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An isomorphism theorem for Dragilev spaces

By

J
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Necessary and sufficient conditions for an L (a, 1)-space to be isomorphic to some
L,(b, co)-space have been found.

Introduction. In [2] Dragilev has claimed that if r, s€ {+ 0, 1,0, — 1} and r & 5, then
for any two rapidly increasing Dragilev functions f and g and for any two sequences
a = (a;)) and b = (b)), the spaces L (a, r) and L (b, 5) cannot be isomorphic. In [4] and [5],
by means of examples it was shown that this is not true for (r, s) = (1, + ) and
(r,$) =(—1,0).

In this note we characterize those L((a, 1) spaces which are isomorphic to L,(b, o)
spaces. The characterization is given in terms of the functor Ext and a condition which
is obtained by comparing the diametral dimensions of the two spaces.

Preliminaries. Let f be an odd, increasing, logarithmically convex function (ie.
o(x) = logf(e*) is convex). Throughout this paper such a function will be called a
Dragilev function. Let a = (a;) be a strictly increasing sequence of positive numbers with
lima; = + oo and (r,) a strictly increasing sequence of real numbers with lim r, = r where
— o < r = 4 oo. The Dragilev space L ((a, r) is defined as the Kéthe space 1(4) generat-
ed by the matrix 4 = (a¥), a* = expf(r.a;) (see [2]).

By logarithmic convexity of f we have that for every a > 1, t(a) = litf (flax)/f(x))
exists. e

Moreover either (i) 7(a) < + oo for all a > 1, or (ii) 7(a) = + co for all a > 1. f is called
slowly increasing in the first case, rapidly increasing in the second case. It is well-known
that L ((a, r) is isomorphic to a power series space if and only if f is slowly increasing. In
this paper we shall consider only rapidly increasing Dragilev functions.

In[7] several properties of functor Ext (E, F) = Ext* (E, F) for two Fréchet spaces E and
F were given. It was shown in [1] that Ext(L,(b, c0), L (b, c0)) =0 and in [3] that
Ext(L,(a, 1), L /(a, 1)) = 0 if and only if there is a number ¢ > 1 such that the set of limit
points of the set {a;/a;: i, j € N} is contained in [0, 1] U [c¢, + oo].

Results. We first give a necessary condition for L(a, 1) to be isomorphic to some
L, (b, ).
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Proposition 1. If L ((a, 1) is isomorphic to some L (b, c0), then there is a strictly increas-
ing sequence (r,) of positive numbers with limr, = 1 and there is a strictly increasing
Sunction p: N — N such that

St a) < S(rheiaa)
flra) = f(rk+1ai),

The proof of this proposition is essentially given in [4] (Proposition 1). The only difference
is that we choose 7, slightly larger than the one chosen in [4], so that the inequality above
holds for all large i (depending on k).

Before our next proposition we observe the following.

keN, i=plk).

Remark. Ifa positive sequence (1) strictly increases to 1, then there is a k, € N such
that
Tty < n

Ty y

. k= k.

This follows from lim#, ., /r, = 1 and rpy/r; > 1.

Proposition 2. Suppose inf(a;, (/a;) = a > 1 and there is a strictly increasing positive
sequence (r,) with imr, = 1 and there is a strictly incresing function p: N - N such that

fresia) < S (s ra)
flra) ~ f(rk+lai)’

Then L (a, 1) is isomorphic to some L,(b, c0).

keN, iz pk).

Proof. By the previous remark, by passing to a subsequence of () if necessary we
may assume that

P
T
~
A
-
=
m

(1)

Since inf(a; ., ;/a;) = a > 1, there is a k, such that r, > 1/a. Again by passing to a subse-
quence of (r,) if necessary we may assume that r; > 1/g, that is

iy .
2 R <4 S ——<ra,, LkelN.
a

Then by using logarithmic convexity of f, (1) and (2) for i, k e N we have

, ; 1 ) — ol ;
log Sy a) _ p(log(r+ 1 a)) — e(log(r.ay) (ogr,,  — logr)
fna) log#,,., — logr,
1 . — ol .
< p(log(rya;, 1)) — e(log(r a;.,)) (logr,. , — logr)
logr, — logr,
flraa,. 1) logr., ‘IOng< Jraa,y)

= iog >
fria;.) logr, —logr, Sra;.y)

= log
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where @(x) = logf(e*) which is convex. That is, we have

S 199 < S(raa;44)
fa) = flria,)
Now let i = min {p(k): k = 2} = p(2) and for i = iy, define k(i) = max {k: p(k) < i}. Then

3) ikeN.

2=kiip) k() Zk(i+1) for iziy, limk()=+o0
and pk@) =i for izi,.
Rewriting the hypothesis we have

Sresra) < fli2a)
fla) — f(rk+1ai)’

Next we choose s > 1 and fix it, and define s, = s*. Then we define a sequence b = (b)),
i 2 i, as follows: b; =1 and b, , is inductively defined by

@) i, k()= k.

log by 1o log f(rya;41) — 10gf(’”k(i>ai)

H- gs .
s*O~1h, log f (e @) — log f (e -1 @)

By (2), the right hand side is positive and so s*®~'b; < b, ,, that is s, b; <5, b, ;.
Also by (3) we have

log f(rya; ) — Ing(rk(i)ai) logs < logf(ria;, ) — 10gf(”k(i) @)

log f(rya;,) — log f(rya;1 1) o8S = Ing(rk(i)ai) ~log f (#xy-14) logs,
that is (by using definition of b, , ;)
log f(rya;.y) — log f (o @) logs < log Sibivy
log f(rya;41) — logf(r1 ;4 4) Sk(iy bi
< log f(ria;y 1) — logf(rk(i)ai) logs,

log f (@) — 1og f (fey - 1)
or since log (s, b)) — log(s,_, b;) = logs, for i = i, we equivalently have
log f (@) — log f (-1 4) < log f(rya;+ 1) — log f (9

log (s by) — 1og(sk-1b) ~ log(syb;sy) — log(seeby)
< log f(rya;.,) —logf(ria;,4)
= log(s; by ) —loglsybiyy)

©)

Now we choose i; = i, such that

log f{r,a;) —log f(r,a;) =z logs.

Then we define y (log (s by) = log f (reay, i 2 iy, k < k(i), and B, , = (log (s, by, w(log (s.5)
and join the points

Bi—-->Reyyn—~> R, bB> >Ry 2P 2B
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by line segments. This way y is defined for all x = log (s, b; ). For x < log(s, b, }, we define
w(x) = log f(r ;) — log(s, b;)) + x. It is clear that  is increasing. By (4) we have that y
is convex within the i-th block and from (5) it follows that the slope of w increases when
we pass from the i-th to the (i + 1)-st block. Finally i, was chosen in such a way that the
slope of y from (0, w(0)) to P, ;, is smaller than the slope from P, ; to B, ;.

Now we define

¥, 4;
fna) X, 0<x=sb,
s;b;,
g(x) = ghtiog) 5y bil < x
- g(“ X), x = 0.

Then ¢ is an increasing, odd function with log g{e*) = w(x), and so g is logarithmically
CONnvex.

Finally for i = i; and k < k(i), that is for i = max {p(k), i,} we have f(r.a;) = g(s; b)),
which shows that L (a, 1) is isomorphic to L, (b, o).

Next proposition extends Proposition 2.

Proposition 3. Suppose Ext(L {a, 1), L ,(a, 1)) = 0 and there is a strictly increasing se-
quence {r,) with limr, = 1 and a strictly increasing function p: N — N such that

fr a) < fresoa)
fha) = f(rk+1ai)’

Then L,(a, 1) is isomorphic to some L,{b, co).

keN, i=pk).

Proof. By [6], Ext(L{a, 1), L(a, 1)) = 0 if and only if the pair (L (a, 1), L (a, 1))
satisfies condition (S¥), and it was shown in [3]. {p. 37 and p. 29) that this happens if and
only if there is a number ¢ > 1 such that the set of limit points of {a;/a;:i,j e N} is
contained in [0, 1] U [c, + ] Leta=(1 + ¢)/2 > 1.

We set i; = 1 and choose i, as the smallest index » such that a,/a;, 2 a, then we choose
i3 as the smallest index n such that a,/a;, = a. We continue this way and choose a strictly

increasing sequence {i,) of indices such that

a' a' -1
mri> g, 2210 <g, nelN.
a, a,

n n

Let M= {n:i,+1 <i, .}
If M is a finite set, then there is an ny € N such that for n = ng, i, =i, + 1 and so
for some my, i,,+, = My + n for n = 1. Hence

Ay +n+ 1 aino+n+l

v

a n=1,
a

mo+n ai,.o +n
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and by Proposition 2, L ;((a;); > n,, 1) is isomorphic to some L,((b;); > ,,,» 0) and so L 4(a, 1)
is isomorphic to L, (b, c0).

If M is an infinite set, it follows from a; _,_,/a; < a and from the property of c
that 1 is the only limit point of the bounded set

Ginss=t neM
a; ’

and so lim (g,
neM

in+t

-1/a;) = 1. Since g; _ [a; = a, by Proposition2, L,((g;), 1) is iso-

morphic to some L{(b,;), ) with f(rna;)=g(s;h;) for n=n. For neM and
i, < i<, , we define b; in such a way that b, <b,<b;<b,  ifi,<i<j<i,,;and
lim(b;,  _/b)=1

neM

Now given k we find n, such that

ain+1—l<rk+1 bi,.+1—1<sk+1 n>n

> ’ = 0"
a;, Fe b;, S

i, <i<i,,, fornzng, then

&<Vk+1 b; <5k+1

a  rn b o5

and so for n = max {ny, n;,,} and i, <i < i,,, we have

Jrea) S fev1a,) = g(sir 1 5:) < 9541 b3,
glsib) S glsi1 b)) =S i) Sf(rer1a).
So Lg(a, 1) is isomorphic to L,(b, o).
Now we combine our propositions and the fact that Ext(L(a, 1), L (a,1)) =01is a

necessary condition for L,(a, 1) to be isomorphic to some L,{b, o) in the following
theorem.

Theorem. Let f be a rapidly increasing Dragilev function. Then L ((a, 1) is isomorphic to
some L, (b, o0} if and only if the following conditions are satisfied:
(l) Ext (Lf(aa 1): Lf(ar 1)) = 0:
{ii) There is a strictly increasing sequence (r,) with imr, = 1 and a strictly increasing
Junction p: N — N such that

S(ira) < fiaa)

flra) = FAGTS ai),

keN, i = p(k).
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