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ABSTRACT 

REPETITION-RATE STABILIZATION OF A FEMTOSECOND STRETCHED-

SPECTRUM FIBER LASER 

Coşkun Ülgüdür 

M.S. in Physics 

Supervisor: Asst. Prof. Dr. Fatih Ömer İlday 

August, 2008  

Passively modelocked lasers produce trains of femtosecond pulses, with the temporal 

separation between the pulses being determined by the length of the laser cavity. The 

repetition rate of the laser is inverse of this temporal separation. For a free-running laser, 

the repetition rate is very stable over short time scales (less than 1 ms), but drifts due to 

environmental effects on a longer time scale. For applications demanding a precise 

repetition rate to be maintained, such as optical frequency metrology, the laser needs to be 

locked to an RF or microwave reference source with a feedback loop acting on an actuator 

within the laser cavity.  

In this work, repetition-rate stabilization of a “stretched-spectrum” fiber laser is reported, 

which corresponds to a new modelocking regime. As the name implies, the laser produces 

pulses undergoing periodic breathing of the spectra during a complete round trip through 

the cavity. To the best of our knowledge, this breathing is the strongest modification 

observed in a laser to date. It is noteworthy that even under such strong nonlinearity the 

laser is more robust than the regular stretched-pulse laser.  
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Encouraged with its robustness, it is proposed that the stretched-spectrum fiber laser is a 

promising alternate to laser oscillators for frequency metrology applications and laser 

master oscillators in use with accelerator based next-generation light sources. After 

photodetection of the laser output, one of the upper harmonics of the laser is locked to a 

highly stable dielectric resonator oscillator (DRO) at 1.3 GHz. In order to reduce the 

environmental effects on the laser, a handmade encasing was developed and temperature 

control of the fibers in the cavity was implemented. Remarkably, the custom encasing of 

the laser dramatically improved the laser’s stability, outperforming the DRO up to a 5 kHz 

bandwidth. Since the heating-loop is not sensitive enough, latter upgrade does not decrease 

the phase noise of the laser, but ensures the temperature stability stays within limits in 

unclimatized environment. With the present setup, we observe a maximum locking range of 

a few kHz. The system has the potential to stay in-lock indefinitely, as long as the 

excessive perturbations on the system are prevented.  
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ÖZET 
FEMTOSANİYE, GERİLMİŞ TAYFLI FİBER LAZERDE TEKRAR FREKANSININ 

DENGELENMESİ 

Coşkun Ülgüdür 

Fizik Yüksek Lisans 

Tez Yöneticisi: Asst. Prof. Dr. Fatih Ömer İlday 

Ağustos, 2008  

Pasif olarak mod kilitli lazerler femtosaniye atım dizisi oluşturur. Bu atımların zamansal 

aralıklarını lazer kovuğunun uzunluğu belirler. Lazerin tekrar frekansı bu zamansal aralığın 

tersidir. Serbest hareketli lazerlerde, tekrar frekansı kısa zaman dilimlerinde (1ms’den daha 

az) oldukça kararlı olmasına rağmen çevresel faktörlerden dolayı daha büyük zaman 

dilimlerinde sapar. Optik frekans ölçme bilimi gibi tekrar frekansının kesin olarak belirli 

olması gereken uygulamalar için lazer bir geribesleme döngüsü ile RF ya da mikrodalga 

referans kaynağa kilitlenir. 

Bu çalışmada yeni bir mod kilitleme rejimi olan gerilmiş tayflı bir fiber lazerin tekrar 

frekansının dengelenmesi bildiriliyor. İsmi işaret ettiği gibi, bu lazer kovuk içinde bir tur 

boyunca periyodik olarak daralıp genişleyen tayfa sahip atımlar üretir. Bilgimiz dahilinde 

bu daralıp genişleme şimdiye kadar bir lazer de gözlemlenmiş en güçlü değişimdir. Bu 

derece yüksek doğrusal olmayan etkilerde bile lazerin normal bir gerilmiş atımlı lazere 

nazaran daha sağlam olması dikkate değer. 

Sağlamlığından cesaret alarak, gerilmiş tayflı fiber lazerin frekans ölçüm bilimi ve 

hızlandırıcı tabanlı yeni nesil ışık kaynağı uygulamalarında umut veren alternatif lazer 
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salıngaç olduğu öneriliyor. Lazer çıktısının fotoseziminden sonra üst harmoniklerinden biri 

1.3 GHz’de çalışan, yüksek derecede kararlı bir dielektrik çınlaç salıngacına (DRO) 

kilitlenir. Lazer üzerindeki çevresel faktörleri azaltmak için, el yapımı bir kutulama 

yapılmış ve kovuk içindeki fiberlerin sıcaklık kontrolü sağlanmıştır. Lazerin kutulanması 

kararlılığını dramatik olarak arttırmış, 5kHz bant aralığına kadar DRO’dan daha kararlı 

olmuştur. Sıcaklık kontrolü yeteri kadar hassas olmadığından, lazer faz gürültüsünü 

azaltmamış, fakat klimasız ortamda lazer sıcaklığının limitler içinde kalmasını sağlamıştır. 

Şu anki kurulumla, en fazla birkaç kHz kilitleme sınırı elde edilmektedir. Aşırı 

rahatsızlıklar engellenirse sistem potensiyel olarak sonsuza kadar kilitli kalabilir.       

      

 

 

 

 

 

 

 

 

Anahtar sözcükler: Femtosaniye fiber lazer, gerilmiş tayflı fiber lazer, lazer faz gürültüsü, 

lazer tekrar frekansı, tekrar frekansı kilitleme, faz kilitli döngü 
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Chapter 1  

1 Introduction 

1.1.  Brief History of Fiber Lasers  

19th century hosts the origins of telecommunications. First the demonstration of telegraph 

by Samuel Morse in 1837, following the first telephone exchange operated by Alexander 

Graham Bell in 1878 initiated the rapid discoveries of communication means. James C. 

Maxwell’s clarification of “Maxwell’s Equations” in 1878 led to the discovery of radio 

waves by Heinrich Hertz in 1888 and in 1895 the first radio is demonstrated by Guglielmo 

Marconi. Early radio has a bandwidth 15 kHz and after more than a century the maximum 

bandwidth of wireless communication is still around a few hundred MHz. The reason is 

that free space propagation of signals is not suitable for reliable/fast communication links. 

The solution to this problem is to use a waveguide for light (information) propagation 

hence avoiding distortions present in free space. The basic phenomenon responsible for 

guiding of light in waveguides is total internal reflection. Optical fibers, the most common 

waveguides, were first fabricated uncladded in 1920s. However the real origin of fiber 

optics was not born until the first usage of cladding layer on optical fibers in 1950s. The 

use of cladding substantially improved the fiber performance. Nevertheless it is the use of 

low-loss silica in fiber fabrication that lets losses around 0.2 dB/km in the 

telecommunication wavelength, 1.5 µm.  
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The developments in optical fibers led not only to advancements in telecommunications, 

but also to the birth of a new field, nonlinear fiber optics. Studies of nonlinear phenomena 

in optical fibers such as Stimulated Raman- and Brillouin-scattering, optically induced 

birefringence, parametric four-wave mixing and self-phase modulation were conducted in 

1970s [1-7]. An important milestone was that in 1973, it was suggested that optical fibers 

can support soliton-like pulses by the interplay between nonlinear and dispersive effects of 

fibers [8].  Optical solitons were first observed in a 1980 experiment [9] and led to further 

advances in the field of nonlinear optics. The field continued to grow in 1990s, especially 

after the fabrication of optical fibers doped with rare-earth elements (Erbium, ytterbium, 

etc). Fiber laser oscillators were the next phase in the field of nonlinear optics. However 

one problem was that soliton-like mode-locking regime in fiber lasers has severe 

limitations in terms of pulse energy and duration [10, 11]. Several other mode-locking 

regimes (dispersion-managed/stretched-pulse [12], similariton [13, 14], all-normal GVD 

[15]) have been demonstrated in recent years, which overcome many of these limitations. 

Using these new approaches, optimizing pulse energy, more than 10 nJ and optimizing 

pulse duration, pulses as short as 35 fs can be routinely obtained [16]. 
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1.2.  Motivation in Synchronization of Laser Oscillators   

Passively modelocked lasers generate trains of femtosecond pulses, corresponding to a 

frequency comb in frequency domain. Although fiber lasers have superior short term 

stability (above 100 kHz), their long term performance suffers from various effects (i.e. 

rapid temperature change, pump power instabilities, upper state lifetime of the dopant in 

gain fiber, etc). This problem can be solved by locking the laser to an RF or microwave 

reference oscillator, hence improving its short term stability. As the laser pulses are 

depicted as frequency combs in frequency domain, synchronizing a laser to an ultrastable, 

but single frequency RF source would automatically turn out to be an ultrastable frequency 

source not at a single frequency but at discrete frequencies separated by the repetition rate 

of the laser. Clearly stabilizing a laser to an ultrastable source at particular frequency and 

getting the desired ultrastable frequency of choice would be much more efficient in every 

aspect rather than building a second RF source at the choice of frequency.  

 

 

 

 



 

Chapter 2  

2 Introduction to Nonlinear Optics 

Much of ultrafast optics is based on understanding the basics of nonlinearities in optics. 

This chapter gives basic theories of nonlinear optics, followed by brief descriptions of 

major optical interactions due to nonlinearity. This chapter is mostly based on [17], further 

details can be found there.  

2.1.  Nonlinear Optical Susceptibility 

Nonlinear optics emerged with the realization that optical properties of a material changes 

with light presence. Modification of optical properties in a material requires high intensities 

of light. At first this phenomenon seemed to be a problem for optical studies, but later 

became the foundation of laser technology.  

The nonlinearity occurs in the sense that the response of a material to applied light is 

“nonlinear”. For example, high harmonic generation processes depends on power of the 

applied field strengths, i.e. square of the applied field leads to second harmonic generation, 

cube of the applied field leads to third harmonic generation. 
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Polarization has a key role in describing nonlinear optics. It shall be examined in section 

3.1 that the nonlinear wave equation is,  

ܧଶߘ െ
1
ܿଶ

߲ଶܧ
ଶݐ߲ ൌ ଴ߤ

߲ଶܲே௅

ଶݐ߲                                                  ሺ2.1ሻ 

where c is the speed of light in vacuum and n is the linear refractive index. One can see 

from the above equation that wheneverడమ௉ಿಽ

డ௧మ  term is nonzero, the charged particles are 

accelerated and as Larmor’s theorem stated, charged particles under acceleration are the 

source of electromagnetic radiation.  

In conventional optics, polarization ܲሺݐሻ of a material depends on the field strength ܧሺݐሻ 

as; 

ܲሺݐሻ ൌ ሻ                                                         ሺ2.2ሻݐሺܧ଴߯ሺଵሻߝ                   

where ߯ሺଵሻ is the linear susceptibility of the material. However, nonlinear response of 

materials does not satisfy Equation (2.2). The applied field causes anharmonic motion of 

bound electrons in a material as a result polarization ܲሺݐሻ satisfies the more general 

relation; 

ܲሺݐሻ ൌ ሻݐሺܧ଴൫߯ሺଵሻߝ ൅ ߯ሺଶሻܧଶሺݐሻ ൅ ߯ሺଷሻܧଷሺݐሻ … ൯                            ሺ2.3ሻ                  

ؠ ௟ܲ௜௡௘௔௥ ൅ ௡ܲ௢௡௟௜௡௘௔௥                                                                    ሺ2.4ሻ                   
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where  ߯ሺଶሻ and ߯ሺଷሻ are known as the second and third-order nonlinear optical 

susceptibilities. In these generalized equations (Equations. (2.3) and (2.4)), ߝ଴߯ሺଵሻܧሺݐሻ or 

௟ܲ௜௡௘௔௥, the linear term is the dominant contribution to the overall polarization of the 

material. Other terms are the correction factors required for compensation of very high 

applied field effects on polarization. As one might expect, the propagation of light in fiber 

is ruled by Maxwell’s equations from which wave equation is emerged. Nonlinear terms in 

polarization also transform the wave equation into a nonlinear differential equation which 

has special solutions (light propagation in fibers will be examined in greater detail in later 

sections). ߝ଴߯ሺଶሻܧሺݐሻ, the second order nonlinear polarization is responsible for effects like 

Second-Harmonic Generation whereas ܲሺଷሻሺݐሻ, the third order nonlinear polarization 

triggers effects like Kerr Nonlinearity, both of which will be explained in detail in 

subsequent sections. ܲሺଶሻሺݐሻ occurs in media with molecular level inversion symmetry 

(centrosymmetric media), hence it is zero for liquids, gases, amorphous solids(i.e. glass) 

and most crystals because they have no inversion symmetry. However ܲሺଷሻሺݐሻ  can occur 

both in centrosymmetric and noncentrosymmetric media. This distinction is the reason that 

in spite of high intensities, there is no second harmonic generation in a laser cavity 

consisting of only fibers and free-space; and one needs birefringent crystals inside a laser 

cavity to create second harmonic of the pulse. Similarly it is the reason that weaker 

polarization term (ܲሺଷሻሺݐሻ) has the dominant nonlinear effect in a fiber laser. i.e. Kerr 

effect. 

A simple order of magnitude estimate of susceptibility values might be calculated as 

follows; the second order polarization term ܲሺଶሻሺݐሻ would be significant enough with 

respect to linear term ܲሺଵሻሺݐሻ when the amplitude of the applied field strength E is on the 
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order of atomic electric field strength Eat=e/ao
2 where e is the electron charge and ao=ћ/me2 

is the Bohr radius of the hydrogen atom (ћ is Planck’s constant divided by 2π and m is the 

electron mass). Substituting the values of physical constants ћ, m and e from literature, Eat  

is found to be 6. 66෪ ൈ 10଺ m/V. Thus the second-order susceptibility χ(2) would be on the 

order of χ(1)/ Eat.  χ(1) is almost unity for condensed matter, so χ(2) value for condensed 

matter is given as; 

χ(2) ≈ 2.09 x 10-11 m/V                                                (2.5) 

Similarly, χ(3)would be on the order of  χ(1)/ Eat
2,  which has a value for condensed matter; 

χ(3) ≈ 4.2 x 10-23 m2/V2                                                      (2.6) 

These order of magnitude values of linear susceptibility terms would be a hint why 

nonlinearity requires high intensities to govern light propagation inside optical media.  

2.2. Nonlinear Optical Interactions 

In this section a number of nonlinear optical interactions will be introduced briefly and be 

explained how they can be integrated into Equation (2.3), the general polarization equation. 

However some of these interactions are beyond the scope of this thesis, hence only the 

interactions that govern the physics in fiber lasers will be examined in detail in later 

sections.  
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Second-Harmonic Generation (SHG): 

(a)                                                                                  (b)  

 

 

 

Figure 2.1. (a) Illustration of SHG. (b) Energy-level diagram SHG. 

In second-harmonic generation two photons at same frequency ω are vanished and a photon 

at frequency of 2ω is created in a single quantum mechanical process. This is illustrated in 

Figure 2.1.a. In Figure 2.1.b, the solid line is the ground state and the dashed lines are the 

virtual levels, which represent essentially the combined energy of one of the energy 

eigenstates of the atom and of one or more photons of the radiation field. 

In theory a laser beam with electric field;  

ሻݐሺܧ                                             ൌ ௜ఠ௧ି݁ܧ ൅ ܿ. ܿ.                                                      ሺ2.7ሻ                  

is incident upon a crystal with a nonzero second order susceptibility χ(2) then the nonlinear 

polarization that is created in such a crystal is given as; 

             ܲሺଶሻሺݐሻ ൌ ሻݐଶሺܧ଴߯ሺଶሻߝ ൌ כܧܧ଴߯ሺଶሻߝ2 ൅ ൫ߝ଴߯ሺଶሻܧଶ݁ିଶఠ௧ ൅ ܿ. ܿ. ൯            ሺ2.8ሻ                  

ω 
 2ω 

ω
 ω 

 

ω 
 

2ω 
 

  χ(2) 
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In Equation 2.8, the second-order polarization consists of a contribution at zero frequency 

and a contribution at frequency 2ω. According to Equation (2.1), the nonlinear wave 

equation, contribution at frequency 2ω leads to the generation of radiation at the second-

harmonic frequency. However contribution at zero frequency cannot lead to the generation 

of any electromagnetic radiation because its second time derivative is zero.   

Sum-Frequency Generation (SFG): 

(a)                                                                                  (b)  

 

 

 

Figure 2.2. (a) Illustration of SFG. (b) Energy-level diagram SFG 

Sum-frequency generation is analogous to that of second-harmonic generation, except that 

in SFG the two input frequencies are different as in Figure 2.2.a. If a laser beam with 

electric field E(t) (Equation (2.7)) is incident upon a crystal with nonzero χ(2), the nonlinear 

polarization that is created in SFG process is given by; 

         ܲሺ߱ଵ ൅ ߱ଶሻ ൌ                   ଶ                                                 ሺ2.9ሻܧଵܧ଴߯ሺଶሻߝ2

 

ω3= ω1+ ω2 
 ω2 

ω1 
  χ(2) ω2 

 

ω1 
 

ω3 
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Difference-Frequency Generation (DFG): 

(a)                                                                                  (b)  

 

 

 

Figure 2.3. (a) Illustration of DFG. (b) Energy-level diagram DFG 

In difference-frequency generation, difference frequency of applied fields is generated 

(Figure 2.3). The process is described by the nonlinear polarization;  

                                          ܲሺ߱ଵ െ ߱ଶሻ ൌ ଶܧଵܧ଴߯ሺଶሻߝ2
ሺ2.10ሻ                                              כ                   

To consider the general picture of second order frequency generation, assume an optical 

field with electric field; 

ሻݐሺܧ                     ൌ ௜ఠభ௧ି݁ܧ ൅ ௜ఠమ௧ି݁ܧ ൅ ܿ. ܿ.                                        ሺ2.11ሻ                   

is incident upon a nonlinear medium with nonzero χ(2). Then the nonlinear polarization 

created in such a medium is of the form; 

 

ω3= ω1- ω2 
 ω2 

ω1 
  χ(2) 

ω1 
 

ω3 
 

ω2 
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ܲሺଶሻሺݐሻ ൌ ଵܧ଴߯ሺଶሻሾߝ
ଶ݁ିଶ௜ఠభ௧ ൅ ଶܧ

ଶ݁ିଶ௜ఠమ௧ ൅ ଶ݁ି௜ሺఠభାఠమሻ௧ܧଵܧ2 ൅ ଶܧଵܧ2
௜ሺఠభିఠమሻ௧ି݁כ                          

                                                                        ൅ܿ. ܿሿ ൅ ଵܧଵܧ଴߯ሺଶሻሾߝ2
כ ൅ ଶܧଶܧ

                        ሿ                                         ሺ2.12ሻכ

Each of the complex amplitude term of various frequency components of this nonlinear 

polarization corresponds to different nonlinear process. First two terms would be the SHG 

form, third one is the SFG form and the last one is the DFG form. However, one should 

note that no more than one of these frequency components will be present with any 

appreciable intensity in the radiation generated by the nonlinear optical medium. The 

reason is that nonlinear polarization processes can produce decent output signal only if a 

certain phase-matching condition is satisfied.  

Third-Order Polarization: 

Third-order contribution to the nonlinear polarization in a nonlinear media with nonzero χ(3) 

is; 

                                                 ܲሺଷሻሺݐሻ ൌ ሻ                                                 ሺ2.13ሻݐଷሺܧ଴߯ሺଷሻߝ                    

For the general picture, an applied electric field consisting three frequency components is 

assumed to be incident upon the nonlinear media; 

ሻݐሺܧ ൌ ௜ఠభ௧ି݁ܧ ൅ ௜ఠమ௧ି݁ܧ ൅ ௜ఠయ௧ି݁ܧ ൅ ܿ. ܿ.                               ሺ2.14ሻ                  



CHAPTER 2. INTRODUCTION TO NONLINEAR OPTICS 
 

 

12

However in this case calculated E3(t) contains 44 different frequency components 

corresponding to distinct mixing processes, hence the expression for P3(t) will be very 

complicated. For the purpose of simplicity and sufficiency, the simple case in which the 

applied field is in single frequency is considered; 

ሻݐሺܧ ൌ ሺ2.15ሻ                                                        ݐ߱ݏ݋ܿࣟ                   

Through the use of the trigonometric identity, ܿݏ݋ଷ߱ݐ ൌ ଵ
ସ

ݐ3߱ݏ݋ܿ ൅ ଷ
ସ

 the ,ݐ߱ݏ݋ܿ

nonlinear polarization can be found as; 

ܲሺଷሻሺݐሻ ൌ ଵ
ସ

ݐ3߱ݏ݋଴߯ሺଷሻࣟଷܿߝ ൅ ଷ
ସ

                  ሺ2.16ሻ                         ݐ߱ݏ݋଴߯ሺଷሻࣟଷܿߝ

In Equation (2.16) each term corresponds to a different nonlinear process which will be 

briefly introduced below. 

Third-Harmonic Generation (THG): 

(a)                                                                                  (b)  

 

 

 

Figure 2.4. (a) Illustration of THG. (b) Energy-level diagram THG 
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The first term in Equation (2.16) describes a nonlinear response at frequency 3߱ created by 

an applied field at frequency ߱. This term defines the process of third-harmonic generation, 

which is described in Figure 2.4. In this process three photons at frequency ߱ are destroyed 

and one photon at frequency 3߱ is created in a single quantum mechanical process. 

Intensity-Dependent Refractive Index: 

The second term in Equation 2.16 describes a nonlinear contribution to the polarization at 

the frequency of the incident field ߱. Hence it leads to a nonlinear contribution to the 

refractive index experienced by the incident field at frequency ߱. The nonlinear refractive 

index can be represented as; 

݊ ൌ ݊଴ ൅ ݊ଶܫ                                                            ሺ2.17ሻ                  

where ݊଴is the linear refractive index and  

݊ଶ ൌ
3

8݊ ܴ݁ሺ߯௫௫௫௫
ሺଷሻ ሻ                                                      ሺ2.18ሻ 

is an optical constant that decides the strength of the optical nonlinearity and where  

ܫ ൌ  ݊ଶ|ܧ|ଶ                                                              ሺ2.19ሻ                   

is the intensity of the incident field.  
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This process is also known as Kerr nonlinearity which plays an important role in fiber 

lasers. 

All of the processes described up to this point are examples of parametric processes. In 

parametric processes the initial and final quantum mechanical states of the system are 

same. Conversely, processes in which the initial and final quantum mechanical states are 

distinct real levels are known as nonparametric processes. Mainly two differences are there 

between parametric and nonparametric processes. The former one is always described by a 

real susceptibility, whereas the latter can be described by a complex susceptibility. The 

second difference is that photon energy is conserved in a parametric process; conversely 

photon energy need not be conserved in a nonparametric process. The following two 

nonlinear processes are examples of nonparametric processes.  

Saturable Absorption: 

Many materials’ absorption coefficient decreases when measured using high intensity 

lasers. The dependence of the measured absorption coefficient ߙ on the intensity I of the 

incident field is given by; 

ߙ ൌ
଴ߙ

1 ൅ ܫ ⁄௦ܫ                                                           ሺ2.20ሻ 

where ߙ଴ is the low-intensity absorption coefficient and  ܫ௦ is the saturation intensity. 

Saturable absorption is one of the key concepts in mode-locking of lasers hence its role in 

laser operation will be described in detail in Section 3.3. 
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 Two-Photon Absorption: 

 

 

 

 

Figure 2.5. Energy-level diagram of two-photon absorption.  

In two-photon absorption (illustrated in Figure 2.5) an atom has a transition from its ground 

state to an exited state by the simultaneous absorption of two photons. In contrast with 

linear optics, the absorption coefficient that describes two-photon absorption increases 

linearly with laser intensity as; 

ߪ ൌ ሺ2.21ሻ                                                              ܫሺଶሻߪ                   

where σሺଶሻ is a coefficient that describes two-photon absorption. In addition, the atomic 

transition rate ܴ due to two-photon absorption is proportional to the square of the field 

intensity, since ܴ ൌ ܫߪ  ħ⁄ ω, or to; 

ܴ ൌ
ଶܫሺଶሻߪ

ħ߱                                                             ሺ2.22ሻ 

 

ω 
 

ω 
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Stimulated Raman Scattering: 

(a)                                                                                  (b)  

 

 

 

 

Figure 2.6. Illustration and energy-level diagram of stimulated Raman scattering.  

In stimulated Raman scattering (illustrated in Figure 2.6) a photon at frequency ߱ vanishes 

and a photon at the Stokes frequency ߱௦ ൌ ߱ െ ߱௩ forms. In this picture ߱௩ is the 

frequency that the atom is left in an excited state with energy ħ߱௩ after the scattering. The 

stimulated Raman scattering process is very efficient compared to normal or spontaneous 

Raman scattering where both an exited atom’s vibration and a photon is annihilated to have 

a photon at the anti-Stokes shifted frequency ߱௦ ൌ ߱ ൅ ߱௩ 

ωs= ω- ωv 
 

ω Raman 
medium

ω1 
 

ωv 
 

ωs= ω- ωv 

 



 

Chapter 3  

3 Theory of Fiber Lasers 

To understand and describe the propagation of laser light in a dispersive optical medium, it 

is necessary to take the theory of electromagnetic wave propagation into account. This 

chapter gives derivation of basic wave equation, followed by the theory of pulse 

propagation in dispersive optical medium. Discussion of amplification in fibers and mode-

locking will conclude the section. This chapter is mostly based on [18,19], further details 

can be found there. 

3.1.  Ultra-short Pulse Propagation in Fibers 

Like all electromagnetic phenomena, the propagation of pulses in optical fibers is ruled by 

Maxwell’s equations; 

.ߘ ࡰ ൌ  ሺ3.1ሻ                                                                    ߩ

.ߘ ࡮ ൌ 0                                                                    ሺ3.2ሻ 

ߘ ൈ ࡱ ൌ െ
࡮߲
ݐ߲                                                             ሺ3.3ሻ 

ߘ ൈ ࡴ ൌ ࢐ ൅
ࡰ߲
ݐ߲                                                          ሺ3.4ሻ 
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where B and D are magnetic and electric flux densities, respectively, and H and E are the 

corresponding magnetic and electric field vectors. Since there are no free charges in optical 

fibers, free charges ߩ and current density ࢐ vanish. The flux densities are related to electric 

and magnetic field through the relations given by; 

ࡰ ൌ ࡱ଴ߝ ൅  ሺ3.5ሻ                                                                ࡼ

࡮ ൌ ࡴ଴ߤ ൅  ሺ3.6ሻ                                                              ࡹ

Where ߝ଴ is the vacuum permittivity, ߤ଴ is the vacuum permeability, and P and M are 

induced electric and magnetic polarizations respectively. For an optical medium M is zero. 

Using the mathematical identity ߘ ൈ ሺߘ ൈ ሻ࡭ ൌ .ߘሺߘ ሻ࡭ െ  and taking the curl of both ࡭ଶߘ

sides of Equation (3.3) gives; 

.ߘሺߘ ሻࡱ െ ࡱଶߘ ൌ െ
߲
ݐ߲

ሺߘ ൈ  ሻ                                               ሺ3.7ሻ࡮

Using Equations (3.4), (3.5) and (3.6) one can obtain; 

ߘ ൈ ࡮ ൌ ଴ߝ଴ߤ
ࡱ߲
ݐ߲ ൅ ଴ߤ

ࡼ߲
ݐ߲                                                      ሺ3.8ሻ 

Substituting Equation (3.8) in (3.7) gives an equation depending on E and P only; 

.ߘሺߘ ሻࡱ െ ࡱଶߘ ൌ െߤ଴ߝ଴
߲ଶࡱ
ଶݐ߲ െ ଴ߤ

߲ଶࡼ
ଶݐ߲                                        ሺ3.9ሻ 
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Since there are no free charge carriers, ߘ. ࡱ ൌ 0 and using the relation ߤ଴ߝ଴ ൌ 1 ܿଶ⁄ , 

Equation (3.9) can be reduced to the wave equation; 

ࡱଶߘ െ
1
ܿଶ

߲ଶࡱ
ଶݐ߲ ൌ ଴ߤ

߲ଶࡼ
ଶݐ߲                                                   ሺ3.10ሻ 

A few assumptions need to be made before solving Equation (3.10). First the nonlinearity 

in P is treated as a small perturbation. Second, the optical field maintains its polarization 

along the fiber length so that a scalar approach is valid. Third, the polarization response of 

the field is instantaneous. This is valid for a nonlinear response that is electronic in nature, 

since the reconfiguration time of the electron cloud is significantly smaller than the period 

of the optical light wave. The contributions of molecular vibrations to the nonlinear part of 

the polarization (the Raman effect) is neglected for now and will be discussed later in this 

section. 

The third assumption lets the expansion of the induced polarization in a series of powers of 

instantaneous electric field; 

,࢘ሺࡼ ሻݐ ൌ ,࢘ሺࡱ଴൫߯ሺଵሻߝ ሻݐ ൅ ߯ሺଶሻࡱଶሺ࢘, ሻݐ ൅ ߯ሺଷሻࡱଷሺ࢘, ሻݐ … ൯ ൌ ௅ࡼ ൅      ே௅           ሺ3.11ሻࡼ

 ே௅ࡼ                                  ௅ࡼ                                       

The electric field has a time structure that has a rapidly and slowly varying component. The 

slow timescale is the width of the pulse, which is typically on the order of 100 fs. The fast 

timescale is the optical cycle, which is on the order of ߣ ܿ ൎ⁄  5 fs. Hence it is useful to 

separate the timescales of electric field and polarization components in the form; 
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,࢘ሺࡱ ሻݐ ൌ
1
2 ,࢘ሺܧሾ࢞ ݖ଴ߚሻexpሺ݅ݐ െ ݅߱଴ݐሻ ൅ ܿ. ܿ. ሿ                                 ሺ3.12ሻ 

ൌ
1
2 ,ݔሺܨሾ࢞ ,ݖሺܣሻݕ ݖ଴ߚሻexpሺ݅ݐ െ ݅߱଴ݐሻ ൅ ܿ. ܿ. ሿ                    ሺ3.13ሻ 

,࢘௅ሺࡼ ሻݐ ൌ
1
2 ሾ࢞ ௅ܲሺ࢘, ݖ଴ߚሻexpሺ݅ݐ െ ݅߱଴ݐሻ ൅ ܿ. ܿ. ሿ                                ሺ3.14ሻ 

,࢘ே௅ሺࡼ ሻݐ ൌ
1
2 ሾ࢞ ேܲ௅ሺ࢘, ݖ଴ߚሻexpሺ݅ݐ െ ݅߱଴ݐሻ ൅ ܿ. ܿ. ሿ                             ሺ3.15ሻ 

Only the real part of the above equations is physically relevant, hence complex conjugate 

parts will not be stated anymore. Here, ࢞ is the unit vector perpendicular to the propagation 

direction, which can be ignored because of the assumption that the polarization is 

maintained during the propagation through the fiber. ܧሺ࢘, ,࢘ሻ and ௅ܲ/ே௅ሺݐ  ሻ are the slowlyݐ

varying envelopes of the corresponding components. For future simplifications, the 

dependencies on ݔ and ݕ (modal pattern) from that on ݖ and ݐ (propagation) are separated. 

This is appropriate because the transverse mode structure in the fiber is to first order 

independent of propagation length and time. The quickly varying parts in both ݖ and ݐ are 

expressed as a plane wave which propagates in the ݖ-direction and is of definite frequency 

߱଴ and associated wave number ߚ଴ ൌ ݊߱଴ ܿ⁄ .      

The assumption in Equation (3.11) lead to the approximation of nonlinear polarization [18] 

,࢘ே௅ሺࡼ ሻݐ ൌ ,࢘ே௅ሺߝ଴ߝ ,࢘ሺܧሻݐ  ሻ                                            ሺ3.16ሻݐ

where the nonlinear contribution to the dielectric constant is defined as; 
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,࢘ே௅ሺߝ ሻݐ ൌ
3
4 ߯ሺଷሻ|ܧሺ࢘,  ሻ|ଶ                                               ሺ3.17ሻݐ

To obtain the wave equation for the slowly varying amplitude ܧሺ࢘,  ሻ it is useful to work inݐ

the Fourier domain. However, because ߝே௅ is intensity dependent, it is not possible to apply 

a Fourier transform. In the subsequent approach perturbative assumption of ࡼே௅ is used, 

hence ߝே௅ can be treated as locally constant. Substituting Equations (3.12) through (3.15) in 

Equation (3.10), the Fourier transform Ẽሺݎ, ߱ െ ߱଴ሻ, defined as;      

Ẽሺ࢘, ߱ െ ߱଴ሻ ൌ න ,࢘ሺܧ ሻݐ
ஶ

ିஶ
expሾ݅ሺ߱ െ ߱଴ሻݐሿ݀ݐ                              ሺ3.18ሻ 

is found to satisfy the Helmholtz equation; 

ቆߘଶ ൅ ,࢘ே௅ሺߝ ߱ሻ
߱ଶ

ܿଶ ቇ  Ẽሺ࢘, ߱ሻ ൌ 0                                           ሺ3.19ሻ 

with the dielectric function given by 

ሺ߱ሻߝ ൌ 1 ൅ ௅ߝ ൅  ே௅                                                      ሺ3.20ሻߝ

Equation (3.19) can be solved by using the method of separation of variables. A solution of 

the form; 

Ẽሺ࢘, ߱ െ ߱଴ሻ ൌ ,ݔሺܨ ,ݖሚሺܣሻݕ ߱ െ ߱଴ሻ expሺ݅݇଴ݖሻ                             ሺ3.21ሻ 
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which is the Fourier transform of Equation (3.13), is assumed; where ܣሚሺݖ, ߱ሻ is a slowly 

varying function of ݖ and ܨሺݔ,  ሻ is the modal distribution of the pulse in the fiber. Furtherݕ

calculations (see [18] for details) leads to two equations for ܨሺݔ, ,ݖሚሺܣ ሻ andݕ ߱ሻ; 

߲ଶܨ
ଶݔ߲ ൅

߲ଶܨ
ଶݕ߲ ൅ ቈߝሺ߱ሻ

߱ଶ

ܿଶ െ ෨ଶሺ߱ሻ቉ߚ ܨ ൌ 0                                     ሺ3.22ሻ 

଴ߚ2݅
ሚܣ߲
ݖ߲ ൅ ൫ߚ෨ଶሺ߱ሻ െ ଴ߚ

ଶ൯ܣሚ ൌ 0                                     ሺ3.23ሻ 

,ݖሚሺܣ ߱ሻ is assumed to be a slowly varying function of ݖ, its second derivative was 

neglected. The wave number ߚሺ߱ሻ is determined by solving the eigenvalue equation for the 

fiber modes (see [18] for details). The dielectric function ߝሺ߱ሻ in Equation (3.22) is 

approximated by; 

ሺ߱ሻߝ ൌ ሺ݊ሺ߱ሻ ൅ ∆݊ሻଶ ൎ ݊ଶ ൅ 2݊∆݊                                      ሺ3.24ሻ 

where ∆݊ is a small perturbation given by the nonlinearity of the refractive index and the 

absorption ߙ෤ and gain ෤݃ in the fiber;   

∆݊ ൌ ݊ଶ|ܧ|ଶ ൅
෤ሺ߱ሻߙ݅ െ ෤݃ሺ߱ሻ

2݇଴
                                             ሺ3.25ሻ 

The solution for the modal distribution ܨሺݔ,  ሻ is not affected compared to the case withoutݕ

the perturbation. However, the eigenvalue solution becomes; 
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෨ሺ߱ሻߚ ൌ ሺ߱ሻߚ ൅  ሺ߱ሻ                                                                        ሺ3.26ሻߚ∆

ሺ߱ሻߚ∆ ൌ
߱ଶ݊ሺ߱ሻ
ܿଶߚሺ߱ሻ

׬ ׬ ∆݊ሺ߱ሻ|ܨሺݔ, ஶݕ݀ݔሻ|ଶ݀ݕ
ିஶ

׬ ׬ ,ݔሺܨ| ஶݕ݀ݔሻ|ଶ݀ݕ
ିஶ

                               ሺ3.27ሻ 

Only single-mode fibers are considered here, ܨሺݔ,  ሻ corresponds to the modal distributionݕ

of the fundamental fiber mode HE11 given by [18] 

,ݔሺܨ ሻݕ ൌ ߩ    ,ሻߩ݌଴ሺܬ ൌ ඥݔଶ ൅ ଶݕ ൑ ܽ                                     ሺ3.28ሻ 

inside the core and; 

,ݔሺܨ ሻݕ ൌ ඥܽ/ܬߩ଴ሺߩ݌ሻ expሾെݍሺߩ െ ܽሻሿ ߩ   , ൒ ܽ                               ሺ3.29ሻ 

outside the core. This modal distribution is cumbersome in practice, is approximated by the 

Gaussian distribution; 

,ݔሺܨ ሻݕ ൌ expሾെሺݔଶ ൅  ଶሿ                                           ሺ3.30ሻݓ/ଶሻݕ

where the width parameter ݓ is obtained by curve fitting. 

Rewriting Equation (3.23) by using (3.26) and approximating ߚ෨ଶሺ߱ሻ െ ଴ߚ
ଶ by 

෨ଶሺ߱ሻߚ଴ሺߚ2 െ  ;଴ሻ givesߚ

ሚܣ߲
ݖ߲ ൌ ݅ሾߚሺ߱ሻ ൅ ሺ߱ሻߚ∆ െ  ሚ                                             ሺ3.31ሻܣ଴ሿߚ
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After this point, one can go back to the time domain by taking the inverse Fourier 

transform of Equation (3.31), and obtain the slowly varying envelope function ܣሺݖ,  .ሻݐ

Since an exact functional form for ߚሺ߱ሻ is not known, it is useful to expand it in a Taylor 

series around the carrier frequency ߱଴ as; 

ሺ߱ሻߚ ൌ ଴ߚ ൅ ሺ߱ െ ߱଴ሻߚଵ ൅
1
2

ሺ߱ െ ߱଴ሻଶߚଶ ൅
1
6

ሺ߱ െ ߱଴ሻଷߚଷ ൅  ሺ3.32ሻ            ڮ

where ߚ଴ ؠ  ,ሺ߱଴ሻ andߚ 

௡ߚ ൌ
݀௡ߚ
݀߱௡ฬ

ఠୀఠబ

   ሺ݉ ൌ 1,2, … ሻ                                            ሺ3.33ሻ 

The cubic and higher-order terms in the expansion are negligible it the pulse duration in the 

ps-range. For femtosecond pulses however, third-order dispersion has to be taken into 

account. Using a similar expansion for ∆ߚሺ߱ሻ, substituting both expansions in Equation 

(3.31) and taking the inverse Fourier transform it by using; 

,ݖሺܣ ሻݐ ൌ
1

ߨ2 න ,ݖሚሺܣ
ஶ

ିஶ
 ߱ െ ߱଴ሻ expሾെ݅ሺ߱ െ ߱଴ሻݐሿ d߱                         ሺ3.34ሻ 

gives the resulting equation for ܣሺݖ,   ;ሻݐ

ܣ߲
ݖ߲ ൅ ଵߚ

ܣ߲
ݐ߲ ൅

ଶߚ݅

2
߲ଶܣ
ଶݐ߲ ൌ  ሺ3.35ሻ                                            ܣ଴ߚ∆݅
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The effect of fiber loss and nonlinearity is included in the term ∆ߚ଴ and can be evaluated 

using Equation (3.27). Using ߚሺ߱ሻ ൎ ݊ሺ߱ሻ߱/ܿ and assuming ܨሺݔ,  ሻ in (3.27) does notݕ

change much over the pulse bandwidth lead to; 

ܣ߲
ݖ߲ ൅ ଵߚ

ܣ߲
ݐ߲ ൅

ଶߚ݅

2
߲ଶܣ
ଶݐ߲ ൅

ߙ
2 ܣ ൌ  ሺ3.36ሻ                                ܣଶ|ܣ|ሺ߱଴ሻߛ݅

with the nonlinear parameter ߛ defined as; 

ߛ ൌ
݊ଶሺ߱଴ሻ߱଴

ܿܵ௘௙௙
                                                            ሺ3.37ሻ 

where ܵ௘௙௙ is the effective mode area of an optical fiber. Evaluation of it requires the use of 

the modal distribution ܨሺݔ, ,ݔሺܨ ሻ. Ifݕ  ,ሻ is approximated by a Gaussian distributionݕ

ܵ௘௙௙ ൌ   .ଶ. Typically, ܵ௘௙௙ ranges between 1-100 μm2 in the 1.5 μm regionݓߨ

A transformation of Equation (3.36) into a reference frame moving at the group velocity 

௚߭ ൌ 1 ⁄ଵߚ  of the pulse envelope leads to; 

ܣ߲
ݖ߲ ൅

ଶߚ݅

2
߲ଶܣ
߲ܶଶ ൅

ߙ
2 ܣ ൌ  ሺ3.38ሻ                                       ܣଶ|ܣ|ሺ߱଴ሻߛ݅

where ܶ ൌ ݐ െ ௭
జ೒

ؠ ݐ െ  Because of resemblance this equation is called the nonlinear .ݖଵߚ

Schrödinger equation (NLSE) and is used to describe the propagation of ps-range pulses 

through optical fibers, taking into account chromatic dispersion by ߚଶ, fiber losses by ߙ and 

fiber nonlinearities by γ. 
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It is useful to introduce two length scales, dispersion length LD and nonlinear length LNL. 

This makes it possible to compare the relative strengths of effects over the propagation 

distance. These lengths are defined as; 

஽ܮ ൌ ଴ܶ
ଶ

ଶߚ
ே௅ܮ          , ൌ

1
ߛ ଴ܲ

                                                 ሺ3.39ሻ 

Here ଴ܶ is the initial pulse length and ଴ܲ is the pulse peak power. Rewriting equation 2.29 

with these new parameters leads to; 

߲ܽ
ݖ߲ ൅

݅
2

ܮ
஽ܮ

߲ଶܽ
߲߬ଶ ൅

ߙ
2 ܽ ൌ ݅

ܮ
ே௅ܮ

|ܽ|ଶܽ                                       ሺ3.40ሻ 

where the absolute square of the field now gives power instead of intensity, through the 

transformation ܽሺݖ, ߬ሻ ൌ ,ݖሺܣ ሻݐ ඥܵ௘௙௙⁄ . 

Unfortunately, some of the assumptions used in deriving the NLSE are not valid for ultra-

short pulses (100 fs regime). The bandwidth needed to support such short pulses is so large 

that third-order dispersion effects can no longer be neglected. Furthermore the assumption 

that the fiber nonlinearity responds instantaneously compared to the pulse duration is no 

longer supported. In addition, the contribution to ߯ሺଷሻ from the Raman effect becomes 

significant, as it occurs over a time scale of around 60 fs. The next few pages in this section 

will deal with the extension of the NLSE to include these effects. 

For pulses with a wide spectrum, the Raman effect can amplify low-frequency components 

of a pulse by energy transfer from the high-frequency components of the same pulse. As a 
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result of it, a red-shift of the optical spectrum of the pulse, a feature referred to as Raman-

induced frequency shift takes place. To include this effect, one needs to re-evaluate the 

nonlinear polarization equation (3.10). Any ߯ሺଶሻ related effects are still neglected as they 

require phase-matching. The scalar form of nonlinear polarization is given by; 

ேܲ௅ሺ࢘, ሻݐ ൌ
଴ߝ3

4 ߯௫௫௫௫
ሺଷሻ ,࢘ሺܧ ሻݐ න ܴሺݐ െ ,࢘ሺܧ|ଵሻݐ ଵݐଵሻ|ଶ݀ݐ

௧

ିஶ
                       ሺ3.41ሻ 

which includes the nonlinear effects in a response function ߯ሺଷሻܴሺݐ െ  ሻ isݐଵሻ where ܴሺݐ

defined similarly to a time-delayed delta function such that ׬ ܴሺݐሻ݀ݐ ൌ 1ஶ
ିஶ .This 

corresponds to ܴሺݐ െ ଵሻݐ ൌ ݐሺߜ െ ሺݐଵ ൅  ሻሻ. The upper limit of integration extends up toݐ∆

 to ensure causality. Somewhat lengthy algebra leads to the expression (see [18] for ݐ

details); 

ܣ߲
ݖ߲ ൅ ଵߚ

ܣ߲
ݐ߲ ൅

ଶߚ݅

2
߲ଶܣ
ଶݐ߲ െ

ଷߚ

6
߲ଷܣ
ଷݐ߲ ൅

1
2 ൬ߙ ൅ ଵߙ݅

߲
൰ݐ߲  ܣ

ൌ ݅ ൬ߛ ൅ ଵߛ݅
߲
൰ݐ߲ ቆܣሺݖ, ሻݐ න ܴሺݐᇱሻ|ܣሺݖ, ݐ െ ᇱሻ|ଶݐ

ஶ

଴
ቇ                         ሺ3.42ሻ 

For pulse durations that can contain many optical cycles (pulse width ൐ 100 fs), it is 

possible to simplify Equation (3.42) by setting ߙଵ ൌ 0 and ߛଵ ൌ  ଴ and using a Taylor߱/ߛ

expansion of the form; 

,ݖሺܣ| ݐ െ ᇱሻ|ଶݐ ൎ ,ݖሺܣ| ሻ|ଶݐ െ ᇱݐ ߲
ݐ߲

,ݖሺܣ|  ሻ|ଶ                               ሺ3.43ሻݐ
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The following equation is acquired; 

ܣ߲
ݖ߲ ൅

ߙ
2 ܣ ൅

ଶߚ݅

2
߲ଶܣ
ଶݐ߲ െ

ଷߚ

6
߲ଷܣ
ଷݐ߲ ൌ ߛ݅ ቈ|ܣ|ଶܣ ൅

݅
߱଴

߲
߲ܶ

ሺ|ܣ|ଶܣሻ െ ோܶܣ
ଶ|ܣ|߲

߲ܶ ቉    ሺ3.44ሻ 

where a reference frame moving with the group velocity is used similar to the case in 

Equation (3.38). ோܶ is defined as the first moment of the nonlinear response function 

ோܶ ൌ ׬ ஶݐሻ݀ݐሺܴݐ
ିஶ . This latest form of the NLSE also contains the third-order dispersion 

the effect of self-steepening (߱଴ ,(ଷ termߚ)
ିଵ term) caused by the intensity dependence of 

the group velocity and the Raman-induced frequency shift ( ோܶ term) caused by the delayed 

Raman response. A numerical value has been deduced experimentally as ோܶ ൌ 3 fs for the 

spectral region around 1550 nm. 

Solution of the NLSE is pretty straight-forward for negative ߚଶ. For this case, the solution 

does not change along the fiber length. Such a phenomenon is called a solitary wave 

solution. It was first observed in 1834 by Scott Russell in water waves propagating with 

undistorted phase over several kilometers through a canal. 

The physical origin for optical solitons is a balance of dispersion and nonlinearity. Equation 

(3.38) can be rewritten as; 

ܣ߲
ݖ߲ ൌ ܣଶ|ܣ|ሺ߱଴ሻߛ݅ െ

ଶߚ݅

2
߲ଶܣ
߲ܶଶ                                            ሺ3.45ሻ 
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with the assumption of no fiber losses (ߙ ൌ 0). If both ߚଶ and డ
మ஺

డ்మ are negative, there can be 

a combination of pulse duration (the parameter responsible for the magnitude of ߚଶ) and 

pulse energy (the parameter responsible for magnitude of ߛ), such that both terms cancel 

and డ஺
డ௭

ൌ 0. This means that, the envelope of the pulse does not change while propagating 

through a fiber if fiber losses and higher order nonlinear effects are neglected. The solution 

is characterized by a hyperbolic secant pulse shape;   

|ሻݐሺܣ| ൌ ඨ
|ଶߚ|
ߛ ଴ܶ

ଶ sech ൬
ܶ

଴ܶ
൰                                               ሺ3.46ሻ 

3.2.  Amplification in Rare-Earth Doped Fibers 

Optical fibers can amplify light at correct wavelength through stimulated emission. This is 

done by optically pumping the amplifier fiber to obtain population inversion. Depending on 

the energy levels of the dopants (rare-earth elements like erbium, ytterbium, neodymium, 

samarium and thulium), lasing schemes can be classified as a three- or four-level scheme 

(Figure 3.1). In either case, dopants absorb pump photons to reach an excitation stage than 

relax rapidly into a lower-energy excited state. The life time of this intermediate state is 

usually long (around 10ms for erbium and 1ms for ytterbium), and the stored energy is used 

to amplify incident light through stimulated emission. The difference between the three- 

and four-level lasing schemes is the energy state to which the dopant relaxes after each 

stimulated-emission event. In the case of a three-level lasing scheme, the dopant ends up in 

the ground state, whereas it occupies an exited state in the case of a four-level lasing 

scheme. Erbium-doped fiber lasers and amplifiers make use of three-level scheme. 
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(a)                                                                           (b) 

 

 

 

Figure 3.1. Illustration of (a) three-and (b) four-level lasing schemes 

Optical pumping creates the necessary population inversion between two energy states and 

provides the optical gain. Using the appropriate rate equations (see [20] for details), the 

gain coefficient for a homogeneously broadened gain medium can be written as; 

݃ሺ߱ሻ ൌ
݃଴

1 ൅ ሺ߱ െ ߱௔ሻଶ
ଶܶ
ଶ ൅ ܲ/ ௦ܲ

                                          ሺ3.47ሻ 

where ݃଴ is the peak gain value, ߱ is the frequency of the incident signal, ߱௔ is the atomic 

transition frequency and ܲ is the optical power of the signal being amplified. The saturation 

power ௦ܲ is mainly influenced by the parameters such as the fluorescence time T1 (in the 

range of 1 μs to 10 ms for commonly used dopants) and the transition cross section σ. The 

parameter ଶܶ is the dipole relaxation time and is usually on the order of 0.1 ps for fiber 

amplifiers. 

If the saturation effect is neglected in Equation (3.47), the gain reduction for frequencies 

off the transition frequency is governed by a Lorentzian profile. The gain bandwidth ∆v is 
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defined as the full width at half maximum (FWHM) of the gain spectrum ݃ሺ߱ሻ, given for a 

Lorentzian spectrum as;  

௚ݒ∆ ൌ
∆ ௚߱

ߨ2 ൌ
1

ଶܶߨ                                                         ሺ3.48ሻ 

However, the actual gain spectrum of a fiber laser can deviate significantly from the 

Lorentzian profile. The shape and the width of the gain spectrum are sensitive to core 

composition (i.e. the amorphous nature of the silica and the presence of other co-dopants 

such as aluminum or germanium). 

In the latter part of this section, the effects of gain provided by dopants for the NLSE will 

be examined. 

The lasing process can be approximated by a two-level system, as the lifetime of the first 

upper state is significantly shorter than the lifetime of the state from which stimulated 

emission takes place. The dynamic response of a two-level system is governed by the 

Maxwell-Bloch equations [20]. The starting point is the wave equation (3.10), but the 

induced polarization ࡼሺ࢘ሻ has to include a third term ࡼௗሺ࢘ሻ representing the contribution 

of dopants. Using the slowly varying envelope approximation similar to Equation (3.14); 

,࢘ௗሺࡼ ሻݐ ൌ
1
2 ሾ࢞ ௗܲሺ࢘, ݖ଴ߚሻexpሺ݅ݐ െ ݅߱଴ݐሻ ൅ ܿ. ܿ. ሿ                           ሺ3.49ሻ 

The slowly varying part is dictated by the Bloch [20] equations which relate the population 

inversion density ܹ ൌ ଶܰ െ ଵܰ to the polarization and electric field; 
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߲ܲሺ࢘, ሻݐ
ݐ߲ ൌ െ

ܲሺ࢘, ሻݐ
ଶܶ

െ ݅ሺ߱௔ െ ߱଴ሻܲሺ࢘, ሻݐ െ
ଶߤ݅

ħ ,࢘ሺܧ  ሻܹ                ሺ3.50ሻݐ

߲ܹ
ݐ߲ ൌ ଴ܹ െ ܹ

ଵܶ
െ

1
ħ Im൫כܧሺ࢘, .ሻݐ ܲሺ࢘,  ሻ൯                                        ሺ3.51ሻݐ

where ߤ is the magnetic dipole moment, ߱௔ is the atomic transition frequency, and ܧሺ࢘,  ሻݐ

is the slowly varying amplitude defined as in Equation (3.14). 

Following the same method in previous section for the derivation of NLSE, the NLSE 

(3.36) is modified as; 

ܣ߲
ݖ߲ ൅ ଵߚ

ܣ߲
ݐ߲ ൅

ଶߚ݅

2
߲ଶܣ
ଶݐ߲ ൅

ߙ
2 ܣ ൌ ܣଶ|ܣ|ሺ߱଴ሻߛ݅ ൅

݅߱଴

଴ܿߝ2
ۃ ௗܲሺ࢘,  ሺ3.52ሻ                           ۄሻݐ

where the angled brackets denote an averaging over the mode profile |ܨሺݔ,  ሻ|ଶ. Theݕ

preceding three equations (3.50)-(3.52) need to be solved for pulses of a duration 

comparable to the relaxation time (0.1 ps). The analysis is simplified considerably for 

longer pulses, where the dopants respond so fast that the induced polarization follows the 

optical field adiabatically (see [20] for details). Dispersive effects can be included by 

working in the Fourier domain and defining the dopant susceptibility as; 

෨ܲሺ࢘, ߱ሻ ൌ ,࢘଴߯ௗሺߝ ߱ሻܧ෨ሺ࢘, ߱ሻ                                               ሺ3.53ሻ 

The susceptibility is found [20] as; 
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߯ௗሺ࢘, ߱ሻ ൌ
ሻ݊଴ܿ/߱଴࢘௦ܹሺߪ
ሺ߱ െ ߱௔ሻ ଶܶ ൅ ݅                                                ሺ3.54ሻ 

Similar approach used in deriving in NLSE can be performed, provided the dielectric 

constant is modified to take ߯ௗ into account. This leads to a change in Equation (3.25); 

∆݊ ൌ ݊ଶ|ܧ|ଶ ൅
߯ௗ

2݊                                                      ሺ3.55ሻ 

The major difference is that ∆ߚ in Equation (3.27) becomes frequency dependent due to 

߯ௗ. Hence, when transforming the optical field back to the time domain, both ߚ and ∆ߚ 

must be expanded into a Taylor series. The resulting equation is found after somewhat 

lengthy algebra (see [21] for details); 

ܣ߲
ݖ߲ ൅ ଵߚ

௘௙௙ ܣ߲
ݐ߲ ൅

݅
2 ଶߚ

௘௙௙ ߲ଶܣ
ଶݐ߲ ൅

ߙ
2 ܣ ൌ ܣଶ|ܣ|ሺ߱଴ሻߛ݅ ൅

݃଴

2
1 ൅ ߜ݅
1 ൅ ଶߜ  ሺ3.56ሻ                 ܣ

where 

ଵߚ
௘௙௙ ൌ ଵߚ ൅

݃଴ ଶܶ

2 ቈ
1 െ ଶߜ ൅ ߜ2݅

ሺ1 ൅ ଶሻଶߜ ቉                                                ሺ3.57ሻ 

ଶߚ
௘௙௙ ൌ ଶߚ ൅

݃଴ ଶܶ

2 ቈ
ଶߜሺߜ െ 3ሻ ൅ ݅ሺ1 െ ଶሻߜ3

ሺ1 ൅ ଶሻଷߜ ቉                            ሺ3.58ሻ 

and the detuning parameter ߜ ൌ ሺ߱଴ െ ߱௔ሻ ଶܶ. The gain ݃଴ is given by;  
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݃଴ሺݖ, ሻݐ ൌ
௦ߪ ׬ ׬ ܹሺ࢘, ,ݔሺܨ|ሻݐ ஶݕ݀ݔሻ|ଶ݀ݕ

ିஶ

׬ ׬ ,ݔሺܨ| ஶݕ݀ݔሻ|ଶ݀ݕ
ିஶ

                                ሺ3.59ሻ 

Spatial averaging is due to the use of Equation (3.55) in (3.27). Equation (3.56) shows that 

gain not only affects the group velocity of the pulse ( ௚߭ ൌ ଵߚ
ିଵ), but also the chromatic 

dispersion through the effective ߚଶ. The change in the group velocity is usually negligible, 

since the second term is smaller on the order of 10-4 compared to ߚଵ. In contrast, not so for 

ଶߚ
௘௙௙ since near the zero-dispersion wavelength of the optical fiber, the two terms can 

become comparable. Even in the special case of ߚ ൌ ଶߚ ,0
௘௙௙ does not reduce to ߚଶ, in fact 

it comes down to; 

ଶߚ
௘௙௙ ൌ ଶߚ ൅ ݅݃଴ ଶܶ

ଶ                                                      ሺ3.60ሻ 

which is a complex parameter caused by the gain induced by the dopants. The physical 

origin of this contribution is called gain dispersion which is due to the finite gain 

bandwidth of doped fibers. Equation (3.60) is a result of the parabolic-gain approximation 

used in the derivations in [21]. 

The integration of Equation (3.59) is difficult since the inversion profile depends on the 

spatial coordinates ݕ ,ݔ and ݖ and the mode profile |ܨሺݔ,  .ሻ|ଶ because of gain saturationݕ

However, in practice only a small portion of the fiber core is actually doped. If both the 

mode and dopant intensity are nearly uniform over the doped region, ܹ can be assumed to 

be constant there and zero outside. Then Equation (3.59) can easily be integrated leading 

to; 
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݃଴ሺݖ, ሻݐ ൌ ,ݖ௦ܹሺߪ௦߁  ሻ                                                   ሺ3.61ሻݐ

where ߁௦ is the fraction of mode power within the doped region. Using Equation (3.61) and 

(3.51), the equation for gain dynamics can be found; 

߲݃଴

ݐ߲ ൌ
݃௦௦ െ ݃଴

ଵܶ
െ

݃଴|ܣ|ଶ

ଵܶ ௦ܲ
௦௔௧                                                  ሺ3.62ሻ 

where ݃௦௦ ൌ ߁௦ߪ௦ ଴ܹ is the small signal gain. For most fiber amplifiers the fluorescence 

time ଵܶ is long compared to the pulse width and hence spontaneous emission and pump 

power changes do not occur over the pulse duration, Equation (3.62) can be integrated, 

leading to; 

݃଴ሺݖ, ሻݐ ൎ ݃௦௦exp ቆെ
1
௦ܧ

න ,ݖሺܣ| ᇱݐᇱሻ|ଶ݀ݐ
௧

ିஶ
ቇ                             ሺ3.63ሻ 

where ܧ௦ is the saturation energy which is on the order of 1μJ for fiber amplifiers. This 

energy level is not reached in the lasers and fiber amplifiers, so gain saturation is negligible 

over the pulse duration. However, for a long pulse train, saturation can occur over 

timescales longer than ଵܶ. The saturation is determined by the average power in the 

amplifier system ݃଴ ൌ ݃௦௦ሺ1 ൅ ௔ܲ௩/ ௦ܲ
௦௔௧ሻିଵ. 

Pulse propagation in an optical fiber is governed by a generalized NLSE (3.36) with 

coefficients ߚଵ
௘௙௙ and ߚଶ

௘௙௙ that are not only complex but also vary along the fiber length. In 

the specific case where the detuning parameter ߜ is zero, the NLSE can be written as; 
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ܣ߲
ݖ߲ ൅

݅
2

ሺߚଶ ൅ ݅݃଴ ଶܶ
ଶሻ

߲ଶܣ
߲ܶଶ ൌ ܣଶ|ܣ|ሺ߱଴ሻߛ݅ ൅

݃଴ െ ߙ
2  ሺ3.64ሻ                         ܣ

where ܶ ൌ ݐ െ ଵߚ
௘௙௙ݖ is the reduced time. The ଶܶ term accounts the decrease in gain for 

spectral components of the pulse far from the gain peak. This equation is called the “Master 

Equation of Mode-locking” [22].    

3.3.  Modelocking of Fiber Lasers 

Mode-locking a laser leads to ultra-short pulses with duration of a few-ps or less. For this 

purpose a phase relation between the many longitudinal modes which can exist in a laser 

cavity should be found. In this section, the principle of only passive mode-locking will be 

introduced using an artificial saturable absorber, as this is the method implemented in the 

erbium-doped fiber laser used in this thesis.  

An electromagnetic pulse propagating in a laser cavity can be denoted by a superposition of 

plane waves with different wavelengths. The possible wavelengths of the longitudinal 

modes are given by the condition; 

௡ߣ݊ ൌ  ሺ3.65ሻ                                                                  ܮ2

where ߣ௡ is the wavelength of the longitudinal mode and ܮ is the cavity length. A large 

number of modes of different frequency can exist at the same time and each will be 

independent in phase and amplitude. Thus the total electric field in the cavity is given by 

the sum of the field of all modes;  
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,ݖሺܧ ሻݐ ൌ ෍ ,ݖ௡ሺܧ ሻݐ ൌ ෍ ଴,௡ܧ
௡

݁௜௞೙௭ି௜ఠ೙௧
௡

଴,௡ܧ                 , ൌ หܧ଴,௡ห݁௜థ೙          ሺ3.66ሻ 

where ܧ଴,௡ is the complex amplitude of the n-th mode and ߶௡ its phase. Assuming equal 

amplitude for all modes, the intensity is; 

,ݖሺܫ ሻݐ ן ,ݖሺܧ ,ݖሺכܧሻݐ ሻݐ ൌ ଴|ଶܧ| ෍ ෍ ݁௜ሺథ೙ିሺథ೘ሻሺ݉ െ ݊ሻΩ ቀ
ݖ
ܿ െ ቁ       ሺ3.67ሻݐ

ே

௠ୀଵ

ே

௡ୀଵ
 

where 

Ω ൌ ߱௡ାଵ െ ߱௡ ൌ
ܿߨ
ܮ                                                     ሺ3.68ሻ 

being the frequency difference between two consecutive modes. If all modes have fixed 

phase relation, Equation (3.67) simplifies to; 

,ݖሺܫ ሻݐ ן ,ݖሺܧ ,ݖሺכܧሻݐ ሻݐ ൌ ଴|ଶ݁௜ఋథܧ| ෍ ෍ ݁௜ሺ௠ି௡ሻΩቀ௭
௖ି௧ቁ             ሺ3.69ሻ

ே

௠ୀଵ

ே

௡ୀଵ
 

The second exponential part in the above equation will be 1 for all terms of the sum if the 

condition; 

Ω ቀ
ݖ
ܿ െ ቁݐ ൌ ՞   ݆ߨ2 ݖ    െ ݐܿ ൌ ݆   ,݆ܮ2 ൌ 0,1,2, …                           ሺ3.70ሻ 

holds. Then the maximum of Equation (3.69) is; 
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௠௔௫ܫ ൌ ܰଶ|ܧ଴|ଶ ؠ ܰଶܫ଴                                                   ሺ3.71ሻ 

The temporal and spatial distances of neighboring pulses as a function of the intensity ܫ௠௔௫ 

can be derived from Equation (3.70) as; 

ݖ∆ ൌ ݐ∆     ,ܮ2 ൌ
ܮ2
ܿ ؠ ܶ                                                   ሺ3.72ሻ 

This means the intensity maxima repeat with the revolution time ܶ of the laser resonator 

and there is one maximum inside the cavity at any time. Due to a fixed phase relation 

between the modes in the cavity, pulses with peak intensity ܫ௠௔௫ will grow, proportional to 

the square of the number of modes. To calculate the FWHM of the pulses, the 

superposition of N modes is assumed to be similar to the interference of N planar waves at 

a fixed time ݐ ൌ 0. Using geometric series; 

ሻݐሺܫ ൌ ଴ܫ
sinଶ ቀܰΩ

2 ቁݐ

sinଶ ቀΩ
2 ቁݐ

                                                    ሺ3.73ሻ 

The FWHM of the pulses can be derived from the above equation as; 

ሺ∆ܶሻܫ ൌ
1
2 ௠௔௫ܫ      ՜      ∆ܶ ൌ

1
ܰ

ܮ2
ܿ ൌ

1
ܰ ܶ                                   ሺ3.74ሻ 

The pulse width decreases with the number of superposed modes and is directly 

proportional to the revolution time of the laser cavity. 
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A phase relation between superposed modes can be achieved by a modulation of the gain of 

the cavity with the difference frequency Ω of subsequent modes. All techniques to get a 

mode-lock rely on this principle. Due to loss modulation, the electromagnetic field in the 

cavity gets additional time dependence; 

,ݖ௡ሺܧ ሻݐ ൌ ሺܧ଴,௡ ൅ ௡ܧ
௠௢ௗcosΩݐሻ݁௜௞೙௭ି௜ఠ೙௧                                   ሺ3.75ሻ 

ൌ ൤ܧ଴,௡݁ି௜ఠ೙௧ ൅
1
2 ௡ܧ

௠௢ௗሺ݁ି௜Ω௧ ൅ ݁௜Ω௧ሻ݁ି௜ఠ೙௧൨ ݁௜௞೙௭              

ൌ ൤ܧ଴,௡݁ି௜ఠ೙௧ ൅
1
2 ௡ܧ

௠௢ௗሺ݁ି௜ఠ౤శభ௧ ൅ ݁ି௜ఠ౤షభ௧ሻ൨ ݁௜௞೙௭            

The above equation hints that the time dependence induces sidebands in every mode whose 

frequencies coincide with the one of the neighboring modes. Since this is valid for the total 

bandwidth, a phase synchronization so called “mode-lock” between all longitudinal modes 

is achieved.  

There are several ways to have mode-lock state in a laser. They are categorized by the 

method of how gain modulation is done. If an actively driven device, i.e. a switch or 

amplitude modulator is used, it will be active mode-locking, if a passive device like a 

saturable absorber is used, it will be passive mode-locking. However for the relevance of 

this thesis, only a special case of passive mode-locking will be explained in greater detail in 

the subsequent part. 
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In passive mode-locking the nonlinear component used to make mode-locked lasing more 

favorable than continuous-wave (cw) lasing simply introduces a higher loss at low power 

so that a short pulse with higher peak power experiences a stronger net gain. 

Fiber lasers can also be mode-locked by using intensity dependent changes in the state of 

polarization when the orthogonally polarized components of a single pulse propagate inside 

an optical fiber. The polarization of the intense center of the pulse is rotated more than the 

less intense wings. 

 

Figure 3.2. Schematic of a fiber ring laser mode-locked via NPE 

The mode-locking process can be understood considering a fiber laser built in a ring 

configuration as shown in Figure 3.2. The pulse is linearly polarized after the polarizing 

beam splitter (PBS). The quarter wave plate following the PBS set the polarization to be 
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slightly elliptical, such that Kerr effect in the fiber section has a notable effect on the 

polarization of the pulse. After the fiber section, the polarization of the pulse center will 

differ from the polarization of the wings. The combination of quarter- and half-wave plate 

makes the polarization to be linear in the central part of the pulse, so the center of the pulse 

passes through the PBS cube and the wings are reflected out of the cavity through the 

nonlinear polarization evolution (NPE) port. The overall effect of the waveplates, PBS cube 

and fiber is shortening of the pulse after each round trip, with the PBS effectively acting as 

a saturable absorber. 

The pulse at the beginning of the fiber section after free-space has to have elliptical 

polarization. The reason is explained as: The main contributors to the intensity dependence 

of the polarization evolution are self-phase and cross-phase modulation (SPM and XPM). 

Assuming the two eigenmodes are polarized along the ݔ- and ݕ-axis with intensity levels ܫ௫ 

and ܫ௬, the total phase delays Φ୶ and Φ୷ along the axis can be obtained by adding the 

linear phase delays ߚ௫2ܮ and ߚ௬2ܮ as well as self- and cross-phase modulation term [23]; 

Φ୶ ൌ ൤ߚ௫ ൅ ௫ܫߛ ൅ ߛ
2
3 ௬൨ܫ  ሺ3.76ሻ                                                            ܮ2

Φ୷ ൌ ൤ߚ௬ ൅ ௬ܫߛ ൅ ߛ
2
3 ௫൨ܫ  ሺ3.77ሻ                                                            ܮ2

where ܮ is the fiber length. The difference of the above equations gives the net phase shift 

between the two axes;   
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∆Φ ൌ Φ୶ െ Φ୷ ൌ ൤ሺߚ௫ െ ௬ሻߚ ൅ ௫ܫሺߛ െ ௬ሻܫ ൅ ߛ
2
3 ሺܫ௬ െ ௫ሻ൨ܫ  ሺ3.78ሻ                ܮ2

Equation (3.78) suggests that circular input polarization does not lead to any intensity 

dependent phase shift, so the polarization of the pulse has to be elliptical when entering the 

fiber section of the cavity. This is achieved by the quarter-wave plate after the PBS cube.  

 

       

 

 

 



 

Chapter 4  

4 Laser Oscillator System and Characterization 

Ultrafast fiber lasers have the potential to serve as master oscillators in accelerators. Pulse 

durations on the order of 100 fs are required to work in this area, hence the most promising 

candidate is a passively mode-locked laser through nonlinear polarization evolution. Noting 

these arguments, an erbium-doped fiber laser is selected to be used as the oscillator in this 

thesis for which components are widely available due to its operation at the 

telecommunication wavelength of 1550 nm.   

4.1. Stretched-pulse vs. Stretched-spectrum Type Similaritons 

One stability limit for mode-locking is the amount of nonlinear phase shift the pulse 

accumulates during one round trip. A soliton, the stable solution to the NLSE as discussed 

in Section 3.1, becomes unstable if it accumulates a phase shift of 2π or more per round 

trip. This would mean a soliton-laser’s output power is limited to very small levels. 

In an approach first found by Tamura et.al. in 1993 [24], alternating pieces of normal and 

anomalous dispersion fibers were combined to have breathing of the pulse duration one 

round trip, making the pulse short in the middle of the normal and anomalous pieces of the 

fiber cavity. This results in an effective decrease in peak power, as the pulse is only short 
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for a small portion of the fiber cavity. Since nonlinear effects are peak power dependent, 

the nonlinear phase shift accumulated per round trip is considerably decreased to the case 

of a soliton. In other words pulse energy that the laser can sustain before becoming unstable 

is increased, thus laser has a higher output power. A further increase in the output power 

can be achieved by construction a laser such that the net dispersion of the cavity is not zero 

but slightly positive. Therefore the pulse will not reach the transform limit inside the cavity 

and will always have a positive chirp. This will further increase the maximum energy of the 

pulse inside the cavity while still maintaining stability. However, compared to solitons, 

stretched-pulses require more pump power to achieve high enough peak power in order to 

have mode-locking sustained.  

Pulse formation is dominated by a rich interplay between group velocity dispersion (GVD) 

and nonlinear effects [25-27]. Developments leading to better performance are typically 

triggered by new pulse shaping concepts and better understanding of underlying dynamics. 

Recent studies of Ilday et. al. showed experimental demonstration of a new laser type that 

can be regarded as a “stretched-spectrum” laser [28]. 

The establishment of self-similarity is a fundamental physical property that has been 

extensively studied to understand widely different nonlinear physical phenomena [29], 

including asymptotic self-similar behavior in radial pattern formation [30] and in 

stimulated Raman scattering [31], the evolution of self-written waveguides [32], and the 

formation of Cantor set fractals in soliton systems [33] in the field of nonlinear optics; the 

propagation of thermal waves in nuclear explosions, the formation of fractures in elastic 

solids, and the scaling properties of turbulent flow [34]. Kruglov et. al. [35] and Fermann 

et.al. [36] have developed self-similarity techniques that have recently been applied to 
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study pulse propagation in normal-dispersion fiber amplifiers, with the result showing that 

linearly chirped parabolic pulses are asymptotic self-similar solutions of the NLSE with a 

constant gain profile. These results have been confirmed experimentally and have extended 

previous theoretical and numerical studies of parabolic pulse propagation [37, 38]. 

Furthermore Ilday et.al. [39] have observed self-similar pulse evolution in a laser cavity. 

Recently Ilday et. al. reported first experimental and theoretical observation of stable pulses 

that propagate self-similarly in the presence of amplification (Kruglow-type) in a laser 

cavity [see [28] for details]. This corresponds to coexistence of dissipative self-similar 

solutions and soliton-like solutions to a modified NLSE subject to periodic boundary 

conditions. These solutions are robust enough against perturbations to be observed 

experimentally. A characteristic feature of Kruglow-type self-similar pulses is exponential 

broadening of the spectrum which must be undone at the end of each round trip. As such, 

periodic breathing of the spectrum is observed in the cavity due to alternate of interference 

filtering (bandwidth cutoff) and spectral-broadening in a single round trip.  

4.2.  Numerical Simulation of the Laser Oscillator 

In this section, the numerical model used for simulating mode-locking of the erbium-doped 

fiber laser is presented. It is based on solving the NLSE (3.44) which was derived in 

chapter 3. The model includes the effects of saturable gain, second- and third-order 

dispersion, linear losses and nonlinear effects such as gain dispersion in the amplification 

section, self-phase modulation, Raman scattering, saturable absorption and bandpass filter. 

The pulse is assumed to start from noise and is iterated over many round trips until a steady 

state solution is reached. The simulator is based on a code written by Prof. F. Omer Ilday of 
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Bilkent University, and a Java interface written by Cagrı Senel, one of Ilday’s students. It 

employs the split step Fourier method, which will be explained in the following subsection. 

4.2.1. Split-step Fourier Method 

A convenient way to solve the NLSE; 

ܣ߲
ݖ߲ ൅

ߙ
2 ܣ ൅

ଶߚ݅

2
߲ଶܣ
ଶݐ߲ െ

ଷߚ

6
߲ଷܣ
ଷݐ߲ ൌ ߛ݅ ቈ|ܣ|ଶܣ ൅

݅
߱଴

߲
߲ܶ

ሺ|ܣ|ଶܣሻ െ ோܶܣ
ଶ|ܣ|߲

߲ܶ ቉       ሺ4.1ሻ 

is the split-step method. It assumes dispersion and nonlinear effects act independently over 

a short piece of fiber. It is practical to use Equation (4.1) as; 

ܣ߲
ݖ߲ ൌ ൫ܦ෡ ൅ ෡ܰ൯ܣ                                                          ሺ4.2ሻ 

where ܦ෡ is the differential operator representing dispersion and absorption in a linear 

medium and ෡ܰ is the nonlinear operator ruling all nonlinear effects on pulse propagation. 

These operators are given by; 

෡ܦ ൌ െ
ߙ
2 െ

ଶߚ݅

2
߲ଶ

ଶݐ߲ ൅
ଷߚ

6
߲ଷ

ଷݐ߲                                                               ሺ4.3ሻ 

෡ܰ ൌ ߛ݅ ቈ|ܣ|ଶ ൅
݅

߱଴

1
ܣ

߲
߲ܶ

ሺ|ܣ|ଶܣሻ െ ோܶ
ଶ|ܣ|߲

߲ܶ ቉                                ሺ4.4ሻ 
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The split-step Fourier method obtains an approximate solution by assuming that 

propagation over a small distance h is carried out in three steps. First, the pulse propagates 

over half the distance with only dispersive effects. Then, in the middle of the section, 

nonlinearity is included after which the pulse propagates again half the distance (Figure 

4.1). 

 

 

 
  

      

 

Figure 4.1. Illustration of split-step  Fourier method used for numerical simulations 

Mathematically, 

ݖሺܣ ൅ ݄, ܶሻ ൎ exp ൬
݄
2 ෡൰ܦ exp ቆන ෡ܰሺݖᇱሻ݀ݖᇱ

௭ା௛

௭
ቇ exp ൬

݄
2 ෡൰ܦ ,ݖሺܣ ܶሻ                ሺ4.5ሻ 

The exponential operators can be evaluated in the Fourier domain. For the dispersive 

operator exp ቀ௛
ଶ

 ෡ቁ, this yieldsܦ

exp ൬
݄
2 ෡൰ܦ ,ݖሺܣ ܶሻ ൌ ்ܨ

ିଵexp ൬
݄
2 ෡ሺ݅߱ሻ൰ܦ ,ݖሺܣ்ܨ ܶሻ                              ሺ4.6ሻ 
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where ்ܨdenotes the fourier transform operation, ܦ෡ሺ݅߱ሻ is obtained by replacing the 

differential operator ߲/߲ܶ by ݅߱. As ܦ෡ሺ݅߱ሻ is just a number in the Fourier space, the 

evaluation of Equation (4.6) is straightforward (see [18] for details). 

4.2.2. Simulator Interface 

A screenshot of the simulator interface is shown in Figure 4.2. Table 4.1 summarizes the 

parameters needed for the numerics of the simulation. 

 

Figure 4.2. Screenshot of the simulator GUI 
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Parameter Function 

Time window length Number of data points for discretizing time 

Initial pulse width [fs] Actual length of the pulse corresponding to a # of data points 

Initial pulse length # of discrete points representing the FWHM of initial pulse 

Total # of passes # of passes to be made over the entire sequence of segments 

# of integration steps # of discrete steps taken per each page per segment 

Save every N pass, N # of roundtrips after which data is saved to file 

Power [W] Actual power corresponding to unit size of power 

Central wavelength [nm] The central wavelength of the light used for simulation 

Raman response time [fs] Parameter characterizing the strength of the Raman effect 

# of snapshots to be saved # of segments each fiber section is divided into 

Length [cm] Physical length of the segment 

GVD [fs2/mm] Second order dispersion parameter 

TOD [fs3/mm] Third order dispersion parameter 

Kerr coef., n2 [10-16cm2/W] The Kerr nonlinearity coefficient 

Effective mode area [μm2] Effective mode area for the propagating beam 

Unsaturated gain [dB] Small signal gain of the amplifier 

Gain bandwidth [nm] Finite gain bandwidth for parabolic approximation 

Effective gain sat. energy Saturation energy in arbitrary units for the gain 

Output coupler/linear loss Adds an output coupler to the end of the segment 

 

Table 4.1. Numerical parameters needed for the simulator 
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The initial pulse shape can be one of the pre-defined pulse shapes ranging from Gaussian 

pulse shape to noise. Each segment of the laser should be configured separately. The 

saturable absorber is implemented at the end of a segment, by converting the total nonlinear 

phase shift accumulated over the round trip into an amplitude modulation. The 

semiconductor saturable absorber is modeled as; 

ௌௌ஺ܫ ൌ 1 െ
ݍ

1 ൅ ܫ
௦௔௧ܫ

ൗ
                                                       ሺ4.7ሻ 

where ݍ is the modulation depth and ܫ௦௔௧is the saturation power of the saturable absorber. 

For nonlinear polarization evolution, the model is; 

ே௉ாௌ஺ܫ ൌ ሺ1 െ ሻcosݍ ൬
ߨ
2

ܫ
௦௔௧ܫ

൰                                              ሺ4.8ሻ 

4.2.3. Simulation Results 

Simulation of the laser is done with the parameters summarized in Table 4.2. A total of six 

segments are required for the actual imitation of the laser. However, number of segments 

severely increases processor usage. For practical purposes, laser is simulated after some 

approximations resulting in just three segments instead of six segments. This 

approximation and %5 uncertainty associated with fiber properties (mode-field diameter, 

core diameter, numerical aperture, etc.) caused minor mismatch in simulated and 

experimental results. The output coupler section of the simulation is approximated as the 

total loss due to %5 tap port at isolator in addition to the loss at the NPE output. Although 

NPE, output coupler and interference filter are separated by single mode fibers, they were 
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all assumed to be located at the end of first segment. Second- and third-order dispersion has 

been calculated from the data available in the component datasheets as dispersion depends 

linearly on core diameter and numerical aperture. There is no option for backward or 

forward pumping in the simulation, so any possible effect of backward pumping 

(experimental case) is not accounted for in the simulation results. Initial pulse is selected as 

noise for testing the simulation results. The numerical accuracy is also verified by checking 

that results are unaffected after doubling the sampling resolution. 

Section Fiber type Length 
(cm) 

Dispersion 
(fs2/cm) 

Total 
dispersion (fs2) 

Pump coupler Lucent980 54.5 45.1 2457.95 

polarizer SMF28+PM Panda 33.5 -228.3 -7648.05 

isolator SMF28 40 -228.3 -9132 

Collimator 1 SMF28 32.5 -228.3 -7419.75 

Fiber Stretcher, 
collimator 2 

SMF28 228.5 -228.3 -52166.55 

Gain fiber Lucent custom made 
Er-doped 

100 768.7 76870 

total    2961.6 

 

Table 4.2. Length of fiber segments and dispersion properties for the laser 
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Figure 4.3 shows spectrum of the mode-locked laser which is a stable solution after 4500 

roundtrips. In fact, laser can reach mode-lock state after around 50 roundtrips, but for the 

sake of stability check, pulse is rotated inside the cavity for 4500 roundtrips to achieve 

convergence to the last digit of the solution. Figure 4.4 shows buildup of the pulse from 

noise after 50 roundtrips.  

 
Figure 4.3. Simulated spectrum of the pulse 
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Figure 4.4. Buildup of the pulse inside the simulated cavity over 50 roundtrips 
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4.3.  Setup of the Laser Oscillator 

 

Figure 4.5. Schematic setup of the all-fiber stretched-pulse laser 

Initially a stretched–pulse erbium-doped laser in all-fiber cavity configuration was 

constructed (Figure 4.5). It was very robust; however changing the repetition rate of an all-

fiber laser is somewhat troublesome as it requires modifying the fiber lengths inside the 

cavity. Since the main goal of this thesis requires a laser oscillator of which the repetition 

rate is adjustable on the order of a few MHz, some modifications were made to the all-fiber 
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laser oscillator. Moreover, at that time an exciting-new discovery of a new laser type was 

found by Ilday et.al. of Bilkent University (see [28] for details). This new laser kind, 

regarded as “stretched-spectrum” laser was found to be very robust, even more so than the 

regular stretched-pulse laser. The difference between a stretched-spectrum and a stretched-

pulse is that former one has an interference filter inside the cavity which inspires the name 

“stretched-spectrum” as spectral bandwidth of the pulse “breaths” through a round trip 

inside the cavity.  

 

Figure 4.6. Schematic setup of the stretched-spectrum laser oscillator 
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As these two points taken into account, the latest laser design was finalized, which is 

depicted in Figure 4.6. Coherent with numerical simulations, an erbium-doped stretched-

spectrum laser was constructed. The fiber section consists of 371.5 cm of regular single-

mode fiber for 1550nm (SMF28), 17.5 cm of polarization maintaining fiber (PM panda) 

and 100 cm of highly doped (concentration of 6.1025m-3) erbium fiber. Together with 

variable length free-space section, this gives a pulse repetition frequency of 40.6 MHz. 

Given the length of fibers the net GVD of the laser cavity was calculated to be about 2983 

fs2. Single mode fibers and polarization maintaining fiber has negative dispersion, and the 

gain fiber has positive dispersion. The laser is pumped by a single-mode laser diode with 

300 mW power at 980 nm. The coupling to the cavity is done with a wavelength-division 

multiplexer (WDM). A WDM consists of two parallel fiber pieces, whose cores fused 

together by an electric arc. It is possible to obtain a wavelength dependent transmission 

from one fiber into the other, by adjusting the distance of the cores. If the transmission for 

one wavelength is 100% from fiber A to B, whereas the transmission from fiber B to A for 

another wavelength is zero; a WDM is obtained. 

Since an upper harmonic of the laser’s repetition rate needs to precisely match local 

oscillator’s RF frequency (1.3 GHz), the free-space section has to be designed cautiously. 

Given that adjusting the repetition rate with fiber lengths is only an approximate and 

unpractical way, an adjustable free space section between two collimators has to be 

introduced. One of the collimators is mounted on a manual translation stage to coarsely 

adjust the repetition rate. However, the fine tuning is done with an in-line fiber stretcher 

which is an actuator for the phase-lock loop. The stretcher is located after the polarizer to 

avoid polarization distortions due to long fiber (~2.5 m) on it. 
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Apart from the fiber on the stretcher, most of the remaining fiber in the cavity is located on 

an aluminum plate which has a heater on its bottom to efficiently control the temperature of 

the fibers. Restraining the fiber temperature in smaller ranges than room conditions (with 

0.1oC sensitivity), actually gives better control over the stability of the laser. To further 

control the environment of the laser, a plexiglass box with 1 cm thickness is designed to 

fully encase it. This would ensure to minimize the susceptibility of the laser to external 

factors. 

A detailed overview of the fiber lengths and dispersion coefficients is seen in Table 4.2 as 

the same parameters were also used as numerical simulation inputs. Two late photos of the 

laser oscillator is given in Figure 4.7.a and 4.7.b. 

 
Figure 4.7.a. Photo of the laser cavity including the fiber stretcher and free-space section 
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Figure 4.7.b. Photo of the fiber laser inside the custom-made box. Temperature controller is 

set to keep the temperature inside the box at 26oC.  

4.4.  Pulse Characterization 

Since the stabilization of the laser to an RF source only compensates phase fluctuations at 

low offset-frequencies, the phase-noise of the free-running laser has to be small in high 

offset-frequencies. Hence proper operation of the laser needs to be maintained. 

Autocorrelation, electric pulse train, optical and RF spectrum of the laser are monitored 

before stabilization of repetition rate. 
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4.4.1. Autocorrelation 

Characterization of femtosecond laser pulses cannot be performed electronically since 

oscilloscopes and photo detectors do not have bandwidths on the order of a few hundred 

THz. For femtosecond pulses, autocorrelation technique has to be performed in the optical 

domain using nonlinear optical effects. 

In this thesis intensity autocorrelation is used for temporal measurement of the pulse. 

Briefly, the technique depends on second-harmonic generation. Figure 4.8 illustrates the 

setup of autocorrelation. Initially the input pulse is split into two, and one of the pulses is 

delayed by ߬. Then the two pulses are focused on a second-harmonic crystal in a non-

collinear fashion. Assuming the material response is instantaneous, the convolution of two 

interfering signals or the induced nonlinear polarization simplifies to; 

ܲሺଶሻሺݐሻ ן ݐሺܧሻݐሺܧ െ ߬ሻ                                                    ሺ4.9ሻ 

Since the photo detector’s response is much longer than the pulse width, it integrates the 

incident light intensity leading to intensity autocorrelation; 

஺஼ሺ߬ሻܫ ן න ݐሺܫሻݐሺܫ െ ߬ሻ݀ݐ
ஶ

ିஶ
                                              ሺ4.10ሻ 

with ܫሺݐሻ being the intensity of the input pulse. Since the phase of the pulse is not 

conserved, Equation (4.10) does not contain full information about the pulse. However, if 

the pulse shape is known, the pulse width can be calculated by deconvolution of the 

correlation. 
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Figure 4.8.Setup of an intensity autocorrelation 

Assuming a Gaussian pulse shape, a deconvolution factor of 0.707 is used in Equation 4.11, 

leading to 110 fs of pulse width (see Figure 4.9). 

∆߬௉௨௟௦௘
ிௐுெ ൌ 0.707∆߬஺௨௧௢௖௢௥௥௘௟௔௧௜௢௡

ிௐுெ                                         ሺ4.11ሻ 
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Figure 4.9. Autocorrelation of the laser pulse train 

4.4.2. Optical & RF Spectrums and Pulse Train Measurements 

If too much energy is accumulated inside the cavity, the laser will go into multiple-pulsing. 

To ensure proper operation of the laser, multiple-pulsing should be avoided. Optical 

spectrum together with RF spectrum and electrical pulse train on oscilloscope trace spans 

the whole bandwidth to check multiple-pulsing presence. Figures 4.10, 4.11 and 4.12 

shows clear traces of these three measurements.     
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Figure 4.10. Measured optical spectrum of the pulse (simulation output – red) 

 

 
Figure 4.11. Oscilloscope trace of the laser with 40 MHz repetition rate 
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Figure 4.12. Photodiode response of the laser in frequency domain 

 
 

 

 

 

          

      

 



 

Chapter 5  

5 Phase Noise and Timing Jitter 

5.1.  Brief Introduction to Laser Phase Noise  

A mode-locked laser produces train of pulses. The interval between consecutive pulses, 

defined as repetition period, is not identical for all neighboring pulses (Figure 5.1). The 

drift in pulse-to-pulse period is defined as the phase noise of the laser. 

 
Figure 5.1. Time domain visualization of pulses from a mode-locked laser. 

Although it is easier to picture phase noise in time domain, due to characteristics of test & 

measurement devices, phase noise is studied in frequency domain. To explain the 

frequency-domain response of phase noise, pulses need to be converted to frequency 

functions. To this end, applying a Fourier transform to time-domain pulses, gives a 

“frequency comb” (Figure 5.2). 
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Figure 5.2. Time-to-frequency domain conversion of laser pulses.  

In frequency domain phase noise or timing jitter corresponds to drift of individual comb 

lines. Ideally, comb lines are Dirac-delta functions. However, due to phase noise, actual 

comb lines have finite widths (Figure 5.3). The amount of this width is directly 

proportional to the timing jitter of a laser. 

 
Figure 5.3. Single comb line of the laser at 1.3 GHz 
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5.2.  Measuring Phase Noise of the Laser 

Unlike the time picture, frequency response of the pulses covers THz bandwidth as well as 

much slower and measurable RF bandwidth. Frequency of a single comb line can be 

written as; 

݂ ൌ ݊ ௥݂௘௣ ൅ ௖݂௘௢                                                          ሺ5.1ሻ 

where n ranges from 0 to very large numbers on the order of 106, ௥݂௘௣ is the repetition rate 

of the laser and ௖݂௘௢ is the offset frequency of carrier-envelope phase. ௖݂௘௢ based studies are 

beyond the scope of this thesis and will not be mentioned in detail. Furthermore, converting 

the pulse into electrical signal via photodetection destroys the information about ௖݂௘௢, hence 

phase noise measurements covers only the timing jitter of repetition rate, ௥݂௘௣. However it 

should be noted that ultimate stabilization of a pulsed laser also covers locking of ௖݂௘௢ to an 

RF source. 

Phase noise can be measured by selecting a single frequency comb line of the laser and 

phase locking it to a reference oscillator. To convert the pulses in electrical signals, a fast 

photodiode from EOT, ET3500 with 12 GHz bandwidth, is used. Unlike the Fourier 

picture, photodetection gives a comb line starting from DC (Figure 4.12).A single comb 

line (Figure 5.3) is selected by using a %1 bandwidth 1.3 GHz RF filter from Lorch 

Microwave (illustrated in Figure 5.4). After the filter, a low-noise amplifier from Mini-

circuits, ZRL-1150LN+, is used; since the comb line needs to have above 0.1 mW power 

levels for measurement. 
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Figure 5.4. Phase noise measurement setup 

A signal source analyzer (SSA) measures the phase noise of a signal by phase locking it to 

its local reference oscillator. A low-bandwidth phase-locked-loop (PLL) is required for this 

locking. Applying both the reference oscillator signal and DUT’s (device under test) signal 

to a mixer and keeping a phase difference of  ߨ 2⁄  between both signals (to suppress 

amplitude jitter) by the PLL, makes the mixer output signal zero. The remaining 

fluctuations represent the timing jitter between the two signals. This output is then sampled 
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by an A/D conversion system with high dynamic range and finally signal processing (FFT) 

gives the phase noise of the test signal as a function of frequency (Figure 5.5). 

 

Figure 5.5. Schematic of a phase noise measurement using SSA (from [40]) 
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Mathematically, when the test signal is phase locked to the internal reference, both signals 

are in quadrature or have ߨ 2⁄  phase difference. Assume; 

௅ܸைሺݐሻ ൌ ݐ௅ைsin ሺ߱௖ܣ ൅ ∆߶௅ைሻ     and     ஽ܸ௎்ሺݐሻ ൌ ஽௎்ܣ cosሺ߱௖ݐ ൅ ∆߶஽௎்ሻ     ሺ5.2ሻ 

where ߱௖ is the common frequency for both signals, ܣ௅ை, ܣ஽௎் are amplitudes and ∆߶௅ை, 

∆߶஽௎் are phase jitter of either signal. The (ideal) frequency mixer multiplies the two 

signals which yields; 

௠ܸ௜௫௘௥ ൌ ௅ܸைሺݐሻ ஽ܸ௎்ሺݐሻ ൌ ஽௎்ܣ௅ைܣ sinሺ߱௖ݐ ൅ ∆߶௅ைሻ cosሺ߱௖ݐ ൅ ∆߶஽௎்ሻ                      

ൌ
1
ݐ஽௎்ሾsinሺ2߱௖ܣ௅ைܣ 2 ൅ ∆߶௅ை ൅ ∆߶஽௎்ሻ ൅ sinሺ∆߶௅ை െ ∆߶஽௎்ሻ ሿ         ሺ5.3ሻ 

using the trigonometric identity,  sinሺܽ േ ܾሻ ൌ sin ሺܽሻcos ሺܾሻ േ cos ሺܽሻsin ሺܾሻ. The low 

pass filter after the mixer eliminates the sum frequency, which results;  

௙ܸ௜௟௧௘௥௘ௗ ൌ
1
஽௎்ܣ௅ைܣ 2 sinሺ∆߶௅ை െ ∆߶஽௎்ሻ                                 ሺ5.4ሻ 

Since the phase fluctuations are small, low pass filter output can be approximated using 

sinሺ∆߶௅ை െ ∆߶஽௎்ሻ ൎ ∆߶௅ை െ ∆߶஽௎். So the phase fluctuation between the local 

reference oscillator and the test signal is measured. However, this technique has a basic 

requirement; the phase noise of the local oscillator has to be small compared to the phase 

noise of the test signal.  
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Figure 5.6. Single sideband phase noise for the laser oscillator in free-running mode. 

Figure 5.6 shows a phase noise measurement of the free-running laser at 1.3 GHz from 1 

kHz (due to upper state lifetime of erbium) to the Nyquist frequency, 20 MHz. A calculated 

RMS timing jitter of 36.7 fs is found from Equation (5.5) (see [41] for the details); 

ோெௌ|௙భܬ
௙మ ൌ

1
ߨ2 ௖݂

ඨන 2. 10
௅ሺ௙ሻ
ଵ଴ ݂݀

௙మ

௙భ

                                            ሺ5.5ሻ 

where ௖݂ is the carrier frequency under test and ܮሺ݂ሻ is the noise density in dBc/Hz unit. 



 

Chapter 6  

6 Synchronization Circuit and Experimental Results  

6.1.  Laser Synchronization 

Thanks to the manual translation stage inside the cavity, laser has a variable repetition rate 

of 40.6 MHz within 1 MHz range. The 32th harmonic of the laser repetition rate is at the 

studied synchronization frequency of 1.3 GHz. The laser is synchronized to a dielectric 

resonator oscillator (DRO) from Poseidon Scientific Instruments (PSI) using a phase-

locked loop (PLL). Generated error signal by comparing the 32th harmonic of the laser to 

the DRO is fed back to a fiber stretcher inside the laser cavity. Hence the fiber length of the 

cavity is controlled and the repetition rate is adjusted with respect to the reference 

oscillator.  

The error signal is generated through a PLL circuit. After converting the laser output to 

electrical signal via photodetection, only 32th harmonic of the repetition rate is selected by a 

bandpass filter. Following the filter the single harmonic is 30 dB amplified by a low-noise 

RF amplifier to have enough power at the mixer input. The frequency mixer multiplies the 

amplified optic-to-RF converted laser harmonic and the DRO output generating both the 

sum and difference frequencies of both sources. A low-pass filter is connected to the output 

port of the mixer to eliminate the sum frequency. The filtered signal is then feed to a 
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control loop feedback mechanism which is a proportional-integral-derivative controller 

(PID controller). The corrective signal generated in the PID controller is then amplified 

with a power amplifier to drive the high-capacitive piezoelectric fiber stretcher inside the 

laser cavity, onto which 2 meters of laser fiber are wound. Finally, the fiber wound on the 

piezo wafers stretches and compresses to modify the repetition rate of the laser in 

accordance with the corrective signal. A schematic overview and a photographed operation 

of the system is given in Figure 6.1 and 6.2 respectively. 

 

Figure 6.1. Schematic setup of the PLL system 
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Figure 6.2. Photograph of the system in operation. Error signal is monitored on the 
oscilloscope screen and the harmonic of the laser is monitored on the RF spectrum 

analyzer. Laser box is covered with thin metal sheet for temperature isolation.  
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6.1.1. Fundamental Components of the Electronic System 

Apart from the laser oscillator, the PLL system consists of various electronic components. 

Namely low-noise RF amplifier, power amplifier, band-pass and low-pass filters, frequency 

mixer, PID controller, DRO, photodetector and piezoelectric fiber stretcher are the 

components in the PLL. Except the power amplifier, remaining components are retail 

products.  

Most of the RF components; low-noise amplifier (ZRL-1150LN+), low-pass filter(SLP-

1.9+) and frequency mixer (ZX05-5+) are from Mini-circuits. Low-noise amplifier has a 

gain bandwidth of  750 MHz ranging from 650 to 1400 MHz. 30 dB typical gain is 

provided by 12 V dc supply. The ratio of output noise to that which would remain if the 

amplifier itself did not introduce noise, in other words noise figure is 1.1 dB. Low-pass 

filter has a passband of DC to 1.9 MHz. Stopband extends up to 400 MHz with loss more 

than 40 dB, hence attenuating the sum frequency after the mixer at least ten thousand times. 

Below 100 kHz, its insertion loss is 0.09 dB. The frequency mixer operates between 5-1500 

MHz with typical input powers of 7 dBm. (see [42] for details) 

Band-pass filter (4CF2-1300/13-S) is a product of Lorch-microwave. It has center 

frequency at 1.3 GHz, Q-factor of 2.9 and a 3 dB bandwidth of %1 corresponding to 13 

MHz. (see [43] for details).  

PID controller (SIM960) is on the product line of Stanford Research Systems. It has a 

bandwidth of 100 kHz with low-noise performance (8nV/√hz  above 10 Hz). The PID 

controller attempts to correct the error signal between the DRO and the laser harmonic by 

calculating and outputting a corrective signal back to the PLL. By adjusting the three gain 
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parameters of the PID controller, sufficient output to keep the loop in phase is generated. 

The proportional gain determines the reaction to the current error, the integral gain 

determines the reaction to the sum of recent errors and the derivative gain determines the 

reaction to the rate of change in the error. Mathematically, the PID controller calculates the 

formula; 

ߝ ൌ ݐ݊݅݋݌ݐ݁ݏ െ  ሺ6.1ሻ                                                    ݁ݎݑݏܽ݁݉

ݐݑ݌ݐݑܱ ൌ ܲ ൈ ൜ߝ ൅ ܫ න ݐ݀ߝ ൅ ܦ
ߝ݀
ൠݐ݀ ൅  ሺ6.2ሻ                               ݐ݁ݏ݂݂݋

where ߝ is the error signal, ݐ݊݅݋݌ݐ݁ݏ is the reference signal and ݉݁ܽ݁ݎݑݏ is the processed 

signal (laser harmonic).  

Power amplifier is designed and built by Dr. Aykutlu Dana of Bilkent University. PA85 

from Apex Microtechnology is used as high-voltage, inverting power operational amplifier 

in the design. The power amplifier has a gain of 13 dB and supports output voltages 

between -210 to +210 V DC with ±215 V DC supply. Vout/Vin graph is given in Figure 6.3.  
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Figure 6.3. Gain response of the power amplifier. Saturation after ±10 V DC input voltage 

with ±215 V DC supply. 

An ultra-low noise dielectric resonator oscillator from Poseidon Scientific Instruments is 

used as the reference signal source (DRO-1.300-FR). It has a center frequency of 1.3 GHz 

with ±100 ppm mechanical tuning range. It also has the option to control the center 

frequency by voltage controller oscillator (VCO) input, featuring 3 ppm/Volt typical 

control rate within ±10 V VCO input range. Typical phase noise performance of the DRO 

measured by the company is given in Table 6.1. (see [44] for details) 
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Carrier offset frequency Guaranteed phase noise Typical phase noise 

@100 Hz   -87 dBc/Hz      -89 dBc/Hz 

@1 kHz -117 dBc/Hz    -119 dBc/Hz 

@10 kHz -140 dBc/Hz    -147 dBc/Hz 

@100 kHz -165 dBc/Hz    -169 dBc/Hz 

@1 MHz -170 dBc/Hz < -175 dBc/Hz 

@ 6 MHz -170 dBc/Hz < -175 dBc/Hz 

 

However, these noise levels are lower than the given phase noise measurements of the 

DRO in the actual setup in the following section due to the fact than measurement 

instruments are different and more importantly, the company measured the noise of two 

DROs with 3dB subtracted at the end.  

A fast photodetector from Electro-optics Technology is used for the electro-optic 

conversion of the laser pulses (ET-3500F). Covering the spectral range of 1000-1650 nm, 

this InGaAs photodetector has a bandwidth of 12 GHz and rise-, fall-times of <35ps. Noise 

equivalent power of the detector is below 0.04 pV/√hz. (see [45] for details) 

Piezoelectric fiber stretcher is produced by Canadian Instrumentation and Research. Ltd. It 

compresses/stretches the fiber by applied voltage to piezo wafers onto which 5 rounds of 

fiber is wounded (approximately 200 cm of fiber). It has a bandwidth of 100 kHz and an 

applied voltage limitation of ±200 V DC to the piezo wafers. Within this voltage limitation, 

it can handle maximum repetition rate change of ±93 Hz which corresponds to a range of 

±3 kHz around the center frequency at 1.3 GHz corresponding harmonic. 
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6.1.2. Performance Analysis of the PLL   

The PLL is optimized such that the frequency range in which the laser and the DRO stay in 

phase is maximized. Without losing the lock, DRO frequency can be changed in the range 

of ±3 kHz via the VCO input. This is achieved by setting the PID controller gain 

parameters as -32 proportional gain, 5 integration gain and 0.2x10-5 differential gain. The 

range can be further increased by increasing the gain parameters in the PID controller, 

however increasing the gain causes the corrective signal to exceed the saturation point of 

the power amplifier (Figure 6.3), hence causing the locked error signal to have modulation 

and after a point destroys the lock.   

When the PLL is not in operation, the laser harmonic and the reference DRO signal are not 

phase locked. Mathematically, additional terms will be added to the arguments of 

sinusoidal functions in Equation (5.2) which are ߶௅ை and ߶஽௎், constant phases of the 

DRO and the laser harmonic respectively. Taking into account these new terms will also 

result in modifying Equation (5.4) as; 

௙ܸ௜௟௧௘௥௘ௗ ൌ
1
஽௎்ܣ௅ைܣ 2 sinሺ߶௅ை െ ߶௅ை ൅ ∆߶௅ை െ ∆߶஽௎்ሻ                     ሺ6.3ሻ 

Hence the approximation made in Section 5.2 for phase noise measurement is not valid 

anymore. This unlocked error signal is monitored on the oscilloscope trace as sinusoidal 

wave. However when the system is in lock the two signals will be in phase (߶௅ை ൌ ߶஽௎்) 

and Equation 6.3 can be approximated as sinሺ∆߶௅ை െ ∆߶஽௎்ሻ ൎ ∆߶௅ை െ ∆߶஽௎் 

generating a DC signal instead of a sinusoidal one.     
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The performance of the PLL was measured recording this DC signal over 41.3 hours. 

Although the system was observed to stay in lock for much longer times (possibly 

indefinitely) in absence of intentional halts or excessive distortion, memory limitations 

force the recording time to be relatively small. 41.3 hours of recording is given in Figure 

6.4. Because of the memory limitation, the whole data points were not plotted. Instead rms 

of 100 seconds data chunks are given, which actually indicates if the lock was distorted or 

not. Figure 6.4 also includes rms error signal for the case where the lock is interrupted.      

 
Figure 6.4. Performance record of the PLL (black line). Distorted lock (red line). 
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6.2.  Synchronization Results in Phase Noise 

Comparing the phase noise performance of the free-running laser and the DRO, it is shown 

that at high frequencies (1 kHz to 20 MHz, Nyquist frequency of the laser) the laser is only 

1.5 times worse in stability than the DRO and it even outperforms the DRO up to 5kHz 

offset frequencies (Figure 6.5).  

 
Figure 6.5. Free-running laser and DRO phase noise comparison 

 



 
 
 
 
 
 
 
CHAPTER 6. SYNCHRONIZATION CIRCUIT AND EXPERIMENTAL RESULTS 
 

 

81

However, having less phase noise in laser up to 5 kHz range avoids noticing the effect of 

the stabilization in terms of phase noise improvement since the bandwidth of the PLL is 

100 kHz. Therefore, one can either decrease the phase noise of the DRO or intentionally 

increase the phase noise of the laser at low frequencies. Since the DRO in use is not a low-

noise crystal reference phase-locked DRO, the latter option would be exercised. As the 

laser oscillator is encased, external disturbances are decreased to minimum which further 

decreases its phase noise. Even removing the casing does not increase laser’s phase noise 

above DRO’s phase noise, so additional disturbance is created by literally having the laser 

to listen to random songs. The effect is given on Figure 6.6. Substantial phase noise is 

added to the laser at low frequencies (below 1 kHz). Figure 6.6 also depicts that above 100 

kHz offset frequencies, the free-running DRO has the lowest phase noise which certainly 

would not be transmitted to the laser when they are in lock because of the limitation in PLL 

bandwidth (100 kHz). Yet, the laser has excellent stability at these frequencies. 
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Figure 6.6. Phase noise comparison of the DRO and the laser at various conditions. 

 
Figure 6.7 magnifies the section of Figure 6.6 where actual effect of locking loop is seen. 

Comparing the rms jitter stored only in this region, PLL actually improves the stability of 

the disturbed laser to the level of the DRO.  
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Figure 6.7. Zoomed in section of the phase noise graph to show the PLL effect on the 

laser’s stability. 
 

 



 

Chapter 7  

7 Conclusion and Outlook  

Based on the frequency response of ultrafast laser pulses, a fiber laser’s repetition-rate 

stabilization system has been built and studied in this thesis.  

Due to its excellent stability and robustness, a stretched-spectrum fiber laser was developed 

to serve as the core of the system producing optical pulses of 123 fs in transform limit. In 

agreement with numerical simulations, experimental construction of the laser oscillator had 

been pursued to the point of utmost completion. A manually adjustable free-space length 

was introduced to have the ability to shift the repetition rate in small amounts such that the 

upper harmonic frequency used for the PLL is roughly adjusted. For fine adjustment a 

piezoelectric fiber stretcher was integrated inside the laser cavity as an actuator for the 

PLL. Prior to the construction of the PLL system, the laser was indirectly stabilized. 

Plexiglass is being the raw material; a strong encasing of the laser was built to minimize 

environmental fluctuations in the vicinity the laser. Although the encasing would dampen 

fluctuations and delay their effect on the laser, long term temperature instabilities like 

daytime-nighttime periods were also taken into account. 0.1oC sensitive temperature 

control ensures to keep the cavity fiber temperature hence the optical path length in set 

values. 
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The laser’s phase noise was measured to be lower than the free-running DRO’s up to 5 kHz 

offset frequencies. Demonstrations of decreasing phase noise of the locked laser were 

conducted via the exercise of artificial boost in its phase noise by external disturbances.  

The stabilization of the repetition rate was performed with a 1.3 GHz DRO as the reference 

oscillator and 32th harmonic of the laser as the test oscillator. The PLL system handles 

locking ranges of േ3 kHz around the center frequency of 1.3 GHz. It promises to keep 

synchronization over short and long time scales. A period of 41.3 hours was recorded as the 

system stayed in lock where the amount of this period was not dictated by the lifetime of 

the locking, but the limitations of measurement devices and computers. Disregarding 

intentional shutting offs, the loop was observed to run for several weeks without any 

problem. 

Finally, the success of repetition-rate might be improved by replacing the free-running 

DRO with a crystal reference phase-locked DRO which makes a more stable reference. In 

addition to adding short term stability to the laser with a DRO reference oscillator, long 

term stability can also be implemented using atomic-transition based references (i.e. 

Rubidium stabilized diode laser) as reference oscillators in the PLL. 
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