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ABSTRACT

CAMERA-BASED 3D INTERACTION FOR
HANDHELD DEVICES

Tacettin Sercan Pekin

M.S. in Computer Engineering

Supervisor: Assist. Prof. Dr. Tolga K. Çapın

August, 2010

Using handheld devices is a very important part of our daily life. Interacting with

them is the most unavoidable part of using them. Today’s user interface designs

are mostly adapted from desktop computers. The result of this was difficulties of

using handheld devices. However processing power, new sensing technologies and

cameras are already available for mobile devices. This gives us the possibility

to develop systems to communicate through different modalities. This thesis

proposes some novel approaches, including finger detection, finger tracking and

object motion analysis, to allow efficient interaction with mobile devices.

As the result of my thesis, a new interface between users and mobile devices is

created. This is a new way of interaction with the mobile device. It enables direct

manipulation on objects. The technique does not require any extra hardware.

The interaction method, maps an object’s motion (such as a finger’s or a pre-

defined marker’s motion) to a virtual space to achieve manipulation which is

moving in front of the camera.

For Finger Detection, a new method is created based on the usage of the mobile

devices and structure of thumb. A fast two dimensional color-based scene analysis

method is applied to solve the problem.

For Finger Tracking, a new method is created based on the movement ergonomics

of thumb when holding the mobile device on hand. Extracting the three dimen-

sional movement from the two dimensional RGB data is an important part of

this section of the study.

A new 3D pointer data and pointer image is created for usage with 3D input and

3D interaction of 3D scenes. Also direct manipulation for low cost is achieved.
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ÖZET

TAŞINABİLİR CİHAZLAR İÇİN KAMERA TABANLI 3
BOYUTLU ETKİLEŞİM

Tacettin Sercan Pekin

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Assist. Prof. Dr. Tolga K. Çapın

Ağustos, 2010

Taşınabilir cihazları kullanmak hayatımızın kaçınılmaz bir parçasıdır. Onları kul-

lanmanın en kaçınılmaz kısmı ise onlarla iletişimde bulunmaktır. Bugünün kul-

lanıcı arayüzleri çoğunlukla masa üstü cihazlardan esinlenilerek tasarlanmıştır.

Bunun sonucu olaraksa taşınabilir cihazlarla iletişim kurmak zorlaşmıştır. Ancak

işlemci gücü, sensörler ve kameralar gibi eklentiler çoktan bu cihazlarda yerlerini

almışlardır. Bunlar bize standardın dışında yeni iletişim kurma yöntemleri için

olanak sağlamaktadır. Bu tez, parmak tanıma, parmak takibi ve nesne hareket-

leri konusunda bazı yeni yaklaşımlar sunarak, mobil cihazlar ile etkileşimin daha

iyi geliştirilebileceğini öne süren bir çalışmadır.

Tezimin sonucu olarak, taşınabilir cihazlar ile kullanıcı arasında yeni bir iletişim

yöntemi tasarlanmıştır. Bu, taşınabilir cihazlarla iletişim kurmanın tamamen

yeni bir yöntemidir. Bu, nesneleri doğrudan değiştirme imkanı vermektedir. Sis-

tem bu cihazlarda bulunan donanımlara ilave bir donanım gerektirmemektedir.

Etkileşim yöntemi, kameranın önünde hareket eden bir nesnenin hareketini (bir

parmak veya önceden tanımlanmış bir işaretçinin hareketini) sanal bir ortama

yansıtarak nesneleri doğrudan değiştirme imkanı vermektedir.

Parmak tanımlama için, taşınabilir cihazların ve baş parmağın yapısına uygun

olarak yeni bir yöntem geliştirilmiştir. Problemi çözmek için iki boyutlu, hızlı,

renk tabanlı bir sahne analizi yöntemi uygulanmıştır.

Parmak takibi için, taşınabilir cihaz elde tutulurken baş parmağın hareket

yapısına uygun yeni bir yöntem geliştirilmiştir. İki boyutlu Kırmızı-Yeşil-Mavi

(KYM) renk verisinden üç boyutlu hareket verisinin çıkarılması çalışmanın bu

kısmı için önemli bir bölümdür.
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Üç boyutlu yeni bir işaretçi sistemi ve imleci tasarlanarak üç boyutlu

girdi ve üç boyutlu etkileşim yöntemlerinin üç boyutlu ortamlardaki kul-

lanımları sağlanmıştır. Ayrıca düşük maliyetli doğrudan değiştirme olanağı da

sağlanmıştır.

Anahtar sözcükler : 3 boyutlu kullanıcı arayüzleri, parmak izleme, 3 boyutlu

imleç, kamera tabanlı etkileşim, taşınabilir cihazlar, kullanıcı arayüzleri.
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Chapter 1

Introduction

Background

The main purpose of HCI is to improve the interaction between devices such as

computers and the users. 50 years earlier, this concept was just through switches

and punched cards to enter commands. Respond of the computer was simple. The

output was given via lights or line printers. Following years, with the development

in speed and memory of computers, much faster and much direct interaction be-

came popular. Today, the interaction between human and computer is much more

directly, effectively and rapidly related. Now we have mouse, keyboard, accelera-

tion sensors and several interaction methods that can directly communicate with

the computers enabling us to directly manipulate an object in computers. We

even have speech communication, writing surfaces and several similar products.

J. C. R. Licklider emphasizes the importance of the Man-Computer interaction

as follows [19]:

“Man-computer symbiosis is an expected development in cooperative

interaction between men and electronic computers. It will involve very close

coupling between the human and the electronic members of the partner-

ship. The main aims are 1) to let computers facilitate formulative thinking

as they now facilitate the solution of formulated problems, and 2) to en-

able men and computers to cooperate in making decisions and controlling

1



CHAPTER 1. INTRODUCTION 2

complex situations without inflexible dependence on predetermined pro-

grams.”.

The technology that enables us to interact with the computers consists of two

parts. The first part is the input devices used for interaction. The second part is

the devices that enable us to see the effect of the interaction. Display technologies,

especially 2D displays, have matured to the level that further improvements are

perceptually negligible. Recently, 3D displays are gaining popularity. A variety

of 3D display technologies, such as auto stereoscopic displays, have emerged in

the marketplace. These 3D displays are also being introduced on mobile devices

(3DPHONE). These new modes of immersive interaction necessitate 3D input

modalities for mobile use.

Motivation

In this thesis, we aim to provide a new mode of input for mobile devices featuring

3D displays. The currently available input techniques on mobile devices do not

allow a rich level of interaction. A new level of user interaction is needed for

3D mobile use. However, these technologies are not used for new kind of mobile

interaction and only a small number of new interaction techniques are developed

using these new technologies. So a new and radical user interaction technique is

necessary for the field.

Existing techniques do not address the real 3D and n-view screen interaction

problem. There are few techniques for large displays but they are not suitable

for mobile and moving small devices. Therefore a different solution should be

provided to solve the human-computer-virtual object interaction problem. Some

of the provided solutions use 2D input technologies to map 3D interaction and

manipulate 3D objects virtually. As expected they cannot always handle the

necessary movements of the objects in 3D space. Their input is limited and

extra mapping is necessary. The first idea was to use mouse devices to map 3D

interaction of 3D objects with 2D input [6]. Only a single plane is controlled

with the 2D movement of mouse and the third degree of freedom is simulated

with buttons on mouse. This is not suitable since this kind of approaches cannot
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map direct manipulation situations. The second approach to solve the problem

is to create a new 3D input, and several studies have been carried [9]. One of

them is using acceleration sensors. This solution also cannot be considered as

successful since user needs to move the whole device in order to activate sensor.

In this situation, view of the user is lost and again direct manipulation cases are

not handled. Using the rear camera to gain ego motion was another method but

this solution also suffered from the same problems that acceleration sensors need

to deal. So, in the absence of a suitable design for direct 3D input, we studied a

new and original solution for mobile direct 3D input method.

Interaction in 3D displays is also weak with the existing input methods. Pro-

posed solutions above have their disadvantages. 2D input methods such as touch

screen and mouse do not cover the 3 degrees of freedom. 3D input methods such

as acceleration sensors or ego motion with camera suffer from view point change

and losing of 3D view. For lenticular displays and similar view point dependent

3D screens, user has to look at the screen from a narrow angle. Thus for mobile

usage, a new method is necessary and expressed problems are solved with the

proposed input technique in this thesis.

Our Contribution

The first part of the research is finding and defining suitable vision techniques

for finger detection, finger tracking and movement recognition. Investigated tech-

niques can be summarized as follows:

• We have developed a new camera-based interaction technique based on 3d

finger tracking o n mobile devices. The technique consists of two parts. The

first part consists of detecting finger in front of the camera. The second part

consists of tracking these objects and identifying which one is the possible

finger.

• We have developed techniques to map the tracked finger motion to 5 DOF

input and to use it for direct manipulation of 3D objects. Depth analysis

is also done at this stage of the study.
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Outline of the Thesis

• Chapter 2 presents a comprehensive investigation of the previous work on

the topics of Finger Detection, Finger Tracking and Movement Analysis on

Mobile Devices.

• In Chapter 3, our proposed system for 3D Finger Tracking and HCI tech-

niques are explained in detail.

• Chapter 4 contains the results of an experimental evaluation of the proposed

HCI system.

• Chapter 5 concludes the thesis with a summary of the current system and

future directions for the improvements on this system.



Chapter 2

Background

There are a number of studies that have been carried related to camera-based

interaction. These studies are divided into subcategories and explained in detail

in the following sections.

2.1 Camera-Based Interaction

Interaction with computers and mobile devices have been developed in parallel

over the recent years. Since mobile devices are getting more and more ubiquitous,

users tend to demand more specific and efficient interaction methods for them.

Alternative input methods to keypads and touch screens are being investigated

and some new techniques have recently emerged. Alternative solutions such as

acceleration sensors and camera-based interaction are becoming popular with the

development of larger screens and richer data on mobile devices.

5
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Camera-based interaction can be divided into two parts when used as the

input method on mobile devices. The first technique is to use the device as a

pointer itself by using the ego motion of the mobile device. On the other hand,

the camera can capture an object in front of it and use it as a pointing item. In

both, camera-based interaction requires capturing images continuously, collecting

information in the scenes, identifying motion, and using the data as an interaction

method. As the primary interest of this thesis, we have investigated finger-based

interaction on handheld devices.

2.1.1 Finger Detection

The majority of the recent approaches for mobile devices that perform finger,

hand, or head tracking use mono camera. Mono camera gives enough flexibility

for the two dimensional screens provided, but its use for 3D input needs to be

investigated. Stereo camera based solutions generally are too complex for mobile

platforms. Therefore, in this thesis, we have chosen to use a single camera input

for camera-based interaction to decrease computational requirements.

Tracking, in general, is studied in two fields: ego motion and object motion.

Studies about ego motion address the problem of moving whole device movement

[12, 13]. On the other hand, object motion studies address the problem of de-

tecting moving objects in front of the camera [10, 1]. However since the principle

is similar, we discuss both topics below.

Detection can be categorized into two major parts. The first part is edge-

feature detection and the second part is color-based detection. Both approaches

are investigated in detail and related information is presented in the following

sections. According to the implementation and testing, color based tracking is

more suitable in the case of finger tracking since finger does not have remarkable

edges or features.
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Edge - Feature Detection Methods

Moving the mobile device is a promising solution for a camera-based user

interface. Several studies have been carried using this approach. In edge-feature

detection method, the camera is essentially used like an acceleration sensor. The

aim is to use the input from the camera located at the back of the device. Image

analysis techniques are used to find the differences between consequent images in

the input stream, calculating the ego motion of the device.

A fundamental problem in the usability of mobile devices is their limited dis-

play size. To enhance the usability of the screen, Hannuksela et al. [12] developed

a novel user interface solution for mobile devices which enables the display to be

controlled by the motion of the user’s hand. A feature-based approach is proposed

for both detection and motion analysis. At each time, captured image is divided

into N sub-regions and in each region an M by M block is chosen according to the

richness of texture. At each frame, these sub-regions are compared according to

their specific block. In this way, movement is analyzed and motion of the device

is established.

Haro et al. [13] have created a system for user interaction on mobile devices,

using the ego motion of the device. Their approach is based on tracking corner-

like features in the incoming camera images. The detected direction is used

as the scroll direction in the application, and the magnitude is used to set the

zoom level. The camera is treated as a pointing device and zoom level control

in applications. Their tracker uses the current and previous frame captured by

the camera. Corner like features are detected in the current frame which are

matched with the features found in the previous frame. Direction estimates are

accumulated for a number of frames before a movement direction estimate is

made

A different study by Bucolo et al. [2] has a similar approach. Their study

mainly focuses on identifying the similarities and differences between standard

mobile phone joystick and a phone camera. The study results indicate that the

joystick control provided the fastest completion times for each game, but with

the lowest levels of user engagement.



CHAPTER 2. BACKGROUND 8

Finger tracking is similar to tracking of mobile device movement. The main

difference is that in this approach the features to be detected should be in front

of the mobile device and the relative motion with respect to the mobile device is

tracked. Therefore, by tracking the finger, it is possible to simulate the mouse

or other UI item in the mobile device for the finger. There are several studies in

the image analysis field for the topic but there has not been any complete user

interaction system.

Hannuksela’s studies [10], [11] are good examples of what can be done with

finger tracking as the user interaction method. In the first study they have

introduced a new vision based interaction technique. According to this, the user

moves his finger in front of the camera and the system tracks his hand movements.

In this study, Kalman filter and Expectation Maximization algorithms are used.

In the second study [11] they used a method that consists of two distinct motion

components corresponding to the camera motion and the finger motion. They

use hands, without markers, as the source of the motion for event creation. In

this method one can directly interact with the objects in the system.

Color-Based Detection Methods

Color based detection can be investigated in two parts. These parts are di-

vided according to their color space. HSV based and RGB based methods are

both investigated.

In a study carried by Bulbul et al. [3], an HSV based face tracking approach

has been proposed for mobile devices. This study was basically done for mobile

devices. They used the advantage of homogeneity of hue values among different

people faces. They scan continuous images to detect face in two general phases.

These phases are clipping and face localization. Clipping is used to accelerate

the process by only scanning the most probable window that will have the face

of the captured image. Face localization has its own inner phases and generally

uses HSV and smoothness properties of face. According to this study, color based

tracking on mobile devices is fast and reliable. As the result of the study, camera

based tracking can be used to control view point of 3D applications.
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A primary approach for RGB based detection with camera is based on using

markers. There are several studies and developed products that use markers.

Markers can also give a good contrast with the background if chosen carefully but

of course it has side effects like mobility problem. Johnny Chung Lee created [18]

created a system that uses markers. He uses infrared cameras for the purpose.

However a similar technique can be used in a 3D mobile device environment.

Using a tracker gives several opportunities - e.g. understanding the position and

orientation of the finger is easier. This creates a target for the camera to track.

Using a wearable tracker designed carefully like RGB-color code still may give

good opportunities. Hachet et al. [9] introduced an RGB-color code camera-

based user interface. The authors propose a new 3-DOF interface adapted to the

characteristics of handheld computers. They designed a binary RGB-color coded

flat background for the mobile device. Then by moving the background at the

back of the device, they obtain the camera motion by using the trackers. They

also can get depth from the system by analyzing the distance in-between the code

pattern.

Predefined specific targets gives enough information about the target in

marker based solutions. Chehimi et al. [4] created a game using mobile phone

camera. In this work, the system can understand a predefined specific target cap-

tured by the camera. The game uses specially designed colored tags, which are

worn by the players, and advanced color tracking software running on a camera

phone, to create a novel first person shoot-em-up (FPS) with innovative game

interactions and play. Chehimi et al. report that they were able to code the

target for special purposes. This can be used to solve limited input problem for

mobile devices while dealing with camera based input techniques.

Another predefined specific target is CyberCode. It is similar to the previous

study but this approach uses only black and white for coding. Rekimoto and

Ayatsuka [20] created this approach, where real world objects in the system are

defined by tagging them with barcodes. As each object has a code, camera

detects this code and decodes it for further interaction. He uses CyberCode, a

new technique for coding the real world objects.
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2.1.2 Finger Tracking

Several research studies have been presented for head, hand tracking, particularly

for desktop platforms. To the best of our knowledge, very few studies have been

done on finger tracking on mobile devices. Related work can be divided into three

categories: edge-feature tracking, color-based tracking and region tracking.

Edge-Feature Tracking

Hannuksela’s study explained above in [10] is the first major approach to

solve the finger tracking problem on mobile devices. The approach makes use

of Kalman Filter and Expectation Maximization for tracking purposes resulting

an efficient and reliable tracking. Please refer Section 2.1.1 of this document for

more information.

A study for desktop computers uses edge-feature based tracking for mouse

like interaction. The study, “Camera Mouse”, is presented by Betke et al. [1],

and it tracks user’s movements as the source for mouse. It directly extracts the

movements of the user from a webcam etc. and uses the data to simulate the

motion as the mouse pointer. This study is primarily for desktop computers but

can be adapted to mobile devices as well.

Color Based Tracking

Color-based tracking of hands and face is investigated in Imagawa et al.’s

study [15]. They have presented a real-time hand-tracking system for sign lan-

guage recognition. According to their study, they create a hue-saturation map

for the skin color by obtaining multiple samples of skin from images of several

individuals under varying illumination conditions. By using the map, the system

extracts the face and hand regions using their skin colors, computes blobs, and

then tracks the location of each hand using a Kalman Filter. They differentiate

the hands and head by focusing on the fact that the face does not move as much

as the hand during sign-language motion.
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Rohs and Zweifel [21] use CyberCode [20] to interact with real world objects.

In their approach, they use visual codes to interact objects such as vending ma-

chines or tram stops. This way they can learn when the next vehicle comes or

similar information with the help of their mobile device. The mobile device cap-

tures the image which contains the CyberCode and processes the it to receive

necessary information. They also use the CyberCode to track the movement of

the phone. The movement of the phone is transferred to the interaction engine

and mapped to a virtual interaction method. With this method they can point,

rotate, tilt, stay and interact in many different ways with the objects.

Region Tracking

Fieguth and Terzopoulos carried a study [8] on object, especially head, track-

ing. Instead of edge tracking, a color cue is generated at each scene. Average

color of pixels is stored in a specific region. The center of the region is searched

in the following scene. Nearest locations are searched to keep working at around

30 fps. Each time nine points are searched in the scene.

A new algorithm called Projection Shift Analysis is used [7] in Drab and

Artner’s study for motion detection. Their method calculates both x and y

projections of all luminance values of each row and column. At each time, a

difference factor is calculated according to the neighboring shift projections of

the previous and current scenes. The smallest difference means the most suitable

motion place.
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2.2 Handheld Interaction

2.2.1 Single-Handed Mobile Device Interaction

Karlson et al. [17] have studied the use of one-handed mobile devices. Instead

of working on specific technologies or specific tasks, they have focused on human

factors and usability in one-handed mobile interaction. First they have completed

a field study to gather the usage information of mobile phones or PDAs. Then

they have prepared a survey. Participants answered questions about one-handed

and two-handed mobile device usage in this survey. Finally according to these

studies they have completed a thumb movement study. They have used tapping

as the primary action and created an easy-hard region map according to the

received information.

Another study carried by Karlson and Bederson [16] shows that thumb is best

used in a portion of the touch screen. According to this, the user can only reach a

part of the screen easily. The remaining part of the screen, which is not reachable

by the thumb, is generally not used for interaction. Thus, to enhance usability,

they allow the used portion of the screen to control the whole user interface.

They have designed ThumbSpace and let the user interact with the screen inside

a defined area. This method maps the area where the user interacts, to the whole

screen space.

Other studies attempt the accuracy of finger interaction in the screen space.

Dearman et al. [5]’s approach subdivides the screen space recursively for the

accurate control of pointer, driven by the user’s finger.
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2.2.2 Direct Manipulation Interaction

Decle and Hachet completed a study [6] which enables the 2D touch screen to

be used as a 3D interaction method. They have worked primarily on thumb

interaction on 3D objects. They used the screen as a trackball and manipulated

a 3D object on 2D screen. In their study, horizontal movements produced rotation

around up-down vector and vertical movements produced rotation around right-

left vector. They have created a test application to accomplish a movement task

to see the efficiency. They have investigated Direct Control vs. Planned Control

with an experiment. According to the experiment, subjects were faster with the

Direct Control than with the Planned Control.

As the literature survey indicates, there is a lack of comprehensive and com-

plete 3D mobile human-computer interaction technique for 3D content and 3D

screens. The current solutions are limited, as they are not mobile, they do not

provide several degree of freedom, or they are suitable for use with 3D screens.

Some of the techniques given above [9, 2] decrease the mobility, while others

[10, 7] are computationally costly and inefficient. Some of these techniques [8]

only address part of the problem, e.g. detection and tracking. Hence, there is a

need for a complete 3D mobile interaction technique for 3D screens of handheld

devices.



Chapter 3

Camera-based Mobile 3D Input

In this work a method for 3D interaction on mobile devices is proposed. The

system is fed by raw camera frame that is captured image from the front camera

and is used as the basis for interaction with objects and the manipulation of data

to create a 3D interaction system which is controlled by the movements of the

finger in front of the camera. The interaction is as follows: The user moves his

thumb in front of the camera to interact with the system. The system detects the

finger and tracks movement of the finger to simulate the 3D interaction in virtual

environment where the object to be manipulated is. This method can be used as

direct manipulation or gestures can be created to command complex features.

3.1 General Architecture

The overall system consists of several stages. The first stage is detection and

tracking of the finger. After that, a 3D pointer is mapped from the obtained

position and movement data. The inner parts of the system are divided into

subsystems as follows:

14
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• Finger detection

• Finger tracking

• Mapping and control of the pointer for 3D mobile devices based on the

filtered finger movement

Figure 3.1: General Architecture of the System.

The general architecture of the 3D mobile interaction system can be seen in

Figure 3.1. In this system, camera frame is used as the source. Our color based

tracker tracks the finger motion. Color-based movement data is translated to

a low-level motion data. Details of the methods that are used can be found in

Chapter 2.
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3.2 Frame Sampling

The first stage of our algorithm is reading front camera frames of the mobile

device and using it as primary input for finger tracking as shown in Figure 3.1.

The purpose of this stage is to gather necessary information from the camera and

sample it for further use in the detection stage. At the end of this stage, the scene

is divided into smaller color blocks to decrease the calculation complexity which

makes the proposed method usable for mobile devices. The general architecture

of this stage is shown in Figure 3.2.

Figure 3.2: Architecture of Frame Sampling.

The only input of the system is raw camera frame. Data is provided in RGB

color format. Each pixel’s RGB values are stored in a data element for later use.

Once the pixel array is obtained, the system picks variable number of horizontal

lines with constant distance between them according to the user’s specification

on the line number. These lines are used for sampling purposes according to

the systematic sampling principles. Each line, then, is divided into 64 pieces

horizontally to distinguish the movement of the finger in x-axis. This enables us

to complete lesser computation in the future stages.
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The Purpose of Sampling?

In statistics, sampling is used when there is large data and limited computa-

tional power. Usage of sampling provides small data which represents the general

structure of the main data. In our case, the distribution of the data is fairly even,

thus we have used nonprobability sampling which provides general distribution

of all the RGB values in a horizontal line. Similarly systematic sampling [14] was

chosen to represent the data for the same reason above. In order to generalize

the approach, general sampling theorem (Eq. 3.1) is used. s(t) is the sampled set

of pixels in the current line where δ is horizontal pixels set in the same line, n is

the number of samples and T is the difference between them in pixels(sampling

interval).

s(t) =
64∑
n=0

δ(t− nT ) (3.1)

Line Analyzer

In the Line Analyzer of the system, RGB pixel array is traversed once to

collect R, G and B values separately. The Line Analyzer starts from the leftmost

pixel of a specific line. For each pixel on the line, it calculates sum of the upper

and the lower 5 pixels vertically. This gives us the total of 10 pixels vertically

which enable averaging of these 10 pixels. This process reduces single pixel noise

of the system. As a result of this averaging step, we gather 640 pixel(which is the

resolution of the captured image for width) color data for R, G and B values since

the system adds each value individually to corresponding R, G or B data. When

this is completed, the system starts adding 10 contiguous pixel data horizontally.

We call this 10X10 pixel addition values a “Color Block”. This step is again done

for R, G and B values separately. Each Color Block is put into an array location

in a 64-element array of R, G, B Color Blocks. At the end of Line Analysis stage,

we have obtained a horizontally analyzed line which is the sampling of total scene

in 10 pixels selection. This scan is done for all horizontal lines in the scene and

finally we get arrays of Color Blocks. The number of these arrays is the number

of horizontal lines selected by the user. Illustration of Line Analyzer is given in

Figure 3.3:
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Figure 3.3: Working principle of Line Analyzer. - Red boxes are Color Blocks.

Total Color Calculator for Horizontal Line

During analysis of the scene in the previous part, we also add all the R values,

G values and B values together to get the total of R, G and B values for each

pixel in a line including 5 upper and 5 lower pixels. Once we get this we store

it for further use. This data is used while the system is differencing the Color

Block differences in a horizontal line of the scene. If the amount of light is high

in the environment then the total value is large otherwise total value is small.

With the help of Total Color Calculator, we can get the Color Block differences

in the scene independent of the environment light density. This part is explained

in Section 3.3.1 of this document.
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3.3 Finger Tracking

Once we have obtained the Color Blocks of the scene, we can pass to Finger

Tracking phase. Finger Tracking phase is one of the most detailed and challeng-

ing phases in the overall system. There are several challenges in this stage. First

of all, the system has to analyze the produced arrays of Color Blocks for possible

midpoint locations of the finger in the scene. Secondly, the system has to distin-

guish between noises and possible fingers in the scene. Finally, the system has to

identify the borders of the finger. Among all these, the system has to get feedback

from the filtering mechanism and has to search the finger in the provided area.

Details of the Finger Tracking phase can be seen in Figure 3.4.

Figure 3.4: Working principle of Finger Tracking.

As shown in Figure 3.4, Finger Tracking has a number of steps. According

to this, Finger Tracker gets Color Blocks as input from Line Analyzer. Another

input for this stage is the Kalman Predict that is received from the Filtering

stage. The output of the system is possible finger which is not post-processed.

The result is used in Filtering mechanism as an input to filter the tracked finger.

Tracked finger is determined in 3 dimensions.
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Finger Tracking phase is completed in 3 consecutive steps. The first two

steps are applied to all of the horizontal lines that are analyzed in the previous

steps. The final step is applied to the result of the first two steps told above.

These steps are “Color Block Differencing”, “Possibility Detection” and “Possible

Finger Localization” respectively. According to this, each line that is analyzed

in the previous steps is examined again to determine the Color Block difference

locations in them. Once the Color Block difference locations in the respective

line are determined, it is time to examine the Color Block difference locations

and decide whether these differences contain a possible midpoint location. These

two steps are repeated for all the horizontal lines in the scene. Finally by using

the results of these two steps, the system tries to find a possible finger location

in the scene by looking at the possible midpoint locations in each line. Detailed

descriptions of these steps are explained below.

3.3.1 Color Block Differencing

Searching for Color Block differences is the primary stage in the Finger Tracking

process. The input for this stage is the Color Block arrays of the horizontal lines

individually. The result is another array containing the Color Block difference

locations of the input line. Color Block difference locations are determined ac-

cording to the R, G and B values of each Color Block. The system also uses the

Total Color array to determine the Color Block differences. Total Color array for

each line is calculated individually to discard the bad effects of the environmental

light. Algorithm for Color Block Differencing is given in Algorithm 1:
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Algorithm 1 The Algorithm for color difference identification.

1. new array differences [64]

2. for each color block

2.1. if current color block’s R value - next block’s R value

is bigger than total color array’s R value of this line

2.1.1. if current color block’s G value - next block’s G value

is bigger than total color array’s G value of this line

2.1.1.1. if current color block’s B value - next block’s

B value is bigger than total color array’s B

value of this line

2.1.1.1.1. add this block to differences array

Color Block Differencing phase is applied to every line in the scene. This

technique is applied as many as the number of horizontal lines, once for each

line. For every line, the system creates a new array for 64 values since there

are 64 Color Blocks in each line and each of them can be different than the

consecutive Color Block. So, for each Color Block, starting from the leftmost

Color Block, the system looks at the next Color Block and compares their R, G

and B values one by one. If any of R, G, B values differ by a factor between two

consecutive Color Blocks, the system sets the current Color Block as a Color Block

difference location. Since color difference changes according to the color density

of the current light of the scene, the difference factor between two consecutive

Color Blocks has to be dependent on the current environmental light. Thus, to

understand the color and light density, for each scene, the system keeps track of

the summed R, G and B values of each Color Block for the current line. The

system starts from the leftmost Color Block and calculates the color difference

between the current Color Block and the right adjacent Color Block to it. The

differences are calculated for R, G and B values separately for these two adjacent

Color Blocks. These differences are compared to the total array values of R, G

and B of that line. Before comparing the differences to total color values, the

system divides the total color values by 640x10 since all the pixels are added

together in each Color Block and only the average of them is needed. If current

difference is larger than the total color then the system sets that location as a

Color Block difference location and puts that location into a new Color Block

difference array. An example of Color Block differences is shown in Figure 3.5.
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Figure 3.5: Color Block differences in the scene. - Green locations are Color
Block differences.

3.3.2 Possibility Detection

Color Block differences in each line provide several possibilities for the finger.

Although there are several possibilities, not every single one represents a possible

finger location. To be a finger, a Color Block difference location has to have

a number of properties. These properties are; sufficient distance between two

difference points in the same line, vertical continuity of the finger, and a few more

similar properties which are explained in the following sections. To determine the

possibilities in each line, the system takes Color Block differences array as input.

At the end of this process, a possibility midpoints array is created and given as

output to the Possible Finger Localization stage. Possibility Detection process is

illustrated in Algorithm 2.
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Algorithm 2 The Algorithm for Possibility Detection in line.

1. new array possibilities [64]

2. for each difference location in differences array

2.1. if current difference location - next difference location is

bigger than 9

2.1.1. checkPoint1R =0, checkPoint1G =0, checkPoint1B =0

2.1.2. checkPoint2R =0, checkPoint2G =0, checkPoint2B =0

2.1.3. for 10 pixels above and below the current midpoint

of 2 consecutive difference locations

2.1.3.1. checkPoint1R += pixelArray[midpoint of current

and next difference location + current loops

line number].R

2.1.3.2. checkPoint1G += pixelArray[midpoint of current

and next difference location + current loops

line number].G

2.1.3.3. checkPoint1B += pixelArray[midpoint of current

and next difference location + current loops

line number].B

2.1.3.4. checkPoint2R += pixelArray[midpoint of current

and next difference location + current loops

line number + 40 pixels down].R

2.1.3.5. checkPoint2G += pixelArray[midpoint of current

and next difference location + current loops

line number + 40 pixels down].G

2.1.3.6. checkPoint2B += pixelArray[midpoint of current

and next difference location + current loops

line number + 40 pixels down].B

2.1.4. checkPoint1R /= 20

2.1.5. checkPoint1G /= 20

2.1.6. checkPoint1B /= 20

2.1.7. checkPoint2R /= 20

2.1.8. checkPoint2G /= 20

2.1.9. checkPoint2B /= 20

2.1.10. if checkPoint2R - checkPoint1R is smaller than total

array’s R

2.1.10.1. if checkPoint2G - checkPoint1G is smaller

than total array’s G

2.1.10.1.1. if checkPoint2B - checkPoint1B

is smaller than total array’s B

2.1.10.1.1.1. add this block to

possibilities array

2.1.10.1.1.2. add distance between

two difference points

to possibilities array
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Possibility Detection phase is applied to every line in the scene. This technique

is applied as many as the number of horizontal lines, once for each line. Since

there are 64 Color Blocks in each line and the possible finger’s smallest width

is accepted as 9, the highest number of possible midpoints in each line can be

64/9. Thus for every line, the system creates a new array for 16 values to put

the possible midpoints. Two memory locations are reserved for each possible

midpoint since one is used for location of the possible midpoint and the other is

used for the distance between the Color Block difference locations. So, for each

Color Block difference location in the Color Block difference array, the system

looks at the next Color Blok difference location and compares these two locations

according to the distance between them. If the distance is larger than or equal to

9, the system checks these two Color Block difference locations for more stability.

The distance, 9, is defined by experience to limit the distance of the finger to the

camera. Physically, if finger is too far away from the camera that a person cannot

hold in one hand, then finger becomes smaller than 9 Color Blocks in length

horizontally. After eliminating smaller noises from the scene, the system checks

the determined Color Block differences again for color continuity. According to

this, the system finds the midpoint of the two consecutive difference location

that are candidates to be a possibility’s boundary points, and looks at the R,

G and B values there. To eliminate the point pixel noise, the system adds 20

pixels’ color values from above and below the current midpoints pixel location

and divides the result by 20 to get the average for 20 pixels. The same averaging

is done 40 pixels below the current midpoint possibility location and two results

are compared according to their average values. This process is done for R, G and

B values. If the difference is not larger than the total color array of the current

line then this means that there is continuity below the current point resulting

that the current midpoint can be a possible midpoint for the possible finger for

this line. This search is done for all Color Block difference locations in every

horizontal line. The result here represents that if there is a possible finger in

the scene, then, it has to have continuity all the way through the bottom of the

image. At the end of this stage, possible midpoints are stored in an array with

the locations of possible midpoints and the length of these possible midpoints.

An example for detected possible midpoints is shown in Figure 3.6.
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Figure 3.6: Possible midpoints in the scene. Some of the Color Block differences
do not contain a possible midpoint . - Blue locations are possible midpoints.

3.3.3 Possible Finger Localization

Possible Finger Localization depends on the results of possible midpoints that

are gathered from the horizontal lines in the previous stage. The input of the

system is the possible midpoints of the horizontal lines. The result of each line’s

possibility detection is sent to the possible finger localization mechanism. One

other input of the system is the Kalman Predict value which is calculated in

the Filtering phase and provided to the Finger Tracking unit for possible finger

localization. The output of the system is the possible finger that is determined

by the series of algorithms applied above. Regression algorithm (Appendix A.2)

is applied to calculate the line of best fit for the gathered midpoint cloud. Upper

and lower midpoints of the finger, corresponding length values of the finger and

y coordinate of the finger is provided as the result of this step and put into a

new array. General architecture of Possible Finger Localization is provided in

Figure 3.7.
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Figure 3.7: Working principle of possible finger localization.

Possible finger localization is the last step of Finger Tracking phase. In this

step, data collected from the previous stages are used with the help of feedback

mechanism from the Filtering phase. Calculated possible midpoints in the pre-

vious stages are taken as input and every possible midpoint in the array of each

line is copied into one big array of possible midpoints. While copying these pos-

sible midpoints into the big array, every possible midpoint is compared with the

Kalman Predict which is obtained from the Filtering phase (details of usage of

Kalman Filter is explained in the Section 3.4.1 of this document). If the possi-

ble midpoint lies between the limits of Kalman Predict and the current window

around it, then this possible midpoint is copied into the big possible midpoint

array. The limits are also defined as a window. Initially the window is 16 Color

Blocks. This window is shortened by one for every time there is a correct match.

The system keeps shortening the window that is used with Kalman Filter until

the window is bigger than 5. If the system is unable to find a possible finger in

the limits of the current window, then the window is again widened to 16 Color
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Blocks. This process is repeated for each line during the copying process. Once

all the possible midpoints are copied into the big array of possible midpoints

that is created at the beginning of the execution, the system sorts every possi-

ble midpoint according to their horizontal location. This step is necessary since

different possible midpoint values are present for different lines including noises

in the scene. Sorting is done using Quicksort algorithm (Details of the Quicksort

algorithm is provided in the Appendix A.1). Since Quicksort works in O(logn) in

average, time complexity is very low making it usable for mobile devices. After

sorting the possible midpoints, system decides the longest continuous consecutive

number block as the possible finger midpoint cloud. Algorithm for determining

the possible midpoint cloud is provided in Algorithm 3:

Algorithm 3 The Algorithm for dividing the possible midpoint array into clus-
ters and finding the longest possible midpoint sequence.

1. curCount = 1, maxCount = 0, maxStart = 0, maxEnd = -1, curStart = 0

2. for every item in the possibilities array

2.1. if current possibility location’s x value - next possibility

location’s x value is smaller than 5

2.1.1. curCount = curCount + 1

2.2. else

2.2.1. if curCount is bigger than or equal to maxCount

2.2.1.1. maxCount = curCount

2.2.1.2. maxStart = curStart

2.2.1.3. maxEnd = current loop variable

2.2.2. curCount = 1

2.2.3. curStart = current loop variable + 1

3. if curCount is bigger than maxCount

3.1. maxCount = curCount

3.2. maxStart = curStart

3.3. maxEnd = current loop variable

3.4. curCount = 1

4. copy contents of old array to a new array from maxStart to maxEnd

While copying all possible midpoints and possible fingers, the system also

keeps track of length of the Color Block differences which will allow the iden-

tification of depth value in the further stages. Also maximum y value of the

identified possible midpoint sequence is stored to understand the location of the

finger in y direction at pointer creation stage.
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As mentioned before, some extra techniques are applied to the captured image

to clear the noise and get more stable results. To understand the vertical con-

tinuity, the last possible midpoint array that is created after the previous stage

is sorted again for the y locations of the possible midpoint values. Vertical con-

tinuity is important since any possible noise detected may not be going through

all the way down to the end of the screen. Thus any item that is not a possible

finger because it is not continuous through the lower end of the scene is elimi-

nated before it is behaved as a possible finger. Again Quicksort is used for the

same reason explained above. This time sorted array is examined for its vertical

continuity. This is done by the method in Algorithm 4.

Algorithm 4 The Algorithm for searching for the continuity in the finger’s ver-
tical line numbers.

1. curCount = 1, maxCount = 0, maxStart = 0, maxEnd = -1, curStart = 0

2. for every item in the possibilities array

2.1. if current possibility location’s y value - next possibility

location’s y value is smaller than 3

2.1.1. curCount = curCount + 1

2.2. else

2.2.1. if curCount is bigger than or equal to maxCount

2.2.1.1. maxCount = curCount

2.2.1.2. maxStart = curStart

2.2.1.3. maxEnd = current loop variable

2.2.2. curCount = 1

2.2.3. curStart = current loop variable + 1

3. if curCount is bigger than maxCount

3.1. maxCount = curCount

3.2. maxStart = curStart

3.3. maxEnd = current loop variable

3.4. curCount = 1

4. copy contents of old array to a new array from maxStart to maxEnd
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The array obtained from this stage is guaranteed to have vertical continuity

and horizontal continuity at the same time. It is also guaranteed to be the best

possible alternative in the provided Kalman Predict window. One extra check is

completed after the above algorithm to enhance the stability and correctness of

finding the possible finger in the scene. According to this last check, consecutive

possible midpoint locations are compared according to their color values in R,

G and B. A similar algorithm to Algorithm 2 is applied at this step and check

points are compared to each other repeatedly. If there is a discontinuity in the

finger, that possible midpoint location is set as the upper end point of the finger.

When all the above checking and comparisons are completed, the system

moves to the next step and determines the possible finger. The possible mid-

points in the scene are kind of a possibility cloud and a line of best fit has to

be created out of those point data. The most suitable algorithm to be used in

such a situation is Regression algorithm for line of best fit. It calculates the best

line for the provided point cloud (Details of the regression algorithm are provided

in the Appendix A.2). After applying the Regression algorithm, the system ob-

tains a line equation. By using this equation and end points of the finger, the

system creates the x coordinates of the beginning and end points of the finger.

y coordinate of the finger is chosen as the upper end point of the finger and is

already present in the system until the detection of the end points of the finger is

completed. The width of the finger is also kept for further depth analysis and the

width is obtained from the distance between the two sides of the finger for the

upper end and the lower end separately. The final step only consists of calculat-

ing and copying of these values into a new array and giving the data to Filtering

phase. An example for localized possible finger is shown in Figure 3.8.
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Figure 3.8: Possible finger in the scene. Kalman Filter and the window limit the
possible location of the finger. - Light Blue line is the possible finger.

At the end, the system creates a line equation (Eq. A.1) that linear data has to

fit.

y = mx+ b (3.2)

x is the x -coordinate. y is the y coordinate. xi is the x value for i ’th data

point which is the each possible midpoint location’s x -coordinate. yi is the y

value for the i ’th data point which is the respective possible midpoint location’s

y coordinate. N is the number of midpoints that are used. yave is the average

of the y values for the midpoints. xave is the average of the x values for the

midpoints. Equations from Eq. A.2 to Eq. 3.7 give the mathematical description

of the model.

Calculate sums:

sxy =
∑

(xi · yi)− (

∑
xi ·

∑
yi

N
) (3.3)

syy =
∑

(yi)
2 − [

(
∑
yi)

2

N
] (3.4)

sxx =
∑

(xi)
2 − [

(
∑
xi)

2

N
] (3.5)
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Calculate Slope and Intercept:

m =
sxy
sxx

(3.6)

b = yave − (m · xave) (3.7)

3.4 Filtering

Filtering phase is used to filter the tracked finger in the consecutive images as the

name indicates. Filtering phase has its own problems just like Finger Tracking

phase. In this phase several techniques are applied, including Kalman Filter,

arithmetic averaging and weighted mean to the tracked finger and as a result

of these processes a much stable and reliable finger trajectory is created. The

result of Kalman Filtering is used for estimating where the finger will be in the

following frame. Kalman predict is sent back to the Finger Tracking stage for the

next scene. Arithmetic averaging is applied on the current and past 3 movements

to reduce the noisy data and create a more stable output on the current tracked

finger data that comes from Finger Tracking phase. Weighted mean is applied

on top of all the previous stages and used as a filtering method to overcome the

flickering of the tracked finger. Details of the Filtering phase can be seen on

Figure 3.9:

Filtering mechanism receives Possible Finger from Finger Tracker and that is

the only input that comes to this phase. When the methods shown on Figure 3.9

are applied on Possible Finger that comes from Finger Tracking phase; Kalman

Predict and Filtered Finger is produced as outputs by Filtering. Kalman Predict

is used in Finger Tracking as explained before and Filtered Finger is used in the

next phase which is 3D Pointer Mapping.
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Figure 3.9: Working principle of Filtering.

In this stage the most important steps are averaging and weighting. Kalman

Filtering is as important as the other processes carried in Filtering stage but

it is primarily used in Finger Tracking stage instead of Filtering stage. Once

the Possible Finger is generated by the Finger Tracking phase, Filtering starts

to work and creates Filtered Finger out of Possible Finger. First of all Kalman

Predict is calculated with the use of Possible Finger and stored predict values of

Kalman Filter in the previous stages. After Kalman Predict is calculated, it is

stored for next scene’s Finger Tracking process and sent to Finger Tracking when

the next scene is captured. The next step in Filtering is Arithmetic Averaging.

Since filtering requires previous stages of the flow, past locations of the finger are

stored in Filtering mechanism. By using those values an arithmetic average mean

is calculated and the result is sent to the weighted mean step. In weighted mean

step, previous value of the Filtered Finger is weighted with the current result of

averaged value of the finger. The result is the current Filtered Finger after this

step. Detailed descriptions of these steps are explained below.
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3.4.1 Estimation Using Kalman Filtering

Kalman Filter is implemented to estimate the location of the finger in the follow-

ing frames. It provides estimation for the position of the finger in the following

image. The input is the current location of the finger which is Possible Finger

received directly from the Finger Tracking and the previous stored estimate val-

ues of Kalman Filter. A detailed description is found in this section for Kalman

Filter, and the implemented algorithm is given in Algorithm 5:

Algorithm 5 The Algorithm for Kalman Filtering.

1. if this is the Kalman’s 3rd measurement value (measurement counter )

then reset variable

1.1. Pk = 1

1.2. Kk = 0

1.3. Xk = current location of finger

1.4. reset measurement counter

2. measurement counter = measurement counter +1

3. Kk = Pk / (Pk + 0.1)

4. Xk = Xk + Kk *(current location of the finger-Xk )

5. Pk = (1.0-Kk )*Pk

6. Kalman Predict = Xk

Implementation of Kalman Filtering is a direct representation of the formula.

The slight difference between implementing the Kalman Filter as it is and our

implementation was to use 3 measurement values backwards instead of using

a large number of backwards measurements. Going too much backwards is a

good solution if we consider slow systems and much more stable data. Since

our system is faster, more dynamic and the location of the finger is prone to

change, we have chosen to track only 3 measurements backwards. Rest was the

original algorithm for Kalman Filtering. Since Kalman Predict is one of the

major prediction algorithms, the result was satisfying and the estimation of the

finger location in the following scene was realistic. An image illustrating how the

Kalman Filter predicts new location of the finger from the past movements is

represented in Figure 3.10.
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Figure 3.10: Finger is moved from left to right in the image. Kalman Filter
predicts that the new location of the finger will be at the right of the current
finger location.

Technical description of Kalman Filter can be shortened as follows (For a full

description of Kalman Filter, please refer to Appendix A.3 of this document):

There are 3 steps in Kalman Filter. The first step is to build the model of

the system. According to this, we have used Possible Finger (current location

of the finger coming from Finger Tracking phase) as the signal value for the

Kalman Filter. We used 0.1 as the process noise because it gave the best result

after a series testing of values. The second step is to start the process. Starting

the process is basically giving the equations their initial values which are the

minimum values for the equations. When starting the process, time update and

measurement update stages were reset to their initial states. Initial states for the

values are as follows: Pk = 1, Kk = 0 and Xk = current location of the finger. The

third step is the iteration step. Iteration step is repeating the process during the

runtime. In this step, we continuously update our predict value and correct the

predict value with the received values. Any time a scene is present, we calculated

a prediction for the next scene’s finger location. Mathematical explanation of the

Kalman Filter is as given in equations from Eq. A.5 to Eq. A.11. Here A is the

state transition model which is applied to the previous state, B is the control-

input model which is applied to the control vector uk , wk−1 is the process noise

which is assumed to be drawn from a zero mean
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Building a Model:

System has to fit the models below:

xk = A · xk−1 +B · uk + wk−1 (3.8)

zk = H · xk + vk (3.9)

Start the Process:

Time Update:

x̂−k = A · x̂k−1 +B · uk (3.10)

P−k = A · Pk−1 · AT +Q (3.11)

Measurement Update:

Kk = P−k ·HT · (H · P−k ·HT +R)
−1

(3.12)

x̂k = x̂−k +Kk · (zk −H · x̂−k ) (3.13)

Pk = (I −Kk ·H) · P−k (3.14)

Iterate:

Repeat the equations from Eq. A.5 to Eq. A.11 for every time a new value has

entered the system.
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3.4.2 Arithmetic Average for Stabilization

Arithmetic averaging is applied on top of the Possible Finger. We have kept 3

previous locations of the finger. Adding the new location of the finger to those

previous locations and taking the arithmetic mean of these locations provides

a much more smooth transition between movements. By applying this method

we have overcome the problem of sudden unwanted movements of the possible

finger. This method decreases the bad effects of a miss in the detection of the

finger. The disadvantage of using this step in Filtering phase is that when the

finger moves into one direction, trajectory of the finger(filtered finger) is close to

the previous locations of the finger. The storing of the previous locations of the

finger and applying arithmetic averaging is described in Algorithm 6:

Algorithm 6 The Algorithm for Storing Previous Locations of the Finger and
Applying Arithmetic Mean.

0. define new array, Averaged Array , at the time of creation of the

Filtering phase to store previous location of the finger

1. define new array Averaged Finger

2. for the length of the array, Averaged Array

2.1. Averaged Array [i] = Averaged Array [i+1]

3. put current location of the finger into last empty spot in

Averaged Array

4. for the length of the array, Averaged Array

4.1. Averaged Finger [0] += Averaged Array [i]

5. Averaged Array [0] /= number of elements in array, Averaged Array

Arithmetic averaging implementation is composed of two stages as explained

above in the algorithm. The first part consists of keeping track of previous loca-

tions of the finger and the second part consists of taking the arithmetic average of

the previous locations of the finger along with the current location of the finger.

To keep track of the previous locations of the finger, the system creates a global

array. So Averaged Array is created once and every iteration data is stored in it.

Thus, every time when the execution comes to averaging stage, the system starts

by moving the previous data one spot left in the array to create a location for

the new element by dropping the first element of the array. After organizing the
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previous locations and the current location of the finger, the system adds every

item in the array together and puts the sum into a new array, Averaged Finger.

By dividing the value in Averaged Array with the number of elements, 4 in our

case, gives us the arithmetic mean of the past three locations of the finger and

the current location of the finger. One notable thing here is that this process

is done for all x, y and z locations of the finger. Arithmetic mean as Averaged

Finger is represented with A in the following equation (Eq. A.12):

A :=
1

n
·

n∑
i=1

· xi (3.15)

where n is 4 in our case since 3 previous locations and the current location is

taken into consideration because of keeping the average close to the current lo-

cation of the finger and x values are three past finger locations and the current

finger location. Averaging keeps the location of the finger stable in the case of

fail in detection or tracking. The effect of arithmetic averaging is illustrated in

Figure 3.11.

Figure 3.11: Arithmetic Mean calculates a more stable data out of noisy data.
Light yellow fingers are tracked locations of the finger. Dark yellow finger is the
calculated mean location of the two tracked finger locations.
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3.4.3 Weighted Mean for Flicker Filtering

As in the case of arithmetic averaging, taking weighted mean is used to create

a more stable data from the detected finger. By using weighted mean, sudden

jumps in the movements and unstable moving of the detection are avoided. There

are two inputs for weighted mean. The first is the current averaged finger value

and the second is the previous stored weighted location of the finger. The first

one is received from the previous step in Filtering and the second one is stored

in the system from the previous iteration. As a result, tracked finger is created

and it is much more stable and constant than the possible finger. Details of the

algorithm can be seen in Algorithm 7:

Algorithm 7 The Algorithm for Weighted Mean.

0. define new array, Stabilized Finger , at the time of creation of the

Filtering phase to store previous weighted meaned location of finger

1. define new array Filtered Finger

2. Filtered Finger [0] =

(Normalized Finger [0]*weight ) +

(Stabilized Finger [0]*(1-weight ))

3. Stabilized Finger [0] = Filtered Finger [0]

Weighted mean implementation is composed of two stages as explained above

in the algorithm. The first part consists of calculating the weighted mean and

the second part consists of keeping track of previous locations of the tracked

finger. To keep track of the previous locations of the tracked finger, the system

creates a global array. So Stabilized Finger is created once, and every iteration

data is stored in it. Thus, every time when the execution comes to weighted

mean stage, the system starts by calculating the weighted mean of the current

location of the finger and previous location of the filtered finger. This calculation

is done giving weight to both of the values so using values of the both values but

at desired level. In our implementation we have chosen to give weights 0.9 and

0.1 to current location of the finger and previous location of the filtered finger

respectively. This gave more weight to the current location and less weight to the

previous location but both of them are used to distinguish the current location
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of the filtered finger. When this calculation is completed, the system stores the

current filtered finger location into the Filtered Finger array for the next scene

use and this completes the filtering phase. Weighted mean is calculated with the

following formula (Eq. A.13). (Details of weighted mean can be found in the

Appendix A.4.2 section of this document)

x̂ =

∑n
i=1wi · xi∑n

i=1wi

(3.16)

Where,

[x1, x2, . . . , xn] (3.17)

representing finger locations where n = 2 in our case and

[w1, w2, . . . , wn] (3.18)

representing weights that are assigned to the finger locations.

3.5 Handheld Interaction

At the end of Finger Tracking and Filtering phases, a stable filtered finger location

is obtained. This data represents y location of the finger’s upper end on the screen

along with the x location of that point. The (x, y) location of the finger’s lower

end is also represented with this method. The distance between the two sides of

the finger is also received from the previous stages. A representation of this data

is given in Figure 3.12 below:
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Figure 3.12: Filtered Finger’s received data from Filtering phase.

Handheld Interaction mechanism maps a pointer data from the filtered finger

data. The output of this system is a global 5 DoF pointer data that can be used

as a general pointer for every system. There are currently two steps in this stage

and the number can be extended. The first step is to map a 5DoF pointer from

the Filtered Finger data. In this step the data is converted into a usable pointer

data. In the second step, the 5 DoF pointer data is converted to global coordinate

system which enables the pointer to be used in any platform. Steps of Handheld

Interaction can be seen in Figure 3.13.

Figure 3.13: Working principle of Pointer Mapping.

Filtered Finger is the only input of this stage. By using Filtered Finger,

Pointer Mapping mechanism first maps a 5 DoF pointer. While mapping the 5

DoF pointer, x location of the upmost point in the finger is set as the x coordinate

of the pointer. Similarly, y coordinate is set as the upmost point’s y location.

z coordinate is set by using the distance between the two sides of the finger at

location x, y. The other two DoF values are lean in x coordinate and lean in z
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coordinate. The first data is set by the horizontal distance between the upper

most x location and the lower most x location. The second data is set by the

distance difference between upper x position’s finger width and lower x location’s

finger width.

3.5.1 5 DoF Pointer Mapping

The mapping of 5 DoF pointer out of Filtered Finger is very straightforward. As

mentioned earlier, the input for this step is the Filtered Finger. The output is 5

DoF pointer data. x and y locations are kept as they are extracted from Filtered

Finger data and stored as x and y coordinates of the finger, in terms of pixels.

These coordinates are the coordinates of the upper end of the finger. The z value

is calculated from the distance of two sides of the finger, i.e. width of the finger.

Width is calculated at the upper end of the finger. Lean in x coordinate and

lean in z coordinate are calculated individually. The first value is calculated from

the distance of the locations of the center of the finger horizontally at the upper

end and the lower end of the finger. The second value, on the other hand, is the

difference of the width of the finger at the same points above. All of these data

are put into a new array and the complete data set is the new 5 DoF pointer

data.

3.5.2 Converting 5 DoF Pointer to Global 5 DoF Pointer

The process of global pointer creation is straight forward just like 5 DoF pointer

creation. The input for this step is 5 DoF pointer from the previous step. Output

of this step is global 5 DoF pointer. In this step conversions from camera frame

resolution to screen coordinates are handled. According to this, x coordinate is

transferred from 64 bases to 640 pixels. Similarly y coordinate is converted from

10 bases to 480 pixels. z coordinate is centered at the current location of the z

location and pointer is sent to far from the current location to see the pointer on

screen when it is too near to the screen. Lean in x and z are similarly switched to

the sensible degrees. Finally all the items are put together into a new array and
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this completes the mapping of the 5 DoF pointer. A new pointer icon is designed

to show the depth and the lean in x. New pointer can be seen in Figure 3.14

below:

Figure 3.14: New 5 DoF Pointer.

3.5.3 Direct Manipulation and Gestural Interaction Using

5 DoF Pointer

Instead of pointing a location in the screen, the system can be used as a direct

manipulation system. 3D information can be used as the x, y and z location for

direct manipulation. The two other pointer data can also be used to manipulate

an object in 3D. In fact we have implemented a small cube interaction to demon-

strate the usage of direct manipulation with our system. User manipulates the

cube in 3D in the empty space. This system can be extended and used in any

direct manipulation system.

Using 5 DoF 3D interaction, a new gesture library can be designed and im-

plemented since data has much interaction dimensions than other systems in the

new system. Besides simple left, right, etc. gestures; complex 3D gestures can be

designed to use full functionality of the system.



Chapter 4

Experiments and Evaluation

In order to evaluate the success of the proposed camera based 3D interaction

system, we have performed a number of objective and subjective experimental

studies. In this chapter, we discuss these experimental studies and their results

in detail.

In this study, we selected five important and common tasks for testing among

the ones which are “Finger Tracking & Filtering”, “Stationary vs. Moving

Background”, “Number of Horizontal Lines”, “3D Pointer Mapping”, “Camera-

Based Interaction vs. Keyboard Interaction” and “User Evaluation for Camera-

Based Interaction”. For the tasks “Finger Tracking & Filtering”, “Stationary vs.

Moving Background”, “Number of Horizontal Lines”, “3D Pointer Mapping”,

“Camera-Based Interaction vs. Keyboard Interaction”, we performed objective

experiments. For the task “User Evaluation for Camera-Based Interaction”, we

performed a subjective experiment. The following sections present detailed in-

formation about these objective and subjective experiments.

43
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All the experiments are done on a handheld device, Sony Vaio UMPC. Prop-

erties of this device are given in Table 4.1.

Table 4.1: Properties of test environment

Processor Intel Core Solo 533 MHz. 1.33 Ghz. 2 MB Cache

RAM 1 GB DDR2 533 Mhz.

Graphics Card Intel GMA 950 Max. 224 MB

4.1 Objective Experiments

4.1.1 Finger Tracking & Filtering

The purpose of this experiment is to test the effect of our system on tracking and

filtering, for the tasks “Finger Tracking & Filtering”, with varying backgrounds

or environments. The details of this experiment are explained in the following

subsections.

Subjects

The objective experiment was performed on 3 different environments. All

these environments and background scene for camera were normal working or

living locations. They were selected from the working and living locations of the

author. The user of the handheld device was the author of this thesis. Images of

the environments can be seen in Figure 4.1.
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Figure 4.1: Test Environments. a)Night, living room, b)Midday, living room,
c)Midday office.

Procedure

In this experiment, an experimental setup similar to the one in Hannuksela’s

study [12] was used. For the first trial, the system was initiated at night in a

living room with a wall far from the camera while camera was stationary with

a fluorescent light. An item (finger) was moved in front of the camera to per-

form a “Z”, and trajectory of the movement was recorded. 2-D translation along

x axes and y axes was tested with this action. The movement was guaranted

to be same with the help of a mechanical path. This mechanical path is ob-

tained from a cardboard by cutting out the desired movements path. A marker

is moved through that path and since the movement was performed on the edited

cardboard, trajectory is guaranted to be the same.

At the second trial, system was initiated at midday in the same living room,

described above, while camera was stationary with no extra lighting where the

sunlight was coming from right of the camera. Again the same movement was

performed and trajectory was recorded.

At the third trial, the system was initiated at midday in an office in a cubic

where wall was very near to the camera while camera was stationary with en-

vironmental sunlight. Again the same movement was performed and trajectory

was recorded.
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Results and Discussion

Performance measures used were based on the mean-square-error (MSE) of

the motion vector field which was the motion recorded according to the recorded

trajectory. MSE can be formulated as follows in Eq. 4.1

MSE(T ) =

∑|T |
i=1 (Ti −Ri)

2

| T |
(4.1)

where T is the trajectory of the movement captured by the system and R is the

set of real positions in the mechanical environment.

Figure 4.2 shows the trajectory of the translational movement (letter Z). Every

time same movement was performed with the help of the mechanical path. Root-

mean-square-error (RMSE) computed over environments are given in Table 4.2.

RMSE can be formulated as follows in Eq. 4.2:

RMSE(T ) =
√
MSE(T ) (4.2)

Figure 4.2: Trajectory for translational motion (letter Z).
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Table 4.2: RMSE table for Finger Tracking & Filtering Testing

Environment RMSE[pixels]

Night, Living Room 0.66

Midday, Living Room 1.00

Midday, Office 2.10

Results differ from 0.66 tp 2.10 for different environments. It is slightly better

for the image A than for B and C. In general, performance depends on the lighting

condition, content of the scene, color differences and is worst with scenes when

the background color is similar to the finger, less featured or low light conditions

are present.

As the result of this test, achieved motion tracking and filtering ability is

satisfactory. This test was completed in a handheld device and it worked around

15 fps. In a notebook environment it was working at about 30 fps.

4.1.2 Stationary vs. Moving Background Testing

The purpose of this experiment was to test the effect of the mobility to the system.

The details of this experiment are explained in the following subsections.

Subjects

The objective experiment was performed on 2 different situations. These

situations were normal daily routines of a human which are standing and walking.

Backgrounds were tested in a room environment with normal day lighting. The

user of the handheld device was the author of this thesis.
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Procedure

For this experiment we have used the same setup with the experiment 4.1.1.

This time we have tested the system twice for both a stationary and a moving

background. In both cases the environment was same which consists of midday in

a living room with a wall far from the camera while the user was stationary with

no extra lighting where the sunlight was coming from back of the camera. For the

first trial, user initiated the system while he was standing thus the background

was still. For the second trial, user initiated the system while he was walking and

he kept walking until the movement was finished. Thus background was moving.

Results and Discussion

Performance measures used were based on the mean-square-error (MSE) of

the motion vector field which was the motion recorded according to the recorded

trajectory. Details are given in the previous section for RMSE testing and the

procedure was the same for this experiment. Every time same movement was

performed with the help of a mechanical path. Root-mean-square-error (RMSE)

computed over backgrounds are given in Table 4.3.

Table 4.3: RMSE table for Stationary & Moving Background Testing

Background RMSE[pixels]

Stationary usage 1.00

Mobile, moving usage 1.33

System works similar for stationary and moving background however station-

ary background results in better interaction. While the user was standing, the

system was capable to extract the movement from the background. The sys-

tem has missed some of the finger locations during execution. While the user

was moving, the system was still capable of extracting the movement from the

background. Again the system has missed some of the finger locations during ex-

ecution. Since the difference is low between two working conditions, the system

seems to be usable for moving background either.
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We have also tested the system for performance purposes. During the exe-

cution of the stationary background and moving background, the stages of the

program were tested according to their execution time. Tested stages are “Finger

Tracking”, “Filtering” and “3D Pointer Mapping”. Execution times are given in

Table 4.4 in milliseconds.

Table 4.4: The system performance (in milliseconds) for stationary and moving

background for stages Finger Tracking(a), Filtering(b), and 3D Pointer Map-

ping(c)

Background Finger Tracking Filtering 3D Pointer Mapping

Stationary usage 17 5 1

Mobile, moving usage 18 5 1

4.1.3 Number of Horizontal Lines Testing

The purpose of this experiment was to test the effects of the sampling on the

system in case of accuracy. The details of this experiment are explained in the

following subsections.

Subjects

The objective experiment was performed for 3 different situations. These

situations were number of lines that were used for vertical sampling which are

3-lines, 24-lines and 48-lines. The device was stationary and the environment was

a living room at midday with no extra lighting. The user of the handheld device

was the author of this thesis.
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Procedure

For this experiment, again the setup was the same as experiment 4.1.1. This

time environment was same for all the test cases and the number of vertical lines

in the scene was variable. For the first trial, the system was initiated with 3-

lines horizontally that are used for sampling. At the second trial, the system

was initiated again with 24-lines horizontally that are used for sampling. Finally,

system was initiated again with 48-lines horizontally that are used for sampling.

Again same procedure was followed for evaluation.

Results and Discussion

Performance measures used were based on the mean-square-error (MSE) of

the motion vector field which is the motion recorded according to the recorded

trajectory. Details are given in the previous section for RMSE testing and the

procedure was the same for this experiment. Every time same movement was

performed with the help of a mechanical path. Root-mean-square-error (RMSE)

computed over number of lines are given in Table 4.5.

Table 4.5: RMSE table for Number of Lines Testing

Number of Lines RMSE[pixels]

3 3.00

24 1.00

48 0.66

4.1.4 3D Pointer Mapping Testing

The purpose of this experiment was to test the effect of our system on detection,

tracking and movement analysis, for the tasks “3D Pointer Mapping” on a virtual

interaction environment. The details of this experiment are explained in the

following subsections.
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Subjects

The objective experiment was performed on 11 subjects: 9 males and 2 females

with a mean age of 23.6. They were voluntary graduate and undergraduate

students with computer science background. The purpose of the experiment was

not explained to the subjects.

Procedure

In this experiment a 4X4 matrix is implemented in 2D for a 640X480 pixel

virtual scene. By using the methods given in this thesis, a 2D pointer on the

screen was also provided for the user. At each time, a cell was selected as the

target by the system randomly and the user was supposed to click on that cell in

a time interval. That cell was also provided visually to the user for a better HCI

environment. The scene for the test can be seen in Figure 4.3.

Figure 4.3: 2D matrix click test. Blue circle is the target; green circle is the 2D
pointer

The user had to catch the target 10 times and click on the cell that contains

the target. If the user correctly clicked on the target, the system recorded this

as a catch. Else if the user could not catch and click the cell in the given time or

clicked a wrong cell, the system recorded it as a miss. By this way, correctness

in 2D was evaluated.
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Results and Discussion

A table for catches and misses was created at the end of testing period and

the results for all 11 participants can be seen in Table 4.6. The RMS errors for

each of the 11 candidates were calculated. A total RMSE was calculated adding

all catches and misses together and the value is 0.19 which is a good result for

first time users. The result shows that the method is usable for HCI purposes

and first time usage of the system is still acceptable.

Table 4.6: Catches & Misses of the users

User Catch Miss

User1 8 2

User2 7 3

User3 9 1

User4 9 1

User5 4 6

User6 8 2

User7 10 0

User8 9 1

User9 9 1

User10 8 2

User11 8 2

4.1.5 Camera-Based Interaction vs. Keyboard Interac-

tion Testing

Subjects

The subjective experiment was performed on 11 subjects: 9 males and 2 fe-

males with a mean age of 23.6. They were voluntary graduate and undergraduate

students with computer science background. The purpose of the experiment was

not explained to the subjects.
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Procedure

In this experiment a similar environment that looks like the one in 2D matrix

test was created. This time a 3D pointer was used instead of the 2D pointer. A

3D object was created and the user was asked to catch the 3D object with the 3D

pointer controlled directly by his finger. The user moved his finger in x, y and

z coordinates to manipulate the pointer and came to the location of the virtual

object. He was told to catch the target for 3 times. Then the user was asked

to control the same pointer with keyboard similar to a gamepad. “a, s, d, w, q,

e” letters were used to control the pointer in 3D. At the end of the tests, users

were asked about the controlling differences between the camera based finger

interaction and keyboard based joystick interaction. Controlling options of the

keyboard is provided in Table 4.7.

Table 4.7: Controlling options for keyboard interaction

x-coordinate y-coordinate z-coordinate

Left Right Up Down Forward Backward

a d w s q e

Results and Discussion

Times to reach a random target in both controlling options were recorded

for discussion purposes. Table 4.8 shows the results of 11 users for both camera

based interaction and keyboard based interaction.
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Table 4.8: Catching times for both camera based and keyboard based

User Camera[seconds] Keyboard[seconds]

User1 11 14

User2 11 10

User3 9 15

User4 9 9

User5 15 13

User6 11 8

User7 8 10

User8 13 12

User9 21 9

User10 8 15

User11 10 9

According to the results, sometimes camera based interaction was fast and

sometimes keyboard based interaction was fast. This shows that when the condi-

tions are good and the user is expert, the proposed method can be more efficient

than the classical keyboard interaction in 3D. Working test scene can be seen in

Figure 4.4

Figure 4.4: Direct manipulation test. User tries to put the 3D ball into the hole
on the floor.
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4.2 Subjective Experiments

We have also performed a subjective experiment for the system usage. In this

experiment, the subjects were asked to evaluate the interaction method, subjec-

tively.

Subjects

The subjective experiment was performed on 11 subjects: 9 males and 2 fe-

males with a mean age of 23.6. They were voluntary graduate and undergraduate

students with computer science background. The purpose of the experiment was

explained to the subjects.

Procedure

For this experiment, subjects were asked to participate in two consecutive test

sessions. In the first experiment, subjects were told to click a certain location

using the new system. In the second experiment, A 3D object was created and the

subjects were asked to catch the 3D object with the 3D pointer controlled directly

by their finger. After these session, they were asked the following questions:

• Is the interaction method user friendly?

• Is the system easy to control for 2D interaction?

• Would you use this system for 3D interaction purposes?

Results and Discussion

According to the users’ answers to the questions stated above, the users found

the camera-based interface 72% user-friendly. 82% of the subjects told that the

system was easy while using it for 2D interaction. 64% of the subjects told that

they may use the system for 3D interaction purposes. Results of the subjective

test shows that majority of the subjects found the system usable. We also asked

user whether they have comments on the proposed system. Some of the users told
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that system was hard to use with only one hand. According to them, user needs

to control the device with two hands, one for holding and one for manipulating.

Another interesting comment was that the pointer was slow on catching the real

movements. One user commented that this system can be easier to use than the

current interaction systems since natural movements of the finger is mapped to

the system. One user commented that system will never be used in such devices

since much of the time, users use their mobile devices in dark environments.

4.3 Applications

4.3.1 Photo Browser

We have implemented an application to test the usability of the system as an in-

teraction method on a real world application. According to this, a photo browser

is implemented and the system is integrated to it to test the functionality of 2D

interaction. In this application the user can choose an image to view, using his

finger through the new interaction system. Camera-based interaction enables the

user to select the image without touching anything. Once the user selects a pic-

ture to view, system zooms into that picture and the picture becomes full screen.

The user selects the picture by moving the pointer onto the thumbnail of that

picture between the collection of the pictures. Once he clicks the picture, the

process completes. If he wants to close that particular picture and switch back to

the photo browser view, he simply clicks a location on the picture. An example

image of the application can be seen in Figure 4.5.
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Figure 4.5: Example media application.

4.3.2 Application for Direct Manipulation

The system is an interaction method for handheld devices to enable direct manip-

ulation and 3D pointing purposes. 3D pointer is tested in the experimental tests

and evaluation. Direct manipulation is also tested with experimental evaluation.

We also implemented an example application for using the system. According to

this application, the user manipulates a 3D cube in the screen with his thumb

using the system. In this application, the user moves his hand in front of the cam-

era. This movement is received by the system and converted into an interaction

data. Then this data is used for manipulating a 3D object in virtual environment.

The interaction is in 3D, 5 degree of freedom. The system maps the movements of

the finger to the 3D cube and cube is moved in the desired direction. Movements

consist of translation and rotation. An example image of the application can be

seen in Figure 4.6.
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Figure 4.6: Example application for direct manipulation.

4.4 General Discussion

Some of the tasks are experimented including “Finger Tracking & Filtering”,

“Stationary vs. Moving Background”, “Number of Horizontal Lines”, “3D

Pointer Mapping” and “Camera-Based Interaction vs. Keyboard Interaction”.

RMSE values are calculated for objective tests and comparisons are done for sub-

jective tests. According to the values given in the sections above, the system

seems to work in correct environments and usage can be improved with a little

practice. Details of the results of tests are given in their sections.

These results may differ for different experimental conditions. As an example,

testing the system in different environments can change the results. Besides,

only five tasks were experimented and the other tasks should also be tested.

Also, different techniques for tracking and filtering can be added to the system

and these may change the working results similarly. However, these different

conditions would not affect the results radically and current experimental results

still give a strong idea about the success of the proposed algorithms.

A working picture of the system with detection and tracking shown is given

in Figure 4.7.
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Figure 4.7: Working picture of the system.



Chapter 5

Conclusion

In this thesis, we have proposed a system for Human Computer Interaction on

handheld devices. This new system consists of a new interface between users

and mobile devices. This is a new way of interacting with the mobile device.

According to this method, user can move his finger in front of the front camera

and the movement is directly mapped to the virtual environment in 5 Degree of

Freedom. The system enables the user to use a 2D/3D pointer in virtual space

or directly manipulate an object in virtual space. The system is both usable for

handheld devices and desktop devices.

We have tested our system by the help of both objective and subjective testing

methods. The results of the objective tests were satisfactory where RMS error

for trajectory testing is around 1-2% and for human based interaction testing

it is 19%. These results are satisfactory for HCI purposes and will possibly be

improved with training on usage. According to the results of subjective testing,

users tried to control the system by both using the proposed interaction and

keyboard. Results show that sometimes camera based interaction and sometimes

keyboard based interaction is efficient. The tests show that the proposed system

can be a candidate for real life usage with a little improvement.

60
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The system is still extendable. As a future work, defining gestures and pro-

gram shortcuts can be added to the system. Another possible extension is to

achieve more stabilization on 4th and 5th DoF which are lean in x and lean in

z. Also improvements are possible for understanding the differences and deter-

mining possible finger can be applied to get a much more solid system. To sum

up, the proposed system is designed for usage globally and as a new interaction

method, it provides a wide usage for several devices.

The system also has limitations. First of all, the system works poorly in low

light density environments. Similarly too much light affects the system in a bad

way. Finger and face differentiation is generally handled and these two parts of

the body are separated, however sometimes forehead is considered as the upper

part of the finger thus finger location is considered as above the original location.

Again, similar background color affects the system negatively that the finger is

not correctly recognized. Another limitation is that performance is as low as

15 FPS for handheld devices. This may limit the usage of the system. The low

resolution of the system is another limitation: The system is limited with 640x480

pixels resolution. Besides, we sampled the frames and used different number of

horizontal lines for robust tracking. This reduces the resolution vertically since

y location of the finger is determined according to the last horizontal line that

includes the finger. All these are where the system is weaker and considered

as future work. However, in order to evaluate the success of the camera based

finger tracking, it is not necessary to track the absolute finger movement; instead,

tracking an approximate and relative position is sufficient for interaction.
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Appendix A

Data

A.1 Quicksort

Quicksort is a well-known sorting algorithm developed by C. A. R. Hoare. On

average, Quicksort sorts n items in O(nlogn) (big O notation) time. In the worst

case, it takes O(n2) time. In best case, it takes O(nlogn) time. Quicksort’s

memory usage is very efficient, taking perfect advantage of virtual memory and

available caches. Coupled with the fact that quicksort is an in-place sort and uses

no temporary memory, it is very well suited to modern computer architectures.

Quicksort sorts by employing a divide and conquer strategy to divide a list into

two sub-lists. Its algorithm can be seen in Algorithm 8

Algorithm 8 The Algorithm for Quicksort.

1. 1.Pick an element, called a pivot, from the list

2. 2.Reorder the list so that all elements with values less than the

pivot come before the pivot, while all elements with values greater

than the pivot come after it (equal values can go either way). After

this partitioning, the pivot is in its final position. This is called

the partition operation

3. Recursively sort the sub-list of lesser elements and the sub-list

of greater elements.
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A.2 Linear Regression

Linear regression is the approach of modeling the relationship between a scalar

variable y and one or more variables indicated as X. In general, linear regression

refers to a model in which the conditional mean of y given the value of X is

an affine function of X. Less commonly, linear regression could refer to a model

in which the median, or some other quantile of the conditional distribution of y

given X is expressed as a linear function of X. Like all forms of regression analysis,

linear regression focuses on the conditional probability distribution of y given X,

rather than on the joint probability distribution of y and X, which is the domain

of multivariate analysis.

In general, when used to get a line of best fit, Linear Regression tries to

identify and formulate the line equation y = mx + b. To create this equation,

Linear Regression tries to identify the m and b values of the equation. So using

this values, desired points on the line can be received by applying the equation to

a coordinate of that point. Similarly, Linear Regression can be used in software

programming to estimate a line and compute the points necessary out of it.

General equations of the Linear Regression are given below from Eq. A.1 to

Eq. A.4.

Calculate sums:

sxy =
∑

(xi · yi)− (

∑
xi ·

∑
yi

N
) (A.1)

sxx =
∑

(xi)
2 − [

(
∑
xi)

2

N
] (A.2)

Calculate Slope and Intercept:

m =
sxy
sxx

(A.3)

b = yave − (m · xave) (A.4)
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A.3 Kalman Filter

The Kalman filter is a mathematical method to use measurements that are ob-

served over time that contain noise and unwanted errors, and produce new values

that tend to be closer to the true values of the measurements and their associated

calculated values. The Kalman filter has many applications in technology, and is

an essential part of the development of space and military technology. Extensions

and generalizations to the method have also been developed. In software, it is

mostly used for predictions on continuous programs. It has to general steps. In

the first step, a model has to built and in the second step necessary calculations

and estimations are done. Mathematical description of the Kalman Filter is given

below:

Building a Model:

System has to fit the models below:

xk = A · xk−1 +B · uk + wk−1 (A.5)

zk = H · xk + vk (A.6)

Start the Process:

Time Update:

x̂−k = A · x̂k−1 +B · uk (A.7)

P−k = A · Pk−1 · AT +Q (A.8)

Measurement Update:

Kk = P−k ·HT · (H · P−k ·HT +R)
−1

(A.9)

x̂k = x̂−k +Kk · (zk −H · x̂−k ) (A.10)

Pk = (I −Kk ·H) · P−k (A.11)
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A.4 Mean

A.4.1 Arithmetic Mean

In mathematics and statistics, the arithmetic mean, often referred to as simply

the mean or average when the context is clear, is a method to derive the central

tendency of a sample space. Its equation is given below.

A :=
1

n
·

n∑
i=1

· xi (A.12)

A.4.2 Weighted Mean

The weighted mean is similar to an arithmetic mean (the most common type of

average), where instead of each of the data points contributing equally to the

final average, some data points contribute more than others.

Formally, the weighted mean of a non-empty set of data

[x1, x2, . . . , xn] (A.13)

with non-negative weights

[w1, w2, . . . , wn] (A.14)

is the quantity

x̂ =

∑n
i=1wi · xi∑n

i=1wi

(A.15)


