have a different set of data

samples, and some of them might not be able to have access to some of the labels,

the authors investigate which scenarios of HFL with non-i.i.d. data distribution

works the best.

The authors in [47] analyze the relationship between uplink/downlink latency

and data rates, report the latencies with different cluster aggregation numbers

and path loss exponents, and give experimental results with their proposed hi-

erarchical clustering approach. Their results show that HFL has a lower latency

thanks to ISs in between the MUs and the PS, thereby requiring less time to

converge than conventional FL. Similar to [47], [50] also investigates the system

latency of the HFL, but the authors expand the analysis to the optimization of

MU scheduling and the energy use at the edge. They propose an algorithm where

the MUs constantly check which cluster to join based on the approximate latency

and the available energy. Then, the PS determines which MUs should be sched-

uled at which iteration and which cluster they will be assigned. Their results

demonstrate that a better performance with less amount of energy consumption

is possible when compared to different conventional FL scenarios with different

scheduling solutions and energy settings. Moreover, the authors in [51] present a

more detailed scenario where the transmitted gradients are also quantized before

sending them. They also conduct an analysis on the latency of the proposed HFL

system. All of the above works show the superiority of HFL in terms of latency,

energy, and the convergence rate, at the cost of employing multiple ISs between

the MUs and the PS.

Most of the HFL works in the literature are based on an IS between MUs and

the PS, making it a two-layered system. Different from them, [52] and [53] extend

this idea into a multi-level HFL where there are multiple (or adjusted number of)

intermediate nodes in the network. They give an analysis based on the optimal

number of level of hierarchy in different setups and demonstrate the trade-off

between the number of clusters, levels, and MUs in each clusters with different

data distributions.
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2.4 Federated Learning with Energy Harvesting

Devices

Despite the success of FL in practical scenarios, the energy consumption and

carbon footprint of MUs for training and sharing their local models create seri-

ous concerns about the sustainability of future smart systems [54]. As a more

sustainable approach, energy harvesting devices, which can acquire energy from

their surroundings [55], have been widely considered for mobile networks. These

devices are typically equipped with a rechargeable battery to store the harvested

energy, and perform the required computations and communications if they have

sufficient energy in their battery.

Energy harvesting devices, also known as energy scavenging devices [56], have

been studied extensively in the last decade to build more sustainable communi-

cations systems [57]. With the emerging green communications area, the recent

works focus on various ways to harvest, for example, solar, electromagnetic, or

thermal energy [55]. The limiting factor for energy harvesting devices is that

the energy arrivals are intermittent, i.e., the harvested energy usually has an un-

derlying stochastic process that depends on the intensity of the energy source,

which may or may not be known by the device itself. In this scenario, devices try

to make sure that they send the required message as efficiently as possible [58].

Therefore, one of the most common issues that needs to be deal with in en-

ergy harvesting is how to optimally allocate the available energy in the nodes so

that the throughput is at a desirable level [59]. Another direction to investigate

is to send the message with a maximum rate without running out of available

energy [60].

Authors in [61] present a comprehensive analysis on both throughput max-

imization and transmission completion time with given battery levels and the

energy arrival processes for the energy harvesting devices. They present both

offline and online optimal policies. The offline policy for the energy usage can

be described using a directional water-filling algorithm, while the online policy

is given by a dynamic programming algorithm, which assumes the knowledge on
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the underlying stochastic processes for the causal energy arrival information and

fading variations. The results show that their approach gives a higher throughput

with a given average recharge rate of the nodes. Moreover, the authors in [62]

consider the similar problem of throughput maximization with energy harvesting

devices with a more practical scenario where there are possible energy leakages

or other losses during charging/discharging of the battery. They show that it

is more beneficial to use the energy without storing it in the battery when the

energy leakage rate increases. Packet scheduling among energy harvesting nodes

is also a recent topic of study [63], where it is shown that, in an M -user broadcast

AWGN channel, the optimal packet transmission strategy can also be found using

a directional water-filling algorithm.

Federated learning with energy harvesting devices is a new research area that

utilizes energy harvesting nodes as edge users. The users employ the harvested

energy for local SGD computations and model transmissions [64]. Some of the

works assume an ideal transmission model in which the gradients are sent without

any wireless channel in between, and the harvested energy is spent to send the

gradient vector to the PS without any loss [65,66]. Both of these study FL with

energy harvesting nodes, and show the performance of the system with different

scheduling policies and energy arrival profiles. However, [66] only covers the

energy harvesting devices with a unit-capacity battery. The most recent topic in

energy harvesting FL is the analysis of how much the wireless channel can affect

the performance and the convergence rate of the algorithm as studied in [2, 67].

In order to investigate energy harvesting FL in a more practical scenario, we

study energy harvesting FL using OTA aggregation in Chapter 5. We start our

analysis with energy harvesting MUs with a unit battery, and then, we consider

a case where MUs can have discrete battery levels.
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2.5 Chapter Summary

In this chapter, we have discussed federated learning approaches that will be

helpful in the subsequent chapters. We first introduced conventional FL with

error-free transmissions and provided a literature review. Secondly, we discussed

wireless FL and OTA aggregation along with its transmission and combining

approaches. We then presented the idea of hierarchical FL that introduces inter-

mediary servers to bring the server-side closer to the MUs. Finally, we motivated

the FL model with energy harvesting MUs, and summarized the relevant litera-

ture. The rest of the thesis presents our novel studies and findings on FL over

wireless channels.
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Chapter 3

Hierarchical Over-the-Air

Federated Edge Learning

In this chapter, in order to make distant MUs more resilient to the channel

effects, we propose hierarchical over-the-air federated learning (HOTAFL), where

MUs communicate with their corresponding ISs through wireless links. In this

setup, each MU shares its local training result with its corresponding IS through

OTA (cluster) aggregation. After several local iterations with the MUs in their

clusters, the ISs send the results to the PS to complete the global aggregation,

which constitutes one global iteration. We examine the performance of HOTAFL

and compare the results with those of the conventional FL and error-free HFL

both through analytical results and numerical experiments. The results show

that the proposed framework outperforms conventional OTA FL and leads to a

better model accuracy and faster convergence.

The chapter is organized as follows. In Sections 3.1 we introduce the specific

communication model and the HOTAFL framework. In Section 3.2, we provide

a convergence analysis of HOTAFL under certain convexity assumptions on the

loss function. We present our numerical results in Section 3.3, and conclude the

chapter in Section 3.4.
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3.1 System Model

3.1.1 Ideal Communication Scenario

We refer to the case in which all the communication among all the units is error-

free as the ideal communication scenario. In this case, after performing SGD,

each MU calculates its model difference to be sent to its corresponding IS as

∆θi
m,c(t) = θi,τ+1

m,c (t)− θi
IS,c(t). (3.1)

Then, the local aggregation at the c-th cluster is performed as

θi+1
IS,c(t) = θi

IS,c(t) +
1

M

M∑
m=1

∆θi
m,c(t). (3.2)

After completing I local iterations in each cluster, ISs send their model updates

to the PS, which can be written as

∆θPS,c(t) = θI+1
IS,c(t)− θPS(t). (3.3)

The global update rule is ∆θPS(t) =
1
C

∑C
c=1∆θPS,c(t). Using recursion, we can

conclude that

∆θPS(t) =
1

MC

C∑
c=1

I∑
i=1

M∑
m=1

∆θi
m,c(t). (3.4)

After the global aggregation, the model at the PS is updated as

θPS(t+ 1) = θPS(t) + ∆θPS(t). (3.5)

3.1.2 OTA Communication Scenario

We now consider the scheme referred as OTA communications, for which the

links between the MUs and the ISs are wireless with OTA aggregation, however,

the links between ISs and the PS is assumed to be error-free. Since a common

wireless medium is used in local aggregations, noisy versions of the model updates

∆θIS,c(t) are received at the ISs. In our setup, the ISs are equipped with K

26



antennas, and we assume perfect channel state information (CSI) at the receivers

and no CSI at the MUs. For the k-th antenna, the received signal at the c-th IS

can be written as1

yi
IS,c,k(t) =

M∑
m=1

hi
m,c,k(t) ◦ xi

m,c,k(t) + zi
IS,c,k(t), (3.6)

where ◦ denotes the element-wise product, xi
m,c,k(t) ∈ CN , zi

IS,c,k(t) ∈ CN

with i.i.d. entries zi,nIS,c,k(t) ∼ CN (0, σ2
z). The channel coefficients are modelled

as hi
m,c,k(t) =

√
βm,c gi

m,c,k(t), where gm,c,k(t) ∈ CN with entries gi,nm,c,k(t) ∼
CN (0, σ2

h) (i.e., Rayleigh fading), βm,c is the large-scale fading coefficient mod-

eled as βm,c = (dm,c)
−p, where p represents the path loss exponent, and dm,c

denotes the distance between the m-th MU in the c-th cluster and the IS in that

cluster.

3.1.2.1 Local Aggregation

In OTA communications, in order to increase the spectral efficiency, the model

differences are grouped to form a complex vector ∆θi,cx
m,c(t) ∈ CN with the follow-

ing real and imaginary parts

∆θi,re
m,c(t) ≜

[
∆θi,1m,c(t),∆θi,2m,c(t), . . . ,∆θi,Nm,c(t)

]T
, (3.7a)

∆θi,im
m,c (t)≜

[
∆θi,N+1

m,c (t),∆θi,N+2
m,c (t), . . . ,∆θi,2Nm,c (t)

]T
. (3.7b)

Under the assumption that there is no inter-cluster interference, the received

signal for the k-th antenna in the c-th cluster at the i-th local iteration can be

represented as

yi
IS,c,k(t) = Pt

M∑
m=1

hi
m,c,k(t) ◦∆θi,cx

m,c(t) + zi
IS,c,k(t), (3.8)

where Pt is the power constant at the t-th global iteration. Knowing

the CSI perfectly, the c-th IS combines the received signals as yi
IS,c(t) =

1Note that the setup here can be efficiently implemented in practice using orthogonal
frequency-division multiplexing (OFDM).
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1
K

∑K
k=1

(∑M
m=1 h

i
m,c,k(t)

)∗
◦yi

IS,c,k(t). For the n-th symbol, the combined signal

can be written as

yi,nIS,c(t)=Pt

M∑
m=1

(1
K

K∑
k=1

|hi,n
m,c,k(t)|

2
)
∆θi,n,cxm,c (t)︸ ︷︷ ︸

yi,n,sig
IS,c (t) (signal term)

+
Pt

K

M∑
m=1

M∑
m′=1
m′ ̸=m

K∑
k=1

(hi,n
m,c,k(t))

∗hi,n
m′,c,k(t)∆θi,n,cxm′,c (t)

︸ ︷︷ ︸
yi,n,itf
IS,c (t) (interference term)

+
1

K

M∑
m=1

K∑
k=1

(hi,n
m,c,k(t))

∗zi,nc,k(t)︸ ︷︷ ︸
yi,n,no
IS,c (t) (noise term)

. (3.9)

Aggregated model differences can be recovered by

∆θ̂i,nIS,c(t) =
1

PtMσ2
hβ̄c

Re{yi,nIS,c(t)}, (3.10a)

∆θ̂i,n+N
IS,c (t) =

1

PtMσ2
hβ̄c

Im{yi,nIS,c(t)}, (3.10b)

where β̄c =
∑M

m=1 βm,c. After estimating the model difference values, the cluster

model update is written as

θi+1
IS,c(t) = θi

IS,c(t) + ∆θ̂i
IS,c(t), (3.11)

where ∆θ̂i
IS,c(t) =

[
∆θ̂i,1IS,c(t) ∆θ̂i,2IS,c(t) · · · ∆θ̂i,2NIS,c (t)

]T
.

3.1.2.2 Global Aggregation

This part is similar to ideal communication. The only difference is that the

aggregated signals are the estimates of the actual model differences. Letting

xPS,c(t) be the transmitted signal from the c-th IS, its n-th symbol can be written

as

xn
PS,c(t) = ∆θnPS,c(t) + j∆θn+N

PS,c (t). (3.12)
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Then, using (3.3), (3.9), (3.12) and recursion, the received signal for 1≤ n≤N

(similarly for N+1≤n≤2N) can be written as

ynPS(t) =
C∑
c=1

xn
PS,c(t) (3.13)

=
C∑
c=1

I∑
i=1

Re
{
yi,n,sigIS,c (t)

}
PtMσ2

h︸ ︷︷ ︸
ynPS,1(t)

+
C∑
c=1

I∑
i=1

Re
{
yi,n,itfIS,c (t)

}
PtMσ2

h︸ ︷︷ ︸
ynPS,2(t)

+
C∑
c=1

I∑
i=1

Re
{
yi,n,noIS,c (t)

}
PtMσ2

h︸ ︷︷ ︸
ynPS,3(t)

.

(3.14)

The received signal at the PS is then recovered as ∆θ̂nPS(t) = 1
C
Re{ynPS(t)},

∆θ̂n+N
PS (t) = 1

C
Im{ynPS(t)}. Finally, the global aggregation is performed via

θPS(t+ 1) = θPS(t) + ∆θ̂PS(t), (3.15)

where ∆θ̂PS(t) =
[
∆θ̂1PS(t) ∆θ̂2PS(t) · · · ∆θ̂2NPS(t)

]T
.

3.2 Convergence Analysis

Define the optimal solution as θ∗ ≜ argminθ F (θ), the minimum values of the

total and the local loss functions as F ∗ = F (θ∗) and F ∗
m,c, respectively, and the

bias in the dataset as Γ ≜ F ∗ −
∑C

c=1

∑M
m=1

Bm,c

B
F ∗
m,c ≥ 0. In addition, assume

that the learning rate of the overall system does not change in local iterations,

i.e., ηi,jm,c(t) = η(t). Therefore, we can write the global update rule as

θi,j+1
m,c (t) = θi,j

m,c(t)− η(t)∇Fm,c(θ
i,j
m,c(t), ξ

i,j
m,c(t)), (3.16)

which can also be written as

θi,j+1
m,c (t)− θi,1

m,c(t) = −η(t)

j∑
l=1

∇Fm,c(θ
i,l
m,c, ξ

i,l
m,c(t)). (3.17)

Assumption 1. All the loss functions are L-smooth and µ-strongly convex; i.e.,

∀v,w ∈ R2N , ∀m ∈ [M ],∀c ∈ [C],

Fm,c(v)−Fm,c(w)≤⟨v−w,∇Fm,c(w)⟩+L

2
∥v −w∥22, (3.18)

Fm,c(v)−Fm,c(w)≥⟨v−w,∇Fm,c(w)⟩+µ

2
∥v −w∥22. (3.19)
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Assumption 2. The expected value of the squared l2 norm of the stochastic

gradients are bounded; i.e., ∀j ∈ [τ ], i ∈ [I],

Eξ

[ ∥∥∇Fm,c(θ
i,j
m,c(t), ξ

i,j
m,c(t))

∥∥2
2

]
≤ G2, (3.20)

which translates to ∀n∈ [2N ], Eξ

[
∇Fm,c(θ

i,j,n
m,c , ξ

i,j,n
m,c (t))

]
≤G.

Theorem 1. In HOTAFL, for 0 ≤ η(t) ≤ min{1, 1
µτI

}, the global loss function

can be upper bounded as

E
[
∥θPS(t)− θ∗∥22

]
≤
( t−1∏

a=1

X(a)

)
∥θPS(0)−θ∗∥22+

t−1∑
b=1

Y (b)
t−1∏

a=b+1

X(a), (3.21)

where X(a) = (1− µη(a)I (τ − η(a)(τ − 1))) and

Y (a)=
η2(a)τ 2G2I

M2C2

M∑
m1=1

C∑
c1=1

(β2
m1,c1

Kβ̄2
c1

+
( M∑
m2=1

C∑
c2=1

A1I
))

+
M∑

m=1

M∑
m′=1
m′ ̸=m

C∑
c=1

η2(a)τ 2G2Iβm,cβm′,c

M2C2Kβ̄2
c

+
σ2
zIN

P 2
aM

2C2Kσ2
h

M∑
m=1

C∑
c=1

βm,c

β̄2
c

+ (1 + µ(1− η(a)) η2(a)IG2 τ(τ − 1)(2τ − 1)

6

+ η2(a)I(τ 2 + τ − 1)G2 + 2η(a)I(τ − 1)Γ, (3.22)

with A1 = 1− βm1,c1

β̄c1
− βm2,c2

β̄c2
+

βm1,c1βm2,c2

β̄c1 β̄c2
.

Proof. Let us define an auxiliary variable v(t+1) ≜ θPS(t)+∆θPS(t). Then, we

have

∥θPS(t+1)−θ∗∥22=∥θPS(t+1)−v(t+1) + v(t+1)−θ∗∥22
= ∥θPS(t+ 1)− v(t+ 1)∥22 + ∥v(t+ 1)− θ∗∥22
+ 2⟨θPS(t+ 1)− v(t+ 1),v(t+ 1)− θ∗⟩. (3.23)

Next, we provide upper bounds on the three terms of (3.23).
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Lemma 1. We have

E
[∥∥θPS(t+ 1)− v(t+ 1)

∥∥2
2

]
≤ η2(t)τ 2G2I

M2C2

M∑
m1=1

C∑
c1=1

(β2
m1,c1

Kβ̄2
c1

+
( M∑

m2=1

C∑
c2=1

A1I
))

+
M∑

m=1

M∑
m′=1
m′ ̸=m

C∑
c=1

η2(t)τ 2G2Iβm,cβm′,c

M2C2Kβ̄2
c

+
σ2
zIN

P 2
t M

2C2Kσ2
h

M∑
m=1

C∑
c=1

βm,c

β̄2
c

. (3.24)

Proof. We have ∆θ̂nPS(t) =
∑3

l=1∆θ̂nPS,l(t), for the n-th symbol; using the inde-

pendence of channel coefficients, we write

E
[
||θPS(t+1)−v(t+1)||22

]
= E

[∥∥∆θ̂PS(t)−∆θPS(t)
∥∥2
2

]
=

2N∑
n=1

(E
[(
∆θ̂nPS,1(t)−∆θnPS(t)

)2]
+

3∑
l=2

E
[(
∆θ̂nPS,l(t)

)2]
. (3.25)

In the following lemmas, we will bound each of these terms.

Lemma 2.

2N∑
n=1

E
[(
∆θ̂nPS,1(t)−∆θnPS(t)

)2]
=

1

M2C2

M∑
m1=1

C∑
c1=1

I∑
i1=1

(β2
m1,c1

Kβ̄2
c1

E
[∥∥∆θi1

m1,c1
(t)
∥∥2
2

]
+
( M∑

m2=1

C∑
c2=1

I∑
i2=1

2N∑
n=1

A1E
[
∆θi1,nm1,c1

(t)∆θi2,nm2,c2
(t)
]))

,

(3.26)

where A1 = 1− βm1,c1

β̄c1
− βm2,c2

β̄c2
+

βm1,c1βm2,c2

β̄c1 β̄c2
.
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Proof. Using (3.4) and (3.10), we have

E
[(
∆θ̂nPS,1(t)−∆θnPS(t)

)2]
= E

[ 1

M2C2

M∑
m1=1

M∑
m2=1

C∑
c1=1

C∑
c2=1

I∑
i1=1

I∑
i2=1

∆θi1,nm1,c1
(t)∆θi2,nm2,c2

(t)

(
1− 1

Kσ2
hβ̄c1

K∑
k1=1

|hi1,n
m1,c1,k1

(t)|2 − 1

Kσ2
hβ̄c2

K∑
k2=1

|hi2,n
m2,c2,k2

(t)|2

+
1

K2σ4
hβ̄

2
c1

K∑
k1=1

K∑
k2=1

|hi1,n
m1,c1,k1

(t)|2|hi2,n
m2,c2,k2

(t)|2
)]
. (3.27)

Summing over all the symbols and using the independence of channel coefficients

result in (3.26).

Lemma 3.

2N∑
n=1

E
[(
∆θ̂nPS,2(t)

)2]
=

M∑
m=1

M∑
m′=1
m′ ̸=m

C∑
c=1

I∑
i=1

βm,cβm′,c

M2C2Kβ̄2
c

E
[ ∥∥∆θi

m′,c(t)
∥∥2
2

]
. (3.28)

Proof. For 1 ≤ n ≤ N , using the independence of channel coefficients, we have

E
[(
∆θ̂nPS,2(t)

)2]
= E

[( M∑
m=1

M∑
m′=1
m′ ̸=m

C∑
c=1

I∑
i=1

1

MCKσ2
hβ̄c

×
K∑
k=1

Re
{(

hi,n
m,c,k(t)

)∗
hi,n
m′,c,k(t)∆θi,nm′,c(t)

})2]
= E

[ M∑
m=1

M∑
m′=1
m′ ̸=m

C∑
c=1

I∑
i=1

βm,cβm′,c

2M2C2Kβ̄2
c

×
((
∆θi,nm′,c(t)

)2
+
(
∆θi,n+N

m′,c (t)
)2

+∆θi,nm,c(t)∆θi,nm′,c(t)−∆θi,n+N
m,c (t)∆θi,n+N

m′,c (t)
)]

(3.29)

Obtaining the expressions for N+1 ≤ n ≤ 2N in a similar manner and combining

the two, results in (3.28).

Lemma 4.

2N∑
n=1

E
[(
∆θ̂nPS,3(t)

)2]
=

σ2
zIN

P 2
t M

2C2Kσ2
h

M∑
m=1

C∑
c=1

βm,c

β̄2
c

. (3.30)
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Proof. Using the independence of channel coefficients, for 1 ≤ n ≤ N , we have

E
[(
∆θ̂nPS,3(t)

)2]
=E
[( M∑

m=1

C∑
c=1

I∑
i=1

K∑
k=1

1

PtMCKσ2
hβ̄c

Re
{(

hi,n
m,c,k(t)

)∗
zi,nc,k(t)

})2]
=E
[ M∑
m=1

C∑
c=1

I∑
i=1

K∑
k=1

1

P 2
t M

2C2K2σ4
hβ̄

2
c

(
Re
{(

hi,n
m,c,k(t)

)∗
zi,nc,k(t)

})2]
=

σ2
zI

2P 2
t M

2C2Kσ2
h

M∑
m=1

C∑
c=1

βm,c

β̄2
c

. (3.31)

The same result holds for N +1 ≤ n ≤ 2N . Combining the two results concludes

the proof.

Combining the results in Lemmas 2, 3, and 4 and applying Assumption 2 with

(3.17) completes the proof of Lemma 1.

Lemma 5. We have

E
[∥∥v(t+1)−θ∗∥∥2

2

]
≤(1−µη(t)I(τ−η(t)(τ−1)))E

[∥∥θPS(t)−θ∗∥∥2
2

]
+ (1 + µ(1− η(t)) η2(t)IG2 τ(τ − 1)(2τ − 1)

6

+ η2(t)I(τ 2 + τ − 1)G2 + 2η(t)I(τ − 1)Γ. (3.32)

Proof. See Appendix A.

Lemma 6. E [⟨θPS(t+ 1)− v(t+ 1),v(t+ 1)− θ∗⟩] = 0.

Proof. We have

E[⟨θPS(t+1)−v(t+1),v(t+1)−θ∗⟩]

=E
[
⟨∆θ̂PS(t)−∆θPS(t),θPS(t)+∆θPS(t)−θ∗⟩

]
. (3.33)

Then, knowing that channel realizations are independent of the user and cluster

updates at the same global iteration t, we have

E
[
⟨∆θ̂PS(t)−∆θPS(t),θPS(t)+∆θPS(t)−θ∗⟩

]
=0. (3.34)
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Recursively iterating through the results of Lemmas 1, 5, and 6 concludes the

theorem.

Corollary 1. Assuming L-smoothness, after T global iterations, the loss function

can be upper bounded as

E [F (θPS(T ))− F ∗] ≤ L

2
E
[
∥θPS(T )− θ∗∥22

]
≤ L

2

( T−1∏
n=1

X(n)

)
∥θPS(0)−θ∗∥22+

L

2

T−1∑
p=1

Y (p)
T−1∏

n=p+1

X(n). (3.35)

Remark. Since the third term in Y (a) is independent of η(a), even for lim
t→∞ η(t) =

0, we have lim
t→∞ E[F (θPS(t))]−F ∗ ̸= 0. Y (a) is also proportional to I, meaning that

more cluster aggregations do not always provide faster convergence. However,

since the MUs face lower path losses in HOTAFL than in the conventional FL, it

can reach a higher accuracy. Moreover, increasing the number of clusters C leads

to a faster convergence, however, at the cost of employing more ISs.

3.3 Numerical Examples

We consider a hierarchical system with one PS and C = 4 non-overlapping clus-

ters, each containing one IS with K = 5MC receive antennas and M = 5 MUs.

MUs are randomly placed in the clusters in such a way that their distance to

the PS is between 0.5 and 3, and between 0.5 and 1 to their corresponding IS.

We use the MNIST [68] and CIFAR-10 [69] datasets with Adam optimizer [70],

and consider both i.i.d. and non-i.i.d. data distributions. In the i.i.d. case, data

samples are randomly distributed among MUs, while in the non-i.i.d. case, the

training data is divided into 5MC groups each consisting of samples with the

same label. Then, 5 groups are assigned to each MU randomly. For CIFAR-10,

we use the neural network given in [23] with 2N = 307498 whereas for MNIST,

we employ a one-layer network with 2N = 7850. Three scenarios are considered:

baseline with error-free transmissions, FL with OTA, i.e., ISs are not employed,

and all the MUs aggregate parameters at the PS, and HOTAFL. We set the total
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Figure 3.2: HOTAFL Test accuracy for non-i.i.d. MNIST data with τ = 3.

number of global iterations T to 200, the mini-batch size to |ξim,c(t)| = 500, the

path loss exponent p to 4, σ2
h = 1, σ2

z = 10 for the MNIST, and σ2
z = 1 for

the CIFAR-10 training. Also, the power multiplier is set to Pt = 1 + 10−2t for

HOTAFL, Pt = 1.5 + 10−2t for conventional FL, t ∈ [T ].
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Figure 3.1: HOTAFL Test accuracy for i.i.d. MNIST data with τ = 1.
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Figure 3.3: HOTAFL Test accuracy for i.i.d. CIFAR-10 data with τ = 5.

Accuracy plots are presented in Figs. 3.1-3.3, where P̄ is the average transmit

power. The results show that with the selected geometry, bringing the servers

closer to the MUs enhances the learning accuracy significantly. One reason is that

the cluster structure enables the MUs share their model differences with a local IS

closer than the PS, reducing the adverse effects of the large-scale wireless channel.

Another reason is that MUs receive updated models even without communicating

with the PS due to local aggregations. We also observe that although more initial

power is given to FL, the received signals are distorted more compared to those

of HOTAFL due to the more severe wireless channel effects. More local iterations

enable faster convergence at the cost of increased transmit power. Increasing τ

compensates the accuracy under a more complex model.
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Figure 3.4: Convergence rate for i.i.d. MNIST data with τ = 1.

In Fig. 3.4, we compare the convergence rates of conventional FL and HOTAFL

using the upper bound in (3.35), with 2N=7850, L=10, µ=1, G2=1,Γ=1, η(t)=

5·10−2−2·10−5t, Pt=1+10−2t, βm,c=1,∀m ∈ [M ],∀c ∈ [C], ∥θPS(0)−θ∗∥22=103.

The convergence rate of HOTAFL and the ideal case are very close, and they

become almost the same when the number of local iterations is increased.

3.4 Chapter Summary

We have proposed HOTAFL, which enables geographically localized model ag-

gregation by employing ISs located in the areas where the MUs are more densely

located. Our framework includes OTA cluster aggregations, which allows the

MUs to simultaneously transmit and aggregate their model updates at the ISs

over a wireless channel with path-loss and fading. We have analyzed the conver-

gence rate of HOTAFL, and examined its performance with different datasets and

data distributions. The results show that HOTAFL outperforms the conventional

FL significantly.
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Chapter 4

Over-the-Air Federated Edge

Learning with Hierarchical

Clustering

In this chapter, we propose a wireless-based hierarchical FL scheme (W-HFL)

that uses intermediate servers (ISs) to form clusters at the areas where the MUs

are more densely located. Our scheme utilizes OTA cluster aggregations for the

communication of the MUs with their corresponding IS, and OTA global aggrega-

tions from the ISs to the PS. We present a convergence analysis for the proposed

algorithm, and show through numerical evaluations of the derived analytical ex-

pressions and experimental results that utilizing ISs results in a faster convergence

and a better performance than the OTA FL alone while using less transmit power.

We also validate the results on the performance using different number of cluster

iterations with different datasets and data distributions. We conclude that the

best choice of cluster aggregations depends on the data distribution among the

MUs and the clusters.

The chapter is organized as follows. In Section 4.1, introduce the specific com-

munication model and the W-HFL framework. In Section 4.2, the convergence

analysis of W-HFL is presented, and it is upper-bounded under some convexity
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assumptions. In Section 4.3, we give experimental and numerical results to com-

pare our algorithm with the conventional FL as well as the baseline approaches,

and we conclude the paper in Section 4.4.

4.1 System Model

We now introduce the scheme referred to as OTA communications to be used for

all the links from the users to the ISs, and from the ISs to the PS. Since model

differences are transmitted via a common wireless medium in both cluster and

global updates, estimated versions of ∆θIS,c(t) and ∆θPS(t) are received at the

ISs and the PS, where the system noise and inter/intra cluster interference are

present. In our setup, ISs and PS have K and K ′ receive antennas, respectively,

while both ISs and the MUs are equipped with a single transmit antenna 1. Also,

we assume perfect channel state information (CSI) at the receiver ends.

4.1.1 Cluster Aggregation

In OTA communication, the local updates ∆θi
c,m(t) ∈ R2N are sent without any

coding. In order to increase the spectral efficiency, the model differences are

grouped to form a complex vector ∆θi,cx
c,m(t) ∈ CN with entries ∆θi,n,cxc,m (t) for

m ∈ [M ], c ∈ [C], i ∈ [I], with the following real and imaginary parts

∆θi,re
c,m(t) ≜

[
∆θi,1c,m(t), θ

i,2
c,m(t), . . . ,∆θi,Nc,m(t)

]T
, (4.1a)

∆θi,im
c,m (t) ≜

[
∆θi,N+1

c,m (t), θi,N+2
c,m (t), . . . ,∆θi,2Nc,m (t)

]T
, (4.1b)

where ∆θi,nc,m(t) denotes the n-th entry of ∆θi
c,m(t) for n ∈ [2N ]. The resulting

complex vector is transmitted through the wireless medium. The received signal

at the k-th antenna of the c-th IS in the i-th cluster iteration can be represented

1For the case of multiple transmit antennas at the ISs, as long as each IS transmits the
weighted and phase shifted versions of the same stream, i.e., employs beamforming, the same
setup is applicable.
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as

yi
IS,c,k(t) = Pt

C∑
c′=1

M∑
m=1

hi
c′,m,c,k(t) ◦∆θi,cx

c′,m(t) + zi
IS,c,k(t), (4.2)

where Pt is the power multiplier at the t-th global iteration, ◦ denotes the element-

wise (Hadamard) product, zi
IS,c,k(t) ∈ CN is the circularly symmetric additive

white Gaussian noise (AWGN) vector with i.i.d. entries with zero mean and

variance of σ2
z ; i.e., z

i,n
IS,c,k(t)∼CN (0, σ2

z), n∈
[
N
]
. hi

c′,m,c,k(t)∈ [N ] is the channel

coefficient vector between the m-th MU in the c′-th cluster and the c-th IS,

whose n-th entry is modelled as hi,n
c′,m,c,k(t)=

√
βc′,m,cg

i,n
c′,m,c,k(t), where g

i,n
c′,m,c,k(t)∼

CN (0, σ2
h) is the small-scale fading coefficient (i.e., Rayleigh fading), and βc′,m,c is

the large-scale fading coefficient modeled as βc′,m,c=(dc′,m,c)
−p, where p represents

the path-loss exponent and dc′,m,c is the distance between the m-th user in the

c′-th cluster and the c-th IS.

Knowing the CSI perfectly, the c-th IS combines the received signals as

yi
IS,c(t) =

1

K

K∑
k=1

( M∑
m=1

hi
c,m,c,k(t)

)∗
◦ yi

IS,c,k(t), (4.3)

whose n-th entry can be written as

yi,nIS,c(t) =
1

K

K∑
k=1

( M∑
m=1

hi,n
c,m,c,k(t)

)∗
yi,nIS,c,k(t), (4.4)

where yi,nIS,c,k(t) denotes the n-th entry of yi
IS,c,k(t), n ∈ [N ]. Substituting (4.2)

into (4.3), and using (4.4), we get

yi,nIS,c(t) =
Pt

K

M∑
m=1

( K∑
k=1

|hi,n
c,m,c,k(t)|

2
)
∆θi,n,cxc,m (t)︸ ︷︷ ︸

yi,n,sig
IS,c (t) (signal term)

+
1

K

M∑
m=1

K∑
k=1

(hi,n
c,m,c,k(t))

∗zi,nIS,c,k(t)︸ ︷︷ ︸
yi,n,no
IS,c (t) (noise term)

+
Pt

K

M∑
m=1

K∑
k=1

(hi,n
c,m,c,k(t))

∗
( M∑

m′=1
m′ ̸=m

hi,n
c,m′,c,k(t)∆θi,n,cxc,m′ (t)

︸ ︷︷ ︸
yi,n,int1
IS,c (t) (Intra-cluster interference)

+

C∑
c′=1
c′ ̸=c

M∑
m′=1

hi,n
c′,m′,c,k(t)∆θi,n,cxc′,m′ (t)

︸ ︷︷ ︸
yi,n,int2
IS,c (t) (Inter-cluster interference)

)

= yi,n,sigIS,c (t) + yi,n,int1IS,c (t) + yi,n,int2IS,c (t) + yi,n,noiseIS,c (t). (4.5)

Aggregated model differences for n ∈ [N ], can be recovered by

∆θ̂i,nIS,c(t) =
1

PtMσ2
hβ̄c

Re{yi,nIS,c(t)}, ∆θ̂i,n+N
IS,c (t) =

1

PtMσ2
hβ̄c

Im{yi,nIS,c(t)},

(4.6)
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where β̄c =
∑M

m=1 βc,m,c, and Re{a} and Im{a} denote the real and imaginary

parts of a, respectively. Finally, the cluster model update can be written as

θi+1
IS,c(t) = θi

IS,c(t) + ∆θ̂i
IS,c(t), (4.7)

where ∆θ̂i
IS,c(t) ≜

[
∆θ̂i,1IS,c(t)∆θ̂i,2IS,c(t) . . .∆θ̂i,2NIS,c (t)

]T
.

4.1.2 Global Aggregation

Global aggregation is very similar to cluster aggregation, where each IS has a

single transmit antenna and the PS has K ′ receive antennas. After I cluster

iterations are completed to obtain the signal to be transmitted from the c-th IS,

model differences are grouped to form a complex vector ∆θcx
PS,c ∈ CN , with the

following real and imaginary parts

∆θre
PS,c(t) ≜

[
∆θ1PS,c(t), θ

2
PS,c(t), . . . ,∆θNPS,c(t)

]T
, (4.8a)

∆θim
PS,c(t)≜

[
∆θN+1

PS,c (t), θ
N+2
PS,c (t), . . . ,∆θ2NPS,c(t)

]T
, (4.8b)

where ∆θnPS,c(t) denotes the n-th gradient value at the c-th IS. The received signal

at the k′-th antenna of the PS can be written as

yPS,k′(t) = PIS,t

C∑
c=1

hPS,c,k′(t) ◦∆θcx
PS,c(t) + zPS,k′(t), (4.9)

where PIS,t is the power multiplier of the c-th IS at the t-th global iteration,

zPS,k′(t) ∈ CN is the circularly symmetric AWGN noise with i.i.d. entries with

zero mean and variance σ2
z ; i.e., z

n
PS,k′(t) ∼ CN (0, σ2

z). The channel coefficient

between the c-th IS and the PS is modelled as hPS,c,k′(t) =
√
βIS,c gPS,c,k′(t),

where gPS,c,k′(t) ∈ CN is the small-scale fading coefficient vector with entries

gnPS,c,k′(t) ∼ CN (0, σ2
h), βIS,c is the large-scale fading coefficient modeled as βIS,c =(

dIS,c
)−p

, where dIS,c denotes the distance between the c-th IS and the PS.

Knowing the CSI perfectly, the received signal at the PS is combined as

yPS(t) ≜
1

K ′

K′∑
k′=1

( C∑
c=1

hPS,c,k′(t)
)∗

◦ yPS,k′(t). (4.10)
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Estimated global model differences at the PS can be recovered as

∆θ̂nPS(t) =
1

PIS,tCσ2
hβ̄

Re{ynPS(t)}, ∆θ̂n+N
PS (t) =

1

PIS,tCσ2
hβ̄

Im{ynPS(t)},

(4.11)

where β̄ =
∑C

c=1 βIS,c. Finally, the global aggregation is performed using

θPS(t+ 1) = θPS(t) + ∆θ̂PS(t), (4.12)

where ∆θ̂PS(t) =
[
∆θ̂1PS(t)∆θ̂2PS(t) . . .∆θ̂2NPS(t)

]T
.

The n-th symbol can be written as

ynPS(t) =
1

K ′

K′∑
k′=1

( C∑
c=1

hPS,c,k′(t)
)∗
ynPS,k′(t) (4.13a)

= PIS,t

C∑
c=1

( 1

K ′

K′∑
k′=1

|hn
PS,c,k′(t)|2

)
∆θn,cxPS,c(t)︸ ︷︷ ︸

Signal Term

(4.13b)

+
PIS,t

K ′

C∑
c=1

C∑
c′=1
c′ ̸=c

K′∑
k′=1

(
hn
PS,c,k′(t)

)∗
hn
PS,c′,k′(t)∆θn,cxPS,c′(t)

︸ ︷︷ ︸
Interference Term

+
1

K ′

C∑
c=1

K′∑
k′=1

(
hn
PS,c,k′(t)

)∗
znPS,k′(t)︸ ︷︷ ︸

Noise Term

= yn,sigPS (t) + yn,intPS (t) + yn,noisePS (t). (4.13c)

Since we can write ∆θn,cxPS,c(t) = ∆θnPS,c(t)+j∆θn+N
PS,c (t), using (2.19) and recursively

adding previous cluster iterations, we obtain

∆θn,cxPS,c(t) =
(
∆θI+1,n

IS,c (t)−∆θ1,nIS,c(t)
)
+ j
(
∆θI+1,n+N

IS,c (t)−∆θ1,n+N
IS,c (t)

)
(4.14)

=
I∑

i=1

∆θ̂i,nIS,c(t) + j∆θ̂i,n+N
IS,c (t) (4.15)

=
1

PtMσ2
hβ̄c

I∑
i=1

yi,nIS,c(t). (4.16)
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Substituting Equation (4.16) into (4.13), we have

ynPS(t)=PIS,t

C∑
c=1

(
1

K ′

K′∑
k′=1

|hn
PS,c,k′(t)|2

)(
1

PtMσ2
hβ̄c

I∑
i=1

yi,nIS,c(t)

)

+
PIS,t

K ′

C∑
c=1

C′∑
c′=1
c′ ̸=c

K′∑
k′=1

(
hn
PS,c,k′(t)

)∗
hn
PS,c′,k′(t)

(
1

PtMσ2
hβ̄c′

I∑
i=1

yi,nIS,c′(t)

)

+
1

K ′

C∑
c=1

K′∑
k′=1

(
hn
PS,c,k′(t)

)∗
znPS,k′(t). (4.17)

Substituting (5.9) into (4.17), we can write ynPS as ynPS(t) =
∑9

l=1 y
n
PS,l, with

λt,c =
PIS,t

KK′Mσ2
h
, each term can be written as

ynPS,1(t)=
∑
c,m,i,
k,k′

λt,c

β̄c
|hn

PS,c,k′(t)|2|hi,n
c,m,c,k(t)|

2∆θi,n,cxc,m (t),

ynPS,2(t)=
∑

c,m,m′ ̸=m,
i,k,k′

λt,c

β̄c
|hn

PS,c,k′(t)|2
(
hi,n
c,m,c,k(t)

)∗
hi,n
c,m′,c,k(t)∆θi,n,cxc,m′ (t),

ynPS,3(t)=
∑

c,c′ ̸=c,m,m′,
i,k,k′

λt,c

β̄c
|hn

PS,c,k′(t)|2
(
hi,n
c,m,c,k(t)

)∗
hi,n
c,m′,c′,k(t)∆θi,n,cxc′,m′ (t),

ynPS,4(t)=
∑
c,m,i,
k,k′

λt,c

PIS,tβ̄c
|hn

PS,c,k′(t)|2
(
hi,n
c,m,c,k(t)

)∗
zi,nIS,c,k(t),

ynPS,5(t)=
∑

c,c′ ̸=c,m,
i,k,k′

λt,c

β̄c′

(
hn
PS,c,k′(t)

)∗
hn
PS,c′,k′(t)|hi,n

c′,m,c′,k(t)|
2∆θi,n,cxc′,m (t),

ynPS,6(t)=
∑

c,c′ ̸=c,m,m′ ̸=m,
i,k,k′

λt,c

β̄c′

(
hn
PS,c,k′(t)

)∗
hn
PS,c′,k′(t)

(
hi,n
c′,m,c′,k(t)

)∗
hi,n
c′,m′,c′,k(t)∆θi,n,cxc′,m′ (t),

ynPS,7(t)=
∑

c,c′ ̸=c,c′′ ̸=c′,
m,m′,i,k,k′

λt,c

β̄c′

(
hn
PS,c,k′(t)

)∗
hn
PS,c′,k′(t)

(
hi,n
c′,m,c′,k(t)

)∗
hi,n
c′,m′,c′′,k(t)∆θi,n,cxc′′,m′ (t),

ynPS,8(t)=
∑

c,c′ ̸=c,m,
i,k,k′

λt,c

PIS,tβ̄c′

(
hn
PS,c,k′(t)

)∗
hn
PS,c′,k′(t)

(
hi,n
c′,m,c′,k(t)

)∗
zi,nIS,c′,k(t),

ynPS,9(t)=
∑
c,k′

1

K ′

(
hn
PS,c,k′(t)

)∗
znPS,k(t), (4.18)
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4.2 Convergence Analysis

In this section, we present an upper bound on the global loss function, which

shows how far the global FL model is after a certain number of iterations from

the optimal model. Define the optimal solution that minimizes the loss F (θ) as

θ∗ ≜ argmin
θ

F (θ). (4.19)

Also, the minimum value of the loss function is denoted as F ∗ = F (θ∗), the

minimum value of the local loss function Fc,m is given as F ∗
c,m, and the bias in

the dataset is defined as

Γ ≜ F ∗ −
C∑
c=1

M∑
m=1

Bc,m

B
F ∗
c,m ≥ 0. (4.20)

In addition, we assume that the learning rate of the overall system does not

change in user and cluster iterations, i.e., ηi,jc,m(t) = η(t). Therefore, we can write

the global update rule as

θi,j+1
c,m (t) = θi,j

c,m(t)− η(t)∇Fc,m(θ
i,j
c,m(t), ξ

i,j
c,m(t)), (4.21)

which can also be written as

θi,j+1
c,m (t)− θi,1

c,m(t) = −η(t)

j∑
l=1

∇Fc,m(θ
i,l
c,m, ξ

i,l
c,m(t)). (4.22)

Theorem 2. In W-HFL, for 0 ≤ η(t) ≤ min
{
1, 1

µτI

}
, the global loss function

can be upper bounded as

E
[
∥θPS(t)− θ∗∥22

]
≤

(
t−1∏
a=0

X(a)

)
∥θPS(0)−θ∗∥22+

t−1∑
b=0

Y (b)
t−1∏

a=b+1

X(a), (4.23)
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where X(t) = (1− µη(t)I (τ − η(t)(τ − 1))), and

Y (t) =
η2(t)G2I2τ2

M2C2

C∑
c1=1

C∑
c2=1

M∑
m1=1

M∑
m2=1

A(m1,m2, c1, c2)

+

(
2+(M−1)(C−2)(K−1)(I−1)

)
η2(t)IG2τ2

K(K ′)M3C2(C − 1)β̄2

C∑
c=1

C∑
c′=1
c′ ̸=c

M∑
m1=1

M∑
m2=1

βIS,cβIS,c′βc′,m1,c′βc′,m2,c′

β̄2
c′

+
η2(t)G2Iτ2

KK ′M2C2β̄2

C∑
c=1

M∑
m=1

(
(K ′ + 1)β2

IS,cβc,m,c

β̄2
c

( M∑
m′=1
m′ ̸=m

βc,m′,c +

C∑
c′=1
c′ ̸=c

M∑
m′=1

βc,m′,c′

))

+
η2(t)G2Iτ2

KK ′M2C2β̄2

C∑
c=1

C∑
c′=1
c′ ̸=c

M∑
m=1

(
βIS,cβIS,c′βc′,m,c′

β̄2
c′

( M∑
m′=1
m′ ̸=m

βc′,m′,c′ +
C∑

c′′=1
c′′ ̸=c′

βc′,m′,c′′

))

+
σ2
zN

K ′C2σ2
hβ̄

2

C∑
c=1

βIS,c

(
1

P 2
IS,t

+
I

KM2

M∑
m=1

(
(K ′ + 1)βIS,cβc,m,c

P 2
t β̄

2
c

+

C∑
c′=1
c′ ̸=c

βIS,c′βc′,m,c′

P 2
IS,tβ̄

2
c′

))

+(1+µ(1−η(t)) η2(t)IG2 τ(τ−1)(2τ−1)

6
+ η2(t)I(τ2+τ−1)G2 + 2η(t)I(τ−1)Γ, (4.24)

with A(m1,m2, c1, c2)=1− βc1,m1,c1βIS,c1

β̄β̄c1

− βc2,m2,c2βIS,c2

β̄β̄c2

+
βc1,m1,c1βc2,m2,c2βIS,c1βIS,c2

MCKK ′Iβ̄2β̄c1 β̄c2

×
(
4+2(K ′−1)+(M−1)(K−1)(I−1)

(
2+(K ′−1)(C−1)

))
.

Proof. Let us define auxiliary variable v(t + 1) = θPS(t) + ∆θPS(t). Then, we

have∥∥θPS(t+1)−θ∗∥∥2
2
=
∥∥θPS(t+1)−v(t+1) + v(t+1)−θ∗∥∥2

2

=
∥∥θPS(t+ 1)−v(t+ 1)

∥∥2
2
+
∥∥v(t+ 1)−θ∗∥∥2

2
+2⟨θPS(t+ 1)−v(t+ 1),v(t+ 1)−θ∗⟩.

(4.25)

Next, we provide upper bounds on the three terms of (4.25).

Lemma 7. E
[∥∥θPS(t+ 1)− v(t+ 1)

∥∥2
2

]
≤ η2(t)G2I2τ2

M2C2

C∑
c1=1

C∑
c2=1

M∑
m1=1

M∑
m2=1

A(m1,m2, c1, c2)

+

(
2 + (M−1)(C−2)(K−1)(I−1)

)
η2(t)IG2τ2

K(K ′)M3C2(C − 1)β̄2

C∑
c=1

C∑
c′=1
c′ ̸=c

M∑
m1=1

M∑
m2=1

βIS,cβIS,c′βc′,m1,c′βc′,m2,c′

β̄2
c′

+
η2(t)G2Iτ2

KK ′M2C2β̄2

C∑
c=1

M∑
m=1

(
(K ′ + 1)β2

IS,cβc,m,c

β̄2
c

( M∑
m′=1
m′ ̸=m

βc,m′,c +

C∑
c′=1
c′ ̸=c

M∑
m′=1

βc,m′,c′

))

+
η2(t)G2Iτ2

KK ′M2C2β̄2

C∑
c=1

C∑
c′=1
c′ ̸=c

M∑
m=1

(
βIS,cβIS,c′βc′,m,c′

β̄2
c′

( M∑
m′=1
m′ ̸=m

βc′,m′,c′ +

C∑
c′′=1
c′′ ̸=c′

βc′,m′,c′′

))
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+
σ2
zN

K ′C2σ2
hβ̄

2

C∑
c=1

βIS,c

(
1

P 2
IS,t

+
I

KM2

M∑
m=1

(
(K ′ + 1)βIS,cβc,m,c

P 2
t β̄

2
c

+

C∑
c′=1
c′ ̸=c

βIS,c′βc′,m,c′

P 2
IS,tβ̄

2
c′

))
, where

A(m1,m2, c1, c2) is given in Theorem 2.

Proof. See Appendix B.

Lemma 8. E
[∥∥v(t+ 1)−θ∗∥∥2

2

]
≤ (1−µη(t)I (τ−η(t)(τ−1)))E

[∥∥θPS(t)−θ∗∥∥2
2

]
+ (1 + µ(1− η(t)) η2(t)IG2 τ(τ − 1)(2τ − 1)

6
+ η2(t)I(τ2 + τ − 1)G2 + 2η(t)I(τ − 1)Γ.

Proof. See Appendix A.

Lemma 9. E [⟨θPS(t+ 1)− v(t+ 1),v(t+ 1)− θ∗⟩] = 0.

Proof. E[⟨θPS(t+1)−v(t+1),v(t+1)−θ∗⟩]=E
[
⟨∆θ̂PS(t)−∆θPS(t),θPS(t)+∆θPS(t)−θ∗⟩

]
. Then,

knowing that channel realizations are independent at different user and cluster

updates of the same global iteration t, we have

E
[
⟨∆θ̂PS(t)−∆θPS(t),θPS(t)+∆θPS(t)−θ∗⟩

]
=0.

Recursively iterating through the results of Lemmas 7, 8, and 9 concludes the

theorem.

Corollary 2. Assuming L-smoothness, after T global iterations, the loss function

can be upper-bounded as

E
[
F
(
θPS(T )

)]
− F ∗ ≤ L

2
E
[
∥θPS(T )− θ∗∥22

]
,

≤ L

2

(
T−1∏
a=0

X(a)

)
∥θPS(0)−θ∗∥22+

L

2

T−1∑
b=0

Y (b)
T−1∏

a=b+1

X(a).

(4.26)

Remark 1. Since the fourth term in Y (a) is independent of η(a), even for

lim
t→∞ η(t) = 0, we have lim

t→∞ E[F (θPS(t))] − F ∗ ̸= 0. Y (a) is also proportional to I

and τ , meaning that more user iterations and cluster aggregations do not always

provide faster convergence. However, since the MUs experience lower path-loss in
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W-HFL than in the conventional FL, it can reach a higher accuracy. Moreover,

increasing the number of clusters C leads to a faster convergence, however, at the

cost of employing more ISs.

Corollary 3. For a simplified setting with I = τ = 1, PIS,t ≫ Pt, Pt =

P, ∀t, βc,m,c = β, βIS,c = βIS,∀m ∈ [M ],∀c ∈ [C], we have X(t) =
(
1−µη(t)

)
and

Y (t) ≈ η2(t)G2

KK ′M3C3
MCK ′+2η2G2

(
1− 1

MC

)
+

σ2
zN

KC3σ2
h

(
1

PIS,t
+

(K ′+1)

KM3P 2
+

(C−1)

P 2
IS,tM

2

)
≈ η2(t)G2

KM2C2
+ 2η2G2 +

σ2
zN

KM3C3σ2
hP

2

≈ 2η2(t)G2 +
σ2
zN

KM3C3σ2
hP

2
, (4.27)

which, when η(t) = η,∀t, simplify the upper bound on the loss function as

E
[
F
(
θPS(T )

)]
− F ∗ ≤ L

2

(
1− µη

)T∥θPS(0)−θ∗∥22

+
L

2µη

(
2η2G2 +

σ2
zN

KM3C3σ2
hP

2

)(
1−

(
1− µη

)T)
.

(4.28)

Remark 2. As expected, it can be observed that the numbers of receive anten-

nas, MUs and ISs have a positive effect on the convergence, whereas the model

dimension has an adverse effect.

4.3 Numerical Examples

In this section, we evaluate and compare the performance of W-HFL with that

of the conventional FL under different scenarios. Via different experiments, we

observe the power consumption, as well as the convergence speed of the learning

algorithm with different number of cluster aggregations, I. In our experiments,

we use two different image classification datasets, MNIST [68] and CIFAR-10 [69].

For the MNIST dataset, we train a single layer neural network with 784 input

neurons and 10 output neurons with 2N = 7850; and, for CIFAR-10, we employ

the convolutional neural network (CNN) architecture with 2N = 307498 given in
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Table 4.1. We employ Adam optimizer [70] for training both networks.
Table 4.1: CNN Architecture for CIFAR-10 Training

CIFAR-10

3× 3× 32 convolutional layer, same padding, batch normalization, ReLU

3× 3× 32 convolutional layer, same padding, batch normalization, ReLU

2× 2 max pooling

Dropout with p = 0.2

3× 3× 64 convolutional layer, same padding, batch normalization, ReLU

3× 3× 64 convolutional layer, same padding, batch normalization, ReLU

2× 2 max pooling

Dropout with p = 0.3

3× 3× 128 convolutional layer, same padding, batch normalization, ReLU

3× 3× 128 convolutional layer, same padding, batch normalization, ReLU

2× 2 max pooling

Dropout with p = 0.4

Softmax activation with 10 output neurons

We consider a hierarchical structure with D = 20 MUs, C = 4 circular clusters

each with a single IS in the middle and M = 5 MUs in each cluster, and a

single PS. MUs in each cluster are randomly distributed at a normalized distance

between 0.5 and 1 units from their corresponding IS. Also, these clusters are

randomly placed at a normalized distance between 0.5 and 3 units from the PS.

The experiments are performed with two different data distributions. In the

i.i.d. experiments, all the training data is randomly and equally distributed across

MUs. In the non-i.i.d. case, we split the training data into 3MC groups each

consisting of samples with the same label, and randomly assign 3 groups to each

MU randomly. As a second non-i.i.d. case, we distribute the labels to different

clusters in such a way that each cluster pair has 6 shared labels, and assigned

labels are distributed randomly across MUs in each cluster. In order to make

the comparison fair, we use a normalized time IT in the accuracy plots where T

denotes the number of global iterations.
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In the experiments, the total time IT is set to 400, where it is assumed that

the conventional FL has I = 1, the mini-batch size is |ξic,m(t)| = 500 for MNIST

training and |ξic,m(t)| = 128 for CIFAR-10 training, the path loss exponent p is

set to 4, σ2
h = 1, σ2

z = 10 for the MNIST, and σ2
z = 1 for the CIFAR-10 training.

Each IS and the PS has 5MC = 100 receive antennas. Also, the power multipliers

are set to Pt = 1+10−2t, and PIS,t = 20Pt, t ∈ [T ]. In order to make the average

transmit power levels consistent among different simulations, Pt,low = 0.5Pt is

used for the cases with I = 1.

0 50 100 150 200 250 300 350 400
Number of Total Iterations, It

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

W-HFL, I = 4, Baseline
W-HFL, I = 2, Baseline
FL, Baseline
W-HFL, I = 1, ̄P= 0.04
W-HFL, I = 2, ̄P= 0.1
W-HFL, I = 4, ̄P= 0.1
FL, ̄P= 0.26

Figure 4.1: W-HFL Test accuracy for i.i.d. MNIST data with τ = 1.

In Figs. 4.1-4.3, we present the performance of W-HFL with different number

of cluster aggregations I using the MNIST dataset. We also report the average

transmit power per total number of iterations at the edge for each case. We con-

sider W-HFL with I = 1, I = 2, and I = 4, as well as the conventional FL scheme,

i.e., I = 1, with no IS in-between. To assess their performance, we compare the

results with ideal baseline cases, where the model differences are assumed to be

transmitted in an error-free manner. We can observe in Fig. 4.1 that W-HFL

outperforms conventional FL while using less power at the edge. This is mainly

because in W-HFL, MUs have a closer server (IS) to transmit their signals to,

thereby being less affected by the path-loss effects. Also, it can be seen that the
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Figure 4.2: W-HFL Test accuracy for user non-i.i.d. MNIST data with τ = 3.
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Figure 4.3: W-HFL Test accuracy for cluster non-i.i.d. with τ = 1.
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Figure 4.4: W-HFL Test accuracy for i.i.d. CIFAR-10 data with τ = 5.

performance slightly deteriorates as I increases, while consuming less transmit

power at the edge. The system performs better in i.i.d. distribution when the

ISs perform less cluster aggregations, and the best performance is observed with

I = 1, where the ISs just relay the received cluster updates. In Fig. 4.2, we

consider MNIST with non-i.i.d. distribution across MUs, and evaluate the sys-

tem performances for τ = 3. We can see the change in the order of performance

when the distribution changes and τ increases since having more cluster updates

before the global aggregation provides a more powerful update for the model

than having a frequent global model update with less trained non-i.i.d. datasets.

Moreover, we evaluate the performance when clusters are non-i.i.d. in Fig. 4.3.

When the clusters are non-i.i.d, we observe a slight decrease in accuracies when

compared to the i.i.d. data distribution.

In Fig. 4.4, we also depict the performance of the proposed algorithm on the

CIFAR-10 dataset with i.i.d. data distribution across MUs. We can see a similar

trend with the i.i.d. MNIST results. However, the average transmit power values

have increased when compared to MNIST results since the used model contains

more parameters in CIFAR-10 simulations to tackle with the more challenging

dataset. It can be observed that using the ISs as relays gives the best performance
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Figure 4.5: Convergence rate for Figure 4.1.

while using less transmit power. W-HFL with I = 2 uses the more transmit power

than I = 4 since it performs more global iteration rounds with an increased Pt.

We can also see that the gap between conventional FL and W-HFL is closed,

and the main reason is that the transmit power is a lot higher than the noise

variance since the more challenging datasets are more susceptible to wireless

channel effects.

In Fig. 4.5, we numerically analyze the convergence rate of W-HFL, with

the results presented in Corollary 2. The setting from MNIST i.i.d. training is

used with 2N = 7850, L = 10, µ = 1, G2 = 1,Γ = 1, η(t) = 5 ·10−2−2 ·10−5t, Pt =

1+10−2t, PIS,t=10Pt, ∥θPS(0)−θ∗∥22=103. We can observe that W-HFL conver-

gences faster than the conventional FL, and performs similar to the baseline.

4.4 Chapter Summary

We have proposed a W-HFL scheme, where edge devices exploit nearby local

servers called ISs for model aggregation. After several OTA cluster aggregations,

ISs transmit their model differences to the PS to update global model for the next
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iteration. We have considered the inter-cluster interference at the cluster aggre-

gations, and introduced OTA aggregation also at the PS. We provided a detailed

system model as well as a convergence analysis for the proposed algorithm that

gives an upper bound on the global loss function. We showed through numeri-

cal and experimental analyses with different data distributions and datasets that

bringing the server-side closer to the more densely located MUs can improve the

final model accuracy and result in faster convergence compared to the conven-

tional FL. We also observed that using less cluster aggregations in W-HFL can

lead to higher accuracies, but with an increased cost of transmit power at the

edge.
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Chapter 5

Over-the-Air Federated Learning

with Energy Harvesting Devices

To examine the performance of FL with energy harvesting in practical settings,

we introduce OTA FL with energy harvesting MUs. In this setting, the par-

ticipating MUs perform local SGD iterations and transmit their gradients using

wireless links simultaneously over the same frequency band. Using OTA aggre-

gation and combining techniques, the PS updates the global model based on the

received signal, and the updated model is sent back to the users for the next

global iteration. We compare the performance of our setup with the error-free

scenarios and conventional FL using different energy arrival profiles. Numerical

and experimental results show that even under energy harvesting limitations, the

proposed algorithm can perform well under practical channel models with large

number of users with convergence guarantees.

In addition to the case where the MUs are equipped with unit batteries, we also

consider a system where the MUs can receive finite levels of energy which will be

spent on computation of the gradients and their transmission, however, it cannot

be saved for the next iteration. We propose two approaches where the excess

energy is spent either on more local gradient computations or on amplifying

the gradients for the transmission. We conduct a theoretical analysis of the
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convergence rate for both cases and show that the emphasis on more computations

gives a faster convergence rate and a better performance when compared to the

case where the excess energy is spent on transmission.

The chapter is organized as follows. In Section 5.1, we study the communi-

cation model of OTA FL with MUs that have intermittent energy arrivals. In

Section 5.2, we provide a convergence analysis of the energy harvesting FL under

certain convexity assumptions on the loss function. We present our numerical

results in Section 5.3, and conclude the paper in Section 5.4.

5.1 System Model

Since the objective and the wireless channel models are the same as those in

Section 2.2, a detailed description is not repeated here.

5.1.1 System Model for Energy Harvesting Devices with

Unit Battery

In the first scenario, we consider OTA FL with energy harvesting devices where

each MU has a unit battery. The MUs harvest either unit energy, or no energy

at all from various sources such as solar, kinetic, or RF energy in every global

iteration. For simplicity, we assume that τ local SGD steps and the transmission

of gradients to the PS cost a unit amount of energy.

We denote the binary energy arrival process of the m-th MU at the t-th global

iteration as Fm(t). If Fm(t) = 1, then the m-th MU receives enough energy

to participate in the global iteration at iteration t. Fm(t) = 0, if no energy is

harvested. We also define the elapsed time between the current iteration and

the previous energy arrival as λm(t) = maxt′:t′<t,Fm(t′)=1 t
′. Lastly, for a given

t, we define a quantity called the cooldown multiplier as cm(t) = t − λm(t),

which represents the number of iterations for which the m-th MU has not been
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harvesting energy.

We investigate the use of MUs with stochastic energy arrival profiles, where the

harvested energy has an underlying probability distribution, and the MUs have

no prior information about the next energy arrival time. Note that the MUs do

not know the underlying distribution of the stochastic process. We will consider

two different stochastic energy arrival processes: Bernoulli and uniform energy

arrivals.

Bernoulli Energy Arrivals

At the t-th global iteration, the m-th MU receives energy with probability

αm(t), i.e.,

Fm(t) =

1 with probability αm(t),

0 with probability 1− αm(t).
(5.1)

Uniform Energy Arrivals

In the uniform energy arrival model, the global iterations are divided into

blocks of length Tm, and them-th MU receives energy once for every Tm iterations.

This means that with probability 1, an energy arrival is observed in
{
t, . . . , t +

Tm − 1
}
.

We now describe the proposed scheme for which the FL participants are energy

harvesting devices and the gradients are sent through wireless channels using

OTA aggregation. Since the mobile devices do not always have sufficient energy

to perform local SGD computations or gradient transmissions, only the MUs that

have harvested enough energy, i.e., those with Em(t) = 1 can participate in the

t-th global iteration. We define S(t) as the set of devices participating in the t-th

global iteration.

Before each training round, the MUs receive the current global model θPS(t)

from the PS. If an MU is eligible to participate in the t-th iteration based on its

energy status, the SGD calculations are performed. Then, based on the cooldown
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multiplier of each MU, the weighted model differences are calculated as

∆θs
m(t) = Cm(t)∆θm(t), (5.2)

where Cm(t) = pm(t)cm(t), and ∆θs
m(t) denotes the scaled model differences for

the m-th MU at the t-th global iteration. Considering error-free transmission of

the scaled gradients, the PS performs the global update for the next iteration as

θPS(t+ 1) = θPS(t) + ∆θPS(t), (5.3)

where ∆θPS(t) is given as

∆θPS(t) =
1

C(t)

∑
m∈St

∆θs
m(t), (5.4)

with C(t) =
∑

m∈St
Cm(t), which is assumed to be known by the PS [66]. The

reader is referred to [71] and the references therein for related algorithms to

estimate the number of participating users.

Next, we consider the OTA aggregation for the proposed model where the

scaled local gradients are transmitted simultaneously over the same frequency

band through the wireless channel. The PS receives a noisy target signal due

to the channel effects and noise. As in the previous chapters, in the proposed

scheme, we assume perfect channel state information at the receiver side and no

CSI at the MUs.

For a more spectrally efficient approach, the model differences are written in

terms of a complex signal ∆θs,cx
m (t) ∈ CN by grouping the symbols into its real

and imaginary parts as

∆θs,re
m (t) ≜

[
∆θs,1m (t),∆θs,2m (t), . . . ,∆θs,Nm (t)

]T
, (5.5a)

∆θs,im
m (t)≜

[
∆θs,N+1

m (t),∆θs,N+2
m (t), . . . ,∆θs,2Nm (t)

]T
. (5.5b)

For the k-th antenna, the PS receives the signal

yPS,k(t) =
∑
m∈St

hm,k(t) ◦∆θs,cx
m (t) + zPS,k(t), (5.6)

where the terminology and the notation is the same as those adopted in Chapter

2.2.
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Since a perfect CSI is available at the receiver side, the PS combines the

received signal as (see [23])

yPS(t)=
1

K

K∑
k=1

(∑
m∈St

hm,k(t)
)∗
◦yPS,k(t). (5.7)

For the n-th symbol, the combined signal becomes

ynPS(t)=
∑
m∈St

(1
K

K∑
k=1

|hn
m,k(t)|2

)
∆θn,cxm,s (t)︸ ︷︷ ︸

yn,sig
PS (t) (signal term)

+
1

K

∑
m∈St

∑
m′∈St
m′ ̸=m

K∑
k=1

(hn
m,k(t))

∗hn
m′,k(t)∆θn,cxm′,s(t)

︸ ︷︷ ︸
yn,int
PS (t) (interference term)

+
1

K

∑
m∈St

K∑
k=1

(hn
m,k(t))

∗znPS,k(t)︸ ︷︷ ︸
yn,noise
PS (t) (noise term)

. (5.8)

We recover the aggregated model differences from the received signal as

∆θ̂nPS(t) =
1

C(t)σ2
hβ̄

Re{ynPS(t)}, (5.9a)

∆θ̂n+N
PS (t) =

1

C(t)σ2
hβ̄

Im{ynPS(t)}. (5.9b)

Finally, the global update can be performed as

θPS(t+ 1) = θPS(t) + ∆θ̂PS(t), (5.10)

where ∆θ̂PS(t) =
[
∆θ̂1PS(t) ∆θ̂2PS(t) · · · ∆θ̂2NPS(t)

]T
.

5.1.2 System Model for Energy Harvesting Devices with

Discrete Battery

We now consider MDs as energy harvesting devices with a discrete battery. We

assume that each MD has a maximum battery level Emax and battery levels are
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discrete, i.e., before the t-th global iteration, the m-th MD has a battery level

of Em(t) ∈
{
0, 1, . . . , Emax

}
. Energy arrival for the m-th user is modeled as a

Poisson counting process with parameter λe,m. The time difference between two

consecutive global iterations is tg, the amount of energy harvested by the m-th

MD in tg amount of time at the t-th global iteration is denoted by the random

variable Em,in(t), and the amount of energy spent is denoted by Qm(t).

At every global iteration t, mobile devices (MDs) with available energy per-

form τm(t) local SGD iterations with minimum and maximum numbers of SGD

iterations that can be performed at each device as τmin and τmax, respectively.

We define the energy cost of one local SGD step as Esgd and required energy

for the local update transmission as Etr,m(t) = Pm(t)Etr,min where Pm(t) ≥ 1 is

the power multiplier for the m-th MD at the t-th global iteration, and Etr,min is

the minimum amount of required energy for the transmission. Therefore, we can

write Qm(t) = τm(t)Esgd +Etr,m(t). We further define the participation policy of

the m-th MD at the t-th global iteration as Fm(t), which is assigned based on

its energy state. We say that Fm(t) = 1 if Em(t) ≥ Qm(t), and it is 0 otherwise.

Moreover, the set of devices participating in the global iteration t is denoted as

St = {m ∈ [M ]|Fm(t) = 1}.

We can calculate the battery level of the m-th MD at the t-th global iteration

as

Em(t)=


Emax, if Em(t−1)+Em,in(t)−Qm(t−1) ≥ Emax

Em(t−1)+Em,in(t)−Qm(t−1), if Qm(t) ≤ Em(t−1) ≤ Emax

Em(t− 1) + Em,in(t), if Em(t−1) ≤ Qm(t).

(5.11)

For this model, we define ∆θm,s(t) = Xm(t)∆θm(t) = pmπm(t)∆θm(t) where

pm = |Dm|∑
m∈St

|Dm| and πm(t) is the multiplier variable based on the energy con-

sumption policy. Instead of using Cm(t) variable which comes from the cooldown

variable, we now use Xm(t), which is defined based on which energy policy is

being applied. Similarly, we change C(t) as X̄(t) =
∑

m∈St
Xm(t) to use the same

system model with the case of unit battery. In the following, we explain different
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power consumption policies for energy harvesting devices with discrete batteries.

Transmission-Greedy Over-the-Air Federated Learning with Energy

Harvesting Devices (OFED)

The transmission greedy approach aims to utilize the excess energy for increas-

ing the transmit power. This scenario works as follows: if an MD has enough

energy to participate in t-th global iteration, it uses all the remaining energy in

the battery for gradient amplification by fixing τm(t) = τ . The energy consump-

tion for the m-th MD at the t-th global iteration can be written as

QTG
m (t) =

τEsgd + P TG
m (t)Etr,min, if τEsgd + Etr,min ≤ Em(t)

0, otherwise,
(5.12)

where P TG
m (t) =

Em(t)−τEsgd

Etr,min
. In this scenario, the normalization parameter πm(t)

becomes πm(t) = P TG
m (t).

SGD-Greedy OFED

SGD-greedy approach focuses on performing more local SGD computations

with the excess energy in the battery. In this scenario, devices use as little energy

as possible for the gradient transmission by equating Etr,m(t) = Etr,min, and try

to perform as many local SGD steps as possible. For the m-th MD at the t-th

global iteration, the energy consumption profile can be written as

QSG
m (t) =

τSGm (t)Esgd + Etr,min, if Esgd + Etr,min ≤ Em(t)

0, otherwise,
(5.13)

where τSGm (t) = min

(⌊
Em(t)−Etr,min

Esgd

⌋
, τmax

)
with τmax being the maximum num-

ber of SGD iterations that each device can perform. For the normalization,

πm(t) = τm(t) is used.
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5.2 Convergence Analysis

In this section, we analyze the convergence rate of the proposed algorithm by

considering the global loss function, and providing some upper bounds on the

difference between the global loss of the FL model and the optimal model with

further iterations.

We denote the minimum local loss as F ∗
m, the optimal weights of the model as

θ∗ ≜ argminθ F (θ), and the minimum total loss function is given as F ∗ = F (θ∗).

The dataset bias is defined as Γ ≜ F ∗−
∑M

m=1 pmF
∗
m ≥ 0. Moreover, it is assumed

that the learning rate remains unchanged among different MUs, i.e., ηim(t) = η(t).

The following convergence rate analysis for OTA FL with energy harvesting

employs similar analysis techniques as in the previous chapters and in [23]. The

main difference is that we introduce randomness of the number of participants,

which depends on the energy arrival parameters.

5.2.1 Convergence Analysis for OTA FL with Energy Har-

vesting Devices with Unit Battery

We first state the following two assumptions, which are similar to Assumptions

1 and 2 in Chapter 3.

Assumption 3. Squared l2 norm of the local stochastic gradients are bounded;

i.e.,

Eξ

[
∥∇Fm(θm(t), ξm(t))∥22

]
≤ G2, (5.14)

which translates to ∀n∈ [2N ], Eξ[∇Fm(θ
n
m, ξ

n
m(t))] ≤G.

Assumption 4. Local loss functions are assumed to be L-smooth and µ-strongly

convex; i.e., ∀a, b ∈ R2N , ∀m ∈ [M ],

Fm(a)−Fm(b)≤⟨a−b,∇Fm(b)⟩+
L

2
∥a− b∥22, (5.15)

Fm(a)−Fm(b)≥⟨a−b,∇Fm(b)⟩+
µ

2
∥a− b∥22. (5.16)
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Theorem 3. In energy harvesting OTA FL with Bernoulli energy arrivals αm =

α and equal data distribution pm = p,∀m ∈ [M ], for 0 ≤ η(t) ≤ min{1, 1
τµ
}, we

can upper bound the model difference between the global and the optimal weights

as

E
[
∥θPS(t)− θ∗∥22

]
≤
( t−1∏

a=1

X(a)

)
∥θPS(0)−θ∗∥22+

t−1∑
b=1

Y (b)
t−1∏

a=b+1

X(a), (5.17)

where X(a) = (1− µη(a) (τ − η(a)(τ − 1))) and

Y (a)= τ 2G2η2(a)
∑

m1∈Sa

∑
m2∈Sa

A(m1,m2)
τ 2G2η2(a)

Kβ̄2

∑
m∈Sa

∑
m′∈Sa
m′ ̸=m

βmβm′

+
σ2
zN

p2Kσ2
h

∑
m∈Sa

βm

β̄2
(1 + µ(1− η(t)) η2(t)G2 τ(τ − 1)(2τ − 1)

6

+ η2(t)(τ 2 + τ − 1)G2 + 2η(t)(τ − 1)Γ. (5.18)

with A(m1,m2) =
(
1− βm1

β̄
− βm2

β̄
+

(Mα+1)(K+1)βm1βm2

MαKβ̄2

)
.

Proof. Define an auxiliary variable v(t+1)≜θPS(t)+∆θPS(t), where ∆θPS(t) is

defined in (5.4). Then, we have

∥θPS(t+1)−θ∗∥22=∥θPS(t+1)−v(t+1) + v(t+1)−θ∗∥22
= ∥θPS(t+ 1)− v(t+ 1)∥22 + ∥v(t+ 1)− θ∗∥22
+ 2⟨θPS(t+ 1)− v(t+ 1),v(t+ 1)− θ∗⟩. (5.19)

In the following lemmas, we provide upper bounds for (5.19).

Lemma 10. E
[∥∥θPS(t+ 1)− v(t+ 1)

∥∥2
2

]
≤ τ 2G2η2(t)

∑
m1∈St

∑
m2∈St

A(m1,m2) +
σ2
zN

p2Kσ2
h

∑
m∈St

βm

β̄2

+
τ 2G2η2(t)

Kβ̄2

∑
m∈St

∑
m′∈St
m′ ̸=m

βmβm′ . (5.20)

Proof. We can write ∆θ̂nPS(t) =
∑3

p=1∆θ̂nPS,p(t), for the n-th symbol using (5.8),
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because of the i.i.d. of channel realizations, we obtain

E
[
||θPS(t+1)−v(t+1)||22

]
= E

[∥∥∆θ̂PS(t)−∆θPS(t)
∥∥2
2

]
=

2N∑
n=1

(E
[(
∆θ̂nPS,1(t)−∆θnPS(t)

)2]
+

3∑
p=2

E
[(
∆θ̂nPS,l(t)

)2]
. (5.21)

Lemma 11.
2N∑
n=1

E
[(
∆θ̂nPS,1(t)−∆θnPS(t)

)2]

≤
2N∑
n=1

∑
m1∈St

∑
m2∈St

A(m1,m2)E
[
∆θnm1

(t)∆θnm2
(t)
]
. (5.22)

where A(m1,m2) =
(
1− βm1

β̄
− βm2

β̄
+

2+(Mα−1)(K−1)βm1βm2

MαKβ̄2

)
.

Proof. For a single symbol, we can write

E
[(
∆θ̂nPS,1(t)−∆θnPS(t)

)2]
=E
[ 1

C(t)2

∑
m1∈St

∑
m2∈St

Cm1(t)Cm2(t)∆θnm1
(t)∆θnm2

(t)

×
(
1− 1

Kσ2
hβ̄

K∑
k1=1

|hn
m1,k1

(t)|2− 1

Kσ2
hβ̄

K∑
k2=1

|hn
m2,k2

(t)|2

+
1

K2σ4
hβ̄

2

K∑
k1=1

K∑
k2=1

|hn
m1,k1

(t)|2|hn
m2,k2

(t)|2
)]
. (5.23)

Using Cm(t) ≤ p and C2(t) ≤ p2 and utilizing the i.i.d. channel realizations result

in (5.22).

Lemma 12.
2N∑
n=1

E
[(
∆θ̂nPS,2(t)

)2] ≤ ∑
m∈St

∑
m′∈St
m′ ̸=m

βmβm′
Kβ̄2 E

[ ∥∥∆θm′
(
t
)∥∥2

2

]
.

Proof. For the real part, using the independence of channels for different m’s and
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k’s, we obtain

E
[(
∆θ̂nPS,2(t)

)2]
= E

[( ∑
m∈St

∑
m′∈St
m′ ̸=m

1

C(t)σ2
hβ̄

×
K∑
k=1

Re
{(

hn
m,k(t)

)∗
hn
m′,k(t)Cm′(t)∆θnm′,c(t)

})2]
≤ E

[ ∑
m∈St

∑
m′∈St
m′ ̸=m

βmβm′

2Kβ̄2

((
∆θnm′,c(t)

)2
+
(
∆θn+N

m′ (t)
)2

+∆θnm(t)∆θnm′(t)−∆θn+N
m (t)∆θn+N

m′ (t)
)]

(5.24)

We obtain a similar expression for N + 1 ≤ n ≤ 2N , and summing the two parts

concludes the lemma.

Lemma 13.
2N∑
n=1

E
[(
∆θ̂nPS,3(t)

)2]≤ σ2
zN

p2Kσ2
h

∑
m∈St

βm

β̄2
.

Proof. The first half of the signal yields to

E
[(
∆θ̂nPS,3(t)

)2]
= E

[( ∑
m∈St

K∑
k=1

1

C(t)Kσ2
hβ̄

Re
{(

hn
m,k(t)

)∗
znPS,k(t)

})2]
≤ 1

p2K2σ4
hβ̄

2
E
[ ∑
m∈St

K∑
k=1

(
Re
{(

hn
m,k(t)

)∗
zi,nPS,k(t)

})2]
(a)
=

σ2
z

2p2Kσ2
h

∑
m∈St

βm

β̄2
. (5.25)

where (a) is obtained using the independence between the channel realizations

and the noise. The result also holds for N +1 ≤ n ≤ 2N . Summing with respect

to all symbols completes the proof.

The proof is completed using Assumption 3 and (2.2), and summing the results

in Lemmas 11-13.
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Lemma 14. E
[∥∥v(t+1)−θ∗

∥∥2
2

]
≤(1−µη(t)(τ−η(t)(τ−1)))E

[∥∥θPS(t)−θ∗∥∥2
2

]
+ (1 + µ(1− η(t)) η2(t)G2 τ(τ − 1)(2τ − 1)

6

+ η2(t)(τ 2 + τ − 1)G2 + 2η(t)(τ − 1)Γ. (5.26)

Proof. The proof follows the same line as in Lemma 2 in [23].

Lemma 15. E [⟨θPS(t+ 1)− v(t+ 1),v(t+ 1)− θ∗⟩] = 0.

Proof. The derivation is the same as in Lemma 3 in [1] by using the independence

between local updates and individual channel realizations.

The proof of the theorem is concluded after applying recursion to the results

of Lemmas 10, 14, and 15.

Corollary 4. Using Assumption 4, the global loss can be upper bounded after T

global iterations as

E [F (θPS(T ))− F ∗] ≤ L

2
E
[
∥θPS(T )− θ∗∥22

]
≤ L

2

( T−1∏
n=1

X(n)

)
∥θPS(0)−θ∗∥22+

L

2

T−1∑
p=1

Y (p)
T−1∏

n=p+1

X(n).

(5.27)

Assuming τ = 1, βm = 1, ∀m ∈ [M ], η(t) = η,∀t and knowing that K ≫M , we

get

E
[
F
(
θPS(T )

)]
− F ∗ ≈ L

2

(
1− µη

)T∥θPS(0)−θ∗∥22

+
L

2µη

(
2η2G2 +

σ2
zN

p2Kσ2
h

)(
1−

(
1− µη

)T)
. (5.28)

Remark. The noise term in Y (t) does not depend on η(t), so we have

lim
t→∞ E[F (θPS(t))] − F ∗ ̸= 0 even though lim

t→∞ η(t) = 0. As expected, having more

receive antennas and more data contribution from devices increases the conver-

gence rate, whereas the model size and the noise variance have negative effects.
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5.2.2 Convergence Analysis for OTA FL with Energy Har-

vesting Devices with Discrete Battery

Theorem 4. In OFED, for 0 ≤ η(t) ≤ min{1, 1
τminµ

}, the convergence rate can

be upper-bounded as

E
[
∥θPS(t)− θ∗∥22

]
≤
( t−1∏

a=1

X(a)

)
∥θPS(0)−θ∗∥22+

t−1∑
b=1

Y (b)
t−1∏

a=b+1

X(a), (5.29)

where X(t) = E
[ 1

|St|
∑
m∈St

(
(1−µη(t)(τm(t)−η(t)(τm(t)−1)))

∥∥θPS(t)−θ∗
∥∥2
2

]
and

Y (t) = η2(t)G2E
[ 1

|St|2
∑

m1∈St

∑
m2∈St

τm1(t)τm2(t)A(m1,m2)
]

+ η2(t)G2E
[ ∑
m∈St

∑
m′∈St
m′ ̸=m

τ 2m′(t)βmβm′X2
m′(t)

X̄2(t)Kβ̄2

]
+

σ2
zN

Kσ2
h

E
[ ∑
m∈St

βm

X̄2(t)β̄2

]

+ E
[ 1

|St|
∑
m∈St

(
(1 + µ(1− η(t)) η2(t)G2 τm(t)(τm(t)− 1)(2τm(t)− 1)

6

+ η2(t)(τ 2m(t) + τm(t)− 1)G2 + 2η(t)(τm(t)− 1)Γ
)]

. (5.30)

Proof. Let us define an auxiliary variable v(t+ 1)≜θPS(t)+∆θPS(t). Then, we

can write

∥θPS(t+1)−θ∗∥22=∥θPS(t+1)−v(t+1) + v(t+1)−θ∗∥22
= ∥θPS(t+ 1)− v(t+ 1)∥22 + ∥v(t+ 1)− θ∗∥22
+ 2⟨θPS(t+ 1)− v(t+ 1),v(t+ 1)− θ∗⟩. (5.31)

We will be upper-bounding the three terms in (5.31) in the following Lemmas.

Lemma 16. E
[∥∥θPS(t+ 1)− v(t+ 1)

∥∥2
2

]
≤ η2(t)G2E

[ 1

|St|2
∑

m1∈St

∑
m2∈St

τm1(t)τm2(t)A(m1,m2)
]

+ η2(t)G2E
[ ∑
m∈St

∑
m′∈St
m′ ̸=m

τ 2m′(t)βmβm′X2
m′(t)

X̄2(t)Kβ̄2

]
+

σ2
zN

Kσ2
h

E
[ ∑
m∈St

βm

X̄2(t)β̄2

]
. (5.32)
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where A(m1,m2) =
(
1− βm1

β̄
− βm2

β̄
+

(K+1)βm1βm2

Kβ̄2

)
.

Proof. We can write ∆θ̂nPS(t) =
∑3

p=1∆θ̂nPS,p(t), where the terms correspond to

signal, interference, and noise terms. The first term in (5.31) can be written as

E
[
||θPS(t+1)−v(t+1)||22

]
= E

[∥∥∆θ̂PS(t)−∆θPS(t)
∥∥2
2

]
=

2N∑
n=1

(E
[(
∆θ̂nPS,1(t)−∆θnPS(t)

)2]
+

3∑
p=2

E
[(
∆θ̂nPS,l(t)

)2]
. (5.33)

In the upcoming lemmas, we will provide some expressions for those terms.

Lemma 17.
2N∑
n=1

E
[(
∆θ̂nPS,1(t)−∆θnPS(t)

)2]
≤ η2(t)G2E

[
1

|St|2
∑

m1∈St

∑
m2∈St

τm1(t)τm2(t)A(m1,m2)
]

Proof. For a single symbol, we have

E
[(
∆θ̂nPS,1(t)−∆θnPS(t)

)2]
= E

[ 1

X̄(t)2

∑
m1∈St

∑
m2∈St

Xm1(t)Xm2(t)∆θnm1
(t)∆θnm2

(t)

×
(
1− 1

Kσ2
hβ̄

K∑
k1=1

|hn
m1,k1

(t)|2− 1

Kσ2
hβ̄

K∑
k2=1

|hn
m2,k2

(t)|2

+
1

K2σ4
hβ̄

2

K∑
k1=1

K∑
k2=1

|hn
m1,k1

(t)|2|hn
m2,k2

(t)|2
)]
,

= E
[ 1

X̄(t)2

∑
m1∈St

∑
m2∈St

Xm1(t)Xm2(t)∆θnm1
(t)∆θnm2

(t)A(m1,m2)
]
, (5.34)

where A(m1,m2) =
(
1− βm1

β̄
− βm2

β̄
+

(K+1)βm1βm2

Kβ̄2

)
. Combining for all the symbols,

we get

2N∑
n=1

E
[(
∆θ̂nPS,1(t)−∆θnPS(t)

)2]
=

2N∑
n=1

E
[ 1

|St|2
∑

m1∈St

∑
m2∈St

∆θnm1
(t)∆θnm2

(t)A(m1,m2)
]

(a)

≤ η2(t)G2E
[ 1

|St|2
∑

m1∈St

∑
m2∈St

τm1(t)τm2(t)A(m1,m2)
]

(5.35)

where (a) is obtained using Assumption 4 and (2.2).
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Lemma 18.
2N∑
n=1

E
[(
∆θ̂nPS,2(t)

)2] ≤ η2(t)G2E
[ ∑
m∈St

∑
m′∈St
m′ ̸=m

τ 2m′(t)βmβm′X2
m′(t)

X̄2(t)Kβ̄2

]

Proof. For 1 ≤ n ≤ N , we have

E
[(
∆θ̂nPS,2(t)

)2]
=E
[( ∑

m∈St

∑
m′∈St
m′ ̸=m

1

X̄(t)Kσ2
hβ̄

K∑
k=1

Re
{(

hn
m,k(t)

)∗
hn
m′,k(t)Xm′(t)∆θn,cxm′ (t)

})2]

=E
[ ∑
m∈St

∑
m′∈St
m′ ̸=m

βmβm′

2X̄2(t)Kβ̄2

((
Xm′(t)∆θnm′(t)

)2
+
(
Xm′(t)∆θn+N

m′ (t)
)2

+Xm(t)Xm′(t)∆θnm(t)∆θnm′(t)−Xm(t)Xm′(t)∆θn+N
m (t)∆θn+N

m′ (t)
)]

(5.36)

For N + 1 ≤ n ≤ 2N , similarly, we get

E
[(
∆θ̂nPS,2(t)

)2]
=E
[ ∑
m∈St

∑
m′∈St
m′ ̸=m

βmβm′

2X̄2(t)Kβ̄2

((
Xm′(t)∆θnm′(t)

)2
+
(
Xm′(t)∆θn−N

m′ (t)
)2

+Xm(t)Xm′(t)∆θnm(t)∆θnm′(t)−Xm(t)Xm′(t)∆θn−N
m (t)∆θn−N

m′ (t)
)]

(5.37)

Combining the two parts, we obtain

2N∑
n=1

E
[(
∆θ̂nPS,2(t)

)2]
=

N∑
n=1

E
[ ∑
m∈St

∑
m′∈St
m′ ̸=m

βmβm′X2
m′(t)

X̄2(t)Kβ̄2

((
∆θnm′(t)

)2
+
(
∆θn+N

m′ (t)
)2]

= E
[ ∑
m∈St

∑
m′∈St
m′ ̸=m

βmβm′X2
m′(t)

X̄2(t)Kβ̄2

∥∥∆θm′(t)
∥∥2
2

]
(a)

≤ η2(t)G2E
[ ∑
m∈St

∑
m′∈St
m′ ̸=m

τ 2m′(t)βmβm′X2
m′(t)

X̄2(t)Kβ̄2

]
(5.38)

where (a) is obtained using Assumption 4 and (2.2).

Lemma 19.
2N∑
n=1

E
[(
∆θ̂nPS,3(t)

)2]
=

σ2
zN

Kσ2
h

E
[ ∑
m∈St

βm

X̄2(t)β̄2

]
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Proof. For 1 ≤ n ≤ N , we get

E
[(
∆θ̂nPS,3(t)

)2]
= E

[( ∑
m∈St

K∑
k=1

1

X̄(t)Kσ2
hβ̄

Re
{(

hn
m,k(t)

)∗
znPS,k(t)

})2]
= E

[ ∑
m∈St

K∑
k=1

1

X̄2(t)K2σ4
hβ̄

2

(
Re
{(

hn
m,k(t)

)∗
zi,nPS,k(t)

})2]
=

σ2
z

2Kσ2
h

E
[ ∑
m∈St

βm

X̄2(t)β̄2

]
(5.39)

The same expression can be obtained for N + 1 ≤ n ≤ 2N . Conclusion of the

lemma.

The Lemma can be concluded by combining the results of Lemmas 17-19.

Lemma 20. E
[∥∥v(t+1)−θ∗

∥∥2
2

]
≤E
[ 1

|St|
∑
m∈St

(
(1−µη(t)(τm−η(t)(τm−1)))

∥∥θPS(t)−θ∗∥∥2
2

+ (1 + µ(1− η(t)) η2(t)G2 τm(τm − 1)(2τm − 1)

6

+ η2(t)(τ 2m + τm − 1)G2 + 2η(t)(τm − 1)Γ
)]

. (5.40)

Proof. The proof follows the same line as in Lemma 2 in [23] when |St| = M and

τm = τ .

Lemma 21. E [⟨θPS(t+ 1)− v(t+ 1),v(t+ 1)− θ∗⟩] = 0.

Proof. The derivation is the same as in Lemma 3 in [1] by using the independence

between local updates and individual channel realizations.

Writing the results of Lemmas 16-21 in a recursive manner concludes the the-

orem.
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Corollary 5. Using L-smoothness, the global loss function after T global itera-

tions can be upper bounded with

E [F (θPS(T ))− F ∗] ≤ L

2
E
[
∥θPS(T )− θ∗∥22

]
≤ L

2

( T−1∏
n=1

X(n)

)
∥θPS(0)−θ∗∥22+

L

2

T−1∑
p=1

Y (p)
T−1∏

n=p+1

X(n). (5.41)

5.3 Numerical Examples

5.3.1 Unit Battery Case

In this subsection, we will present several numerical results for OTA FL with

energy harvesting devices equipped with unit battery. We consider both Bernoulli

and uniform energy arrivals, and compare the results with some baseline schemes.

We consider an FL environment with M = 40 MUs and a PS with K = 5M

receive antennas. MUs are spread around the PS randomly in such a way that

their distances to the PS is uniformly distributed between 0.5 and 2 units.

We use the CIFAR-10 dataset [69] with Adam optimizer [70], and consider

an i.i.d. data distribution where the data samples are randomly and equally

distributed among MUs. The same architecture as the one presented in Table 4.1

is used with 2N = 307498.

We study the performance of conventional FL (without any communications

constraints), OTA FL where all the MUs have available energy to participate at all

iterations, and energy harvesting FL where MUs have intermittent energy arrivals

with both error-free and OTA aggregation schemes. To make a comparison with

the previous studies, we also consider the setup used in [66] with Bernoulli energy

arrivals, which corresponds to the energy harvesting FL setup with no channel

errors without any normalization at the PS with respect to the cooldown multipli-

ers. Moreover, the MUs are divided into 4 equal-sized groups with different energy

profiles. For Bernoulli energy arrivals, we have αm(t) ∈
{
1, 1/5, 1/10, 1/20

}
, and
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Figure 5.1: Energy harvesting OTA FL test accuracy for τ = 1

for uniform energy arrivals, we have Tm ∈
{
1, 5, 10, 20

}
for MUs in 4 groups as

in [66]. The training is performed for T = 1000 global iterations for τ = 1, and

T = 400 for τ = 3 with mini-batch size |ξim,c(t)| = 128, the path loss exponent

p = 4, σ2
h = 1, and σ2

z = 1.

Accuracy plots for the case with Bernoulli energy arrival profiles with τ=1 and

τ=3 are presented in Figs. 5.1 and 5.2, respectively. The results show that the

energy harvesting FL with error-free links has a convergence rate close to that

of FL with full participation, and that adding a normalization term with respect

to the cooldown multipliers leads to a faster convergence and less fluctuations

compared to the results in [66]. Moreover, OTA FL performance is very similar

to the scenario used in [66] with error-free links. It can be seen that even though

the links are wireless, the gap in the performance can be compensated as the

number of global iterations increases. One reason is that the increased number of

receive antennas at the PS can reduce the adverse affects of the small-scale fading

and noise. Increasing τ achieves a better performance with faster convergence at

the cost of making more computations at the edge. It can also be observed that

the performance of Bernoulli arrivals is very close to the that of the uniform

arrivals due to the similarities in the energy arrival profiles.
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Figure 5.2: Energy harvesting OTA FL test accuracy for τ = 3

In Fig. 5.3, we numerically evaluate the convergence rates of the scenarios con-

sidered in Fig. 5.2, using the expression in (5.27) with M=40, 2N=307498, L=

10, µ=1, τ = 1, G2=1, η(t)=10−2−10−6t, σ2
z =5, σ2

h = 1, K=M, ∥θPS(0)−θ∗∥22=
103. We observe a close convergence rate between the conventional FL and the

error-free energy harvesting FL as expected due to weighted averaging operation

with respect to the cooldown multipliers. Energy harvesting FL with OTA ag-

gregation has a slower convergence rate when compared to the others because

of the wireless channel effects as well as the decreased number of participants at

each iteration due to energy harvesting devices. We can observe that changing

the energy arrival profiles and introducing MUs with less frequent energy arrivals

affect |St| and C(t), which are key reasons in the shifts and fluctuations of the

convergence rates.

5.3.2 The Case With with Discrete Battery

In this subsection, we present our results on OTA FL with energy harvesting

MDs, which receive finite levels of energy at each iteration, without any battery

storage capabilities for subsequent iterations.

72



0 200 400 600 800 1000
Number of Iterations,t

0

1

2

3

4

5
Up

pe
r b

ou
nd

, 
[F

(θ
PS

(t)
)]

−
F*

(×
10

−3
) EH OTA FL - Bernoulli

EH OTA FL - Uniform
OTA FL
Error-Free EH FL - Bernoulli
Error-Free EH FL - Uniform
Error-Free FL

Figure 5.3: Upper bound on E [F (θPS(t))− F ∗]

We consider an FL system with M = 20 MDs, each with a single antenna, and

a PS with K = 5M receive antennas. MDs are randomly placed on a circular

area in such a way that their distances to the PS is between 0.5 and 2. Each MD

is an energy harvesting device with no storage capability for the later iterations,

Etr,min = 18, Esgd = 3, τmin = 1, τmax = 3 units, and all with the same energy

arrival parameter λm = λ = 20 units.

We use the CIFAR-10 dataset [69] with Adam optimizer [70], and we examine

the case with i.i.d. data distribution where the data samples are distributed

randomly among users. As a network architecture, we use the convolutional

neural network (CNN) architecture given in Table 4.1 with 2N = 307498.

In the simulations, we consider the FL setup with full participation where

the devices have the enough battery power to participate in all the iterations,

transmission-greedy OFED with τ = τmin, and SGD-greedy OFED. To make a

comparison between the different transmission schemes, we consider these cases

both with OTA aggregation and with error-free links.

In Fig. 5.4, we perform numerical evaluations of the upper bound obtained

in Corollary 5 for the same location placement with M = 20, K = M , 2N =
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Figure 5.4: Upper bound on E [F (θPS(t))− F ∗]

307498, σ2
z = 5, σ2

h = 1, µ = 1, L = 10, G2 = 1, Γ = 1, η(t) = 10−2 − 10−6t,

p = 4, ∥θPS(0)−θ∗∥22 = 103, and energy harvesting MDs with Etr,min = 18,

Esgd = 3, τmin = 1, τmax = 3, and λm = λ = 20 units. The results show

that the SGD-greedy OFED outperforms the transmission-greedy OFED in both

error-free and wireless schemes. In the error-free cases, all the schemes give a

convergence rate very close to the baseline. It can also be observed that the

convergence rate of SGD-greedy OFED is very close to the full-participation FL

with wireless transmission even though OFED performs global aggregation with

partial participation of MDs.

5.4 Chapter Summary

In this chapter, we studied OTA FL with energy harvesting devices with inter-

mittent and heterogeneous energy arrivals. Our framework consists of local SGD

computations at the MUs that have available energy, and OTA aggregation of the

gradients over a shared wireless medium. A comparison of the performance of the

OTA FL with energy harvesting devices through neural network simulations and

an analysis of its convergence rate are performed through numerical experiments.
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The results with different energy profiles demonstrate that performing a weighted

averaging using the latest energy arrival and dataset cardinality in energy har-

vesting FL can give a similar performance to the full-participation scheme in both

error-free and OTA cases.

We also considered OTA FL using energy harvesting devices that require a

certain amount of energy for both local SGD computations and gradient trans-

missions. In this setting, the MDs receive discrete levels of energy based on a

point Poisson process at the beginning of every global iteration. We assume that

they do not have the capability of storing energy for later iterations. The MDs

with sufficient energy compute the local gradients and send them through a wire-

less channel for OTA aggregation. The PS combines the received signals and

performs normalization to obtain a noisy estimate of the aggregated gradients.

Through a theoretical analysis of the proposed schemes, we obtain upper bounds

on their convergence rates. The results show that the SGD-greedy approach has

a faster convergence rate than the transmission-greedy approach when the energy

requirements are close to the energy arrival profiles of the MDs. A possible future

research direction could be to optimize the energy allocation between the SGD

computations and the transmit power so that the available energy can be used

more efficiently.
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Chapter 6

Conclusions and Future

Directions

In this thesis, our main focus is on federated learning over wireless channels.

Edge users called mobile users perform local computations using local data, and

the transmitted gradients are combined at the receiver using over-the-air aggrega-

tion. We propose an FL structure with hierarchical clustering where intermediate

servers (ISs) are employed around the areas where the MUs are more densely lo-

cated. The MUs perform multiple stochastic gradient descent (SGD) iterations,

and send their gradients using OTA aggregation to their corresponding cluster IS.

After multiple cluster aggregations, ISs send their model updates to the param-

eter server (PS) through error-free links. Through numerical and experimental

analysis, we observe that bringing server-side closer to the MUs provides a faster

convergence and better performance.

We also extend our study on the hierarchical FL to a more practical scenario

where both the MUs and ISs send their gradients through OTA aggregation,

taking into account the effect of interference coming from other clusters on the

cluster aggregations. Our numerical analysis shows that our wireless hierarchical

FL setup gives a better performance while using less transmit power than the

conventional FL setup where the MUs directly communicate with the PS. It
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is also shown that global aggregation can be more important than the cluster

aggregation depending on the data distribution of the MUs.

Finally, we study the OTA FL with energy harvesting devices, which harvest

energy from their ambient environment in intermittent time arrivals. We con-

sider a wireless setup for the energy harvesting FL where the participating users

with the available energy transmit their gradients through OTA aggregation to

the PS for the global aggregation. In order to compensate for heterogeneous en-

ergy arrival times among different users, we introduce a cooldown multiplier to

the gradients to amplify them according to their importance. We show through

experimental and numerical results with different energy arrival profiles that our

proposed strategy performs better than the previous error-free approaches, and

give a slightly worse performance than the OTA FL with full participation.

There are many future research directions that can be followed by building on

the ideas developed in this thesis. For example, one can extend the idea of the

hierarchical over-the-air FL into a more practical setup with multiple levels of

hierarchy, i.e., by employing additional OTA communications at different levels.

The main point of interest in this line of research could be the analysis of the

optimal number of hierarchical layers for the best performance while providing the

corresponding cost of adopting more layers. Moreover, it is important to analyze

the heterogeneity among clusters where the number of MUs in each cluster is not

fixed. Another idea regarding the hierarchical FL is to use the MUs as an IS since

employing ISs will have an additional cost. A possible extension to this idea is to

assign some users in every cluster as ISs, where the assignment can change based

on the available energy and the distance to other MUs.

It is important to investigate the relationship between the required energy to

transmit the gradients and the cooldown multipliers for the energy harvesting

FL. Energy harvesting FL systems require an amplified participation from the

devices that participate less frequently to prevent bias, however, the sporadically

participating devices might not have enough energy to send amplified gradients.

Therefore, it is important to obtain the optimal amplification coefficient for a

certain energy arrival profile. In this framework, another possible direction for
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future research may be to define the value of a local update before transmitting

the gradient, and using this value to improve the performance of the algorithm.

This approach may help mobile users with less valuable local gradients to save

up energy to increase their chances to participate in the later iterations since

their current gradients might not be as effective as the others to the global model

accuracy. Then, the global aggregation can be performed with mobile users whose

local gradients contribute the most to the global model.
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Appendix A

Proof of Lemma 5 & 8

We have

E
[∥∥v(t+ 1)−θ∗∥∥2

2

]
=E
[∥∥θPS(t)+∆θPS(t)−θ∗∥∥2

2

]
,

=E
[∥∥θPS(t)−θ∗∥∥2

2

]
+E
[∥∥∆θPS(t)

∥∥2
2

]
+2E

[
⟨θPS(t)−θ∗,∆θPS(t)⟩

]
.

(A.1)

Where the second term can be bounded as

E
[∥∥∆θPS(t)

∥∥2
2

]
= E

[∥∥∥ 1

MC

C∑
c=1

M∑
m=1

I∑
i=1

∆θi
c,m(t)

∥∥∥2
2

]
(a)

≤ 1

MC

C∑
c=1

M∑
m=1

I∑
i=1

E
[∥∥∆θi

c,m(t)
∥∥2
2

]
(b)
=

η2(t)

MC

C∑
c=1

M∑
m=1

I∑
i=1

E
[∥∥∥ τ∑

j=1

∇Fc,m

(
θi,j
c,m(t), ξ

i,j
c,m(t)

)∥∥∥2
2

]

≤ η2(t)τ

MC

C∑
c=1

M∑
m=1

I∑
i=1

τ∑
j=1

E
[∥∥∇Fc,m

(
θi,j
c,m(t), ξ

i,j
c,m(t)

)∥∥2
2

]
(c)

≤ η2(t)Iτ 2G2, (A.2)

where (a) is due to the convexity of ∥∥22, (b) comes from utilizing (4.22), and
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(c) is obtained using Assumption 2. Plugging in the result to (A.1), we have

E
[∥∥v(t+ 1)− θ∗∥∥2

2

]
≤ E

[∥∥θPS(t)− θ∗∥∥2
2

]
+ η2(t)Iτ2G2 + 2E

[
⟨θPS(t)− θ∗,∆θPS(t)⟩

]
.

(A.3)

The last term of (A.3), we have

2E
[
⟨θPS(t)− θ∗,∆θPS(t)⟩

]
=

2

MC

C∑
c=1

M∑
m=1

I∑
i=1

E
[
⟨θPS(t)− θ∗,∆θi

c,m(t)⟩
]

=
2η(t)

MC

C∑
c=1

M∑
m=1

I∑
i=1

E
[
⟨θ∗ − θPS(t),

τ∑
j=1

∇Fc,m

(
θi,j
c,m(t), ξ

i,j
c,m(t)

)
⟩
]

=
2η(t)

MC

C∑
c=1

M∑
m=1

I∑
i=1

E
[
⟨θ∗ − θPS(t),∇Fc,m

(
θPS(t), ξ

1,1
c,m(t)

)
⟩
]

+
2η(t)

MC

C∑
c=1

M∑
m=1

I∑
i=1

E
[
⟨θ∗ − θPS(t),

τ∑
j=2

∇Fc,m

(
θi,j
c,m(t), ξ

i,j
c,m(t)

)
⟩
]
.

(A.4)

For the first term of (A.4), we have

2η(t)

MC

C∑
c=1

M∑
m=1

I∑
i=1

E
[
⟨θ∗ − θPS(t),∇Fc,m

(
θPS(t), ξ

1,1
c,m(t)

)
⟩
]

(a)
=

2η(t)

MC

C∑
c=1

M∑
m=1

I∑
i=1

E
[
⟨θ∗ − θPS(t),∇Fc,m

(
θPS(t)

)
⟩
]

(b)

≤ 2η(t)

MC

C∑
c=1

M∑
m=1

I∑
i=1

E
[
Fc,m(θ

∗)− Fc,m(θPS(t))−
µ

2

∥∥θPS(t)− θ∗∥∥2
2

]
= 2η(t)I

(
F ∗ − E

[
F (θPS(t))

]
− µ

2
E
[∥∥θPS(t)− θ∗∥∥2

2

])
(c)

≤ −η(t)IµE
[∥∥θPS(t)− θ∗∥∥2

2

]
, (A.5)

where (a) comes from Eξ

[
∇Fm,c

(
θPS(t), ξ

1,1
m,c(t)

)]
=∇Fm,c(θPS(t)), (b) holds due

to the µ-strong convexity of Fm,c, and (c) follows since F ∗ ≤ F (θ(t)). For the

second term of (A.4), we have

2η(t)

MC

C∑
c=1

M∑
m=1

I∑
i=1

E
[
⟨θ∗ − θPS(t),

τ∑
j=2

∇Fc,m

(
θi,j
c,m(t), ξ

i,j
c,m(t)

)
⟩
]

=
2η(t)

MC
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c=1

M∑
m=1

I∑
i=1

τ∑
j=2

E
[
⟨θ∗ − θPS(t),∇Fc,m

(
θi,j
c,m(t), ξ

i,j
c,m(t)

)
⟩
]
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=
2η(t)

MC

C∑
c=1

M∑
m=1

I∑
i=1

τ∑
j=2

E
[
⟨θi,j

c,m(t)− θPS(t),∇Fc,m

(
θi,j
c,m(t), ξ

i,j
c,m(t)

)
⟩
]

+
2η(t)
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C∑
c=1
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m=1

I∑
i=1

τ∑
j=2

E
[
⟨θ∗ − θi,j

c,m(t),∇Fc,m

(
θi,j
c,m(t), ξ

i,j
c,m(t)

)
⟩
]
.

(A.6)

Using Cauchy-Schwarz inequality, we obtain

2η(t)

MC

C∑
c=1

M∑
m=1

I∑
i=1

τ∑
j=2

E
[
⟨θi,j

c,m(t)− θPS(t),∇Fc,m

(
θi,j
c,m(t), ξi,jc,m(t)

)
⟩
]

≤ η(t)

MC

C∑
c=1

M∑
m=1

I∑
i=1

τ∑
j=2

E
[

1

η(t)

∥∥θi,j
c,m(t)− θPS(t)

∥∥2
2
+ η(t)

∥∥∇Fc,m

(
θi,j
c,m(t), ξi,jc,m(t)

)∥∥2
2

]
(a)

≤ 1

MC

C∑
c=1

M∑
m=1

I∑
i=1

τ∑
j=2

E
[

1

η(t)

∥∥θi,j
c,m(t)− θPS(t)

∥∥2
2

]
+ η2(t)I(τ − 1)G2, (A.7)

where (a) is obtained using Assumption 2. The following lemma will give an

upper bound on the second term of (A.6).

Lemma 22.
2η(t)

MC

C∑
c=1

M∑
m=1

I∑
i=1

τ∑
j=2

E
[
⟨θ∗ − θi,j
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(
θi,j
c,m(t), ξ

i,j
c,m(t)

)
⟩
]
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[∥∥θPS(t)− θ∗

∥∥2
2

]
+
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2

]
+2η(t)I(τ−1)Γ.
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Proof. We have

2η(t)
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C∑
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M∑
m=1

I∑
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j=2
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]
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2

]
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I∑
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j=2

(
F ∗
c,m−E

[
Fc,m(θi,j

c,m)
] )

− µη(t)
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c=1
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I∑
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j=2

E
[∥∥θi,j

c,m(t)− θ∗∥∥2
2

]
(c)

≤ 2η(t)I(τ − 1)Γ− µη
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C∑
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M∑
m=1

I∑
i=1

τ∑
j=2

E
[∥∥θi,j

c,m(t)− θ∗∥∥2
2

]
, (A.8)

where (a) is obtained using Eξ

[
∇Fc,m

(
θi,j
c,m(t), ξ

i,j
c,m(t)

)]
= Fc,m(θ

i,j
c,m(t)),∀i, j,m, c, t,

(b) is using the µ-strong convexity of Fc,m, (c) follows since F
∗
c,m ≤ Fc,m(θ

i,j
c,m(t)).

Also

−
∥∥θi,j

c,m(t)−θ∗∥∥2
2
=−
∥∥θi,j

c,m(t)−θPS(t)
∥∥2
2
−∥θPS(t)−θ∗∥22−2⟨θi,j

c,m(t)−θPS(t),θPS(t)−θ∗⟩
(a)

≤−
∥∥θi,j

c,m(t)−θPS(t)
∥∥2
2
−∥θPS(t)−θ∗∥22+

1

η(t)

∥∥θi,j
c,m(t)−θPS(t)

∥∥2
2
+η(t) ∥θPS(t)−θ∗∥22

= − (1− η(t)) ∥θPS(t)− θ∗∥22 +
(

1

η(t)
− 1

)∥∥θi,j
c,m(t)− θPS(t)

∥∥2
2
, (A.9)

where (a) is due to Cauchy-Schwarz inequality. Plugging (A.8) and (A) concludes

the Lemma.
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Using the results in (A.7) and , we can write (A.6) as

2η(t)

MC

C∑
c=1

M∑
m=1

I∑
i=1

E
[
⟨θ∗ − θPS(t),

τ∑
j=2

∇Fc,m

(
θi,j
c,m(t), ξ

i,j
c,m(t)

)
⟩
]

= −µη(t)(1− η(t))I(τ − 1)E
[∥∥θPS(t)− θ∗∥∥2

2

]
+

(1 + µ(1− η(t)))

MC

C∑
c=1

M∑
m=1

I∑
i=1

τ∑
j=2

E
[∥∥θi,j

c,m(t)− θPS(t)
∥∥2
2

]
+ η2(t)I(τ − 1)G2 + 2η(t)I(τ − 1)Γ. (A.10)

Also, we have

1

MC

C∑
c=1

M∑
m=1

I∑
i=1

τ∑
j=2

E
[∥∥θi,j

c,m(t)−θPS(t)
∥∥2
2

]
=

η2

MC

C∑
c=1

M∑
m=1

I∑
i=1

τ∑
j=2

E
[∥∥∇Fc,m

(
θi,j
c,m(t), ξ

i,j
c,m(t)

)∥∥2
2

]
(a)

≤ η2IG2 τ(τ − 1)(2τ − 1)

6
, (A.11)

where (a) is due to the convexity of L2 norm and Assumption 2. For η(t) ≤ 1,

we have

2η(t)

MC

C∑
c=1

M∑
m=1

I∑
i=1

E
[
⟨θ∗ − θPS(t),

τ∑
j=2

∇Fc,m

(
θi,j
c,m(t), ξ

i,j
c,m(t)

)
⟩
]

≤ µη(t)(1−η(t))I(τ−1)E
[∥∥θPS(t)−θ∗∥∥2

2

]
+
(
1+µ(1−η(t))

)
η2(t)IG2 τ(τ−1)(2τ−1)

6

+η2(t)I(τ−1)G2+2η(t)I(τ−1)Γ. (A.12)

Substituting the results in (A.5) and (A.12) into (A.4), we get

2E
[
⟨θPS(t)− θ∗,∆θPS(t)⟩

]
≤ µη(t)I(τ − η(t)(τ − 1))E

[∥∥θPS(t)− θ∗∥∥2
2

]
+
(
1+µ(1−η(t))

)
η2(t)IG2 τ(τ−1)(2τ−1)

6

+ η2(t)I(τ−1)G2+2η(t)I(τ−1)Γ. (A.13)

Lemma is concluded by plugging (A.13) into (A.3).
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Appendix B

Proof of Lemma 7

Using (4.25), we have

E
[
||θPS(t+ 1)− v(t+ 1)||22

]
= E

[
||∆θ̂PS(t)−∆θPS(t)||22

]
, (B.1)

=
2N∑
n=1

E
[
(∆θ̂nPS(t)−∆θnPS(t))

2
]
. (B.2)

Note that ∆θ̂nPS(t) =
∑9

l=1∆θ̂nPS,l(t). Using the independence of different channel

realizations over different users, clusters, and the noise, we can write

E
[
||∆θ̂nPS(t)−∆θnPS(t)||22

]
= E

[(
∆θ̂nPS,1(t)−∆θnPS(t)

)2]
+

9∑
l=2

E
[(

∆θ̂nPS,l(t)
)2]

.

(B.3)

Lemma 23. E
[
∆θi1,nc1,m1

(t)∆θi2,nc2,m2
(t)
]
≤ η2(t)G2τ 2

Proof. E
[
∆θi1,nc1,m1(t)∆θi2,nc2,m2(t)

]
=η2(t)

τ∑
j1=1

τ∑
j2=1

E
[
∇Fc1,m1(θ

i1,j1,n
c1,m1 (t), ξi1,j1,nc1,m1 (t))∇Fc2,m2(θ

i2,j2,n
c2,m2 (t), ξi2,j2,nc2,m2 (t))

]
(a)

≤ η2(t)G2τ2,

where (a) holds due to Assumption 2.

Lemma 24. E
[∥∥∆θi

c,m(t)
∥∥2
2

]
≤ η2(t)G2τ 2
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Proof. E
[∥∥∆θi

c,m(t)
∥∥2
2

]
= η2(t)E

[∥∥∥∑τ
j=1∇Fc,m(θ

i,j
c,m(t), ξ

i,j
c,m(t))

∥∥∥2
2

]
(a)

≤ η2(t)τ
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j=1 E
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∥∥∥2
2

]
(b)

≤ η2(t)G2τ 2,

where (a) is obtained using the convexity of ∥∥22 and (b) holds because of

Assumption 2.
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M∑
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Proof. Using (2.20) and (4.18), we have
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=
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βc1,m1,c1βc2,m2,c2βIS,c1βIS,c2

MCKK ′Iβ̄2β̄c1 β̄c2

(
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1
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∆θi1,nc1,m1
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(t)A(m1,m2, c1, c2)

]
, (B.4)

where A(m1,m2, c1, c2) is given in Theorem 2. Combining for all symbols, we

93



have

2N∑
n=1

E
[(
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=

1

M2C2

2N∑
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∑
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[
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(t)∆θi2,nc2,m2
(t)
]
,

(a)
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C∑
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M∑
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M∑
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A(m1,m2, c1, c2), (B.5)

where (a) is obtained using Lemma 23.

Lemma 26.
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E
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Proof. For 1 ≤ n ≤ N , we have

E
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=

1
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2
E
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2
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. (B.6)

In order for the expectation not to be zero, we need to have c1 = c2, i1 = i2 and

k1=k2 because of the independence of different channel realizations. Then, using

E
[
|hn

IS,c,k(t)|4
]
=2β2

IS,cσ
4
h, we have

=
(K ′ + 1)

K2K ′M2C2σ4
hβ̄

2
E

[ ∑
c,m,m′ ̸=m,i,k

β2
IS,c

β̄2
c

(
Re
{
(hi,nc,m,c,k(t))

∗hi,nc,m′,c,k(t)∆θi,n,cxc,m′ (t)
})2

+ Re
{
(hi,nc,m,c,k(t))

∗hi,nc,m′,c,k(t)∆θi,n,cxc,m′ (t)
}
Re
{
(hi,nc,m′,c,k(t))

∗hi,nc,m,c,k(t)∆θi,n,cxc,m (t)
}]

,

=
(K ′ + 1)

2KK ′M2C2β̄2
E

[
C∑
c=1

M∑
m=1

M∑
m′=1
m′ ̸=m

I∑
i=1

β2
IS,cβc,m,cβc,m′,c

β̄2
c

×
((

∆θi,nc,m′(t)
)2

+
(
∆θi,n+N

c,m′ (t)
)2

+∆θi,nc,m(t)∆θi,nc,m′(t)−∆θi,n+N
c,m (t)∆θi,n+N

c,m′ (t)

)]
.

(B.7)
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For N + 1 ≤ n ≤ 2N , we can similarly obtain

=
(K ′ + 1)

2KK ′M2C2β̄2
E

[
C∑
c=1

M∑
m=1

M∑
m′=1
m′ ̸=m

I∑
i=1

β2
IS,cβc,m,cβc,m′,c

β̄2
c

×
((

∆θi,nc,m′(t)
)2

+
(
∆θi,n−N

c,m′ (t)
)2

+∆θi,nc,m(t)∆θi,nc,m′(t)−∆θi,n−N
c,m (t)∆θi,n−N

c,m′ (t)

)]
.

(B.8)

Combining the two cases, it becomes

2N∑
n=1

E
[(
∆θ̂nPS,2(t)

)2]
=

(K ′ + 1)

KK ′M2C2β̄2

C∑
c=1

M∑
m=1

M∑
m′=1
m′ ̸=m

I∑
i=1

β2
IS,cβc,m,cβc,m′,c

β̄2
c

E
[∥∥∆θi

c,m′(t)
∥∥2
2

]
,

(a)

≤ (K ′ + 1)η2(t)G2Iτ2

KK ′M2C2β̄2

C∑
c=1

M∑
m=1

M∑
m′=1
m′ ̸=m

β2
IS,cβc,m,cβc,m′,c

β̄2
c

, (B.9)

where (a) is obtained using Lemma 24.

Lemma 27.
2N∑
n=1

E
[(
∆θ̂nPS,3(t)

)2]≤(K ′+1)η2(t)G2Iτ2

KK ′M2C2β̄2

C∑
c=1

C∑
c′=1
c′ ̸=c

M∑
m=1

M∑
m′=1

β2
IS,cβc,m,cβc,m′,c′

β̄2
c

Proof. For 1 ≤ n ≤ N , we have

E
[(
∆θ̂nPS,3(t)

)2]
=

1

K2(K ′)2M2C2σ8
hβ̄

2
E

[∑
c1,c2

∑
c′1 ̸=c1,c′2 ̸=c2

∑
m1,m2

∑
m′

1,m
′
2

∑
i1,i2

∑
k1,k2,k′1,k

′
2

× 1

β̄c1 β̄c2

|hn
PS,c1,k′1

(t)|2|hn
PS,c2,k′2

(t)|2Re
{
(hi1,n

c1,m1,c1,k1
(t))∗hi1,n

c1,m′
1,c

′
1,k1

(t)∆θi1,n,cxc′1,m
′
1
(t)
}

× Re
{
(hi2,n

c2,m2,c2,k2
(t))∗hi2,n

c2,m′
2,c

′
2,k2

(t)
(
∆θi2,n,cxc′2,m

′
2
(t)
}]

. (B.10)

In order expectation not to be zero, we need to have c1 = c2, c
′
1 = c′2,m1 =

m2,m
′
1 = m′

2, i1 = i2 and k1 = k2 because of the independence of different

channel realizations. We get

=
(K ′ + 1)

K2K ′M2C2σ4
hβ̄

2
E

[ ∑
c,c′ ̸=c,
m,m′,i,k

β2
IS,c

β̄2
c

(
Re
{
(hi,nc,m,c,k(t))

∗hi,nc,m′,c′,k(t)∆θi,n,cxc′,m′ (t)
})2

]
,
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=
(K ′ + 1)

2KK ′M2C2β̄2
E

[ ∑
c,c′ ̸=c,
m,m′,i

β2
IS,cβc,m,cβc,m′,c′

β̄2
c

((
∆θi,nc′,m′(t)

)2
+
(
∆θi,n+N

c′,m′ (t)
)2)]

. (B.11)

Similar expression can be obtained for N + 1 ≤ n ≤ 2N . Combining two cases,

it becomes

2N∑
n=1

E
[(
∆θ̂nPS,3(t)

)2]
=

N∑
n=1

(K ′ + 1)

KK ′M2C2β̄2
E

[ ∑
c,c′ ̸=c,
m,m′,i

β2
IS,cβc,m,cβc,m′,c′

β̄2
c

((
∆θi,nc′,m′(t)

)2
+
(
∆θi,n+N

c′,m′ (t)
)2)]

,

(a)

≤ (K ′ + 1)η2(t)G2Iτ 2

KK ′M2C2β̄2

C∑
c=1

C∑
c′=1
c′ ̸=c

M∑
m=1

M∑
m′=1

β2
IS,cβc,m,cβc,m′,c′

β̄2
c

, (B.12)

where (a) is obtained using Lemma 24.

Lemma 28.
2N∑
n=1

E
[(
∆θ̂nPS,4(t)

)2]
=

(K ′ + 1)Iσ2
zN

KK ′M2C2P 2
t σ

2
hβ̄

2

C∑
c=1

M∑
m=1

β2
IS,cβm,c,c

β̄2
c

Proof. For 1 ≤ n ≤ N , we have

E
[(
∆θ̂nPS,4(t)

)2]
=

1

P 2
IS,tK

2
(
K ′
)2
M2C2σ8

hβ̄
2
E
[∑
c1,c2

∑
m1,m2,i1,i2

∑
k1,k2,k′1,k

′
2

1

β̄c1 β̄c2

× |hn
PS,c1,k′1

(t)|2|hn
PS,c2,k′2

(t)|2

× Re
{(
hi1,n
c1,m1,c1,k1

(t)
)∗
zi1,nc1,k1

(t)
}
Re
{(
hi2,n
c2,m2,c2,k2

(t)
)∗
zi2,nc2,k2

(t)
}]
. (B.13)

For a non-zero result, we need to have c1=c2, i1= i2,m1=m2 and k1=k2. Then,

we get

=
(K ′ + 1)

P 2
IS,tK

2K ′M2C2σ4
hβ̄

2
E
[ ∑

c,m,i,k

β2
IS,c

β̄2
c

(
Re
{
(hi,n

c,m,c,k(t))
∗zi,nc,k(t)

})2]
,

=
(K ′ + 1)Iσ2

z

2P 2
IS,tKK ′M2C2σ2

hβ̄
2

C∑
c=1

M∑
m=1

β2
IS,cβc,m,c

β̄2
c

. (B.14)

96



The derivation is similar for N + 1 ≤ n ≤ 2N . Combining the two cases, we get

2N∑
n=1

E
[(
∆θ̂nPS,4(t)

)2]
=

(K ′ + 1)Iσ2
zN

P 2
IS,tKK ′M2C2σ2

hβ̄
2

C∑
c=1

M∑
m=1

β2
IS,cβc,m,c

β̄2
c

. (B.15)

Lemma 29.
2N∑
n=1

E
[(
∆θ̂nPS,5(t)

)2]
≤
(
2+(M−1)(C−2)(K−1)(I−1)

)
η2(t)IG2τ2

K(K′)M3C2(C−1)β̄2

C∑
c=1

C∑
c′=1
c′ ̸=c

M∑
m1=1

M∑
m2=1

βIS,cβIS,c′βc′,m1,c
′βc′,m2,c

′

β̄2
c′

Proof. For 1 ≤ n ≤ N , the equation becomes

E
[(
∆θ̂nPS,5(t)

)2]
=

1

K2(K ′)2M2C2σ8
hβ̄

2
E

[∑
c1,c2

∑
c′1 ̸=c1,c′2 ̸=c2

∑
m1,m2,i1,i2

∑
k1,k2,k′1,k

′
2

× 1

β̄c′1 β̄c′2
|hi1,n

c′1,m1,c′1,k1
(t)|2|hi2,n

c′2,m2,c′2,k2
(t)|2Re

{
(hnIS,c1,k′1

(t))∗hnIS,c′1,k′1
(t)∆θi1,n,cx

c′1,m1
(t)
}

× Re
{
(hnIS,c2,k′2

(t))∗hnIS,c′2,k′2
(t)∆θi2,n,cx

c′2,m2
(t)
}]

. (B.16)

For a non-zero answer, we need to have k′
1 = k′

2. The expression becomes

=

(
2 + (M − 1)(C − 2)(K − 1)(I − 1)

)
4(K ′)M3C2(C − 1)KIβ̄2

E

[ ∑
c,c′ ̸=c,m1,m2,i1,i2

βIS,cβIS,c′

×
(
βc′,m1,c′βc′,m2,c′

β̄2
c′

(
∆θi1,nc′,m1

(t)∆θi2,nc′,m2
(t) + ∆θi1,n+N

c′,m1
(t)∆θi2,n+N

c′,m2
(t)
)

+
βc′,m1,c′βc,m2,c

β̄cβ̄c′

(
∆θi1,nc′,m1

(t)∆θi2,nc,m2
(t)−∆θi1,n+N

c′,m1
(t)∆θi2,n+N

c,m2
(t)
))]

.

(B.17)
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The result is similar for N + 1 ≤ n ≤ 2N . Overall, it becomes

2N∑
n=1

E
[(
∆θ̂nPS,5(t)

)2]
=

(
2 + (M − 1)(C − 2)(K − 1)(I − 1)

)
2K(K ′)M3C2(C − 1)Iβ̄2

N∑
n=1

∑
c,c′ ̸=c,m1,m2,i1,i2

×
βIS,cβIS,c′βc′,m1,c′βc′,m2,c′

β̄2
c′

E
[(

∆θi1,nc′,m1
(t)∆θi2,nc′,m2

(t) + ∆θi1,n+N
c′,m1

(t)∆θi2,n+N
c′,m2

(t)
)]

,

(a)

≤
(
2+(M−1)(C−2)(K−1)(I−1)

)
η2(t)IG2τ2

K(K ′)M3C2(C − 1)β̄2

C∑
c=1

C∑
c′=1
c′ ̸=c

M∑
m1=1

M∑
m2=1

βIS,cβIS,c′βc′,m1,c′βc′,m2,c′

β̄2
c′

,

(B.18)

where (a) is obtained using Lemma 23.

Lemma 30.
2N∑
n=1

E
[(
∆θ̂nPS,6(t)

)2]≤ η2(t)IG2τ2

KK ′M2C2β̄2

C∑
c=1

C∑
c′=1
c′ ̸=c

M∑
m=1

M∑
m′=1
m′ ̸=m

βIS,cβIS,c′βc′,m,c′βc′,m′,c′

β̄2
c′

Proof. For 1 ≤ n ≤ N , we have

E
[(
∆θ̂nPS,6(t)

)2]
=

1

K2(K ′)2M2C2σ8
hβ̄

2
E

[∑
c1,c2

∑
c′1 ̸=c1,c′2 ̸=c2

∑
m1,m2

∑
m′

1 ̸=m1,m′
2 ̸=m2

∑
i1,i2

∑
k1,k2,k′1,k

′
2

× 1

β̄c′1 β̄c′2
Re
{
(hnPS,c1,k′1

(t))∗hnPS,c′1,k
′
1
(t)(hi1,n

c′1,m1,c′1,k1
(t))∗hi1,n

c′1,m
′
1,c

′
1,k1

(t)∆θi1,n,cx
c′1,m

′
1
(t)
}

× Re
{
(hnPS,c2,k′2

(t))∗hnPS,c′2,k
′
2
(t)(hi2,n

c′2,m2,c′2,k2
(t))∗hi2,n

c′2,m
′
2,c

′
2,k2

(t)∆θi2,n,cx
c′2,m

′
2
(t)
}]

. (B.19)

For a non-zero result, we need to have k1=k2, k
′
1=k′

2, i1=i2, and c1=c2, which

98



leads to c′1=c
′
2.

=
1

K2(K ′)2M2C2σ8
hβ̄

2
E

[ ∑
c,c′ ̸=c,m,m′ ̸=m,i,k,k′

1

β̄2
c′

×
((

Re
{
(hnPS,c,k′(t))

∗hnPS,c′,k′(t)(h
i,n
c′,m,c′,k(t))

∗hi,nc′,m′,c′,k(t)∆θi,n,cxc′,m′ (t)
})2

+ Re
{
(hnPS,c,k′(t))

∗hnPS,c′,k′(t)(h
i,n
c′,m,c′,k(t))

∗hi,nc′,m′,c′,k(t)∆θi,n,cxc′,m′ (t)
}

× Re
{
(hnPS,c,k′(t))

∗hnPS,c′,k′(t)(h
i,n
c′,m′,c′,k(t))

∗hi,nc′,m,c′,k(t)∆θi,n,cxc′,m (t)
})]

,

= E

[
C∑
c=1

C∑
c′=1
c′ ̸=c

M∑
m=1

M∑
m′=1
m′ ̸=m

I∑
i=1

βIS,cβIS,c′βc′,m,c′βc′,m′,c′

2K(K ′)M2C2β̄2β̄2
c′

(
(∆θi,nc′,m′(t))

2+(∆θi,n+N
c′,m′ (t))2

)]
.

(B.20)

The result is similar for N + 1 ≤ n ≤ 2N . Combining the two parts, we have

2N∑
n=1

E
[(
∆θ̂nPS,6(t)

)2]
=

C∑
c=1

C∑
c′=1
c′ ̸=c

M∑
m=1

M∑
m′=1
m′ ̸=m

I∑
i=1

βIS,cβIS,c′βc′,m,c′βc′,m′,c′

K(K ′)M2C2β̄2β̄2
c′

E
[∥∥∆θi

c′,m′(t)
∥∥2
2

]
,

(a)

≤ η2(t)IG2τ2

KK ′M2C2β̄2

C∑
c=1

C∑
c′=1
c′ ̸=c

M∑
m=1

M∑
m′=1
m′ ̸=m

βIS,cβIS,c′βc′,m,c′βc′,m′,c′

β̄2
c′

,

(B.21)

where (a) is obtained using Lemma 24.

Lemma 31.
2N∑
n=1

E
[(
∆θ̂nPS,7(t)

)2]
≤ η2(t)IG2τ2

KK′M2C2β̄2

C∑
c=1

C∑
c′=1
c′ ̸=c

C∑
c′′=1
c′′ ̸=c′

M∑
m=1

βIS,cβIS,c′βc′,m,c′βc′,m,c′′

β̄2
c′
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Proof. For 1 ≤ n ≤ N , we have

E
[(
∆θ̂nPS,7(t)

)2]
=

1

K2(K ′)2M2C2σ8
hβ̄

2

× E

[∑
c1,c2

∑
c′1 ̸=c1,c′2 ̸=c2

∑
c′′1 ̸=c′1,c

′′
2 ̸=c′2

∑
m1,m2

∑
m′

1,m
′
2

∑
i1,i2

∑
k1,k2,k′1,k

′
2

1

β̄c′1
β̄c′2

× Re
{
(hn

PS,c1,k′1
(t))∗hn

PS,c′1,k
′
1
(t)(hi1,n

c′1,m1,c′1,k1
(t))∗hi1,n

c′1,m
′
1,c

′′
1 ,k1

(t)∆θi1,n,cxc′′1 ,m
′
1
(t)
}

× Re
{
(hn

PS,c2,k′2
(t))∗hn

PS,c′2,k
′
2
(t)(hi2,n

c′2,m2,c′2,k2
(t))∗hi2,n

c′2,m
′
2,c

′′
2 ,k2

(t)∆θi2,n,cxc′′2 ,m
′
2
(t)
}]

.

(B.22)

For a non-zero answer, we need to have m1 = m2, m
′
1 = m′

2 k1 = k2, k
′
1 = k′

2,

i1 = i2, and c′1 = c′2 and c′′1 = c′′2, which leads to c1 = c2. Then, we have

=
1

K2(K ′)2M2C2σ8
hβ̄

2
E

[ ∑
c,c′ ̸=c,c′′ ̸=c′

∑
m,m′,i,k,k′

1

β̄2
c′

×
(
Re
{
(hn

PS,c,k′(t))
∗hn

PS,c′,k′(t)(h
i,n
c′,m,c′,k(t))

∗hi,n
c′,m′,c′′,k(t)∆θi,n,cxc′′,m (t)

})2]
,

=E

[ ∑
c,c′ ̸=c,c′′ ̸=c′

∑
m,m′,i

βIS,cβIS,c′βc′,m,c′βc′,m′,c′′

2KK ′M2C2β̄2β̄2
c′

(
(∆θi,nc′′,m′(t))

2 + (∆θi,n+N
c′′,m′ (t))

2
)]

.

(B.23)

The derivation is similar for N + 1 ≤ n ≤ 2N . Combining two parts, we have

2N∑
n=1

E
[(
∆θ̂nPS,7(t)

)2]
=

N∑
n=1

∑
c,c′ ̸=c,c′′ ̸=c′

∑
m,m′,i

βIS,cβIS,c′βc′,m,c′βc′,m′,c′′

K(K ′)M2C2β̄2β̄2
c′

E
[
(∆θi,nc′′,m′(t))

2 + (∆θi,n+N
c′′,m′ (t))

2
]
,

(a)

≤ η2(t)IG2τ 2

KK ′M2C2β̄2

C∑
c=1

C∑
c′=1
c′ ̸=c

C∑
c′′=1
c′′ ̸=c′

M∑
m=1

βIS,cβIS,c′βc′,m,c′βc′,m,c′′

β̄2
c′

. (B.24)

where (a) is due to Lemma 24.

Lemma 32.
2N∑
n=1

E
[(

∆θ̂nPS,6(t)
)2]

= σ2
zIN

P 2
IS,tK(K′)M2C2σ2

hβ̄
2

C∑
c=1

C∑
c′=1
c′ ̸=c

M∑
m=1

βIS,cβIS,c′βc′,m,c′

β̄2
c′
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Proof. For 1 ≤ n ≤ N , we have

E
[(

∆θ̂nPS,6(t)
)2]

=
1

P 2
IS,tK

2(K ′)2M2C2σ8
hβ̄

2
E

[∑
c1,c2

∑
c′1 ̸=c1,c′2 ̸=c2

∑
m1,m2,i1,i2

∑
k1,k2,k′1,k

′
2

× 1

β̄c′1 β̄c′2
Re
{(

hnPS,c1,k′1
(t)
)∗
hnPS,c′1,k

′
1
(t)
(
hi1,n
c′1,m1,c′1,k1

(t)
)∗
zi1,n
IS,c′1,k1

(t)
}

× Re
{(

hnPS,c2,k′2
(t)
)∗
hnPS,c′2,k

′
2
(t)
(
hi2,n
c′2,m2,c′2,k2

(t)
)∗
zi2,n
IS,c′2,k2

(t)
}]

. (B.25)

For a non-zero answer, we have m1=m2, c1=c2, c
′
1=c

′
2, k1=k2, k

′
1=k

′
2, i1=i2. Then,

it becomes

E
[(

∆θ̂nPS,6(t)
)2]

=
σ2
zI

2P 2
IS,tK(K ′)M2C2σ2

hβ̄
2

C∑
c=1

C∑
c′=1
c′ ̸=c

M∑
m=1

(
βIS,cβIS,c′βc′,m,c′

)
β̄2
c′

.

(B.26)

The solution is the same for N+1≤n≤2N . Adding all the terms concludes the

lemma.

Lemma 33.
2N∑
n=1

E
[(

∆θ̂nPS,7(t)
)2]

=
σ2
zN

P 2
IS,t(K

′)C2σ2
hβ̄

2

C∑
c=1

βIS,c

Proof. For 1 ≤ n ≤ N , we have

E
[(
∆θ̂nPS,7(t)

)2]
=

1

P 2
IS,t(K

′)2C2σ4
hβ̄

2
E

[
C∑

c1=1

C∑
c2=1

K′∑
k′1=1

K′∑
k′2=1

Re
{(

hnPS,c1,k′1
(t)
)∗
znPS,k′1

(t)
}

× Re
{(

hnPS,c2,k′2
(t)
)∗
znPS,k′2

(t)
}]

. (B.27)

For a non-zero answer, we have c1=c2 and k′
1=k′

2. Then, it becomes

E
[(

∆θ̂nPS,7(t)
)2]

=
1

P 2
IS,t(K

′)2C2σ4
hβ̄

2
E

[
C∑
c=1

K′∑
k′=1

(
Re
{
(hn

PS,c,k′(t))
∗znPS,k′(t)

})2]
,

=
σ2
z

2P 2
IS,t(K

′)C2σ2
hβ̄

2

C∑
c=1

βIS,c. (B.28)

The solution is similar for N+1≤n≤2N . Summing over all the symbols concludes

the lemma.

Combining Lemmas 25-33 completes the proof of Lemma 7.
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