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ABSTRACT

WELL-POSEDNESS AND STABILITY OF PLANAR
CONEWISE LINEAR SYSTEMS

Daniyal Namdar

M.S. in Electrical and Electronics Engineering

Advisor: Prof. Dr. Arif Bülent Özgüler

September, 2021

Planar conewise linear systems constitute a subset of piecewise linear systems.

The state space of a conewise linear system is a finite number of convex polyhedral

cones filling up the space. Each cone is generated by a positive linear combination

of a finite set of vectors, not all zero. In each cone the dynamics is that of a linear

system and any pair of neighboring cones share the same dynamics at the common

border, which is itself a cone of one lower dimension. Each cone with its linear

dynamics is called a mode of the conewise system.

This thesis focuses on the simplest case of planar systems that is composed of a

finite number of cones of dimension two; with borders that are cones of dimension

one, that is rays. Stability of such conewise linear systems is well understood and

there are a number of necessary and sufficient conditions. Somewhat surprisingly,

their well-posedness is not so well understood or studied except for the special

case where there are two modes only, i.e, the bimodal case.

A graphical necessary and sufficient condition is here derived for the well-

posedness of a planar conewise linear system of arbitrary number of modes and the

well-known condition for stability is re-stated on this same graph. This graphical

result is expected to provide some guidance to well-posedness studies of conewise

systems in a higher dimension.

Keywords: Piecewise linear systems, Planar conewise linear systems, Well-

posedness, Stability.
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Konik doğrusal sistemler parçalı-doğrusal sistemlerin bir alt kümesidir. Konik doğrusal bir 

sistemin durum-uzayı, uzayıdolduran sonlu sayıda konveks polyhedral konilerden oluşur. 

Her bir koni sonlu sayıda, hepsi birden sıfır olmayan, sonlu sayıda vektörün pozitif 

doğrusal kombinasyonlarıyla elde edilir. Koni içindeki dinamik, bir doğrusal sistem 

dinamiğidir ve komşu olan her koni çifti, kendisi de bir alt boyutlu bir koni olan ortak 

sınırlarında aynıdinamiği paylaşırlar. 

 

Bu tezde sonlu sayıda iki boyutlu konilerden oluşan en basit duruma, düzlemde-konik 

sistemlere odaklanılmaktadır. Bu özel durumda sınırlar da bir boyutlu konilerden, yani 

ışınlardan oluşmaktadır. Bu türden konik sistemlerin kararlılığıiyi anlaşılmıştır ve 

kararlılık için bir kaç adet değişik gerek ve yeter koşullar mevcuttur. İki boyutlu konink 

sistemlerin iyi-tanımlılığı ise, şaşırtçı bir şekilde, iki alt-sistemden ibaret özel durum 

haricinde, tam olarak incelenip anlaşılmamıştır. 

 

Burada, sonlu sayıda alt-sistemlerden oluşan düzlemde-konik doğrusal bir systemin iyi-

tanımlılığıiçin grafik kaideli bir gerek ve yeter koşul verilmekte ve literatürde iyi bilinen 

bir kararlılık sonucu da aynıgrafik üzerinde yeniden dile getirilmektedir. Bu grafik kaideli 

sonucun daha büyük boyutlu konik sitemlerin iyi-tanımlılığı için yol göstermesi 

beklenebilir. 

 

 

 

Anahtar sözcükler: Parçalıdoğrusal sistemler, Konik doğrusal sistemler, iyi-tanımlılığıiçin, 

İIstikrar. 
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Chapter 1

Introduction

A hybrid control system with continuous and discontinuous dynamic activity has

gained a lot of interest in control system design because it has many practical

control applications that blend continuous-time dynamics and switching charac-

teristics. Hybrid systems may be found in various situations, including man-

ufacturing, communication networks, autopilot design, and automobile engine

management. Hybrid systems are essential in embedded control systems that

interact with the physical environment [1],[2] .

As a result, several mathematical models and analytical techniques have been

developed. The rudimentary class of hybrid control systems includes some of

the simplest hybrid systems, such as piecewise affine (PWA) and piecewise linear

(PWL) systems [3], [4]. PWL system study is necessary as a first step in creating

hybrid control theory since PWL systems are one of the fundamental types of

hybrid dynamical systems. This hybrid system is described by a state-space par-

tition, which divides it into multiple regions with linear subsystems, each active

in a distinct state-space region [5], [6]. Conewise piecewise linear systems are

dynamical systems in which the state space is partitioned into a finite number

of convex polyhedral cones, each of which is described by a linear differential

equation [7], [8] [9], [10], and [11].
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Despite their apparent simplicity in modeling, the stability analysis of conewise

linear systems is complicated due to their hybrid nature, especially in the presence

of sliding modes. Furthermore, it is difficult to apply controllability, observability,

and well-posedness conclusions obtained from linear time-invariant systems to the

situation of piecewise linear systems. The most accessible approach is to use a

standard Lyapunov function to solve the problem [12], [13], [14], [15], and [16].

Finding a Lyapunov function for our piecewise linear systems, on the other

hand, is a difficult task. In recent years, new approaches have been presented,

such as [17], in which the author attempts to exploit switching transitions and

introduce a transition graph approach for autonomous stability analysis. We

can also observe in [18] that the stability of planar piecewise linear systems has

been derived using a novel set of necessary and sufficient criteria based on a

geometric approach. This innovative trajectory-based method is based on how

the eigenvectors of a subsystem stand relative to the vectors that define the

polyhedral cone.

Physical systems frequently function in several modes, transitioning from one

mode to the next is idealized as an instantaneous, discrete change. Electrical cir-

cuits containing switching devices such as (ideal) diodes and transistors and me-

chanical systems subject to inequality constraints, such as those used in robotics,

are examples. The well-posedness (existence and uniqueness of solutions) of the

resulting hybrid system and the ability to efficiently simulate the multi-modal

physical system are the primary concerns. The integrator dynamics give a basic

example of a hybrid system that does not have unique solutions, at least from a

particular point of view

ẏ = u

along with the relay element

u = +1, y > 0

u = −1, y < 0

−1 ≤ u ≤ 1, y = 0.

It is clear that with the starting condition y(0) = 0, the system can develop in

any of these three locations, resulting in the following solutions (i) y(t) = t,
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u(t) = 1, (ii) y(t) = -t, u(t) = -1, and (iii) y(t) = 0, u(t) = 0. As a result, we

have three solutions beginning with the zero initial condition.

There are several sorts of phenomena in hybrid systems, such as multiple solu-

tions, sliding motions, Zeno trajectories, and multiple events via jump solution.

Hence, the well-posedness problem is critical in the development of hybrid systems

[19].

1.1 Literature Review

Because hybrid systems provide an extensive modeling framework, there are no

clearly verifiable necessary and sufficient requirements for generalized hybrid dy-

namical systems’ well-posedness. It is already interesting to provide adequate

requirements for the well-posedness of specific kinds of hybrid systems, such as

piecewise affine systems (PWA), piecewise linear systems (PWL), linear relay sys-

tems, conewise linear systems (CLS), and so on. In this part, we give a summary

of the paper devoted to the well-posedness problem of various hybrid systems.

We have a special subclass of PWL systems that only have two subsystems.

Bimodal Piecewise Linear Systems and Bimodal Piecewise Affine Systems are

named after homogeneous subsystems and a constant vector added to the vector

field, respectively. In [20], the author investigates the well-posedness problem

in terms of Carathéodory solutions with discontinuous vector fields for Bimodal

Piecewise Linear Systems with observable modes. As necessary and sufficient

requirements for well-posedness, a set of algebraic conditions and sign inequalities

is presented. These criteria generate a joint structure for the system matrices

of the two modes, and well-posedness conditions for bimodal piecewise affine

systems reduce to well-posedness conditions for bimodal piecewise linear systems

for certain system triples matrix configurations.

The framework of Linear Complementarity Systems (LCS) in [21] provides

sufficient criteria for the uniqueness of the solution. In addition, several forms of
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uniqueness for LCS have been provided in [22], such as weakly uniqueness, right-

zeno uniqueness, and the theorem for weak and local well-posedness derived from

solution uniqueness. They offer global existence results for bimodal LCS in the

last chapter.

The primary objective of the [23] is to explore the existence, uniqueness, and

nature of solutions (as defined by Carathéodory and Filippov) for a specific class

of piecewise affine dynamical systems, specifically bimodal piecewise affine sys-

tems with no external inputs. First, the authors demonstrates that the standard

criteria used in the context of generic differential inclusions to ensure Filippov’s

uniqueness are somewhat restrictive in the context of piecewise affine systems.

Then, for bimodal piecewise affine systems, they propose a set of necessary and

sufficient criteria that assure the uniqueness of Filippov solutions. They offer

criteria that rule out the so-called Zeno behavior (possibility of infinitely many

switchings within a finite time interval) by examining the connections between

Carathéodory and Filippov under the provided conditions.

This work is extended in [24] to multi-modal piecewise affine systems with exter-

nal inputs and proposed a novel transition rule called the switch-based transition

rule to explain the solution concept of a class of multi-modal hybrid systems with

independent binary switches. When a part of vector fields is switched by binary

switches, each of which works independently under autonomous switching, then

this type of system is known as a switch-driven PWA system. The well-posedness

of its subsystems of lower complexity bimodal systems is then derived as a suf-

ficient condition for such a multi-modal system to be well-posed for all external

inputs, which is algebraically and explicitly checkable and allows us to determine

the well-posedness of the multi-modal systems in question algebraically.

This study [25] looks at a specific form of hybrid dynamics that occurs in

linear dynamical systems with ideal relay components. Three modes of operation

demonstrate the behavior of an ideal relay; hence, the uniqueness of solutions is

not guaranteed. Based on the definition of a relay system as a complementarity

system, they have demonstrated that if the transfer matrix is a P-matrix, then

the relay system has a unique solution that is continuous in the state, therefore

establishing the system’s discrete transition rules.
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As previously stated, one of the key difficulties in PWL systems is the problem

of the existence and uniqueness of solutions in [26] the necessary and sufficient

criteria for bimodal PWL discontinuous systems have been obtained from being

well-posed under Carathéodory’s notion of solutions. Also given is an exten-

sion to bimodal PWL discontinuous systems with multiple criteria. Finally, they

talked about the multi-modal example with multiple criteria for the observable

case. The conclusions are based on the lexicographic inequality relation and the

smooth continuation feature.

The results of [26] were generalized to piecewise-linear systems with multi-

ple modes and numerous criteria in [27]. They develop necessary and sufficient

conditions for the well-posedness issue of piecewise-linear systems with multiple

modes and multiple criteria without restricting themselves to the observable case

exclusively. They also define mode well-posedness as the existence of a solution

in a single mode. Article provided novel algorithmic techniques based on the

well-known Fourier–Motzkin elimination methodology to test these criteria. A

verifiable condition for the well-posedness of planar Conewise linear system has

been derived in [28] under the assumption that there are no sliding modes. The

condition is in terms of ta relationship among the entries of the state matrices

of the modes, which is similar to the “flow continuity condition” in [29] also

used for a characterization of well-posedness of planar conewise systems. An at-

tempt has been made in [30] to generalize the well-posedness result of [30] to

three-dimensions. The subspaces obtained from subsystem matrices are used to

express the necessary and sufficient conditions for 3D CLS well-posedness.

1.1.1 Main Focus

Some recent research on CLS stabilization, such as [6] and [18], presume that the

system is well-posed. The research [18] has provided a unique geometric condition

for well-posedness under the assumption that there are no sliding mode. In [28],

a well-posedness theorem for CLS based on various system matrices’ entries and
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eigenvalues is obtained again under the assumption of no sliding modes. The

generalization of this work in (3D) situations was explored in [31].

A uniform approach that allows sliding modes and all possible Jordan forms for

the system matrices is clearly needed even in the simplest case of planar conewise

systems.

Such an approach is adopted here and combined with a graph representation.

There are thus two contributions of this thesis: 1) The condition of Imura and

van der Schaft [26] for well-posedness of bimodal systems in terms of modal

observability matrices is shown to apply also to two adjacent planar modes of a

conewise system without any change. It has also been shown in Theorem 3.2.1

that this fact applies even when sliding modes are allowed. 2) A special graphical

model of the conewise system is shown to be instrumental in unifying the check

for well-posedness and stability of a planar CLS.

1.2 Outline

The following is the structure of this thesis. The mathematical model of conewise

linear systems under focus is introduced in Chapter 2, along with a study of the

trajectories. Some fundamental definitions and theorems from graph theory are

also given in Chapter 2. The main results on well-posedness are discussed in

Chapter 3. First, we determine a simple necessary and sufficient condition for

the well-posedness of two adjacent modes in a planar conewise linear system.

The condition is in terms of the eigenvectors and the generating vectors of the

cones on which subsystems are defined. Then, using an associated graph, we

state necessary and sufficient conditions for a multi-modal planar conewise linear

system to be well-posed. Stability results of [6] and [18] are then re-phrased and

stated on the same well-posedness graph.
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1.3 Notation

We denote the real numbers, n-dimensional real vector space, and the set of real

n×m matrices by R, Rn, and Rn×m, respectively. The norm of a vector v ∈ Rn

will be denoted by |v|. The natural basis vectors in Rn will be denoted by ei,

i=1, ...,n. In particular, when n = 3, we will usek := e3. If v,w ∈ R3, then v×w

will denote the cross product of the vectors and v ·w = vTw, their dot product,

where ‘T’ denotes ‘transpose.’ If v,w ∈ R2, then by v×w, we mean det[v w]k,

where ‘det’ means‘ determinant,’ i.e., cross product of vectors in the plane will

be computed by imbedding them in the space. The set of complex n-vectors will

be Cn and j ∈ C will be the imaginary number. For convenience, we will use

the cross product ofv,w ∈ C2 as well and define v × w := det[v w]k. By log

z, z ∈ C, we denote the complex principal logarithm log z = ln |z| + j∠z with

−π < ∠z < π.

7



Chapter 2

Preliminaries

In this chapter, we will first outline the types of systems that we will be studying.

The trajectories of a single-mode system are then investigated in Section 2.2. A

system is classified as a sink, source, transitive, or half-sink in Section 2.3. Finally,

in Section 2.4, certain definitions and facts from graph theory are presented.

2.1 Planar Conewise Linear Systems

The class of systems considered are

ẋ =


A1 x if x ∈ S1,

A2 x if x ∈ S2,
...

...
...

Amx if x ∈ Sm,

(2.1)

where Ai ∈ R2×2 and, with Ci ∈ R2×2,

Si := {x ∈ R2 : Cix ≥ 0},

for i = 1, 2, ...,m. We assume that each Ci is nonsingular and is such that

detCi > 0. Note that the latter causes no loss of generality and only requires a

8



permutation of rows of Ci if necessary. The nonsingularity assumption implies

that each mode in (2.1) is active in a nonempty cone Si , int Si that is strictly

contained in a half-space. We further assume that the interior of each pairwise

intersection int Si ∩ Sk , i 6= k is empty and that S1 ∪ ... ∪ Sm = R2. Further, let

Si =
[

si1 si2

]
:= (Ci)−1 =

[
(ci1)T

(ci2)T

]−1

(2.2)

so that detSi > 0. Each Si , i = 1, ...,m is a convex polyhedral cone

Si = {αsi1 + βsi2 : α, β ≥ 0},

and the boundary of Si is the union two rays

Bik = {αsik : α ≥ 0}, k = 1, 2.

It is easy to see that a vector b ∈ Si iff cTkb ≥ 0 for k = 1, 2. Also note that

because detSi > 0, the cross products si1× si2 points upward using the right-hand

rule, i.e., the two vectors are positively oriented. This allows us to label Bi1 and

Bi2 as the right and left border, respectively.

By the nonsingularity assumption of each Ci and by the fact that the whole

plane is covered by Si ’s, it follows that the number of modes in (2.1) satisfies

m ≥ 3. Thus, the minimum number of modes must be three. This does not

limit the class of conewise systems considered. A mode defined on a half-space

or a sector larger than a half-space can be still covered by two modes defined on

convex polyhedral cones of (2.1) having the same dynamics (the same A-matrix).

Given a mode i, its eigenvalues will be denoted by λi1, λ
i
2 ∈ C and, in case of

real and distinct eigenvalues, they will be indexed so that λi1 ≥ λi2.

2.2 Single Mode Characterization

We now focus on a single mode i (and temporarily discard the index i) to consider

ẋ = Ax, x ∈ S ⊂ R2, S = {αs1 + βs2 : α, β ≥ 0}, (2.3)
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where detS > 0 for S = [s1 s2]. Let v1,v2 ∈ R2 be such that

AV = V Λ, V = [v1 v2],

where Λ is one of

Λd :=

[
λ1 0

0 λ2

]
,Λr :=

[
λ 1

0 λ

]
,Λc :=

[
σ ω

−ω σ

]
,Λsr :=

[
λ 0

0 λ

]
, (2.4)

respectively when the eigenvalues are such that λ1 > λ2 (real-distinct), λ :=

λ1 = λ2 (repeated), λ1 = λ2 = σ + jω (non-real) with ω > 0, and λ := λ1 =

λ2 (simple-repeated). It follows that if the eigenvalues are real-distinct, then

v1,v2 are the eigenvectors associated with the larger and smaller eigenvalues,

respectively. (With slight abuse of language, v1,v2 are the larger and smaller

eigenvectors.) If the eigenvalues are repeated, then v1 is an eigenvector and v2

is a generalized eigenvector. If the eigenvalues are non-real, then v1+jv2 is the

eigenvector associated with σ+ jω. Also in the simple-repeated case we have two

linearly independent eigenvectors v1 and v2. Of course, in this case, every pair of

linearly independent vectors will serve as valid eigenvectors. We will assume that

whenever a mode defined on cone S = [s1 s2] has simple-repeated eigenvalues,

then its eigenvectors are chosen as v1 = s1,v2 = s2. We also define

W =

[
wT

1

wT
2

]
:= V −1.

Note that, detV > 0 if and only if v1 × v2 is positively oriented.

The trajectory at t ≥ 0 of (2.3) starting at x(0) = b ∈ S at time 0 can be

written as

x(t,b) =


eλ1twT

1 bv1 + eλ2twT
2 bv2

eλt
[
(wT

1 b + twT
2 b)v1 + wT

2 bv2

]
eσt
[
(wT

1 b cos(ωt) + wT
2 b sin(ωt))v1 + (wT

2 b cos(ωt)−wT
1 b sin(ωt))v2

]
eλtb

(2.5)

for the four cases in (2.4), respectively. Examining the sign of the derivative of its

angle, we can determine the direction the trajectory moves at any time. We note

that in the simple-repeated case, the trajectory moves radially along the initial

state b. The other cases are now considered.
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s1

s2

ψ(t)

B1

B2 b

Figure 2.1: Trajectory direction

Fact 2.2.1 Trajectory x(t,b) moves in a positive direction at time t ≥ 0 if and

only if 
detV wT

1 b wT
2 b < 0 if eigenvalues are real-distinct,

wT
2 b 6= 0, det V < 0 if eigenvalues are repeated,

det V < 0 if eigenvalues are non-real,

(2.6)

Proof. Let x(t,b) = ρ(t)∠ψ(t) be in polar representation. Then, tanψ(t) =

eT2 x/eT1 x so that

ψ̇(t) =
(eT2 ẋ)(eT1 x)− (eT1 ẋ)(eT2 x)

ρ2
.

Computing the numerator via the appropriate expressions from (2.5), it is

straightforward to obtain

ψ̇(t) =


−detV (λ1−λ2)(wT

1 b)(wT
2 b)

ρ2e−(λ1+λ2)t
if eigenvalues are real-distinct,

−det V (wT
2 b)2

ρ2e−2λt if eigenvalues are repeated,

−det V ω[(wT
1 b)2+(wT

2 b)2]

ρ2e−2σt if eigenvalues are non-real,

which imply (2.6). �

We observe that, as long as the initial state does not lie along an eigen-

direction, the trajectory direction is independent of time and that, for the cases

in which the eigenvalues are non-real or repeated, the direction is determined

by the sign of detV only. In case of real-distinct eigenvalues, how the initial

state is situated with respect to the two eigenvectors also matters. For instance,

if detV > 0 then the trajectory moves in the negative direction if and only

if (wT
1 b)(wT

2 b) > 0. This geometrically translates into the vector b being in

between the two eigenvectors v1 and v2.
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The following Lemma will elaborate on this fact and its relation with cT1 ẋ(t1,b)

which also determines the direction of the trajectory.

Lemma 2.2.1 In the case of simple-repeated eigenvalues the trajectory x(t,b)

remains inside the cone moving along the direction of b ∀ t ≥ 0.

The following Lemma relates the trajectory direction with cTk ẋ(0,b), k = 1, 2.

s1

s2

b

x(t,b)

x(t,b)− b

Figure 2.2: Positive direction trajec-
tory related to cTk ẋ(0,b)

s1

s2

x(t,b)

b

x(t,b)− b

Figure 2.3: Negative direction tra-
jectory related to cTk ẋ(0,b)

Lemma 2.2.2 Let b ∈ S. The trajectory x(t,b) moves in the negative direction

if and only if cT2 ẋ(t,b) < 0. The trajectory x(t,b) moves in the positive direction

if and only if cT1 ẋ(t,b) < 0. The trajectory x(t,b) moves radially along b if and

only if cT ẋ(t,b) = 0 for some vector c orthogonal to b, i.e., cTb = 0.

Proof. We examine the direction at t = 0 for simplicity as the same argument

holds for any t ≥ 0. Observe that cT2 (x(t,b) − b) < 0 iff the trajectory moves

towards B1. We then have

cT2 ẋ(t,b) |t=0 = lim
t→0

cT2 x(t,b)− cT2 x(0,b)

t
= lim

t→0

cT2 x(t,b)− cT2 b

t
(2.7)

and cT2 ẋ(0,b) < 0 iff the trajectory moves towards B1. The second statement

follows by the observation that cT1 (x(t,b)−b) < 0 iff the trajectory moves towards

B2 and follows an analogous reasoning. �

We can now examine the cases of trajectories hitting a boundary. Let us define

for k, i = 1, 2

nki(b) := cTk viw
T
i b

12



Fact 2.2.2 Let b be strictly inside S. (i) There exists a finite t1 > 0 such that

x(t1,b) intersects B1 and goes out of the cone if and only if
n21(b) < 0 & n21(s1) < 0 if eigenvalues are real-distinct,

det V > 0 & cT2 v1 wT
2 b < 0 if eigenvalues are repeated,

det V > 0 if eigenvalues are non-real.

(2.8)

(ii) There exists a finite t2 > 0 such that x(t2,b) intersects B2 and goes out of

the cone if and only if
n11(b) < 0 & n11(s2) < 0 if eigenvalues are real-distinct,

det V < 0 & cT1 v1 wT
2 b < 0 if eigenvalues are repeated,

det V < 0 if eigenvalues are non-real.

(2.9)

Proof. Since b is strictly inside S, we have that cTkb > 0 for k = 1, 2. (i) Suppose

first that the eigenvalues are real-distinct. Such a t1 > 0 exists just in case

cT2 x(t1,b) = eλ1t1n21(b) + eλ2t1n22(b) = 0 (2.10)

equivalently, just in case

t1 =
1

λ1 − λ2

ln(−n22(b)

n21(b)
).

Note by the identity n21(b) + n22(b) = cT2 b that the ratio satisfies

−n22(b)/n21(b) > 1 iff n21(b) < 0 iff t1 > 0. Hence, n21(b) < 0 is neces-

sary and sufficient for the trajectory to hit B1 in case of real-distinct eigenval-

ues. By Fact 2.2.1, the direction of the trajectory is negative (so that it is

going out of the cone) if and only if − det V wT
1 s1w

T
2 s1 = n21(s1) < 0. Sup-

pose, next, that the eigenvalues are repeated. Then, t1 > 0 exists if and only

if cT2 x(t1,b) = eλt1
[
(cT2 v1)(wT

1 b) + t1(cT2 v1)(wT
2 b) + (cT2 v2)(wT

2 b)
]

= 0, which

holds just in case

n21(b) + n22(b) = cT2 b = −t1 cT2 v1w
T
2 b.

It is clear from this equality that t1 > 0 iff cT2 v1w
T
2 b < 0. By Fact 2..2.1, the

direction of the trajectory is negative if and only if det V > 0.

13



In the final case that eigenvalues are non-real, there exists such t1 if and only

if det V> 0, by (2.6) and by the fact that trajectories are always foci or centers.

The expression for the hit time t1 > 0 is obtained from (2.5) as

tan(ωt1) =
cT2 b

cT2 v2wT
1 b− cT2 v1wT

2 b
.

(ii) The proof is analogous to (i). �

2.3 Mode Types

For the planar conewise linear systems, we have five different types of modes

based on trajectory behavior. Here, we give the definitions of the mode types

in the 2D case for real and distinct eigenvalues. For a generalization of the 2D

definitions given below to higher dimensions, the reader is referred to Definition

2.3.1 of [32].

Definition 2.3.1 i) A mode S is a sink if for every b ∈ S and for all t ≥ 0,

x(t,b) ∈ S.

ii) A mode is a transitive from its border Bk if, (a) for every 0 6= b ∈ S, there

exists a finite t∗k > 0 such that x(t∗k,b) ∈ Bk and x(t,b) ∈ S for all t ∈ (0, t∗k) and

(b) for any b ∈ Bj, j 6= k, there is ε > 0 such that x(t,b) ∈ S for all t ∈ (0, ε).

iii) A mode is a source if, first, for every 0 6= b ∈ Bk, there exists a finite

ε > 0 such that x(t,b) /∈ S for all t ∈ (0,ε] and, second, for all b ∈ S, except

those on a cone of dimension one, there exists t∗ > 0 such that x(t∗,b) ∈ Bk and

x(t,b) ∈ S.

iv) A mode is a half-sink if it is not one of (i)-(iii)

In the half-sink cases, the sector consists of two different sectors with different

behavior in each. In the sector which has a characteristic like a sink, no tra-

jectories that start in the mode will go out. In the transitive cases, trajectories

14



come in from one border and move out of the cone from the other border without

converging to the origin or diverging to infinity.

The trajectory that starts in a cone may converge to the origin or diverge to

infinity but never go out of the cone in a sink. On the other hand, In a source, the

trajectory that starts in the cone moves out of the cone into one of the neighbors,

except those that start on a ray that extends from the origin to infinity inside

the cone.

Definition 2.3.2 : An eigenvector v is interior to S if v or −v is in int(S);

it is exterior to S if neither v nor −v is in S. For non-real eigenvalues, the

eigenvectors are always exterior.

Example 2.3.1 For a better understanding of different mode types consider a

system with four modes where the boundary vectors are:

s1 =

[
1

0

]
, s2 =

[
0

1

]
, s3 =

[
−1

0

]
, s4 =

[
0

−1

]
we have six different modes which are in cone{s1, s2}, cone{s2, s3}, cone{s3, s4},
and cone{s1, s4}.
The state matrices for the CLS are given as:

A1 = A2 =

[
1.5 0.5

0.5 1.5

]
, A3 =

[
11
6
−2

3
2
3

1
6

]
, A4 =

[
7
3
−2

3
2
3

2
3

]
, A5 = A6 =

[
2
3

2
3

−2
3

7
3

]
.

The eigenvalues for the A1 and A2 are λ1
1 = λ1

2 = 2, λ2
1 = λ2

2 = 1 also for

the mode 3 we have λ3
1 = 1.5, λ3

2 = 0.5 for the fourth mode the eigenvalues are

λ4
1 = 2, λ4

2 = 1 finally for the last two modes the eigenvalues are λ5
1 = 2, λ5

2 = 1

and λ6
1 = 2, λ6

2 = 1. The eigenvectors for each mode are as below:

V 1 = V 2 =

[
1 −1

1 1

]
, V 3 =

[
−1 −0.5

−0.5 −1

]
,

V 4 =

[
1 0.5

0.5 1

]
, V 5 =

[
1 −2

2 −1

]
, V 6 =

[
−1 2

−2 1

]
.

Figure 2.4 thus illustrates that the eigenvector positions relative to the cone as

well as to each other completely characterize the mode types in 2D cases.
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1. A mode with the smaller eigenvector interior to its cone and the other ex-

terior is a source.

2. A mode with the larger eigenvector interior to its cone and the other exterior

is a sink.

3. A mode with both eigenvector exterior to its cone is transitive. The direc-

tion of transitivity is further determined by the relative positions of the two

eigenvectors among themselves.

4. A mode with both eigenvectors interior to its cone is a half-sink. The tran-

sitive sector is differentiated from the sink sector again by how the two

eigenvectors stand with respect to each other.

Figure 2.5 illustrates the mode types in the case of negatively oriented eigen-

vectors and real and distinct eigenvalues.
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s1

s2

v1v2

sink sector

(a) sink mode

s3

s2

v1v2

(b) source mode

s3

s4

v1

v2

sink sector

(c) half-sink mode

s1

s4

v1

v2

(d) positive transitive mode

s3

s4

v1

v2

sink sector

(e) half-sink mode

s1

s4

v1

v2

(f) negative transitive mode

Figure 2.4: Positions of the eigenvectors relative to the cone with real and distinct
eigenvalues for positively oriented case
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s1

s2

v2v1

(a) source mode

s3

s2

v2v1

sink sector

(b) sink mode

s3

s4

v2

v1
sink sector

(c) half-sink mode

s1

s4

v2

v1

(d) negative transitive mode

s3

s4

v1

v2

sink sector

(e) half-sink mode

s1

s4

v2

v1

(f) positive transitive mode

Figure 2.5: Positions of the eigenvectors relative to the cone with real and distinct
eigenvalues for negatively oriented case
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We now consider the mode types for the case of real repeated eigenvalues.

The possible mode types are then transitive, half-sink, and sink. The trajectory

direction is clockwise when det V > 0 and counterclockwise when det V < 0. It is

important to note that the position of v2 is relevant only as far as it determines

the direction of trajectories via the sign of det V. The position of the larger

eigenvector v1 settles the mode type.

For the third case of non-real eigenvalues, we only have the transitive type

modes with det V determining the direction of the trajectory. Trajectory moves in

the clockwise direction for the positive determinant counterclockwise direction for

the negative determinant. (Note that positively oriented eigenvectors correspond

to a negative (clockwise) direction of trajectories as a consequence of Fact 2.2.1.)

Finally, for the simple repeated eigenvalue case, the trajectory always moves

along the direction of the initial state. Moreover, the trajectories that start on

the border will remain on the border irrespective of the choice of the eigenvectors.
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s1

s2

v1

v2

(a) negative transitive

s1

s2

v1

v2

(b) negative transitive

s1

s2

v2

v1

sink sector

(c) half-sink

s1

s2

v2

v1

sink sector

(d) sink

Figure 2.6: Positions of the eigenvectors relative to the cone {s1, s2} for positively
oriented real and repeated eigenvalues
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s1

s2

v2

v1

(a) positive transitive

s1

s2

v2

v1

(b) positive transitive

s1

s2

v2

v1

sink sector

(c) half-sink

s1

s2

v2

v1

sink sector

(d) sink

Figure 2.7: Positions of the eigenvectors relative to the cone {s1, s2} for negatively
oriented real and repeated eigenvalues
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2.4 Directed Graphs

Graph theory is a study of the relationship between edges and vertices. A math-

ematical representation of a network and the relationship between edges and

vertices are described in graphs. In this section, we focus on some definitions and

elementary properties of directed graphs. The reader is referred to the books [33],

[34], and [35] for more details of the definitions and results stated in this section.

A graph G consists of a finite nonempty set V of objects called vertices and a

set E of 2-element subsets of V called edges. A node v is an intersection point

of a graph. It denotes a location such as a town or in our case, a mode. An edge

e is a link between two nodes. Which denotes the flow of the trajectory between

the nodes. It has a direction that is generally represented as an arrow. If an

arrow is not used, it means the link is bi-directional.

If e = uv is an edge of G, then the adjacent vertices u and v are said to be

joined by the edge e. The vertices u and v are referred to as neighbors of each

other. In this case, the vertex u and the edge e (as well as v and e) are said to

be incident with each other. Distinct edges incident with a common vertex are

adjacent edges.

If we proceed from u to a neighbor of u and then to a neighbor of that vertex

and so on, until we finally come to a stop at a vertex v, then we have just described

a u-v walk from u to v in G.

Definition 2.4.1 A digraph (or directed graph) D is a finite nonempty set V of

objects called vertices together with a set E of ordered pairs of distinct vertices.

The elements of E are called directed edges or arcs. If (u, v) is a directed edge,

then we indicate this in a diagram representing D by drawing a directed line

segment or curve from u to v.

Definition 2.4.2 A u-v walk in a graph in which no vertices are repeated is a

u-v path. A graph G is connected if every two vertices of G are connected, that
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is, if G contains a u-v path for every pair u, v of vertices of G.

Definition 2.4.3 The degree of a vertex v in a graph G is the number of edges

incident with v and is denoted by degG v or simply by deg v if the graph G is clear

from the context. Also, deg v is the number of vertices adjacent to v.

Definition 2.4.4 When the vertices of graph G have the same degree then G is

called regular. If degree of v is r for every vertex v of G, then G is r-regular.

Definition 2.4.5 A directed graph is weakly connected if the underlying graph

of it is connected.

Definition 2.4.6 A directed graph D is strongly connected if, for every pair

of vertices u and v in D, there exists a u-v path as well as a v-u path.

x1 x2

x3 x4

(a)

x1 x2

x3 x4

(b)

Figure 2.8: Graph representations of weakly ((a),(b)) and strongly connected (a)
graphs.

x1 x2

x3 x4

(a)

x1 x2

x3 x4

(b)

Figure 2.9: Examples of not connected graphs.
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Definition 2.4.7 Let G be a graph of order n and size m, where V (G) =

{v1, v2, ...., vn} and E(G) = {e1, e2, ...., em}. The adjacency matrix of G is

the n× n matrix A = [aij], where

aij =

{
1 if vivj ∈ E(G)

0 otherwise
(2.11)

Example 2.4.1 The adjacency matrix of the graphs in Definition 2.4.6 are as

below

Aa =


0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0

 , Ab =


0 1 0 0

0 0 0 1

0 0 0 0

0 0 1 0



Definition 2.4.8 A directed walk is a directed trail if all its edges are distinct.

A directed trail is open if its end vertices are distinct; otherwise it is closed

Definition 2.4.9 An open directed trail is a directed path if all its vertices are

distinct. A closed directed trail is a directed cycle if all its vertices except the

end vertices are distinct.

Definition 2.4.10 A graph with at least one directed cycle is known as a di-

rected cyclic graph.

Definition 2.4.11 A directed graph is said to be acyclic if it has no directed

cycle.

See the directed graph in Figure 2.10 (a).

We may use the adjacency matrix to check the connectedness of its graph as

follows [34].
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x1 x2

x3 x4

(a)

x1 x2

x3

(b)

Figure 2.10: Examples of directed acyclic (a) and cyclic (b) graphs.

A digraph is disconnected if and only if its vertices can be sorted so that its ad-

jacency matrix A can be represented as the direct sum of two square submatrices

X1 and X2

A =


X1 . 0

.. . ..

0 . X2

 . (2.12)

This partitioning is only possible if and only if the vertices in the submatrix X1

have no edges leading to or from the vertex of X2. A digraph is similarly weakly

connected if and only if its vertices can be sorted in such a way that its adjacency

matrix can be written as

A =


X1 . 0

.. . ..

X21 . X2

 (2.13)

or

A =


X1 . X12

.. . ..

0 . X2

 , (2.14)

where X1 and X2 denote square submatrices. When there is no edge connecting

the subdigraph corresponding to X1 to the one corresponding to X2, the form

2.13 is used. When there is no edge connecting the subdigraph corresponding to

X2 to the subdigraph corresponding to X1, the form 2.14 is used.

A digraph is strongly connected if and only if the vertices of A cannot be sorted

in such a way that its adjacency matrix A is in the form 2.12, 2.13, or 2.14.
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Lemma 2.4.1 [36] The directed graph is acyclic if and only if its adjacency ma-

trix is nilpotent.

Proof. The matrix Ak counts the number of walks of length k in an adjacency

matrix (recall that A is nilpotent if Ak = 0 for some k ≥ 1). Generally the

number of k-length walks from i to j is Akij. which is multiply k factors of matrix

A to raise it to the k-th power and considering the row i column j entry. If the A

matrix is not nilpotent, then, for any n ≥ 1, An 6= 0. Hence, there are n-length

walks and there must be at least one cycle (because the same node must appear

on the walk more than once if there are n edges in the walk). This gives that

we have a cyclic directed graph. If A is nilpotent, on the other hand, we can

permute its rows and columns at the same time to make it upper-triangular with

zeros on the diagonal. Then, a cycle necessitates an edge from i to j but for j < i

all entries are zero so that no cycle exists, i.e., the graph must be acyclic. �
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Chapter 3

Well-posedness of Planar Linear

Systems

The existence and uniqueness of solutions, referred to as well-posedness, is a rudi-

mentary concern in studying hybrid systems [26]. Well-posedness problems have

been considered in [37] for various subclasses hybrid systems such as multi-modal

piecewise affine systems. In [26], necessary and sufficient conditions, primarily

for bimodal piecewise linear systems, have been derived based on smooth contin-

uation property of solution and using lexicographic inequalities.

In this chapter, we will first go over some basic concepts of well-posedness.

In Section 3.2, two adjacent planar conewise linear systems are considered and

a relevant result of [26] on bimodal systems is reviewed. In Section 3.3, a graph

representation of multi-modal systems is described. The main graphical result on

well-posedness of 2D conewise systems is then given in Section 3.4.
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3.1 Well-posedness

Consider a first order vector differential equation together with an initial condition

ẋ(t) = f(t,x(t)), x(t0) = b.

Then, x(t) is a solution in the sense of Caratheodory for the initial state b in

the interval [t0, t1) if x(t) is absolutely continuous on [t0, t1), satisfies the initial

condition, and satisfies the differential equation almost everywhere in on [t0, t1).

Such a solution satisfies the following Caratheodory equation

x(t) = b +

∫ t1

t0

f(x(τ))dτ

and has a continuous derivative almost everywhere in [t0, t1).

Definition 3.1.1 Given the CLS (2.1), x(t,b), t ∈ [0, t1) is a solution of (2.1)

if it is a solution on ∈ [0, t1) in the sense of Caratheodory, where the function

f(t,x(t)) = f(x(t)) is given by the right hand side of (2.1).

We now recall the definition of smooth continuation.

Definition 3.1.2 [26]: The system (2.1) is said to be well-posed if for every

initial state x(0) = b ∈ R2, there exists a unique forward Caratheodory solution

x(t,b), t ≥ 0.

Definition 3.1.3 [38]: Let S be a subset of R2. If for the initial state b there

exists an ε > 0 such that x(t,b) ∈ S for all t ∈ [0, ε], then we say that the

system has the smooth continuation property at b with respect to S, or that smooth

continuation is possible from b with respect to S. Moreover, if from all b ∈ S

smooth continuation is possible with respect to S, then the system is said to have

the smooth continuation property with respect to S.

Now we can now adopt the following result from Lemma 2.1 of [26] (see Remark

2.5 of [26]).
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Lemma 3.1.1 The following statements are equivalent.

i) The system (2.1) is well-posed.

ii) For every initial state b ∈ R2 of (2.1), smooth continuation is possible in

only one of the two adjacent modes, i.e., if i and k are two adjacent modes, then

smooth continuation is possible with respect to either Si or Sk, except for the case

that the solutions in both modes are the same in some time interval.

Smooth continuation is possible even in the presence of, so called, ”sliding modes.”

Definition 3.1.4 If a trajectory that starts at a border of a cone at x(0) = b

remains in that border for all t ∈ [o, ε) for some ε > 0, then it is called a sliding

mode of the cone at that border.

Note that in 2D, we have the following fact.

Fact 3.1.1 There is a sliding mode at a border if and only if there is an eigen-

vector belonging to one of the adjacent modes on that border.

Proof. If there is an eigenvector v at a border s of a mode and if an initial vector

b is on that border, then wTb = 0, for any orthogonal w to v, It follows by the

expressions (2.5) for solutions that the solution remains along the eigenvector v,

or equivalently along s for all t > 0, i.e., it is a sliding mode. Conversely, if there

is an initial vector b on a border such that (2.5) x(t,b) remains at that border

for an interval t ∈ [0, ε), then the trajectory moves radially in the direction of

s, or equivalently, in the direction of b. By Lemma (2.2.2), cTb = 0, for any

orthogonal c to b as well cTx(t,b) = 0 for t ∈ [0, ε). The expression (2.5) now

gives, in cases where an eigenvector v exists, that cTv = 0, i.e., v is on the

border. �
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3.2 Adjacent Modes

Let us consider two neighbor modes Mode-i and Mode-k with the common border

Bi2 = Bk1 defined by the vector si2 = sk1. (The left border for Mode-i is the right

border for Mode-k.) It follows that Ci = (Si)−1 and Ck = (Sk)−1 of (2.2) are

such that ci2 = α ck1 for some α ∈ R. Let

V i =
[
vi1 vi2

]
=

[
(wi

1)T

(wi
2)T

]−1

= (W i)−1, V k =
[
vk1 vk2

]
=

[
(wk

1)T

(wk
2)T

]−1

= (W k)−1,

be the eigenvector matrices and their inverses so that

Ai = V iΛiW i, Ak = V kΛkW k,

where Λi, Λk, are the Jordan forms that can be any one of (2.4) for either mode.

Also recall that, for h, k, i = 1, 2, we have

nhki(b) := (chk)
Tvhi (wh

i )Tb = (chk)
TAhb

for any vector b.

Consider two matrices of observability

Oi :=

[
(ci2)T

(ci2)TAi

]
, Ok :=

[
(ck1)T

(ck1)TAk

]
.

Let, for a ∈ R,

sign(a) :=


1 a > 0

−1 a < 0

0 a = 0

Theorem 3.2.1 Two adjacent modes Mode-i and Mode-k are well-posed if and

only if one of the following equivalent conditions C1 and C2 holds:

C1. If neither Mode-i nor Mode-k has a sliding mode at Bi2 = Bk1, then

a. either for both h=i and h=k,{
sign nh11(si2) < 0 if eigenvalues are distinct,

det V h < 0 otherwise
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b. or, both for h=i and h=k,{
sign nh11(si2) > 0 if eigenvalues are distinct,

det V h > 0 otherwise.

In case there is a sliding mode at Bi2 = Bk1, then there is a common eigenvalue

of Mode-i and Mode-k, the corresponding eigenvectors of which have the same

direction and both are at the common border.

C2. If the matrices Oi, Ok are both nonsingular, then Oi(Ok)−1 is lower

triangular with positive diagonal entries. If one of Oi, Ok is singular, then

KerOi =KerOk and for every b ∈ KerOi, it holds that Aib = Akb.

Proof. Suppose C1 holds and there is no sliding sliding mode at the com-

mon border. If a holds and h=i, then by Fact 2.2.2 part (ii) with b = si2, we get

ni11(si2) < 0 and det V i < 0 for the real and distinct eigenvalues and real-repeated

or non-real eigenvalues. This gives that the trajectory moves in a positive direc-

tion and crosses the boundary Bi
2. If h=k, then nk11(si2) < 0 and det V k < 0

for the real and distinct eigenvalues and real-repeated or non-real eigenvalues,

respectively. Again by Fact 2.2.2 part (i) with b = si2, the trajectory travels in

a positive direction at the boundary Bk
1 . It follows that if C1, a holds then the

trajectories smoothly continue from Mode-i to Mode-k as required by Lemma

3.1.1 for well-posedness. Similarly, using Fact 2.2.2, if C1, b holds, then the

trajectories smoothly continue from Mode-k to Mode-i.

Conversely, suppose that there is no sliding mode and that the two modes

are well-posed. Then, by Lemma 3.1.1, the trajectories in both modes smoothly

continues and at the common border, the trajectories either continue from Mode-

i to Mode-k, i.e., in a positive direction, or from Mode-k to Mode-i, i.e., in

a negative direction. Consider Fact 2.2.2 and initial condition b = si2. The

trajectory will move in a positive direction in Mode-i if and only if ni11(si2) < 0,

and detV i < 0 for the real and distinct eigenvalues and real-repeated or non-real

eigenvalues. This gives that C1, a holds. Similarly, considering Fact 2.2.2 and

initial condition b = sk1, the trajectory will move in a positive direction in Mode-k

if and only if nk11(sk1) < 0, and detV k < 0 for the real and distinct eigenvalues
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and real-repeated or non-real eigenvalues. This gives that C1, a holds. Now

consider again Fact 2.2.2 and initial condition b = si2. The trajectory will move

in a negative direction in Mode-i if and only if ni11(si2) > 0, and detV i > 0 for

the real and distinct eigenvalues and real-repeated or non-real eigenvalues. This

gives that C1, b holds.

Suppose now that there is a sliding mode at the common border. If C1 holds,

then there is a common eigenvalue, say λ := λi = λk, the eigenvectors vi and vk

of which satisfy vi = αvk for a positive α. Every initial value b at the common

border can then be written as b = βvi = βαvk for some real number β such that

b ∈ cone{si2}. Then, solutions in both modes have the expression x(t,b) = eλtb,

i.e., they are the same in both modes. Conversely, suppose that the solutions

that start at an initial value b ∈ cone{si2} are the same in both modes. Since

we assumed that there is a sliding mode, there is an eigenvector of one mode,

say vi ∈ cone{si2} with eigenvalue λi. The solution in Mode-i that starts at the

common border has then the expression x(t,b) = eλ
itb. For smooth continuation,

Mode-k must have the same solution. This gives that one eigenvalue of Mode-

i must satisfy λi = λk and its corresponding eigenvector vi must also satisfy

vi = αvk for a positive α.

Consider C2 and suppose the eigenvalues of both modes are distinct. Multi-

plying observability matrices on the right by Si, we have

OiSi =

[
α 0

? α(λi1 − λi2) (ck1)T vi1(wi
1)T si2

]
, OkSi =

[
1 0

? (λk1 − λk2)(ck1)Tvk1(wk
1)T si2

]
,

so that (with ’?’ meaning not needed )

Oi(Ok)−1 =

[
α 0

? β

]
, β := α

λi1 − λi2
λk1 − λk2

(ck1)T vi1(wi
1)T si2

(ck1)T vk1(wk
1)T si2

. (3.1)

(It is easy to see that nonsingularity of Oi is equivalent to ”no sliding modes at

Bi2” for Mode-i, which in turn is equivalent to no (true) eigenvector being along

si2.) It follows that C2 holds iff α, β are positive, which in turn is the case, iff

(ck1)T vi1(wi
1)T si2 and (ck1)Tvk1(wk

1)T si2 have the same sign, in view of λi1 > λi2,

λk1 > λk2. This establishes the equivalence of C1 and C2 in the case of distinct

eigenvalues in both modes, because
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(ck1)Tvi1(wi
1)T si2 = ni11(si2), and

(ck1)Tvk1(wk
1)T si2 = nk11(si2)

For the real and repeated case we have the same observability matrices with

different eigenvector Jordan form which results in

OiSi =

[
α 0

? α λi (ci1)T si2 + α(ci1)Tvi1(wi
2)T si2

]
,

OkSi =

[
1 0

? λk (ck1)T si2 + (ck1)Tvk1(wk
2)T si2

]
,

then we have

Oi(Ok)−1 =

[
α 0

? β

]
, β := α

λi (ck1)T si2 + det V i((wi
2)T si2)2

λk (ck1)T si2 + det V k((wk
2)T si2)2

. (3.2)

In the same way, we get the following matrices when we have non-real eigenvalues

Oi(Ok)−1 =

[
α 0

? β

]
, β := α

σi (ck1)T si2 + ωi det V i
[
((wi

1)T si2)2 + ((wi
2)T si2)2

]
σk (ck1)T si2 + ωk det V k

[
((wk

1)T si2)2 + ((wk
2)T si2)2

] .
(3.3)

As a consequence, C2 holds iff α, β are positive, which in turn is the case, iff

det V i, and det V k both have the same sign. Now, it is easy to see that, C1.a

holds iff the trajectories move from Mode-i to Mode-k and C1.b holds iff the

trajectories move from Mode-k to Mode-i. Now suppose that there is a sliding

mode at the common border. If C2 holds then the following matrices are singular

OiSi =

[
α 0

? (ci2)TAisi2

]
,

OkSi =

[
1 0

? (ck1)TAksi2

]
,

so, we need to have (ci2)TAisi2 = (ck1)TAksi2 = 0. This is the same as both modes

have an eigenvector on the shared border from C1. Moreover, with an initial
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b = si2 we have the following solution:

Aisi2 = eλ
i
1tsi2, and Aksi2 = eλ

k
1 tsi2.

So, the condition on the C2 holds iff the eigenvalues of the common eigenvectors

are the same. This establishes that well-posedness is equivalent to either one of

C1 and C2. �

Eventually, for the simple repeated eigenvalue, trajectories will remain inside

the mode and move along the eigenvector for all the initial states starts inside and

on the border of the mode. Hence, the sign of this type of mode is always zero

and may be well-posed when it is neighbored by the real distinct and repeated

case when condition for singular observability matrix holds.

Remark 3.2.1 It was already known (see [18]) that, if sliding modes are not

allowed, then the elegant condition of Imura and van der Schaft [26] for well-

posedness of bimodal systems in terms of modal observability matrices applies

also to two adjacent planar modes of our conewise system without any change.

We have shown Theorem 3.2.1 that this fact also applies even when sliding modes

are allowed.

3.3 Graph Representation

We now list the graph representations for every mode of a distinct character, i.e.,

sink, source, half-sink, and transitive including sliding modes. Then, we see how

to create the corresponding graph of a given system (2.1) using the component

graphs.

Definition 3.3.1 A node is a cone into or out of which trajectories flow. It

is thus natural to designate i) the interior of each sector that has boundaries

consisting of a border and/or an eigenvector as a node, designated as an m-node

and ii) a ray along an eigenvector as a node, designated as a 0/∞-node.
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Consider a sink mode that is represented by (Fig.3.1) in case it has no eigen-

vector on any of its borders. Recall that a mode is a sink iff the larger eigenvector

v1 is inside the cone and the smaller v2 is external to the cone. Every trajectory

that starts in either one of the two sectors cone{v1, s1} and cone{v1, s2} will

end up along v1 so that the two sectors are represented by two nodes m11 and

m12. Those that start on the ray cone{v1} will remain on the same ray either

converging to the origin or diverging to infinity so that cone{v1} is represented

by a node denoted by 0/∞. The limiting case for a sink is the case when v1 is

at one border and v2 is external to the cone. In this cae, the two sectors of the

previous case collapses to one node yielding the representation (Fig.3.2).

A source mode, on the other hand has the representation (Fig.3.3), which again

has two nodes m11 and m12 corresponding to the two sectors cone{v2, s1} and

cone{v2, s2}. There is also a third node in a source since cone{v1} is represented

by a 0/∞ node. The number of nodes are also reduced to two in the limiting

case of a source when the eigenvector v2 is at a boundary (Fig.3.4).

A half sink has both eigenvectors interior to its cone so that there are three

sectors represented by the nodes m11-m13 in addition to two 0/∞ nodes that

represent the two rays along the two eigenvectors. We have thus five nodes in

total for the half-sink case as illustrated by (Fig.3.5). The number of nodes are

reduced to four in the limiting cases when one of the eigenvectors is on one border.

We only need a simple node for the transitive mode that shows that the tra-

jectories will enter the mode from one side and exit from the other (Fig.3.5).

Finally, for simple-repeated eigenvalues, we only have the 0/∞ mode because

any trajectory starting from any point will go to zero or infinity along with the

initial vector (Fig.3.6), in which the two eigenvectors, that can actually be any

two linearly independent vectors, are shown to be inside the cone.
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s2

s1

v1

v2
m110/∞m12

Figure 3.1: Graph representation of
a sink

s2

s1

v1
v2 m1 0/∞

Figure 3.2: Graph representation of
sink with an eigenvector on the bor-
der

s2

s1

v2
v1

m110/∞m12

Figure 3.3: Graph representation of
a source
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s2

s1

v2
v1 m11 0/∞

Figure 3.4: Graph representation of
source with an eigenvector on the
border

s2

s1

v1

v2

m110/∞11
m120/∞12

m13

Figure 3.5: Graph representation of a half-sink

s2

s1

v1

v2
m1

Figure 3.6: Graph representation of
transitive

s2

s1

v1

v2
0/∞

Figure 3.7: Graph representation for
the simple repeated case

37



3.4 Reduction Process

In obtaining the corresponding graph of a multi-mode system 2.1, we will en-

counter a situation where there are two or more adjacent 0/∞ nodes. This can

occur, for instance, when two neighbor modes both have one eigenvector at the

common border or in the case when one node has an eigenvector at its common

border with a mode of simple-repeated eigenvalues. In such cases, the trajectories

that end up at that border will stay there and travel to infinity or zero. This

means that we can depict those two adjacent 0/∞ nodes with just one node. A

reduction procedure need then be applied.

Remark 3.4.1 Before beginning the reduction process, we must guarantee that

the two 0/∞ nodes in the neighborhood have the same eigenvalues.

The reduced form is simply obtained as shown in the figure (3.8), where the

two adjacent 0/∞ nodes (with incoming edges only) are replaced by one node

while the rest of the graph remains unchanged.

Example 3.4.1 The graph below depicts a system with four modes and two ad-

jacent 0/∞ modes. The graph before reduction, figure(3.8)(a), gived the graph in

part (b) after reduction.
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0/∞1x1x20/∞2x3

x4 x5 0/∞3

(a)

0/∞1

x1x20/∞2x3

x4 x5

(b)

Figure 3.8: Graph representations four mode system(a) reduced version(b).

Remark 3.4.2 If there are more than two adjacent 0/∞ nodes, then the reduc-

tion procedure need be applied iteratively pair by pair until all adjacent nodes are

reduced to one node.

This graphical reduction process can be described as a matrix reduction process

on the adjacency matrix. Note that, because there are no outgoing trajectories

from the 0/∞ nodes, the associated row of such a node is a zero row. The process

consists of the following column operations on the adjacency matrix:

1. Add the higher indexed column of a 0/∞ node to the lower indexed 0/∞
column and

2. delete the higher indexed 0/∞ column and the same indexed row of the

adjacency matrix.

The procedure results in an adjacency matrix (of one less size) of the reduced

graph.

As an example, suppose two columns and rows of indices i and j (i¡j) in the
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adjacency matrix belong to two 0/∞ nodes. In that case, we will add column j

to column i, then delete column and row of index j.

Example 3.4.2 From the example 3.4.1 we have the following adjacency matrix

Aadj =



0/∞1 x1 x2 0/∞2 x3 x4 x5 0/∞3

0/∞1 0 0 0 0 0 0 0 0

x1 1 0 0 0 0 0 0 0

x2 0 1 0 1 0 0 0 0

0/∞2 0 0 0 0 0 0 0 0

x3 0 0 0 1 0 1 0 0

x4 0 0 0 0 0 0 1 0

x5 0 0 0 0 0 0 0 1

0/∞3 0 0 0 0 0 0 0 0


The first and the last nodes are the adjacent 0/∞ nodes. We first add the last

column to the first and delete the last column and the last row. The reduced matrix

is then.

Aadjreduced =



0/∞1 x1 x2 0/∞2 x3 x4 x5

0/∞1 0 0 0 0 0 0 0

x1 1 0 0 0 0 0 0

x2 0 1 0 1 0 0 0

0/∞2 0 0 0 0 0 0 0

x3 0 0 0 1 0 1 0

x4 1 0 0 0 0 0 1

x5 0 0 0 0 0 0 0


Note that the adjacent nodes do not always have to be the initial and final nodes

as any symmetric permutation of rows and columns of the adjacency matrix will

correspond to a renumbering of nodes.

We can now state our graphical necessary and sufficient condition on well-

posedness of (2.1).
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Theorem 3.4.1 System (2.1) is well-posed if and only if one of the equivalent

conditions I and II holds:

I. The corresponding reduced directed graph is 2-regular (degree of each node is

two) and is weakly-connected.

II. The corresponding reduced adjacency matrix A of size n satisfies

(a)

(
n∑
i=1

aki + aik)− akk = 2, k = 1, 2, ...n,

(b) there is no symmetric permutation P of columns and rows that gives

PAP =


X1 . 0

.. . ..

0 . X2


for some square matrices X1, X2 of sizes greater than one.

Proof. We first show that the condition I is necessary and sufficient for well-

posedness. If the reduced graph is not weakly connected, then there are two

nodes with no path in between. The graph representations for single modes

are all weakly-connected themselves so that, if the reduced graph is not weakly

connected, then this corresponds to the case of two modes with no border in

between. But this would then give a system (2.1) that is not well-defined because

the cones must fill out the plane. Suppose now that, the reduced graph is not 2-

regular, then there may be either a node with only one edge, which is not possible

since each planar mode has two neighbors and every sector is represented by a

node with exactly two edges (following the reduction process, the simple repeated,

and the case with an eigenvector on the border will be reduced to a node with

two edges), or there is a node with more than two edges. In this latter case

we must have at least two incoming or at least two outgoing edges. But, this

corresponds to the case of a border either a sliding mode or an initial condition

resulting in two distinct trajectories. By our reduction procedure. a sliding mode

is represented again by a node with two edges. It follows that, if the graph is not

two-regular, then smooth continuation is not possible from at least one border.

Fig 3.9 illustrates a graph that corresponds to a case where smooth continuation

is not possible from a border.
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Conversely, suppose that the system (2.1) is not well-posed so that there is

an initial state b ∈ R2, for which smooth continuation is not possible or it is

possible for two modes giving solutions that are different for all t ≥ 0. We can

focus our attention at only the initial states at a border b ∈ Bk
1 = Bi

2 = between

modes i and k. Typical examples of no solution in neither mode i nor k is when

both modes are sinks (or half-sinks with both sink sectors containing the border)

with no sliding mode. This gives to a graph in which no edge exists between two

nodes, i.e., two nodes with degree one or less. The graph is then not two regular.

If there are two different solutions that continue in both modes i and k, this

corresponds to a typical case of two sources (or half-sinks with transitive sectors

of different directions containing the border). This gives a graph with two nodes

of degree three since two neighboring nodes must outgoing edges connecting to

the other, as illustrated in Fig 3.9.b.

m1 m2

(a)

m1 m2

(b)

Figure 3.9: Graph representations of multiple solution (a) and no solution (b).

The equivalence of conditions I and II follows directly by the definition of the

adjacency matrix and by our reduction procedure. �

3.4.1 Examples

The following examples applies the Theorem 3.4.1 and determines well-posedness

of the system by checking the corresponding directed graph.

Example 3.4.3 Consider a Conewise linear system with

C1 = −C3 =

[
1 0

0 1

]
, C2 = −C4 =

[
−1 0

0 1

]
.
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The state matrices for the CLS are given as

A1 = A2 =

[
−2.5 −0.5

−0.5 −2.5

]
, A3 =

[
7
3

2
3

−2
3

2
3

]
, A4 =

[
2
3

2
3

−2
3

7
3

]
.

The eigenvectors for each mode can be chosen as

V 1 = V 2 =

[
−1 1

1 1

]
, V 3 =

[
−1 −0.5

0.5 1

]
, V 4 =

[
0.5 1

1 0.5

]
.

As we can see in the Figure 3.18 if we start from different initial points in any

modes there exists a unique solution and smooth continuation is possible from

every initial mode. In Figure 3.11 directed graph corresponding to this system is

shown which is weakly connected and 2-regular as well.

-100 -80 -60 -40 -20 0 20

-20

-15

-10

-5

0

5

10

Mode1: Source
Mode2: Sink

Mode4: TransitiveMode3: Transitive

Figure 3.10: Trajectory movements in the system of Example 3.4.3

m110/∞1m12m210/∞2m22

m3 m4

Figure 3.11: Graph representations of well-posed system.
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Aadjreduced =



m11 0/∞1 m12 m21 0/∞2 m22 m3 m4

m11 0 1 0 0 0 0 0 1

0/∞1 0 0 0 0 0 0 0 0

m12 0 1 0 1 0 0 0 0

m21 0 0 0 0 1 0 0 0

0/∞2 0 0 0 0 0 0 0 0

m22 0 0 0 0 1 0 0 0

m3 0 0 0 0 0 1 0 0

m4 0 0 0 0 0 0 1 0



Example 3.4.4 Consider a Conewise linear system with

C1 = −C3 =

[
1 0

0 1

]
, C2 = −C4 =

[
−1 0

0 1

]
.

The state matrices for the CLS are given as

A1 = A2 = A3 =

[
−2.5 −0.5

−0.5 −2.5

]
, A4 =

[
7
3
−2

3
2
3

2
3

]
.

The eigenvectors for each mode can be chosen as

V 1 = V 2 = V 3 =

[
−1 1

1 1

]
, V 4 =

[
1 0.5

0.5 1

]
.

In this example as we can see from Figure 3.12 the smooth continuation is not

possible from the first and fourth mode the trajectories which starts in the fourth

mode will reach to the common border with first mode and same happens to the

trajectories which start in the first mode. On the other hand, if we starts on the

common border the trajectory will not stay on the border, therefore, the smooth

continuation is not possible and the system is not well-posed. This situation will

lead to have the corresponding graph 3.13 and it is not 2-regular anymore. Also

the corresponding adjacency matrix has the sum of 3 for the m11 and m4 row and

column.
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-5

-4

-3

-2

-1

0

1

2

3

4

5

Mode1: Source

Mode2: Sink

Mode4: Transitive

Mode3: Source

Figure 3.12: Trajectories movement in a not well-posed system

m110/∞1m12m210/∞2m22

m31 0/∞3 m32 m4

Figure 3.13: Graph representations of a not well-posed system.

Aadjreduced =



m11 0/∞1 m12 m21 0/∞2 m22 m31 0/∞3 m32 m4

m11 0 1 0 0 0 0 0 0 0 1

0/∞1 0 0 0 0 0 0 0 0 0 0

m12 0 1 0 1 0 0 0 0 0 0

m21 0 0 0 0 1 0 0 0 0 0

0/∞2 0 0 0 0 0 0 0 0 0 0

m22 0 0 0 0 1 0 0 0 0 0

m31 0 0 0 0 0 1 0 1 0 0

0/∞3 0 0 0 0 0 0 0 0 0 0

m32 0 0 0 0 0 0 0 1 0 1

m4 1 0 0 0 0 0 0 0 0 0


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The next example illustrates the reduction procedure that need to be applied

when two adjacent 0/∞ nodes occur in a graph.

Example 3.4.5 Consider a CLS with

C1 = −C3 =

[
1 0

0 1

]
, C2 = −C4 =

[
−1 0

0 1

]
.

The state matrices for the CLS are given as

A1 =

[
−1 −1

2

0 −2

]
, A2 =

[
−5
3

−1
3

−2
3

−4
3

]
, A3 =

[
−5
3

10
3

−10
3

11
3

]
, A4 =

[
−2 1

2

0 −1

]
,

The eigenvectors for each mode can be chosen as

V 1 =

[
1 1

0 2

]
, V 2 =

[
−1 1

2 1

]
, V 3 =

[
2 1

1 2

]
, V 4 =

[
−1 2

−2 0

]
,

In this example, we have four modes: sink, source, transitive (non-real), and

half-sink. As we can see from the Λ matrix for each mode.

Λ1 =

[
−1 0

0 −2

]
,Λ2 =

[
−1 0

0 −2

]
,Λ3 =

[
1 2

−2 1

]
,Λ4 =

[
−1 0

0 −2

]
,

According to the Figure 3.14, every trajectory that begins at the common boundary

of Mode-4 and Mode-1 will remain on the border. The trajectories that start in

the interior of the modes will finish up in the sink mode. The Figure 3.16, on the

other hand, shows the reduced form of the graph representing the system, which

is 2-regular and weakly-connected.
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Mode1: Half-sinkMode2: Sink

Mode3: Transitive
Mode4: Source

Figure 3.14: Trajectories movement for a well-posed system with seven modes

0/∞11m110/∞12m12m210/∞2m22

m3 m4 0/∞4

Figure 3.15: Graph representations of the system with two 0/∞ modes

Aadjreduced =



0/∞11 m11 0/∞12 m12 m21 0/∞2 m22 m3 m4

0/∞11 0 0 0 0 0 0 0 0 0

m11 1 0 1 0 0 0 0 0 0

0/∞12 0 0 0 0 0 0 0 0 0

m12 0 0 1 0 1 0 0 0 0

m21 0 0 0 0 0 1 0 0 0

0/∞2 0 0 0 0 0 0 0 0 0

m22 0 0 0 0 0 1 0 0 0

m3 0 0 0 0 0 0 1 0 0

m4 1 0 0 0 0 0 0 1 0


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0/∞11

m110/∞12m12m210/∞2m22

m3 m4

Figure 3.16: Reduced graph representations of the system with two 0/∞ modes
in close proximity

3.5 Stability

The system (2.1) is Globally Asymptotically Stable (or simply, stable) if all tra-

jectories decay to the origin as t→∞, i.e., if for all b ∈ R2, limt→∞ x(t,b) = 0.

Lyapunov-based technique is widely used in studying the stability of piecewise

linear systems, but the requirement to devise a common Lyapunov function for all

modes quickly brings this method to a halt. A complete necessary and sufficient

condition for stability of (2.1) exists and is first obtained by [6]. In [18], an

equivalent version of the condition was obtained.

In what follows, we first review the definition of factor of expansion, which

is a measure of the distance of the trajectory to the origin at a border Bi
1 or

Bi
2 of a transitive cone. It is the natural logarithm of the gain |x|

|sk| a trajectory

goes through when it begins at a border Bi and travels through the entire sector,

eventually reaching the other border Bk.

Definition 3.5.1 If a mode i is transitive, then its factor of expansion (FEX) is

F i :=


ln
|iv×si1|
|iv×si2|

+ µiti2 if it is positive-transitive,

ln
|iv×si2|
|iv×si1|

+ µiti1 if it is negative-transitive,
(3.4)

where µi is λi1 or σi, iv denote vi1 or vi1 +jvi2 in case of real or non-real eigenvalues,

respectively. Also ti1(ti2) is called regime time which is the time it takes the
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trajectory to move from si2 to si1(si1 to si2 ).

ti1 =


1

λi1−λi2
ln
|ni22(si2)|
|ni21(si2)| for real and distinct eigenvalues ,

|ni21(si2)+ni22(si2)|
|((ci2)T vi1)((wi2)T si2)| for real and repeated eigenvalues,

Θi

ωi
for non-real eigenvalues

(3.5)

where,

Θi := tan−1 (ci2)T si2
(ci2)Tvi2(wi1)T si2 − (ci2)Tvi1(wi2)T si2

. (3.6)

Consequently,

ti2 =


1

λi1−λi2
ln
|ni12(si1)|
|ni11(si1)| for real and distinct eigenvalues ,

|ni11(si1)+ni12(si1)|
|((ci1)T vi1)((wi2)T si1)| for real and repeated eigenvalues,

Θi

ωi
for non-real eigenvalues

(3.7)

where,

Θi := tan−1 (ci2)T si1
(ci2)Tvi2(wi1)T si1 − (ci2)Tvi1(wi2)T si1

. (3.8)

With the help of our well-posedness result, we can now rewrite theorem 5.2.1

from [18].

Theorem 3.5.1 A well-posed conewise linear system 2.1 is globally asymptoti-

cally stable if and only if when the reduced graph is acyclic, the eigenvalues cor-

responding to 0/∞ nodes are all negative and when the reduced graph is cyclic,

F =
∑m

i=1 F
i < 0, where m is the number of modes.

Proof. If a 2-regular, connected, and directed graph has a cycle, then it must

be a cycle graph, i.e., the cycle should include all its nodes. It follows that

the conditions of the theorem covers all cases. If the graph is acyclic, then all

paths terminate at a 0/∞ node, where the trajectories move radially along an

eigenvector. The corresponding eigenvalue must then be negative, in order for

the trajectory to converge to zero. If the graph is a cycle, so that it contains

no 0/∞ node and all nodes correspond to modes that are transitive in the same

direction. Then, for a trajectory to converge to zero, it is necessary and sufficient
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that starting at one border with an initial vector b, completing one cycle, and

hitting the border of start, the trajectory ends closer to the origin than b. The

sum of the expansion factors gives the logarithm of the ratio of the length of final

value of the trajectory after one cycle to b. Hence, the trajectory asymptotically

converges to zero if and only if F =
∑m

i=1 F
i < 0. �

Example 3.5.1 Consider a CLS with

C1 = −C3 =

[
1 0

0 1

]
, C2 = −C4 =

[
0 1

−1 0

]
.

The state matrices for the CLS are given as

A1 =

[
−7
3

−2
3

2
3

−2
3

]
, A2 =

[
11
3

−10
3

10
3

−5
3

]
, A3 =

[
−5
3

−4
3

1
3

−1
3

]
, A4 =

[
−2
3

−2
3

2
3

−7
3

]
.

The eigenvectors for each mode can be chosen as

V 1 =

[
−1 −2

2 1

]
, V 2 =

[
1 2

2 1

]
, V 3 =

[
−2 −1

1 −2

]
, V 4 =

[
−2 −1

−1 −2

]
,

and it can be checked that we have four positively oriented modes. The Lambda

matrices are

Λ1 =

[
−1 0

0 −2

]
,Λ2 =

[
1 2

−2 1

]
,Λ3 =

[
−1 1

0 −1

]
,Λ4 =

[
−1 0

0 −2

]
,

so that they are a mixture of three types of Jordan forms.

m1m2

m3 m4

Figure 3.17: Graph representations of the cyclic system of Example 3.5.1

According to Theorem 3.2.1 and Figure 3.17 the system is well-posed. This

can also be checked through the adjacency matrix below, which also gives that the
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system is cyclic; as A4 = I4 is the identity matrix so that it is not nilpotent.

Aadj =



m1 m2 m3 m4

m1 0 1 0 0

m2 0 0 1 0

m3 0 0 0 1

m4 1 0 0 0



The system is stable if and only if the F < 0 according to the Theorem 3.5.1.

Because all of the modes in our example are positively orientated, we utilize the

F =
∑m

i=1 F
i < 0 to check the F for each one. F1=-0.69314, F2=0, F3=-1.09861,

and F4=-0.69314, resulting in F=-2.48489, a negative value, thus the system is

globally asymptotically stable.

-6 -4 -2 0 2 4 6

-4

-3

-2

-1

0

1

2

3

4

Mode1:Treansitive

Real and Distinct

Mode2: Transitive

Non-Ral

Mode3: Transitive

Real and

Repeated

Mode4: Transitive

Real and Distinct

Figure 3.18: Sample trajectory movements for the system of Example 3.5.1
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Chapter 4

Conclusions and Future Work

We have examined well-posedness of a multi-modal conewise linear system in

which each mode is defined on a polyhedral cone and can have its dynamic defined

by an A-matrix having any one of the possible Jordan forms. We have also allowed

sliding modes by also considering modes with observability matrices that can be

singular.

We have adopted Caratheodory based solution concept for the conewise system

and used the smooth continuation version of the well-posedness definition. It was

already known that, if sliding modes are not allowed, then the elegant condition

of well-posedness for bimodal systems in terms of modal observability matrices

applies also to two adjacent planar modes of our conewise system without any

change. We have shown in this thesis that this fact also applies even when sliding

modes are allowed.

A graphical condition has also been given for the well-posedness of the overall

conewise system with an arbitrary number of modes. This approach, strictly

speaking, is not necessary since planar systems have a very simple interconnection

structure. Nevertheless, we have shown that the graph of even our planar system

helps to consider well-posedness and stability issues in a unified manner. We

have thus stated the well-known condition for stability with the help of the graph
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representation and a special reduction procedure applies to the initial graph. This

graphical result may be helpful in well-posedness studies of conewise systems of

higher dimensions.

Our immediate future work will be an extension of these results to spatial (3D)

conewise systems.
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Appendix A

Matlab Code

%This code generates pwl systems for simulation of trajectories

%in various modes. The values are for Example 3.5.1.

c l e a r a l l

c l o s e a l l

c l c

%The Pwl(piecewise linear systems) Toolbox

addpath ( genpath ( ’C:\ Users \Daniyal\Desktop\apply\pwl ’ ) )

% Conewise system 1

Lambda1= [−1 0 ; 0 −2] ; % eigen values real distinc

x1 1 = [−1 2 ] ’ ;

y1 1 = [−2 1 ] ’ ;

V1 = [ x1 1 y1 1 ] ; % eigen-vectors

A1 = V1∗Lambda1∗ inv (V1 ) ; % A matrix for simulation

s1 1= [1 0 ] ’ ;

s 1 2 = [0 1 ] ’ ;

S1 = [ s1 1 s1 2 ] ;

C1 = inv ( S1 ) ; % C matrix for simulation

W1 = inv (V1) ;

% Conewise system 2

Lambda2= [1 2 ; −2 1 ] ; % eigen values real distinc

x2 1 = [1 2 ] ’ ;

y2 1 = [2 1 ] ’ ;
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V2 = [ x2 1 y2 1 ] ; % eigen-vectors

A2 = V2∗Lambda2∗ inv (V2 ) ; % A matrix for simulation

s2 1= [0 1 ] ’ ;

s 2 2 = [−1 0 ] ’ ;

S2 = [ s2 1 s2 2 ] ;

C2 = inv ( S2 ) ; % C matrix for simulation

W2 = inv (V2) ;

% Conewise system 3

Lambda3= [−1 1 ; 0 −1] ; % eigen values real distinc

x3 1 = [−2 1 ] ’ ;

y3 1 = [−1 2 ] ’ ;

V3 = [ x3 1 y3 1 ] ; % eigen-vectors

A3 = V3∗Lambda3∗ inv (V3 ) ; % A matrix for simulation

s3 1= [−1 0 ] ’ ;

s 3 2 = [0 −1] ’ ;

S3 = [ s3 1 s3 2 ] ;

C3 = inv ( S3 ) ; % C matrix for simulation

W3 = inv (V3) ;

% Conewise system 4

Lambda4= [−1 0 ; 0 −2] ; % eigen values real distinc

x4 1 = [−2 −1] ’ ;

y4 1 = [−1 −2] ’ ;

V4 = [ x4 1 y4 1 ] ; % eigen-vectors

A4 = V4∗Lambda4∗ inv (V4 ) ; % A matrix for simulation

s4 1= [0 −1] ’ ;

s 4 2 = [1 0 ] ’ ;

S4 = [ s4 1 s4 2 ] ;

C4 = inv ( S4 ) ; % C matrix for simulation

W4 = inv (V4) ;

% Set up PWL system

setpwl ( [ ] ) ;

a = [ ] ;

B = [ ] ;

G1 = [ ] ;

G2 = [ ] ;
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F1 = [ ] ;

F2 = [ ] ;

F3 = [ ] ;

F4 = [ ] ;

dyn1 = addynamics (A1 , a , B, G1 ) ;

dyn2 = addynamics (A2 , a , B, G2 ) ;

dyn3 = addynamics (A3 , a , B, G1 ) ;

dyn4 = addynamics (A4 , a , B, G2 ) ;

% adding the regions

addregion (C1 , F1 , dyn1 ) ;

addregion (C2 , F2 , dyn2 ) ;

addregion (C3 , F3 , dyn3 ) ;

addregion (C4 , F4 , dyn4 ) ;

% Extract PWL system and plots

pwlsys = getpwl ;

[ t , xv ] = pwlsim ( pwlsys , [ 1 2 ] ’ , [ 0 1 0 ] ) ; % Simulate

p lo t ( xv ( : , 1 ) , xv ( : , 2 ) , ’ r ’ , ’ Linewidth ’ , 1 ) ;

hold on

[ t , xv ] = pwlsim ( pwlsys , [−1 2 ] ’ , [ 0 1 0 ] ) ; % Simulate

p lo t ( xv ( : , 1 ) , xv ( : , 2 ) , ’b ’ , ’ Linewidth ’ , 1 ) ;

hold on

[ t , xv ] = pwlsim ( pwlsys , [−1 −2] ’ , [ 0 1 0 ] ) ; % Simulate

p lo t ( xv ( : , 1 ) , xv ( : , 2 ) , ’ y ’ , ’ Linewidth ’ , 1 ) ;

hold on

[ t , xv ] = pwlsim ( pwlsys , [ 1 −2] ’ , [ 0 1 0 ] ) ; % Simulate

p lo t ( xv ( : , 1 ) , xv ( : , 2 ) , ’ k ’ , ’ Linewidth ’ , 1 ) ;

hold on

p lo t ([−4 4 ] , [ 0 0 ] , ’−−k ’ ) ;

hold on

p lo t ( [ 0 0 ] , [ 5 −5] , ’−−k ’ ) ;

xl im ([−4 4 ] ) ;

yl im ([−5 5 ] )

g r id on

hold o f f
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