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Abstract

ORDER QUANTITY AND PRICING DECISIONS IN LINE AR 
COST INVENTORY SYSTEMS

L. Hakan Polatoglu 

Ph.D. in Industrial Engineering 

Supervisor: Assoc. Prof. Dr. Cemal Dinger

January 1993

The primary concern o f this study is to reveal the fundamental characteristics of the linear 
cost inventory model where price is a decision variable in addition to procurement quantity. 
In this context, the optimal solution must not only strike a balance between leftovers and 
shortages, but also simultaneously search for the best pricing alternative within the low price 
high demand and high price low demand tradeoff. To some extent, this problem has been 
studied in the literature. However, it seems that, there is a need to improve the model in order 
to understand the decision process better. To this end, optimal decisions must be characterised 
under a more general problem setting than it has been assumed in the existing models. In this 
study, we employ such a general model.

The overall decision problem can be formulated under a dynamic programming structure. 
It follows that, the single period model is the basis of this periodic decision model. For this 
reason, we concentrate first on this problem. Having characterised the optimal solution to this 
basic model we extend the decision model to account for the multi-period setting.

It is established with the results of this study that the decision problem in question is 
understood better. It is found that the characteristics of the optimal decision under the 
proposed model can be substantially different from the properties o f the optimal solution of the 
corresponding classical model where there is no pricing decision. The primary reason for this 
is the fact that when there is a shortage in any period, the price that is set in this period could 
affect the future revenue which must be accounted in the overall decision problem. That is in 
a general model, price is an information which has an economic value that is transferred from 
one period to another just like transfering inventories or backlogs to future periods.
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Chapter 1

Introduction and Literature 
Review

Reorder point, order quantity inventory models are essentially short term planning models. By 
assumption, the ordering policy does not change the demand pattern or the price structure in 
the market place during the planning horizon. This cissumption is approximated in a perfectly 
competitive market where there is no pricing decision to make for the individual vendor. 
However, there may be incentives for the vendor to increase inventories and wait until the most 
profitable point in time, if the price is expected to rise in the future; or to clear inventories, if 
the price is expected to decline. Under imperfect competition, the individual vendor excercises 
a degree of monopoly power in the market. He may set a price for his product but then he 
faces a demand level, governed by some probability distribution, the expected value of which 
is decreasing in price. In this context, in addition to the procurement decision, the vendor is 
confronted by a simultaneous pricing decision.

The simplest model for the study of optimal procurement and pricing decisions is a single- 
product, periodic review pure inventory model. The planning horizon is divided into review 
periods which are linked by period ending inventory levels. The vendor is assumed to have 
full information about costs and demand distributions that are applicable to all periods of 
the horizon. At the beginning of a review period, given the inventory position (on hand plus 
on order minus backorders), his problem is to determine the procurement and pricing policies 
which jointly maximize the expected present value of total profit during the planning horizon.

It hcis been a common practice in demand modeling to express random demand as a 
combination of expected demand and a random term. The former has some form of price 
dej)endency while the latter is price independent. A number of special cases of this model 
have been studied in the literature. These differ, essentially, in the way the demand process
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is represented. In the additive model, Xn{p) = Xn{p) *f where Xn{p) is the demand during 
period n when the ])rice is p, Xn{p) =  /i/'[A'n(p)] and 7i =  1, 2, . . .  are independent random 
variables with E[en] =  0. in most studies, it is also assumed that A^(p) is nonincrecising in 
p and, without loss of generality, Xn{p) =  A^(p), n =  1, 2, . . . .  In the muliiplicaiive model, 
^n{p) -  Xn{p)'en whore E[en] -  1. In the riskless model, Xn{p) =  Xn{p) so that demand 
in any period is represented by its expected value. This latter case serves both as a first order 
approximation and as a benchmark for the probabilistic versions of the model.

Whitin [15] appears to have been the first to link price theory and inventory control in a 
one-period model. Demonstrating that a higher profit level could be achieved for the proposed 
model, comi)ared to the newsboy problem, he claimed that decision making would be improved 
by taking j)rice as a control variable.

Mills [7] formalized Whitin’s intuitive approach by studying a one-period inventory model 
(no holding or shortage costs) with additive demand. He showed that under demand uncertainty 
the optimal price is less than the optimal riskless price. Mills [7, 8] also studied the multi-period 
(infinite horizon) model for which the optimal price was found to be less than that of the one- 
period model. In addition, he demonstrated that the difference between the optimal starting 
stock and the expected demand evaluated at the optimal price is greater for the multi-period 
model.

Later, Karlin and Carr [3] provided a more general inventory model. For both static (one- 
period model with unit holding and shortage costs) and dynamic (infinite horizon multi-period 
lost-sales model without holding or shortage costs) cases they studied the optimal decision 
variables under additive and multiplicative demand, and derived the necessary conditions for 
optimality. 'I'hey showed, under reasonable assumptions, that the optimal price is greater (less) 
than the riskless price for the multiplicative (additive) demand for both static and dynamic 
models.

Nevins [9] provided an empirical study of a special infinite horizon multi-period lost-sales 
model. He employed the multiplicative demand model with a linear expected demand function 
under the additional assumptions of a noiidecreasing quadratic procurement cost function, 
a constant unit inventory holding cost and no shortage cost. For various problem data, he 
observed that there exists a stochastic equilibrium in which expected demand evaluated at 
the optimal price equals to the optimal procurement, and there is a tendency that equilibrium 
inventory level is preserved. However, it appears that Nevins  ̂definition of equilibrium inventory 
is erroneous. Expected sales rather than expected demand should be employed in this definition.

Zabel [18] attempted to provide analytical support to Nevins’ empirical findings. For 
the one-period model with multiplicative demand, he demonstrated, under some restrictive 
conditions, the existence of the equilibrium inventory level. Following Nevins’ definition, he 
showed that the equilibrium inventory level decrecises as holding cost is increased as observed
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by Nevins. Zabel also stated tlie conditions that guarantee the existence and uniqueness of 
the optimal solution. In a later paper [19], he showed that stronger conditions are needed to 
guarantee a unique optimal price for the first period of a two-period problem. In addition to the 
multiplicative demand, Zabel [19] also considered an additive demand model which is slightly 
different from Mills’ [7] definition. For this model, he demonstrated that under some restrictive 
cissumptions the optimal values of the decision variables at each period are unique. Moreover, 
comparing additive and multiplicative demand cases, Zabel concluded that the former tends 
to yield lower prices and higher inventory levels than the latter. The major source of this 
characteristic difference is seen as the variance of demand. For the additive model, the variance 
is constant and for the multiplicative model it is a decreasing function of price. Therefore, 
higher prices in the latter model are less risky.

Thowsen [13] formulated a finite horizon multi-period model under additive demand which 
incorporates partial backlogging. He derived suHlcient conditions under which the optimal 
procurement is determined by a single critical number policy. He showed that these conditions 
are satisfied for the case with linear expected demand function and a PF2 distribution for the 
random term.

Young [IG] represented the random demand as a combination of the additive and 
multiplicative models. For the one-period problem, he stated the sufficient conditions under 
which the optimal starting stock level is unique. Comparing the results with those of the riskless 
model, he also showed that, if the coefficient of variation of demand is nonincreasing in price, 
then the riskless revenue exceeds the marginal procurement cost at optimality. The converse 
is true if the variance of demand is nondecreasing in price. Moreover, correcting Zabel’s [18] 
definition of equilibrium. Young demonstrated the existence of an equilibrium inventory level 
under his assumptions. In addition. Young [17] also studied the infinite horizon multi-period 
lost-sales problem under his demand model. Assuming that the unsold inventory at the end of 
each period has an economic value that is equal to the present worth of its procurement cost, 
he showed that the periods could be separated from each other and the optimal solution could 
be obtained from the analysis of one-period model.

It appears that Mills’ [8] and Karlin and Carr’s [3] approaches establish the conceptual 
framework of the general inventory model. Nevins’ [9], Zabel’s [18, 19], Thowsen’s [13] and 
Young’s [16, 17] studies, however, concentrate mostly on the existence and uniqueness of the 
optimal solutions for various special cases of the general model. It is demonstrated by these 
studies that seriously restrictive assumptions on the form of the expected demand function, 
on the demand distribution or on the structure of the expected loss function are needed to 
provide analytical results on the cited issues. In this regard, the existing studies fail to provide 
a complete understanding of the form of the optimal policies due to analytical intractability.

The above mentioned demand models have been used traditionally as a convenient tool to
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isolate the elFects of uncertainty in the context of the theory of the firm. The disadvantage 
of this rc])resentation, however, is the structural restrictions it brings into the model. For 
instance, the additive model is restricted by a price-independent (constant) variance. Also it 
allows negative demand unless the price values are bounded from above. The multiplicative 
model implies the curious restriction that the demand equals to the product of its expected 
value and a random term. As a result of this, variance of demand is the square of its expected 
value times the variance of the random term. Therefore, variance decreases at a rate faster 
than expected value and it ai)proaches to zero at high prices.

We believe that there is a need to study the model under general demand uncertainty. It is 
essential to reveal the fundamental properties of the model independent of the demand pattern. 
Especially, uniqueness conditions for optimality must be studied in a more general setting. In 
this study, we attempt to develop and analyze the model under a general demand uncertainty.

In the classical multi-period inventory model, the proportion of the shortage which is 
backlogged to the next period is determined by the partial backlogging function. In our model, 
on the other hand, backlogging needs additional consideration due to the pricing decision. This 
fact is often ignored by the existing models either by assuming a lost-sales model or by making 
simplifying assumptions about the forgone revenue due to shortages. In our model, however, 
we introduce a special relationship (bargaining) between the vendor and the customer over the 
price that is charged for the backlogs.

In wliat follows, we introduce the single period model in chapter 2. Then, in chapter 3, we 
study the multi-period model. Chapter 4 provides some numerical examples on the theoretical 
issues which are discussed in the first three chapters. Finally, in chapter 5 we conclude our 
findings.



Chapter 2

Single Period Model

In this cliaj)ter, we study the optimal procurement and pricing decisions in a single product 
one-period pure inventory system. We view this model as a building block of the multi-period 
model and attempt to establish its cliaracteristics to this end.

2.1 Basic Model and Assumptions

In this model, the vendor is to make the best procurement and pricing decisions to maximize 
his profit prior to the beginning of the period. Inventory level before ordering is i. The amount 
procured, if any, is q — i. A random demand X{p) occurs during the period and at the end of the 
period the inventory level is reduced to q — X(p). We consider the case where i > 0. For i < 0, 
the one-period problem is initiated with an unknown history. That is, the following questions 
can not be accounted for unless we make assumptions: (1) What fraction of the backlog do we 
have to satisfy? (2) At what price should we sell that fraction? (3) Do we deduct the backlog 
from the actual demand or not? These questions will be referred to later in the multi-period 
model.

We assume that inventory costs are proportional to the period ending inventory level. We 
denote the unit holding, shortage and procurement costs by /i, s and c, respectively. We also 
denote the fixed ordering cost by /C. In addition, we assume that, the price is bounded from 
below and above by Fi and Fû  respectively, which are the price floor and price ceiling in a 
regulatory environment. If there are no price regulations, then we consider the price range of 
(0, oo). We also assume that Fu > c so that it is possible to make profit by retailing.

It follows from the discussion in [6] that a way of incorporating price and uncertainty in 
demand is through an implicit relationship of the type:

:F{X,p,e) =  0,
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where e: is a random term with a known probability distribution. Assuming that T  has 
continuous partial derivatives we may express the random demand as:

X  =  x{p,e) . (2.1)

Note that the additive and the multiplicative demand models are special forms of (2.1).
We assume that demand distribution, F(a:;p), is defined over x G (“ Oo, oo) and p G [Pty Pu] 

such that for all p G [Piy Pu] we have E{Xi{p)]p) =  0 and F{X 2(p)]p) =  1, where Xi{p) and 
X 2{p) are the lower and upper bounds on A(p), respectively, which are differentiable functions 
of p and 0 < A"i(p) < X 2{p) < oo. We shall restrict our analysis only to the continuous demand 
CcLse, bearing in mind that a similar one exists otherwise.

We assume that the expected demand exists (finite), and it is determined from
__ r ^ 2{v) roo
X { p ) =  x-f{x;p)-dx =  / [i-F{x-,p)] -dx,  (2.2)

Jxdp) Jo

where f{x\p) is the demand density function. We assume that X{p) is a monotone decreasing 
function of p on (0, oo) (if p is confined to [P ,̂ P̂ ]̂  then we extend X{p) on (0, Pi) and (Pu, oo) 
by appropriate functions to satisfy the requirements without loss of generality). Moreover, we 
require that X{p) is o (l /p )  as p 0"̂  and p —> cx̂ . This implies that the function pX{p)  starts 
at zero, first increases and eventually dies away. This function, which is denoted by /i(p), is 
called the riskless total revenue by Mills [8]. R(p) is a positive valued, finite and differentiable 
function, which plays an important role in model development. It is shown in Appendix A that 
R{p) is pseudoconcave on (0,oo) when X{p) is either a concave or convex decreasing function; 
it is also indicated that Il{p) is not pseudoconcave for all monotone decreasing X{p) functions. 
We assume that R{p) is unimodal; hence, there exists a unique finite price which maximizes 

P ( p ) .

It is intuitive tliat, in a ‘Tair’  ̂ market, the probability that demand is less than the given 
level X, P (x ;p), increases as the price increases. That is,

0F{x;p)
dp > 0  Vx G (A i (p) ,A 2(p)). (2.3)

It is worthwhile to note that condition (2.3) is sufficient for the requirement that X{p) is a 
decreasing function of p:

dp
> 0  ^ dX{p)

dp = - / dp
•dx < 0. (2.4)

2.2 Mathematical Model

In this section we develop and analyze the mathematical model under probabilistic demand for 
the determination of the optimal price and the beginning inventory level.
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2.2.1 Optimization Problem

Coiisidoriiig Uio roi)rosoi)tci(.ioiis iiitrotlucocl iii Section 2, tlie profit function can be expressed
as;

U{p,q) = M{p,q) - IC-6{ q- i ) ,  

where (5(·) is the Heavysidc function and

M(p q) = 1  ~ “   ̂ (^(P) -  </)> 7 < ^ (P ) < M p),
[ p-X(p) -  C-(q -  i) -  h {q -  X{p)), ;Ci(p) < X(p) < q,

is the pseudo-profit function. We can write the expected profit as:

n(p, q) =  £;[II(p,,;)] =  M{p, q) -  X.6{q -  i),

where

(2.5)

(2 .6)

(2.7)

(2 .8)M{p,q) =  E[M{p, i)] =  p-X{p) -  c-{q -  i) -  L{p,q).

The first term in (2.8) is the riskless total revenue function. The second term is the procurement 
cost. The last term is the expected loss function which is given by

L{p,q) =  h- {q -x )- f {x - ,p )  dx + {p +  s)· {x -  q)·f{x\p)-dx 
''xtM

(2.9)= (p + * ■ ) · (p) - '/ ]  + (p + s + h)-Q{p, q),

where 0 (p, </) is the expected leftovers i.e.,

/
9 q
(q -  3:)-/(x;p)-dx =  I F{x\p)-dx.

We assume that &(p,q) is differentiable in p for </ > 0. Also, we observe that &(p,q) satisfies

(2 .10)

0(P. q) > max{0, q -  X(p)}, (2 .11)

and it is a convex, non-decreasing and differentiable function of q for a given p. Moreover, 
condition (2.3) implies that

d&iP,q) ^ n  dF{q;p) 
dp Jx\(Rp) dp

dx > 0,

*Aii allernalive representation of &{p,q) is

Q(p,q) = l^q(p) + Q -  X(p)]/2,
where A< (̂p) is the total expected deviation of demand from g at a price level of p wliich is defined as:

r̂ 2{p)
^<l(p)= /  ¡X -  ql-/( ;̂p)-dx > 0.

dxi(p)
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for all ( /€  A"2(p)).
From (2.8) and (2.9) it follows that

M{}>, q) = p-[q -  Q(p, '/)] -  c (q -  i) -  h-Q{p, q) -  s-[X(i») ~ (q ~ Q(p, ?))]. (2.12)

Therefore, M{p^q) is the expected net revenue, less the procurement cost, less the expected 
holding cost, and less the expected shortage cost. At the expense of loosing intuition about its 
terms, we shall refer to M{p^q) in what follows in the following form :

A/(p, =  (î  -f 5 -  c) q̂ -  s-X{p) -  (p +  s -f /i)-0(p, q) +  c-i.

It is clecir that, M{p^q) is continuous in p on [P ,̂ and in q on [0,oo).
Now, the optimization problem becomes

n(p*. 9*) =  max{II(p, q) ; q 6 [i, oo), p 6 [Pr. Pu]},
p,q

(2.13)

(2.14)

where p* and (/* are the optimal values of the decision variables p and q. For this problem we 
define the suboptimal function

M*(<7) =  max{M(p, g) : p G \Pt, P„]} =  M(pg,q), (2.15)

where pg is the maximizer. Therefore, M (q) traces the best price trajectory over the q range. 
Moreover, since M{p,q) is continuous in p and (/, it follows from the Envelope Theorem that 
M {q) is a continuous function of q (see Appendix B for a proof).

In analyzing (2.14) and (2.15), we need to consider first and second degree partial derivatives 
of M{p^q) with respect to p and (/, which cire given by

...................... .........
dp

d M (p, q)
Op i  ~ 0(p. 9) -  (p +  S +  /»)· dp

0^M{p,q)
C>p2

0H4{p,q)  
OpOq

„ i/‘'*A'(p) „  0Q{p,q) , , x 0' Q̂{p,q)

(2.16)

(2.17)

=  1 -  F{q·, p) -  (p +  S +  h) 0F{q-,p)
dp

0M{p, 9)
Oq

d'^M{p,q)
Oq̂

= (p + s - c) - ( p + s +  /i)-F(9;p),

= -(p  + s + /i) ·/(<?;?) < 0.

(2.18)

(2.19)

From (2.19) we conclude that M{p,q) is g-concave on (0,oo), which refers to the newsboy 
problem setting. On the other liand, (2.16) implies that pj is independent of the procurement
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cost. Ill other words, the vendor is to maxiinize his expected profit given that he starts the 
period with q units. The price dependence of M(p, </), however, is not clear from (2.16) or 
(2.17).

There is a critical question about the existence of if the price limits are abolished, that 
is when p E (0,oo). Since,

lim X{p) =  oo and lirn X(p) = 0,/>—>0 foo

Xi{p) and X2{p) must satisfy:

and

lim X\{p) =  lim X 2(p) =  oo,p—►O p-*0

lirn Xi(p) lirn X 2(p) =  0.p-*oo p-^oo

Under this setting, it is true that E (0,oo) 3p i,p 2 G (0,oo) such that X2{P2) ^ <7 < ^ i(p i)· 
Therefore, from (2.16) we obtain

and

0M{p,q). dX{p) w  N / dX{p)
\̂v>V2 — 7"” ·̂ —  ------q + X{p) + {p + s l i ) ·dp dp

= ^ (p ) +  (p +  /0

dp

dXjp)
dp ■

Moreover, it follows from Corollary A 1 in Appendix A that for p > P/,, X(p)  +  (p +  h) · 
dX{p)/dp < 0. Thus, we have

9M{p,q)
\p>max{p2,PK} <

and there exists a solution pq if there were no price limits.
If Pq is independent of q (a boundary point solution or a constant), then it follows from 

(2.19) that M (q) is concave at that q. However, if E (P^,Fu), then it must satisfy the first 
order condition dM{p, q)/dp\p̂  =  0 and the second order condition d^M{p  ̂q)/̂ P̂ \pq < for a 
given q. Since M(p, q) has continuous partial derivatives, we can perform implicit differentiation 
on the first order condition to obtain

^  1 -  -  iP^+s + h)-dF{q-,p)/dp\p  ̂ 20)
dq -d^M{p,q)/dp\^

ill which the denominator is always positive. Depending on the value of Pq and the price 
dependency of F{-\p) function, however, the numerator can be positive or negative. Thus, the 
sign of dpqfdq is not clear.
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Since dp^/dq exists, we can write the first derivative of M (q) as

dM jq) _ dM{p^,q) dM{p,q) dp̂  
dq dq dp dq (2.21)

If Pg e  (Pi,Pu), then dM{p,q)/dp\p  ̂ =  0 otherwise dp^fdq =  0. Therefore, in all combinations 
of right-hand and left-hand derivatives the .second term in (2.21) vanishes. Consequently, we 
get

dM (q)
dq = (Pi + s -  c) -  (p, -h s -1- h)-F{q\Pg).

Ill order to interpret (2.22) we rewrite it as follows:

dM {q) 
dq = {Pq + « ) · [ ! -  P'{r,Pq)] -  h-P{q;pg) -  c.

(2.22)

(2.23)

If the vendor administers his profit maximizing price as he starts with a stock size of then 
F{q;pg) represents the probability that there will be no shortage. It follows from (2.23) that 
M {q) increases in q at a rate of (pg + s ) if there is a shortage with probability [1 ’-F{q;pg)] and 
dccrea.ses at a rate of li with probability F{q; pg) when there is no shortage. In addition to these 
two possibilities, M (q) decreases at a rate of c due to tlie procurement cost. Thus the vendor 
can increase his profit by stocking more given that he is short. When he is short any increase 
in q will pay him Pg for the sale of a unit and s for not being short of that unit. Intuitively, the 
vendor should follow a pricing strategy which will simultaneously minimize F{q]Pg) and keep 
Pg as high as possible. There is a tradeoff, however, since F{q\pg) increases in pg.

2.2.2 Existence Problem

Intuitively, M (q) must have a peak on [0,oo). However, the existence of this point or, if it 
exists, its location are not immediately clear. In the following analysis, we shall identify two

——A
separate regions of q in which M (q) is monotone, then we shall prove the existence of its peak. 
Lem m a 1. V(/ E [0, A’i(Pti)], M (q) is a linear increasing function of q and pg = Pu·
P roo f. Vr/ E [0,^i(Pu)] we have F{q;pg) =  0. Therefore, from (2.10), 0 (p^ ,i) =  0 and from 
(2.13) we obtain :

M (q) = nvdx{{p + s  -  c)’q -  s-X{p)+ c-i : p E [Pi, Pu]] 
= {Pu + s -  c)-q -  s-X(Pu) + c-i. (2.24)

which is a linear increasing function of q and pg = P .̂
Lemma 1 indicates that, if we are sure that demand will exceed our stock, i.e. if (/ < Xi{Pu), 

then we should charge the customers at the highest rate because we not only reduce shortages 
ill this way but we also incur the maximum unit profit.
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If X i (/^u) =  0, tlien the region indicated in Lemma 1 disappears and we loose the information 
—★

about the slope of M (q) at q = 0. To account for this possibility, considering (2.22) and the 
fact thcit 0 < F{q\Pq) < 1 we obtain :

-  (/i -f c) < < (Pv +   ̂ c)> (2.25)

which gives the lower and upper limits of the rate of change of expected profit with respect 
to the beginning inventory level. It is now clear from (2.24) and (2.25) that at r/ =  0, M^{q) 
increases at the maximum rate o( Fu -l· s — c.
Lem m a 2. G ^  {̂ l)  ̂ linear decreasing function of q and pg is a constant.
P roof. For q > X-ziPt) we have F{q\Pg) =  1. Therefore, from (2.10), ©(p^,^) =  g — X{pg) 
and from (2.13) we obtain

m ""{q) =  m ax{(pT /0*X (p) : p ^ [Pt, Pu]} -  {c + h ) ^ q c - i

= {Fk +  h)-X{Fk) -  ( c +  /i)*g +  c-i, (2.26)

where Fh =  min{max{P/i, P/:), Pu) and P/̂  is the maximizer of the pseudoconcave function 
(p-f/i)-A^(p).

We now establish the existence of q, where q = max{M  {q) : q G [0,oo)}.
T heorem  1. 3q G {Xi{Pu)i X2{Pi)) M (q) < M [q) Vq G [0,oo).
P roof, lly Lemma 1, M {q) is a linear increasing function of q on [0,X i(Pt4)] with a slope of 
{Fu + s — c) > 0. By Lemma 2, M (q) is a linear decreasing function of q on [XziFi)^ oo) with 
a slope of —(c-f- /¿) < 0. From (2.25), (P^ -f s — c) and —(c -f h) are the largest and the smallest 
possible slopes of M (q), respectively. The proof follows.

Therefore, q must satisfy the first order optimality condition on M (q) which can be obtained 
from (2.22) as :

r>- -4- — n
(2.27)n r . p , } = I ’ l l .  IPq -r S -{- n

The right hand side of (2.27), RIIS, is a concave increasing function oipg. It becomes negative 
for Pg < c — s. It follows from (2.22) that, for those Pg values M (q) is decreasing, thus q can 
not be realized at any price level less than c — s. Alternatively, for pg > c — s, IIIIS attains 
values between 0 and 1, and we always have a solution for q given such RIIS.

In his pioneering work [15], Whitin brings an intuitive approach to condition (2.27) for 
a similar decision problem. First, he introduces two conflicting factors: expected profit and 
expected loss. According to his construct, the expected profit from adding an additional unit 
to inventory is equal to unit profit times the probability of selling that unit, plus the avoidance 
of goodwill loss per unit times the same probability, i.e., [1 — P(g;pg)]*(pç — c) +  [1 — P(^;Pç)]-s. 
On the other hand, the expected loss resulting from adding the extra unit is equal to the 
probability of not selling the unit during the period multiplied by the unit loss from liquidation,
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i.e., F(q;p^)-{h +  c). He then argues that if profits are to be maximized, then the expected 
jirofit obtainable througli stocking an additional unit must be equal to the expected loss, that 
is;

[1 -  F{q]P^)]-iPg + s - c )  = F{q-,p^)-{h +  c), 

which is equivalent to (2.27).
It is possible to construct an upper bound on q by employing the Markov Inequality and 

condition (2.27). To this end, defining p = pg we write

t tu z l  = i-(i; ji) > 1 -  =5.,- < ,№ + . + '■) X(P)
p +  s +  /l /l +  c

which implies
q < j^-m-<i.x{{p + s +  h)-X{p) : pe[Pi,Pu]} , (2.28)

where the maximization problem can be solved for a given X{p) function and the data. Markov 
Inequality usually yields weak bounds, nevertheless, (2.28) can be useful especially in numerical 
procedures.

2.2.3 Unimodality

Unimodality of M {q) enables us to identify an ((t, ^ ) type policy which may be employed in 
determining the optimal q. Moreover, in the multi-period extension of the theory, this becomes 
an important issue related to the dynamic decision problem.

If Pg G {Pif Pu)j tben differentiating (2.22) with respect to q we obtain

Noting that
dF(q;p,) _

dq — fiQiPq) +
dF{q\Pg) I dp,

dp dq
we rewrite (2.29) as

d^M̂ 'iq) d^M{p, q)

(2.29)

(2.30)

(2.31)

First term in (2.31) is always positive and the second is always negative. However, their relative 
magnitudes are not clear. Thus, convexity of M (q) is not evident from (2.31).

Note that, F(q;p^) is a function of q only, where F(q;p^) =  0 for 0 < 5 < Xi(Fu) and 
F{q]Pq) — 1 for X 2{Pi) < <i· Therefore, F{q\Pq) has to rise from 0 to 1 between minimum and 
maximum possible demand values. Meanwhile, it is clear from Lemma 1 and 2 that pq should 
decrease from P̂  to Pi .̂ If these changes occur rnonotonically, then there will be a unique first 
order q, which satisfies (2.27). That is, if dF{q;pq)/dq > 0 and dpq/dq < 0, then from (2.29) it
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follows that M (q) is concave. However, we can state a weaker condition by noting that, it is 
suincicnt to have dpgfdq < 0 at q = q, provided that dF(q;pg)/dq > 0 Vq. That is.

> 0 and
clq dq

Moreover, from (2.2Ü) and (2.27) we obtain

.  <  0 M {q) is uiiimodal.

di 0E{q;p). > h-\- c

(2.32)

(2.33)dp (p +  s +  li)'̂  ’

and we can employ (2.33) in (2.32). On the other hand, we realize that for unimodality of 
M (q) it is necessary and sufficient to have

d'^M*{q)
dq̂ l , < 0. (2.34)

— K
Uniinoclality of M {q) means once the expected profit of the vendor starts declining at 

some starting stock level ((/), then he will not be able to avoid this fall by procuring more 
and incurring the best price. In this case, demand being sensitive to price responds to the 
veiidor^s profitability. This concept can be related to the degree of monopoly power of the 
vendor (Mills [8] also mentions this connection without any further detail), however, this is 
beyond our interest and we leave that discussion open.

2.2.4 Optimal Solution

If M {q) is unirnodal, then from (2.14) it follows that q̂  can be determined by an (cr, ^ ) 
type policy operating on M (q), where n:  ̂ and a =  min{f; : M (q) = M  (^ ) — /C}.
Consequently, the decision rule is if i < cr otherwise q̂  =  /, and / /  =  argmax{M(p, q*) :

2-3 Special Cases

In this section, first we consider the deterministic demand model (the n 5Â:/e55 model introduced 
by Mills [7]) and establish its relation to the probabilistic model. Then, we analyze the additive 
and the multiplicative models. We provide the relationships that exist between the optimal 
prices of these models. Finally, under linear expected demand (X{p) = a — b-p̂  where a,6 > 0 
and c < I\ < a /6), we prove the unimodality of M {q) for uniformly distributed additive e 
and for exponentially distributed multiplicative e.

2.3.1 Deterministic Model

In this part, we use the subscript “r” to denote the functions and variables of the riskless model. 
If there is no uncertainty in demand, then we have X{p) = X{p)· Under this specialization.
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leftovers are given by 0r(p, «z) =  niax{0, r /— X (p )}, which is a continuous function. It is, 
however, non-cliiferentiable at the trajectory given by q =  >V(p).

In tlie following discussion, first we prove that M*[q) is unimodal, then we determine 
the optimal values of the decision variables, and finally we compare the deterministic and 
probabilistic prolit functions.
T heorem  2. M*{q) is quasiconcave in q on [0,oo).
P roof. For q < X{Pu) we have &r{p, <l) =  0. Thus, from Lemma I it follows that M*{q) is a 
linear increasing function of q and =  P,,.

For X{Pu) < <I we define p such that X{p) — rnin{(Z, A''(Pe)}. Therefore,

i 0 , P i < p < p
© r (p .? )= <  (2.35)

[ <7- A (p) , p < p <  Pu­

ll nder this .setting, by Lemma 1 we have

argmax{Mr(7.>, q) : Pt < P < P) = P,

which implies that
M*{q) = max{Mp(p,q) : p < p  < Pu}, 

where Mr can be obtained from (2.13) and (2.35) as:

^r{p,<l) = {P+ h)-X{p) -  ( c +  h)-q +  c-i.

We note that (p +  h ) ' increasing on [Pc,P/,] and decreasing on [Ph,Pu]· Moreover,
q < X {P h )  ^  P > h -

It follows from the above discussion that

( P u + s - c ) - 3 -s -A :(P u ) +  c-r , q < XiPu),

M*{q) = { p -  c)-q + c-i , X { P u ) < q < X { P h ) , (2.36)

—(c+li) -q +  {P h h ) - X { P h )  + c-i , X ( P h ) q-

Corollary A3 in Appendix A indicates that {p — c)-q is a p.seudoconcave function of q on 
(X (P „), A(Pr))· Thus, the result follows from (2.36).

From (2.36) it is also clear that

MriPrJlr) =  max{M*{q): 0 < q < oo]

= inax{{p -  c)-q : X{Pu) < q < X{Ph)}  +  c-i,

=  inax{{p -  c)-X{p) : Ph <P  < ^u) +  c-i· (2.37)



CIIAPTEIi 2. SINGLE PERIOD MODEL 15

The maximaiid in (2.37) is the riskless profit function, which is maximized at Pc. According to 
Corollary A2 we have Ph < Pc which implies that Ph < Pĉ  where Pc =  rnin{max{P£, T̂ u}· 
Therefore, the maximizer in (2.37) is Pc, and we have pr = Pc and qr =  AT(Pc). Since Mr is 
iinimodal, the optimal procurement quantity is determined by an (cr, ^ ) policy, where

t  =  X { P c ) ,

and
a = min{q : M^{q) =  Af^(i)) -  1C}.

It is intuitive that ijr = X{pr)i that is we procure up to as much as the demand so that 
we would not pay any penalty for shortages or leftovers. If cr < z, however, then it is optimal 
not to order (r/* =  i) and under our general setting, q̂  need not be equal to A(p*). For this 
reason, it is interesting to note that, although the demand is deterministic, under the optimal 
strategy there can be shortages or leftovers.

It also follows from (2.36) that G [P/n Pu]· Thus, if Pi < P̂  ̂ then P/» can be considered 
as a lower limit on price that is determined by the expected demand in the market and the cost 
of carrying inventories. It is indicated in Corollary A2'that as h gets larger P/» gets smaller. 
Therefore, greater inventory costs enable the vendor to set lower prices in order to maximize 
his profit. To be more precise, if the vendor has more stocks than AT(P/i), i.e. i > AT(P/j), 
then he administers a price of Ph and sells all of his stock. Note that this is a short-term 
planning decision. For a better business strategy he has to take into account the future beyond 

one-period.
We have 0(p, q) > ©r(p, (z) from (2.11). Thus, it follows from (2.13) that M(p, q) < Mr{py q) 

which implies II(p, 7) < Hr(p, î )· Also, comparing M (q) and M^{q) we conclude that M {q) 
remains below the quasiconcave function M^{q) and approaches it at both tails. Therefore, we 
make the same or more profit in deterministic demand case than we expect (mathematically) 
in probabilistic case, which is intuitive.

2.3.2 Additive Model

Let G{ ) be the distribution of e, then we have

X € [X, (p), X ’M  ^  f e [Xi(p) -  X{p),  X2{p) -  J(p)j,

F{x\v) = G{x-X{p)),

f{x;p) = g{x-X{p)),

f i - X { p )
Q(p,<l) = — G(e)

JXi(p)-X(p)
•de.
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dF(x-,p)
dp

dX{p)
dp (2.38)

de(p,q) dX{p)
- o f -  =

o'^e{p,q)
dp̂

Under these observations, (2.16) and (2.17) are given by

~f{p<<l) _  ■ dX{i
Op dp

and

«  = « -  efo,) +

d^M{p,q) _  „ d^Xjp) , dXjp) .... , d^Xjp)

(2.39)

dp“̂ dp̂  + ^ - ' - ^ - ^ ( F . p )  + {p + s + h ) . : ^ ^ . F i q - , p )

- ( p  +  s +  / i ) - / ( 'z ;p ) - ^ ^ ^ ^ j  .

It is worthwhile to note that (2.38) together with (2.4) imply that

dX(p)
<  0 ^

dF(x;p)
> 0.

(2.40)

(2.41)dp "  dp

It is clear that ifp, G {Pt, Pu), then it must satisfy the first order condition dM{p, q)/dp\p̂  =
0. Evaluating this condition for q = q and considering (2.27) we obtain:

dM{p,q),  . / -   ̂ dX(p),
'\f=<I-Q{P,<l) + { p - c )— =dp

which implies p >  c. Moreover, adding and subtracting X{p) in (2.42) we get: 

q -  0 (p, q) -  X{p)  +  { J (p )  +  (p -  c ) . ^ 11, =  0.

(2.42)

(2.43)

By definition, 0(p, g) > <1 — X{p)· Therefore, the expression in the brackets, which is the 
derivative of the riskless profit function, evaluated at p must be positive. Thus, we conclude 
that

c < p  < Pc. (2.44)

This result was first proved by Mills [7] for a simple model. Karlin and Carr [3] showed that 
the same conclusion is true for the model we are studying by a different approach.

Next, we shall discuss the conditions leading to unirnodality of M (g). Considering (2.30) 
and (2.20), the sufficient condition (2.32) can be written as:

dq Pq S + ll



CHAPTER 2. SINGLE PERIOD MODEL 17

--------------- --------------------------------------- , 2. i ®  +  (p +  » +  ; . ) . ; ! ^ ) | ,  > 0,
i Pq+s  +  h)-{dX{p) /dp) \^ (ip dp -

and
dpg

1,-<  0 fi<p,p)> —
—(/i + c)

(2.45)

(2.46)
(i'J ' ' (p + s P li)^-dX{p)/dp\^

Note that in (2.45) the sum of first three terms is positive. Thus, if the expression in the brackets 
is negative (this is true when X{p) is linear or concave), then that condition is satisfied. On 
the other hand, the necessary and sufricient condition (2.34) is given by:

( :
dX{p) d'^X(p)..

'P + s -H , '  ........... ..........-  P ·“ ' )

which implies that the second derivative of the riskless revenue function evaluated at p must 
be negative.

For a given set of problem specifications, unimodality can be verified by testing the validity 
of the above cited conditions. For example, suppose that the expected demand function is 
linear, where X{p) = a -  b-p, a ,6 > 0 and p G [0,a/6] with c < a/b. In addition, to prevent 
negative demand let us assume that < a/b such that X  =  X(f^u) -h e > 0 Vc. Since 
d^X{p)/dp'  ̂ = 0, it follows from (2.40) that d^M{p,q)/dp^ < 0 (this observation is essential in 
achieving better numerical computation performance) and from (2.45) that dF{q\pg)/dq > 0. 
Moreover, (2.46) can be writen as:

I ^  A  V. /i +  c
<  0 O  f{q-,p  ̂ '> -------------------

and (2.47) reduces to

M (q) is uniinodal <ti> f{q\p) >

b-{p +  s T  h y '

{h 4- cy

(2.48)

(2.49)
2-h-{p +  s +  h y '

Clearly, (2.49) is weaker than (2.48). Furthermore, it can be deduced from (2.44) that if

f{<T,p) > {h + cy/[2-b-{c +  s +  hy],  (2.50)

then (2.49) will hold.
For a given distribution and the data the conditions (2.48), (2.49) or (2.50) can be tested. 

For instance, if e has a uniform distribution on [—A, A], then for all q G i ^ i { p ) i ^ 2{p))·

-  2- A ’

F{q-,p) =
q -  a +  b-p-P X 

2X  ’
(2.51)

(2.52)
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I'rom (2.49) we obtain the condition for unimodality as

A < b {f> +  s +

or from (2.50) the suilicient condition as

A < b-{c+s + hf/{h +  c f .

(2.53)

(2.54)

Under tlie proposed special case, we can view A as a measure of demand uncertainty and b as 
a measure of sensitivity of demand of price changes. From (2.53) we conclude that the less the 
uncertainty and/or the more the demand sensitivity are, the more unimodality will be favored. 

An alternative approach is to solve p and q from (2.27) simultaneously under the hypothesis
——A·

tliat M (q) is uniinodal. To this end, we rewrite (2.27) and (2.42), respectively, as:

and

p-hs - c  ( / - a - f i - p - f  A
^(r.p)  =  = -------- jTj;-------- ,

q - 6 ( p , q ) - b - ( p - c )  = 0.

Using (2.52) we solve for q:

p̂ + s + li

Next, substituting (2.57) in (2.55) we get:

P - ^ ^ - ^ r  + b i p - c ) .

(2.55)

(2.56)

(2.57)

p +  s +  A -  V A · (2.58)

Since under the additive model p < Pc for a linear expected demand function P̂  =  
(a +  b-c)/2b, the term in the square root is always defined. After manipulations we rewrite 

(2.58) as

p +  s -  c
=  1 -

a + b-c — 2-b-p

2-{p + s - l h f - { P c - p )  - \-{h + cy/b -  0, (2.59)

which is a polynomial having a local maximum at [2-Pc — (/i+ s)]/3 . It follows that this function 
has at least one and at most two positive roots. In addition, one of the positive roots is always 
located in the interval ([2-Pc -  (h + s)]/3,Pc)· Since the third critical point, on the feasible 
price range, to make a local minimum does not exist, we conclude that M (q) is unimodal.

2.3.3 Multiplicative Model

Let G(-) be the distribution of e, then we have

a·· e  [Ai(p), X2(p)] i e [-Vi (p) / a :(p) ,X2/x (p)],

F(x;p)  =  G(x/X(p)),
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f{x-,p) = g(x/X{p))/Xip),

dF{x-,p)

i/N(p) 

(p)/X{p) 

dX{p)  X

mIX(p)
Q{p,<l) = — G{c)-d(,

JXi(p)/X{p)

dp dp X  (p)

de(p,q) _  dXjp) ( ¡■F{q;p)-e{p,q)

(2.60)

dp dp xip)

d' ê{p,q) _  d^X(p) q-F{q\p)-0 {p,q)  ̂ ( dX{p)__^
“  c/p2 ^ dp J(p)^

Under these observations (2.16) and (2.17) are given by:

■f{q\p)·

dp ‘ dp ' d p  ^ (p )

and

d^Mjp, q) d?X{p)  ̂ q -F {q ;p ) - e {p ,q )  i  dX{p)  ̂ d'^Xjp) . , , ,
\ dp dp'̂   ̂ Cdp

o  - =  —s ---------- , 4"2 dp̂ x(p)

-  (i>+s +  /0 -/(7 iP )
/ dX(p) (2.62)
V X{p)J

Clearly condition (2.41) al.so holds for the multiplicative model.
If Pj € (Ft, Fu), then it must satisfy the first order condition dM{p, q)/dp\p̂  =  0. Evaluating 

(2.16) at pj, setting it equal to zero and arranging terms we get

=  r  (1 -  +  (P +
op " ^{Pq)

—  S
dXjp), X{Pg)-q-F{q;Pg) + e{p^,q) _ 0. (2.63)

dp X (p ,)

Since 0(p , q ) > q -  X{p), we have Q(p, q) + X {p )~  q-F{q; p) > 0. Thus, the first and the third 
terms in (2.63) are positive. Moreover, we note that q-F{q\p) -  0(p, g) > 0. Therefore, (2.63) 

implies that __

{> (̂í>) +  (P +  /0 · ^ ^ ^ } | „  < 0  P q > h -

Furthermore, evaluating (2.63) at q and rearranging the terms we obtain

Q(P· <1
X(P)

9 r w   ̂ , r t dX{p).  0 (p ,g ) — f/^(p)i|
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dXjp)^̂ Xip)-_q + e{p,q)
(2.64)

x(p)
The second term is positive, since p > P/̂ , and so is tlie third term. Therefore, we must have

{ + {p -  c) · } 1̂ < 0 p>Pc>c .

This result is the same as Karlin and Carr’s [3] conclusion, which Wcis proved by a different 
approach than ours.

Considering (2.30) and (2.20), the sufficient conditions for unimodality of (2.32),
can be written, respectively, as:

«  1 - F ( , ; p , )  + ^ ± % L
dq {Pg+s + h)-q

{ p + s  + li)-q-{dX{p)/dpy

and

^ l , -<0  ^  f{q-,p)>

dp  ̂ dp̂  ''

_____ - X ( p ) i h  + c)

(2.65)

(2.66)
d q " '~  ' ' q-{p +s -P  hY-dX{p)/dp\p

The sum of the first three terms in (2.65) is positive. Thus, if the expression in the brackets is 
negative (that is true when X{p)  is linear or concave), then that condition is satisfied. On the 
other hand, the necessary and sufficient condition (2.34) is given by:

^ '  +  (?5+ . +  / o ■ / ( v ; y ) ■ [ g - e ( p , ? ) ] · | 1 ^  < 0, (2.67)
p -f s T 11 X{p) dX{p)/dp ^

which implies that the expected demand must be “normal” at p or, equivalently, expected 
marginal revenue to be decreasing at p.

The above cited conditions can be tested for a given set of problem specifications. For 
instance, under a linear expected demand assumption, which is described in the previous section, 
it follows from (2.62) that 5^M(p, q)/dp'  ̂ < 0 and from (2.65) that dF{q\pq)/dq > 0. Moreover, 
(2.66) can be written as:

dq h-q-[p + s hy

and (2.67) reduces to

---\ · · 11 r/'~ -'X ’X{p)
M ( , )  ,s uminodal «  / ( , ; p )  > 2 .t .[ j -  e (p , , - ) ] . (p + a +

(2 .68)

(2.69)
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If c is exponential, for examj)le, then for all q £ (0,oo);

e-i/N(.p)
f{q-,p) =

x(p)

F{q-,p) =

Q{p,<l) = <1 -  N{p)-F(q;p).

Using these relationships and (2.27), the unimodality condition (2.69) could be written as:

2-p  ̂+  (3-/i +  4-s - c)-;}-1-2-(s +  / 0 - ( 5 - c) - -  y{l ı - l ·c)  > 0. (2.70)

The quadratic form in (2.70) has a critical point at —(3 /i +  4-s — c)/4  which is less than c, 
hence, it is also less than Pc· Since p >  Pc, if

2-P'  ̂ +  (3-/i +  4-5 -  c)-Pc +  2-(s +  li)-{s -  c) -  - - ( / i  -f c) > 0, 

then (2.70) will hold. After necessary manipulations, (2.71) reduces to 

(•̂ )̂  +  (/i +  4-s “  c)··^ +  (4-s^ +  4-/i-s — /i-c) > 0,

(2.71)

(2.72)

where the critical point of the quadratic form is — (/i +  4-s — c)/2  which is less than c. Since 
a/b > c under linear expected demand assumption, condition (2.72) can be rewritten гıs:

^ -  *[\/(A +  c)-(/i + c -  8-s) -  {li +  4-5 -- c)]. (2.73)

We note that (2.72) holds when li + c < 8-s (i.e. when the expression in the square root is 
negative). Otherwise, we observe that

a/b > C-2-S > ^-[\/(/i +  c)-(/i -f c -  8-s) -  {li +  4-s -  c)],

which holds by the natural assumption that a/b > c. Therefore, M {q) is uriimodal for 
exponcnticil multiplicative demand model. Zabel [18] arrived at the same conclusion, under 
some restrictions, for the case where s =  0.

Since pricing decision aifects tlie period ending inventory level, the analysis of the multi­
period model does not trivially follow from the analysis of the one-period model. In the next 
chapter we shall dwell on this issue.



Chapter 3

Multi-Period Model

111 this chapter, we extend the planning horizon more than one period and try to characterize the 
optimal procurement and pricing decisions. In this regard, before getting into the mathematical 
model we shall first describe the multi-period setting.

We assume that the planning horizon is divided into N review periods, which are indexed 
by n. The Icist period, n = l, is the end of the planning horizon. If there are any shortages in this 
period, they will be lost. Also, we assume that there is no salvage value for the leftovers. At 
the beginning of each period, the vendor decides how much to order, qn — inj and what price to 
administer, Pm until the next decision point. is the beginning inventory level before ordering 
and Qn is the beginning inventory level after ordering in period n. With these decisions, the 
vendor tries to maximize the mathematical expectation of the sum of current period’s profit 
and the discounted j)rofit of the remaining periods, which is denoted by Il ĵ. We assume that 
In > 0, so that the decision problem is not initiated with an unaccountable debt. For simplicity 
we assume constant unit holding, shortage, procurement costs and a fixed ordering cost, which 
are denoted by /i, s, c and Â*, respectively. We also consider a common discount factor for each 
period and denote it by a. Furthermore, we assume that procurement lead time is negligibly 
short compared to the length of a period and all payments realize without any significant delay 
or additional cost.

Let us consider period 7i, where 1 < n < TV. It is clear that depends on and
the backlogging rule. Therefore, in any period, except the last one, the pricing decision can 
not be made independent of the future periods. Moreover, it follows from the analysis of the 
one-period model that procurement quantity and pricing decisions could not be analytically 
decoupled. Hence, the overall optimization problem, that is the determination of optimal 
procurement quantity and price for all periods, does not follow directly from the classical multi­
period model. In other words, since price is a decision variable which is a factor that affects 
demand, we need to extend the analysis of the classical multi-period model which employs price

22
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only as a unit revenue.
A conceptual complication arises in relation to unsatisfied customers when there is a shortage 

in any intermediate period. In the classical model, it is customary to assume a backlogging rule 
which allows all customers to wait another period (full backlogging), some customers to wait 
another period (partial backlogging) or all customers to quit (lost sales). When there is a pricing 
decision, however, the willingness of a customer to wait one more period may be contingent 
upon price. That is, there might be a bargain between an unsatisfied customer and the vendor 
for their mutual benefit. Therefore, it is likely that such a customer-vendor interaction will 
affect the optimal solution. To study this, we could employ various backlogging rules in our 
model. For instance, we may assume that the vendor issues a “rain check” for customers who 
are willing to wait, provided that they could pay the current price in the future. Under the 
multi-])criod model that we are studying, we may cissume that, if there is a shortage, then, 
upon mutual agreement, the customers are to wait until their demand is satisfied regardless of 
the price; wait as long as they could pay the current period’s price at any time in the future; 
wait only one period at any price; wait only one period at the current period’s price; or, we 
may assume that the vendor does not allow backlogging. It is intuitive to expect and it will be 
clear in the following sections that a backlogging rule induces a special structure into the model. 
Since a variety of different backlogging rules can be employed, it is difficult to generalize possible 
vendor-customer relationships without making further assumptions. In fact, this generalization 
will not be argued in this study. Instead, we shall be analysing the model under three different 
backlogging rules to demonstrate the characteristic differences between them. Not to complicate 
the analysis further, it will be assumed that the vendor-customer relationship is homogeneous; 
that is, there is no difference between the customers, and the vendor is not practicing any price 
discrimination. It is also assumed that the backlogs are cleared before satisfying the current 
demand in any period.

3.1 Mathematical Model

Under the proposed assumptions, the expected 7i-period profit can be expressed as a backward 
dynamic programming recursion:

Un{i,x,PN,PN-U· ■■,Pn,<lti) = Mn{in,PN,PN-l, ■ ■■,Pn,qn) ~ IC-S{qn -  in), (3.1)

where Mn is the expected n-period pseudo-profit function (i.e., the expected profit regardless of 
the ordering cost) which will be defined later. II„ is expressed not only as a function of current 
period’s decision variables, pn and but also in terms of all previous pricing decision variables 
which might be employed by a backlogging rule in general. We adopt the convension that if the 
backlogging rule does not require a subset of the price variables through Pn+ij tlien those
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will be simply dropped from tlie notation. For instance, according to the fifth backlogging rule 
none of pn through pn+i are needed. It is also clear that the decision variables pj\f through 
Pn + i are needed only when Qn < 0. That is, for any ,. ·., Pn+i ^ [ îj ^u] it follows
that

> 0 Mn{} 11 j Pj\[) Pm-  1) · · · ) 1) Pri) Qn) — ^Ti (̂ n ) PN) PN— 1) · · · ) Pri-f 1) Pm Qn))

V p N ,P T V -l ,  · · · ,Pn-t-l G [Piy Pu].

Furthermore, we introduce the following notation:

Un(hi,PN^PN-U · -iPn + U(ln) = tnax{l\n{in,PNiPN^u · · .,Pn,^/n) : Pn E [PtiPn])

=  I ^ n i h i . P N i P N - l ,  · . · ,Pn + l,  (7n) -  IC-6{qn -  in),

(3.3)

and

llri {hi,PN,PN-U---,Pii + l) =  max-{ll„(z„,P7V,PAT-1,.. .,Pn + l,<7n) : Qn > in}, (3.4)

where

M,,{in,PN,PN-l,---,Pn + U(In) = max{Mn(in,PAT,PyV-l, . . .,Pn,(/n) : Pn E [Pl,Pu]}·

(3.5)

Therefore, the overall optimization problem is to determine the optimal decision variables p̂
and i/* for all ?i, which jointly maximize 11 tv for a given ¿tv-

Since there is no cost of pricing, intuitively, the vendor must reconsider pricing at every
decision epoch, because this can only improve his objective. However, the same argument does
not hold for the procurement decision, because there is an ordering cost. If pricing decision
is ignored, then the classical inventory theory indicates that is given by an (cr„,^ „) policy.
With the addition of pricing decision, however, we intuitively expect to have a different optimal
control policy, which might inherit an {an, i^n) type policy for the determination of </*. If such

—★
a policy exists, then it would operate on the function which must satisfy the separation 
property defined by:

n(hi) Pat, Pn— i , · · ·, Pn+i > În) ^ n ( ,̂ Pn ,Pn — i , · · ·, Pn-f-i, (/n) T (h0> (̂ * )̂

where 7u„ is a continuous function. Thus, it is essential to study the characteristics of this 
function which leads us to an optimal control scheme. To this end, we include here the definition 
of a class of functions, which is introduced by Porteus [11], that will be referred to and extended 
later.
Definition 1 . C{jyK^) is a set of univariate continuous functions which are:

(a) increasing on (—00,7];
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(c) K-dccreasing on [7, 00), 
such that they
(d) have a finite maximizer on (0,oo).
It is clear that if a function belongs to ^(7, A,’), then it is quasi-A^-concave .

Suppose that satisfies condition (3.G), then we can define a critical on-hand inventory 
level often referred to as “order-ui)-to level” :

t'n =  < i r g s u i ) { M , X Q , p N . ..,Pn+u<ln) : 0 < g„ < oo}. (3.7)

U follows from (3.2) tlial i.s iiidcpaulciit of Pn ,pn- i , ■ · ■, or Pn+i- Also, it is intuitive to
J  . . . “- ~ A·   ̂  ̂ ^

expect that Pn finite. Moreover, if is independent o fPn ,Pn - u · · · yPn+i and Myj(0, qn) G
C(j,/C) for some 7 G 7̂ ”̂ , then there exists a “reorder level” (T„, which is defined by

<7„ = min{a : A/*(0,<r) =  M *(0, ij:,.) -  AJ},

and i/* is obtained from
7m ~  hi "b (i^M “ * hi)'^(^n ~~ hi)· 

According to this (cTnj n) policy we rewrite (3.4) as:

^ ^  ) hi ^— \ 
Iln (in) =

^11 (hi} hi) ^ hi ·

(3.8)

(3.9)

(3.10)

On the other hand, if satisfies (3.6) but depends on PN)Pn -\) .. or Pn-fi, l-bon it is clear 
that the solution for ir„, given by (3.8), can depend on a subset of these price variables. In this 
Ccise an ((r,j, ]}Jm) l̂ ypo policy is not oi)timal in general, and we might consider a new criterion for 
the determination of (/*. To this end, we shall introduce a set of regularity conditions imposed 
on under which an optimal control scheme can still be devised. These conditions establish 
a class of functions characterized by the following
D efin ition  2. C’'(7,A’ ) is a set of univariate continuous functions which are:
(a) quasiconvex on (—o o ,0];
(b) increasing on [0, 7];
(c) fC-decreasing on [7, 00), 
such that they
(d) have a finite maximizer on (0,oo).
It is clear that C’ (7,AJ) C ’̂' (7, A.’).

Suppose that there exists 7 G for all · · -»Pn+i ^ [PiiPu] such that M „(0,
PNTN-i,· --yPn+uqu) e  C’'(7, a:), then q̂  is obtained from

'/*, =  +  (tin  -  i n ) - S { t n  -  in)-S ( ^ M „ { i n , p N , P N - l ,  ■ · . ,P n + l ,  t n )  -  All

- M , ^ { г n , p I g , p { ^ - ı , . . . , p „ + i ,  i „ ) j
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= in +  (^AIni^>PN,PN-l, ■ · · ,Pn+l, in )  ~ /C

-Mn{0,PN,PN-U·  · - »Pn+l.in))

According to this policy we rewrite (3.4) as; 

n „  {in,PN,PN-U ■ ■ ■ ,Pu+l) = mn(in)

(3.11)

+  <
mai:{Mn(0, PN,PN-U ■ ■ · iPn + l, hi), Mn(0,PN,PN-l> ■ ■ · ,Pn + l, in )  —

— *  /  · \+ hi)

^ i<n)

(3.12)
Comparing the policies given by (3.9) and (3.11) we observe that there is a reorder point in 

the former but not in the latter. In principle, the latter also functions like an (cTyi,^yj) policy, 
but there is not a single level of critical inventory that triggers the ordering mechanism. That 
is, the previous pricing decisions as well as the beginning inventory level must be taken into 
account in reorder decisions. It is also worth mentioning that, the price which maximizes Mn 
for qn = in is needed for the latter, whereas for the former it is needed only when (Tn < in· 
This implies that more computational work is required under the latter policy.

3.2 Special Cases

In this section, we introduce three special backlogging rules and establish the pseudo-profit 
function under each of these characterizations.

3.2.1 Case I

Suppose that the vendor does not allow backlogging. Under this rule the pseudo-profit function 
for 71 > 1 is expressed as:

Mn{in,Pn,qn) =  -C'(<Zn -  in)

^̂ n —1(^) ’ 5”  ^ ' ( -^ (P n )  in )  I O ^ i n ^ - ^ ( P n ) ,

+  < (3-^3)

- ^ ( p » ) )  . X(Pn)<(ln,

where A'(pn) is the random demand in period n at a price level of IIq = 0  and s represents 
the unit penalty when the demand is lost. Note that (3.13) satisfies

Mn(in,Pn,qn) = Mn{0,p„,qn) +  c-in, (3.14)

which implies that tlie separation property given by (3.6) holds for =  1 , . . . ,  with m „(z„) =  

c-L.
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3.2.2 Case II

Suppose Uiat if there is shortage, then the customers are willing to wait only one period and 
pay the current period’s price. Under this backlogging rule the pseudo-profit function for n >  1 
is expres.sed as;

Mn{hnPn + UPny(Ifi) = -C'{(ln -  in)

^  (Pn)> P̂ )̂ '̂Pn ipri) ~i“ 7 »̂+i ’ (/m (In < 0,

+  -  X{pn)ypn)-\-Pn-qn + tt-Pn-(^(Pn) “  <In) , 0 < < X(pn)y (3.15)

’ ll;i_ 1 ((i'n X {Pn) i Pn) Pn ' X {Pn) î '{(Iri X{Pn)) X{Pn) ^ Qm

where »s represents the unit penalty when the backlogged demand is lost. Note that the model 
does not assign any specific penalty for a shortage if it occurs for the first time. Since ij\[ > 0, 
the Qn range of (—oo,0) is ignored for n = N. Moreover, we let pn+i =  0.

Suppose in < 0, that is there is a backlog from period n +  1. If the vendor decides not to 
procure anything or to procure some but not enough to cover the whole backlog, that is < 0, 
then two things will occur according to the backlogging rule: (2) all of the demand in period n 
will be backlogged to period — 1 and {it) the unsatisfied portion of the backlog from period 
71+1 will be lost. To account for (z) we add a-PnX{Pn) a revenue to the profit function. That 
is, the vendor promises to supply X{pn) Pn Hie next period and the customers are willing to 
wait one more period. Since the payment takes place in period 71 — 1, we must discount it by a 
to period 71. Note that with this formulation we add the revenue, which will be collected in the 
next period into the current period, ahead of time. However, it is possible that the vendor may 
find it more profitable not to satisfy all of the backlog or some portion of it in period 71 — 1. 
If this happens, then we must deduct the revenue that corresponds to unsatisfied portion of 
the backlog from period n — Ts revenue. Thus, in period n we must consider an analogous 
deduction for period 7i +  1 to account for (n). This amount is given by Pn+i'^u) where pn+i is 
the price promised to the customers in period 71 +  1 and is the amount of the backlog from 
period 71+1 which is not satisfied in period n. Note that since (¡n < 0, Pn+i'Qn represents 
a negative cash ilow (loss). Moreover, since the backlog from period n to 72 — 1 is X{pn) Hie 
discounted 72 -  1 period profit is given by « · p ĵ).

If 0 < (jn < X{Pn)i Hien the vendor decides to satisfy all of the back orders, if any, and some 
portion of the demand in period 72. Thus, we add the discounted revenue a · pn · (X{pn) — Çn) 
to period 72’s profit supposing that the backlogged amount (X(Pn) — Çn) will be satisfied in the 
next period at a price of pn-
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The liist period, i.e. n =  1, is a lost sales model. Therefore, we have

{P2-<li -  s-(X{pi) -  qi) , ?i < 0,
p i-5i - s - ( X ( p i ) - < 7i) , 0 < g i < X ( p i ) ,  (3.16)

P i - X { p i ) - h - { q i - X { p i ) )  , ^ (P i )< g i ,

where p2'(h represents the lost revenue due to not meeting the demand which is unsatisfied in 
period 2 and carried into period 1.

Finally, considering (3.15) and (3.16) we identify a functional simplification:

(̂ n ) Pn + l > Pn) ^n) — (0) Pn-f 1 j Pn} fZri) "h , (3.17)

which implies that the separation property given by (3.6) holds for n =  1 , . . . ,  with mn{in) =

c-iri.

3.2.3 Case III

Suppose that if there is shortage, then the customers agree to wait one more period and pay that 
period’s price. Under this backlogging rule the pseudo-profit function for 7i > 1 is expressed as: 

Mn{in) Pm flu) — ~~ hi) — Pn'hi'^{~hi)

+ Pn'(ln S-(Jn , (In < 0 ,

+ { a· llyi_i(</ri ““ >̂ (Pn)) d" Pri*(/ri ) 0 ^ f/n ^-^(Pn)> (3.18)
a-U ,,_i((/„ -  A"(pr;))+Pn-^(Pn) “ ^(Pn)) ) ^ {̂Pn) < (Jru

where s represents the unit penalty when the backlogged demand is lost. Since 2yv > 0, the qn 
range of ( “ OO, 0) is ignored for n = N.

Suppose in < 0, that is there is a backlog from period n -f 1, then the revenue in period n 
is equal to Pn'iQn -  in)· On the other hand, if > 0, then the revenue is Pn-Qn for qn < N{Pn) 
and it is PrrA (̂pn) for A"(p„) < (¡n· Since the term pn-in appears only when in < 0, we represent 

it by Pn’in-S(-in)·
The last period, i.e. n = 1, is a lost sales model. Therefore, we have

A/i (2i ,Pi , (/i) =  -c-{qi -  ii) -  P i’U •<5(-2i) +
P r q i - s - { X { p i ) - q i )  , gi<A(pi),
P i-A (p i ) - /i .( f ; i  - X ( p i ) )  , A:(p i ) <qi.

(3.19)
In the next two sections we shall study these special cases separately under deterministic 

and probabilistic demand models to characterize possible optimal decision policies.
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3.3 Deterministic Demand

If there is no uncertainty, then the relationship between demand and price in each period is 
characterized by the X{pn) function. That is, we replace X(pn) by X{pn)j M by M and II by 
II. In what follows we shall analyse each special case under deterministic demand assumption.

3.3.1 Special Case I

We shall prove that, under special case I, G C{X(Pc)^ X) such that the optimal procurement 
policy is given by (3.9). To this end, we shall follow an induction proof. First, we shall 
prove that A'l̂  G C{X{Pc)i X)y which will be the basic step. Then, we shall assume that that
__  ̂  ̂ "A~A·
X^n-i ^ A-) ŝ ich that Il„_ i is given by (3.10). Finally, we shall demonstrate that

G C{X{Pc), which will complete the proof.
Lem m a 3. G C{X{Pc)j X).
P roof. The proof follows from Theorem 2, which indicates that is a queisiconcave function 
of <ii on [0, oo) and = X{Pc)·

---AA
Therefore, is obtained from (3.9) and IÎ  is given by (3.10).

—A
We now consider M „. We represent this function as:

where

 ̂ {hiiQn) ) >(/«)}»

Ml^\in,<]n) = : P t < P n < p ]

(3.20)

(3.21)

___(2) — : ,
XITi i n̂yQn) — </n) · P Pn ^ Pxi})

and p is such that:

tt(i)

X{p) =  max{min{q„,X{Pi)},X{P^)}.

(3.22)

(3.23)
; ( 2)Hence, M\ and are of two complementary subproblems which are related to each other

through p, which in turn depends on Qn· Note that if p„ G [Pi,p] (or p„ € \p,Pu])y flien < 
_ —(1) —(2)

(or > ) X{pn)· Therefore, (or ) represents the pseudo-profit under a pricing policy
that keeps the period ending inventory level at or below (or above) zero.

Since (jn is not defined on ( - 00,0), condition (a) of the definition of C(y^X) is irrelevant 
here. We now establish the validity of condition (b) of the same definition:
Lem m a 4. M *(2„,</„) is an increasing function of q,, on [0 ,X (^ )]  for N > n > 2 .

P roof. We shall demonstrate that and are increasing functions of (/„ on [0,^(Pc)], 
which implies that M *, given by (3.20), is also an increasing function of qn· From (3.13) and 

(3.21) it follows that
r 1 ̂  'XX --

M,; {in, (In) -  max{a-ri„_i(0) + p„-</„ -  s-X{pn) + (s -  c)-</„ + c-i„ : Pi < Pn <p ) ,
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wliere Uic inaxiinand Pn-<ln — >>-X{pn) is an increasing function of p„. Hence, we have

:)-g„ -s-X (p ) + c-i„

(P„ +  s -  c)-qn -  s-X{Pu), q,x < X{Pu),

Ml!\in,qn) =  « • ll„_ i (0) +  (p +  s - c ) - g „ - s - x ( p )  +  c-i„

=  Q rll„_ i(0) +  c f „  +  < (3.24)
i p - c ) - X { p ) , X { P u )  < in .

Since f/„ <  X { P c ) ,  if follows from (3.23) that either p =  or X { p )  — qn- If the former holds,
then it trivially follows from (3.24) that M„  is a linear increasing function of 5,,. Otherwise,
that is if X(p) =  in, then it is an increasing function of *.

—(2) . _ *  __ _
Next we consider the subproblem on M,  ̂ . Recalling the assumption that M^-i  G C {X{Pc) ,

X), the expression (3.22) will be:

Tt(2) {i„,qn) -  max[a-n„_y{qn -  X{pn)) -  (c-\-h)-q„

+ {Pri+ll)-XiPn)+C-in : P<Pn<Pu} (3.25)

=  max{a-max{M„_i{q„ -  X (p „ ) ,q n -  X{pn)) ,

^ n - l ( in  -X{Pn), t 'n - i )  -  /C) -  (c + h)-q„ 

+ (P n  + li)-X(Pn) +  c-in : p < P n <  Pu)

— i i ia . x \ M ( b n i n )  I .itfn ( * n , i n ) } ,
__(21) — (22)

where M „ and M „ are defined by:

( i n , i n )  ~  . .^ (P n ),in  .^ (P n ) )  ( c " l " / i ) ' i n

+iPu+ll)-X{p,i) + C-in ■. P<Pn<Pu]

(3.26)

and

M„ (in,qrt)

max{a-M„_i{0,qn -  X(Pn)) ~  [(1 -  a ) - c +  / i ] - i „

+(Pn +  fi -  a-c) A '(p „ )+  c.i„ : p < P n < P u } ,  (3.27)

m a x - { a . ( M * _ i ( i „  -  X (p „), :}:„_i) - /C) -  (c +  / i ) - i „

+ (P n  +  h ) - X { p n )  +  c in : p < P n <  Pu)

= mai'{a-(M„_i(0,i:„_i) -K.) -  [(1 -  a).c + /tj-in

+(p„ + /t -  a -c ).X (p „) +  c-i'n : p < P n < P u ] ·  (3.28)

*Lcl = (P -  c) · g,i, wlicre 9,, =  X(p).  Then, ^  > (<)0 p > (<}Pc·
dqn dp dqn
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It follows from (3.23) that for € [0,y>ir(Pu)] we have p =  which implies that given
by (3.25), clisai)pears and from (3.20) we obtain M „ =  M̂ „ \ Therefore, for the purpose of the

— ( 2) —  —  -
proof, we shall restrict the analysis of Af„ on the </„ range of [X{Pu),X{Pc)], which implies 
that Pc < p. Moreover, considering the maximands in (3.27) and (3.28) we note that the 
maximizer of the function {p + h -  a-c)-X{p) on [Pi, P„] is P/,c, where P/,c <  Pc- Hence, this 
function is decreasing on \p,Pu]· Hi addition, since </„ — X{pn) > 0 on [p, P«], the maximizer 
in (3.27), say p ,̂ must satisfy

0 < <Zn -  X (p ')  < (3.29)

FurUiennore, for any f/„ we choose r/'j with X{Pu) < (In < q'n < in order to demonstrate
that \iTu(ln) < {hi) (In)' Also, we define p' by

A(P') =  g ' ,

which implies that Pc ^ p' ^ Pu· Moreover, we identify p' which satisfies

<ln -  X[p\) =  q'n - X { v ) ,

that implies p' < Therefore, from (3.29), (3.30) and (3.31) it follows that

<ln -  X{P') =  -  X{p',) > 0 =  9,'. -  X{p'),

which imiilies

h  < p‘ <p'  < p; < Pu.

Thus, substituting (3.31) in (3.27) and considering (3.32) we get

—(21). , —* —
(b.,in ) =  «• A i„ - i (0, 9n - A ' ( p ^ ) ) - [ ( l - a ) - c  +  /i]-g„

+{Pq + h -  a-c)-X(p'^) +  c-i„

=  9„ -  X (p ;))  -  [(1 -  a )-c +  h]-[qn -  X{p',)]

+(p ; -  c)· J (p ; )  +  c in

= a - M L i ( 0, q'n -  X{p')) ~ [(1 -  a )-c +  -  J (p ')]

Hp'q -c)-X{p'q) +  C-in

(3.30)

(3.31)

(3.32)

< «•M„_i(0, (/;. -  X{p')) -  [(1 -  a)-c + h]-[q'„ -  X{p')] 

+(p'-c)-J(p') + c-i„
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< max{a-M„_i(0, (¡'̂  -  X{pn)) ~ [(1 -  a )-c +  h]-q'^

+(Pn A h -  a-c)-X(p„)  +  c-i„ : p' < Pn < Pu]

— ( 21)

— (21) . . . .  —* ,
which implies Ihal M is an increasing function of </„. On the other hand, since (0 ,
^ „ _ i )  is independent of Pn and P̂ c < p, the maximizer in (3.28) is p, that is

Mn \̂ n,<ln) =  -  /C) +  {p - c ) -X {p )  +  c-i„,

— ( 2)
which is ail increiising function of 5,,. Hence, M „ , given by (3.26), is an increasing function 
of 5,1 on [X (P„), A'’(i\)]. Tlius, the proof follows from (3.20).

Next we consider on the remaining (jn range of [X (Pc),oo) to establish the validity of
-—'k

condition (c) of the definition of C for M „.
Lem m a 5. «ii atC-decreasing function of on [X[Pc)^oo) for N > n > 2 ,

— ( 1)P roof. In the following proof we shall demonstrate that is a decreasing function and
is an a/J-decreasing function which implies that given by (3.20), is an aA^-decreasing 

function of qn on [X{Pc)^oo).
If X[Pl)  < then p zz Pi which implies that for the range of [X{Pi)^oo) the function 

disappears and we have \ Therefore, it follows from (3.24) that  ̂ is a
decreasing function of qn on [X{Pc)y X{Pi)].

—(2) . . . - 4 .For the analysis of we identify two cases which are defined by qn with respect to 4̂ n-i_ __ _1̂2)
; _  A (p) < and i/,, — X{p) > tln -i· We shall show that in either case M „ will beas:

— _ j —(2)ttA-decreasing at (/„. If <7„ -  X(p) < + ¡» -1, then it follows from (3.25) that is given by
(3.26). Therefore, considering (3.27) and (3.28) we have

Mf\i,xUln) =  -  X{Pn)) -  [(1 -  a)-c + /»]·?„

+(Pn +  h -  a-c)-X(pn) +  c-in : P < Pn < Fu)

< maa;{cv-M „_i(0, i l „ _ i )  -  [(1 -  a)-c + h]-q„

+(Pn + h -  a-c)-X(pn) + c-irx : p < P n <  Pu}

= M^P{in,qn)+ a-X. 

rurtheriiiore, from (3.28) we have

Mn'\in,qn) = m a x { a i M l - i i ( ^ > t n - i ) - f C ) - [ { l - a y c A h ] - q n

+{Pn +  h ~  a-c)-X{pn) +  c-in : P < Pn < Pu}-

(3.33)
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If X{Pc) < <ln < X(Pitc), fliaf is Phc < P, Uien the maximizer of (p„ + /t-a -c)-A ’ (p„) on \p, P„] 
is p, Uial is

__( 22) __ -k  __

{İtli fin) =  i 'n - i)  “  f )̂ + {p — f̂ )‘^{p) +  c-inj

which is a clecrccising function of r/„. If, however, X{Pj^c) < Qm that is p < P}̂ c) then

M\^/\ini(ln) =  -  /C) -  [(1 -  a ).c  -f /i].7„

+  (^/tc -l· ll — CX'C)-X{Pfic) +  C-iny

wliich is a linear decreasing function of (/„. Therefore, it follows from (3.26) and (3.33) that 
is an aAJ-decreasing function of

On the other hand, if qn — X{p) > (which can hold only when p = Pi for X{Pc) < qm 
because > 0), tlieii it follows from (3.25) and (3.9) that

__( 2) __k  __
M„ (in,qn) = » » a a ;{a .M „_ ı(0 ,i /„ -X (p „ ) ) - [ ( l -a ) -c + /ı ] - ç „

+(Pn +  h -  a-c)-X (p„) +  c-i„ : P i < P n < P n )  (3.34)

Since M „_i is /C-decreasing on [^„_i,oo), by assumption, we have M„_ı(0,Çn — X(Pn)) > 
M„_i(0,  q'n — X ( p n ) )  — X for all p„ 6 [Pi, Pu\ and for all q'  ̂ > qn· Thus, from (3.34) we get

—  (2) k —
M „ {in,qn) > max{a {M „_ i (0 ,q ' „ -X {pn ) ) -X ) - [ { l -a )^c - l · l ı ]■qn

+(Pn + l i -  a-c)-X{pn) +  c-in : Pi < Pn < Pu)

> max{a-M„_i{0,q'  ̂ -  X{pn)) -  [(1 -  a ) - c +  /i]·?;

+(Pn +  h -  a-c)-X(pn) +  c-t„ : Pi < Pn < ^u) -  «-/C

=  M i'\zn ,q 'J -a -X ,

— (2) .  ̂ .
which implies that is a/C-decreasing in qĵ  and the proof is complete.

Finally, combining the results stated as Lemmas 3 through 5 we establish the following 
theorem without proof.
T heorem  3. M „(i„,< /„) ^ ^(-^(^c)i ^); where n =  1 ,...,7V .
According to the previous theorem, q̂  ̂ is obtained from (3.9) and 11̂  is given by (3.10).

3.3.2 Special Case II

In this section we shall prove that E C\X{Pc)yX)y such that the optimal procurement 
policy is given by (3.5). To this end, we shall follow an induction proof. First, we shall
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prove Uiat M j G C'(X{Pc),fC), whicli will be the basic step. Then, we shall assume that that
------iç —  — ' ' ''A'A'

^n-\  ^ C'{X{Pc)yfC) such that will be given by (3.12). Finally, we shall demonstrate
that G C'{X{Pc)ylC)^ which will complete the proof.
Lem m a 6. Mi{i\^P2y(l\)  ̂C\X{Pc)^X).
P roof. For i/i < 0 it follows from (3.16) that

M l(n ,P 2,Pl,<Zl) =  (P2 -f 5 -  c)-qi -  s*X(pi) -f c-z'i,

which is an increasing function of pi . Thus,

Mi{i\yP2yq\) =  (P2 +  5 -  c)-(/i -  s-X{Pu) -t- c-z‘i, (3.35)

which is a linear function of q\. Note that depending on the value o fp 2, M^ can be an increasing 
or a decreasing function. In addition. Theorem 2 indicates that for <71 > 0, is a qucisiconcave 
function of i/i, where = X{Pc)· Thus, combining this result with (3.35) the proof follows.

Therefore, q\ is obtained from (3.11) and 11  ̂ is given by (3.12). An immediate observation 
which will be referred to later is stated in the following 
C orollary 1. m \{İu P2,X‘ \) =  (Pc -  c)-X(Pc) +  c-ii, where =  X{Pc).

We now extend the result given by (3.35) to cover the other periods with the following 
Lem m a 7. M„(z\i, (/n) is a linear function of q̂  on (—oo,0] for N > n > 2 .
P roof. From (3.15) we have

M 2İİ2,P3,P2,q2) =  a -IIi i - X { p 2),P2) +  a-p2-X{p2) + İP3 + s -  c)-q2 +  C-İ2, (3.36)

for <72 < 0. utilizing (3.12) to obtain II, and substituting it in (3.36) we rewrite M 2 as:

M2{İ2,P3,P2,q2) = OC-inax{Mi{-X{p2),P2, -X{P2)) , ^/^(-^(Pz), P2, Î 1) ~/C}

+a-p2-^(P2) +  (P3 +  S -  c)-</2 +  C-İ2.

Moreover, obtaining M^{—X{p2),p2y—X{p2)) from (3.35) and M i(—X (p 2),P2>t^i) from 
Corollary 1 wc write

M2(i2,P3,P2,q2) = a-7nax{-s-X{p2) -  s-X{Pu) , {Pc-c)-X{Pc)-X

+ (P2 -  c)-X{p2)} + (P3 + S -  c)-i2 + C-l2. (3.37)

Therefore, solving the maximization problem (3.5) for M 2 by utilizing (3.37) we obtain

M*2(i2,P3,q2) =  a-m ax-{-2-s -J (P „) , 2-{Pc -  c)-X{Pc) -  X]

+  (P3 +  s -  c)-92 +  C-l2

=  ^21 +  (P3 +  S -c)-Ç 2  +  C-Î2, (3.38)
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where A2i is a coiislanl which equals to either - 2-S‘X{Pu) or 2-(/^c -  c)-X{Pc) -  X depending 
on the magnitude of X with respect to the parameters s, c and the X{p) function.

To complete the proof we shall demonstrate that M 3 assumes a similar linear form to the 
expression given by (3.38). Repeating the analysis given by (3.3G) through (3.38) for 71 =  3 we 
obtain the following:

M3{i-j,P4,P3,<l3) = 0 1II2 {-X(P3),P3) +  a-P3-X{P3) + (P4+ S -  c)-q3 +  c-ia

= »■max{Ml{-X{pa),P3,-X{p3)) , Ml {-X{p3),P3,t2)  ~ X}

+a-p3-X{p3) +  +  s -  c)-q3 +  0-13. (3.39)

Considering pro])erty (3.C) and Uie previous result (3.38) we get

M3(i3,Pn,P3,q3) = a max{A2i - s  X{p3) , M2(0,P3,t2) ~ X +  (P3 ~ c)-X{p3)}

+ ( P 4 +  s  -  c )-?3 +  C - l3,

which implies that

Ml{i3ylMyq3) = a ‘ max{A2i -  s-X{Pu) , M 2(0, 2) -  fC-l· (Pc -  c)-X(Pc)}

+(P4 +  5 -  c)-q3 -f C-73

= A3I + (P4 + 5 — c)-(/3 + C-73, (3.40)

where yl3i is a constant which is either A21 -  s-X{Pu) or m \{Q,P3, ^̂ 2) “  /C +  {Pc -  c)-X{Pc). 
Hence, it is clear that repeating the above procedure n times we would obtain a series of 
constants, such that

M „(2 „ ,p„4.i ,(/„) =  Ani +  (pn+i +  s -  c)-qn + c-in, (3.41)

which is a linear function of q̂  that holds for < (/n < 0 and N > n > 2 .
An immediate consequence of Lemma 7 is stated in the following 

C orollary  2. For all qn < 0 where N >  n > 2 the best price is either Pu or Pc where 

Pu > Pc > c.
According to the previous corollary, for any q̂  < 0 the vendor sets a price of Pc or Pu· The 
former is the maximizer of the function a-{p — c)-A(p), which represents the net pseudo-profit 
due to not selling X{p) in the current period but in the next assuming that all of the backlog, 
i.e. X{p)) will be satisfied then. On the other hand, if the vendor administers the latter 
price, which is the highest possible, then he incurs not only the highest unit revenue but also 
minimizes the shortages in the current period.
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Having completed the analysis of for (¡n G (—oo,0], which conforms condition (a) of the
deiinition of C'{X(Pc)j i we now establish the validity of condition (b) of the same definition.
Lem m a 8. M^JinyPn+i, (In) increasing function of Qn on [0,X(Pc)] for N > n >2 .

—(1) —(2)P roof. In the following proof we shall demonstrate that and are increasing functions
of Qfi on [0,>Y(Pc)], which implies that M „, given by (3.20), is also an increasing function of

From (3.15) and (3.21) it follows that
— — (1) — —

iiu,Pn+i,qn) =  -  X{pn),Pn) +  (Pn -  c)-g„

+a-Pn-(X(Pn) -  Qn) +  c-i„ : Pi<Pn < p}·

Substituting for H„_i from (3.12) we have

Ml'\in,Pn+u<In) = inax{a-max{Ml_i{qn-X{pn),Pn,<ln-X{Pn)) ,

xC_i{qn -  A '(p „),p „ ,t :n -l)  -  +  (pn -  c)-q„

+a-p„-{X{pn) -  qn) + c-in : Pi < Pn < p]

= max{M[ \in,Pn+h<ln) , m [  \ i„ ,P n + i,</»)}.

where and ^ are two subproblems that are defined as:
Mn^\in,Pn+u<ln) = -  X{pn),Pn,<In ~ X{Pn)) +  (Pn ~ c)-qn

+ oc-pn-{X{pn) -  qn) + c-in ■■ Pt<Pn< p},

(3.42)

(3.43)

and
?„) =  m ax{cv(M *_i((/„ -  J i(p „),p „, i l „ _ i )  -  /C) +  (p„ -  c)·?,,

+  a-pn-{X{p„) -  q„) + c-in ■■ Pi < Pn <  p}· (3-44)

Since qn -  X{Pn) < 0 for all p„ £ [Pi,p], A/„_i((/n -X(Pn),Pn,qn -X {Pn) )  is given by (3.41). 
With this substitution (3.43) can be rewritten as:

Ml^^\if».Pn+i.in) =  m aa;{a-^(„_i)i-f (p„ +  a - s - c ) - i „

-a -s -X (p „ )  +  c-in ■ Pi < Pn < P}

=  a-yl(„_i)i +  (p +  a-s — c)o/„ -  a-s-A ’(p) +  c-f„. (3.45)

Since qn ^ X(,Pc)i if follows from (3.23) that either p =  P̂  or X^p) — qn- If Ibe former holds, 

then it trivially follows from (3.45) that M „ is a linear increasing function of q,,- Otherwise, 

that is if 3f(p) =  q,„ Uien (3.45) reduces to

r(li) (i„,Pn+l.(?n) =  +  (p - c ) - X ( p )  +  c-in, (3.46)
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wliicli is an increasing function of q„.
For m Î ^̂  we utilize (3.6) to represent M,^_i{q„ -  X (p „),p „ , as:

M,^_i{qn ~ ^(Fn))?^u ijn -i)  — .^n-i(O)Pn) i n - i )  "F C’ ((7n ~ .^(Pn))) (3·'^^)

where M „_ i(0 ,p „, ^in-i) is a constant due to property (3.2). Therefore, substituting (3.47) in 
(3.44) we obtain

M ,, (hi» Pri + 1) 7n) ItldX̂ Oi' î M (0, Pn j ^ ,(_ i) Â ) -|- (1 cv)· (̂ Pfi c) *iri

+  «  (Pn -  c)-yY(pn) +  c-i„ : Pi < Pn < p).

Let p̂  be the inaxirnizer in (3.48). If p̂  G (Pi,p), then it must satisfy

( l - a ) - g „  +  t t ~ { (p - c ) - ; f (p ) }| ,^  = 0,

(3.48)

(3.49)

wliicli iini>lies tliat Pq > Pc > c and

dpq _ (1 -c v )
<̂1» - 0‘ -£i{ip-c)-X{p))\^^

> 0 .

Thus,
—.(12)

dMj  ̂ {hi} Pn + h (¡n)
dqn

= (1 - a ) - ( p ,  - c )  > 0,

— (12) . . . .
which stales that A/„ is an increasing function of qn. On the other hand, if Pq is a boundary 
solution, then since (1 -  Oi)-qn +  oc-d{{p -  c)-X{p)}/dp > 0 for all p G [Pi, Pc], we have pq =  p, 
that is

(hi,P» + l, Vn) = « '(^ » -liO .P n .t in -l) -  /C) +  ( p -  c)-A'(p) +  c-z„,

which is an increasing function of q̂ . Hence, it follows from (3.42) that  ̂ is an increasing 
function of q,i as well.

—(2) —
Next we consider the subproblem given by (3.22). Writing Mn from (3.15) and

substituting for the expression given by (3.12) we have

M,?\hi,Pn+i.7n) =  »«az{a-U „_i((7„ -  X{p„),pn) -  (c +  /i)·?,,

+(Pn + h)-X{pn) +  c-in : p<Pn<  ^u) (3.50)

max{a-max{M„_^{qn -  X{Pn),Pn,qn ~ X{Pn)) ,

^ n  — l{qn X(Pn))Pn) tn  — l) (c ·+■ h) ’ l/ti

+(Pfi +  h)-x{p„)  +  c-in ■ P<Pn < Pu} (3.51)

—(21) __(22)
max{M„ ( i„ ,p „+ i,g „)  , M „ (i„,P n + i.9n)}, (3.52)
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— (21) — (22) — (2)
wliere M,  ̂ and M „ are two subproblems of M,  ̂ that are defined by:

Mn \in,Pn+l,qn) =  "*«2’'{a -A /„-l( '/n  -•A'(pn).Pn,9n -^ (P n ) )  -  (c +  /l)-?„

+(Pri+/i)-^(Pn) + c-i„ : p<Pn<Pu}

and

— ( 22)
{in,Pn + h'In)

max{a-M„_i{0,Pn,qn -  X(pn)) ~ [(1 -  a)-c+

“b(Pn "b h oc'C^'JC(Pn) ~b · P ^  Pn ^  f ^u} j (3*53)

·(Afjj^I(((jj ( i ^n ) t ) ^n—1) X) ( c “b/i)*((fi

+(pn + /i)-X(pn) +  c-i„ : P < p„ < Pu}

= m aa:{a-(A/„_i(0,p „ ,t :n - i )  -  /C) -  [(1 -  a ) - c +

+(Pn +  /t -  a-c)-X(pn) +  c-i„ : p < p„ < Pu}-(3.54)

—  — (2)
It follows from (3.23) that for G [0,X(Pu)] we have p = which implies that , given

. —(1)by (3.50), disappears and from (3.20) we obtain . Therefore, for the purpose of the

proof, we shall restrict the analysis of  ̂ on the range of [X{Pu)i X{Pc)]) which implies 
that Pc < P· Moreover, considering the maximands in (3.53) and (3.54) we note that the 
maximizer of the function (p +  li — a'c)-X{p)  on [Pî  Pu] is Pho where Phc < Pc· Hence, this 
function is decreasing on [p, Pti]· In addition, since q̂  -  X{pn) > 0 on [p, Pu], Hie maximizer 
in (3.53), say p ,̂ must satisfy

0 < < 7 n -^ (p ; )<  t n - i .  (3.55)

Furtliennore, for any we choose i?', with X{Pu) < in < in < X{Pc) in order to demonstrate 
__(21) — (21)

that M „ (i»,Pn+i>in) < (*n,Pn+i,i(,)· Also, we define p' by

^ (P ') =  ii.. ■

which implies that Pc < p' < Pu- Moreover, we identify p' which satisfies

i » - x ( p ; )  =  i ; - ^ ( p O .

that implies p' < p ' . Therefore, from (3.55), (3.56) and (3.57) it follows that

-  x (p ')  =  in -  A (p ;) > 0 =  i ;  -  J (p ') ,

which implies
P c< p ' <p ' < p'„ < Pu-

(3.56)

(3.57)

(3.58)
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Tluis, substituting (3.57) in (3.53) and considering (3.58) we get

-  [{I -  a)-c-h li]-qn 
+(Pİ +  -  oc-c)-X{p' )̂ +  c-i„

= -X{p'^)) -  [(1 -  a )-c+ /t]-[g „ -  X{p' )̂]

+{Pq -  c)-X{Pq) +  c-i„

=  a-Ml_,{0,p',  <?; -  X(p')) _  [(1 -  a ) - c +  /»]-K  -  J (p ')]

+  {Pq -  <^)-^{p'q) +  C-in

< a-Ml_,{0,p',q'„ -  X{p')) -  [(1 -  a ).c  +  /,].[r;; -  X{p')]

+{p' -  c)-X{p') + c-in

< max{a-M„_^{0,p„,q'„ -  X(pn)) ~ [(1 - a ) - c  +  h]-q'^

+(pn + l i -  a-c)-X{pn) +  c-in : p' < Pn < Pu]

— ( 21)
— Myj (^n)Pn-fl, ^n),

“ (21) . . .  . —★
which implies that is an increasing function of qn. On the other hand, since

is independent of and < p, the maximizer in (3.54) is that is

(^n,Pri-H,(/n) = « -(l^ « -l(0 ,P n , p n -l )  -  /C) 4- {p - c ) -X {p )  +  c-in,

— ( 2)
which is an increasing function of r/„. Hence, , given by (3.52), is an increasing function 
of on [X{Pu),X{Pc)]· Thus, the proof follows from (3.20).

Next we consider on the remaining qn range of [X(Pc),oo) to establish the validity of 
condition (c) of the deiinition of C'{X{Pc), X) for
Lem m a 9. M j {̂inyPn+iy Qn) otK-decreasing function of qn on [X{Pc)yOo) for N > n > 2 .

— (1) . — (2) .
P roof. We shall demonstrate that is a decreasing function and is an a/C-decreasing 
function which implies that M,^, given by (3.20), is an a/C-decreasing function of qn on 

[X{Pc)^^)-
\[ X{Pi) < qn, then p = Pi which implies that for the range of [X{Pi),oo) the function 

disaj)pears and we have . Therefore, we shall consider Mn , under the
structure given by (3.42), for the qn range of [X{Pc))X{Pi)]· It follows from (3.46) that

Ml^^\in,Pn+iyQn) = oi-A( n̂~-i)i + { p -  c)-X{p) + c-in,
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—  _ —  ___( 12)
which is a decreasing function of on [X{Pc)  ̂X{Pt)]^ Furthermore, considering given
by (3.48) we note that the function (1 -  cv)-(p î -  c)'(ln +  oc\Pn — c)'^{Pn) is increasing in pn
on [Pt p̂\y thus,

M̂ n' \̂in,Vn-\-i,<ln) =  -  K.)P { p -  c)-X{p) + c - i „ ,

which is a decreasing function of q̂ . Thus, from (3.42) we conclude that  ̂ is a decreasing
function of </ri on [X{Pc),^{r^i)]·

— ( 2)
For the analysis of we identify two cases which are defined by q̂  with respect to

—  — (2) 
|]„_i as: c/ti ~ ^{P) £  i^n-i and </„ — X{p) > We show that in either case M„  is
«A-'-dccreasing at 9,,. If — X{p) < 4̂ n-i, then it follows from (3.50) that M „ is given by
(3.52). Considering (3.53) we have

M[P{in,P,i+i,<ln) = »»«!■{«W/„_i(0,p„,i/„ -  X{pn)) -  [(1 -  a)-c + /i]-(7„

+(Pn + h -  a-c)-X(pn) +  c-t„ : p < p„ < Pu)

< max{a-M„_i(0,p„,i^n-i) ~ [(1 ~ cn)-c-h hj-q„

+(Pn +  /i -  a-c)-X (pn) +  c-i„ : p < Pn < Pu]

= Ml^^\in,Pn+i,(ln) + oi-X. (3.59)

Furthermore, from (3.54) we have

Mn^\in,Pn+u<In) =  m a i-{a -(M *_i(0 ,p „,i:„_ i) -  X) -  [(1 -  a)-c +  /t]-g„

+(Pn + h -  a-c)-X{pn) +  c-in : P < Pn < Pu}·

If A'(Pc) < <ln < ^{Hhc), that is Puc < p, then the maximizer of (p„ +h  — a-c)-X(p„) on [p, P„] 
is py that is

{huPn + l) Qn) = Of- ( M „ _ i ( 0 ,  Pfi, ^ n -l)  — +  (P “  ^)*^(p) d"

which is a decreasing function of q̂ . If, however, X{Phc) < (Zn, l̂ liat is p < F/ic, then

Ml^̂ \in,Pn-i-uQn} = o‘-{M„_^(0,p„,i:n-i) - X ) -  [(1 -  a)-cAh]-qn

+(-P/ic + h — a-c)-X{Phc) +  c-iri,

which is a linear decreasing function of Therefore, it follows from (3.52) and (3.59) that 
_(2)

is an Qf/C-decreasing function of
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On Uie other liand, if q,t~X{p) > i^n-i (which can hold only when p = Pt for X{Pc) < qn, 
because > 0), then it follows from (3.50) and (3.12) that

___( 2) — *  —
iin,Pn+i,q,i) = inax{a-M„_i{0,p„,q„ -  X{p„)) -  [{I -  a)-c-\- h]-qn

+(p,, +  /i -  cv-c)-A''(p„) +  c-in : Pt < p„ < Pu}

(3.60)

Since is A-decreasing on [^ „_ i,o o ), by assumption, we have M „_ i(0 ,p „, -  A (p „)) >
^*n-ii^’ Pn,q'n -  X{Pn)) -  ^  for 3.11 Pn € [Pi, i*u] and for all q[̂  > q,,. Thus, from (3.60) we get

_ _ _ Z n )  ___★  .

(ln,Pn + l,?n) > " ‘ “^ {«• (^ n -l(0 ,P t ;,t f i ,-X (P n ))-A :)- [ ( l -a )-C  + /l]-(7„

+(i^„ +  /t -  a-c)-A'(p„) +  c-in ■ P i < P n <  Pu)

> max{a-M*n-i[II,Pn,q'n ~ X{Pn)) -  [(1 -  a ) -c +

+(Pr. +  /t -  o fc )-A (p„)  +  c-in ■ Pt < Pn < Pu} -  a-X

= Mn (г„,p „+ ı,î„)-αr·A u ,

_ _ (2)
which implies that is a/C-decreasiiig in qn and the proof is complete.

Finally, combining the results stated as Lemmas C through 9 we establish tlic following 
theorem without proof.
T heorom  4. For all p„+i G [Pt, Pu] il follows that M „(t„, p„+i, i/„) 6 C'{X{Pc),X), where 
n = and pN+i =  0.
According to the previous theorem, q* is obtained from (3.11) and II„ is given by (3.12).

3.3.3 Special Case III

In this section we shall present an example which demonstrates that, under special case III, 
M j is not included in C'{y,X) in general. For the purpose of the proof consider the case where 
il < 0. Then, it follows from (3.19) and (3.23) that

Miiii,pi ,qi) =

Pi-(qi -  h) -  s -X {p i ) -[■ {s -  c)-qi-P c-ii , P i < P i < P ,

{pi + h ) -X {p i) -p i- i i - ( c -\ -h ) -q i-pc -i i  , p < P i < P u -
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Since (ji — zj > 0, is increcosing in pi on [Pi p̂] which implies that

' { Pu+s - c ) - q i - {Pu- c ) - i i - s - X{P^)  , *i < i i  < ^(Pu),

=  < , JN w  N · -  ^  ^  n 1;naa;{(;;i + li)-X(pi) -  Pi-n : p < Pi < Pu]
 ̂ -{c-i- h)-(]i +c-ii  , ii < 0 < X ( l\ )  < qi

(3.61)
Moreover, let us assume that the expected demand is defined by X{p) =  a-h-p  ̂where â b G 
Pi = 0 and Pu = a/b. Under this linear demand assumption (3.61) reduces to the following 
(see Appendix C for the details):

{Pu +  5 -  c)-(]i -  {Pu -  c )’ii -  s^X{Pu)

= (if -  </l -  C‘b)-{qi -  ii)/b

(a -  ¿/-/i -  e i)V (4-i) + /i-(« -  i/i) -  c-(i/i -  zi) ,

h < < 0,

—b'{li Pu) ii <0  
0 < < (a +  b-h -I- n ) / 2,

(a +  b'li -f- zi)/2 < (/1,
(3.62)

It is clear that given by (3.62) does not necessarily satisfy the separation property (3.6). 
Thus, (3.9) is not optimal for the determination of unless some restrictive assumptions 
about the parameter value ranges are made. Furthermore, we note that

argmax{Mi{ii, qi) : z'l < qi < oo, -b-{h -f Pu) < ii < 0} =  (a — c-b +  z’i)/2 , (3.63)

which depends on (see Appendix D for the details). That is, the order-up-to level is a function 
of ¿1 when —6*(/i +  Pu) < U < 0. This observation implies that (3.11) can not be utilized for 
the determination of q\ in general. Consequently, it is clear that under the cited backlogging 
rule we need a new definition for the optimal policy.

3.4 Probabilistic Demand

In the previous section it has been shown that under deterministic demand the optimal 
procurement (|uantity is determined by an (cr„, ^^j) policy for the lost-sales multi-period model, 
but this is not necessarily optimal under other backlogging rules. Since deterministic demand 
is a special case of probabilistic demand model, the latter argument above is also valid for 
probabilistic demand Ccise. For this reason, in this section we shall concentrate on the lost-sales 
model, and try to characterize an (cr, |]) type optimal policy for the determination of </*. To 
this end, we shall again perform an induction proof.

To start with, we need to introduce a new class of functions:
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D efinitiou  3. C’" (7i , 72, A-*) is « sel of continuous univariate functions, say <l>{q), which:

(a) arc increasing on [0, 7i]; and

(b) have a finite maximizer on (71, 72), say 73, such that V(/ G (73, 72) have:

> <t>W) -  V(7'G (<Z,oo).

We shall refer to this cleiiiiitiori in characterizing the shape of function which will be 
derived below.

Consider the pseudo-profit function under special case I (the lost sales model) which is 
given by (3.13). Evaluating the expected value of this function with respect to random demand 
X{pn) we obtain the following:

Mn{inyPn,(In) = {Pn + S -  c)-(jn -  s-X{pn) -  {Pn + 54- li)-Q{pnyqn) +  C’in

+ -  '̂’ (f/n;p«)] +  «· /  -  x)-f{x;Pn)-dx.
dXliPn)

(3.64)

We recall that the separation property holds for such that:

M n{in } Pn ) qn) — ’̂ in 4" M Ptl) Qn)y

for all n.
We initialize the induction proof by assuming that the conditions leading to unimodality 

of M i(0 ,(/i) holds. This implies that Mi{0,qi)  G (^"(cri,00, /C) for some a\. Furthermore, as 
an induction step, we assume that M^j_i(0, i/„_i) G , /C), where kn-i is an even
integer and there exists cr^_i,. . . ,  which satisfy the following conditions:

• M,^_i(0, cr î_i) =  M „_ i (0, ][l„-i)-A ^  for j  =  1, 2, . . . ,  where is the maximizer 
of M ,j_ i(0,i/u_i),

• <̂ n-i < <^n-i < · · · < < t^n-1 < and

• there does not exist any q G <7*1”/ )  such that g) =  M ^ _i(0,

Note that under these assumptions Mj^_^(0,qn-i) is an increasing function on and
it could have ‘tipples” , on (cr^_j, ^ „_ i], about the M „_ j(0 , J^ri-i) — level. Moreover, it 
follows that M „ _ i (0, r;„_i) is /C-decreasing on (^ „_ i , but it can exhibit a “valley” or a
“peak” with a depth or a height greater than /C on , oo) provided that My^_i(0, gn-i) <
A/,j__i(0, i)n -i)  for all ^ Also, note that k\ = 2 under the assumption that
Ml  is unimodal.

It is clear that, under the above setting for M^_i function an (cr, ^ ) type policy need not 
be optimal, because there might exist two or more “order-up-to” levels. The smallest of those
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IS

is and oUicrs, if tlicy exist, lay on ((г*Гі‘ .оо)· 'i'^is infavourable fact is a burden on the
eiForts of characterization of the optimal procurement policy as an (o', type. In fact, it i 
also encountered in the solution of the classical multi-period problem where there is no pricing 
decision. In that model, the general approach is to include an assumption, among the others 
that ensure optimality of policies, so as to make it impossible for the period ending
inventory level, for period n say, to be in > oo)· This way, the problem is avoided by
restricting the pseudo-profit functions within domains of [0, for n > 2. For instance, 
assumptions (гі;) on j)age 531 in Schäl [12], (vii) on page 1070 in Veinott [14] or (7-28g) on 
page 323 in lieyman and Sobel [2] are mainly made for the cited reason. It is also customary 
to search for special cases under which this assumption holds. In this regard, it is sufficient to 
show that ^ ^ where ij\r < ]}jyv, under certain conditions. Thus, it is not
surprising that this infavorable issue is inherited to our model. In the following analysis we 
shall express this problem, which is slightly modified in comparison with the classical model, 
and try to establish sufficient conditions leading to optimality of (cr„,|]„) type policies.

' 'k~A  ̂ . . .  . — ~k
In (3.64) we need to replace fl„_ i by an expression which is written in terms of For

this recison, we recall the inductive assumptions and write:

—** , . , /  М „ _ і (0 ,І :„_ і ) - А :  , г„_і G 0 (? 1 -
I ^ — ) n̂ —l) ) —1  ̂OyTl

(3.65)

wliere

0 { u - [ , k n - i )  =  [0,cr/,_i)U [<r2_j,(r3_j)u[(r,t_i,cr®_i)U ---U[(r*lV ')

0 {n -  =  [0, <7,tr,·] \ 0 (n -  1, k„^i),

provided that € [0, and if M „_ i ( 0,cr} _̂i) >  — Aii, then =  0.
However, we sliall assume that 1C is sufficiently small so that > 0. This only decreases 
the number of terms to carry in the analysis which in turn simplifies the mathematical 
representation.

It turns out that, for =  2 the policy defined by (3.65) is an (<7„_ i ,  policy. But,
for it„_i > 2 it follows that although there is one “order-up-to” level, there are A:„_i/2
reorder intervals, union of which is denoted by 0 {n -  where “O” stands for “order” .
The latter policy is called an (cr„-i, type policy. Here, the terminology is set in such a
way that the word “type” reflects a modification on the conventional (ir, policy with respect 
to the fact that there are more than one reorder intervals.

Therefore, we can replace H „_i in (3.64) by (3.65), where H „_i(0 ) =  A f„_j(0 ,o-^_i) which 
is in turn equal to M „ _ i (0, i l„ _ i )  - /C since cr^_i > 0. Considering,

0 < .A!̂ l(Pi») ^  ^  (in — —1 ^  ^n — l — itn ~  ̂ ^  in ~ -^l(Pn))

(7n — ^n — 1 —  ̂ — *7n ^   ̂^  in  ̂^ ^n — 1 ’
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(3.06)

we rewriCe the integral in (3.64) as:
f<in

L ap, ) =  [F{<ln]Pn) -  F{q„ -  -m L i (0, (t‘ _ i)

+ c -0 (7>„,i/„) +  y  M,^_i(0, q n -  x)-f(x;p„)-dx  
i„ -  X € o{n -  -  A',(p„))

+  M „ _ j(0,(T,',_i)-y f{x;p„)-dx
in - * e 0 (n - - A-i(p„))

Thus, after tJie proi)o,sed substitution (3.04) can be written as:

Mn{in,Pn,q,i) = M(in,p„,qn) +

+a j  [a / „ _ i (0,(7„ -  x) -  M „_ i (0,(7̂ _i)J f{x;pn)-dx
qn -  i-· e 0(n -  n ((7l_i,qn -  Xl{Pn))

9n -

= M{i„,pn,qn) + a-M„_t(0,al,_i) + a· /  [vW„_i(0, 9,, -  a;) -  M*_i(0, (r/,_i)] ■f(x;p„).dx,
X i( P n )

(3.67)
where it is iinclerstoocl that (¡n — X\{Pn) < which is also implied by ] and

M{in,Pny<ln) = {Pn’\-s -  c)>qn - s^X{pn) - {Pn  s + h -  a-c)^Q{pr,,qn) -{■ C’in, (3.68)

which represents expected one-period profit with the addition of a unit salvage value of a*c. It 
is clecir that M  has the same functional characteristics (in p and q) as M\ since we can always 
view /i -  a·c as an effective unit holding cost (which can be negative). Furthermore, defining

M*{0,qn) = inax^M{Q,p,q) : pe[Pi,Pu]^

= M{0,Pg,q), (3.(59)

we assume tliat the conditions ensuring unirnodality of M  ̂ can be trivially extended for M* 
as well. In this regard, we let be the maximizer of M*(0, q) on (0, oo) and <r be defined as 

M*(0, a) =  A/*(0, t ') -  ^  with cr <1p.
It follows that for 9,, < cr, _̂i the integral in (3.67) vanishes, and we have:

Mn{0,Pn,(In) = M(0,pn,qn) + oi-Ml_i{0,aj,_i),

which implies that
Ml(0,qn) = M*(0,qn) + a-Ml_i (0 ,ai_i ) .  (3.70)

Under the inductive assumption that cr}̂ _ı < we conclude that Mn(0,qn) is an increasing 
function on [0,<r/,_i). Later, we shall demonstrate that in fact <r̂  <
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Next, we shall coiiccn(.ra(.c more on M„:  From (3.67) we obtain,

-ha j  [M *_ i(0, i „ - x ) - M * _ i ( 0,cr),_i)]-/(x ;p„)-£ /x  : p„ e[Pt,Pu]}

A'](Pn)
(3.71)

> M*(0,(M) +  «'lW*_i(0,iT,\_i)

+a· J  M „ _ i ( 0 , -  x) -  M „_i(0 , (T,',_i)j •/(x;i>g)-cix,

A'l(j>n)
(3.72)

where p, was defined in (3.69). Using (3.71) once more it follows that

M*^{0,qn) < max{M{0,Pn,<ln) + OfM,t_i{0,crn^i) ■ Pn^[Pi,Pu\]
qn -

-pmax{a· j  M *_j(0 , in -  x’) “ <^«-1)] ’ · F'* ^ [A .^ u ]}
A'l(Pn)

=  M *(0,r/„) +  a -M *_i(0 ,(r i_ i)

qn -  <̂ n-\
-\-a j  [ M l - i ( 0,qn -  x) -  M ;_ i(0 ,tr i_ i)]  -fixw'Ydx, (3.73)

l̂{Pn)

where p' is the appropriate maximizer. Finally, we note that Vq» -  x e  0 (n  -  l , l : „ - i )  n 

((t/,_ i ,<7„ - - Y i (p»)) we have

0 < M*_i(0, qn -  x) -  M*_i(0,(T,’,_i) < /C,

/ 1 kn—l\
which implies that V(/n ^ i h

in -  ^n-
o <  J  ¡M;_i(0,r/„-x)-M„_i(0,cri_i)]-/(x;pn)-ii^· <AC-n9n-i^i-i;i>n) < a:,

A'1 (;>..) (3.74)

for all pn. Therefore, with (3.74) we conclude that M „ (0, ?„) is bounded between two continuous 
functions, given by (3.72) and (3.73), which are at most a lC distance (vertically) apart on

q,i G (<^n-l' )■
Since, _ *

=  inax{Mn{0,qu) ■ 0 < q „  < o o } ,
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it follows from (3.73) and (3.74) that

M (0 ,:(:) +  a -M *_i(0 , (r/,_i) < m I { 0, :|:)

< M * (0 ,i :„ )  < M*(0,:|:) +  a - M * - i ( 0 , +  a-/C, (3.75)

which iini)lies that:
< ^ < :(: < if <

wliere S' ) — M*(0, ^ — (1 — a)-/C. Moreover, it can be seen that if

a < then a < for 7i > 1. Also, if we define ^  and ^ as:

M *(o. i  ) =  M *(o, i : ) =  M*(o, i:) -  a /c,

with ]> < ^ < , we conclude from (3.74) and (3.75) that:

i < t .  < i  ■ (3.77)

Tliis result indicates that if, in period n, we prefer to procure more than which is the optimal 
quantity to procure if we could use the leftovers in the next period, then we should not order

more than ^ at which we breakeven with not ordering this period but in the future.
Next, we shall study on (]}],oo). Let qn E (̂ 1, and be an arbitrary quantity

on ((/,i,oo). Then, it is clear that

Vn -  <̂ „_l
(3.78)

A ' l ( P n )

for all Pn G [Pt,Pu]· Redeiining p' as the maximizing price of M „ at q'„, i.e. M„{Q,q'„) =  
M „(0 ,p ', i/(j), and recalling (3.74), (3.78) and the fact that M* is non-increasing on (i^.oo) we 

can i)rocced as follows:

M*n{0,qn) =  »»aa;{M (0,p„,3„)-fa-A i„_i(0,<7-^_i)

+ a - j  [M „_i(0,i„-a;)-M „_i(0,o-/,_i)J-/(a;;p„)-da; : P n e [ P t , P n ] }
^ l ( P n )

> M *'(0 ,i„) +  a -M *_i(0 ,(r /,_ i)
u  -

+ a - J  [M *_i(0,i„ -  a;) -  Afn-i(0,<^i-i)]-/(a:iPi)-^a:

A ' l  ( p , )
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> A'/*(0,i/„) +  cvM „_i(0,cr,\_i)

in -  "L l

(3.79)

 ̂n n — 1

+«· J  -  i;) -  ■ f i x - , p ’ ) - d x  -  a - K .
A'i(p')

> M*(o,</,',) + -  «-a:

in -  « ' L l

+ ( x - j  [m *_ i (0,7; -a :)--^ n -i(0 .< ^ n -i)]-/(® ;p ')- ‘̂ *

Ai(p')

> M(0, v \  <ln) +
in -  < 'i - i

+a· J  [ м І - і і О , ( і ' „  -  x )  -  М І _ і { 0 , ( т І , _ і ) У / { х ; р ' ) - ( і х

Ai (p')

=  M l { 0 , q : , ) - a - I C

> m I { q, < Q - k

Combiiiiug all of the results that we have obtained so far, we see that:

(j) M*(0, r/„) G C’"(cr ,̂ 0·*», a:) for some even A„,

(ij) there exist A·,, values cr,\, (t)( , . . . ,  cr,*” such that cr/, < <rf, < ··· < < <̂ n" with
M*(0, i:„) = M*(0, +  ̂  for ;■ =  1,2, · · ·, A„. Also, there does not exist q„  G (І!,,, í^^)

such that M ,j(9, qu') — M ,j(0, Aij

(Hi )  Vi/„ G (ii.o·*") we have М„(0,(/„) > M „ { 0 , q ' „ )  -  /С for all q'„ G (?n,oo),

( ip) <  d- <  i :  <  ^  <  (г*%

(p) if cr < o-{, then cr < <r,\,

(pi) i  < tn  < i  .

for 71 > 2 and ¿1 = 2. _^
In characterizing an optimal procurement policy it is useful to establish M„(0, g„) function 

as (/„ approaches to 0 or as tends to infinity. It follows from (3.68) and (3.70) that;

m I ( 0 , 0 )  =  М*(0,0) +  а-М ;_і(0 ,сгі_і)

= -5 -J (P „ ) +  « - ¥ n - i ( 0 - ‘̂ n-i)·

Therefore, it is clear that M*(0,<?n) bas a finite support at ?„ =  0
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Oil tlio other extreme, liiHj,_oo ^ i ( 0 ,  qi) = —oo by Lemma 2. To show a similar result for 
all n we shall perform an induction proof: Suppose that

—'k
lirn M „_ x (0 ,? „_ i) = -o o ,qn-i-*oo

tlien we have:

lini M *(0, q„) = max{ lim (p„ +  s -  c)-q„ -  s-X{pn) -  (p„ +  s +  /i -  a-c)-[g„ -  X (p„)]
(7„ - f O O (Jn-̂ OO

u -  n̂-1

[m * _ i (0,<7„ -  a;) -  ■f{x;pn)-dx : p„ £ [Pi,Pu])
XRpn)

— liin max{{pn + h  -  a-c)-X{pn)
qn-̂ oo

rOO
-ha j  -  x ) -  ■f{x;p„)-dx : p„ € [Pi,Pn]}

l̂(Pn)

+ a -M „_ i(0 ,cr /,_ i) -  [h+  (1 -  a)-c]-qn

=  — OO

Thus, ^ n (0 , (In) =  —oo for all n.

3.4.1 Optimal Procurement Policy

It has been shown that M„(0,r/n)) which satisfies conditions (i) through can have ripples 
on qn E i^n)) l̂ ut these deviations from monotonicity are confined within a region that
is defined by the functions in (3.72) and (3.73) which are at most olK distance apart from each 
other. Therefore, under a general distribution, it is theoretically possible that there are more 
than one reorder regions for period n. In this regard, an (cr, ^ ) type policy, which will be termed 
as . . . ,  cr̂ ” , i^n), is optimal for the determination of That is, for n > 2 we have:

=
if t„ e  o (7i, l„), 

in , otherwise.

provided that
It is interesting to note that kn < ¿n -i or kn > both are possible under conditions 

(i) through (vi). Also, for kn =  2 the above policy reduces to an (cr„,|;„) policy. This can be 
assured when either of the following conditions hold:

(a) M *(0,qn) is an increasing function of (jn on (cr^\_i,^),

(1>) M *(0, q„) >  M *(0, <x,\) =  M *(0, i :„ )  -  K, for all e  (a ‘ , ^ ).
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It follows, however, that (a) does not hold in general (for a counter example see Figure 4.2 in
the next chapter). On the other hand, condition (6) is not trivial to pursue due to the unknown
nature of f{x] p) in p and the lack of condition (a) to hold in general (to be used in an inductive 

—★
setting for Under a given distribution, if it is possible to characterize the best price
for any given one ciui take the analysis further. However, several best price curves that are 
obtained for some example problems (see Figure 4.3 in the next chapter) indicate that this is 
highly im|)ossible in general. For this re<ison, we shall not dwell on this issue.

3.4.2 Infinite Horizon Model

In this study, we are primarily concerned with a iinite period model. However, we might 
investigate whether there exists a limiting steady state condition as the number of periods 
increase. In other words, it is interesting to see whether there are restoring forces within the 
model such that the system approaches an equilibrium in time.

To this end, we shall drop period indices from (3.64) and rewrite M  as follows:

—yk·
M (z ,( /)  =  m a x i^ M { i^ p ^ q )  a - M  ( 0,iJ^)

q -  a

+ 01· J  M* {0, q -  x) -  M* (0,(7 )̂ •f{x-,p)-dx ■. p€[Pt,Pu]

l̂iP)

= M{i,p^,q) + a-M*{0,(T^) + a-J  [m *(0, 9 -  x) -  M*(0, •/(x;p,)-da;

Xiip,)

= M{i,Pg,q) a-[l -  F{q -  (T -̂,Pg)]-M (0,<r*) 
q -  <7^

+(x-J M*{0,q-x)- f{x\Pq)-dx,  (3.80)

X+Pi)

where pg i.s the appropriate maximizer. It follows from renewal theory that the solution of 

(3.80) is:

M

g -  <T‘

\i,q) = M{i,pg,q) +  a-[l — F{q — cr '̂,Pg)]-M (0,cr^)+ J  M{0,Pg, q — x)-dRa{x',Pg)

XiiP,)
g -  a

+ a - J  M*{Q,(r^)-[l- F { q - ( T ^  -  x-,pg)]-dRa{x-,Pg), (3.81)

Xiip.,)

where 00

/2„(xip) =  ^ a ' - F « ( x ; p ) ,
i = l
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and is the ¿-fold convolution of F. Furthermore, the fourth term in (3.81) can be rewritten

;>s:
i  -  <7'

a - M  (0, c r ^ ) — cr*; — a- M { 0 , c r ^ ) - J  F { q  — cr^ — x \ P q ) - d R a - { x \ P q ) ,
XlOl)

which is o(iual to:
OO

i = l

Using Uiis result we can write (3.81) once more as:

M

q -  a ^
(i,q) = M{i,p^,q) +  J  M (0,P j,9 - x ) - d f 2a(x;P i) +  a -M  (0,(t1)-[1

XiiP·,)
OO ~  .

- F {q  -  0·'; p,) +  £  ; Pi) -  E  a'-F^"^^\q -  ; p,)
V—1 1=1»•=1 

q -

= M{i,p^,q) + J  M{i) ,p^,q-  x)-dlia{x;pg)

XiipO

-t-M*(0,cr‘ )· [a -  (1 -  a)-Ra{q ~ i^^P«)] ·

It follows from (3.80) that for q =  <t  ̂ we have:

M*{0,(T̂ ) = M*{0,a^) + oc-M (0,<T )̂,

which, together with (3.82), implies that

(3.82)

M

q -  o

\i,q) =  M ( i ,P „ i )  +  J  M { 0,p^,q-x)-dRa{x-,Pq)
A'i(p,)

Therefore, we have:

=  max

+M*iO,(T^)-^Y~-  Ra{q -

q -  a

M{i,p,q)-l· J  M { 0,p ,q -x ) -dRa{x ;p )

(3.83)

A'i(p)

- fM * (0 ,(T * )-| Y ^ -f2 „ (< z -(r * ;p )  : pG [F !e,^«]|· (3.84)

In (3.84) M function is given by (3.68) and Ra can be obtained from F; but can not be 
evaluated in advance. For this reason, an iterative method is required in order to obtain the 
simultaneous solution of M* and <r  ̂ To this end, we propose the following fix-pomt procedure:
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1. Set (7* = cr,

2. Solve for l̂oo, where M (0,^oo) =  inax{M (0,q) : 0 < q  < oo},

3. Solve for (t\ where M*{0,c^) = M*(0 , ^ 00) ~ fC with (t  ̂ < ^ ,

4. If a tolerance is not met by <r\ then go to step 2.

We shall provide a numeric example for the infinite horizon model in the next chapter.



Chapter 4

Numerical Examples

In this chapter, we provide the results of some numerical computations. We intend to study 
the effect of parameter values, demand distributions, expected demand functions and demand 
models on the optiirial solution. In addition, we display the expected pseudo-profit curves for 
some of the example problems in order to demonstrate different forms that these functions 
can a.ssume. We also concentrate on pricing issues and plot the optimal price values versus 
procurement quantity to provide some evidence.

In Table 4.1 we introduce thirteen cases each of which represents a combination of 
])arameters c, s, /i, K and A. We shall refer to these caises when we use them in our example 
problems. The first six cases are the permutations of the order of c, s and h. Next three 
cases are considered, in comparison with the first three cases, for the effect of changing c, 
s or li individually while others remain constant. Finally, the last four cases represent the 
combinations of /C and A as c, s and li are constant.

In the beginning of our numerical study, we consider a 5-period lost-sales model where the 
random demand is additive. That is, X{p) = X{p)  where £: is a random variable with 
E[e] =  0. We assume two different distributions for c; namely, the uniform distribution and 
the triangular distribution. These distributions are defined in Appendix E. In addition, we 
employ two different expected demand functions which are defined by two parameters a and b. 
They are: (1) exponential, X{p)  =  a-e“ '"'’ and (2) linear, X{p) = a -  b-p, where p ^ [Pi,Pu]· 
Furthermore, we consider a 5-period lost-sales problem with multiplicative exponential demand, 

and extend it to include the infinite horizon case.
Using a Pascal program that solves the jV-period dynamic programming problem defined 

by (3.64), we have obtained the expected pseudo-profit functions M i(0, g i) , . .., ^ 5(6, gs) and, 
if optimal, the control parameters (cri,t 'i), . . . ,  ((T5,|]5). Tables 4.2, 4.3 and 4.4 display 
summaries o f these results. The programs are run on a SUN Spark 460 system which took 
approximately 6.5 seconds of CPU time to evaluate any point on the expected pseudo-profit

53
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functions of periods 2,3,4 or 5.

It is found that the optimal values depend moderately on the distribution type. Since the 
triangular distribution luis smaller variance than that of the uniform distribution, it is intuitive 
that, for the same A value the expected pseudo-profit values under the triangular distribution 
are higher. Also, for the same reason the reorder and order-up-to levels under the former 
distribution are lower in almost all cases.

The elfects of parameter values on the optimal solution can be argued by pairwise 
comparison of cases from the first group (1 through 6) and from the second group (7 through 
9). It follows from comparing cases 1 and 7 that when c is increased three fold, expected 
pseudo-profit values decrease considerably in all periods and under both distributions. Also, 
reorder and order-up-to levels decrease almost 20 to 25 %. This change is intuitive, because 
when c gets larger it becomes more expensive to do business, that is the mark-up between p 
and c gets narrower. Increasing the price to cope with higher procurement cost declines the 
demand; hence, the vendor tends to decrease the stocks.

On the other hand, comparing cases 2 and 8 we note that decreasing the shortage cost 
three fold does not aifect the optimal control parameters or the expected pseudo-profit levels 
considerably. Since the penalty of lost-sales decreases, we expect slightly lower stock levels and 
higher profits. This is exactly true for all periods under both distributions.

Finally, comparing cases 3 and 9 it follows that decreasing li three fold facilitates higher stock 
levels and we obtain moderately higher reorder and order-up-to levels due to lower carrying 
costs. In addition, due to inventory cost reduction, considerably higher expected pseudo-profits 
are incurred.

Other parameter combinations can also be considered. For instance, suppose that there is 
a financial pressure build-up against the vendor such that the supply side increases the costs 
and at the same time inventory costs raise. Also, assume that under these developments the 
shortage cost that the vendor bears declines. Then, comparing cases 2 and 7 it follows that 
when c raises three fold, s decreases 33 % and li increases 50 %, the expected pseudo-profit 
values and order-up-to levels decrease considerably. This reflects a typical behaviour that often 

arises in practice.
We can also discuss the eifects of the fixed cost fC and of the variance of the distribution on 

the optimal solutions. Table 4.3 shows the results which are obtained for various combinations 
of 1C and A. Note that A is a measure of the variance of the distributions (see Appendix 
E). Comparing case 10 with case 12 and Ccise 11 with case 13 it follows that, under a 
larger 1C the expected pseudo-profit is considerably smaller. This is due to incresing cost 
of procurement. Intuitively, we would exi)ect higher order-up-to levels under a large fC. This is 
exactly represented by a sudden jump in the order-up-to level of the second period in case 13 in 
comparison with that of case 11. It is probable that as 1C is increased gradually, the order-up-to
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levels will experience sudden jumps. Between these jumps they remain quite stable. In Figure
4.1 we display M2(0,(/2) function for cases 11 and 13 to indicate the mechanism of this sudden 
jump.

The effect of A, on the other hand, is such that under a small A value the order-up-to levels 
decrease and the expected pseudo-profits increase considerably. This result is intuitive, because 
A is a measure of the variance. Under greater variance the vendor is subject to a greater risk 
of shortage. To cope with this he increases stock levels. One can argue that under greater 
variance the risk of leftovers is also higher, which pressures the vendor to decrease the stocks. 
The answer, actually, depends on the tradeoff between the cost of holding and shortage as well 
as the price that the vendor administers. In a lost-sales problem, however, it is true that the 
vendor pays more attention to shortages, because they are lost whereas the leftovers could be 
triuisferred to the next period.

In Table 4.4 we study the effect of the expected demand function on the optimal solutions 
of the first six cases under the uniform distribution. We consider an exponential and a linear 
function as defined earlier. It follows that the order-up-to levels and the expected pseudo-profit 
values differ considerably under different demand functions. It is clear that these functions 
have different price sensitivities. The linear function has less sensitivity than the exponential 
function. Also, for a given price value in [P^,Pu], the linear function yields a higher demand 
level than the exponential function in our setting. Intuitively, this would incur the differences 
between the values of the order-up-to levels and expected pseudo-profit values as mentioned 
earlier.

After discussing the effects of problem parameters on the optimal solution, next, we shall 
consider the expected pseudo-profit curves. We have established the properties of M „(0,gn) 
function with conditions (i) through (vi) in section 3.4. In our numerical examples, we have 
found that in all cases these six conditions are satisfied. In Table 4.5 we show the values of 
the critical inventory levels which defines the regions that the values of the optimal control 
parameters (cTn,^n) are restricted with. It can be seen that conditions (iv)y (v) and (vi) are 

satisfied for all cases.
In section 3.4, it had been argued that, theoretically, M^{0,qn) functions can have ripples 

in regions and oo). Figure 4.2 demonstrates this fact. Also regarding the order

of order-up-to levels it can be seen in Figure 4.2 that < 1̂2 < ¡̂3 < Thus,
assuming conditions under which order-up-to levels are ordered as <  ^2 <  · * · t V  and 
under this assumption declaring that (cr„, i),») policy is optimal is a restriction on the problem. 
Theoretically, it does not have any significance unless those conditions can be interpreted 

properly.
So far we have not considered pricing issues. We have mentioned in section 3.4 that pricing 

decision, that is the best price at an inventory level, could not be characterised analytically
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unless f {x ;p )  clcnsily function yields a special structure which can be exploited. In Figure 4.3 
we provide the best price curves that are obtained for case 13 under the uniform distribution 
and an exponential expected demand function. It is seen that the form of these curves are 
interesting. Intuitively, we would expect the best price to decrease at higher inventory levels. 
Because, to sell more the vendor must decrease the price. In fact, under some restrictions and 
in the absence of the fixed cost, Zabel [19] have found that for a lost-sales model with uniform 
demand distribution the price of the first two periods are decreasing functions of the beginning 
inventory level. Also, Thowsen [13] has derived the conditions under wliich this fact is true for 
his model. However, according to our findings this is not true in general. Roughly speaking, it 
can be said that the best price decreases in q, but there are some moderate jumps at certain 
levels of inventory. This behaviour is found to be characteristic for all of the problems that we 
have solved for with additive demand uncertainty.

To understand the reasons for having these sudden price increase points, we take a closer 
look at Figure 4.3 in Figure 4.4 and consider M2(0,(/2) in Figure 4.1. We note that the point 
of jumi) is exactly the point where M2(0,</2) passes from one regime to another. Recalling 
that M 2(0,(/2) is the upper envelope of all M 2(0,p2,<Z2) functions, it now is clear that upon 
changing a regime we also could pass from one pricing regime to another. The mechanics of 
this is shown in Figure 4.5.

We believe that the primary reason behind such a pricing behaviour is the presence of a 
fixed cost. In deciding the best price at a period, the ordering or not ordering decisions taken 
place in the future periods must also be considered. Referring to Figure 4.1 suppose that we are 
at the second period. If it is optimal to expect that in the next period we would order then we 
are forced to set a low price to sell everything in the current period. But, if at an inventory level 
we breakeven with the decision of ordering or not ordering in the next period, then it might be 
optimal to carry inventories for the next period bearing the fixed cost once for both periods. 
In this case, we are forced to increase the price so that the demand shrinks and there will be 
leftovers. It is clear that, the actual decision process is much more complicated than the way 
we describe it. However, we try to bring an insight for observing jumps, or humps, on the best 
price curves. In fact, the dynamic programming solves for the optimal decision by considering 
all possibilities within a multi-period framework and under the demand uncertainty.

In addition to the additive demand, we also consider the multiplicative demand model with 
exponential random term e. That is, X{p) =  X{p)-ey where £ is an exponential random variable 
with E[e] =  I. Table 4.6 shows the optimal solutions for the first six cases under an exponential 

expected demand function.
Comparing Table 4.6 and Table 4.2 it can be seen that under the multiplicative demand the 

optimal order-up-to levels in successive periods keep growing more than that of the additive 
demand case. Also, the optimal expected pseudo-profit levels are considerably lower, under
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the former model, for the same parameter set. Furthermore, it is found that best price curves 
under the multiplicative exponential demand are non-increasing for all periods and all cases 
that are considered.

For the infinite horizon problem, on the other hand, we shall demonstrate that a stationary 
solution M (0 ,fy), given by 3.84, exists and it can be obtained by the proposed fixed point 
procedure. Suppose that the random demand is multiplicative with an exponential random 
term. Under this model we have:

F{x;p) =  x > 0,

Q {p, <i) =  <1- X (p)•■f’ i 'z ;p) <1 >  0,
a

[ - a
2 _ x > 0,

which can be substituted in 3.84. In addition, we assume that c =  0.5, s =  0.25, li =  0.3, /C =  8 
and cv =  0.7.

In Figure 4.C we show the resultant M (0, q) curve that is obtained for the example problem. 
In evaluating this function by a Pascal program, each iteration took approximately 40 seconds 
of CPU time and an accuracy of 0.1 units on is achieved in 10 iterations. In the same figure 
we also provide the finite horizon solutions for various periods. It is graphically shown on the 
figure that, the successive finite-period solutions approach to the theoretical infinite horizon 
solution as n gets larger.
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Ccise c s h fC A
1 0.25 0.50 0.75 8 20
2 0.25 0.75 0.50 8 20
3 0.50 0.25 0.75 8 20
4 0.75 0.25 0.50 8 20
5 0.50 0.75 0.25 8 20
G 0.75 0.50 0.25 8 20
7 0.75 0.50 0.75 8 20
8 0.25 0.25 0.50 8 20
9 0.50 0.25 0.25 8 20

10 0.50 0.25 0.30 8 20
11 0.50 0.25 0.30 8 10
12 0.50 0.25 0.30 15 20
13 0.50 0.25 0.30 15 10

Table 4.1: 13 dilTerent parameter combinations.
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1 2
Cases

3 4 5 6
. t l ) (38 .05 ,  58 .73)  

(35 .17 ,  54 .93)
(39 .96 ,  60 .98)  
(36 .30 ,  56 .49)

(31 .50 ,  50 .86)  
(29 .60 ,  47 .91)

(27 .34 ,  4 5 .75 )  
(25 .56 ,  42 .83)

(35 .25 ,  55 .25)  
(31 .66 ,  50 .76)

(29 .19 ,  47 .90)  
(26 .50 ,  44 .12)

i < ^ 2 ,  Í 2 ) (39 .01 ,  60 .03)  
(35 .95 ,  56 .09)

(41 .11 ,  62 .50)  
(37 .42 ,  58 .62)

(33 .45 ,  53 .49)  
(30 .79 ,  50 .36)

(30 .92 ,  51 .51)  
(27 .49 ,  45 .38)

(38 .01 ,  59 .11)  
(34 .04 ,  56 .45)

(33 .64 ,  55 .06)  
(29 .29 ,  51 .51)

(^3» t a ) (38 .84 ,  59 .83)  
(36 .06 ,  56 .09)

(40 .92 ,  62 .31 )  
(37 .63 ,  58 .62)

(33 .29 ,  53 .31)  
(30 .89 ,  50 .36)

(30 .52 ,  50 .23)  
(27 .56 ,  45 .31 )

(37 .82 ,  58 .77)  
(34 .47 ,  56 .45)

( 3 3 .0 1 , 53 .69 )  
(29 .53 ,  51 .40 )

(<7 4 , i^4) (38 .69 ,  59 .65)  
(36 .15 ,  56 .09)

(40 .76 ,  62 .11)  
(37 .82 ,  58 .62)

(33 .15 ,  53 .15)  
(30 .97 ,  50 .36)

(30 .38 ,  50 .07)  
(27 .70 ,  47 .85 )

(37 .65 ,  58 .50)  
(34 .87 ,  56 .45)

(32 .88 ,  53 .50)  
(29 .82 ,  51 .40)

(38 .56 ,  59 .49)  
(36 .26 ,  55 .60)

(40 .61 ,  61 .94)  
(38 .00 ,  58 .62)

(33 .03 ,  53 .00)  
(31 .07 ,  50 .36)

(30 .26 ,  4 9 .92 )  
(27 .83 ,  47 .85 )

(37 .50 ,  58 .38)  
(35 .30 ,  61 .45)

(32 .74 ,  53 .34)  
(30 .09 ,  51 .40)

A ? i ( 0 , h j ) 83 .20
87.55

85.66
88.99

70.06
75.16

59 .98
65 .07

74.21
77.55

61.66
66.01

Á ? 2 ( 0 . i ' 2 ) 152 .62
159.83

157.73
163.05

129.53
137.44

113.25
120.03

139.45
143.79

118.26
123.17

214 .47
224 .13

221 .88
229.05

182.54
192.85

160.46
168.92

197.46
203.00

168.21
174.19

M4*(0, 269 .58
281 .33

278.98
287 .87

229.79
242.14

202.52
212.49

249.06
255 .94

212.66
219 .79

M ¡ ( 0 ,  i s ) 318 .70
332 .24

329.81
340 .29

271.92
285.99

239 .97
251.32

294.94
303 .40

252.21
260.56

7 8 9

( < ^ 1  1 i" l) (27 .20 ,  45 .29)  
(25 .49 ,  42 .50)

(38 .63 ,  59 .82)  
(35 .51 ,  55 .65)

(33 .89 ,  54 .08)  
(30 .86 ,  49 .92 )

(<^2. Í 2 ) (30 .04 ,  49 .46)  
(27 .08 ,  45 .31)

(39 .83 ,  61 .50)  
(36 .54 ,  58 .62)

(36 .86 ,  58 .67)  
(33 .12 ,  53 .07)

(<^3. t a ) (29 .82 ,  48 .79)  
(27 .14 ,  45 .31 )

(39 .62 ,  61 .25)  
(36 .79 ,  58 .62)

(36 .63 ,  57 .99)  
(33 .48 ,  56 .45)

(<^4i t ' 4 ) (29 .72 ,  48 .66 )  
^27.20, 4 5 .31 )

(39 .43 ,  61 .02)  
(37 .02 ,  58 .62)

(;J6.4.3, 5 7 .7 4 ) 
(:)3.85, 5 6 .45 )

{ ^ b , (29 .62 ,  48 .50)  
(27 .25 ,  45 .31 )

(9 .26 ,  60 .82)  
(37 .22 ,  58 .62)

(36 .26 ,  57 .50)  
(34 .28 ,  61 .45)

A?1*(0, i i ) 57.34
63.32

86.21
89 .53

74 .77
78.08

m ' 2 ( 0 ,  Í 2 ) 107 .56
116.36

158.56
163 .78

140.08
144.36

JW3(0. i^3) 152.22
163.54

222 .98
229.94

198.17
203.58

192 .03
205 .52

280.35
288.91

249.86
256.52

M s ( 0 .  i s ) 227.50
242.86

331 .45
341 .46

295.84
303 .92

Table 4.2: Optimal solutions for dilFerent 5-period lost-sales problems. Top values are
evaluated under the additive uniform distribution and bottom ones under the additive triangular 
distribution both with an exponential expected demand function. Static parameters are: 
Pi =  0.1, Pu =  4.0, a =  0.9, a =  150, b =  0.5.
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Cases
10 11 12 13

(33.61, 53.69) (29.81, 48.39) (26.96, 53.69) ( 23.73, 48.39)
(30.70, 49.65) (28.31, 46.35) (24.55, 49.65) (22.46, 46.35)

(<7-2,1̂ 2) (36.44, 57.81) (31.00, 50.18) (30.31, 61.11) ( 24.83, 82.61)
(32.87, 52.90) (29.47, 49.72) (27.39, 83.72) (24.20, 81.17)

(o'3, (36.23, 57.42) (30.80, 49.92) (29.51, 59.20) ( 24.61, 49.97)
(33.05, 52.90) (29.84, 49.72) (26.46, 56.45) (23.60, 49.72)

(CT4, ^14) (36.05, 57.19) (30.62, 49.69) (29.43, 59.18) ( 24.46, 49.76)
(33.37, 56.45) (30.52, 52.22) (27.58, 86.77) (24.56, 82.50)
(35.88, 56.98) (30.47, 49.48) (29.27, 58.97) ( 24.33, 49.50)
(33.69, 56.45) (31.18, 52.23) (27.04, 86.50) (24.37, 52.22)

74.22 80.09 74.22 80.09
77.74 81.85 77.74 81.85

m I(o, t '2) 138.84 147.09 133.59 140.94
143.56 149.51 138.72 144.42

A/3(0.l^3) 196.34 206.71 185.69 195.01
202.22 210.00 191.69 199.19
247.50 259.79 232.14 243.14
254.63 264.38 240.18 249.13
293.02 307.03 273.45 285.98
301.49 313.27 282.58 293.26

Table 4.3: Optimal solutions of the 5-period lost-sales problem solved for cases 10 through 13. 
The values are evaluated under the additive uniform (top values) and the additive triangular 
(bottom values) distributions with an exponential expected demand function. The static 
parameters are: P¿ =0 .1 , Pu =  4.0, cv =  0.9, a =  150, b =  0.5.
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Cases
1 2 3 4 5 6

(38 .05 ,  58 .73) (39 .96 ,  60 .98) (31 .50 ,  50 .86) (27 .34 ,  45 .75) (35 .25 ,  55 .25) (29 .19 ,  47 .90)
(61 .27 ,  80 .75) (63 .47 ,  83 .18 ) (54 .60 ,  73 .93) (50 .03 ,  69 .43) 059.07,  78 .86) (52 .30 ,  71 .93)

t ' 2 ) (39 .01 ,  60 .03) (41.1 1, 62 .50) (33 .45 ,  53 .49) (30 .92 ,  51 .51) (38 .01 ,  59 .11) (33 .64 ,  55 .06)
(62 .23 ,  82 .03 ) (64 .60 ,  84 .65) (56 .77 ,  76 .79) (53 .86 ,  74 .48) (62 .04 ,  82 .67 ) (56 .82 ,  77 .82)

(<̂3. t'3 ) (38 .84 ,  59 .83) (40 .92 ,  62 .31) (33 .29 ,  53 .31) (30 .52 ,  50 .23) (37 .82 ,  58 .77) (33 .01 ,  53 .69)
(61 .89 ,  8 1 .65 ) (64 .25 ,  84 .25 ) (56 .45 ,  76 .43) (53 .53 ,  74 .12) (61 .68 ,  82 .26 ) (56 .47 ,  77 .42)

(<̂4. t'4 ) (38 .69 ,  59 .65) (40 .76 ,  62 .11) (33 .15 ,  53 .15) (30 .38 ,  50 .07) (37 .65 ,  58 .50) (32 .88 ,  53 .50)
(61 .60 ,  81 .32) (63 .93 ,  83 .91) (56 .16 ,  76 .11) (53 .24 ,  73 .79) (61 .36 ,  81 .90 ) (56 .16 ,7 7 .0 8 )

{ < ^ 5 ,  i s ) (38 .56 ,  59 .49) (40 .61 ,  61 .94) (33 .03 ,  53 .00) (30 .26 ,  49 .92 ) (37 .50 ,  58 .38) (32 .74 ,  53 .34)
(61 .33 ,  81 .03 ) (63 .65 ,  83 .60) (55 .91 ,  75 .83) (52 .98 ,  73 .50) (61 .07 ,  81 .58) (55 .89 ,  76 .77)

83 .20 85.66 70.06 59.98 74.21 61.66
140.28 142.89 121.44 105.56 125.78 107.25

M 2 ( 0 .  ^ 2 ) 152.62 157.73 129.53 113.25 139.45 118.26
260.65 265 .97 226.83 199.18 236.91 203.94

MsCo, i a ) 214 .47 221.88 182.54 160.46 197.46 168.21
367 .88 375.51 3 2 0 .77 282 .57 335 .76 289.95

iw;(o,h4) 269 .58 278 .98 229.79 202.52 249.06 212.66
463 .43 473 .02 404.51 356 .85 4 2 3 .67 366 .48

318 .70 329.81 271.92 239 .97 294.94 252.21
548 .58 559 .83 479 .16 423.04 501 .88 434 .58

Table AA: Optimal solutions of the 5-period lost-sales problem that is solved under the additive 
uniform distribution for cases 1 through 6. The top and bottom values, respectively, are 
evaluated under an exponential and a linear expected demand functions. The respective 
functional parameters (a, 6) are: (150,0.5) and (150,32.5). Other static parameters are: 
Pt =  0.1, Pu =  4.0, a =  0.9.
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Ciuses a i fr t If Í
1 39.20 40.20 53.26 60.25 67.54 83.03

35.84 36.79 49.23 55.96 63.02 78.32
2 41.31 42.34 55.65 62.78 70.21 86.20

37.21 38.18 50.99 57.96 65.33 81.85
3 33.61 34.56 47.00 53.69 60.67 75.60

30.70 31.59 43.29 49.65 56.36 70.98
4 30.82 31.76 43.93 50.50 57.42 72.37

27.44 28.30 39.67 45.96 52.66 67.91
5 38.20 39.20 52.22 59.24 66.59 88.41

33.75 34.70 47.34 54.39 62.09 84.46
6 33.33 34.28 46.80 53.58 60.71 81.04

29.11 30.00 41.96 48.69 56.06 76.94
10 36.65 37.66 50.82 57.94 65.41 84.85
i l 31.22 32.13 44.02 50.47 57.25 76.20
12 29.66 30.95 48.28 57.94 68.27 102.85
13 24.96 26.11 41.73 50.47 59.83 94.20

Table 4.5: Values of the critical inventory levels which determine the feasible values that 
the optimal control parameters can assume. These values are evaluated under the additive 
uniform distribution (top values) and the additive triangular distribution (bottom values), 
with exponential ex])ected demand function. The static parameters are: P¿ = 0,1̂  =  4.0,
a =  0.9, a =  150, b =  0.5.

1 2
Cases

3 4 5 6

) (1 0 .5 8 , 4 3 .0 0 ) (2 4 .2 0 , 5 2 .6 7 ) (1 4 .4 0 , 3 2 .5 0 ) (1 2 .0 4 , 2 8 .7 6 ) (2 1 .7 3 , 4 6 .4 8 ) (1 6 .0 1 , 3 3 .5 0 )

(<^2,  i^2) (2 8 .2 2 , 5 4 .3 4 ) (3 7 .2 0 , 6 8 .6 2 ) (2 3 .1 6 , 4 5 .5 1 ) (2 4 .0 2 , 4 5 .5 0 ) (4 0 .1 2 , 7 2 .4 6 ) (3 1 .1 6 , 5 7 .2 2 )

(<^3. t s ) (2 8 .4 0 , 5 8 .1 3 ) (3 8 .9 4 , 7 4 .9 2 ) (2 3 .0 3 , 5 0 .2 5 ) (2 6 .5 8 , 5 3 .5 0 ) (4 7 .7 6 , 8 6 .7 5 ) (3 8 .0 2 , 7 1 .0 2 )

(<7 4 , t '4 ) (2 8 .0 3 , 5 0 .1 6 ) (3 8 .0 4 , 7 7 .1 0 ) (2 3 .4 1 , 5 1 .5 1 ) (2 5 .8 7 , 5 6 .7 6 ) (4 7 .5 1 , 9 3 .8 1 ) (3 8 .2 9 , 7 8 .1 0 )

(2 8 .0 8 , 5 0 .5 1 ) (3 8 .0 3 , 7 7 .2 0 ) (2 3 .4 2 , 5 1 .4 6 ) (2 5 .7 5 , 5 7 .1 3 ) (4 6 .7 3 , 9 6 .0 1 ) (3 7 .4 6 , 8 1 .2 2 )

4 4 .2 4 4 8 .0 4 3 6 .5 0 3 2 .21 4 3 .1 9 3 4 .4 5

M j ( 0 ,  Í 2 ) 8 6 .1 2 0 7 .5 7 7 4 .0 0 7 0 .1 2 9 4 .9 2 7 9 .0 9

122.71 1 4 0 .2 4 1 0 6 .0 3 1 0 3 .8 0 14 1 .4 5 1 1 9 .8 7

M j ( 0 , Í 4 ) 1 5 5 .25 1 7 8 .12 13 6 .0 2 13 3 .4 5 1 8 2 .6 0 1 5 5 .9 0

M r ,( o J ;5 ) 1 8 4 .4 3 2 1 2 .0 5 1 6 2 .0 7 1 5 0 .9 4 2 1 9 .2 6 18 7 .9 3

Table 4.6: Optimal solutions of the 5-period lost-sales problem that is solved under the 
multiplicative exponential distribution for cases 1 through 6 with exponential expected demand 
function. The static parameters are: Pi =  0.1, Pu =  4.0, a =  0.9, a =  150, b =  0.5.
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^^2(0, 52) v.s. q2

Figure 4.1: Expected pseudo-profit function of the second period which is evaluated for cases 11 
and 13 under the additive uniform distribution and the exponential expected demand function 
with a =  150, b =  0.5 and a =  0.9.
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M*„{0,qn) -  M*„{0,0) v.s. q„

A i„(0 ,?») -  M „(0 ,0 ) v.s. in

Figure 4.2; Expected pseudo-profit curves which are evaluated for a 5-period lost-sales model 
under an additive uniform demand distribution with c =  0.5, s =  0.25, h =  0.01, )C =  15, 
A =  20, a =  150, b — 0.5 and a =  0.9.
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Pgn v.s. qn

Figure 4.3: Best price curves, which gives the optimal values of pricing decision, for case 13 
evaluated under the additive uniform distribution and an exponential expected demand function 
with a =  150, b =  0.5 and cv =  0.9.
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Pgn V.S. in

Figure 4.4; Close-up of Figure 4.3.
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M2(0,P2,<72) V.S. P2

Figure 4.5: Expected pseudo-profit functions M2(0,P2.92) evaluated for case 13 uncler the 
ad itive  uniform distribution and an exponential expected demand function with a -  150, 
b =  0.5 and a =  0.9. The curves are obtained for <¡2 values of 60, 62, 64, 65, 70 and 75.
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^ n (0 , q,i) v.s. <7„

Figure 4.6: Expected pseudo-profit curves evaluated for 15 periods under the multiplicative 
exponential demand with exponential expected demand function. The curve at the top 
represents the theoretical infinite horizon expected pseudo-profit. Parameters are: c =  0.5, 
s =  0.25, h =  0.3, a: =  8, (1 =  150, 6 =  0.5, a =  0.7, Pi =  0.1 and =  4.0.



Chapter 5

Conclusions

In most, of tlie existing models the price-demand relationship has been simplified by making 
various assumptions about the distribution of random demand, the expected demand curve 
or the parameter values. Moreover, sufficient conditions have been derived in order to ensure 
optimality of certain inventory control policies. However, in almost all of these models these 
conditions could not be interpretted properly. In contrast, in this study we have approached to 
the problem in a pragmatic way. We have not based our analysis on a particular demand model, 
but assumed a general demand distribution. Our intension has been to reveal fundamental 
characteristics of the inventory system independent of the underlying demand model. On the 
other hand, to establish a link between the existing models and to provide some examples we 
have also studied our model under certain demand distributions.

It is observed in the literature that existing models have not emphasized possible roles that 
price could play when demand is backlogged. First of all, price is one of the determinants of 
the forgone revenue if there are shortages in any period. It is interesting that, under an optimal 
policy, the forgone revenue, which could arise in any period, might not ever be collected in 
the future periods. Therefore, a good model must take this option into account. In all of the 
studies referred to in here, except ThowseiFs [13], the foregone revenue has not been considered 
adequately. It is either ignored by assuming a lost-sales model or mistakenly forgotten. In 
ThowseiFs model, this issue is simplified by assuming a forgone revenue which is expressed as 
a constant ratio of backlogged revenue. The rationale behind this assumption could not be 
justified, because it follows from the result of this study that the optimal procurement policy is 
very sensitive to the role that price plays in the process of backlogging. Thus, a constant ratio 
of backlogged revenue could yield a policy which is considerably different from the optimal one. 
Also, there is a serious question about the value of that ratio. How could we determine that 
in any real inventory system? On the other hand, in Young's [17] infinite horizon lost-sales 
model it is assumed that the unsold inventory at the end of each period has an economic value

69
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(,licit is ciiiial to the present worth of its procurement cost. However, the economic value of 
unsolcl inventory is the present worth of the revenue that incurs in the future periods due to 
the sales of leftovers less the difference between procurements in the current period and the 
future period due to discounting. For this reason, isolating each period and thereby ignoring 
the binding effect of price between the periods could not be justified in a general setting.

In this perspective, we have developed an inventory system structure which embodies pricing 
decision in addition to procurement ciuantity decision. In this model, price plays several roles 
simultaneously. It is not only a unit income per sale, but also a factor that affects demand. 
Furthermore, in the case of a shortage, price is a bargaining matter between the customer 
and the vendor, in addition, it is an opportunity cost for the lost demand. In this study, we 
have considered all of these issues, to some extent, in a general setting. Under the proposed 
representation the existing models become special cases.

In the first part of our study we have concentrated on the single period model. We 
have developed the basic mathematical model which incorporates price as the second decision 
variable. We have generalised the price dependence of R{p), F{x\p) and 0(p, q) functions. 
These generalizations are important to clearify the boundaries of price dependene in the most 
general sense. Especially, these considerations are essential in modelling for an application. 
In addition, we have brought another useful idea for the price variable. That is, the range of 
fecisible price values, [Pt̂  P^. Under this setting, we have established ways of attacking the 
j)roblem analytically. Thereby, we have been able to study the effects of price bounds on the 
optimal solutions.

In the absence of price limits, the existence issues have been studied in detail in the literature. 
For the existence of the best price, we have devised an alternative proof that severely relaxes 
the assumptions on price dependence. We have found a way of proving existence by only 
restricting X{p) function at its natural limits, that is as p tends to zero or infinity. Moreover, 
we have established the existence of a finite order-up-to level by a new proof. Under this proof, 
the form of the one period expected profit function could be characterised at its extremes, that 
is on [0,yYi(Pti)] and on [X2{Pi)yOo). Also, we have found an upper bound on the optimal 
order-up-to level which could be determined by c, s, h and X{p)·

We have studied the single period model under three special demand forms. In the first case, 
we have shown that if demand is deterministic, then the pseudo-profit function is quasiconcave 
on [0,oo) and, furthermore, it lays above the expected profit function for any probabilistic 
demand. Moreover, we have obtained the optimal order-up-to level as X{Pc), where the best 
price is found to be Pc at this inventory level. It is surprising that under the optimal policy there 
could be shortages or leftovers although the demand is deterministic. We also have established 

that Pk is the lower bound of the optimal price values.
Next, we have considered the additive and the multiplicative demand models. We have
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verified that c < p < Pc and Pc < p under these models respectively. In addition, we have 
shown that, under no further assumption, the expected pseudo-profit function is unimodal 
for a linear expected demand function with additive uniform demand or with multiplicative 
exponential demand.

We have found that, under a general model, since pg or q could not be evaluated explicitly, 
the unimodality of the expected pseudo-profit function could not be justified. However, there is 
no major practical diiliculty in verifying unimodality for a given specific problem. The reader 
may refer to Lau and Lau [5] for numerical examples.

In the second part of our study we have considered the multi-period problem. First, we 
have developed the mathematical model that takes into account the issue of bargaining on 
price, between the customer and the vendor, which might arise when there is shortage in any 
intermediate period. Then, we have introduced three special baclogging rules and derived the 
7i-period pseudo-profit functions under each case.

We have shown that under deterministic demand, if the shortages are simply lost, then 
the optimal procurement quantity in each period could be determined by an policy.
Under the second backlogging rule, which assumes that the customers wait only one period 
l)roviding that they pay current period^s price, we have identified that, though, an order-up- 
to level exists for every period the reorder point could depend on the previous period^s price 
setting. Thus, an policy could not be optimal in general. In this regard, we have
defined an alternative optimal procurement policy which utilizes the fact that the order-up-to 
levels are known. Furthermore, under the assumption that the customers wait only one period 
whatever the price is, we have found that, in general, not only the reorder point but also the 
order-up-to level could be a function of the beginning inventory level before ordering in the 
current period.

Therefore, we have demonstrated that depending on the type of the backlogging rule the 
optimal procurement strategy could be different than an policy. Hence, dwelling on
the conditions which ensure optimality of such a policy, in general, is undermining the problem.
It is essential that, the role of price in the process of backlogging is clearly described rather 
than making rough assumptions about the forgone revenue which could not be justified.

The probabilistic demand model, on the other hand, has been considered under the lost- 
sales assumption. It has been shown that, the expected 7i-period pseudo-profit function could 
be characterized such that an ((7„, ^n) type policy is optimal if we assume that <  cr^", where

We have also found that the optimal order-up-to level must be within [ |; , ]

where and could be determined from the problem parameters. It has been demonstrated 
that unimodality of the single period expected pseudo-profit function is essential in proving the 

above results.



CIIA PTEIl 5. CON CL USIONS 72

As a special Ccisc, we have also considered the infinite horizon lost-sales probabilistic demand 
problem. We have shown that the expected pseudo-profit function could be obtained through 
a renewal theoretic approach. To demonstrate this, we have provided an example problem.

The efiects of the parameter values on the optimal solution have been discussed on 
some example problems. It has been shown that problem parameter values, under the lost- 
sales probabilistic demand model, could eifect the values of the optimal control parameters 
considerably. Also, type of the demand distribution and form of the expected demand function 
could affect the optimal solution.

The pricing issues are also discussed in the last chapter. The striking result is the fact that, 
due to presence of the fixed cost, the best price is not always decreasing at higher inventory 
levels. We have identified some example problems in which the best price, for n > 1, temporarily 
increcuses cis (¡n gets higher, but starts decreasing later again.

There are possible extensions to our model which could be considered cis future research 
opportunities. For instance, the model can be further generalized by assuming that the cost 
parameters and/or the demand distribution are different in each period. In fact, our theoretical 
work will be exactly valid under this extension, but we have to rewrite the mathematical model 
and modify the results accordingly. This generalization would enable us to identify, for example, 
the effects of a rise or a fall in demand (with a certain pattern in time) on the optimal solution. 
Similarly, effects of the inflation rate on the optimal procurement and pricing decisions of the 
vendor could be investigated by including an inflation rate factor.

Another potential issue is the fact that there are several other factors which affect demand 
besides the retail price. For instance, income level of the customers, sales effort, competitors’ 
price or substitute’s price are possible ones. The last two factors link the model with the 
game-theoretic applications under which the analysis is severely limited due to mathematical 
intractabilities. The reader may refer to Kirman and Sobel [4] or to Nti [10]. The sales effort 
(advertisement and etc.) issue is studied by Gerchak and Parlar [1] for the single period model, 
which does not include the pricing decision. Thus, to start with, their model could be extended 
in the proposed direction, and the effect of price and sales effort could be simultaneously 
studied. Since this analysis is subject to analytical difficulties, a simulation study similar to 
the one performed in [1] would be appropriate.

In this study, we have assumed that the vendor is maximizing the expected profit. This 
intrinsically means that the vendor is risk neutral. As an extension, therefore, we can 
incorporate risk attitude of the vendor by defining a utility function, and maximize the utility 
of the expected profit. The general setting for this model is explained by Leland in [6].

Apart from structural changes, some technical points could also be emphasized. For 
instance, the proof of unimodality of the single period expected pseudo-profit function could 
be further studied. A realistic price-demand relationship could be formulated under which
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the uiiinioclality is demonstrated. Moreover, the connection of unimodality with the monopoly 
power of the vendor could be investigated. Under the multi-period model, on the other hand, 
the characteristics of the M„(0,ry,^i) function could be further revealed by improving the six 
conditions which are formulated earlier. In this regard, for instance, we might try to show that

the ripples in the range of (ir,\, d- ) would always remain above the M „(0 , —/C level so that
kji =  2 for all 71. This would enable us to prove the optimality of the (cr ,̂ policy under the
rule that in < for > 1.



Appendix A

For = P'^{p) we luive

R'{p) =  X {p )+ p -^ {p ) ,  

It"{p) =  2 A  (p) +  p -x '(p ) .

(A .l)

(A.2)

Lem m a A l .  R{p) is not pstudoconcave for all monotone decreasing X{p) functions.
P roo f. If we let X (p) =  600 e“ °-̂ ® P+ 1.5-5iM(2-Tr-p), which is a monotone decreasing function 

of p on (0,8), then R{p) is not a pseudoconcave function on (0,8).
Lem m a A 2. If X{p) is a convex decreasing function, then R{p) is pseudoconcave on (0,oo). 
P roo f. Since A (p) is a convex decreasing function, Vp,pi € (0,oo) we have

A ( 2 ? i ) - X ( p ) > ( p i - p ) A ( p i ) ,  (A-3)

P i< (> )P  ^  X (p i) > (< )3f(p). (A.4)

By definition, R{p) will be pseudoconcave at pi £ (0,oo) if it is differentiable at pi and

il '{P i)-{p -P i)  < 0 '̂ P ^ (O.oo)·

From (A .l) and (A.5) we get

n'iPiHP -  Pi) = X{PiHP -  Pi) + Pi <P -  P i ) ·^ (P i)  ^

By (A.3) we have
P r { p - P i ) ' ^  (Pi) > Pi’[^{p) -  

It follows from (A .6) and (A .7) that

(A.6) => A (p i ) - (p -P i )  +  P i - № ) - ^ ( P i ) ]  < 0 .

and

(A.6)

(A.7)

(A.8)

(A.9)(A.8) p-X(pi) +  P i - № ) - ^ ( P i ) ] < P i - ^ ( P i )  =  ^(Pi)·

Adding and subtracting p A (p ) on the L.II.S. of (A.9) and collecting terms we obtain

(A.9) /l(p) +  (p -p i ) - [X (p i) -3 f (p ) ]< i? (P i) .  (A-10)
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From (A.4) we have

i p - P i ) ' [ X { p i ) - X { p ) ] > 0 ,  (A .l l)

Therefore, by (A .10) and (A .l l)  we get

(A.9) R{p) < R{p,).

Since Pi was arbitrary the proof is Vcilid for all pi G (0,oo).
T h eorem  A l .  If X(p) is a convex or concave decreasing function, then R(p) is pseudoconcave 
on (0, oo).
P roo f. If X{p) is concave, then from (A .2) it follows that R{p) is concave on (0,oo). Also by 
Lemma A2, R{p) is pseudoconcave on (0,oo) for a convex decreasing function.
C orollary  A l .  The function T{p) =  (p +  a)-X{p) is pseudoconcave on (0,oo); where a ER.  
P roo f. Making a coordinate change by p2 ^  p + a, and introducing the function Y{p2) =  
X{P2 — (i) we obtain

T(p) = (p +  a)-X(p) = P2-X(P2 -  a) =  P2-V(p2)̂

If a < 0, then P2 ’ T (p2) is monotone increasing on (a,0). Since Y(p2) is monotone 
dccreiising on (0,oo), it follows by Theorem A l that P2 'Y{P2) is a pseudoconcave function 
on (0,oo). Therefore, P2'Y{P2) is a pseudoconcave function on (a,oo) which implies that T{p) 
is a pseudoconcave function on (0,oo).

If a > 0, then wc can extend Y{p2) on (0,rt) by a straight line (or by another appropriate 
function) which complies with the assumptions of Theorem A l. From the same theorem it 
follows that P2'Y{P2) is pseudoconcave on (0,oo). Hence, it is also pseudoconcave in its open 
subset (a,oo). Thus, T{p) is a pseudoconcave function on (0,oo).
C orollary  A 2. Va, 6 G 7̂  such that a > b we have Pa < Ph where

Pa = argsup{{p-\- a)^X{p) : pG  (0 ,oo)},

Ph = (irgsup{{p-\-h)-X{p) : p € (0 ,o o ) } .

P roo f. We define two functions: A{p) ^ (p+ciyX{p) and B(p) =  {p + b)X{p)· From Corollary 
A l it follows that A{p) and B{p) are pseudoconcave functions on (0,oo). Moreover, we note 

that
A{p) > B{p) Vp G (0,oo) (A .12)

If Pa,P!; € (0,oo), then they should satisfy the first order conditions

^\Pa) =  0 and B\pi) =  0.

We rewrite A{p) as A[p) =  B{p) +  (a -  h)-X{p), which leads to:

A ' ( p ) - 5 ' ( p )  +  ( a - 6 ) .A ( p ) .
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Evaluating the above equation for p — Pa we get

A'{pa) = B\pa) + (a -  b)-X (pa),

which implies __^
D'{pa) = - { a - b y x  {P a )> 0. (A.13)

That is. IJ{p) is non-decreasing p = Pa- «¡nee B{p) is a pseudoconcave function we deduce

that Pa < Ph’
If Pa and Pi are both non-interior point solutions, then (A.12) implies that Pa = Pb =  0.

If p„ =  0 and pi € (O.oo), then p« < pi-
If Pa € (0, oo), then from (A.13) we conclude that pa < Pb·^ _  _

C orollary  A3. {p — c) q is a pseudoconcavc function of q on {X{Pu),^{Pl))i where q — X{p)· 
P roo f. A (p) is a decreasing function of p. Therefore, its inverse, X  {q),js  decreasing on 
(A (P„),A (/^<)). By Theorem A 1, 7 'A  (i/) is pseudocon^ve on (A (P u )iA (P f))· Ihus, y  

'x~\q) -  c q = {p -  c)-q IS also pseudoconcave on {X{Pu),X{Pt))·
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Appendix B

The discoiiLinuity in M  (r/), if it exists, can not be of second kind. Because, M(p, g) is 
everywhere defined on p G [Pi^Pu] and q G [¿, oo). That is, G [2, 00) 3pq G [Pt)Pu\ 
such that M {q) = M{pg^q).

If at q = q, M{q) 1i2ls a first kind discontinuity, then

lim M (q) =  lim max{M{p,q) : p£[PtyPxi]]

/  lim max{M{p,q) : p e [P i ,P u ] }=  M (q).

= argmax{M{py(i’̂ ) : p G [Pi,Pu]},
We define

and
p~ = argmax{M{p, q~) : p £  [Pt, P „]},

for any given q'̂  and q~  ̂ respectively. It follows from the g-continuity of M{p,q) that

lim M {q) /  lim M (q) => p~ p' .̂
g-*q- q-̂ q-¥

Also, it can be seen that
lirn M [q) =  limg—(/-I g-̂ ĝ

and
lim M {q) =  lim M{p ,^). 

g’-̂ g~ g-̂ g~‘

Moreover, Vp G [Pt) we have

and

M { p , t ) < M( p+ , q+ ) ,

M{p,q ) < M(p ,q ).
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Since M{i> ,(/) and M{p'^,q) are concave functions of (/, it follows from above that for some 
6 > 0 with q~ = q — e and q'̂  =  (; +  e we have

M{p-^^q) = M { r .q ) .

ill the limit as e —> 0. Therefore,

lim M (q — e) 7̂  lim M (q + e) => p ^ p~̂£->0 c->o  ̂ '

=> M (;5+, q) =  M{p~, q) =  M*{q),
— —'k

which is a contradiction. Hence, M (q) can not have any first kind discontinuity. It is also clear 
that M (q) does not have any removable discontinuity. Consequently, M (q) is continuous in 
q on [¿, oo).
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Appendix C

We drop the subscript “ 1” from the variables. Thus, from (3.61) it follows that for X{Pu) < i  

we have;

M j(*)'/) =  max{—b-p̂  +  {a — b-h — i)'p +  a-h: p < P < Pu}

—(c +  li)-q +  c-i,

where p =  (a -  q)/b. Since the maximand in (C.14) is a quadratic function, we have 

max{-b-p'^ +  (a — 6’ /i — i)-p +  U'/i : P ^ P Pu)

, Pu < { a - b - h - i ) / { 2 -b),
( a - b - h - i ) l { 2 -b) , p < { a - b - h - i ) / { 2 -b) < Pu,
p , { a - b - h - i ) / { 2 -b) < p

(a_6./i-i)/(2-6) , -b■{h + P u ) < г < 0 < { a  + b■h-l·г)/2<q,
(a_6./j_i)/(2.6) , i < - b i h  + Pu)<{a + b-h + i )/2<0<q ,
p  , -t·(/ı + P u ) < í < 0 < g < ( α  + 6·/  ̂+ í)/2.

Note that i < (a +  b-h +  i)/2  •o i < a +  b-h =  b-{h +  Pu)·

(C.14)
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Appendix D

We drop the subscript “ 1” from the variables. It follows from (3.62) that 

argmax{M '■ f < '/ < * < 0}

J o  . * < -b-{k +  Pu),
I  arginax{{a -  q — c-b) {q -  i)/b : 0 < q < {a + b-h +  i)/2} , -b-{h +  Pu) < i < ,̂

_  i 0 , i <  -b-{Pu -  c),
~ \ {a-c-b + i)/2 , -b-{Pu -  c) < i < 0.

Note that (a -  c-b + i)/2 < 0 ^ i <  -6 - (P „  -  c) i < + h) and also (a + b-h +  i ) > { a

—cb  + i) .
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Appendix E

U iiiibriu distribution:

3{e)
1

2 - A ’
£ G [“ A, A]

G(e)
c 4“ A 
2-A £ G [-A,A].

Ele] = 0

Var(£) =  P/3

Under the uniform density function the expected leftovers function will be:

' 0  , q -  X{p) < -A

0(p, q) = <
4 A

IViaiiguIar distribution:

, q -  X{p) , A < q-X{p).

^  ̂ ■‘i  0,

0{e) =  < ^  , 0 < e < A,

G{e) =

0

0

2A =

otherwise 

, £ < —A

, -A  <  £ < 0

, 0 < £ < A

A <  £
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E[e] =  O 

Var(e) =  AVC

Under Uie triangular density function the expected leftovers function will be:

0 , q - X { p )  < - X

e{p,  q) = <
, - X < q -  X(p) < 0 

5 , 0 < g - X ( p ) < A

A < q - X ( p ) .

82



Bibliography

[1] Gercliak Y. and Parlar M., “A Single Period Inventory Problem With Partially Controllable 
Demand” , Computers and Operations Research 14 (1987) 1-9.

[2] Ileyman D.P. and Sobel M.J., Stochastic Models in Operations Research  ̂ Vol 2, McGraw- 
Hill, New York, (1984).

[3] Karlin S. and Carr R.C., “Prices And Optimal Inventory Policy” , Chapter 10 in Arrow 
K.J., Karlin S. and Scarf II., Studies In Applied Probability And Management Science  ̂
Stanford University Press, Stanford, California, 1962.

[4] Kirman A.P. and Sobel M.J., “Dynamic Oligopoly With Inventories” , Econometrica 42 
(1974).

[5] Lau A.IIing-Ling and Lau Ilon-Shiang, “The Newsboy Problem With Price-Dependent 
Demand Distribution” , HE Transactions 20 (1988) 168-175.

[6] Leland II.E., “Theory Of The Firm Facing Uncertain Demand” , The American Economic 
Review 62 (1972) 278-91.

[7] Mills E.S., “Uncertainty and Price Theory” , Quarterly Journal of Economics 73 (1959) 
116-130.

[8] Mills E.S., Price, Output, And Inventory Policy, John Wiley L· Sons, 1962.

[9] Nevins A.J., “Some Effects of Uncertainty: Simulation of a Model of Price” , The Quarterly 
Journal of Economics 80 (1966) 73-87.

[10] Nti K.O., “Competitive Procurement Under Demand Uncertainty” , Management Science 
33 (1987).

[11] Porteus E.L. “On the Optimality of Generalized (s,S) Policies” , Management Science 17 

(1971).

83



[12] Schäl М., “On the Optimality ocl (s,S)-Policies in Dynamic Inventory Models With Finite 
Horizon” , SIAM Journal of Applied Malhemaiics 30 (197G) 528-537.

[13] Thowsen G.T., “A Dynamic Nonstationary Inventory Problem For A Price/Quantity 
Setting Firm” , Naval Research Logistics Quarterly 22 (1975) 4G1-76.

[14] Veinott A.F.Jr., “On the Optimality of (s,S) Inventory Policies: New Conditions and a 
New РгооГ, SIAM Journal of Applied Mathematics 14 (19GG) 10G7-83.

[15] Whitin T.M., “Inventory Control And Price Theory” , Management Science 2 (1955) G1-G8.

[IG] Young L., “Price, Inventory and the Structure of Uncertain Demand” , New Zealand 
Journal of Operational Research G (1978) 157-177.

[17] Young L., “Uncertainty, Market Structure, and Resource Allocation” , Oxford Economical 
Papers 46 (1979) 47-59.

[18] Zabel E., “Monopoly and Uncertainty” , Review of Economic Studies 37 (1970) 205-219.

[19] Zabel E., “Multiperiod Monopoly Under Uncertainty” , Journal of Economic Studies 5 
(1972) 524-536.

84


