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ABSTRACT

RADIATION FIELDS OF THE LINE SOURCE IN A
CYLINDRICAL WIRE GRATING

Hakan Karapinar
M.S. in Electrical and Electronics Engineering
Supervisors: Prof. Dr. Ayhan Altintas
Dr. Vladimir Yurchenko
December 1998

In this thesis, the transmission effect of a grid structure is analyzed. The
grid structure is intended to model the metallic support elements of a radome.
The total field for the real and complex position line sources surrounded by the
grating structure is obtained in both T'A and T'I5 polarizations in the far-field

region.

The grid is considered to be a cylindrical array of perfectly conducting
cylinders parallel to the z-axis. The radius of each cylinder is small as com-
pared to the wavelength and the length of the cylinders is infinite.

We started with the study of a single perfectly conducting cylinder illuminated
by a line source and obtained the formula for the electric and magnetic fields
in the far-field region. Then, we calculated far-zone total ficld for a set of
cylinders which form the surface of the radome as a cylindrical periodic grat-
ing. The equation for the total electric field in the [ar-field region is found by
using superposition and applying the boundary conditions at the conducting

cylinders to find scattering coeflicients.

Complex line sources are considered to simulate directed beam fields used
in practice. The power pattern and directivity are computed for different pa-
rameters of the grating and cylinders. A set of figures is presented to show the
rclationships between the power pattern, directivity and diflcrent parameters

of the structure.

Keywords: Grating, directivity, complex source
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OZET

SILINDIRIK 1ZGARA ICERISINDEKI BIR CUBUK
KAYNAGIN ISINIMI

Hakan Karapinar
Elektrik ve Elektronik Miihendisligi Bolumu Ytuksek Lisans
Tez Yoneticileri: Prof. Dr. Ayhan Altintag
Dr. Vladimir Yurchenko
Aralik 1998

Bu tezde, 1zgara yapinin alan gegirgenligi incelenmigtir. Izgara yapi, meta-
lik elementlerle destekli radomu modellemek icin tasarlanmigtir. TM and TE
polarizasyonlarinda, uzak alan bolgesinde 1zgara yapi igerisinde bulunan reel
ve karmagik kaynaklar icin toplam elektrik alan ¢oztimleri bulunmugtur.

Izgara, z-eksenine paralel iletken silindirlerden olugan silindirik dizi olarak
ditgliniilmigtiir. Her bir silindirin yaricapt dalga boyuna gore ¢ok kiigiik olup,
silindirlerin boylart sonsuz olarak alinmugtir. Tek bir silindir ile galigmaya
baglamp bu silindir i¢in toplam elektrik alan formiili elde edildikten sonra,
radomun izerini periodik dizi geklinde cevreleyen silindirler igin toplamn elek-
trik alan formili bulunmusgtur. Uzak alan bolgesindeki her bir silindirin ayri
ayr1 olugturduklar: toplam elektrik alan denklemleri siiperposisyon kullanmilarak
bulunup, bu denklemlere, sinir kosullar1 uygulanarak sagilma katsayilari bu-

lunmugtur.

Pratikte, karmagik kaynaklar kullamilarak enerjinin yénlendirilmesi simule
edilmigtir. Enerjinin yonlendirilmesi ve giicii igin tiim veriler, 1zgara ve onu
olugturan silindirlerin farkli parametreleri igin hesaplanmig ve aralarindaki iligki

bir ¢ok grafik ile gosterilmistir.

Anahtarkelimeler: lzgara, yonlendirme, karmasik kaynak.
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Chapter 1

INTRODUCTION

The problem of scattering from a cylindrical surface has aroused the interest
ol physicists and engineers for many years because of its large domain of ap-
plication in optics, acoustics, radiowave propagation and radar techniques [1].
Also, the penetration of electromagnetic waves through a layered system is
always an interesting subject of study which finds many applications 2], for
instance in cvaluating the performance of antennas surrounded by radome.
Typically, large radar antennas are covered with radome in order to protect
them from weather conditions (rain, wind, sun, etc.) and to enable them to

operate continuously without loss of precision.

The design of radomes for antennas may be divided into two separate and
relatively distinct classes depending upon whether the antenna is [or airborne
or ground-bhased (or ship-based) applications [3]. The airborne radome is char-
acterized by smaller size than ground-based radomes since the antennas that
can be carried in an aircraft are generally smaller. The airborne radome must
be strong enough to form a part of the aircraft structure and usually must be
designed to conform to the aerodynamic shape of the aircraft, missile, or space

vehicle in which it is to operate.

A properly designed radome should distort the antenna pattern as little as
possible. The presence of a radome can affect the gain, beamwidth, sidelobe
level, and the direction of the boresight (pointing direction), as well as change
the VSWR and the antenna noise temperature. Sometimes in tracking radars,
the rate of the change of the boresight can be important. In this study, we
have analyzed how directivity and power pattern of antenna are efected by



the grating structure. Here, the source is surrounded by the grating structure.
The grating structure is intended to model the metallic support clements of a

radome.

In practice, a precise analysis of radome performance is difficult and nearly
impossible since the general shape of the radome layer does not fit into the
frame suitable for exact analysis. One must therefore resort to some approx-
imate methods. The basic principle of approximation is to find a canonical
configuration to approximate the surface of the dielectric layer. A method
of modal cylindrical wave spectrum, which is an extension of the plane wave
spectrum surface integration technique [4], is applied to the analysis of a two-
dimensional elliptic radome. Previously, far-field solutions for complex line
source surrounded by a cylindrical dielectric radome are calculated in [2]. The
transmission effect of two-dimensional circular radome with periodic gratings
is analyzed in [5]. In this thesis, we have obtained far field solutions for real
and complex line sources surrounded by a two-dimensional circular radome
with periodic conducting cylinders. In this study, we have assumed that, the
transmission effect of the dielectric shell is optimized. Thus, we have neglected

this effect.

The aim of this thesis is to analyze the effect of the radome formed by a
grid of perfectly conducting cylinders on the propagation of the clectromagnetic
waves, and to obtain how directivity and power change with different radome

parameters.

The analysis of the scattering from multiple conducting, dielectric or combi-
nation of dielectric and conducting cylinders for incident plane wave is treated
by many investigators [6], [7], [8]. However, a rigorous solution to the scatter-
ing from conducting cylinders which are placed on the surface of the grating
geometry is not available in the literature for real and complex line sources.
Here, the solutions for real and complex line sources which are enclosed by

grating with conducting cylinders are derived.

The problem of electromagnetic wave scattering from objects are treated
using different methods. Among those methods are the integral equation for-
mulation [9], [10], partial differential equation formulation and hybrid tech-
niQues which combine the partial differential equation method with a surface
integral equation or with an eigenfunction expansion [9]. The integral equa-
tion method requires numerical integrations which lead to a system of matrix
equations. The order of this matrix equation increases with the electrical di-

mension and complexity of the scattering objects. This technique requires



significant computation time for composite scatterers. On the other hand, to
enforce the radiation condition using a partial differential equation method, an
approximate absorbing boundary may be used in order to avoid extending the
descretized region to infinity. Furthermore, the use of numerical differentiation
limits the accuracy of such methods. The hybrid techniques climinate most of
these disadvantages, however, it usually requires more effort in the analytical
and numerical implementations [11]. In this thesis, the analysis begins by rep-
resenting the scattered field of each cylinder as a series expansion in terms of
cylindrical functions with unknown coeflicients. Then, by applying the bound-
ary conditions on the surface of each cylinder and using superposition to obtain
a sct of linear equations for unknown scattering coefficients which can be writ-
ten in a matrix form. The Gaussian elimination with backward substitution

method is used to solve these linear equations.

The outline of thesis is as follows. In Chapter 2 we introduce the basic
concept of the techniques and the formulation of the problem. In Chapter 3
we introduce the numerical techniques for gencrating Bessel functions and for
solving a set of linear equations. Numecrical results are presented in Chapter

4. Main conclusions follow in Chapter 5.

Throughout the analysis, a sinusoidal-varying time dependence e/ is as-

sumed and suppressed.



Chapter 2

ANALYSIS OF RADIATION
THROUGH A RADOME
WITH GRATINGS

In this chapter, we obtain the general formulas for radiated electric ficld due to
an clectric line source and the total radiated magnetic field duc to a magnetic
line source inside the multicylindrical structure as it scen in Figure 2.1. The
cylinders are assumed to be periodically located over a circle of radius ¢ centered
around the source. The radius of each cylinder is a.

Both real and complex line sources are considered. Complex line source is
used to simulate a directed beam. The wave ficld is represented as expansion
serics of cylindrical waves to evaluate the radiation fields. Then, the effect of
transmission through the number of perfectly conducting circular cylinders is
found. The surface of many practical scatterers can often be approximated by
cylindrical structures [12]. We will consider cylindrical waves for both the real
and complex-position line sources surrounded by a set of circular conducting

cylinders of infinite length.
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Figure 2.1: Geometry of circular periodic conducting cylinders

Formulation of the problem is initially carried out for a single cylinder with
real position electric line source and then extended to the case of multicylindiri-

cal structure with real and complex position electric line sources.

2.1 Electric Line Source (TM Polarization)

Parallel to Single Cylinder

A line current of infinite length directed along the z axis is assumed to be placed
at 7' in the vicinity of a circular conducting cylinder as shown in Figure 2.2.
The line source is outside the cylinder (r' > a).

The cylinder is also assumed to be infinite in length and its axis is parallel
to the line source. If the line source of I'igure 2.2 is a time-harmonic electric
current of constant amplitude I,, the electric field E*¢ generated everywhere

by the source in the free space is found in the following manner.
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Figure 2.2: Electric line source near a circular cylinder. (a) Side view. (b) Top
view

The free space Green’s function G of the line source can be written as

Y 1 = 7
G(r, ¢;7', ¢') = —;gf-fé”(ko |77 ). (2.1)

This is the well-known two-dimensional Green’s function for the cylindrical
wave [12]. From (2.1), the incident field Ei™ can be found as

. k21, ,
B = —Z‘?u;]{(gz)(ko lr—r')) (2:2)

where kg = 2w /X is the free space wave number and A is the wavelength.

By the use of the addition theorem for Hankel functions, we can write (2.2)

_ kgl 2 oo Iulkor) HP (kgr")ed™9=4) 9 < o

E?’C — yom n=-00 | | (23)
€| 520 Julkor) HD (kor)em@=#) g > p

In the presence of the cylinder, the total field is composed of two parts: the
incident field and the scattered ficld. The scattered field is produced by the
current induced on the surface of the cylinder that acts as a radiator.

The scattered field also has only z component and it can be expressed as

o0
Bt = —Z—Oﬁ S CuHP (kor)e™ =9, a <7 (2.4)
we

n=-00



The unknown coefficients C;, can be found by applying the boundary condi-

tions of
Ef(r =a,0 < ¢ < 2m,2) =0, ‘ (2.5)
to the total ficld on the surface of cylinder
Elt = Eine 4 Bt = ) (2.6)

that yields the equation

kI, & : '
 4we n )(kOTI) + Cn[{7(12)(k0a)]6]”(¢_¢) =0. (2'7)

n=-—00
From here, C,, can be found as

Jn(koa)

Cp = —H® (ko) 22\50%)_
( o )IL(E)(/CO(L)

which then yields

(2) Jn koa Lin(p—¢') .. W)
ot — k21, 0 oo Hi (kor")[Jn(kor) — e H )(kor)]e’ r <7 29)

T dwe H® (kor) [ Ju(kor") —F§~LJ" sl 1) (kor)Je @ =#) 7 > 1

n——oo

For far-field observations (kor >> 1) the total electric field of (2.9) can be
reduced by replacing the Hankel function H{?(ker) by its asymptotic expres-

sion

57
HP (kor) = 4| =~ kjrj”e"’“"’- | (2.10)
0

The total electric field in the far-zone can be expressed as

K1, (25 ., &
tot o, _0°e [ O  —jkor N kot
B =~ 4dwe wkore nzz_:oo] (ko)

_ szzgkoa) IJ,SZ)(kof")]ej"(¢_¢') (2.11)
Hy” (koa)

which can be used to compute more conveniently far-field patterns of an electric
line source located near a circular conducting cylinder.



2.2 Circular Grating with Many Conducting

Cylinders

In this section, we obtain the general formula for the total clectric field at the

far zone of a multicylindrical structure. In this gecometry which is shown in
[igure 2.3, the line source is surrounded by the a grating which consists of

many perfectly conducting cylinders.

»
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Figure 2.3: The geometry of the circular grating with conducting cylinders.



[ere, ¢ is the radius of the grating, a is the radius of the each cylinder,
r; and ¢; are the distance and the angle between ith. cylinder and observation
point for ¢ = 1...M, respectively, with M is the total number of cylinders.

For the structure of four cylinders shown in the Figure 2.3, tlic total field
consists of an incident field coming [rom the source, and of four scattered fields

coming from four scatterers:

Eiot — Ezz':n.c + E.;nl:at + E::czat 4 E;gat + Ezclfl,at (212)

The general formula for the total electric field at the observation point for a
set of M conducting cylinders on the surface of the radome is 8]

M
Bt =B+ ) B (2.19)
m=1
where
k2], & .
Bt = — =02 %" Cop H (kor) e/ (2.14)
dwe 2~

is the corresponding scattered electric field component related to mth cylinder
and C,,, is the unknown coefficient related to the mth cylinder which includes
the effect of all interactions between the cylinders. In the above equations,
Ju(z) and H(z) are the Bessel and Hankel functions of order n and argu-

ment .

On the surface of the ith cylinder, the boundary conditions are

zZm

M
B+ S B =0 atr;=a,0< ¢; <2 (2.15)
m=1

where a is the radius of each cylinder and M is the total number of cylinders.
The first term on the left-hand side of (2.15) represents the incident field at
the 4th cylinder, in terms of the local coordinates of this cylinder (r;, ¢;). The
second term on the left-hand side represents the scattered electric field from
all M cylinders in terms of the local coordinates of each individual cylinder
(T, ®m)- In order to solve for the unknown expansion coeflicients C,,,,, it is
then required to express the scattered field from one cylinder in terms of the

local coordinates of another cylinder.
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Figure 2.4: Geometry of two circular cylinders and their coordinate systems.

Using the addition theorem for Hankel functions, one can write the trans-
formation from the gth coordinate to the pth coordinate as

oo
HD (k)™ = 3 Ty (ko) HE. (g™ 3= (3.16)

m=-00

where 7,4 > 7, and

Tpg = \JTp2 + 142 = 2r)1t cos(), — ) (2.17)

’, I !
TaCOSPq — T,C05¢),

Ppqg = cos™ | ]. (2.18)

Tpa
In the circular grating geometry, r; =, = c and ¢, = ]\27"% where
p=0,1,..., M — 1 is the cylinder numbers. The transformation from the pth
to the gth coordinates is identical to (2.16) except that t;he'p and ¢ should be
interchanged. In order to satisfy the boundary conditions as in (2.5), the total
electric field component at the mth cylinder is obtained in terms of the local
coordinates of the mth cylinder by using the addition theorem in (2.16):

M
i =B+ Bt S B (2.19)
i=1,i#m
where
: kole & @) (f i)
E;’,*,f——-—4 Z o (korm) Hy (ko) )€™~ (2.20)
we

n=—oo
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) .
Bt = =722 30 ComH D (korm)e™ ™, (2.21)
we S
M 00
Z Escat B Z Z Z Cqu k07m q n(k07mz)
i=1,i#m i=1,i#m n=--00 g=—00
ejq’f’me“j(q‘n)qsmi, (2,22)
where
B = —-'flwI:, Ti = \/r’ 24712 — 201 ricos(@l, — #;) and

¢ . cos_l[rmcoszﬁm—r cos¢’]
mi = .

Tmi

If we apply boundary condition for the mth cylinder

tot mc scat scat _ -
Ezm EZ"I EZTTI + Z E (223)
i=1,i#m
with 7, = a, 7, = ¢ and r} = ¢ and use the orthogonal property of the
m Y 'm ) g proj y
exponential function e/™* we obtain lincar equations relating the coeflicients

Cng:
-J (koa)H(z)(korm) ~qidms — C,,L(,[-If)(koa)

+ Z Z CmJ koa q— n(k()Tm,)C 3(g=n) b (224)

i=l,iZmn=—o0
form =1,..,M and ¢ = —o0,...,—1,0,1,...,00. Where ¢,,; is the angle
between line source and mth cylinder, r,,, is the distance between mth cylinder
and line source, r,,; is the distance between ith cylinder and mth cylinder, and
¢mi is the angle between ¢th cylinder and mth cylinder.

The set of equations (2.24) can be written as follows:

AP = Z Z H[0i" (1 = Gin) + d™ G G2h)] (2.25)

h=1 n=-o00
where §;;, is the Kronecker’s delta function
1 i=h
dip, = (2.26)
1 £ h

and the clements b}, di* are given, respectively, by

= HL (korin)e 9000 T (ko) (2.27)

ih
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d* = H® (kga). (2.28)

The elements of A are given by
AT = — o (koa) HE (korgi)eIm e (2.29)

and the vector C represents the unknown expansion coefficients of the scat-
tered field from the M cylinders.

The set of linear equation can be written in the following matrix form

A =SC, (2.30)
or more explicitly

m mn mn mn m
Al 1 o P e PIM Cl

m —_— mn mn mn |
AP = ST SR iM Ci (2.31)

m mn mn mmn mm
AM SMI mh - SMI\/[ M

where the vectors A and C are of dimension (2N + 1)M, N is the truncation
number which has to be chosen so that (2.31) has a convergent solution. The
submatrices S;;" are

b 4 # h (mutual interaction)

mn o (2.32)

ih .

d™0mn  ©=h (self-interaction)

where n,m = =N, ...,—1,0,1,..., N. The inversion of the matrix S yields the

solution for the matrix C.
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2.3 Complex Line Source

Complex Source Pulsed Beams (CSPBs) are exact solutions of the wave equa-
tion that can be modeled by a time-dependent source located at a complex
coordinate point with a proper choice of parameters. These wave fields are
confined in beam-like fashion in transverse planes perpendicular to the prop-
agation axis while confinement along the axis is due to temporal windowing.
Because they have these properties, CSPBs are useful wave objects for gener-
ating and synthesizing highly focused transient fields and for local probing of
a medium. [Furthermore, as has been shown recently, CSPBs form a new sct, of
basis functions for an exact angular spectrum expansion of source fields [13].

In this thesis, the complex source of time-harmonic line current is consid-
ered. The direction, collimation and directivity of the source field is determined

essentially by the imaginary displacement of the source coordinate.

Unlike the real line source, the antenna feeders are not uniform in practice.
So, to simulate nonuniform radiators the complex line source is used [2]. In

Figure 2.5, a complex line source generating a beam is shown.

y

Main Beam

Line source X

Figure 2.5: Geometry of the complex line source.
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The line source is placed at a complex location 75 which is given by
7 = Ty + ib = af + ib(cosfz + sinfy), (2.33)
where the parameter § gives the direction of the beam and b is related to
the beam width. For b=0, the source position is real and radiation is axially

uniform. Assuming that the source is located at (75, ¢5), the field intensity at
the observation point (7, #) can be written as

. . 27 o
E”m — }-I(Z) k R — o 0 ’]k(llt. .:
i CH (koR) = C ﬂkoR] e (2.34)

for koJt >> 1 where
R = /17 + 712 = 2rr,cos(¢ — 45), (2.35)

is the distance of the observation point from the source. 75, 7o and b are the

complex source position, real source position and beam parameter vectors given
in polar coordinates as 7y = (7o, o), 7s = (75, #s) and b = (b, 8). All angles are

measured from the z-axis. The values of 7, and ¢, are

Ty = \/rg — b? + 2jrobcosf, (2.36)
- b
by = cos—l(’ﬂli cosfly (2.37)

In the far field, R = r — r;cos(¢ — ¢5) applies in the phase term, 2 = r in
the amplitude term. Substituting R into (2.34), the following expression is

obtained.
eIko(r—rocos(¢~do))

v ko‘r

which yields a maximum at ¢ = # and a minimum at ¢ = 4 .

E‘;"'c —C ekgbcos(rﬁ-ﬂ) (238)

The incident field can also be written as a series in terms of the addition
theorem:

Er(r)y=C Y Jnlkors ) H® (kor)e?™®=¢2) - g > g, (2.39)

n=-—o0oo

When b = 0, 7 = 7y, the complex line source behaves as a real line source.
So, the difference between the formulation of total electric field for real line
source and complex line source is only in the incident electric field. The for-
mulations for the scattered fields are the same. Thus, the general formula of
total field for M number of cylinders in far ficld region,

[e o] M ) .
E;Ot(r) ¢) =K Z jn[‘]n(kor.?)ejn(lﬁ_d)’) + Z C7,m6]ckoCos(¢—¢,,,)6.7114),,[].(2'40)

n=-00 m=1
where M is the total nuinber of cylinders. ¢,, is the angle between observation
. . . k21 27 ik
. 1 - _ 3 jkor
direction and mth cylinder and finally K = —3-= ,/—l—"kore :



2.4 Magnetic Line Source (TE Polarization)

Magnetic sources, although not physically realizable, are often used as equiv-
alent source to analyze aperture antennas. If the line source of Figure 2.2 is a
magnetic source and it is allowed to recede to the surface of a cylinder (7' = a),
the total field of the line source in the presence of the cylinder would be repre-
sentative of a very thin infinite axial slot on the cylinder. If the line source of
Ifigure 2.2 is a magnetic source with current of I, the fields that it radiates
in the absence of the cylinder can be obtained from those of an clectric line
source by the use of duality. Doing this we can write the incident magnetic
field by referring to H"® as

k'glm
4w

give = S0 g® g | '), (2.41)

This can also be expressed as

kI | T2 Ju(kor) HO (kor')eim0=#) < ¢/

Hine = -0 g TR (2.42)
4wu _JSzo:—oo Jn(/ﬁ?oT’)I'I,(lz (k()T)(:’jn(d)_(/’,) r> !
and the scattered magnetic field can be written as
scat _ szm o (2) in(¢— ‘/")
H; Z D, H (kor)e’ a<r. (2.43)
="

where D,, is used to represent the coeflicients of the scattered field. Thus, the

total magnetic field

H = Hime 4 HEe, (2.44)

The corresponding electric field components can be found using Maxwell’s

equations
1 OH
tot __ — z 2-4(-
By Jwe or (245)
2 oolHy @) (kor")J" (kor) + Dy H' (kgr eIn@=¢) < g
Eéot — _]-kOIm n= —oo[ ( 0 ) n( 0 ) ( 0 )] = (246)
4 0 HO (kgr)[Ju(kor') + Dy )er™#=#) r>r

)z,
where M = J, (ko) and %M = H@" (ko).
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In order to find unknown cocflicients D,,, we apply the boundary condition
of

EYYr =a,0 < ¢ < 2m 2) =0. (2.47)

From there, D, can be found as

Jn(koa)

D, = —H® (kyr") =T, 2.48
' ( ° )1'[7(12)/(1(700,) ( )
Thus, the total magnetic field in the far field region can be written as
kK lm [ 27 _pr &
[{tol, ~ — o m ,—Jkor 30 . kot
!

koa : '

__‘%)_(_O_a)_ﬂ7(12)(k07./)]61n(¢—¢ ) (2.49)
Iin I(koa:)

For multicylindrical structure as it seen in Figure 2.1, the total magnetic
field

M
H = H+ Y Hit (2.50)
m=1
where
ki, & . ‘
ot = v n;oo Do HP) (kor ) €7 (2.51)

is the corresponding scattered magnetic field component related to mth cylin-
der and D,,, is the unknown coefficient related to the mth cylinder which
includes the effect of all interactions between the cylinders.

The total magnetic field for the mth cylinder is obtained in terms ol the
local coordinates of the mth cylinder by using the addition theorem in (2.16)

M
High = Hie+ Himt o+ > HE™ (2.52)
1=1,i#m
where
2 00

H;",;C:—k—"-fﬂ 3" Tu(korm)HP (korl, ) el™#m =), (2.53)

dwp

scat k(%[m — (2) jng r
]{zm = -7 Z Dmn}In (korm)c' m, (204)
dwp I
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M 00
scat 2) .
Z I'I =F Z Z Z Dm ]q kOTm I](s—n(k07mi)
i=L,i#m i=l,ifmn=—o00q¢g=—
el 9Pm g3 a=n)bmi (2.55)
1 F _ k2l N — 12 ! !
where = — 38 oy = (/77,2 12 — 2rmrl<os( —~ ¢;) and
s = cos™H [ Inctmriconlly
Tmi

The corresponding electric field components can be found using Maxwell’s

equations
2 OH
i(:i ]’U}C 67 I (256)

If we apply boundary condition for mth cylinder,
L‘;‘,’,‘l L’;,’,L,f + b;j,‘jt + Z Bt = (2.57)
i=1,i#m

with 7, = a, 7, = ¢ and r} = ¢ and use the orthogonal property of the
exponential function ¢/"* we obtain linear cquations relating the cocflicients
qu:

—J’(koa)H ) (koTms ) e 1 #ms -quH '(koa)

+ Z Z DinJ} (ko) HE, (kot i)~ (1- )i (2.58)
i=1,igmn=—00
form=1,...Mandqg=—-00,...,—1,0,1,...,00. here ¢,,,; is the angle betwecn

line source and mth cylinder,r,s is the distance between mth cylinder and line
source, Tn; is the distance between ith cylinder and mth cylinder, and ¢,,; is
the angle between ith cylinder and mth cylinder. The total magnetic field in
the far-field region is computed by using

00 M
Hrg) = K Y 5"Un(kar)e™ 70 4 3 DyppeiaCott—smeintn] (2,50
n=-—00 m=1

where M is the total number of cylinders, ¢,, is the angle between observation
3 L2 3 o — [m vk
direction and mth cylinder and finally, I = ~ ,/wkor el~or,



Chapter 3

NUMERICAL METHODS FOR
CYLINDRICAL FUNCTIONS
AND LINEAR EQUATIONS

3.1 Computation of Bessel and Hankel Func-

tions

In this chapter, the numerical computation of Bessel and Haukel [unctions of
the first and the second kind for integer orders and complex arguments arc
considered. The numerical computation of linear equation (Az = b) is solved
by using Gaussian elimination with backward substitution. The algorithm
for Bessel functions makes use of backward recurrence for the computation of
Besscl functions of the first kind where applicable, and of Hankel’s asymptotic

expansion for large arguments.

Bessel functions of integer order are the natural and general solutions of
many radiation, scattering and guided wave problems which are formulated in
the cylindrical coordinate system. Bessel functions are also used in the mathe-
matical description of numerous physical phenomena besides clectromagnetism.
Consequently, their accurate computation is of general importance.

18
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Jn(z) and Y, (z), Bessel function of the first and second kind respectively

are solutions to Bessel’s differential equation

2y a2y + (22 —-n?)y=0 (3.1)

In this thesis, we generate Bessel functions using the subroutine developed

by Anil Bircan [2] following the algorithm presented by Du Toit [14]. In this

method, forward and backward iterations are used to compute J,(2) and Y,,(z)
hased on the recurrence relation

2n

Bn+].(z) = _Z"Bn(z) - Bn.—l(z) (32)

for all orders for a given argument 2. From this relation, if B, (z) and B,,_(2)

are known B, 1(z) is found with increasing N (forward recurrence), il B, (2)

and By, ,1(z) is known, B,_;(z) are calculated with decreasing N (backward

recurrence).

Before using this relation, the stability of recurrence should be guaranteed.
Any round-off error will be amplified by the factor 2n/z, and accumulation
of these errors occur with the repetitive use of (3.2). The relative error are,
however, decreasing when the functions DB, are increasing in the process of
iteration. So, progressing through increasing value of |B,(2)| appcars to be

the best strategy.

Therefore, for J,(2z) functions, the backward recurrence is stable since
|J,,(2)| are increasing rapidly with decreasing n. For Y,,(2), when z is complex,
the backward recurrence is stable for small n but the forward recurrence is
needed for n > 7 where 7 is the index corresponding to the minimum of |V,,(2)].

Irom the Figures (3.1) and (3.2), when z is real or when |Re(z)] >>
|Im(2)], general magnitude of J,(z) and Y;,(2) for a given argument 2 is approx-
imately constant for n < |z|, but for n > |z|, Y, (2) increcascs with increasing
n and J,(z) increases with decreasing n. So, all higher orders of ¥,(2z) can be
computed from Yy(z) and Y;(z) by using forward recurrence. All lower orders
of J,(z) can be computed from Jgy1(2), Jo(2) which are arbitrary initialized

by using backward recurrence.

When z is complex, the same rule still applies for J,(z) since it decreases
with increasing n for all values of n. Y;(2) can be calculated from Y;(z), Yy41(2)
using forward recurrence for n > r and backward recurrence for n < r where r

is the value of n to yicld a minimum to Y, (2) for a given argument 2.
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log10lJn(z)

20 T T T T T T T T

.

15} ~._

10 N ]

1 1 1 1 1
0 10 20 30 40 50
ordern

Figure 3.1: |J,,(2)], Argument: z=60 solid line, z=50-+20i dash-dotted line

The algorithm of J,(z) is started with estiaating of the starting point
for backward recurrence. The minimum value for ¢ (the starting point for

backward recurrence) is found in 2] as

|2| + 10.26]2[41015 1 18 |2| < 25
(3.3)

. ~o
Gmin =~

|2] + 6.6362]2|°31281 4 0.4, |2] > 25.

After finding gmi, the normalized constant S is compnuted. Since J,(2) is
obtained by normalization of B,(z)

Jul2) = —¢ (3.4)
S is computed in [2] as
a/2
S = Bo(2) + 2 ;1 Bak(2) (3.5)
when I'm(z) <1 and
g/?

S = Bo + 2 Z ng (36)
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log10tYn(z)I
15 T T ¥ T T T T T

ordern
Figure 3.2: |Y,(2)], Argument: z=60 solid line, z=50+-20i dash-dotted line
when I'm[z] > 1. After computing S, J,,(2) is calculated by using (3.4).
The algorithm of computing Y (2) is started by using Neumann's cxpansion

¥i(2) = Z[(In(x/2) + 7)) - 2 1 (- )y (3.7)

) =2 n(z T — z) — _S(- _—
i(e) = Zlln(=/2) 47 = D) = T2 = )R (38)

for calculating Yp(2) and Y (2) using forward recurrence when z is real or when
N < |z| if z is complex. But, when z is complex and N > Y. (z) can
be calculated from Y;(2) and Y;,(2) using backward recurrence. In [2], 7 is
calculated as r = [|z]| + |Im(2)|/2] (this can be verified in Figure 3.2).

21,

Y.(z) and Y,41(2) can be determined from Yj(z), Yi(z) and the J,(z)
functions for N < |z| by using the expansion of the recurrence relation (3.2),
in [2]

By(2) = Pyy(r, 2) B,(2) + Pia(r, 2) By y1(2), (3.9)
B\(2) = Py (1, 2) B, (2) + Pa(r, 2) Bry1(2). (3.10)
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By using the Wronskian

Tt (2)Ya(2) = Ja(2)Yor1 (2) = =, (3.11)

e

and the fact that determinant of the P matrix is unity, det(P)=1, Py(r,2),
Pia(r, 2), Pai(r, 2) and Pa(r, 2) are calculated.

After these, Y;(z) and Y;,;(z) are computed by using

i(a) = T () + 22 (3.12)
1 2

Yi(2) = m[']r—l—l(z)yo(z) + (3.13)

Tz
So, with 7, Y;(2) and Y4, Y, (2) is produced by backward recurrence for
n < r and by forward recurrence for n > r .

The accuracy of the algorithms was also tested by examining the numecrical

error in the Wronskian

error = Jup(2)Ya(2) = Jun(2)Yarr (2) — —. (3.14)

T2

For illustration, this error is divided by [J,11(2)| + |Jn(2)] ,

- Fa()a(2) = ()Y 2) ~ (257
el = i) + 1) (3.15)

The relative error |¢| is representative in all four functions involved.

The result follows when it is assumed that the relative errors in all four
functions involved have the same amplitude, but are uncorrelated. This error
le|, Jn(2) and Y, (2) for z=120--10i are depicted in figure. The relative error is
in the order of 10715, 1071% which compares favorably with the double precision

used in the codes.
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log10lUn(z)!, log10lYn(z)l, tog1Olerrorl
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Figure 3.3: —RelativeError—-

3.2 Solution of Linear Equations

A system of n linear equations in n unknown is usually cxpressed in the

general form as follow:

ayTy + a2 + ..0,Ty = b

1Ty -+ Q%o + .02, X, = [)2

On1T1 + An2T2 + ...0pn Ty = bn~ (316)

The coefficients ayj, @12, ..., @nn  are assumed to be floating point numbers
as are the right-hand sides 0;,by,...,b, . The problem is to find numbers
1, T2,...,Tn S0 that each of the equations in (3.16) is satisfied. Often it is
convenient to express (3.16) by using matrix-vector notation. That is, we can

write

Az =b (3.17)



where A is the n x n matrix.

Slightly more general and also useful is the uppertriangular form ol the
system (3.16) in which a;; = 0 if 7 > j . That is, the cocflicient matrix has

the form

( ay iz - - . Oin
0 oy . . . U2p
(3.18)
0 0 any
In this case, the equations are as follows
ay ) + a12%2 + 4133 + ... A Tn = by
Q922 + G23T3 + ...A9a Ty = by
An-1,n-1Tn-1 -+ Op—1nTpy = bn,—l.
OnnTn = Dp. (3.19)

The solution to such a system is easily determined by backsubstituting.

That is, the last equation is solved for z,, ,

Tp = bp/Gnn, (3.20)

then this value is used in the next to last equation to determine z,_ ,

Tn-1 = (bn-—]. - a‘n—l,na:n.)/an.—l,n-—l) (321)

which in turn is used in the (n — 2)nd equation to determine z,_, , ete.
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3.2.1 Elimination Method

The first method for the solution of equations is just an extension ol the [amiliar
method of eliminating one unknown between a pair of simultaneous equations.
It is generally called Gaussian elimination and is the basic pattern of a large

number of methods that can be classed as direct methods.

3.2.2 Gaussian Elimination

The most frequently used method for solving moderately sized linear systems
is also one of the oldest such methods, namely, Gaussian climination.

The idea of Gaussian elimination is to transform a linear system of the
general form (3.16) into a system of the special upper triangular form(3.18).
The solution is then found directly by backsubstitution. The transformation
can be done in such a way that, if exact arithmetic is used, the solution of
the triangular system will be the same as the solution to the original system.
Of course, computationally the transformation will involve rounding errors.
Hence the transformed system will have a solution that may differ somewhat
from the solution to the given system. Note, however, that the only error is
due to rounding, that is, there is no truncation error in this method.

The transformation referred to above is actually a series of transformation
in which the coeflicients in the lower part of the system are systematically re-
placed by zeros. First of all, note that the following elementary operations on
the system (3.16) have no effect on the solution of the system:

(i) An equation can be multiplied by a nonzero constant. That is, cach co-
efficient end the right-hand side can be multiplied by the same nonzero number.

(i1) Two equations can be added together and either of the equations re-

placed by the sum.

(iii) Two equations can be interchanged. That is, the equations can be



26

written down in any order.

To verify that (i) has no effect on the solution is trivial since such an op-
cration really does not change the equation. Also it is clear that (iii) has no
effect on the solution. Operation (ii), however, is not quite so simple.

To solve a system of linear equations,

1. Augment the nxn coeflicient matrix with the vector of right-hand sides

form a n X (n -+ 1) matrix.

2. Interchange rows if necessary to make the value of ay; the largest mag-

nitude of any coeflicient in the first column.

3. Create zeros in the sccond through nth rows in the first column by
subtracting a;;/a;; times the first row from the ith row. Store the a;/ay; in

aip 1= 2,...,M .

4. Repeat steps (2) and (3) for the second through the (n — 1)st rows,
putting the largest-magnitude coeflicient on the diagonal by interchanging rows
(considering only rows j to n), and then subtracting a;;/a;; times the jth row
from the ith row so as to create zeros in all positions of the jth column below
the diagonal. Store the a;j/aj; in a;;, s = j+1,...,n. At the conclusion of this

step, the system is upper-triangular.

5. Solve for z, from the nth equation by

In = an,n»l-l/aun- (322)

6. Solve for Z,_1,Tn-2,--,Z1 from the (n—1)st through the first equation

in turn, by
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n ,
Qin-1 " 2jmit) GijTj
Qi;

(3.23)

I; =

In this thesis, the linear equations of the total electric field for each cylin-
der are obtained by applying boundary conditions on the surface of the each

cylinder.

We have used this method to solve linear equations in matrix form in (2.36).



Chapter 4

NUMERICAL RESULTS AND
DISCUSSION

As mentioned in Chapter 1, the aim of this study is to analyze the effect of
a circular grating which consists of an array of conducting cylinders on the
transmission of electromagnetic fields radiated by a real or complex line source
placed inside this structure for both E and H polarization.

In our investigation, we are interested in periodic conducting cylinders. In this
chapter, numerical results for two polarizations (E and I polarizations) are
obtained. For these two cases, the subject is discussed in terms of normalized

power pattern and the directivity which represent two important parameters

in design problem.

4.1 Normalized Power Pattern

In this section, we have analyzed normalized power pattern. The associated

formula for the normalized power pattern is given as

U, )
= 4.1
Phorm = 0T, )P (1)

28
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where U = B! for I polarization and U** = H!** for H polarization.
For far field region the total field is obtained as

o) M
Umt (7', ¢) =K Z jn[-]n(ko"‘s)@]n(d’mrﬁ") - Z Trn,nCJCkOCOS((bm¢"')(‘!Jm/”"‘] (42)
n=-—o0o m=|
where T, = Cp, for I polarization and Ty, = D, for H polarization, M
is the total number of cylinders, ¢,, is the angle between observation direction
. K2r 270 _iknr
and mth cylinder, I{ = —J—i,/ﬁi{)7]°e-7k°’.

qwe

4.1.1 F Polarization

In order to observe the effect of conducting cylinders on the radiation of the
far-ficld, we have examined power pattern of the source. In the power pattern,
normalized power is changed with observation angle ¢. In this chapter, normal-
ized power is plotted as a function of observation angle for different paramecters
of the structure and sources. The number of cylinders are shown by M and
N is the truncation number. We have started to compute power pattern for
the case of no interaction between cylinders. Then, we have included mutual
interaction between cylinders. One of the advantages of the proposed method
is the possibility of computing the power pattern of the ficld scattered by many
cylinders including all mutual interactions between the cylinders or without in-
teractions by simply setting all the elements in the ofl-diagonal submatrices to
zero. The interaction component of the scattered ficld is an important quan-
tity in the multiple scattering. To illustrate the effect of mutual interaction on
the total field pattern, Figure (4.1) and Figure (4.2) are plotted. They show
the power of four and six identical conducting cylinders cach of radius 0.0064A
(ka=0.4) which are located symmetrically with respect to z and y-axes and
excited by a complex source. The parameters are ka = 0.4, kb = 5 which
corresponds to a beam width of 42°, radome radius (¢) of 10\, # = 0 mcans
beam is directed toward cylinder. From these {igures, we can say that the scat-
tered field due to the interaction between cylinders must be considered since
it causes a discrepancy of b to 10 dB especially in the side lobe regions.

Figure (4.3) shows how the power pattern of the real line source changes
with the observation angle (¢). For a real line source, the directivity of the
antenna is unity, because the real line source radiates encrgy uniformly in
all directions. Because of the symmetric geometry, the total field is a periodic
function of angle ¢ whose period depends on the number of cylinders. The ficld
is scattered more with increasing the number of cylinders. We are interested
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in complex line source more than in real line source since the former is a
directional source and directivity is an important parameter of the antenna.

For a complex line source, the directivity is greater than oune (D > 1).
The incident field changes with angle ¢ as Einc = Cekobeos(3-h) which yields a
maximum at ¢ = § and a minimum at ¢ = F-+7 as it scen in Figure 4.4. This
figure shows the effect of cylinders on radiation of electric field. If the source
is in free space (absence of cylinders), amplitude of electric field is maximum
at the beam direction and minimum at the opposite direction. If the source is
placed between two cylinders, the main beam is distorted and decreased. At
the same time, the backscattered field is created by the scatterers.

The truncation number (N) shows how many terms in the series (1.2) are
needed to obtain convergence. The truncation number required to obtain a
specified accuracy depends on the parameters ka and ke. As the radius of the
cylinders increases, more terms are needed. However, for very small cylinder
radius (@ < A) which is used in this study, the first nine terms (N = 4) are
suflicient to obtain convergence for k¢ = 62.8. The Figures 4.5, 4.6 and 4.7

illustrate this result.

In order to show how power pattern is eflected by the total number of
cylinders (M), we have plotted FFigures 4.8 through 4.11 for a grating consisting
of two, four, six and ten cylinders with ka = 0.4, kb = 5, kc = 62.8, f = 0,
N =5 and ry = 0 (source is in the center of the grating). Irom these figures,
we can see that the main beam is distorted more with increasing the number
of cylinders. At the same time, the sidelobes and backlobes of the beam are
increased with increasing the number of cylinders as well which is mainly due
to the contribution of each cylinder to the scattered field.

The power pattern is dependent on the structure parameters. This de-
pendence is presented in Figures 4.12, 4.13, 4.14 for grating consisting of four
cylinders. In these figures, the power pattern is obtained for different radii
of grating and cylinders. As observed in these figures, the distortion of the
main beam and backscattered field are increased with increasing cylinders ra-
dius and decrecasing radome radius. Because, when we decrease radome radius
and increase cylinders radius the interactions between source and cylinders

increase.

The cffects of the beam parameters on the power pattern are observed in
Figures 4.15 and 4.16. Fromn these figures, we can say that the sidelobes and
backlobes of the beam are decreased with increasing beam width and with
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choosing beam direction between two cylinders. If we do these, the distortions

of the main beam are decreased.

4.1.2 H Polarization

In this section, we have analyzed magnetic field and power pattern of magnetic
line source. The power pattern of magnetic line source (H polarization) is
similar to the power pattern of electric line source (I polarization). Thus, we
have not explained figures for If polarization in detail. We have compared ¢

and H polarization in this section.

The effect of cylinders on the magnetic field is shown in Figure 4.17. In
this figures, the total magnetic field is plotted for two cases. Iirst case, the
source is in free space without any cylinder. In this case, the field is maximum
when ¢ = § (where # = 0) and zero when ¢ = f + 7. Second case, the
source is in between two cylinders. In this case, the scattered ficld is created
due to conducting cylinders. The cylinders create backscattered field. Figure
4.18, 4.19 and 4.20 present power pattern for different truncation numbers and
for different number of cylinders. From these figures, we can see that, the
truncation number N equal to four is suflicient to calculate field correctly for
ka =04, kb=>5, kc=62,8 and M = 2,4,6. The total number of cylinders do
not affect the main beam, but it affects the backscattered ficld. If we increase
the number of cylinders, the ripple of backscattered ficld increases mainly due
to the number of cylinders at the backward direction of beam increase. The
effect of cylinder radius is examined in Figure 4.21. If we increase cylinder
radius, the backlobes level increases due to the interactions between source

and cylinders.

If we compare the results of £ and H polarizations, from the Figures 4.4,
4.5, 4.6, 4.7 and Figures 4.17, 4.18, 4.19, 4.20 we can say that, the effects of the
conducting cylinder in E polarization is greater than the effects of cylinders in
H polarization. Because, power pattern in [ polarization is more seusitive to
the size of cylinder than power pattern in I polarization as seen from Figure

4.13 and Figure 4.21.
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Figure 4.1: Power at far zone (for E polarization) for a grating consisting of

four cylinders :M=4, kc=62.8, kb=

5, beta=0, ka=0.4, N

=3J.

0 T T T

Power, dB
o
S
T

i '

NI llﬂﬂ "tl"ll‘l
. ’l

v "|

"

'
\ll

”I.I ‘/ ‘”” USRS
, ~|ll

No- intgaraction
Interaction

1

50 100 150

200 250 300
Angle, deg

350 400

Figure 4.2: Power at far zone (for E polarization) for a grating consisting of

six cylinders :M=6, kc=62.8, kb=

5, beta=0, ka=0.4, N=



Normalized Power, dB

_1.4 1 L 1 1

1 1. 1

0 50 100 150 200
Angle, deg

250 300 350

400

33

Figure 4.3: Power at far zone (for E polarization) for a grating consisting of

six cylinders :M=6, ka=0.04, ke=3.14, N=4.
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Figure 4.4: Electric field at far zone (for E polarization) for a grating consisting
of two cylinders :M=2, kc=62.8, kb=>5, beta=0, ka=0.4, N=5.
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six cylinders :M=6, ka=0.4, kb=5, kc=62.8, beta=0, N=5.
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Figure 4.17: Magnetic Field (for H polarization) for free space and for two

cylinders :ka=0.4, kb=>5, kc=62.8, beta=0, N=5.
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Figure 4.18: Power at far zone (for H polarization) for a grating consisting of
two cylinders :M=2, ka=0.4, kb=5, kc=62.8, beta=0.
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4.2 Directivity

One very important description of an antenna is how much it concentrates
energy in one direction in preference to radiation in other direction. This
characteristics of an antenna is called directivity.

Directivity is the ratio of the maximum radiation intensity to the average

radiation intensity,

Un,
D= U:’” (4.3)
where U is the radiation intensity(w/unit solid angle)
U= ﬁlElz (4.4)
2n

and 7 is the intrinsic impedance. The formula of the directivity in terms of
electric field intensity is as follows
27T|Ema.'c'2
=T o :
3" |E(g)[2dg

In order to avoid the integral, we use Parseval’s Relation:
1
= / () 2dt = 3 Jan|? (4.6)
0o /1o n

where a,, are the angular Fourier expansion coefficients of the ficld in far- zone.
We can write the formula for directivity in 2 polarization by using Parseval’s

Relation as

lEma:z:IZ
D=— . 4.7
2on lan|2 ( )
In this study, for E-polarization a,, have been found as
. A{ .
Uy = jan(koTs)C_‘?m,” -+ j2an(k0)c Z 07,17L6-]"¢"'. (48)
m=1

For H-polarization a,, is given as

M
an = " u(kors)e™ I 4 52 T, (ko) Z D,ye” i tm (4.9)

m=1
where 75 = jb, b is related to the beam width, ¢, = f, f is the beam direction,
ém 1s the angle between the observation direction and mth cylinder. Directivity
of the source is analyzed for both E and I polarization.
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4.2.1 F Polarization

In order to show how the directivity of the source is eflected by the grating
structure and its parameters, the Figures 4.22 through 4.29 arc plotted. If we
look at the IFigure 4.22, the directivity of the source in free space does not
change with beam direction. It does not depend.on the beam dircction. If the
source is near a single cylinder, the directivity changes with beam direction.
When the bean is directed toward the cylinder, the minimum directivity is ob-
tained. When the beam is declined by about 18° from the nearest cylinder, the
maximum directivity is obtained. Because, when the beam is directed toward
the cylinder, the conducting cylinder scatters the field at backward direction
and at this point the interference of incident field and scattered field is destruc-
tive and the maximuin field decreases. Thus, dircctivity is decreased. On the
other hand, when the beam is declined by about 18° from the nearest cylinder,
the field is scattered in all directions. The superposition of the incident field
and the scattered field occurs, and the interference appears to be constructive.
Thus, the maximum amplitude of the total field is obtained..

In Figures 4.23 through 4.27, the directivity of the source for gratings con-
sisting of a periodic array of two, three, four, five and six conducting cylinders is
obtained. In these figures, the directivity variations versus the beam direction
are presented. The variations of directivity with beam direction is effected
by the number of cylinders. When we increase number of cylinders on the
surface of the grating, the oscillation of the directivity between two cylinders
decreases. The maximum directivity is obtained when the beam is declined

about 18° from the nearest cylinder.

Figures 4.27 and 4.28 present how the directivity changes with changing
cylinder radius for various numbers of cylinders on the surface of the grating.
As expected, incrcasing the radius a decreases the directivity. Number of
cylinders do not affect the dependence of the overall directivity versus cylinder

radius very much.

The dircctivity variations versus grating radius ¢ are presented in Figure
4.29 for grating of two cylinders when kga = 0.4, kob = 5, § =0, 7o = 0 and
N = 5. From this figure, we can see that, when we increase grating radius,
the directivity makes oscillations with decreasing magnitude as a [unction of
the grating radius. It is caused by the in-phase or out-phase superposition of
the incident and scattered fields which depends on the distance between the
source and the cylinder. The period of this oscillation is about A/4. Since the
effect of the dielectric radome is optimized when 2¢ = nA/2. Thus, ¢ = n)\/4
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forn=1,2,..

The relation between directivity and frequency of the source is presented
in Figures 4.30, 4.31 and 4.32. Tigure 4.33 shows how directivity depends on
wavelength. In these figures, directivity makes oscillations with frequency and
wavelength. The reason of this is related to the effect explained in the preceding
paragraph since the frequency and wavelength of the source is directly related
to the wave number (k). The wave number affect the phase of the ficlds.

4.2.2 H Polarization

The directivity of the source for grating consisting of a periodic array of one,
two, four, six cylinders are presented in Figures 4.34 through 4.37. The varia-
tions of directivity with beam direction is effected by the number of cylinders.
The directivity versus beam direction in H polarization is similar to the direc-
tivity versus beam direction in IZ polarization. The differences between them
are related to the magnitude of the directivity and changing when beam di-
rection is near the cylinder. In H polarization because of the edge diffraction,
the minimum directivity is obtained when the beam is declined by about 10°
from the nearest cylinder and the maximum directivity is obtained when the
beam is declined by about 20° fromn the nearest cylinder. The amplitude of the
oscillation is less the mplitude of the oscillation in Iy polarization.

The directivity variations versus grating radius ¢ are presented in Figure
4.38 for grating of two cylinders when kga = 0.4, kob =5, § = 0, 79 = 0 and
N = 5. From this figure, we can see that, when we increase the grating radius,
the directivity makes oscillations with decreasing magnitude as a function of
the radome radius. It is caused by the in-phase or out of | phase which depend
on the distance between source and cylinder interference of the incident field
and scattered field. The period of this oscillation is about A/4.
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Figure 4.23: Directivity versus Beam Direction (for E polarization) for a grating
consisting of two cylinders:M==2, kc=62.8, kb=>5;ka=0.4, N=5.
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Figure 4.24: Dircctivity versus Beam Direction (for E polarization) for a grating
consisting of three cylinders:M=3, kc=62.8, kb=>5, ka=0.4, N=5.
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Figure 4.25: Directivity versus Beam Direction (for E polarization) for a grating
consisting of four cylinders:M=4, kc=62.8, kb=5, ka=0.4, N=5.
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Figure 4.26: Directivity versus Beam Direction (for E polarization) for a grating
consisting of five cylinders:M=5, ke=62.8, kb=>5; ka=0.2, N=4.
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Figure 4.27: Directivity versus Beam Direction (for E polarization) for a grating
consisting of six cylinders:M=6, ke=62.8, kb=5, N=6.
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Figure 4.31: Directivity versus frequency (for E polarization) for a grating
consisting of four cylinders :M=4, c=1.5m, a=lcm, b=12cm, beta=0, N=5.
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Figure 4.32: Directivity versus frequency (for E polarization) for a grating
consisting of two cylinders :M=2, ¢c=1.5m, a=lcm, b=12cm, beta=0, N=5.
10 T T T T T T T T

9.5

Directivity
@
@ &

N
2

6.5

6 1 1 1 1 1 1 1 1
0.13 0.135 0.14 0.145 0.15 0.155 0.16 0.165 0.17 0.175
Wave length
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Figure 4.35: Directivity versus Beam Direction (for H polarization) for a grat-
ing consisting of two cylinders:M=2, kc=62.8, kb=5, ka=0.4, N=5.
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Figure 4.36: Directivity versus Beam Direction (for H polarization) for a grat-
ing consisting of four cylinders:M=4, kc=62.8, kb=>5, ka=0.4, N=5.
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Figure 4.37: Directivity versus Beam Direction (for H polarization) for a grat-
ing consisting of six cylinders:M=6, kc=62.8, kb=5, ka=0.4, N=5.
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4.3 Complex Source Position

We have two cases for complex source position: one is the source at the center
of the structure, the other case is the source shifted from the center of the

radome as it seen in the Figure 4.39.

v Y
Main Beam Main Beam
S i p -
Line source P T Tx
(n) Source is shifted as l;, (b) Source is at the center of the geometry
I'igure 4.39: Position of the complex line source.
Directivity of the source can be found as
Ema:c 2
D = I—-————'-Z (4.10)
2n ,a’nl
where
M
. Ain —jn :2n —jne, 1
an = J"Jn(kors)e ™" 4 52 T (ko)e Y Crune 70, (4.11)
m=1

If the source is at the center of the structure, r; = jb, ¢; = [ or if the
source is shifted from the center as 79, r; = \/7'3 — 0% + 2j7obcosf and ¢, =
C()S—](HLM).

s

The Figure 4.40 and 4.41 show how the initial position of the source affects
the power pattern. Here, kc = 62.8, kb =5, ka = 0.4, # = 180° and N = 5.
When the source is moved in backward direction of the beam, the distortions
of the main beam decrease and the backscattered field decreases as well.

The Figures 4.42 and 4.43 present how the total field changes with the

source position.

The directivity variations versus source position 7o are presented in Figures
4.44 through 4.47 for both E and H polarization. For the E polarization, the



superposition of the incident wave and scattered wave depend on the delay
distance (distance between source and scatterer). When the delay distance is
a multiple of A, the interference is constructive; when it is an odd multiple of
A/2, the interference is destructive. The phase difference between H and E

polarization is about 90°.
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Figure 4.40: Power versus Angle (E polarization) for a grating consisting of
four cylinders: kc=62.8, kb=>5; ka=0.4, Beta=180 deg, N=5, r0=2lambda and
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Figure 4.41: Power versus Angle for a grating consisting of four cylinders:
ke=62.8, kb=>5; ka=0.4, N=>5, r0=2lambda.
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Figure 4.42: Total power versus r0 (E polarization)for a grating consisting of
a single cylinders:M=1, kc=62.8, kb=5;ka=0.4, Beta=0 deg, N=5.
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Figure 4.43: Total power versus source position (for E polarization) for
a grating consisting of two cylinders:M=2, kc=62.8, kb=5; ka=0.4, N=5,
r0=2lambda
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Figure 4.44: Directivity versus source position (for E polarization) for a grating
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Figure 4.45: Directivity versus source position (for E polarization) for a grating
consisting of two cylinders: M=2, kc=62.8, kb=5; ka=0.4, N=5.
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Figure 4.46: Directivity versus source position (for H polarization) for a grating
consisting of one and two cylinders: kc=62.8, kb=>5;ka=0.4, Beta=0 deg, N=5.
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r0=2]lambda.



Chapter 5

CONCLUSIONS

In this thesis, the problem of electromagnetic wave penetrating through a circu-
lar radome with gratings consisting of an array of periodic perfectly conducting
cylinders is considered. To the best of our knowledge, this is the first study
made so far to such a problem with this approach. The far field in both polar-
izations is calculated canonically for real and complex line source surrounded
by a grid structure. Extension to other types of excitations such as plane wave
is straightforward and requires minimal changes in the analysis. The analysis
is cast into a form which is simple for computations as well as in predict-
ing the effect of mutual interactions between any number of cylinders. This
technique is used for modeling two-dimensional scattering objects by using a
number of parallel circular conducting cylinders. The validity and usefulness of
the proposed method for modeling circular radome surrounded by conducting

cylinders are presented by several examples.

The results for the normalized power pattern and the directivity are cal-
culated numerically for various structure parameters and as a function of the
observation angle and of the beam orientation. The directivity variations with
beam direction are also presented. For the validation of methods, results are
generated and compared with the available ones for simple geometries.

According to our numerical data, the distortion of the main beam increases,
and the directivity decreases with increasing the number of cylinders and with
increasing the radius of each cylinder. The distortion of the normalized power
is decreased by increasing the radius of the grating. The directivity shows
considerable variations as a function of the beam direction. It shows oscillations
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as a function of both the radome radius and the frequency of the source.
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