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Abstract

ORDER QUANTITY AND PRICING DECISIONS IN LINEAR
COST INVENTORY SYSTEMS

L. Hakan Polatoglu
Ph.D. in Industrial Engineering
Supervisor: Assoc. Prof. Dr. Cemal Dinger

January 1993

The primary concern of this study is to reveal the fundamental characteristics of the linear
cost inventory model where price is a decision variable in addition to procurement quantity.
In this context, the optimal solution must not only strike a balance between leftovers and
shortages, but also simultaneously search for the best pricing alternative within the low price
high demand and high price low demand tradeoff. To some extent, this problem has been
stﬁdied in the literature. However, it seems that, there is a need to improve the model in order
to understand the decision process better. To this end, optimal decisions must be characterised
under a more general problem setting than it has been assumed in the existing models. In this
study, we employ such a general model.

The overall decision problem can be formulated under a dynamic programming structure.
It follows that, the single period model is the basis of this periodic decision model. For this
reason, we concentrate first on this problem. Having characterised the optimal solution to this
basic model we extend the decision model to account for the multi-period setting.

It is established with the results of this study that the decision problem in question is
understood better. It is found that the characteristics of the optimal decision under the
proposed model can be substantially different from the properties of the optimal solution of the
corresponding classical model where there is no pricing decision. The primary reason for this
is the fact that when there is a shortage in any period, the price that is set in this period could
affect the future revenue which must be accounted in the overall decision problem. That is, in
a general model, price is an information which has an economic value that is transferred from

one period to another just like transfering inventories or backlogs to future periods.
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Chapter 1

Introduction and Literature

Review

Reorder point, order quantity inventory models are essentially short term planning models. By
assumption, the ordering policy does not change the demand pattern or the price structure in
the market place during the planning horizon. This assumption is approximated in a perfectly
competitive market where there is no pricing decision to make for the individual vendor.
However, there may be incentives for the vendor to increase inventories and wait until the most
profitable point in titne, if the price is expected to rise in the future; or to clear inventories, if
the price is expected to decline. Under imperfect competition, the individual vendor excercises
a degree of monopoly power in the market. He may set a price for his product but then he
faces a deinand level, governed by some probability distribution, the expected value of which
is decreasing in price. In this context, in addition to the procurement decision, the vendor is
confronted by a simultaneous pricing decision.

The simplest model for the study of optimal procurement and pricing decisions is a single-
product, periodic review pure inventory model. The planning horizon is divided into review
periods which are linked by period ending inventory levels. The vendor is assumed to have
full information about costs and demand distributions that are applicable to all periods of
the horizon. At the beginning of a review period, given the inventory position (on hand plus
on order minus backorders), his problem is to determine the procurement and pricing policies
which jointly maximize the expected present value of total profit during the planning horizon.

It has been a common practice in demand modeling to express random demand as a
combination of expected demand and a random term. The former has some form of price
dependency while the latter is price independent. A number of special cases of this model

liave been studied in the literature. These differ, essentially, in the way the demand process
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is represented. In the additive model, X, (p) = Y,,(p) + en where X, (p) is the demand during
period 1 when the price is p, X, (p) = E[{X,(p)] and €,, n = 1,2,... are independent random
variables with £[e,] = 0. In most studies, it is also assumed that 5\7(1)) is nonincreasing in
p and, without loss of generality, X,,(p) = X(p), n = 1,2,.... In the multiplicative model,
Xu(p) = T\i,(p)-e,, where I[e,] = 1. In the riskless model, X,,(p) = )_(,,(p) so that demand
in any period is represented by its expected value. This latter case serves both as a first order
approximation and as a benchmark for the probabilistic versions of the model.

Whitin [15] appears to have been the first to link price theory and inventory control in a
one-period model. Demonstrating that a higher profit level could be achieved for the proposed
model, coripared to the newsboy problem, he claimed that decision making would be improved
by taking price as a control variable.

Mills [7] formalized Whitin’s intuitive approach by studying a one-period inventory model
(no holding or shortage costs) with additive demand. He showed that under demand uncertainty
the optimal price is less than the optimal riskless price. Mills [7, 8] also studied the multi-period
(infinite horizon) mnodel for which the optimal price was found to be less than that of the one-
period model. In addition, he demonstrated that the difference between the optimal starting
stock and the expected demand evaluated at the optimal price is greater for the multi-period
model.

Later, Karlin and Carr [3] provided a more general inventory model. For both static (one-
period model with unit holding and shortage costs) and dynamic (infinite horizon multi-period
lost-sales model without holding or shortage costs) cases they studied the optimal decision
variables uuder additive and multiplicative demand, and derived the necessary conditions for
optimality. They showed, under reasonable assumptions, that the optimal price is greater (less)
than the riskless price for the multiplicative (additive) demand for both static and dynamic
models.

Nevins [9] provided an empirical study of a special infinite horizon multi-period lost-sales
model. lle employed the multiplicative demand model with a linear expected demand function
under the additional assumptions of a nondecreasing quadratic procurement cost function,
a constant unit inventory holding cost and no shortage cost. For various problem data, he
observed that there exists a stochastic equilibriumn in which expected demand evaluated at
the optimal price equals to the optimal procurement, and there is a tendency that equilibrium
inventory level is preserved. llowever, it appears that Nevins’ definition of equilibrium inventory
is erroneous. Lxpected sales rather than expected demand should be employed in this definition.

Zabel [18] attempted to provide analytical support to Nevins’ empirical findings. For
the one-period model with multiplicative demand, he demonstrated, under somne restrictive
conditions, the existence of the equilibrium inventory level. Following Nevins’ definition, he

showed that the equilibrium inventory level decreases as holding cost is increased as observed
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by Nevins. Zabel also stated the conditions that guarantee the existence and uniqueness of
the optimal solution. In a later paper [19], he showed that stronger conditions are needed to
guarantce a unique optimal price for the first period of a two-period problem. In addition to the
multiplicative demnand, Zabel [19] also considered an additive demand model which is slightly
different from Mills’ [7] definition. For this model, he demonstrated that under some restrictive
assumptions the optimal values of the decision variables at each period are unique. Moreover,
comparing additive and multiplicative demand cases, Zabel concluded that the former tends
to yield lower prices and higher inventory levels than the latter. The major source of this
characteristic difference is seen as the variance of demand. For the additive model, the variance
is constant and for the multiplicative model it is a decreasing function of price. Therefore,
higher prices in the latter model are less risky.

Thowsen [13] formulated a {inite horizon multi-period model under additive demand which
incorporates partial backlogging. IHe derived suflicient conditions under which the optimal
procurement is determined by a single critical number policy. He showed that these conditions
are satisfied for the case with linear expected demand function and a PF distribution for the
random term.

Young [16] represented the random demand as a combination of the additive and
multiplicative models. For the one-period problem, he stated the suflicient conditions under
which the optinal starting stock level is unique. Comparing the results with those of the riskless
model, he also showed that, if the coeflicient of variation of demand is nonincreasing in price,
then the riskless revenue exceeds the marginal procurement cost at optimality. The converse
is true if the variance of demand is nondecreasing in price. Moreover, correcting Zabel’s [18]
delinition of equilibrium, Young demonstrated the existence of an equilibrium inventory level
under his assumptions. In addition, Young [17] also studied the infinite horizon multi-period
lost-sales problem under his demand model. Assuming that the unsold inventory at the end of
each period has an economic value that is equal to the present worth of its procurement cost,
he showed that the periods could be separated from each other and the optimal solution could
be obtained from the analysis of one-period model.

It appears that Mills’ [8] and Karlin and Carr’s [3] approaches establish the conceptual
framework of the general inventory model. Nevins’ [9], Zabel’s 18, 19], Thowsen’s [13] and
Young’s [16, 17] studies, however, concentrate mostly on the existence and uniqueness of the
optimal solutions for various special cases of the general model. It is demonstrated by these
studies that seriously restrictive assumptions on the form of the expected demand function,
on the demand distribution or on the structure of the expected loss function are needed to
provide analytical results on the cited issues. In this regard, the existing studies fail to provide
a complete understanding of the form of the optimal policies due to analytical intractability.

The above mentioned demand models have been used traditionally as a convenient tool to
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isolate the cffects of uncertainty in the context of the theory of the firm. The disadvantage
ol this representation, however, is the structural restrictions it brings into the model. For
instance, the additive model is restricted by a price-independent (constant) variance. Also it
allows negative demand unless the price values are bounded from above. The multiplicative
model implies the curious restriction that the demand equals to the product of its expected
value and a random term. As a result of this, variance of demand is the square of its expected
value times the variance of the random terin. Therefore, variance decreases at a rate faster
than expected value and it approaches to zero at high prices.

We believe that there is a need to study the model under general demand uncertainty. It is
essential Lo reveal the fundamental properties of the model independent of the demand pattern.
Especially, uniqueness conditions for optimality must be studied in a more general setting. In
this study, we attempl to develop and analyze the model under a general demand uncertainty.

In the classical multi-period inventory model, the proportion of the shortage which is
backlogged to the next period is determined by the partial backlogging function. In our model,
on the other hand, backlogging needs additional consideration due to the pricing decision. This
fact is often ignored by the existing models either by assuming a lost-sales model or by making
simplifying assumptions about the forgone revenue due to shortages. In our model, however,
we introduce a special relationship (bargaining) between the vendor and the customer over the
price that is charged for the backlogs.

In what follows, we introduce the single period mnodel in chapter 2. Then, in chapter 3, we
study the multi-period model. Chapter 4 provides some numerical examnples on the theoretical

issucs which are discussed in the first three chapters. Finally, in chapter 5 we conclude our

findings.



Chapter 2

Single Period Model

In this chapter, we study the optimal procurement and pricing decisions in a single product
one-period pure inventory system. We view this model as a building block of the multi-period

model and attempt to establish its characteristics to this end.

2.1 Basic Model and Assumptions

In this model, the vendor is to make the best procurement and pricing decisions to maximize
his profit prior to the beginning of the period. Inventory level before ordering is ¢. The amount
procured, if any, is g—i. A random demand X (p) occurs during the period and at the end of the
period the inventory level is reduced to ¢ ~ X(p). We consider the case where ¢ > 0. For ¢ <0,
the one-period probletn is initiated with an unknown history. That is, the following questions
can not be accounted for unless we make assumptions: (1) What [raction of the backlog do we
have to satisfy? (2) At what price should we sell that fraction? (3) Do we deduct the backlog
from the actual demand or not? These questions will be referred to later in the multi-period
model.

We assumme that inventory costs are proportional to the period ending inventory level. We
denote the unit holding, shortage and procurement costs by h, s and ¢, respectively. We also
denote the fixed ordering cost by K. In addition, we assume that, the price is bounded from
below and above by £ and Py, respectively, which are the price floor and price ceiling in a
regulatory environment. If there are no price regulations, then we consider the price range of
(0,00). We also assume that P, > ¢ so that it is possible to make profit by retailing.

It follows from the discussion in [6] that a way of incorporating price and uncertainty in

demand is through an implicit relationship of the type:

F(X,p,e)=0,
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where ¢ is a random term with a known probability distribution. Assuming that F has

continuous partial derivatives we may express the random demand as:
X =X(p,e). (2.1)

Note that the additive and the multiplicative demand models are special forms of (2.1).

We assumne that demand distribution, F(z;p), is defined over z € (—00, 00) and p € [P, P,]
such that for all p € [P, Py] we have F(X,(p);p) = 0 and F(X3(p);p) = 1, where X,(p) and
X2(p) are the lower and upper bounds on X(p), respectively, which are differentiable functions
of pand 0 < X;(p) < X2(p) < co. We shall restrict our analysis only to the continuous demand
case, bearing in mind that a similar one exists otherwise.

We assume that the expected demand exists (finite), and it is determined from

— X2(p) ]
X = [ efryds = [T0-Fain)d (22)
X1(p) 0
where f(z;p) is the demand density function. We assume that )_((p) is a monotone decreasing
function of p on (0,00) (if p is confined to [Py, P,], then we extend X (p) on (0, P¢) and (Py,0)
by appropriate functions to satisfly the requirements without loss of generality). Moreover, we
require that Y(p) is o(1/p) as p — 0% and p — oco. This implies that the function pv?(p) starts
at zero, first increases and eventually dies away. This function, which is denoted by R(p), is
called the riskless total revenue by Mills [8]. R(p) is a positive valued, finite and differentiable
function, which plays an important role in model development. It is shown in Appendix A that
R(p) is pscudoconcave on (0,00) when Y(p) is either a concave or convex decreasing function;
it is also indicated that R(p) is not pseudoconcave for all monotone decreasing )_((p) functions.
We assunie that [2(p) is unimodal; hence, there exists a unique finite price which maximizes
R(p).
It is intuitive that, in a “fair” market, the probability that demand is less than the given
level z, F'(x; p), increases as the price increases. That is,
9F (z;p)

o >0 Ve € (K@), Xa(p)). (2.3)

1t is worthwhile to note that condition (2.3) is suflicient for the requirement that E(—(p) is a

decreasing function of p:

ar(z;p) d)?(p) /°° OF (z;p)
— >0 = —t = — L d : 4
o o A o de <0 (2.4)

2.2 Mathematical Model

In this section we develop and analyze the mathematical model under probabilistic demand for

the determination of the optimal price and the beginning inventory level.
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2.2.1 Optimization Problem

N 1 ‘- Y &) ¥ &) 4 1 o 1 Al H N H H M
Considering the representations introduced in Section 2, the profit function can be expressed

U(p,q) = M(p,q) — K-8(q — 1), (2.5)

where 6(-) is the Heavyside function and

M(p,q) = pag—clg—1)—s(X@)-q), 7 < X(p) < Xa(p),
" { pX(p)—c(g—i)~ (g~ X)), Xi(p) <X <q, (2:6)

is the pseudo-profit function. We can write the expected profit as:

W(p,q) = E[L(p, q)) = M(p,q) — K-6(g - i), (2.7)

where
M(p,q) = E[M(p,q)] = p-X(») = ¢-(¢ — i) — L(p, q)- (2.8)

The first term in (2.8) is the riskless total revenue function. The second term is the procurement

cost. The last term is the ezpected loss function which is given by

q Xa(r)
o) = k[ -0 S@ede + 049 [ @0 fEpd
X (p) q
= (+3)[X®) = q+@+s+4)-0(p,q), (2.9)
where ©(p, ) is the expected leflovers !, i.e.,
0w.0)= [=2)fwp)qds = [ Plip)ds, (2.10)
X1(p) X1(p)

We assume that ©(p, ¢) is differentiable in p for ¢ > 0. Also, we observe that ©(p, q) satisfies
Op, ¢) > max{0,¢ - X(p)}, (2.11)

and it is a convex, non-decreasing and differentiable function of ¢ for a given p. Moreover,

condition (2.3) implies that

0@(1),4):/" OF(giP) 40 < ¢
dp xip) Op ’

1 An alternative representation of ©(p,q) is
O(p,1) = [Aq(n) + 9 - X(p)}/2,

where Ag(p) is the total expected deviation of demand from g at a price level of p which is defined as:

Xa(p)
Dg(p) = / |z — gl f(z;p)-dz > 0.
X1(p)
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forall ¢ € (X1(p), X2(p))
From (2.8) and (2.9) it follows that

M(p,q) = pla— 0@ 0)) - c-(¢— 1) — b-O(p,q) — 5 [X(p) - (¢ — O(p, 0))]- (2.12)

Therefore, 1\—/1(1),(1) is the expected net revenue, less the procurement cost, less the expected
holding cost, and less the expected shortage cost. At the expense of loosing intuition about its

terms, we shall refer to IT/I-(p, ¢) in what follows in the following form :
M(p, =p+s—c)g— s-)_{(p) —(p+s+h)O(p,q) +ci (2.13)

It is clear that, M (p, ¢) is continuous in p on [Py, P,] and in ¢ on [0, c0).
Now, the optimization problem becomes
O(p*,¢*) = max{I(p,q): q€[i,0), p€ [P, P},
(2.14)
pq
where p* and ¢* are the optimnal values of the decision variables p and ¢. For this problem we

define the suboptimal function
— % —_— —
M (q) =max{M(p,q): p € [P, Pul} = M(pq,4), (2.15)

where p, is the maximizer. Therefore, M*(q) traces the best price trajectory over the q range.
Moreover, since M(p,q) is continuous in p and ¢, it follows from the Envelope Theorem that
A_J*(q) is a continuous function of ¢ (see Appendix B for a proof).

In analyzing (2.14) and (2.15), we need to consider first and second degree partial derivatives

of M(p, q) with respect to p and ¢, which are given by

WMD) g o K0 g g 2020, (2.19)
(')”ZIES,'I) - _s.‘lig”)_‘z.a@éﬁ’@—(p+s+h)-éi%’i), (2.17)
___azg)g;,q) = 1—F(q;11)—(p+s+h)'y%p—),

@5(;”—‘1) = (p+s—c)—(p+s+h)F(gp), (2.18)
L]zgi) = —(p+s+h)flg;p) <0. (2.19)

From (2.19) we conclude that 1\7[(1), q) is g-concave on (0,00), which refers to the ncwsboy

problem setting. On the other hand, (2.16) implies that py is independent of the procurement
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cost. In other words, the vendor is to maximize his expected profit given that he starts the

period with ¢ units. The price dependence of M(p,q), however, is not clear from (2.16) or

(2.17).

There is a critical question about the existence of p, if the price limits are abolished, that
is when p € (0, 00). Since,

“ll(l) X(p)=o00 and lim X(p) =0,
p— n—o00

Xi(p) and Xy(p) must salisfy:
Jim Xi1(p) = lim Xy (p) = oo,
and
llim Xi(p) = lim Xa(p) = 0.
P — 00 p—o0
Under this setting, it is true that Yq € (0,00) Ip1, p2 € (0, 00) such that X2(p2) < ¢ < Xi1(p1)-

Therefore, from (2.16) we obtain

OM(p, q) dX(p)
ap IPSPx—q_S'd—p>O)
and
OM(p, q) _ (l:\;(p) _ dX(p)
o [p>ps = q-—5 o it X(p)+(p+s+h): ™
- X
= X(p)+((p+ h)-( \’(p)'
dp

Morecover, it follows from Corollary Al in Appendix A that for p > Py, Y(p) +(+h):
dX(p)/dp < 0. Thus, we have

OM(p,q
_ap—,'zlpzﬂmz{m,&} <0,
and there exists a solution p, if there were no price limits.
If p, is independent of ¢ (a boundary point solution or a constant), then it follows from
—* . . . .
(2.19) that M (q) is concave at that q. However, if p; € (P, P,), then it must satisly the first
order condition dM (p, q)/0ply, = 0 and the second order condition 82M (p, q)/0p* lp, <0, fora

given ¢q. Since M(p, ¢) has continuous partial derivatives, we can perform implicit differentiation

on the first order condition to obtain

dpg _ 1= F(g;pg) = (pg + 5+ h)-0F(q;p)/Oply, (2.20)

dq ~82M (p, q)/9p?p,
in which the denominator is always positive. Depending on the value of p, and the price

dependency of F'(-;p) function, however, the numerator can be positive or negative. Thus, the

sign of dp,/dq is not clear.
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Since dp,/dq exists, we can write the first derivative of A_l*(q) as

— —_— -
dM (q) _ OM(pg,q) , OM(p, !
(1) _ OM(pg,0) | OM(p q)l”.%, (2.21)

dq 0q Jp

If pg € (Pe, Pu), then 8M(P, 1)/0plp, = 0 otherwise dp,/dq = 0. Therefore, in all combinations
of right-hand and left-hand derivatives the second term in (2.21) vanishes. Consequently, we

get

—
M
@ dq(q) =(pg+s—c)—(pg+s+h)F(qg;pg). (2.22)

In order to interpret (2.22) we rewrite it as follows:

—
il-A/flT(q) = (pg +8)-[1 = F(g;pg)] — h-F(g; pq) — c. (2.23)
If the vendor administers his profit maximizing price as he starts with a stock size of ¢, then
F(q; pg) represents the probability that there will be no shortage. It follows from (2.23) that
M*(q) increases in ¢ at a rate of (pg +5) if there is a shortage with probability [1— F(g; py)] and
decreases al a rate of i with probability F'(q; p;) when there is no shortage. In addition to these
two possibilities, M*(q) decreases at a rate of ¢ due to the procurement cost. Thus the vendor
can increase his profit by stocking more given that he is short. When he is short any increase
in ¢ will pay him p, for the sale of a unit and s for not being short of that unit. Intuitively, the
vendor should follow a pricing strategy which will simultaneously minimize F'(q; py) and keep

py as high as possible. There is a tradeoll, however, since F(q; p,) increases in p,.

2.2.2 EIExistence Problem

Intuitively, ]T/I_*(q) must have a peak on [0,00). However, the existence of this point or, if it
exists, its location are not iminediately clear. In the following analysis, we shall identify two
separate regions of ¢ in which A_J*(q) is monotone, then we shall prove the existence of its peak.
Lemma 1. Vq € [0, X1(Py)], M*(q) is a linear increasing function of q and p; = P,.

Proof. Yy € [0, X1(Pu)] we have F'(q;p;) = 0. Therefore, from (2.10), ©(pg, ¢) = 0 and from

(2.13) we obtain :

M () = max{(p+s~c)q—sX(p)+ci: p€[P,P)
= (Pu+s—c)-q—s-;\’—(Pu)+c-i, (2.24)

which is a linear increasing function of ¢ and p; = P,.
Lemma | indicates that, if we are sure that demand will exceed our stock, i.e. if ¢ < X1(Py),

then we should charge the customers at the highest rate because we not only reduce shortages

in this way but we also incur the maximum unit profit.
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If X1(Py) = 0, then the region indicated in Lemma 1 dlisappears and we Joose the information

—_—k
about the slope of M (¢q) at ¢ = 0. "T'o account for this possibility, considering (2.22) and the

fact that 0 < f7(¢;py) < 1 we obtain :

—
dM (¢
— (o) s P <y 45 o) (2.25)

which gives the lower and upper limits of the rate of change of expected profit with respect
to the beginning inventory level. It is now clear from (2.24) and (2.25) that at ¢ = 0, 1\7{*((1)

increases at the maximum rate of P, + s —c.
_* . . .
Lemma 2. Vq € [X3(Pr),00), M (q) is a linear decreasing function of q¢ and p, is a conslant.

Proof. Tor ¢ > Xy(P) we have I'(¢;p;) = 1. Therefore, from (2.10), ©(p,,q) = ¢ — -)?(pq)
and from (2.13) we obtain

M) = max{(p+h)X(p): p€ PP}~ (c+h)q+ci
(P + /l)-Y(PI.) —(e+h)-g+c, (2.26)

where P, = min{max{P, P}, Py} and P, is the maximizer of the pseudoconcave function

(n+ 1) X(p).
—x%
We now establish the existence of ¢, where § = max{M (q) : ¢ €[0,00)}.

Theorem 1. 3§ € (X1(Pu), X2(Pe)) such that JVI*(q) < A_/I*((j) Vg € [0, 00).

Proof. By Lemma |, M*(q) is a linear increasing function of ¢ on [0, X;(Py)] with a slope of
(Py +s~—c)>0. By Lemuua 2, M*(q) is a lincar decreasing function of g on [X2(P;), 0c0) with
a slope of —(c¢+ 1) < 0. From (2.25), (Py 45 —c) and —(c+ h) are the largest and the smallest

—% . a2
possible slopes of M (g), respectively. The proof follows.
Therefore, § must satisfy the first order optimality condition on M*(q) which can be obtained

from (2.22) as : N
s—c

F(q;pg) = ZTT/? (2.27)
The right hand side of (2.27), RILS, is a concave increasing function of p,. It becomes negative
for p; < ¢ —s. It follows [rom (2.22) that, for those pg values M*(q) is decreasing, thus ¢ can
not be realized at any price level less than ¢ — 5. Alternatively, for p; > ¢ — s, RHS attains
values between 0 and 1, and we always have a solution for ¢ given such RHS.

In his pioneering work [15], Whitin brings an intuitive approach to condition (2.27) for
a similar decision problem. First, he introduces two conflicting factors: expected profit and
expected loss. According to his construct, the expected profit from adding an additional unit
to inventory is equal to unit profit times the probability of selling that unit, plus the avoidance
of goodwill loss per unit times the same probability, i.e., [1 — F(g; pg)]-(pg — ¢) + [1 = F(g; pg)}-s.
On the other hand, the expected loss resulting from adding the extra unit is equal to the

probability of not selling the unit during the period multiplied by the unit loss from liquidation,
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ie., F(q;py)-(h +c). He then argues that if profits are to be maximized, then the expected
profit obtainable through stocking an additional unit must be equal to the expected loss, that
is:
(L= F(a;pq)]-(pg +5 = ¢) = F(g;pg)-(h +¢),
which is equivalent to (2.27).
It is possible to construct an upper bound on § by employing the Markov Inequality and

condition (2.27). To this end, defining p = p; we write

pt+s—c o X3 . B+ s+ h)-X(5)
PHS=C _pgp) > 1 -2 4ac
pHs+h (@7) 2 q 1= h+c ’
which implies |
i< e ‘max{(p+s+h)-X(p): pe[P,P} (2.28)

where the maximization problemn can be solved for a given )_((p) function and the data. Markov

Inequality usually yields weak bounds, nevertheless, (2.28) can be useful especially in numerical

procedures.

2.2.3 Unimodality

H H _* H M al . .
Unimodality of M (q) enables us to identify an (o, L) type policy which may be employed in
determining the optimal ¢. Morcover, in the multi-period extension of the theory, this becomes

an important issue related to the dynamic decision problem.

If py € (P, Pu), then differentiating (2.22) with respect to ¢ we obtain

el
d*M (q) _ dp, . dF(q;p,)
oz = dg L PRl = (g s 4 D). =gt (2.29)

Noting that

di(qg;p0) L, OF(g;py), dp,
“dg f(a;pg) + _51;_]"' g (2.30)
we rewrite (2.29) as
—k —_—
d*M (q) _ *M(p,q) dpg o .
dgz  op Ly ( dg )" = (pg + 5+ 1) f(g;p,)- (2.31)

First terin in (2.31) is always positive and the second is always negative. However, their relative
magnitudes are not clear. Thus, convexity of 17[*((1) is not evident from (2.31).

Note that, F(g;p,) is a function of ¢ only, where F(q;p;) = 0 for 0 < ¢ < X1(Py) and
F(g;pg) = 1 for X5(Pe) < g¢. Therefore, F(g; pg) has to rise from 0 to 1 between minimum and
maximuin possible demand values. Meanwlile, it is clear from Lemma 1 and 2 that p, should
decrease from P, to P;. If these changes occur monotonically, then there will be a unique first
order g, which satisfies (2.27). That is, if dF'(¢;p;)/dgq > 0 and dp,/dq < 0, then from (2.29) it
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—x
follows that M (g) is concave. However, we can state a weaker condition by noting that, it is

suflicient to have dpg/dq < 0 at ¢ = ¢, provided that dF'(q;pg)/dg > 0 Vq. That is,

dF(q;p dp — ) )
___(d_IqIL) >0 and %qq-fq <0 = M (q) is unimodal. (2.32)
Morcover, [roin (2.20) and (2.27) we oblain
dp, ar(q;p) h+ec
—. <0 & >
dqg ¥~ Op ls.e 2 P+s+ ) (2.33)

and we can employ (2.33) in (2.32). On the other hand, we realize that for unimodality of

—x v .
M (q) it is necessary and sullicient to have

(lZA_J*(q)
‘Tquq <0 (2.34)

Unimodality of }_l/l—*(q) means once the expected profit of the vendor starts declining at
some starting stock level (§), then he will not be able to avoid this fall by procuring more
and incurring the best price. In this case, demand being sensitive to price responds to the
vendor’s profitability. This concept can be related to the degree of monopoly power of the
vendor (Mills [8] also mentions this connection without any further detail), however, this is

beyond our interest and we leave that discussion open.

2.2.4 Optimal Solution
—* . . . .
If M (q) is unimodal, then from (2.14) it follows that ¢* can be determined by an (o, 1)
—% - -—
type policy operating on M (q), where Y =dando = min{q : M*((I) = M*(L) - K}

Consequently, the decision rule is ¢* = j} if i < o otherwise ¢* = i, and p* = argmax{ﬂ(p, ¢*) :

D € [Pt) Pu]}-

2.3 Special Cases

In this section, first we consider the deterministic demand model (the riskless model introduced
by Mills [7]) and establish its relation to the probabilistic model. Then, we analyze the additive
and the multiplicative models. We provide the relationships that exist between the optimal
prices of these models. Finally, under linear expected demand ()_((p) =a-—bp, wher.e a,b>0

. . —* C . -
and ¢ < P, < a/b), we prove the unimodality of M (gq) for uniformly distributed additive €

and for exponentially distributed multiplicative €.

2.3.1 Deterministic Model

In this part, we use the subscript “r” to denote the functions and variables of the riskless model.

If there is no uncertainty in demand, then we have X(p) = X (p). Under this specialization,
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leftovers are given by O,(p,q) = max{0,q — 7(17)}, which is a continuous function. It is,

however, non-diflerentiable at the trajectory given by ¢ = :\’—(p)

In the following discussion, first we prove that MX(¢) is unimodal, then we determine

the optimal values of the decision variables, and finally we compare the deterministic and

probabilistic profit functions.

Theorem 2. MX(q) is quasiconcave in q on [0, c0).

Proof. For ¢ < X(P,) we have ©,(p,¢) = 0. Thus, from Lemma 1 it follows that M}(q)is a

linear increasing function of ¢ and py, = P,
FFor 5(_([)“) < q we define p such that )_((;7) = min{q,/?(Pg)}. Therefore,

0 ) Pe<p<p
@r(l’;q)z

(]—/Y(P) , P<pL P
Under this setting, by Lemma 1 we have

argmax{M,(p,q): Pr<p<p)=p,

which implies that
M (q) = max{M,(p,q): P<p< Pul,

where M, can be obtained from (2.13) and (2.35) as:
M. (p,q)=(p+ /L)-Y(p) —(c+h)-q+ci.

(2.35)

We note that (p + h) -}(p) is increasing on [Py, P] and decreasing on [P,,,Pu]. Moreover,

QSY(PI;) < 132]311'
It follows from the above discussion that

[ (Pu+s—c)q—5X(Pu)+ci , g < X(P.),
MHq)={ (B—c)gteci . X(PJ) < g < X(P),
{ —(c+h) g+ P+ h)X(Py)+ci | X(Py) <q.

(2.36)

Corollary A3 in Appendix A indicates that (p — c) ¢ is a pseudoconcave function of q on

(X(P.), X(Pr)). Thus, the result follows from (2.36).
From (2.36) it is also clear that
Mr(l;m(jr) = "wI{M:((I) 1 0<¢ <'00}

= maz{(f—c)q: X(P)<q< X(Py)} + ¢,

= maz{(p— c)-j(—(p) . P, <p< Py}t

(2.37)
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The maximand in (2.37) is the riskless profit function, which is maximized at P,. According to
Corollary A2 we have P, < P. which implies that P, < P,, where P, = min{max{F,, P.}, P}
Therefore, the maximizer in (2.37) is P, and we have g, = P. and §, = X(P.). Since M, is

unimodal, the optimal procurement quantity is determined by an (o, Y.) policy, where
:t = X(Pc)»

and
o=min{g: MXq)= MT*(L) -K}.

It is Inbuitive that ¢, = X(ﬁr), that is we procure up to as much as the demand so that
we would not pay any penalty for shortages or leftovers. If ¢ < i, however, then it is optimal
not to order (¢¥ = i) and under our general setting, ¢¥ need not be equal to /T(-(p’,f) For this
reason, it is interesting to note that, although the demand is deterministic, under the optimal
strategy there can be shortages or leftovers.

It also follows from (2.36) that p¥ € [P/., Py,]. Thus, if P, < Py, then P, can be considered
as a lower }imit on price that is determined by the expected demand in the market and the cost
of carrying inventories. It is indicated in Corollary A2'that as /i gets larger P, gets smaller.
Therefore, greater inventory costs enable the vendor to set lower prices in order to maximize
his profit. To be more precise, if the vendor has more stocks than Y(Ph), ie. 7 > Y(P,,),
then he administers a price of P, and sells all of his stock. Note that this is a short-term
planning decision. For a better business strategy he has to take into account the future beyond
one-period.

We have ©(p, q) > ©r(p, q) from (2.11). Thus, it follows from (2.13) that 1\_4(1), 7) < My(p,q)
which implies Tl_(p, q) < Il (p, ¢). Also, comparing M—*(q) and M}(q) we conclude that M—*(q)
remains below the quasiconcave function M*(¢) and approaches it at both tails. Therefore, we

make the same or more profit in deterministic demand case than we expect (mathematically)

in probabilistic case, which is intuitive.

2.3.2 Additive Model
Let G(-) be the distribution of ¢, then we have
2 € [Xi(p), X2(p)] & € [Xa(p) — X(p), Xa2(p) — X(P)),
Fz;p) = G- X)),
fp) = g9(=z— X)),

-X ()
o) = / —  G(e)-de,
X1(p)-X(p)
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OF (x;p) dX(p)

o = ——dp—'f(l';l)), (2.38)
09(p,q) dX(p)
0*0(p, q) X))
ot T T f (;p) + e X ) flap)
Under these observations, (2.16) and (2.17) are given by:
IMp,a) _ _  dX(p) dX(@) .
—017‘——’I—S‘Tp—@(P,q)'i'(P+S+h)'d—p)'1'((1;1))=0, (2.39)
and . "
O*M(pg) _ _ EXW@) ) dX X (p)
— 2
dX
— (p+s+h)-f(aip) (%) - (2.40
It is worthwhile to note that (2.38) together with (2.4) imply that
dX (p) or(z; p)
<0 0. .
™ o (2.41)

1t is clear that il py € (P, Py), then it must satisfy the first order condition 61W(p, q)/aplpq =

0. Evaluating this condition for ¢ = ¢ and considering (2.27) we obtain:

OM(P, @), _ = e o s X ()
-'_(:)'p——l,}=q—(—)(p1q)+(p—c)'Tlp:0’ (242)

which implies 5 > c. Moreover, adding and subtracting X (5) in (2.42) we get:
dX ( )

§i—0,9) - X@) +{X®)+(»- }H, = 0. (2.43)

By definition, ©(p,q) > ¢ — )_((p) Therefore, the expression in the brackets, which is the
derivative of the riskless profit function, evaluated at § must be positive. Thus, we conclude
that

c<pLP.. (2.44)
This result was first proved by Mills [7] for a simple model. Karlin and Carr [3] showed that
the same conclusion is true for the model we are studying by a different approach.

Next, we shall discuss the conditions leading to unimodality of A_/[*(q). Considering (2.30)
and (2.20), the sufficient condition (2.32) can be written as:

dF(q;p,) 25
—2E >0 & - F(q —_—
dq - (qpq)+pq+s+h
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— O(p,, dX d*X
B 7= O(p,, 1) — {2 d(”) +(p s+ k) — gp)}l” >0, (2.45)
(g + 5+ h)-(dX(p)/dp)?]y, P P
and . ()
dp - . —(n+
%ihgo & f5P) 2 — 2 : (2.46)
dg (P + s+ h)?-dX(p)/dpl;

Note that in (2.45) the sum of first three terms is positive. Thus, if the expression in the brackets

is negative (this is true when :\_’_(p) is linear or concave), then that condition is satisfied. On

the other hand, the necessary and suflicient condition (2.34) is given by:

hte 5 .. o dX d?X
(I;—_F':—_FT)Z+(P+s+/l)'f(f1;1))'{2'——d~1(;p*)+(P—C)' dpgp)}l,xSO, (2.47)

which implies that the second derivative of the riskless revenue function evaluated at p must

be negative.
For a given set of problemn specifications, unimodality can be verified by testing the validity

of the above cited conditions. For example, suppose that the expected demand function is
linear, where X(p) = a —b-p, a,b> 0 and p € [0,a/b] with ¢ < a/b. In addition, to prevent
negative demand let us assume that P, < a/b such that X = )_((Pu) +¢ >0 Ve Since
d2X (p)/dp® = 0, it follows from (2.40) that 82M (p, q)/dp® < 0 (this observation is essential in
achieving better numerical computation performance) and from (2.45) that dF(q; p,)/dg > 0.

Moreover, (2.46) can be writen as:

dp, .~ h+c¢
B <0 o f§GP)> ——mr .
ag i < §p) 2 b s (2.48)

and (2.47) reduces to

— ' 2
M*(q) is uniinodal & f((j, }3) Z Wé;}%-—h)_a (249)

Clearly, (2.49) is weaker than (2.48). 'urthermore, it can be deduced from (2.44) that if
F(@5) 2 (h+c)*/[2:b-(c+ s+ h)?), (2:50)

then (2.49) will hold.
For a given distribution and the data the conditions (2.48), (2.49) or (2.50) can be tested.

For instance, if ¢ has a uniform distribution on [—A, A], then for all ¢ € (X1(p), X2(p)):

1
fler) = 53
—a+bp+A
Flgp) = s, (251)
—a+bp+A)?
o) = U o L (2.52)
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rom (2.49) we obtain the condition for unimodality as

A<o(p+s+0)P/(h+c)?, (2.53)

or from (2.50) the sullicient condition as
A<b(c+s+n)P/(h+c) (2.54)
Under the proposed special case, we can view A as a measure of demand uncertainty and b as
a measure of sensitivity of demand of price changes. From (2.53) we conclude that the less the
uncertainty and/or the more the demand sensitivity are, the more unimodality will be favored.
An alternative approach is to solve p and § from (2.27) simultaneously under the hypothesis

that /Vl*(q) is unimodal. To this end, we rewrite (2.27) and (2.42), respectively, as:

i PHs—c q—a+bp+2A
q;p) = = ’ 2.5
and
§—0(p,q) —b(p—c)=0. (2.56)
Using (2.52) we solve for §:
F= 2 (220 45— o). (2.57)

'ﬁ+s+h
Next, substituting (2.57) in (2.55) we get:

S c—2bp
pts—e __ jatbe-20p (2.58)
p+s+h A

Since under the additive model § < P. and for a linear expected demand function P, =

(a + b-c)/2b, the term in the square root is always defined. After manipulations we rewrite

(2.58) as
(2.59)

2-(ﬁ+s+h)2-(Pc —p)—A(h +c)2/b =0,

which is a polynomial having a local maximum at [2-P. —(h+s5)]/3. It follows that this function
has at least one and at most two positive roots. In addition, one of the positive roots is always

located in the interval ([2-P; — (h + 5)}/3, P.). S.ince the third crltlcalﬁgmt,.on t%l'e feasible
price range, to make a local minimum does not exist, we conclude that M () is unimodal.

2.3.3 Multiplicative Model

Let G() be the distribution of ¢, then we have

2 € X0 Xa()] & €€ @)/ X)X/ X (D)),
F(z;p) = G("/Y(P)),
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fe;p) = g(=/X®)/XP),

o/ X ()
/ —  G(e)-de,
X

O(p,1) =
(1) X ()
OF (z;p) dY(p) r
= ——=—f(z;p), 2.60
Op dp X(p) f(z;p) (2.60)
00(,9) _ _dX() ¢-F(s;p)-O@a)
Ip dp X(»)
-— — 2
0?0(p,q) _ _d*X(p) ¢ F(yp)-O(pq) | [dX() g .
57 = Tz = + = f(g;p)-
op dp X(») ¥ X(p)
Under these observations (2.16) and (2.17) are given by:
OM (p, 1) dX(p) dX(p) ¢-F(3;0)— O, 1)
—g—§- -0, )+ (p+s+h) . —= , 2.61
o ¢ =5 =g (0)+ (1 )~ Xo) (2.61)
and
PMp,q) _ EX®) | ¢ F(4p)-O@,q) [, dX(p) , d*X(p)
B R I X(») Pl T g wreth)
IX(p) ’
—(P+s+h)'f((1;1))'(i-::—q—) . (2.62)
@?  X(p)

Clearly condition (2.41) also holds for the multiplicative model.
If p, € (Pe, Pu), then it must satisfy the first order condition OM(p, q)/0plp, = 0. Evaluating

(2.16) at py, setting it equal to zero and arranging terms we get

D, = ¢l1= Flaspo) + q'lp(”;‘j_;)(;)(a(”q’ (R o)+ (o + 1) 2Dy
_ d)_i @), . X(pg) = 4-Flgipg) + 00y, 0) _ (2.63)
“ X(pg)

Since O(p,q) > 9 — X (p), we have ©(p, q) + X(p) - q-F(q;p) > 0. Thus, the first and-the third
terms in (2.63) are positive. Moreover, we note that ¢-F(¢; p) — ©(p, ¢) 2 0. Therefore, (2.63)

implies that _
— 1X -
Xo)+ o+ 2B <o @ p> P

dp
Furthermore, evaluating (2.63) at ¢ and rearranging the terms we obtain
i dX (p) O(p, 9) (P)
{X(p)+ (p =) Hy = =2 X (p) + (0 + )= My
X (P) X(#)
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(lX(p) (17) - §+0(p,q) _
), i _o. (2.64)

The second term is positive, since p > P, and so is the third term. Therefore, we must have

dX ( P)

Hp €0 & p2>P>c.

{(X(p)+@-c)

This result is the same as Karlin and Carr’s [3] conclusion, which was proved by a different

approach than ours.
Considering (2.30) and (2.20), the sufficient conditions for unimodality of M*(q), (2.32),

can be written, respectively, as

dF(q;p,) ) 2-5- X ( )
_—_dlq“ >0 & 1—=F(g;pe)+ e + s+p/l).q
___la-e@al X ., X@) & X(p>
st maxearr d T Tk 20 (69
and _
dp"l <0 & f(§p)>- —X(@) (k1) (2.66)

T+ s+ h)-dX(p)/dpls
The sum of the first three terms in (2.65) is positive. Thus, if the expression in the brackets is
negative (that is true when X (p) is linear or concave), then that condition is satisfied. On the

other hand, the necessary and sulficient condition (2.34) is given by:

g.d,f(p) [dp (12)2(11)/dp2} | <0, (2.67)
) aX()/dp |

(%) +P+s+h)f(Gp)[F-00, (i)]'{

which implies that the expected demand must be “normal” at p or, equivalently, expected

marginal revenue to be decreasing at p.
The above cited conditions can be tested for a given set of problem specifications. For

instance, under a linear expected demand assumption, which is described in the previous section,

it follows from (2.62) that 92 M (p, q)/dp* < 0 and from (2.65) that dF'(q; pg)/dgq > 0. Moreover,

(2.66) can be written as:
dpq oo (o) X(P)
<0 & .
Iq f( )—.b (P+S+h)2’ (268)
and (2.67) reduces to

—x s (h +¢)*- X ()
M (4) is unimodal & f(§;p) > - 0G. I Gt P (2.69)
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If ¢ is exponential, for example, then for all ¢ € (0, 00):

fap) e‘-‘l/;(_(l’)
Gp) = ——
X(p)
Flgip) = | — e~ X )
O, 1) = q—X(p)-Flgp).

Using these relationships and (2.27), the unimodality condition (2.69) could be written as:
L+ (B h+4s—c)p+2(s+h)(s—c)— %-(h+ ¢) > 0. (2.70)

The quadratic form in (2.70) has a critical point at —(3-h + 4.5 — c)/4 which is less than ¢,

hence, it is also less than P,. Since p > P, if
2P2+(3h+4s—c)P+2(s+h)(s—c)— %-(/a +¢) >0, (2.71)
then (2.70) will hold. After necessary manipulations, (2.71) reduces to
(%)z +(h+4-5— c)% + (48> +4-h-s—h-¢) >0, (2.72)

where the critical point of the quadratic form is —(h + 4-s —~ ¢)/2 which is less than ¢. Since

a/b > ¢ under linear expected demand assumption, condition (2.72) can be rewritten as:

a/b> %[\/(h +c)(h+c—8s)—(h+4s—c)] (2.73)

We note that (2.72) holds when h + ¢ < 8-s (i.e. when the expression in the square root is

negative). Otherwise, we observe that

a/b>c—2s> %-[\/(h+c)-(/z +c—8s)—(h+4s-c),

which holds by the natural assumption that a/b > c. Therefore, A_l*(q) is unimodal for

exponential multiplicative demand model. Zabel [18] arrived at the same conclusion, under

some restrictions, for the case where s = 0.
Since pricing decision aflects the period ending inventory level, the analysis of the multi-

period model does not trivially follow from the analysis of the one-period model. In the next

chapter we shall dwell on this issue.



Chapter 3

Multi-Period Model

In this chapter, we extend the planning horizon more than one period and try to characterize the
optimal procurement and pricing decisions. In this regard, before getting into the mathematical

model we shall first describe the multi-period setting.

We assuime that the planning horizon is divided into N review periods, which are indexed
by n. The last period, n=1, is the end of the planning horizon. If there are any shortages in this
period, they will be lost. Also, we assuine that there is no salvage value for the leftovers. At
the beginning of each period, the vendor decides how much to order, ¢, — i, and what price to
administer, p,, until the next decision point. i, is the beginning inventory level before ordering
and ¢, is the beginning iuventory level after ordering in period n. With these decisions, the
vendor Lries to maximize the mathetnatical expectation of the sum of current period’s profit
and the discounted profit of the remaining periods, which is denoted by 1I,,. We assume that
in > 0, so that the decision problem is not initiated with an unaccountable debt. Ior simplicity
we assuine constant unit holding, shortage, procurement costs and a fixed ordering cost, which
are denoted by A, s, ¢ and K, respectively. We also consider a common discount factor for each
period and denote it by . Furthermore, we assume that procurement leadtime is negligibly
short compared to the length of a period and all payments realize without any significant delay
or additional cost.

Let us consider period n, where | < n < N. It is clear that i, depends on p,+1, ¢n41 and
the backlogging rule. Therefore, in any period, except the last one, the pricing decision can
not be made independent of the future periods. Moreover, it follows from the analysis of the
one-period model thal procurement quantity and pricing decisions could not be analytically
decoupled. Ilence, the overall optimization problem, that is the determination of optimal
procurement quantity and price for all periods, does not follow directly from the classical multi-

period model. In other words, since price is a decision variable which is a factor that affects

demand, we need to extend the analysis of the classical multi-period model which employs price

22
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only as a unit revenue.
A conceptual complication arises in relation to unsatisfied customers when there is a shortage

in any intermediate period. In the classical model, it is customary to assume a backlogging rule
which allows all customers to wait another period (full backlogging), some custorers to wait
another period (partial backlogging) or all customers to quit (lost sales). When there is a pricing
decision, however, the willingness of a customer to wail one more period may be contingent
upon price. That is, there might be a bargain between an unsatisfied customer and the vendor
for their mutual benefit. Therefore, it is likely that such a customer-vendor interaction will
affect the optimal solution. To study this, we could employ various backlogging rules in our
model. For instance, we may assume that the vendor issues a “rain check” for customers who
are willing to wait, provided that they could pay the current price in the future. Under the
multi-period model that we are studying, we may assume that, if there is a shortage, then,
upon mutual agreement, the customers are to wait until their demand is satisfied regardless of
the price; wait as long as they could pay the current period’s price at any time in the future;
wait only one period at any price; wait only one period at the current period’s price; or, we
may assume that the vendor does not allow backlogging. It is intuitive to expect and it will be
clear in the following sections that a backlogging rule induces a special structure into the model.
Since a variety of different backlogging rules can be employed, it is diflicult to generalize possible
vendor-customer relationships without making further assumptions. In fact, this generalization
will not be argued in this study. Instead, we shall be analysing the model under three different
backlogging rules to demonstrate the characteristic differences between them. Not to complicate
the analysis further, it will be assumned that the vendor-customer relationship is homogeneous;
that is, there is no difference between the custormers, and the vendor is not practicing any price

discrimination. It is also assumed that the backlogs are cleared before satisfying the current

demand in any period.

3.1 Mathematical Model

Under the proposed assumptions, the expected n-period profit can be expressed as a backward

dynamic programming recursion:
Tl—n(in,pN,pN—ly cvyPny (171) = Mn(in;PN)PN—l; ey Py q") - /C5(Qn - iﬂ)) (31)

where I_V_[_,, is the expected n-period pseudo-profit function (i.e., the expected profit regardless of
the ordering cost) which will be defined later. I, is expressed not only as a function of current
period’s decision variables, p, and ¢y, but also in terms of all previous pricing decision variables
which might be employed by a backlogging rule in general. We adopt the convension that if the

backlogging rule does not require a subsct of the price variables py through pn41, then those
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will be siniply dropped fromn the notation. [or instance, according to the fifth backlogging rule
none of py through pn41 are needed. It is also clear that the decision variables py through

Pn+1 are needed only when ¢, < 0. That is, for any ply,py_1,...,Phy1 € [Pe, Pu] it follows

that
g 2 0= A411(i1n.77;Vr17;\I—1) < )P:;+1’I)n; (ln) = Mn(in,pN,PN—ly «v sy P41, Pn, (In), (3~2)
VPN)PN—I) ~eyPntt € [Ply Pu]-
Furthermore, we introduce the following notation:
U,,(M;PN,PN—I;-~-,Pn+1,(1n) = 771015{“71(’1;,PN;PN—-1;~--)pny(In): Pn € [Pz,Pu]}
—%
= Mn(ln,PN,I)N—l, ces 1pn+l:qn) - }C'é(‘In - in);
(3.3)
and
I, (Zn, PN PN=1, - oy Pug1) = maz{ll (i, PN, PN=1, -+, Pnt 1, @n) ¢ Gn > in}, (3.4)
where
—* v .
an(lnypNvPN—ly x -xpn+1y(1n) = "lal‘{Mn(lmPN,PN—l, <+ 1 Pny (In) ! Pn € [Pt, Pu]}-
(3.5)

Therefore, the overall optimization problemn is to determine the optimal decision variables p¥
and ¢* for all n, which jointly maximize Iy for a given iy.

Since there is no cost of pricing, intuitively, the vendor must reconsider pricing at every
decision epoch, because this can only iimprove his objective. However, the same argument does
not hold for the procurement decision, because there is an ordering cost. If pricing decision
is ignored, then the classical inventory theory indicates that ¢* is given by an (o, £,) policy.
With the addition of pricing decision, however, we intuitively expect to have a different optimal
control policy, which might inherit an (o, XJ,,) type policy for the determination of ¢X. If such
a policy exists, then it would operate on the 1\7[: function which must satisfy the separation

property defined by:

—_ —_— .
/W"(l” yPNyPN=1y++ s Pn+l, (Iu) = Mn (0) PN,PN=1y++yPn+1, qﬂ) + T"'"(ZH)) (36)
where m,, is a continuous function. Thus, it is essential to study the characteristics of this
function which leads us to an optimal control scheme. To this end, we include here the definition

of a class of functions, which is introduced by Porteus [11], that will be referred to and extended

later.
Definition 1. C(y,K) is a sel of univariale conlinuous functions which are:

(a) increasing on (—oo,7];
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(c) K-decreasing on [y, 00),

such that they

(d) have a finite mazimizer on (0,00).

It is clear that if a function belongs to C(7, £), then it is quasi-K-concave .

—%* L) " Y . s
Suppose thal M, satisfies condition (.5.6), then we can define a critical on-hand inventory

level often referred to as “order-up-to level”:
. —_k
1411 = a"ﬂsul){Mn(OyI'NyI)N—I, s Pty fln) :0< qn < OO} (37)

It follows [row (3.2) that L. is independent of py,py_1, ..., or Pn+1- Also, it is intuitive to
. . . ———k . . —
expect that ]L‘,, is finite. Moreover, if M, is independent of py,pN—1,...,Pn4+1 and M:;(O, qn) €

C(7,K) for some vy € R*, then there exists a “reorder level” o,,, which is defined by
oy = min{o : 1_\/7:(0,0‘) = ]T/I—:(O, L) -k}, (3.8)

and ¢t is obtained from

0= i+ (B = 6)-8(0m — i), (3.9)

According to this (o, L) policy we rewrite (3.4) as:

—x%
T MH in, En) — K y in Loy,
Gy = ¢ 22t L : . (3.10)
M"(Zn,l") y, Op < 1y,.

On the other hand, if/\?: satisfies (3.6) but depends on py,py_1, ..., OF Pny1, then it is clear
that the solution for oy, given by (3.8), can depend on a subset of these price variables. In this
case an (o, j),.) type policy is not optimal in general, and we might consider a new criterion for
the determination of ¢}. To this end, we shall introduce a set of regularity conditions imposed
on A_/I: under which an optimal control scheme can still be devised. These conditions establish
a class of functions characterized by the following
Definition 2. C'(7,K) is a sel of univariate conlinuous functions which are:

(a) quasiconvez on (—00,0];
(b) increasing on [0,7];
(c) K-decreasing on [, 00),
such that they
(d) have a finite mazimizer on (0, 00).
It is clear that C(v,X) C C'(7,K).
Suppose that there exists v € R+ for all PN, PN=1,.-+,Pnt1 € [Pe, Py] such that 1\_/[:(0,

PNWPN—1s--+»Putl, qn) € C'(7,K), then ¢* is obtained from

. \ . N . —* . N .
(I: = 1'7l+(i‘" —z")'(s(j"" _z")'6 (Mn(zﬂrpN)pN—lx"'7pn+l)14n)_K’

—% .
—A’I"(lmpNypN-—ln e Pnsly 7'71))
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= 1, + (tn - i,,)-&(i)n —in)-6 (M:(O,PN»PN—I, <o Pl i‘n) -K
— M (0, PN, PN=1,- - Pnt1, in)) (3.11)
According to this policy we rewrite (3.4) as:
ﬁ:*(i,,,pN,pN_x, oy Pat1) = My(in)
maz{ M (0, p, pN-1,- o Puttyin)y Moy (0,3, BN=1, -y Pat1, £n) =K}, in < Lo,

+

, ¥ <in.
(3.12)

Comparing the policies given by (3.9) and (3.11) we observe that there is a reorder point in

the former but not in the latter. In principle, the latter also functions like an (oy, tn) policy,

J— .
Mn(O,PN)pN—l;--';pn+1;ln)

but there is not a single level of critical inventory that triggers the ordering mechanism. That
is, the previous pricing decisions as well as the beginning inventory level must be taken into
account in reorder decisions. It is also worth mentioning that, the price which maximizes Mp
for g, = i, is needed for the latter, whereas for the former it is needed only when o, < i,.

This implies that more computational work is required under the latter policy.

3.2 Special Cases

In this scction, we introduce three special backlogging rules and establish the pseudo-profit

function under each of these characterizations.

3.2.1 Casel
Suppose that the vendor does not allow backlogging. Under this rule the pseudo-profit function

for n > 1 is expressed as:

Mn(irupn)(In) = _c'((In - in)

—pk
a1, (0) + pn-gn — 5:(X(Pn) — qn) , 0<gn < X(pn),
(3.13)

—'** 4 4
a- Iy (gn = X(@n)) + P X(Pn) = he(gn — X(ps)) X(pn) < )

where X (py) is the random demand in period n at a price level of p, I, = 0 and s represents

the unit penalty when the demand is lost. Note that (3.13) satisfies
Mn(in;pn;(ln) = Mr;(o:pn)qn)+c'in, (314)

which implies that the separation property given by (3.6) holds forn = 1,..., N with mn(in) =

Ciy.
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3.2.2 Case Il

Suppose that if there is shortage, then the customers are willing to wait only one period and

pay the current period’s price. Under this backlogging rule the pseudo-profit function for n > 1
1s expressed as:

Mn(in,]’n+lypny(1n) = —-C-((]" - in)

—Ak B ,
- “"__1(—/\ (Pn)yl)n) + apy X (pn) + Pt gn + 5 qn » gn < 0,

—kk
'“,,_I((In —X(prx),prl)+Pn'(11l+a'pn'(X(pn)"'(In) y 05 qn SX(pn), (315)

+
>4

—kk
\ a'“n—l(‘]n - X(Pn);pn) +pn'X(pn) - h'((In - X(pn)) ) X(pn) < {n,

where s represents the unit penalty when the backlogged demand is lost. Note that the model
does not assign any specific penalty for a shortage if it occurs for the first time. Since iy > 0,

the ¢, range of (—o0,0) is ignored for n = N. Moreover, we let py4; = 0.
Suppose i, < 0, that is there is a backlog from period n + 1. If the vendor decides not to

procure anything or to procure some but not enough to cover the whole backlog, that is ¢, < 0,
then two things will occur according to the backlogging rule: (¢) all of the demand in period n
will be backlogged to period n — 1 and (#) the unsatisfied portion of the backlog from period
n4 1 will be lost. To account for (i) we add a-p,-X(pn) as a revenue to the profit function. That
is, the vendor promiises to supply X(py) at p, the next period and the customers are willing to
wait one more period. Since the payment takes place in period n — 1, we must discount it by a
to period n. Note that with this formulation we add the revenue, which will be collected in the
next period into the current period, ahead of time. Llowever, it is possible that the vendor may
find it more profitable not to satisfy all of the backlog or some portion of it in period n — 1.
If this happens, then we must deduct the revenue that corresponds to unsatisfied portion of
the backlog from period n — I’s revenue. Thus, in period n we must consider an analogous
deduction for period n + 1 to account for (i7). This amount is given by pp41-¢n, where pnyy is
the price promised to the customers in period n + 1 and ¢,, is the amount of the backlog from
period n 4 1 which is not satisfied in period n. Note that since ¢, < 0, pn41-gn represents
a negative cash (low (loss). Moreover, since the backlog from period n to n — 1 is X(p,) the
discounted n — 1 period profit is given by a-—ITZ*_I(—X(pn),pn).

I0 < g, < X(pn), then the vendor decides to satisfy all of the back orders, if any, and some
portion of the demand in period n. Thus, we add the discounted revenue « - p, - (X(pn) — ¢n)

to period n’s profit supposing that the backlogged amount (X (pn) — ¢n) will be satisfied in the

next period at a price of py,.
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The last period, i.e. n = I, is a lost sales model. Therefore, we have

p2-q1 —5-(X(p1) —q1) ) 71 <0,
My (i1, p2, 01, @) = —c(m =) +q pr-q1 —s(X(p1) —q1) , 0<q1 < X(p1), (3.16)
pllY(Pl)"‘h((]l—X(pl)) ) X(Pl)S‘Ih

where py-q; represents the lost revenue due to not meeting the demand which is unsatisfied in
period 2 and carried into period 1.

Finally, considering (3.15) and (3.16) we identifly a functional simplification:

Mn(in)pn+lypn, (Iu) = M,,(O,p,,+1,p,,, q,,) +c-iy, (317)

which implies that the separation property given by (3.6) holds forn = 1,..., N with m, (i,) =

Ciy.

3.2.3 Case II1

Suppose that if there is shortage, then the customers agree to wait one more period and pay that

period’s price. Under this backlogging rule the pseudo-profit function for n > 1 is expressed as:

Mn(in;pn, (In) = _C'(‘In - in) —pn'in'(s("in)

—k
O"“n—l(—X(Pn)) + Pnn+5qn » gn <0,
—kk
+ a'un——l((hl - X(pﬂ)) + Pnqn y, 0<¢n £ X(pn)) (318)

—ck
-y i (qn = X(Pn)) + 20X (Pn) = h-(gn = X(p)) X(Pn) < an)
where s represents the unit penalty when the backlogged demand is lost. Since iy > 0, the ¢,

range of (—00, 0) is ignored for n = N.

Suppose i, < 0, that is there is a backlog from period n + 1, then the revenue in period n
is equal Lo pn-(qn —in). On the other hand, if i, > 0, then the revenue is p, ¢, for ¢n < X(pn)
and it is pp-X(pn) for X(pn) < ¢n- Since the term py i, appears only when i, < 0, we represent

it by pp-in-6(—in).
The last period, i.e. n =1, is a lost sales model. Therefore, we have

) a) = —c- (g1 —11) —pyri-6(—1 pl'Ql—'S'(X(pl)-—ql) y A SX(pl))
M (i, p1,01) (nn 1) = p1ein-6( 1)+{ pi-X(p1) = h-(p — X(p1)) X(p1) < 1.
(3.19)

In the next two sections we shall study these special cases separately under deterministic

and probabilistic demand models to characterize possible optimal decision policies.
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3.3 Deterministic Demand

If there is no uncertainty, then the relationship between demand and price in each period is
characterized by the X (p,) function. That is, we replace X(pn) by 7(1),1), M by M and II by

1I. In what follows we shall analyse each special case under deterministic demand assumption.

3.3.1 Special Case I

We shall prove that, under special case I, A—/[-* € C(X(P.), K) such that the optimal procurement
policy is [DIVPH by (3. 9) To this end, we shall follow an induction proof. First, we shall
provc that M] € (,(X( ), K), WlllCll will be the basic step. Then, we shall assume that that
]\7 1 E ((X(I’c) K) such that ll” 1 is given by (3.10). Finally, we shall demonstrate that
M" ec (/\( ) A), which will complete the proof.

Lemma 3. Ml(tl,ql) € (,(X(Pc),/\,).

Proof. The proofl follows from Theorem 2, which indicates that 1\71): is a quasiconcave function
of ¢ on [0,00) and L1 = X(B,).

"Therefore, ¢} is obtained from (3.9) and I_IT* is given by (3.10).

—_—
We now consider M,,. We represent this function as:

—k —(1) . —(2) .
M"(z”’q") = maz{Mn (1,,,q,,) ) Mn (11n(1n)}, (320)
where
—(1) . —_ .
M, (111,‘]71) = '”“”“{Mn(lrnpm (In)  Pp<pn < 13} (321)
—(2),. - B
M, (in,an) = mezx{Mn(in,pn,qn): 7 < pn < Pu}, (3.22)
and p is such that:
X(p) = maz{min{gn, X(Pr)}, X(Pu)}. (3.23)

Hence, M f,l) and M, @ are of two complementary subproblems which are related to each other
through p, which in turn depends on g,. Note that if p, € [P, p] (or pn € [, Pu]), then ¢, <
(or ) X (p,,) Therelore, M( ) (or M( ) represents the pseudo-profit under a pricing policy
that keeps the period ending inventory level at or below (or above) zero.

Since ¢, is not defined on (—00,0), condition (a) of the definition of C(7,K) is irrelevant
here. We now establish the validity of condition (b) of the same definition:
Lemma 4. Mn(zn,q,,) is an increasing functzon of gu on [0, X(P.)] for N > n >2.
Proof. We shall demonstrate that M,(l ) and M,, are increasing functions of ¢, on [0,;?(136)],

which implies that A—/[:, given by (3.20), is also an increasing function of g,. From (3.13) and
(3.21) it follows that
(1) _
o (in, ) = maz{a- “n 1(0) 4+ Pn-gn — s X(Pn) +(s—¢)qntcin: Poe<pan<p},
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wlhere the maximand py, ¢, — $-X(pn) Is an increasing function of p,,. lence, we have

—(1) ETie - Y,
M, (zn:‘In) = a Hn—l(o) + (p+ s = C)-q" - SX(ﬁ) + e,
. (Pu+S—C)'qn—8‘X(Pu), qus}(_;(PU))
= o ll,_(0) +ci, + (3.24)
(5 - ) X(®), X (Pu) < gn:

Since ¢, < Y(Pc), it follows from (3.23) that either p = P, or 5(_(13) = ¢n. If the former holds,
then it trivially follows from (3.24) that Mfll) is a linear increasing function of ¢,,. Otherwise,
that is if X(p) = ¢n, then it is an increasing function of ¢, 1.

Next we consider the subproblem on 1\7,(,2). Recalling the assumption that J_W—:_l €C(X(P.),

K), the expression (3.22) will be:

__.(2) . —_—k —
Mn (z,.,q,,) = maz{a- “n—-l(q" - X(p")) - (C + h)'q"
+(pn + h)-f(p,,) +cin: p<pn < Py} (3.25)

= maz{a-maz{[\_l:_l(q,, - Y(Pn), qn — Y(p,,)) ,
— —_—
M, _(qn — X(pn), :tn—l) —K}—=(c+h)qn
F(pn + 1) X (pn) + cin 0 P < pn < Pu)

—=(21) —(22) .
= max{M, "(in,qn) , M, (in,n)}, (3.26)
—(21) —(22)
where M, ~and M, ~ are defined by:
—(21) , —% — —
M, (1")(1") = maz{a'Mn-l(qn - X(pn): In — X(Pn)) - (C + h)"]u

+(pu 4+ h) X(Pa) + cin s 7 < pa < Pul

= maz{aJV[:_l(O, In — X(pn)) - (1 —a)-c+ h]-¢n

Hpn +h—ac) X(pn) +cin: P<pn < Pu}, (327)

and
—(22) , —* 73 .
M, “(in,qn) = maz{e- (M, _(¢n — X(pn), Ln_l) -K)—(c+h)agn
+(Pn + /l)'/?.(Pn) +ciy P<pPn < Pu}
— . .
= maz{a- (M, (0,L0-1) - K) = [(1 = a)-c+ h]-gn
+(pn +h—a-c) X(pn)+ ciin: F<pa < Pu}. (3.28)

Lt o) = (7= ©) g, where g = X () e, G0 - AC=LZOL T 5 (90 & 52 ()P

qn dp dgn
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It follows from (3.23) that for g, € [0, X(Py)] we have p = P,, which implies that Mff), given
by (3.25), disappears and from (3.20) we obtain M: = A_l,(ll). Therefore, for the purpose of the
proof, we shall restrict the analysis of Mf,z) on the ¢, range of [Y(Pu),j(—(pc)], which implies
that P, < j. Moreover, considering the maximands in (3.27) and (3.28) we note that the
maximizer ol the function (p + h — a-c)'-)_(-(p) on [Py, P,] is Py, where Py, < P.. Hence, this
function is deccreasing on [p, Py]. In addition, since ¢, — ?(p,,) > 0 on [p, P,], the maximizer

in (3.27), say p;, must satisfy
0<qn— X(p,q) < i“n—l- (329)

Furtherinore, for any ¢, we choose ¢, with )_((Pu) Sqn < g, < X;(I—’c) in order to demonstrate

that ]-\_4-,(31)(1',,, In) < M,(fl)(i,,,q;). Also, we define §’ by
X(#') = ai, (3.30)
which iinplies that P, < p’ < P,. Moreover, we identify p’ which satisfies
an = X(#}) = ¢ = X(), (3.31)
that implies p’ < pj. Therefore, from (3.29), (3.30) and (3.31) it follows that
tn—X() = qu— X)) 2 0= g}, - X(3),

which implies
P, <p' <p' < pf £ P (3.32)
Thus, substituting (3.31) in (3.27) and considering (3.32) we get

—(21) . —x —
M" (2",(111) = Q'M"_I(O,‘In—’X(pq))—[(1—6!)'C+]l]'qn

+(p'q +h - a-c)-:\;(p;) +ciy,
= @My (0,40~ X(9,)) ~ [(1 ~ 0)-c + ] [g — X(5))]
+(¥h = ¢)- X(py) + c-in

= oMy (0,44 — X)) = [(1 - a)-c + h]-[d, = X(P)]
+Hpy = ¢)- X (p}) + crin

< @My (0,6, - X))~ [(1 - a)-c + h]-[gf, - X(7)]

+Hp' = ) X() + cin
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maz{a-M,,_1(0, ¢ = X(pa)) = [(1 = a)-c + h]-q,
+(pa+h—a-c)-X(pn) + cin: P < pa < Pu)

IN

—=(21) .
= M, (171,(1:.),
- . —(21) , . . . . —x
which implies that M, " is an increasing function of ¢,. On the other hand, since M, _; (0,

i?n_x) is independent of p, and Py, < 7, the maximizer in (3.28) is p, that is

—(22
n

)(i")‘lﬂ) = Ot-(]\_/[—:__l(o, tn—-l) — K:) + (13 — C)Y(ﬁ) + ¢ in,

which is an increasing function of ¢,,. Illence, 1\75,2), given by (3.26), is an increasing function
of qn on [X(Pu), X (P )] Thus, the proof follows from (3.20).

Next we consider M" on the rema.lmng qn range of [X(P, }, 00) to establish the validity of
condition (¢) of the definition of C for M".
Lemuna 5. —*(i,,, gn) is an aK-decreasing funclion of ¢, on [y(ﬁc), o0) for N > n > 2.
Proof. Iu the following prool we shall demonstrate that M ! is a decreasing function and
}\7,(,2) is an aK-decreasing function which implies that Mn, given by (3.20), is an aKX-decreasing
function of g, on [X(P.), c0).

If X(P¢) < gn, then p = Py which implies that for the g, range of [X(Pt), 00) the function
M,(,l) disappears and we have M: = A_/I,(lz). Therefore, it follows from (3.24) that A—/I—,,l
decreasing function of ¢, on [X(2), X (P).

For the analysis of M"2 we identify two cases which are defined by g, with respect to £,_;
as: qn — :‘(—(13) <¥n_) and g, — Y(ﬁ) > ¥._1. We shall show that in either case 1\7"2 will be
ak-decreasing at gn. 1l gn — X(P) < $a-1, then it follows from (3.25) that A_JS,Z) is given by
(3.26). Therefore, considering (3.27) and (3.28) we have

—(21)

— —
(in, gn) = 7”“"'{(Y‘Mn—1(0’ I — X(pn)) = [(1 —@)c+ h]-qn
+(Pn +h— O"C)')_((Pn) +cin: P<pn < Pu}

maz{a-M:_l(O, Loo1) = [(1 = a)c+h]-gn
+(pn + h - a‘c)'k-(l’n) +cin: p<pn < Pu}

IA

= _( )(zn,qn)+aIC (3.33)

Furthermore, from (3.28) we have

I_Vf,(.z)(in,qn) = maz{a-(Mp_;(0,$n-1) — K) = [(1 - @)-c + h]-ga
+(pn +h—ac) X(pn)+crin: P <pa < Pu}.
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Ir Y(I_’c) <gn < X:(ij/,c), that is P, < P, then the maximizer of (p, + h —a-c)j{(p,,) on [p, Py]
is p, that is

—(22), n— N T
A/In (17“(171) = a'(Mn—l(Oi i’"—l) - A") + (P - C)X(ﬁ) +cin,

which is a decreasing function of ¢,. If, however, Y(P,w) < ¢qn, that is p < Py, then

—(22) —k
Mn. (l",(]") = a'(Mn—l(Olt"-'l)_K")—[(l_a)‘c+h]’q"

+(Pe + h — a-c)-X (Pre) + c-in,

which is a lincar decreasing function of ¢,. Therefore, it follows from (3.26) and (3.33) that
1\71,(,2) is an aA-decreasing function of g¢,,.

On the other hand, if ¢, — )7(15) >t a1 (which can hold only when p = P, for 3(—(136) < ¢n,
because £,—1 > 0), then it follows from (3.25) and (3.9) that

—@), . o =
M, (lm(ln) = maz{a-M,,_l(O,q,, — X(pn)) - (1 —a)-c+h]-qn
+H(pa +h—ac) X(pa) +cin: Pe<pa < Pu}  (3.34)

—% . en . N . Yy 7
Since M, _, is K-decreasing on [Ln_l,oo), by assumption, we have M:_I(O,q,, — X(pn)) >
A_/[:_l(o, 4y — X(pn)) — K for all p, € [Py, P,] and for all ¢/, > gs. Thus, from (3.34) we get

—(2) i 'Y C
M, (inyqn) > maz{a-(M,_,(0,¢, — X(pu)) = K) = [(1 = a)-c+ h]-qn
+(Pn +h — a-¢)-X(pa) +c-in = P < pn < Pu)

— —
> maz{o- Mo, (0, - K(p)) — [(1 - a)-c + g,
+(pn +h - a-c)-)T(pn) +ci,: Py <pn < PU} —aK

—(2) .
= Mn (ln:q;) - a K,
S =2, . .
which implies that M, "~ 18 aK-decreasing in ¢,, and the proof is complete.

Finally, combining the results stated as Lemmas 3 through 5 we establish the following

theorem without proof.
Theorem 3. M:(i,,,q,,) € C(X(P.),K), wheren=1,...,N.
According to the previous theorem, ¢}; is obtained from (3.9) and ﬁ:* is given by (3.10).

3.3.2 Special Case II

—_—k _——
In this section we shall prove that M, € C'(X(P),K), such that the optimal procurement
policy is given by (3.5). To this cnd, we shall follow an induction proof. First, we shall
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prove that ]\_/IT € C’()_((Pc),l(l), which will be the basic step. Then, we shall assume that that
—% — —kk

M, _, € C'(X(P:),K) such that II,,_; will be given by (3.12). Tinally, we shall demonstrate
that M: € C'(X(P.),K), which will complete the proof.

Lemina 6. A_/—[T(ix,pz,ql) € C’(_)?(PC),IC).
Proof. For ¢; < 0 it follows from (3.16) that

M (i1, p2, P, 01) = (p2 + s — ¢)-qs — s X(p1) + iy,
which Is an increasing function of p;. Thus,
— —_
MG, p2,01) = (p2+5—¢)-q1 — 5 X(Py) + ¢y, (3.35)

which is a linear function of ¢;. Note that depending on the value of py, A_/[Y can be an increasing
or a decreasing function. In addition, Theorem 2 indicates that for q1 >0, 11—4’; is a quasiconcave
function of ¢;, where $; = 7(136). Thus, combining this result with (3.35) the proof follows.
Therefore, ¢f is obtained from (3.11) and ﬁ:* is given by (3.12). An immediate observation
which will be referred to later is stated in the following
Corollary 1. ]\TIY(il,pg, L) = (P. = ¢)- X(P.) + c-iy, where £ = X(P,).
We now extend the result given by (3.35) to cover the other periods with the following
Lemma 7. M:(i,;,pnﬂ,qn) is a linear funclion of qn on (—00,0] for N > n > 2.

Proof. From (3.15) we have
— . —k ——— — .
Ma(iz, p3, 2, q2) = a- Iy (=X (p2), p2) + e-p2-X(p2) + (p3 + 5 — ¢)-q2 + -2, (3.36)
for q2 < 0. Utilizing (3.12) to obtain ﬁ‘:* and substituting it in (3.36) we rewrite M as:

7 /° —_— — _— —_— — .
Ma(ia,pa,p2y02) = «maz{My (=X (p2),p2,~X(p2)) , My(=X (p2), P2, 1) = K}
+“'P2')_((P2)+(P3+S—'C)'(12+c-i2.

JU— —_ — — —
Moreover, obtaining M, (—X(p2),p2, =X (pz)) from (3.35) and MT(—X(pg),pz,tl) from

Corollary 1 we write

Mz(iz,pg,pz,qZ) = a-mar{—s-j{-(pz)—s-)_((Pu) , (Pc—c)-j(_(Pc)—K
+(p2— ) X(p2)} + (ps+ s =) 2+ crin. (3.37)

Therefore, solving the maximization problem (3.5) for A—Z: by utilizing (3.37) we obtain
— — _ _—
My(iz, p3,q2) = amaz{—2-5-X(Py) , 2:(Pc—c)-X(P:) - K}

+(ps+s—c)-q2+ciz

= An-+(ps+s—c)gz+ci, (3.38)
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where Ay is a constant which equals to either —2-55(-(1’“) or 2-([55 — c)~?(13¢) — A depending
on the magnitude of K with respect to the parameters s, Py, ¢ and the X(p) function.

To complete the proof we shall demonstrate that A—/I; assumes a similar linear form to the
expression given by (3.38). Repeating the analysis given by (3.36) through (3.38) for n = 3 we

obtain the {ollowing:

[l

—_— —tk — —_—
M3(is, pa, p3, 43) oy (=X {(p3),ps) + a-p3-X(p3) + (pa+s—c)qs+cis
—_—% —_— —_— —_— J—
= a-1naz‘{M2(—X(p3),p3, —X(1)3)) ’ Mz("X(PS))Pa, 14‘2) - K}
+a-py-X (p3) + (pa+ 5 — ¢)-q3 + c-i3. (3.39)

Considering property (3.6) and the previous result (3.38) we get

— . —_— — —
M (i3, pa, P3, q3) = a-maz{Ay —s-X(p3) , M,(0,ps, 142) - K+ (p3 —c) X(p3)}
+(pa+5—c)q3+cis,

which implies that
—% . — _ .
1\/13(i3’1}4’ q:j) = a-rrlaa:{A21 - S'X(PU) ) MZ(O)PIS: 122) -K+ (Pc - C)X(Pc)}
+(pa+s—c)qs+cis

= Asi+(pa+s—c)gz+ecis, (3.40)

where Ay, is a constant which is either Ay — S'X(Pu) or M;(O,ps, L) - K+ (P - c))_((}_?c)

Hence, it is clear that repeating the above procedure n times we would obtain a series of

constants, {A,1}, such that
—k )
Mn(lﬂ:pn-i-l:(bl) = An1 + (Pn+1 +s— c)-qn +cty, (3_41)

which is a linear function of ¢, that holds for i, < ¢, <0and N >n > 2.
An immediate consequence of Lemma 7 is stated in the following

Corvollary 2. For all g < 0 where N > n > 2 the best price is either Py or P, where
P> P, >ec. l
According to the previous corollary, for any ¢, < 0 the vendor sets a price of P, or P,. The
former is the maximizer of the function a-(p — c))—(- (p), which represents the net pseudo-profit
due to not selling X (p) in the current period but in the next assuming that all of the backlog,
i.e. X(p), will be satisfied then. On the other hand, if the vendor administers the latter

price, which is the highest possible, then he incurs not only the highest unit revenue but also

minimizes the shortages in the current period.
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—_—
Having completed the analysis of M, for ¢5, € (—00, 0], which conforms condition (a) of the
definition of C’(j\-’-(Pc), K), we now establish the validity of condition (b) of the same definition.
— , . . . —
Lemma 8. M, (in, Put1, qn) 18 an increasing funclion of gn on [0, X(P)] for N > n > 2.
(

. —(1 —(2
Proof. In the following proof we shall demonstrate that M,, " and M~ are increasing functions
*

of gn on [0, X(2)], which implies that M,,, given by (3.20), is also an increasing function of
qn. From (3.15) and (3.21) it follows that

—(1) . ek —_—
M, (l")pn'f'lr q") = 77&(12:{(!- Hn—l(qﬂ - X(pn);pn) + (Pn - C)'(In

+a'Pn'()_('(pn) - Qn) +ciin: Pl < Pn < 13}
—kbc
Substituting for II,,_; from (3.12) we have

—(1) . —* . —
M,, (l"’p"'f'l!q”) = 77L¢11:{O(-7lla.‘l,‘{M”_1(qn ""X(pn))pm‘ln "X(Pn)) )
J— —
/\/1"_1((1,, - X(pn))pm tn—l) -K}+ (pn — c)-qn
+a‘1)n'(/?(1)n) - (In) +cin: Pp<pn < 17}

—(11) | —(12} .
= 7"'(”"{1\/[11 (z'l’pﬂ'H)q") , M, (ln)pﬂ+1)qvl)}7 (342)

— —(12
where M,(,“) and Mf; ) are two subproblems that are defined as:

—(11) . o v
M, “(in,Pn+1, qn) = maz{o-M,_ (g0 = X(Pn), Pn,gn — X(Pn)) + (pn — c) 4n

+ a-py, ‘()_((pn) - (In) + C'in : Pp<pn £ ﬁ}, (343)

4+ a-p, ‘(Y(Pn) - (In) +ciy: Py <pn < 13} (344)

N ¥ - —* v . . p
Since ¢gn — X (pn) < 0 Jor all p, € [P, p, Myy_1(4n — X(Pn), Pny gn — X (pn)) is given by (3.41).
With this substitution (3.43) can be rewritten as:

(1)
M, “(in,Pnenrqn) = maz{a-Agpoy+ (pn+as—c)ga

~a-5-X(Pn) + cin : Po < pn <}

= aAp-pn+@+as—c)g, - a-s-)?(ﬁ) + iy, (3.45)

Since qn < X(P.), it follows from (3.23) that either p = Py or 5(—(13) = ¢n. Il the former holds,

—(11), . ) ) .
then it trivially follows from (3.45) that M, ~ is a linear increasing function of ¢n. Otherwise,
that is if X(§) = gn, then (3.45) reduces to

—(11)

n

(impn+l:(1") = a-Ap-oin + (p- C))_((ﬁ) + ¢ in, (3.46)
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which is aél i;lcreasing function of ¢y,.
—(12 — —
For M, ~ we utilize (3.6) to represent M:_l(qn — X(Pn), P, Lnoy) as:

— — . — —
A’[,,_l(fln - X(pn),])m Ln—l) = Mn_l(O,Pn, tn—-l) + C'(‘In - /Y(pn))) (347)

—% i
where M, _,(0,pn, £n-1) is a constant due to property (3.2). Therefore, substituting (3.47) in

(3.44) we obtain
—(12) . —x
My “(in, Prt, @) = maz{a'(Mn—l(Orpm jln—l) —K)+(1—-a)(pn— €)-qn

+a~(p,, _C)'/?(pn)'f'c'in : Pe<pn Sp} (348)
Let py be the maximizer in (3.48). If p, € (P, p), then it must satisfy
d —
(1 —a)'qn+a-d—p{(17~C)'X(P)}I,,,, =0, (3.49)

which implies that py > P, > ¢ and

dpy _ S
din —a-di:r{(p—c)‘)_((P)}I,,

Thus,

—(12)
(an (in;pn-f-qu")
dqn :(l—a)-(pq—(:) >O,

. —(12) . . .
which states that M,, ~ is an increasing function of ¢,. On the other hand, if pq is a boundary
solution, then since (1 — @) ¢, + a-d{(p— ¢)-X(p)}/dp > 0 for all p € [P, P.], we have p, = p,

that is
—(12) | —% . —
M (1’"!pn+1’ q") = a'(Mn—l(O)pm i‘"—l) - ,C) + (15 - C)X(ﬁ) + c'in)

which is an increasing function of ¢,,. Hence, it follows from (3.42) that M—,(,l is an increasing

function of ¢, as well.
. —(2 _
Next we consider the subproblem Mf,) given by (3.22). Writing M, from (3.15) and

—kk
substituting for 11,,_; the expression given by (3.12) we have

—(2),,
M, (M,Pn+lx (In)

—kK =
maz{a-1,_1(¢gn — X(Pn),pn) — (c + h)-qu
+(pn + h)'f(pn) +ciy: p<pn < PU} (350)

—_— — —
= maz{a-maz{M,_1(qn — X(Pn),Pn,tn — X(pn)) ,
—k .
Mn—l(‘lﬂ = X(pn):Pm tn—l) - A'} - (C+ h)'q"
+(pn + )X (pn) + coin : < pn < Pu) (3.51)

—(21) | —(22) ,
= "wz{Mn (1rlxpn+1,(In) , M, (2mpn+1’q")}’ (352)
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—(21) —(22) , —(2)
where M, ~and M, = are two subproblems of M~ that are defined by:
—(21) . v ~ >
M, (ln,Pn+l;‘1n) = ma.‘l:{a-]an_l(qn _X(Pn):Prnqn _X(Pn)) - (C+h)'q"
+(pn + h)'—)?(Pn) +cin: p<pn <Py}
—_— —
= ma:v{a-M,;_l(O;I)n, In — X(Pn)) - [(1 - a)'C + /l]"]n
+(pn +h - OI'C)'Y(Pn) +ciy p<prn < Pu}, (353)
and
—(22) . —k _ .
A’ln (lnvl’n+l)‘1") = "mr{a'(Mn—l(q" - X(pﬂ)Ypﬂ’t"—l) _A’) - (C+h)'q"

+(Pn -+ h)')_{(pn) +eciy P<pn < Pu}

— .
= maz{a-(M,_,(0,pn, Ln-1) = K) = [(1 = @)-c+ 1) -qn
+(pn + I — a'C)'.)_(-(Pn) Fcin: p<pa < Pu}(354)

It follows from (3.23) that for ¢, € [0, X(P.)] we have § = P,, which implies that A_/I-flz), given
by (3.50), disappears and from (3.20) we obtain A_l: = A_lf,l . Therefore, for the purpose of the
proof, we shall restrict the analysis of A_ff,z) on the ¢, range of [X(Py), X(P.)], which implies
that P, < j. Moreover, considering the maximands in (3.53) and (3.54) we note that the
maximizer of the function (p + h — a-c)-X(p) on [Py, Pu] is Py, where Py, < P.. Hence, this

function is decreasing on [f, P,]. In addition, since ¢, — )_((p,,) > 0 on [p, P,), the maximizer

in (3.53), say py, must satisfy
0<gn—X(P) < Fucr. (3.55)

Furthermore, for any ¢, we choose ¢, with )_((Pu) <en < g < )_((Pc) in order to demonstrate

that M_E‘ZI)(i,,,an, In) < 1\_/[,(,21)(in,p,,+1,q;,). Also, we define p' by
X@) =dp (3.56)
which implies that P, < ' < P,. Moreover, we identify p’ which satisfies
an = X(p) = 0, — X (), (3.57)
that implies p’ < p),. Therefore, from (3.55), (3.56) and (3.57) it follows that
gh— X(0') = tn = X(#}) 2 0 = g, - X(¥),

which implies
PcSﬁ,Spl<p’qSPu- (358)
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Thus, substituting (3.57) in (3.53) and considering (3.58) we get
=(21) . vl / ot
M, (ln;])n+l"1“) = (Y'Mn—l(oqu)(lu_A(pq)) _[(l_a)'c+ll]'(171

+(v +h - a-c)-j(-(p;) + cip

= @My (0,8 g — X(8)) = [(1 - @)-c+ h]-[ga — X (o]
+(pg — c))—((p;) +crip

= @M, (0,9, - X)) - [(1 — a)-c+ h]-[g} — X(@')]
+(pg — c)-)_{(z);) +cip

< a M, (0,0, ¢, = XG)) = [(L - @)-c+ h)-lgy = X))
+(p' — ) X (') + c-in

—_— —
maz{a- M-, (0,pu,y — X(on) = (1~ )¢+ ] o
+(Pn +h - a'c)'.)_(-(pn) + iyt 13/ <p: < Pu}

IA

—(21)
= M, (i, Pat1, dn),
which implies that ]_Vl—f,m) is an increasing function of ¢,,. On the other hand, since M:_,(O,pn,
i),,_l) is independent of p, and Py, < p, the maximizer in (3.54) is p, that is
—(22) . —% -—
M, (lmpﬂ+l,(1n) = a'(Mn—l(O)Pm tn—l) - K:) + (13 - C)X(ﬁ) +cin,
which is an increasing function of ¢,. llence, A_/Iflz), given by (3.52), is an increasing function
of g on [X(Py), X(P.)]. Thus, the proof follows from (3.20).
Next we consider A—/f: on the remaining ¢, range of [F(_(Pc), 00) to establish the validity of
condition (c) of the definition of C'(X(P.),K) for M:
Lemma 9. M:(i",pnﬂ,qn) is an ak-decreasing funclion of q, on [5{—([_’0), o) for N > n > 2.
Proof. We shall demonstrate that JT/[-,,1 is a decreasing function and Mn is an aK-decreasing
function which implies that ]l_/[:, given by (3.20), is an «aK-decreasing function of g, on
[X(P.), ). ~
If X(P¢) < qu, then p = Py which implies that for the ¢, range of [X(FP;), co) the function
M . disappears and we have M : =M ,(,2). Therefore, we shall consider Il_/I,, , under the

n

structure given by (3.42), for the ¢, range of (X(P,), X(P)). 1t follows from (3.46) that

—(11)

M (impn+1>‘hl) = Q"A(n—l)l +(ﬁ—0)'7(p)+c'im

n
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which is a decreasing function of ¢, on [:‘E(ﬁc),f(ﬂ)]. Furthermore, considering Milz) given

by (3.48) we note that the function (1 — a)-(pn —¢)-qn + a-(pn — c)~—X—(p,,) is increasing in p,
on [Py, p], thus,

—(12) . —* \ B —_—

M, (l,,,]),,+1, q“) = G'(M,,_I(O,p,,, i‘n—l) - /C) + (P - C)X(ﬁ) + c iy,
which is a decreasing function of ¢,. Thus, from (3.42) we conclude that A_/[,(,l) is a decreasing

function of ¢, on [7(136),)—((1’[)].

For the analysis of 1\7,, we identify two cases which are defined by ¢, with respect to
A X(p) < Tt and g, - ;\7(17) > ¥n-1. We show that in either case 17[5‘2) is
aK-decreasing at q,,. M gn — )_((13) < t,._l, then it follows from (3.50) that A_/IS,Z) is given by
(3.52). Considering (3.53) we have

—(21) . —x —_
/‘/In (ln,])n+l,‘1n) = HL(LZ‘{C!'A/I“_I(O,])", In — X(pn)) - [(l - a)'c + h]'qn

+(pn +h — a-c)-)_((p,,) +cin: p<pn < Py}

— <
< maz{o-My_1(0,pn, $uct) = [(1 ~ @)-c+ h]-gn
+(pn+h—¢)- X(pa) + cin: < pn < Pu)

—(22) . .
= Mn (ln)pn+1y(1n) +a'A’- (3-59)

Furthermore, fromn (3.54) we have

—(22) | —_—
Mn (ln,Pn+l; (In) = 77la${a'(Mn—1(0;prn i:n-—l) - IC) - [(1 - a)'c + h]'qn
+(pn +h - a'c)-:\7(p,,) +ein: p<pn <Py}

If X.(Pc) <qn < )—((Iahc), that is Py, < j, then the maximizer of (Pn +h—a-c)'y(p,,) on [p, Py]
is p, that is

—(22) . —k 3 ~ — .

Mn (l"’p"'f'll (In) = CY'(M,,_I(O,[)", i‘n—l) - K) + (p - C)'X(p) +c- iy,

which is a decreasing [unction of ¢,. If, however, Y(I_J/,c) < g, that is § < Py, then’

—(22),, —% .
M, (Gnypatiran) = o (Mu_1(0,pn, Eno1) = K) = [(1—a)-c+ 1]-qn
H(Pe + h— a-¢)- X (Pre) + ¢+in,

which is a linear decreasing function of ¢,. Therefore, it follows from (3.52) and (3.59) that

M, is an aK-decreasing function of g,.

n
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On the other hand, if ¢, — )7(13) >Ynl) (which can hold only when p = P, for X—(Pc) < gn,
because L,,—; > 0), then it follows from (3.50) and (3.12) that
—(2) . —% _—
M, (nyPutt, ) = maz{a-M,_1(0,pn, 40 — X(pn)) — [(1 — a)-c+ 1]-qn
+(pp + h — a~c)-)_((p,.) +cin: Pe<pn <Py}
' (3.60)

Since A_/I-z_l is A-decreasing on [L,_1,00), by assumption, we have 1\7:_1(0,1),;, qn — —X‘(Pn)) >
—_— — .
M, _(0,pn, ¢, — X(pa)) — K for all p, € [Py, P,] and for all ¢}, > gn. Thus, from (3.60) we get

— —
maz{a-(M, _1(0,pn, ¢y — X(pn)) = K) = [(1 = @)-c+ h]-qn
+(1)n +h— a'c)‘)_((Pn) +eiy: Pe<pn < Pu}

v

—(2),,
M" (ln yPns1, ‘In)

— —
> ma:L'{wM"_l(O,p,,, (1:: - X(Prl)) = [(1 —a)-c+ h]-qﬁ,
+(pn +h — a-c)-Y(pn) +cin: P<ppn<P}-ak

—(2) , / .
= M, (ln;pn+1)‘1n)_a'h;

L — (). . L _
which implies that M,, ~ is aK-decreasing in ¢, and the proof is complete.

Finally, combining the resulls stated as Lemmas 6 through 9 we establish the following

theorem without prool.
. —k —_
Theorem 4. For all puyy € [P, Py] it follows that M, (in, Pnt1,4n) € C'(X(F:),K), where

n=1,...,N and pyy1 = 0.
According to the previous theorem, g is obtained from (3.11) and II,, is given by (3.12).

3.3.3 Special Case III

In this section we shall present an example which deinonstrates that, under special case 111,

— , , . . )
M, is not included in C'(7,K) in general. For the purpose of the proof consider the case where

i; < 0. Then, it follows [rom (3.19) and (3.23) that

pro(n—i)—sX@)+(s—c)ntein , P<p<h
A’]l(ilppl,‘ll):
(pr+0)-X(1) —prrir—(c+h)-q+ciy , p<p <P
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—* . - . » .
Since q; — i) > 0, M| is increasing in p; on [Py, p] which implies that

(1)(1 +S~C)'(11—(Pu—c)‘il—S‘Y(Pu) ) il _<.(11S/_Y-(PU))
—_—
Ml(ihql) = % . =
maz{(py +h)-X(p1) —pi-i1: p<p1 <Py}
~(c+h)-qu + ci) , <0< X(P)<aq
(3.61)

Moreover, let us assume that the expected demand is defined by Y(p) = a—bp, where a,b € R*,
Py = 0 and P, = a/b. Under this linear demand assumption (3.61) reduces to the following
(see Appendix C for the details):

— .

M (ix, q1)
(Ptt+s—c)'(11 _(P“—c)'il _S':Y—(PU) ’ i1<q1 <0,
{ —b-(h+ P,) <i; <0

= a—qi —C'b)'(ql —ll)/b
( O<q <(a+d-h+1i)/2,

L (@ =b-h—i)2/(4-0)+ he(a—q1) —c(q1 —11) (a+b-h+141)/2< q,
(3.62)

_* . . . .
It is clear that M given by (3.62) does not necessarily satisfy the separation property (3.6).
Thus, (3.9) is not optimal for the determination of ¢f, unless some restrictive assumptions

about the parameler value ranges are made. Furthermore, we note that
—k . 3 -
argmaz{M (i1,q1) 1 41 <q1 <00, =b-(h+P,)<i; <0} =(a—cb+1)/2, (3.63)

which depends on 7 (see Appendix D for the details). That is, the order-up-to level is a function
of iy when —b-(h+ Pu) < iy < 0. This observation implies that (3.11) can not be utilized for
the determination of ¢} in general. Consequently, it is clear that under the cited backlogging

rule we need a new definition for the optimal policy.

3.4 Probabilistic Demand

In the previous section it has been shown that under deterministic demand the optimal
procurement quantity is determined by an (o, Ln) policy for the lost-sales multi-period model,
but this is not necessarily optimal under other backlogging rules. Since deterministic demand
is a special case of probabilistic demand model, the latter argument above is also valid for
probabilistic demand case. For this reason, in this section we shall concentrate on the lost-sales

2

model, and try to characterize an (U,L‘) type optimal policy for the determination of ¢*. To

this end, we shall again perform an induction proof.

To start with, we need to introduce a new class of functions:
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Definition 3. C"(71,72,K) is a sel of conlinuous univariale functions, say ¢(q), which:

(a) arc increasing on [0,71]; and

(b) have a finite mazimizer on (y1,7z2), say vs, such thal Vg € (v3,7v2) we have:
¢(a) > d(d)-K Vi€ (g,00).

We shall refer to this definition in characterizing the shape of A_JZ function which will be

derived below.
Consider the pseudo-profit function under special case I (the lost sales model) which is

given by (3.13). Evaluating the expected value of this function with respect to random demand

X(pn) we obtain the following:

Mﬂ(irnpm (171) = (1)71 + 5= C)'q" - s--/?(pn) - (Pn +s+ h)-e(p", ‘In) +ciy,
—hck . In — ke
+ « Hn—l(o)'[l —F ((In;pn)] + a/ Hn_l(Qn - x)'f(.’lt;pn)'d.'b'.
Xl(l’n)

(3.64)

We recall that the separation property holds for 1\_4", such that:

Mn(in)Pm(In) =ci, + Mﬂ(O)pn)qn))

for all n.
We initialize the induction proof by assuming that the conditions leading to unimodality

of 1\7*(0 ¢1) holds. This implies that M*(O q1) € C"(o1,00,K) for some oy. Furthermore, as

Ko .
an induction step, we assume that M" 100, ¢n-1) €C'(0L_1, 0,7, K), where k,_; is an even

L"
integer and there exists o) _;,02_},..., 0, 7" which satisfy the following conditions:

i n 1(0 n— 1) - n I(O)tn—l)_x fOl‘j = 1) 2: RS kn—h where t""l is the maximizer
of 1\/],,_1(0,%-—1))

kn—l

eol <ol < <oy T << oint, and
o there does not exist any ¢q € (i,,, 1,0 'kz ') such that Mn (0,9) = M (0, a,k..- ).

Note that under these assumptions 1\71,,_1(0,q,,_1) is an increasing function on [0, 0, _,] and
it could have ripples”, on (o} _ I,IL‘,, 1], about the M: 1 (0, 13,1 1) — K level. Moreover, it
follows that Mn 1(0, gn-1) is K-decreasing on (£n-1,0,"7'], but it can exhibit a “valley” or a
pcak with a depth or a height greater than K on (¢¥77, 00) provided that Mn 1(0,gn-1) <
M, _,(0, ) 1) for all qgu-1 € (0'" 1',00). Also, note that k; = 2 under the assumption that

MT is unimodal.
It is clear that, under the above setting for A_’i:—1 function an (o, L‘) type policy need not

be optimal, because there might exist two or more “order-up-to” levels. The smallest of those
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is L,,._l and others, if they exist, lay on (lf" 1", 00). This infavourable fact is a burden on the
efforts of characterization of the optimal procurement policy as an (o, 1,) type. In fact, it is
also encountered in the solution of the classical multi-period problem where there is no pricing
decision. In that model, the general approach is to include an assumption, among the others
that ensure optimality of (o,,, ,13,,) policies, so as to make it impossible for the period ending
inventory level, for period n say, to be iil (a,}; 1',00). This way, the problem is avoided by
restricting the pseudo-profit functions M, within domains of [0, k"] for n > 2. For instance,
assumptions (iv) on page 531 in Schal [12], (vii) on page 1070 in Veinott [14] or (7-28g) on
page 323 in Heyman and Sobel [2] are mainly made for the cited reason. It is also customary

to search [or special cases under which this assumption holds. In this regard, it is sufficient to
show that L‘N > II,.)N_I > > Itg where iy < jJN, under certain conditions. Thus, it is not
surprising that this infavorable issue is inherited to our model. In the following analysis we
shall express this problem, which is slightly modified in comparison with the classical model,

and try to establish suflicient conditions leading to optimality of (o, 13,,) type policies.

In (3.64) we need to replace -[Tz*_l by an expression which is written in terms of M:_l. For
this reason, we recall the inductive assumptions and write:
— . . .
Ty (int) = crineg + { MysOkint) =Ky inet €000 = L ko) (3.65)
M, _1(0,in-1) y in-1 €0(n—1,ka_y),
where '

koo 1 -2 kpei-
O(”—lxkﬂ—l) = [0 0'" I)U[ On_1:0 n I)U[ On-1,0 n I)U U[O’ 1On—1 1)

O =Likuer) = [0,05771\O(n = L kna),

provided that 7,1 € [0, 0, kn- "7']; and if M,l (0,0} ) > M,, 10, L0-1) = K, then ol _, = 0.
However, we shall assume that X is sulliciently small so that o!_; > 0. This only decreases
the number of terms to carry in the analysis which in turn simplifies the mathematical
representation.

It turns out that, for k,_; = 2 the policy defined by (3.65) is an (0‘"_1,13,,_1) policy. But,

for k,,_; > 2 it follows that although there is one “order-up-to” level, ¥n_1, there are kn_1/2

reorder intervals, union of which is denoted by O(n — 1, k,_1) where “O” stands for “order”.

The latter policy is called an (Un_],j),,_l) type policy. Here, the terminology is set 'in such a

way that the word “type” reflects a modification on the conventional (o, $) policy with respect

to the fact that there are more than one reorder intervals.
—kk —kk
Therefore, we can replace Il,,_; in (3.64) by (3.65), where II, _,(0) =
— Lo Sy
is in turn equal to M,,_ (0, ¥n-1) = K since o} _; > 0. Considering,

ATI:_I(O,U,I‘_I) which

OS/\’I(pn)SwS(Iﬂ_Uyll—l A4 o-:l Sq _wsqn_xl(pn)’

(171—0',1,_1 <z<qn <~ 0< —-(L‘SO',!‘_I,
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we rewrite the integral in (3.64) as:
In R 1 —_k
Xi(pn) “n—]((ln - w)'f(l:;p").dz = [F(q";pn) - F(qn - Un—l;pn)] 'Mn—l(orarll—l)
1{Pn
—
+C'®(])n;‘1n)+/ Mn—l(o’(In —w)‘f(x;pn)‘dx
gn — T € 5(1: ~Lk,_1)n (a'l‘_l,q,. - X1(pa))
—%
T 00 [ i) e (3.66)

In =2 €O0(n=1ku1)n (ol ), qn = X1(pa))

Thus, after the proposed substitution (3.64) can be written as:
7 . Tas . —%
Mn(lmpn; qn) = M(lmpm q") + (J-M"_I(O, a'ylz-—l)

—* — 1
+(Y-/ [Mn—l(oy In — .’IJ) - A/[n—l(o’ an—-l)] 'f(x;p")'dx
gn — T € 5(71 - Lk, _1)Nn (U’l‘_l,qn - Xi1(pn))

1
In = Ty

—~ — —_— -—%
= M, pu,n) + - M, (0, Urlx—l) + a-/ [Mn—l(o’ I —z)— M, _,(0, Uylx—l)J ‘f(x;l)n)'dx,

Xl(Pn)
(3.67)
. Ko Lo . . .
where it is understood that ¢, — Xi(pn) < 0,27", which is also implied by ¢, < a,ﬁ'_'_‘ll; and

M(in,l)m ’In) = (Pn + 5 — c)'ﬂn - s';f(pn) - (pn +s5+h— a'C)'e(Pm (In) +c-ip, (368)

which represents expected one-period profit with the addition of a unit salvage value of a-c. It
is clear that M has the same functional characteristics (in p and q) as M since we can always

view h — a-c as an effective unit holding cost (which can be negative). Furthermore, defining

M*(O,f[n) = maz{ﬁ(O,p,q): pE[Pt,Pu]}

M(0,p,,9), (3.69)

. —% . . —
we asswne that the conditions ensuring unimodality of M| can be trivially extended for M*
as well. In this regard, we let L be the maximizer of M*(0,¢) on (0,00) and o be defined as
M*((),g) = Mv*(oyjj) — A with o < j)

It follows that for ¢, < a,ﬁ_l the integral in (3.67) vanishes, and we have:
J— — —k
Mu(0,puy ) = M(0,pn, qn) + - M, _ (0, 0111—1):

which implies that

— —~ —k
M:(O, (In) = M*(O: qﬂ) + a'Mn—l(O’ 0111—1)' (370)

—* 13 i3 .
Under the inductive assumption that o5_; < %, we conclude that M, (0, ¢n) is an increasing

function on [0, _;). Later, we shall demonstrate that in fact ol < L.
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—k
Next, we shall concentrate more on M,,: From (3.67) we obtain,

M:(O,q”) = 77;az{M(0,p,l,q,,)+a-1—\7:_1(0,0,1,_1)
qn “’}.—1
—x% —
'*’“'/ [Mn—l(oi In ) — MYI—l(O’afll—l)] S(x;pn)-dz : pn € [Py, Py]}
X1(pn)
(3.71)
> M0, 40) + @ My (0,001)
In _”yl‘-l
+a- [M_:—I(O)q" -z) - M:—l(o’arll—l)] -f(=;pg)-dz,
X1(rn)
(3.72)

where p, was defined in (3.69). Using (3.71) once more it follows that

— —_— —_
M:(qun) < ma:c{M(O,pmq,,)-}-a-Mn_l(O,a',l,_l): Pn E[Pl,Pu]}

gn = ”yl-—l

—_— —_
+'"’am{a' [1\’1’"_1(0, In — :l!) - Mn—l(ol 0711—1)] 'f(:ll;pn)'d:lt ! Pn € [PL, Pu]}

/\’I(Pn)
— —_— 1
= M*(O: (1") + a'Mn—-l(O) an—l)
gn = ”3._1
v vl 1 ’
+Cl-/ [Mn—l(oiqn_1")_Mn—l(oian—l)]'f(w;p)'dx) (373)
Xi(pn)

where p/ is the appropriate maximizer. Finally, we note that Vg, —z € O(n — Lkao1) N

(0111—1 yn — /\,l (pn)) we have
—

0 S M:—I(O)qn - 2‘) - M'l—l(o)afll—l) S K:»

kn—
which implies that Ygn € (o} g, 003D

gn — "3.-1
0< [Mf,_l(o,q,. —z) - 1\7,;-1(0,0,‘1_1)] S(@;pa)-de < K-F(gn—0p_1ipn) < K,
Xi(pn)
(3.74)

—%
we conclude that M (0, gn) is bounded between two continuous

for all p,,. Therefore, with (3.74)
functions, given by (3.72) and (3.73), which are at most a-K distance (vertically) apart on
K
In € (Ur]:—-l)an—ll .
Since,

M—:(O)j“n) = maz{]\_/IZ(O,q") : 0 S gn < 00},
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it follows from (3.73) and (3.74) that
— . —_— —%
M(O> i‘) + a'Mn—l(Ox 0711—1) < M,,(O, t)

— —~ P
S M,,(O, i:n) S M*(Ov t) + CY-]V["_I(O, arlz—l) + CX'K, (375)

which implies that:
ot < b <P < ¥ <ol (3.76)

where M*(O, &) = M*(O, §5) = M*(O,L‘) — (I = a)-K. Moreover, it can be seen that if

A
o < ol then ¢ < o} for n > 1. Also, if we define 1) and I as:
— —_ A —
M*(0, 1 )= M*0, ¥)=M*0,1)-a K,

N
with 1, < ¥ < I, we conclude from (3.74) and (3.75) that:

A
f<t.<f. (3.77)
This result indicates that if, in period n, we prefer to procure more than 13, which is the optimal

quantity to procure if we could use the leftovers in the next period, then we should not order

I
more than i‘, at which we breakeven with not ordering this period but in the future.

R 3
Next, we shall study M, on (i),oo). Let ¢, € (t,aﬁ"_‘l‘) and ¢, be an arbitrary quantity

on (qy,00). Then, it is clear that

! 1
In — 0"_1
—k —k
/ [Mn—l(oiqux —.’L‘)—M"_I(O,O',li_l)J-f(.’l?;p,,)-d:l)—/C S O) (378)
Xi(pn)

for all p, € [P, Pu]. Redefining p’ as the maximizing price of M, at ¢}, i.e. 1\7[:(0,(1:,) =
M, (0,9, ¢,), and recalling (3.74), (3.78) and the fact that M* is non-increasing on (£, 00) we

can proceed as follows:

—_— —~ —k
M:(O,q”) = maz{M(0,pn,qn) +a-M, _(0,05_})
In _".1.-1
—_ % .
+(Y/ [Mn_l(o,(ln"'1:)—Mn_l(0,0'"_l)]-f(z;pn).dx; pn E[P[,Pu]}
X1(pn)
—~ —
2 M*(O) qﬂ) + a'Mn—l(O’ 0711—1)
1
gn —Tp_)

b [ [M01(0,00 = 2) = Mo 0,08 )] Sleipg)-de

X1(rq)
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M*(0, gn) + - My_1 (0,0 1)

>
..>_ M*(O,([,,) + Q'M::—I(Oxo'rlx——l)
qf, - (13__1
v ] Fvad 1 '
ta- / (#7100, 01 = 2) = Moy (0,04 )] - f(w5) de = K
X1(p")
> MA0,q) + My (0,00)) — @K
9:. —".l.—l
—k
v [ [Foo 0,0 = 2) = Mos003 )] i) da
X1(")
—— —_K
> M(0,0,¢0) + M _1(0,04_1) ~a-K
an —”3. 1
1 —=* 1 /
+a'/ [ n— 1( ‘In_m)_Mrl—l(Olan—l)]'f(x;p)'dz
Xy (")

—x
= MII(O)q:l) —aK

> M,(0,4,)~ K (3.79)
Combining all of the results that we have obtained so far, we see that:
(?) M:(O, qn) € C"(ol, ok K) for some even ky,
(ii) Lh(,re exist L,. values ol o2, .. ok such that o) < 0} < ++» < L. < ok with
M, ( 0 L,, = 0 0{,)-{-/\, forj=1,2,--+,ky,. Also, there does not exist ¢n € (Xn,0k)

such that M,l( ,q”) =M, ( O,im) -k,
(i) Vi € (B, 0%%) we have MT5(0,gu) > Ma(0,g4) — K for all g € (ga, ),
(iv) obrl < & <L < ¥ <,

(v) if 0 < o}, then 0 < oy,

) <<t

forn > 2and k; = 2.
In characterizing an optimal procurement policy it 1s useful to establish M (0, ¢n) function

as ¢, approaches fo 0 or as ¢n tends to infinity. It follows from (3.68) and (3.70) that:

ML(0,0) = M*0,0)+a-M,_,(0,0}_,)
= —SX( )+CYM" 1(0 Un 1)

J— ..
Thereflore, it is clear that M, (0,¢n) has a finite support at ¢, = 0
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. —k
On the other extreme, limg, oo M (0, q;) = —co by Lemma 2. To show a similar result for

all n we shall perform an induction proof: Suppose that

—_%
lim M, _(0,qn_1) = —o0,

gn—1—+00
then we have:

—k . — —
lim M, (0,qn) = 7rtaz{qll_lzlo(Prn +5=¢)gn—5X(Pn) = (pn +5+h—ac)[gn — X(pn)]

gn—+00

‘ln_a,l‘_
—% 1 i 1 rval 1
+a'M"_1(0, Jn—l) + o [Mn—l(oan - SL‘) - Mn—l(oian—-l)] 'f(m;pn)'dm ! Pn € [PL, Pu]}
Xi(pn)

= lim maz{(pn +h - a'c)‘)—((Pn)
§n—+00
o]

_— —k
+a‘/ [Mn—l(oqu - :L‘) - 1\/[71—1(0)0'111—1)] 'f(z;p")'dx * Pn € [Pl’ Pu]}
Xi(pn)
—%
+a M1 (0,05 1) = [h+ (1 = a)-c]-qn
= -0

Thus, litng, ~co Mn (0, ¢n) = —oo for all n.

3.4.1 Optimal Procurement Policy

[t has been shown that M:(O, ¢n), which satisfies conditions (i) through (vi), can have ripples
on g, € (o}_y, %), but these deviations from monotonicity are confined within a region that
is defined by the functions in (3.72) and (3.73) which are at most ok distance apart from each
other. Therefore, under a general distribution, it is theoretically possible that there are more
than one reorder regions for period n. In this regard, an (o, 13) type policy, which will be termed

Ll g2 ,okn, {.), is optimal for the determination of ¢*. That is, for n > 2 we have:

as (0,05,
{t,, if i, € 0(n, kn),

*
(In - .
otherwise,

111 1]

provided that i, < of».
It is interesting to note that &, < k,_y or k, > k,_1 both are possible under conditions

(i) through (vi). Also, for k, = 2 the above policy reduces to an (oy,, i) policy. This can be
assured when either of the following couditions hold:
*

(a) M, (0,q,) is an increasing function of ¢, on (¢}_;, 1),

(b) Mn(0,0:) > M(0,08) = M, (0,$) — K for all g, € (o}, 4 ).
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It follows, however, that (a) does not hold in general (for a counter example see Figure 4.2 in
the next chapter). On the other hand, condition (b) is not trivial to pursue due to the unknown
nature of f(a;p) in p and the lack of condition (a) to hold in general (to be used in an inductive
selting for 1\7:_1). Under a given distribution, if it is possible to characterize the best price
for any given ¢, one can take the analysis further. lHowever, several best price curves that are
obtained for some example problems (see Figure 4.3 in the next chapter) indicate that this is

highly impossible in general. For this recason, we shall not dwell on this issue.

3.4.2 Infinite Horizon Model

In this study, we are primarily concerned with a finite period model. However, we might
investigate whether there exists a limiting steady state condition as the number of periods
increase. In other words, it is interesting to see whether there are restoring forces within the
model such that the systemn approaches an equilibrium in time.

To this end, we shall drop period indices from (3.64) and rewrite 1\_/[i'r as follows:

A_/f*(i,q) = maz{ﬁ/lv(i,p,q)—i-a.M*(O,al)
g-o
—_k —_k 1
tar [ [ Og-2) - 300N f@p)dz: pelPR Y,
X1(p)
g—o!
(i 70 ol v 0 o .
= Hippn) + ol O +a [ [100=2) - M'0,0))] Sipg)dz
X1(pq)
— —
= M(i,pq,q)+a-[l—F(q—al;pq)]-M (0’01)
g- ol
+a-/ A_/i*((),q—:c)'f(:c;pq)-dx, (3.80)
X1(ry)

where p, is the appropriate maximizer. It follows from renewal theory that the solution of

(3.80) is:
g-o!
M*(i’ q) = M(i>1’q) ¢ +al- F(g— ‘7131’9)]'1\7*(0"71) +/ M(O’Pw‘l ~ z)-dRa(z;pg)
X1(pq)
g-d
+a./ AT(0,0Y)-[1 = Fq - o' = 2;p,)]-dRal; py), (3.81)
X1(pe)

where

Ra(z;p) = ) _ ot FO(z;p),
i=1
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and &) is the i-fold convolution of F. Furthermore, the fourth term in (3.81) can be rewritten

Aas:
¢—odl

—_— _—
W T (0,0) Ry = i) = T 0, [ Fla= o' = zipg)-dRa(winy),
X1(pq)
which is equal to:
a-A_/I*(O, 01)-2 [a‘-F(i)(q —al;pg) — ot G+ (g - crl;pq)] .
i=1

Using this result we can write (3.81) once more as:

1

g—o
Mk(i, q) = M(i,pq, q)+ / M(O,pq, q— z)-dRa(2;pg) + a‘M*(O, ah)-[1
X1(pq)
CP(g—otip) + 3o FO(g = atip) = ) o (g - al;pq)}
i=1 i=1
g-o!
= M(l,])q,([)+/ M(O)anq—z)'dRa(x;Pq)
X1(pq)
+M0,0Y) - [o = (1 = @)-Ral1 — 0% ,)] - (3.82)
It follows from (3.80) that for ¢ = o' we have:
1—\/[_*(0,01) = M*(0,0%) + a-l_\/f-*(O,al),
which, together with (3.82), implies that
g-o!
—_k — —~
) = Mpga)+ [ MOpa-2)dRa(sip)
X1(pq)
+M*(0,0")- [T%E — Ralq — al;pq)] . (3.83)
Therefore, we have:
g-o
Mg = mas{ M3,p0) +/ M(0,p,q— x)-dRa(z;p)
X1(p)
+M*(0,0'): [l—% - Ro(g - al;p)] : p€[P, Pu]} . (3.84)

can be obtained from F'; but ¢! can not be

In (3.84) M function is given by (3.68) and Ra
der to obtain the

For this reason, an iterative method is required in or

evaluated in advance.
I To this end, we propose the following fix-point procedure:

—k
simultaneous solution of M and o
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1. Set ¢! =0,

— —
2. Solve for Yoo, Where M (0,¥00) = maz{M (0,q): 0<q< oo},
3. Solve for o!, where 1\_/[*(0, ol) = 1\_4*(0, 1300) — K witho! < &,
4. If a tolerance is not met by o!, then go to step 2.

We shall provide a numeric example for the infinite horizon model in the next chapter.



Chapter 4

Numerical Examples

In this chapter, we provide the results of some numerical computations. We intend to study
the eflect of parameter values, demand distributions, expected demand functions and demand
models on the optimal solution. In addition, we display the expected pseudo-profit curves for
some of the example problems in order to demonstrate different forms that these functions
can assuine. We also concenirate on pricing issues and plot the optimal price values versus
procurement quantity to provide some evidence.

In Table 4.1 we introduce thirteen cases each of which represents a combination of
paranteters ¢, s, h, K and A. We shall refer to these cases when we use them in our example
problems. The first six cases are the permutations of the order of ¢, s and h. Next three
cases are considered, in comparison with the first three cases, for the effect of changing c,
s or h individually while others remain counstant. Finally, the last four cases represent the
combinations of X and A as ¢, s and & are constant.

In the beginning of our numerical study, we consider a 5-period lost-sales model where the
random demand is additive. That is, X(p) = X(p) + ¢, where ¢ is a random variable with
Ele] = 0. We assume two diflerent distributions for €; namely, the uniform distribution and
the triangular distribution. These distributions are defined in Appendix E. In addition, we
employ two diflerent expected demand functions which are defined by two parameters a and b.
They are: (1) ezponential, X(p) = a-e~¥? and (2) linear, X(p) = a—b-p, where p € [Py, P.].
Furthermore, we consider a 5-period lost-sales problem with multiplicative exponential demand,
and extend it to include the infinite horizon case.

Using a Pascal program that solves the N-period dynamic prgﬁramming pr_(llilem defined
by (3.64), we have obtained the expected pseudo-profit functions M, (0, ¢1),..., Ms(0,¢s) and,
if optimal, the control parameters (01,131), e (05,135). Tables 4.2, 4.3 and 4.4 display
summaries of these results. The programs are run on a SUN Spark 460 system which took

approximately 6.5 seconds of CPU time to evaluate any point on the expected pseudo-profit

93
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functions of periods 2,3,4 or 5.
It is found that the optimal values depend moderately on the distribution type. Since the

triangular distribution has smaller variance than that of the uniform distribution, it is intuitive
that, for the same A value the expected pseudo-profit values under the triangular distribution
are higher. Also, for the same reason the reorder and order-up-to levels under the former
distribution are lower in almost all cases.

The elfects of parameter values on the optimal solution can be argued by pairwise
comparison of cases from the first group (1 through 6) and from the second group (7 through
9). It follows from comparing cases 1 and 7 that when ¢ is increased three fold, expected
pseudo-profit values decrease considerably in all periods and under both distributions. Also,
reorder and order-up-to levels decrease almost 20 to 256 %. This change is intuitive, because
when c gets larger it becomes more expensive to do business, that is the mark-up between p
and ¢ gets narrower. Increasing the price to cope with higher procurement cost declines the
demand; hence, the vendor tends to decrease the stocks.

On the other hand, comparing cases 2 and 8 we note that decreasing the shortage cost
three fold does not allect the optimnal control paraneters or the expected pseudo-profit levels
considerably. Since the penalty of lost-sales decreases, we expect slightly lower stock levels and
higher profits. This is exactly true for all periods under both distributions.

Finally, comparing cases 3 and 9 it follows that decreasing h three fold facilitates higher stock
levels and we obtain moderately higher reorder and order-up-to levels due to lower carrying
costs. In addition, due to inventory cost reduction, considerably higher expected pseudo-profits
are incurred.

Otlier parameter combinations can also be considered. For instance, suppose that there is
a financial pressure build-up against the vendor such that the supply side increases the costs
and at the same time inventory costs raise. Also, assume that under these developments the
shortage cost that the vendor bears declines. Then, comparing cases 2 and 7 it follows that
when ¢ raises three fold, s decreases 33 % and h increases 50 %, the expected pseudo-profit
values and order-up-to levels decrease considerably. This reflects a typical behaviour that often
arises in practice.

We can also discuss the effects of the fixed cost K and of the variance of the distribution on
the optimal solutions. Table 4.3 shows the results which are obtained for various combinations
of K and X. Note that A is a measure of the variance of the distributions (see Appendix
E). Comparing case 10 with case 12 and case 11 with case 13 it follows that, under a
larger X the expected pseudo-profit is considerably smaller. This is due to incresing cost
of procurement. Intuitively, we would expect higher order-up-to levels under a large K. This is
exactly represented by a sudden jump in the order-up-to level of the second period in case 13 in

comparison with that of case 11. It is probable that as K is increased gradually, the order-up-to
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levels will experience sudden jumps. Between these jumps they remain quite stable. In Figure
4.1 we display ]_\/[—;(0, q2) function for cases 11 and 13 to indicate the mechanism of this sudden
jump. 4

The eflect of A, on the other hand, is such that under a small A value the order-up-to levels
decrease and the expected pseudo-profits increase considerably. This result is intuitive, because
A is a measure of the variance. Under greater variance the vendor is subject to a greater risk
of shortage. To cope with this he increases stock levels. One can argue that under greater
variance the risk of leftovers is also higher, which pressures the vendor to decrease the stocks.
The answer, actually, depends on the tradeoff between the cost of holding and shortage as well
as the price that the vendor administers. In a lost-sales problem, however, it is true that the
vendor pays more attention to shortages, because they are lost whereas the leftovers could be
transferred to the next period.

In Table 4.4 we study the effect of the expected demand function on the optimal solutions
of the first six cases under the uniform distribution. We consider an exponential and a linear
function as defined earlier. It follows that the order-up-to levels and the expected pseudo-profit
values differ considerably under different demand functions. It is clear that these functions
have diflferent price sensitivities. The linear function has less sensitivity than the exponential
function. Also, for a given price value in [P, P,], the linear function yields a higher demand
level than the exponential function in our setting. Intuitively, this would incur the differences
between the values of the order-up-to levels and expected pseudo-profit values as mentioned
earlicr.

After discussing the effects of problem parameters on the optimal solution, next, we shall
consider the expected pseudo-profit curves. We have established the properties of M—:(O,qn)
function with conditions (i) through (i) in section 3.4. In our numerical examples, we have
found that in all cases these six conditions are satisfied. In Table 4.5 we show the values of
the critical inventory levels which defines the regions that the values of the optimal control
paraeters (o, ¥n) are restricted with. It can be seen that conditions (iv), (v) and (v1) are
satisfied for all cases.

In section 3.4, it had been argued that, theoretically, 1\_4: (0, ¢n) functions can have ripples
in regions (0,‘,_1, i},,) and (13,,, 00). Figure 4.2 demonstrates this fact. Also regarding the order
of order-up-to levels it can be seen in Figure 4.2 that < 132 < 133 < 135 < 134. Thus,
assuming conditions under which order-up-to levels are ordered as j,)l < tz < v L‘N and
under this assumption declaring that (an,t,,) policy is optimal is a restriction on the problem.

Theoretically, it does not have any significance unless those conditions can be interpreted

properly.
So far we have not considered pricing issues. We have mentioned in section 3.4 that pricing

decision, that is the best price at an inventory level, could not be characterised analytically



CHAPTER 4. NUMERICAL EXAMPLES 56

unless [(;p) density function yields a special structure which can be exploited. In Figure 4.3
we provide the best price curves that are obtained for case 13 under the uniform distribution
and an exponential expected demand function. It is seen that the form of these curves are
interesting. Intuitively, we would expect the best price to decrease at higher inventory levels.
Because, to sell more the vendor must decrease the price. In fact, under some restrictions and
in the absence of the fixed cost, Zabel [19] have found that for a lost-sales model with uniform
demand distribution the price of the first two periods are decreasing functions of the beginning
inventory level. Also, Thowsen [13] has derived the conditions under which this fact is true for
his model. However, according to our findings this is not true in general. Roughly speaking, it
can be said that the best price decreases in q, but there are some moderate jumps at certain
levels of inventory. This behaviour is found to be characteristic for all of the problems that we
have solved for with additive demand uncertainty.

To understand the reasons for having these sudden price increase points, we take a closer
look at Figure 4.3 in Figure 4.4 and consider 1-1/7;(0, q2) in Figure 4.1. We note that the point
of jump is exactly the point where Mz(o,qg) passes from one regime to another. Recalling
that A_/I-:(O,qz) 1s the upper envelope of all Mz(O,pg,qz-) functions, it now is clear that upon
changing a regime we also could pass from one pricing regime to another. The mechanics of
this is shown in Figure 4.5.

We believe that the primary reason behind such a pricing behaviour is the presence of a
fixed cost. In deciding the best price at a period, the ordering or not ordering decisions taken
place in the future periods must also be considered. Referring to Figure 4.1 suppose that we are
at the sccond period. If it is optimal to expect that in the next period we would order then we
are forced to set a low price to sell everything in the current period. But, if at an inventory level
we breakeven with the decision of ordering or not ordering in the next period, then it might be
optimal to carry inventories for the next period bearing the fixed cost once for both periods.
In this case, we are forced to increase the price so that the demand shrinks and there will be
leftovers. It is clear that, the actual decision process is much more complicated than the way
we describe it. However, we try to bring an insight for observing jumps, or humps, on the best
price curves. In fact, the dynamic programming solves for the optimal decision by considering
all possibilities within a multi-period framework and under the demand uncertainty.

In addition to the additive demand, we also consider the multiplicative demand model with
exponential random term €. That is, X(p) = 7(1))-6, where € is an exponential random variable
with E[e] = 1. Table 4.6 shows the optimal solutions for the first six cases under an exponential
expected demand function.

Comparing Table 4.6 and Table 4.2 it can be seen that under the multiplicative demand the
optimal order-up-to levels in successive periods keep growing more than that of the additive

demand case. Also, the optimal expected pseudo-profit levels are considerably lower, under
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the former model, for the same parameter set. Furthermore, it is found that best price curves

under the multiplicative exponential demand are non-increasing for all periods and all cases

that are considered.
For the infinite horizon problem, on the other hand, we shall demonstrate that a stationary

—%
solution M (0,¢), given by 3.84, exists and it can be obtained by the proposed fixed point

procedure. Suppose that the random demand is multiplicative with an exponential random

term. Under this model we have:

Flz;p) = 1- e/ X)) o >0,
Ow,0) = ¢—X@)-Flsp) 420,
Ro(w;p) = 1 aa : [1 - c'(l—“)'x/x(”)] z >0,

which can be substituted in 3.84. In addition, we assume that ¢ = 0.5, s =0.25,h = 0.3, =8

and « = 0.7.
In I'igure 4.6 we show the resultant M*(O, q) curve that is obtained for the example problemn.

In evaluating this function by a Pascal program, each iteration took approximately 40 seconds

of CPU time and an accuracy of 0.1 units on ¢! is achieved in 10 iterations. In the same figure

we also provide the finite horizon solutions for various periods. It is graphically shown on the

figure that, the successive finite-period solutions approach to the theoretical infinite horizon

solution as n gets larger.
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Case c s h K A
11025 050 075 8 20
21025 075 050 8 20
31050 025 0.75| 8 20
41075 025 050} 8 20
51050 075 025| 8 20
6107 050 025] 8 20
71075 050 075( 8 20
8102 025 050} 8 20
91050 025 025( 8 20

101 050 026 030| 8 20
111050 025 0307 8 10
121050 0.25 030 15 20
131050 0.25 030 15 10

Table 4.1: 13 different parameter combinations.
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Cases
1 2 3 4 5 6
(01, %) | (38.05,58.73)  (39.96,60.98) (31.50, 50.86) (27.34, 45.75)  (35.25, 55.25)  (29.19, 47.90)
(35.17,54.93)  (36.30, 56.49)  (29.60,47.91) _ (25.56, 42.83) _ (31.66, 50.76) _ (26.50, 44.12)
(02, $2) | (39.01,60.08) (41.11,62.50) (33.45,53.49) (30.92,51.51) (38.01,59.11) (33.64, 55.06)
(35.95,56.09) (37.42,58.62) (30.79, 50.36)  (27.49, 45.38)  (34.04, 56.45)  (29.29, 51.51)
(03, $3) | (38.84,59.83) (40.92,62.31) (33.20,53.31) (30.52, 50.23) (37.82,58.77) (33.01, 53.69)
(36.06, 56.00)  (37.63, 58.62)  (30.89, 50.36)  (27.56,45.31)  (34.47, 56.45)  (29.53, 51.40)
(o4, ¥4) | (38.69,59.65) (10.76,62.11) (33.15, 53.15)  (30.38, 50.07)  (37.65, 58.50)  (32.88, 53.50)
(36.15, 56.09)  (37.82, 58.62)  (30.97, 50.36)  (27.70, 47.85)  (34.87, 56.45)  (29.82, 51.40)
(05, £5) | (38.56,59.49) (40.61, 61.94) (33.03,53.00) (30.26, 49.92) (37.50, 58.38)  (32.74, 53.34)
(36.26, 55.60)  (38.00, 58.62)  (31.07, 50.36)  (27.83, 47.85) _ (35.30, 61.45) _ (30.09, 51.40)
M0, 1)) 83.20 85.66 70.06 59.98 74.21 61.66
87.55 88.99 75.16 65.07 77.55 66.01
=%
M, (0, %2) 152.62 157.73 129.53 113.25 139.45 118.26
159.83 163.05 137.44 120.03 143.79 123.17
=%
My (0, £3) 214.47 221.88 182.54 160.46 197.46 168.21
224.13 229.05 192.85 168.92 203.00 174.19
=%
My (0, 14) 269.58 278.98 229.79 202.52 249.06 212.66
281.33 287.87 242.14 212.49 255.94 219.79
My (0, Ls) 318.70 329.81 271.92 239.97 294.94 252.21
332.24 340.29 285.99 251.32 303.40 260.56
7 8 9
(o1, ¥1) | (27.20, 45.29)  (38.63, 59.82)  (33.89, 54.08)
(25.49, 42.50)  (35.51, 55.65) _ (30.86, 49.92)
(92, ¥2) | (30.04,49.46) (39.83, 61.50) (36.86, 58.67)
(27.08,45.31)  (36.54, 58.62)  (33.12, 53.07)
(03, T3) | (29.82,48.79) (39.62,61.25) (36.63, 57.99)
(27.14, 45.31)  (36.79, 58.62)  (33.48, 56.45)
(o1, $4) | (20.72,48.66) (39.43,61.02) (36.43, 57.74)
(27.20,45.31)  (37.02, 58.62)  (33.85, 56.45)
(o5, Ts) | (29.62,48.50)  (9.26, 60.82)  (36.26, 57.50)
(27.25,45.31) _ (37.22,58.62)  (34.28, 61.45)
M0, %)) 57.34 86.21 74.77
63.32 89.53 78.08
M, (0, 12) 107.56 158.56 140.08
116.36 163.78 114.36
My (0, $3) 152.22 222.98 198.17
163.54 229.94 203.58
M0, 1) 192.03 280.35 249.86
205.52 288.91 256.52
My (0, T5) 227.50 331.45 295.84
242.86 341.46 303.92

Table 4.2: Optimal solutions for different 5-period lost-sales problems.
evaluated under the additive uniform distribution and bottom ones under the additive triangular

distribution both with an exponential expected demand function.

Pr=0.1, P, =4.0,a=0.9,a=150,b=0.5.

Top values are

Static parameters are:
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Cases

10

11

12

13

(o1,31) | (33.61,53.69) (29.81,48.39) (26.96,53.69) ( 23.73, 48.39)
(30.70, 49.65) (28.31,46.35) (24.55,49.65)  (22.46, 46.35)
(02,%2) | (36.44,57.81) (31.00,50.18) (30.31,61.11) ( 24.83, 82.61)
(32.87,52.90) (29.47,49.72) (27.39, 83.72)  (24.20, 81.17)
(03, ¥3) | (36.23,57.42) (30.80,49.92) (29.51,59.20) ( 24.61, 49.97)
(33.05,52.90)  (29.84, 49.72)  (26.46, 56.45)  (23.60, 49.72)
(04, T4) | (36.05,57.19) (30.62, 49.69) (29.43, 59.18) ( 24.46, 49.76)
(33.37,56.45)  (30.52, 52.22) (27.58, 86.77)  (24.56, 82.50)
(05, £s5) | (35.88,56.98) (30.47, 49.48) (29.27, 58.97) ( 24.33, 49.50)
(33.69, 56.45) (31.18,52.23) (27.04, 86.50) (24.37, 52.22)
M, (0,%1) 74.22 80.09 74.22 80.09
77.74 81.85 77.74 81.85
M0, %2) 138.84 147.09 133.59 140.94
143.56 149.51 138.72 144.42
M0, 3a) 196.34 206.71 185.69 195.01
202.22 210.00 191.69 199.19
M40, $4) 247.50 259.79 232.14 243.14
254.63 264.38 240.18 249.13
My(0,Ls) 293.02 307.03 273.45 285.98
301.49 313.27 282.58 293.26

60

Table 4.3: Optimal solutions of the 5-period lost-sales problem solved for cases 10 through 13.
The values are evaluated under the additive uniform (top values) and the additive triangular
(bottom values) distributions with an exponential expected demand function. The static

parameters are: Pp = 0.1, P, =4.0, « = 0.9, a = 150, b = 0.5.
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Cases
1 2 3 4 5 6
(o1, tl) (38.05, 58.73)  (39.96, 60.98)  (31.50, 50.86) (27.34, 45.75)  (35.25,55.25)  (29.19, 47.90)
(61.27,80.75) (63.47,83.18) (54.60,73.93) (50.03,69.43) (59.07,78.86)  (52.30, 71.93)
(o2, iz) (39.01,60.03) (41.11,62.50) (33.45,53.49) (30.92, 51.51) (38.01,59.11) (33.64, 55.06)
(62.23, 82.03)  (64.60,84.65) (56.77,76.79) (53.86, 74.48) (62.04,82.67) (56.82, 77.82)
(o3, i}g) (38.84,59.83)  (40.92,62.31) (33.29,53.31) (30.52,50.23) (37.82,58.77) (33.01, 53.69)
(61.89,81.65) (64.25,84.25) (56.45,76.43) (53.53,74.12) (61.68, 82.26) (56.47,77.42)
(o4, i)4) (38.69, 59.65)  (40.76, 62.11)  (33.15, 53.15)  (30.38, 50.07) (37.65, 58.50) (32.88, 53.50)
(61.60,81.32) (63.93,83.91) (56.16,76.11) (53.24, 73.79)  (61.36, 81.90) (56.16,77.08)
(o5, is) (38.56,59.49)  (40.61, 61.94) (33.03,53.00) (30.26,49.92) (37.50,58.38) (32.74, 53.34)
(61.33,81.03) (63.65,83.60) (55.91, 75.83)  (52.98, 73.50) (61.07, 81.58) (55.89, 76.77)
=%
M, (0, 131) 83.20 85.66 70.06 59.98 74.21 61.66
140.28 142.89 121.44 105.56 125.78 107.25
=
M,(0, tz) 152.62 157.73 129.53 113.25 139.45 118.26
260.65 265.97 226.83 199.18 236.91 203.94
=%
M (0, i\,) 214.47 221.88 182.54 160.46 197.46 168.21
367.88 375.51 320.77 282.57 335.76 289.95
—
M, (0, i).,) 269.58 278.98 229.79 202.52 249.06 212.66
463.43 473.02 404.51 356.85 423.67 366.48
A[;(O, L5) 318.70 329.81 271.92 239.97 294.94 252.21
548.58 559.83 479.16 423.04 501.88 434.58

‘able 4.4: Optimal solutions of the 5-period lost-sales problem that is solved under the additive

uniform distribution for cases 1 through 6. The top and bottom values, respectively, are
evaluated under an exponential and a linear expected demand functions. The respective
functional parameters (a,b) are: (150,0.5) and (150,32.5). Other static parameters are:
P =0.1, P, =4.0, « = 0.9.



CHAPTER 4. NUMERICAL EXAMPLES

Cases o i, & pH ¥ i}

13920 40.20 53.26 60.25 67.54 83.03
35.84 36.79 49.23 55.96 63.02 78.32
24131 42.34 55.65 62.78 70.21 86.20
37.21 38.18 5099 57.96 65.33 81.85

3 | 33.61 3456 47.00 53.69 60.67 75.60
30.70 31.59 43.29 49.65 56.36  70.98

4 (30.82 31.76 43.93 50.50 57.42 7237
27.44 28.30 39.67 4596 52.66 67.91

5| 3820 39.20 5222 59.24 66.59 88.41
33.75  34.70  47.34 54.39 62.09 84.46
63333 34.28 46.80 53.58 60.71 81.04
29.11 30.00 41.96 48.69 56.06 76.94

10 | 36.65 37.66 50.82 57.94 065.41 84.85
| 31.22 3213 44.02 50.47 57.25 76.20
12 1 29.66 30.95 48.28 57.94 68.27 102.85
13 124.96 26.11 41.73 50.47 59.83 94.20

Table 4.5:

62

Values of the critical inventory levels which determine the feasible values that

the optimal control parameters can assume. These values are evaluated under the additive
uniform distribution (top values) and the additive triangular distribution (bottom values),
with exponential expected demand function. The static parameters are: P, = 0.1, P, = 4.0,

a=10.9,a=1500=0.5.

Cases

5

6

1 2 3 4
(91, ¥1) | (19.58,43.09) (24.29,52.67) _ (14.40, 32.50) _ (12.94, 28.76) _ (21.73, 46.48) __ (16.01, 33.50)
(00, ¥2) | (28.22,54.31)  (37.29,68.62) (23.16,45.51) (2402, 45.50)  (40.12, 72.46) _ (31.16, 57.22)
(95, ¥3) | (28.49,58.13)  (38.94, 74.92) (23.93, 50.25)  (26.58, 53.50)  (47.76, 86.75) _ (38.02, 71.02)
(74, ¥4) | (28.03,59.16) (38.04,77.10) (23.41,51.61) (25.87,56.76) _ (47.51,93.81)  (38.29, 78.10)
(05, 35) | (28.08,59.51)  (38.03, 77.20) (2342, 51.46)  (25.75,57.13)  (46.73, 96.01)  (37.46, 81.22)
M0, %)) 44.24 48.94 36.50 32.21 43.19 34.45
M, (0, $5) 86.12 97.57 74.09 70.12 94.92 79.09
M (0, $3) 122.71 140.24 106.93 103.80 141.45 119.87
M0, %4) 155.25 178.12 136.02 133.45 182.60 155.90
My (0, ¥5) 184.43 212.05 162.07 159.94 219.26 187.93

Table 4.6: Optimal solutions of the 5-period lost-sales problem that is solved under the
multiplicative exponential distribution for cases 1 through 6 with exponential expected demand
function. The static parameters are: P = 0.1, P, = 4.0, a = 0.9, a = 150, b = 0.5.
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Figure 4.1: Expected pseudo-profit function of the second period which is evaluated for cases 11
and 13 under the additive uniform distribution and the exponential expected demand function

with a = 150, b = 0.5 and o = 0.9.
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Figure 4.2: Expected pseudo-profit curves which are evaluated for a 5-period lost-sales model
under an additive uniform demand distribution with ¢ = 0.5, s = 0.25, h = 0.01, K = 15,

A =20,a=150,b=0.5and a =0.9.
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Figure 4.3: Best price curves, which gives the optimal values of pricing decision, for case 13
evaluated under the additive uniform distribution and an exponential expected demand function

with a = 150, b= 0.5 and « = 0.9.
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Figure 4.5: Expected pseudo-profit functions M3(0, p2, g2) evaluated for case 13 under the
additive uniform distribution and an exponential expected demand function with a = 150,
b= 0.5 and a = 0.9. The curves are obtained for ¢z values of 60, 62, 64, 65, 70 and 75.
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Figure 4.6: Expected pscudo-profit curves evaluated for 15 periods under the multiplicative
exponential demand with exponential expected demand function. The curve at the top
represents the theoretical infinite horizon expected pseudo-profit. Parameters are: ¢ = 0.5,

§=025h=03K=8a=150,b=05 =07 P =0.1 and P, = 4.0.



Chapter 5

Conclusions

In most of the existing models the price-demand relationship has been simplified by making
various assuiiptions about the distribution of random demand, the expected demand curve
or the parameter values. Moreover, suflicient conditions have been derived in order to ensure
optimality of certain inventory control policies. However, in almost all of these models these
conditions could not be interpretted properly. In contrast, in this study we have approached to
the problem in a pragiatic way. We have not based our analysis on a particular demand model,
but assumcd a general demand distribution. Our intension has been to reveal [undamental
characteristics of the inventory system independent of the underlying demand model. On the
other hand, to establish a link belween the existing models and to provide some examples we
hiave also studied our mnodel under certain demand distributions.

It is observed in the literature that existing models have not emphasized possible roles that
price could play when demand is backlogged. First of all, price is one of the determinants of
the forgonc revenue il there are shortages in any period. It is interesting that, under an optimal
policy, the forgone revenue, which could arise in any period, might not ever be collected in
the future periods. Therefore, a good model must take this option into account. In all of the
studies referred to in here, except Thowsen’s [13], the foregone revenue has not been considered
adequately. It is either ignored by assuming a lost-sales model or mistakenly forgotten. In
Thowsen’s model, this issue is simplified by assuming a forgone revenue which is expressed as
a constant ratio of backlogged revenue. The rationale behind this assumption could not be
justified, because it follows from the result of this study that the optimal procurement policy is
very sensitive to the role that price plays in the process of backlogging. Thus, a constant ratio
of backlogged revenue could yield a policy which is considerably different from the optimal one.
Also, there is a serious question about the value of that ratio. How could we determine that
in any real inventory systemn? On the other hand, in Young’s [17] infinite horizon lost-sales

model it is assumed that the unsold inventory at the end of each period has an economic value

69



CHAPTER 5. CONCLUSIONS 70

that is equal to the present worth of its procurement cost. Iowever, the economic value of
unsold inventory is the present worth of the revenue that incurs in the future periods due to
the sales of leftovers less the diflerence between procurements in the current period and the
future period due to discounting. For this reason, isolating each period and thereby ignoring
the binding eflect of price between the periods could not be justified in a general setting.

In this perspective, we have developed an inventory system structure which embodies pricing
decision in addition to procurement quantity decision. In this model, price plays several roles
sitnultancously. It is not only a unit income per sale, but also a factor that affects demand.
Furthermore, in the case of a shortage, price is a bargaining matter between the customer
and the vendor. In addition, it is an opportunity cost for the lost demand. In this study, we
have considered all of these issues, to some extent, in a general setting. Under the proposed
representation the existing mnodels becoine special cases.

In the first part of our study we have concentrated on the single period model. We
have developed the basic mathematical model which incorporates price as the second decision
variable. We have generalised the price dependence of )7(1)), R(p), I'(z; p) and ©(p, ¢) functions.
These generalizations are important to clearify the boundaries of price dependene in the most
general sense. [Especially, these considerations are essential in modelling for an application.
In addition, we have brought another useful idea for the price variable. That is, the range of
leasible price values, [P, P,]. Under this setting, we have established ways of attacking the
problem analytically. Thereby, we have been able to study the effects of price bounds on the
optimal solutions.

In the absence of price limits, the existence issues have been studied in detail in the literature.
For the existence of the best price, py, we have devised an alternative proof that severely relaxes

the assumptions on price dependence. We have found a way of proving existence by only

restricting )_((p) function at its natural limits, that is as p tends to zero or infinity. Moreover,
we have established the existence of a finite order-up-to level by a new proof. Under this proof,
the forn of the one period expected profit function could be characterised at its extremes, that
is on [0, X1(Py)] and on [X3(P),00). Also, we have found an upper bound on the optimal
order-up-to level which could be determined by c, s, h and )_((p)

We have studied the single period model under three special demand forms. In the first case,
we have shown that if demand is deterministic, then the pseudo-profit function is quasiconcave
on [0,00) and, furthermore, it lays above the expected profit function for any probabilistic
demand. Moreover, we have obtained the optimal order-up-to level as 7(-(13.;), where the best
price is found to be P, at this inventory level. It is surprising that under the optimal policy there
could be shortages or leftovers although the demand is deterministic. We also have established

that P, is the lower bound of the optimal price values.
Next, we have considered the additive and the multiplicative demand models. We have
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verified that ¢ < p < P and P, < p under these models respectively. In addition, we have
shown that, under no further assumption, the expected pseudo-profit function is unimodal
for a linear expected demand function with additive uniform demand or with multiplicative
exponential demand.

We have found that, under a general model, since py or § could not be evaluated explicitly,
the unimodality of the expected pseudo-profit function could not be justified. However, there is
no major practical difliculty in verifying unimodality for a given specific problem. The reader

may refer to Lau and Lau [5] for numerical examples.
In the second part of our study we have considered the multi-period problem. First, we

have developed the mathematical model that takes into account the issue of bargaining on
price, between the customer and the vendor, which might arise when there is shortage in any
intermediate period. Then, we have introduced three special baclogging rules and derived the
n-period pseudo-profit functions under each case.

We have shown that under deterministic demand, if the shortages are simply lost, then
the optimal procurement quantity in each period could be determined by an (o4, jl,,) policy.
Under the second backlogging rule, which assumes that the customers wait only one period
providing that they pay current period’s price, we have identified that, though, an order-up-
to level exists for every period the reorder point could depend on the previous period’s price
setting. Thus, an (a,,,j)n) policy could not be optimal in general. In this regard, we have
defined an alternative optimal procurement policy which utilizes the fact that the order-up-to
levels are known. Furthermore, under the assumption that the customers wait only one period
whatever the price is, we have found that, in general, not only the reorder point but also the
order-up-to level could be a function of the beginning inventory level before ordering in the
current period.

Therefore, we have demonstrated that depending on the type of the backlogging rule the
optimal procurement strategy could be different than an (a,,,i],,) policy. Hence, dwelling on
the conditions which ensure optimality of such a policy, in general, is undermining the problem.
It is essential that, the role of price in the process of backlogging is clearly described rather
than making rough assumptions about the forgone revenue which could not be justified.

The probabilistic demand model, on the other hand, has been considered under the lost-
sales assumption. It has been shown that, the expected n-period pseudo-profit function could

be characterized such that an (oy, i/,,) type policy is optimal if we assume that i, < o¥», where
A

on < okn. We have also found that the optimal order-up-to level must be within [{, T

N
where i and ¥ could be determined from the problem parameters. It has been demonstrated

that unimodality of the single period expected pseudo-profit function is essential in proving the

above results.
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As a special case, we have also considered the infinite horizon lost-sales probabilistic demand
problem. We have shown that the expected pseudo-profit function could be obtained through
a rencwal theoretic approach. To demonstrate this, we have provided an example problem.

The ellects of the parameter values on the optimal solution have been discussed on
some example problems. It has been shown that problem parameter values, under the lost-
sales probabilistic demand model, could eflect the values of the optimal coutrol parameters
considerably. Also, type of the demand distribution and form of the expected demand function
could alfect the optimal solution.

The pricing issues are also discussed in the last chapter. The striking result is the fact that,
due to presence of the fixed cost, the best price is not always decreasing at higher inventory
levels. We have identified some example problems in which the best price, for n > 1, temporarily
increases as ¢, gets higher, but starts decreasing later again.

There are possible extensions to our model which could be considered as future research
opportunities. For instance, the model can be further generalized by assuming that the cost
parameters and/or the demand distribution are different in each period. In fact, our theoretical
work will be exactly valid under this extension, but we have to rewrite the mathematical model
and modify the results accordingly. This generalization would enable us to identify, for example,
the effects of a rise or a fall in demand (with a certain pattern in time) on the optimal solution.
Similarly, eflects of the inflation rate on the optimal procurement and pricing decisions of the
vendor could be investigated by including an inflation rate factor.

Another potential issue is the fact that there are several other factors which affect demand
besides the retail price. For instance, income level of the customers, sales effort, competitors’
price or substitule’s price are possible ones. The last two factors link the model with the
gane-theoretic applications under which the analysis is severely limited due to mathematical
intractabilities. The reader may refer to Kirman and Sobel [4] or to Nti [10]. The sales effort
(advertisement and etc.) issue is studied by Gerchak and Parlar [1] for the single period model,
which does not include the pricing decision. Thus, to start with, their model could be extended
in the proposed direction, and the effect of price and sales effort could be simultaneously
studied. Since this analysis is subject to analytical difficulties, a simulation study similar to
the one performed in [1] would be appropriate.

In this study, we have assumed that the vendor is maximizing the expected profit. This

intrinsically means that the vendor is risk neutral. As an extension, therefore, we can

incorporate risk attitude of the vendor by defining a utility function, and maximize the utility
of the expected profit. The general setting for this model is explained by Leland in [6].

Apart from structural changes, some technical points could also be emphasized. For
instance, the proof of unimodality of the single period expected pseudo-profit function could

be further studied. A realistic price-demand relationship could be formulated under which
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the unimodality is demonstrated. Moreover, the connection of unimodality with the monopoly

power of the vendor could be investigated. Under the multi-period model, on the other hand,
—%

the characteristics of the M, (0,¢,) function could be [urther revealed by improving the six

conditions which are formulated earlier. In this regard, for instance, we might try to show that

—%
the ripples in the range of (¢}, & ) would always remain above the M, (0, £,,) — K level so that
k, = 2 for all n. This would enable us to prove the optimality of the (o, i‘,,,) policy under the

rule that i, < O',L;" for n > 1.



Appendix A

For R(p) = p~:\7(p) we have

Rp) = X()+pX @), (A1)
Rp) = 2X @ +pX @) (A.2)

Lemma Al. R(p) is nol pseudoconcave for all monotone decreasing 3{—(1)) Junctions.

Proof. If we let X(p) = 600-¢=*1%? 4 1.5.Sin(2-7-p), which is a monotone decreasing function
of p on (0,8), then 12(p) is not a pseudoconcave function on (0, 8).

Lemma AZ. If)_{(p) is a convex decreasing function, then R(p) is pseudoconcave on (0, 00).

Proof. Since Y(p) is a convex decreasing function, Vp,p; € (0, 00) we have

X(p) - X() = (1 = p)-X (1), (A.3)
p<(>p & X)) > (QX(p) (A-4)
By defiuition, R(p) will be pseudoconcave at py € (0,00) if it is differentiable at py and
R(p)-(p—-p) <0 = R(p) < R(p1), Yp € (0,00) (A.5)
From (A.1) and (A.5) we get
R(p)-(p—p1)=X(p)-0—p1) +pr-(p— p1)-X (1) < 0. (A.6)
By (A.3) we have _ _ _
pro(p—p1)- X (p1) 2 p1-[X () = X(p1))- (A7)
1t follows from (A.6) and (A.7) that
(A6) = X(p1)-(p—p)+pi[X() - XE0] <0, (A.8)
and B L B
(4.8) & pX@1)+p[XE) - X@) <pi-X(p1) = R(p1)- (A.9)
Adding and subtracting p-X(p) on the L.ILS. of (A.9) and collecting terms we obtain
(49) & R@)+(p-p)X(ps) = X)) < R(p). (A.10)
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From (A.4) we have

(p = 1) X (1) = X(p)] > 0. (A.11)
Therefore, by (A.10) and (A.11) we get

(4.9) = K(p) < R(p1).

Since p; was arbitrary the proofl is valid for all p; € (0, 00).
Theorem Al. If/—\:(p) is a convex or concave decreasing funclion, then R(p) is pseudoconcave

on (0, c0).
Proof. If X(p) is concave, then from (A.2) it follows that R(p) is concave on (0, o0}). Also by

Lemma A2, R(p) is pseudoconcave on (0, c0) for a convex decreasing function.
Corollary A1l. The function T(p) = (p+ a)-X(p) is pseudoconcave on (0,0), where a € R.
Proof. Making a coordinate change by p; «— p + a and introducing the function Y(p;) =

X (pz — a) we obtain
T(p) = (p+ a)-X(p) = p2-X (p2 — @) = p3-Y (p2)-

If a < 0, then py-Y(p2) is monotone increasing on (a,0). Since Y(pz) is monotone
decreasing on (0,00), it follows by Theorem Al that py-Y(psz) is a pseudoconcave function

on (0,00). Therefore, p3-Y (p2) is a pseudoconcave function on (a, 00) which implies that T'(p)

is a pseudoconcave function on (0, c0).

If @ > 0, then we can extend Y(py) on (0,a) by a straight line (or by another appropriate
[unction) which complies with the assumptions of Theorem Al. From the same theorem it
follows that pz-Y(p2) is pseudoconcave on (0,00). Ience, it is also pseudoconcave in its open
subset (a,00). Thus, T(p) is a pseudoconcave [unction on (0, 00).

Corollary A2. Va,b € R such that a > b we have ps < py where

Pa = argsup{(p+a)-X(p) : p € (0,00)},

e = argsup{(p+b)-X(p): p€(0,00)}.

Proof. We define two functions: A(p) = (p+a)»f(p) and B(p) = (p+b)-/?(p). From Corollary
Al it follows that A(p) and B(p) are pseudoconcave functions on (0,00). Moreover, we note

that
A(p) = B(p) Vp € (0,00) (A.12)

If pa, ps € (0,00), then they should satisfly the first order conditions

A'(pa) =0 and B'(py) = 0.

We rewrite A(p) as A(p) = B(p) + (a — b)-X (p), which leads to:

A'(p) = B'(p) + (a — b)-X (p).
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Evaluating the above cquation for p = pa we get
[} b v
A'(pa) = B'(pa) + (¢ = b)-X (pa),

which implics

p—
B'(ps) = —(a —b)-X (pa) 2 0. (A.13)
That is, B(p) is non-decreasing at p = pa. Since B(p) is a pseudoconcave function we deduce

that pqa < pu.

If p, and p, are both non-interior point solutions, then (A.12) implies that pa = py = 0.
If po = 0 and py € (0, 00), then pqa < pu-
If pa € (0,00), then from (A.13) we conclude that ps < ps.

Corollary A3. (p—c)-q is a pscudoconcave function of q on (X(P ) /\(Pl)) where ¢ = Y(p)
Proof. X (1)) is a decreasing function of p Thercfore, its inverse, X (q), is decreasing on
(\(Pu),/\(l ¢)). By Theorem Al, ¢- X (q) is pscudoconcave on (X(Pu ), X(Pt)). Thus, ¢-

X 1(q) —¢-q = (p —¢)-q Is also pseudoconcave on (X(Pu),X( 2))-
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Appendix B

The discontinuity in 1\7*((1), if it exists, can not be of second kind. DBecause, A_{{(p,q) is
everywhere defined on p € [P, P,] and ¢ € [i,00). That is, Vg € [i,00) 3p; € [P, PJ]
such that 1\_4*((1) = M(pq, q).

Ifat ¢ = ¢, 1\7((1) has a first kind discontinuity, then

lim M*(q) = lim maz{M(p,q) : p € [P, Pu]}
g—§- q—4-

# lim 7naa:{M(p, q): p€[P,P]}= lim M*(q).
g—g+ Ut
We define
pt = argmaz{M(p,§*): p€ [P, Pu]},

and
P = argma:l:{]\—l(p,(i—) : p € [P, P},

for any given ¢+ and §~, respectively. It follows from the g-continuity of M(p, ¢) that
. _* . _* ' ~ -~
lim M (¢) # lim M (q) = p~ #pt.
g—q- g—gt
Also, it can be seen that
—_— —
lim M (¢) = lim M(p,q),
g—q+ g4t
and

lim M*(q) = lim M(5™,q).
9=~ g—q-

Moreover, Vp € [P, Py] we have

M(p,i*) < MG, i),

and
M(p,§7) < M(B™,47).



Since M([)‘,q) and 1\—/1(13+,q) are concave functions of ¢, it follows from above that for some

€ >0 with § = ¢ —¢ and ¢+ = § + ¢ we have
M@p*,q) = M(5™, 9),

in the limit as ¢ — 0. Therclore,

. —* ~ . _* ~ ~ -~

lm(nJM (g—¢) # lméM (G+¢) => p~#pt

€= e—

—_— R - . _ R _— N
= M@t Q) =M®E,9) =M (),

——* . . . . .
which is a contradiction. Hence, M (g) can not have any first kind discontinuity. It is also clear

—K —* . . .
that M (¢) does not have any removable discontinuity. Consequently, M (gq) is continuous in

g on [i,00).
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Appendix C

We drop the subscript “1” fromn the variables. Thus, from (3.61) it follows that for E(—(Pu) <gq

we have:

1\71T(i,q) = maz{-b-p*+(a—b-h—i)p+ah: p<p< Py}
—(c+ h)-q+c, (C.14)

where p = (a — ¢)/b. Since the maximand in (C.14) is a quadratic function, we have

maz{—b-p* + (a = b-h—i)-p+ah: p<p< Pu}

Py ) P, <(a—b-h—1)/(2:)),
=< (a—b-h—1)/(2:0) , p<(a—bh—1)/(2:D) < Py,

5 , (a—b-h—i)/(2:0) <

(a=bh—i)/(2:8) , —b-(h+P)<i<0<(a+bh+i)/2<q,
={ (a=b-h=3)/(2b) , i<=b(h+Pu)<(a+ b-h+1)/2<0<q,

P L —b(h+P)<i<0<qg<(a+bh+i)/2

Note that i < (¢ +b-h+i)/2 & i<a+bh= b-(h + Py).
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Appendix D

We drop the subscript “1” from the variables. It follows from (3.62) that

argmaz‘{/v{*(i,q) ;i< ¢g<oo, i<0}

_ 0 ) iS—b-(h-’rPu),
argmaz{(a —q—cb)-(q—9)/b: 0<g<(a+bh+ i)/2} , -b(h+Py)<i<Q,

_J 0 , i < =b(Py—c),

"l (@=cb+4)/2 , —b(Pu—c)<i<O.

Note thal (¢ —cb+14)/2<0& i< —b(Py—c)=>i<—b(Put h) and also (a + b-h +14) > (a
—c-b +i).
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Appendix E

Uniform distribution:

1
9(e) = TN € €[4
E+ A
Ge) = T2 eel-AA
Efe] = 0

Var(e) = A*/3
Under the uniforin density function the expected leftovers function will be:

Opg) = ¢ @=X@HA _\ 0 _X(p) <A

4.X
l ¢-X() A<g-X(p)
Triangular distribution:
(=2, —A<e<q,
-{](E) = i\',\:ii ) 0<e< A,
| 0 , otherwise
0 ) e< =X
%{\z)j , —A<e<0
Ge) = J
1- %%\%Z , O0<e<A
L1 , A<e
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Lle] = 0
Var(e) = A2/6

Under the triangular density function the expected leftovers function will be:

(=X (p)40)° , =A<q-X(p) <0

O(p,q) =

g—X(p) - =A@ g X(p) <A

g —X(p) , A< g—X(p)
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