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ABSTRACT
We describe a new image representation using spatial rela-

tionship histograms that extend our earlier work on model-

ing image content using attributed relational graphs. These

histograms are constructed by classifying the regions in an

image, computing the topological and distance-based spatial

relationships between these regions, and counting the number

of times different groups of regions are observed in the im-

age. We also describe a selection algorithm that produces very

compact representations by identifying the distinguishing re-

gion groups that are frequently found in a particular class of

scenes but rarely exist in others. Experiments using Ikonos

scenes illustrate the effectiveness of the proposed representa-

tion in retrieval of images containing complex types of scenes

such as dense and sparse urban areas.

Index Terms— Image retrieval, spatial relationships, fea-

ture selection

1. INTRODUCTION

Image information mining is a relatively new field of research

for automating the content extraction and exploitation pro-

cesses in large Earth observation data archives where the goal

is to build high-level subjective content models by combin-

ing low-level features, and support classification and content-

based retrieval of image content in terms of semantic queries.

For example, Datcu et al. [1] developed a system where users

can train Bayesian classifiers for a particular concept (e.g.,

water) using positive and negative examples of pixels, and

can have image tiles ranked according to the coverage of this

concept estimated using pixel level models. Li and Narayanan

[2] described a system where images are divided into tiles and

are retrieved using spectral and textural statistics. Systems

that support object extraction and modeling of image content

based on these objects have also been developed [3, 4].

Even though correct identification of pixels and regions

improve the processing time for content extraction, manual
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interpretation is often necessary for many applications be-

cause two scenes with similar regions can have very different

interpretations if the regions have different spatial arrange-

ments. Therefore, modeling spatial information to understand

the context has been an important and challenging research

problem. A structural method for modeling context is through

the quantification of spatial relationships. For example, Shyu

et al. [4] developed a method that generates a spatial signature

of the configuration of the objects in an image tile. In previ-

ous work [3], we developed automatic methods for extraction

of topological, distance-based and relative position-based re-

lationships between region pairs, and successfully used such

relationships for image classification and retrieval in scenar-

ios that cannot be expressed by traditional pixel- and region-

based approaches. Then, in [5], we modeled image scenes

using attributed relational graphs that combine region class

information and spatial arrangements, and formulated image

retrieval as a relational graph matching problem.

Attributed relational graphs (ARG) are very general and

powerful representations of image content. In our ARG

model, for an image with n regions, the regions are repre-

sented by n graph nodes and the
(
n
2

)
pairwise spatial rela-

tionships between them are represented by the edges between

these nodes. However, finding similarities between graphs

can easily become intractable for large images in large data

sets, and image mining that is formulated as a graph search-

ing problem can become infeasible when these data sets are

concerned. Furthermore, these graphs can be too detailed,

and the result set of a search session can be quite small when

these detailed representations are compared.

In this paper, we propose new models for image content

representation using spatial relationship histograms. These

histograms are more powerful representations than commonly

used tile-based spectral or textural feature histograms [2, 4]

but are not as complex as the full graph-based representa-

tions. In other words, they provide a summary of the full

scene graph while enabling complex queries that cannot be

modeled using histograms of pixels’ spectral or textural fea-

ture values.
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The computation of the spatial relationship histograms

starts with image segmentation and region classification

(Section 2). Given the extracted regions with their asso-

ciated class labels, topological and distance-based spatial

relationships between all region pairs are computed (Sec-

tion 3). Then, this relationship information is encoded using

histograms that count the number of times different groups

of regions are observed in the image (Section 4). As the

size of the region groups is increased, the detail of the con-

tent representation also increases but the histograms become

sparser. Therefore, a novel selection algorithm is proposed

to find important region groups that are more informative in

distinguishing one type of scene from the others (Section 5).

Experiments using Ikonos scenes illustrate the effectiveness

of the spatial relationship histograms in retrieval of images

containing complex types of scenes such as dense and sparse

urban areas (Section 6).

2. REGION SEGMENTATION AND
CLASSIFICATION

Segmentation and classification are done jointly by using

Bayesian classifiers. Spectral values and Gabor texture fea-

tures are used for pixel representation, and binary classifiers

are trained using positive and negative examples for the fol-

lowing classes: roof, water, tree, bare soil, grass, street, path

and shadow. Then, each pixel is assigned to a class according

to the maximum posterior probability given by these classi-

fiers. The final segmentation is obtained using an iterative

split-and-merge algorithm that combines contiguous groups

of pixels that are assigned to the same class. Details of the

segmentation and classification algorithm can be found in [3].

3. REGION SPATIAL RELATIONSHIPS

Topological (e.g., disjoined, bordering, invading, surround-

ing) and distance-based (e.g., near, far) spatial relationships

(Figure 1) can be computed using overlaps and distances be-

tween region boundaries, respectively, for each region pair

in an image [3, 5]. In this paper, the coarse-to-fine search

strategy described in [5] is used to compare all region pairs

in each image according to the region boundaries, and fuzzy

membership functions [3] are used to convert the computed

quantitative relationship information into semantic labels.

4. SPATIAL RELATIONSHIP HISTOGRAMS

In [5], the image content is modeled by using attributed re-

lational graphs of labeled regions where the regions are rep-

resented by the graph nodes and their pairwise spatial rela-

tionships are represented by the edges between these nodes.

Although these graphs are very powerful representations, the

graph similarity that is computed as the minimum cost taken

over all sequences of operations that transform one graph to

Fig. 1. Spatial relationships of region pairs.

the other can lead to very high computational complexity.

Furthermore, the detailed representation can produce a small

result set for a search session. Due to these practical issues,

we propose to use spatial relationship histograms that can be

easily obtained from ARGs. These histograms are not as com-

plex as full graph models, but are still more powerful than

commonly used low-level representations.

The spatial relationship histograms can be computed at

different levels of detail. The complexity of the histogram

is determined by the size (order) of the region groups con-

sidered. For example, when only region pairs are taken into

account, the histograms encode second-order region rela-

tionships, and when groups of three regions are considered,

the histograms encode third-order relationships. To compute

these histograms for a given order (i.e., for a given number

of regions to be considered), first, we generate all possible

relationships between all possible region classes. This com-

binatorial problem is solved recursively. Then, the histogram

for an image is computed by counting the number of times

each possible region group is observed in the ARG of that

image. For example, a sample bin of a second-order his-

togram can correspond to the number of “(grass BORDER-

ING street)” observations found in an image. A sample bin

of a third-order histogram can correspond to the number of

“(roof INVADED BY NEAR grass) & (grass BORDERING

NEAR street) & (street DISJOINED NEAR roof)” observa-

tions. We also compute first-order histograms that simply

count the number of pixels belonging to each region class

without considering any spatial relationships for comparison.

5. FEATURE SELECTION

When the order of region groups is increased, the detail of

the content representation also increases but the representa-

tion may become too specific and the problem of sparsity can

also become more significant. In other words, the histograms

may become sparser because not all possible region groups

are observed in an image. An interesting problem is the iden-

tification of the important region groups for a given set of

scene classes because not all region groups are equally infor-

mative in distinguishing one type of scene from the others.

Given example images for a user-defined set of scene

classes, the goal of the selection process is to identify the

region groups that are frequently found in a particular class of

scenes, consistently occur together in the same type of scenes,

but rarely exist in other scenes. We formulate the selection

process as a multi-subset search problem that is solved using
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the sequential forward selection algorithm that we recently

developed for image classification [6]. The goal of this al-

gorithm is to find a set of subsets (called a multi-subset) for

which a given goodness criterion is maximized.

The smallest component in this procedure is a group of re-

gions with their class labels and spatial relationships (in other

words, a component corresponds to a bin in the spatial rela-

tionship histogram). Each subset consists of several compo-

nents that are determined to be the best set of region groups

for a particular type of scene, and the multi-subset represents

the region groups selected for the whole data set. The partic-

ular goodness criterion used here consists of two parts where

the first part quantifies the importance of each component for

a particular scene class and the second part measures the im-

portance of each pair of components with respect to differ-

ent scene classes. The sequential forward selection algorithm

iteratively finds the components (region groups) that maxi-

mize this criterion (details can be found in [6]). Note that

this procedure performs selection using only the frequencies

of region groups in example images, and does not depend on

a specific classifier unlike most of the supervised selection

algorithms. After feature selection, only the selected set of

region groups are used in the spatial relationship histogram.

6. EXPERIMENTS

The performances of the spatial relationship histogram repre-

sentation and the selection algorithm were evaluated using a

retrieval system that finds images with content similar to the

query image. The data set used consisted of an Ikonos scene

of Istanbul with pan-sharpened red, green and blue bands and

14416 × 11946 pixels. The whole scene was divided into

250× 250 pixel tiles and a spatial relationship histogram was

computed for each tile. A subset of these tiles were assigned

high level class labels as ground truth. The high level classes

were chosen to be dense urban, sparse urban and very sparse
urban. The number of tiles for each class were 46, 62 and 74,

respectively. During retrieval, a tile was accepted as a true

match if it belonged to the same high level class as the query.

The histograms were computed at three levels (orders) of

detail using regions labeled with 8 classes listed in Section

2. Different settings were used as shown in Table 1. Only

the region pairs that were near each other according to the

computed distance-based relationship were considered in all

settings. Topological relationships of bordering, invading and

surrounding were used only in setting 2. These settings de-

termined the size of the histogram. For example, 82 possible

types of nearby region pairs resulted in 64 bins for setting

1, adding 3 possible topological relationships resulted in 192

bins for setting 2, and 3 pairs of regions with 82 possible types

for each pair resulted in 262144 bins for setting 3. Setting 4

consisted of the first-order histograms computed as the base-

line method without using any spatial information.

Example histograms are shown in Figure 2. As expected,

Table 1. Settings and the corresponding histogram sizes used

in the experiments.
Setting Order Topological Distance Size

1 2 — near 64

2 2 bordering, invading, surrounding near 192

3 3 — near 262144

4 1 — — 8

(a) Setting 1, no selection (b) Setting 1, with selection

(c) Setting 2, no selection (d) Setting 2, with selection

Fig. 2. Example spatial relationship histograms. Rows corre-

spond to image tiles (grouped as dense urban, sparse urban,

very sparse urban from top to bottom) and columns corre-

spond to histogram bins. Brighter values correspond to larger

values in the histogram.

the sparseness problem was encountered when the number

of relationships and the order used increased. Feature selec-

tion was incorporated for automatic selection of the most dis-

criminant histogram bins. We observed that the selected bins

generally corresponded to meaningful spatial relationships re-

lated to their associated classes. The bins selected for setting

1 are listed in Table 2. As can be seen from this list, the subset

for the dense urban class contained the relationships depend-

ing on roofs, including the (roof NEAR roof) relationship,

whereas the sparse urban class had the relationship (bare soil

NEAR street) in addition to the relationships including roofs.

When the very sparse urban class was considered, no rela-

tionship containing a roof was selected. We can conclude that,

Table 2. Region groups selected for setting 1.
Dense urban Sparse urban Very sparse urban

(roof NEAR roof) (roof NEAR bare soil) (bare soil NEAR grass)

(roof NEAR grass) (bare soil NEAR street) (grass NEAR street)

(roof NEAR street)
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Fig. 3. Average precision for different settings.

(a) Setting 1 (b) Setting 4

Fig. 4. Retrieval examples for the dense urban class.

when the degree of urbanization decreased, the importance of

the relationships regarding roof regions diminished.

The retrieval performance was evaluated by using each

image tile as a query and ranking all tiles in increasing or-

der of the Euclidean distance between their histograms and

the histogram of the query. Precision, which is defined as the

percentage of the correctly retrieved tiles among all tiles re-

trieved, was computed for quantitative performance analysis.

The results for different settings are shown in Figure 3. All

settings that encoded spatial relationships outperformed the

baseline method that did not use any spatial information. Se-

lection also had a positive effect when the amount of sparse-

ness in the histogram increased. Figure 4 shows two exam-

ple retrievals for the dense urban class. The results obtained

by the spatial relationship histogram were almost all correct,

but the baseline method returned some tiles belonging to the

sparse urban class because it could not distinguish a large

number of small buildings from a smaller number of large

buildings, and several small grass areas scattered around the

buildings from larger areas of grass.

7. CONCLUSIONS

We described a new image content representation using spa-

tial relationship histograms that were computed by counting

the number of times different groups of regions were observed

in an image. The high level information encoded in each

group consisted of the class labels for all regions and the topo-

logical and distance-based spatial relationships between these

regions. We also described an algorithm for finding distin-

guishing region groups for different types of scenes. The se-

lection process produced very compact but very effective rep-

resentations by significantly reducing the dimensionality of

the histograms and the corresponding computational cost of

image mining. Image retrieval experiments using Ikonos im-

ages showed that the new model resulted in better precision

values compared to the traditional representations that did not

use any spatial information.
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