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ABSTRACT

STRUCTURAL AND METRICAL INFORMATION IN

LINEAR SYSTEMS

Ayça Özçelikkale

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Haldun M. Özaktaş

August 2006

We present a systematic approach to understand the information-theoretic re-

lationships in linear systems. Our main aim is to understand what kind of

information the output of a linear system carries about the input of the system

and how much of this information is preserved in the measurement process. We

recognize structural and metrical information as two fundamental concepts for

classifying the information content of signals. We base our understanding of the

problem on information-theoretic concepts like entropy, mutual information and

channel capacity. We present our results as trade-offs between cost and perfor-

mance, yielding insights about different aspects of the information flow in a linear

system. We especially focus on building a framework which indicates how accu-

rately, and how many measurements must be made and how the measurement

locations should be selected.

Keywords: inverse problems, signal recovery, structural information, metrical

information, experiment design, measurement problem, information theory, frac-

tional Fourier transform, wave propagation, optical information processing
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ÖZET

DOĞRUSAL SİSTEMLERDE YAPISAL VE ÖLÇEVSEL BİLGİ

Ayça Özçelikkale

Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Haldun M. Özaktaş

Ağustos 2006

Bu tezde doğrusal sistemlerdeki bilişim kuramı ilişkilerini anlamak için sistem-

atik bir yaklaşım sunuyoruz. Temel amacımız doğrusal bir sistemin çıktısının

girdisi hakkında ne çeşit bir bilgi taşıdığını ve bu bilginin ne kadarının ölçüm

alma sürecinde korunduğunu anlamaktır. Bu amaçla, yapısal bilgi ve ölçevsel

bilgi kavramlarını işaretlerin bilgi içeriklerini sınıflandırmak için iki temel kavram

olarak kullanıyoruz. Yaklaşımımızı entropi, karşılıklı bilgi ve kanal kapasitesi

gibi bilişim kuramına ait kavramlara dayandırıyoruz. Sonuçlarımızı doğrusal sis-

temlerdeki bilgi akışının farklı yönlerini kavramamızı sağlayan maliyet ve perfor-

mans arasındaki ödünleşimler olarak sunuyoruz. Özellikle de ölçümlerin ne kadar

doğrulukla ve kaç tane yapılması gerektiği ve ölçüm noktalarının seçilmesini kap-

sayan bir teori kurmak üstünde yoğunlaşıyoruz.

Anahtar Kelimeler: ters problemler, işaret geri kazanımı, yapısal bilgi, ölçevsel

bilgi, deney tasarımı, ölçüm problemi, bilişim kuramı, kesirli Fourier dönüşümü,

dalga yayılımı, optik bilgi işleme
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Chapter 1

Introduction

The use of linear systems in modelling physical phenomena is a common practice

in engineering. Linear systems are used in various areas such as signal processing,

control theory, and communication theory. In this thesis we focus on linear

systems from an information-theoretic point of view. We develop a framework

for information-theoretic interpretation of input-output relationships in linear

systems. Our main intended area of application is optical fields, but our approach

is not based on any property specific to this area.

Our basic goal is to understand what happens to the information contained

in a signal after it passes through a linear system. How much of the information

that was originally present in the input signal is preserved in the output of the

linear system is a question of central importance. We are also interested in the

practical limitations regarding information that can be recovered from the output

signal. We would like to understand the effect of finite precision measurement

devices on the quality of the recovered information.

To achieve these goals, we focus on building a framework where these ques-

tions can be formulated in their most natural terms. For this purpose, we recon-

sider an interpretation of information mentioned in [1]. This work distinguishes

1



Figure 1.1: Block diagram of a process with its input and output

structural and metrical aspects of information as two fundamental concepts.

These concepts provide the framework for the analysis in this thesis.

1.1 Model

In this thesis, we focus on the model in Figure 1.1, which shows a system and

its input and the output, constituting the three components of interest.

Usually there is information on some of these components and with this infor-

mation we want to extract some information about the other components. In a

typical framework, the process parameters are assumed to be known a priori, the

output signal is observed possibly with some error, and the input signal which

explains the observed signal best under the given process parameters is investi-

gated. This problem is referred to as an inverse problem or the signal recovery

problem.

1.2 Possible Approaches to the Problem

To understand the information-theoretic relationships in such systems, different

approaches may be adopted.

One approach is to focus on numerical experimentation in a brute force man-

ner. One may assume the process is completely known and focus on the signal
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recovery problem. Observing the change in the quality of the recovered input

signal while the location and number of the samples of the output change is a

possible method. Descriptive conclusions about the nature of information flow

can be drawn from these simulations.

Another approach is to focus on the process. One assumes the process itself

determines the form of information flow. In a discrete framework it is possible

to represent the process by a system matrix and focus on its algebraic properties

such as Singular Value Decomposition (SVD), rank, and condition number. In a

continuous framework concepts like eigenfunction decomposition and bandwidth

may be useful.

Instead of these two approaches, we adopt an information-theoretic approach.

We express the relationships between physical quantities with information the-

oretical concepts like entropy, mutual information, and channel capacity. While

modelling the problem, we pay special attention to preserving generality. As a

result, in our framework the unknown parameters and given parameters can be

related to all of the three main components: input, process, and output. We

systematically define the problems to exploit the link between the information

contained in the unknown parameters and the known parameters.

1.3 Classification of Problem Parameters

Each problem is designed to understand the relationship between the information

contained in the known parameters and the unknowns. We define a problem

parameter as any quantity that is a function of the three main components of

the problem (input, output, process).

Problem parameters can be classified as quantities on a scale of varying de-

gree of freedom. At one end there is the extreme of given parameters. Given

3



Figure 1.2: Classification of problem parameters

parameters are the ones whose values cannot be changed. At the other end, there

are the variable parameters. These are the ones whose values can be changed

to achieve certain goals in the problem. Constrained parameters are considered

as an intermediate group between given and variable parameters. More strictly

constrained parameters are closer to the given parameter end of the scale and

less constrained parameters are closer to variable parameter end of the scale.

This classification is illustrated in Figure 1.2.

Every problem has an objective to be optimized. It is given as function of

the problem parameters. An objective should not be a given parameter of the

problem, since if it was so, there would be no point in optimizing it.

A broad range of problems related to performing measurements and estimat-

ing unknowns from them can be stated in this framework. The relationships

between the problem parameters are mostly exploited by trying to express the

trade-offs between these parameters. These trade-offs will reveal the relationship

between the information contained in the problem parameters in a systematic

manner.

We investigate a restricted but very important class of problem parameters

in section 1.4. This class of parameters, although very small, provides insight for

a considerable number of problems in the literature. In section 1.5, some of the

possible trade-offs that can be interesting are illustrated.
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Figure 1.3: The desired information and the observed information are subsets of
the input signal and the output signal respectively

1.4 Structural and Metrical Information

Let us assume that the input signal is unknown and output signal is partially

known (observed information). We desire to partially or wholly obtain the input

signal (desired information). These definitions are illustrated in Figure 1.3.

In this thesis, we will distinguish between structural information and metrical

information. Structural information is related to the inherent structure of infor-

mation in space, time, or another coordinate variable. Within this framework,

information is assumed to be distributed over independent coordinates and the

emphasis is on description of how this information is distributed over these coor-

dinates. Metrical information is related to the values of the quantities that carry

the information.

The following sections discuss our understanding of structural and metri-

cal information. While interpreting these concepts we classify signals into two

groups: a) signals whose existence is independent of our observations or interest

in them b) signals that are related to our efforts to obtain information. For in-

stance, consider the temperature distribution in a room. The three-dimensional

signal which gives the values of the temperature in this room is a signal of the

first kind. It exists whether we observe it or not. When we put sensors at several
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locations in this room and measure the temperature, the measurement values

constitute a set of samples obtained as a result of our measurements. These

samples constitute a signal of the second kind. If we use these measurements to

reconstruct the actual temperature signal with a particular resolution, this de-

sired information will also be of the second kind. In our scheme the input signal

and the output signal are of the first kind and desired information and observed

information are of the second kind.

1.4.1 Structural Information

The structural information contained in a signal of the first kind may be inter-

preted as the structure and the number of independent quantities that should

be known to uniquely characterize the signal. Hence the structural information

is a description of the set of signals that the signal is a member of. From this

point of view, structural information represents our a priori knowledge about the

signal. As a simple example consider a point about which we know that it lies on

a circle with a known radius and known center in two-dimensional space. This

a priori information is the structural part of the information associated with the

exact position of the point. With this structural information at hand, we know

it is sufficient to learn the angle instead of the two independent coordinates to

possess all the information.

For signals of the second kind, the structural information is strongly related

to our method of obtaining this signal. For example, consider a signal which is

formed by sampling another signal. Then the structure of information conveyed

by this observation will be determined by our sampling method. For a given sam-

pling rate with a uniform sampling strategy, the observed signal will not possess

information about details smaller than a predefined value. Hence structural in-

formation is closely connected to the concept of resolving power. Similarly, if the

sampled signal does not have details smaller than a predefined value, no matter

6



how closely we take samples the observed signal will not exhibit more than that

level of detail.

1.4.2 Metrical Information

Metrical information is related to the amplitude values of individual variables.

It is the answer to the question “what is the value of this individual variable?”

The most important feature of metrical information is the accuracy or the

resolution of the amplitude values of individual variables. For the signals of the

first kind, this feature answers the question “how many distinguishable levels

are there in the values of this signal?” The answer to this question is related

to the inherent noise present in all kinds of physical phonemena. This noise is

independent of our attempt to measure values of these signals. For the signals

of the second kind, this feature is related to the accuracy of the values of these

signals. For the observed information it is the answer to the question “with how

much uncertainty do we observe each value?” Therefore this aspect of metrical

information is closely related to the precision of measurement devices and the

quantization of the results of a measurement, which is also known before doing

a measurement. For the desired information, this feature is the answer to the

question “with how much uncertainty do we want to learn each value of the input

signal?” The answer to this question is constrained by the method we use for

signal recovery as well as the accuracy of the observed information.

These concepts may be also interpreted from the point of view of σ-algebras,

for which an introduction can be found in [2]. Looking at information from a

structural-metrical perspective enables us to state a large class of problems in our

framework in a systematic way. In this thesis, we explore the trade-offs between

the cost of measurements and the extracted information (performance) in terms

of these concepts.

7



1.5 Examples of Experiment Design Problems

By assigning the structural and metrical problem parameters related to desired

information and observation, into either given, variable, or constrained classes, it

is possible to express a broad class of different and interesting trade-off problems.

We assume the process is completely known. We want to extract information

about the input signal by the help of observations. The following four points

outline typical structural and metrical constraints on the desired information

and observed information.

• Certain structural constraints may be imposed on the desired information:

One may want to learn the input signal with a resolution that is at least

as good as a certain predefined value. It is also possible not to feel the

need to learn the signal with a resolution better than a value. This case

may occur in situations where the postprocessing of the recovered signal

will be performed with a limited bandwidth. It is also possible to specify a

completely arbitrary organization of samples where the locations of samples

correspond to the points one wants to learn the values of the input signal.

• Certain structural constraints may be imposed on the observed informa-

tion: It may be desired to have the observations as close as possible in the

situation that there is a travel cost in moving from one location to another.

It may also be desired to have the observations as far as possible in cases

where some a priori information about the process indicates that samples

taken too close will not contain new information.

• Certain metrical constraints may be imposed on the desired information:

One may be interested to learn the input signal values with an accuracy

that is not less than a predefined level. Similarly, an accuracy greater than

a certain value may be unnecessary for some applications.

8



• Certain metrical constraints may be imposed on the observed information:

The available measurement devices may constrain the accuracy that the

observations can be made.

Several interesting problems can be expressed as trade-off problems between

these parameters. An important class is the relationship between structural

information content of the input signal and the output signal under a given

set of metrical constraints. The problem of determining the optimal locations

of sensors at the output end of the process, in order to learn the input with

a predetermined resolution is an example. One special case of this example is

the problem whose result is stated as Nyquist-Shannon sampling theorem. This

case focuses on a particular relationship between the structural constraints on

the desired information and the output signal when the process is taken to be

identity. The desired information is taken to be the input signal, no uncertainty

in the reconstructed signal and observations is allowed, and a sampling strategy

with equal intervals is adopted on the output signal. The theorem states the

sufficient sampling interval length to satisfy these constraints.

Similarly, an interesting class of problems is to investigate the relationship

between the metrical information content of desired signal and observations under

a given set of structural constraints. Questions like “with how much accuracy

should each observation be made, in order to obtain a given accuracy in the

values of the desired signal?” can be answered in this framework.

1.6 Information Measure

To be able to understand the relationship between the information contained in

the input signal and samples of the output signal, we should have a measure of

information.

9



The most natural information-theoretic concept to use as a measure of in-

formation is mutual information. Mutual information can be roughly defined as

a measure of the average reduction in the uncertainty of one random variable

due to knowledge of another. This concept is discussed in detail in section 3.5.2.

To understand the relationship between the unknown vector and the measured

vector, it is natural to investigate the mutual information between the unknown

vector and the measured vector.

One alternative is to use the quality of the recovered input signal as a measure

of the information. As the quality of the recovered signal gets better, we derive

the conclusion that the observations preserved more information about the input

signal. This approach is highly dependent on the estimation technique. Different

estimation techniques can recover different types of information about the input

signal. Different approaches may be summarized as follows:

The explanations below assume an unknown vector f and a vector of obser-

vations s with a process represented by the matrix H. (These may be also used

as a measure of information even in the case where the known parameters and

unknowns are different.)

• Non-Probabilistic Approaches:

– Norm-Approximation (fest = arg minf ‖Hf − s‖)

– Weighted Norm Approximation (fest = arg minf ‖W (Hf − s)‖ where

W is the weighting matrix)

– Singular Value Decomposition (fest = H+s where H+ is pseudo-

inverse of H — this is the minimum length least-squares solution)

• Probabilistic Approaches:

– Maximum Likelihood (ML) Estimation (if the noise is iid Gaussian,

ML estimate is the same as the solution of the least squares problem)

10



– Maximum A Posteriori Probability (MAP) Estimation

– Minimum Mean-Square Error (MMSE) Estimator (for jointly

Gaussian random variables, MMSE estimate and MAP estimate are

identical)

– Cramer-Rao Bound (Cramer-Rao Bound provides a lower bound for

the variance of unbiased estimators)

If the noise is assumed to be Gaussian, ML problem is the same as weighted

norm approximation problem where weighting matrix is found by Cholesky fac-

torization of inverse of noise covariance.

In this thesis, we work with MMSE estimation case. Since the input is as-

sumed Gaussian and the process is modelled by a linear system, the input and

the output are jointly Gaussian. Hence MAP case is also covered by our MMSE

estimation formulation.

1.7 Illustrative Example

This section presents an example which illustrates the measurement design prob-

lem, with the purpose of making the concepts mentioned so far more concrete.

We consider the system in Figure 1.4. An optical system alters the distri-

bution of light in the input plane and produces the distribution of light in the

output plane. We assume the rule of this mapping is known. We would like to

get information about the distribution in the input plane, but we have access

only to the output plane. We will make some measurements on the output plane

with sensors varying in the precision and cost. As the precision offered by a

device increases, its cost also increases.

11



Figure 1.4: Optical system

Since we have a limited budget, we can use a finite number of sensors. We

want to choose the places to put the sensors. We cannot put them too close

because of the physical dimensions of the sensors. As a matter of fact, we tend

to believe that putting the sensors too close will not be beneficial, since the data

collected by sensors that are too close will probably be redundant. (although

in some cases this redundancy may compensate for the effect of measurement

noise.)

Other than deciding the sensor locations we also want to decide what the

precision of each device should be. We would prefer to use the highest precision

devices available, but we have limited budget and high precision devices cost

more.

We might want to learn the answers to questions such as the following:

• What is the best sampling strategy, given a total number of bits (corre-

sponding to cost) to represent all of our measurements?

• To satisfy a given distortion constraint, with what resolution should each

measurement be done?

• What should be the number of detectors to satisfy a distortion constraint?

12



• Where and with which resolution should the detectors be placed?

• What are the trade-offs between sampling rate and sampling accuracy?

Which is better: a small number of high precision devices or a large number

of low precision devices?

• How can we compare the value of lower and higher significant bits among

different samples?

This is an example of the problems that have motivated us to study the

information-theoretic interpretation of input-output relationships in linear sys-

tems. Although intution and commonly used techniques can guide us through

some of these decisions, existing knowledge on this problem does not seem to be

consolidated and unified. This thesis aims to provide the groundwork towards

this end.

1.8 Contributions

Several problems related to information flow in linear systems have been stud-

ied in various contexts in earlier works, including the limits of the information

transfer capability of optical systems, the problem of sensor placement in control

systems, and the problem of coding of outputs of sensors. However, in these con-

texts either the emphasis is not on the problem of understanding what happens

to the information contained in a signal after it passes through a linear system,

or the approach adopted is not as general or systematic as one might wish. This

thesis directly focuses on this problem and presents a novel framework where

this problem can be systematically investigated. We use the concepts of struc-

tural and metrical information while building our framework. These concepts

have been proposed before, but their usage as the basis of such a systematic

framework is, to the best of our knowledge, new.
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In this thesis, we also study the practical limitations regarding the information

that can be recovered from the output of a linear system. To be able to model the

act of performing a measurement in an abstract manner, we associate a cost with

every measurement. The proposed cost function is consistent with the properties

which we believe a plausible cost function should have and it is a new approach

in understanding a measurement.

To understand the information-theoretic relationships in linear systems, we

formulate different trade-off problems. The trade-off problem stated in section 4.3

is illustrative of the kinds of problems which can be formulated in our frame-

work. In this problem the MMSE estimation of the unknown vector from the

observation vector, when we are allowed to vary the measurement accuracy of

components of the observation vector, is studied. The trade-off problem stated in

section 4.6 investigates the mutual information between the input and the output

of a channel when a part of the channel has a limited capacity. The trade-offs

illustrated in section 5.4 focus on the location of samples in space. Finally, the

numerical results shown in section 6.3 illustrate the trade-off between error and

resolution in space and accuracy in amplitude.

1.9 Outline

A brief overview of related work is presented in chapter 2. Our model of mea-

surement and proposed definition of measurement cost is given in chapter 3. This

chapter also exploits the proposed cost function’s relationship with the concept of

number of distinguishable levels and information theory. In chapter 4, we focus

on the purely metrical problem, dealing with the accuracy of measurements and

estimation error. In this chapter, we also investigate the relationship between the

accuracy of the measurements and the mutual information. The purely struc-

tural problem, focusing on resolution in space is formulated in chapter 5. In
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chapter 6, the metrical and structural problems are unified. Finally, chapter 7

presents the conclusions of this thesis and outlines directions for future work.
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Chapter 2

Related Work

Information transmission capability of optical systems has been an important

area of research. Although it is a broad area which can be dated as far back as

the 1910s [3], the 1950s are the times the subject has been intensively investi-

gated. This section presents the history of the subject focusing on theoretical

developments. A treatment of the history with special emphasis on research

which leads to practical progress can be found in [4] and [5]. This section also

reviews a collection of works that are related to selection and coding of measure-

ments in signal processing, control theory, and information theory.

Research in optical transmission of information in the 1970s focuses on the

concept of number of degrees of freedom (DOF). DOF is interpreted differently

in different contexts. Signals, systems, communication channels, number of el-

ements of signal sets are some examples of the concepts to which a definition

of DOF is associated. An illustrative definition for signals given by Von Laue

is mentioned in [3] as the number of independent real parameters necessary to

describe a scalar wave field completely.

In [3], Lukosz compares DOF and space-bandwidth product and concludes

that DOF is the fundamental invariant of optical systems. In [6], ideas presented
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in [3] are illustrated and a method for obtaining spatial super resolution by

sacrifice of temporal resolution is introduced.

In [7], Toraldo di Francia derived the conclusion that an image formed by a

finite pupil has finite degrees of freedom using the sampling theorem. In [8], the

author recognized the inconsistencies of the results based on sampling theorem

and investigated practical limitation of DOF by applying the theory of the prolate

spheroidal functions.

The concept of DOF is extensively studied in [9], [10], [11], [12], [13], [14], [15].

In [11], DOF from point-like element pupils using eigenfunctions of integral equa-

tion is found. In [16], DOF in the presence of noise is illustrated. In [12], DOF for

scatterers with circular cross section in the presence of noise with eigenfunction

technique is studied. In [13], DOF without noise with eigenfunction technique

for spherical scatterers is investigated.

The results presented in the mentioned works are mostly based on the scalar

approximations and paraxial approximations and studied for specific optical sys-

tems. An analysis of DOF for transmission of information with electromagnetic

waves between domains in three-dimensional space is given in [14].

Different approaches to the problem are also pursued. In [1] MacKay offers

the terminology of structural information and metrical information to the engi-

neering community. These concepts are used as a basis for understanding the

information transmission capability of optical systems in [17]. This idea is also

reviewed in [18]. Reference [17] develops the concept of an information-flow vec-

tor assigned to each point of the wave field to understand the flow of structural

information. Reference [19] discusses whether two fields with different coherence

properties can produce the same optical intensity everywhere in the space and

investigates the differences in one-dimensional and two-dimensional case.
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To understand the relationship between the nature of optical information

transmission and information theory, attempts to connect concepts from optics

and information theory have been done. Reference [20] investigates the entropy

of a point-spread function as a measure of its effective area. This work shows

how some drawbacks of the definition of entropy in information theory can be

interpreted as natural consequences of properties of the optical diffraction in-

tegral. In [21], field propagation in terms of communication modes is studied.

Reference [22] uses information theory concepts to describe and analyze physical

properties of coherent and partially polarized light. Reference [23] proposes a

method for using Shannon number and information capacity to provide compact

performance measures of integral imaging systems. Reference [24] studies laser

beam characterization based on Shannon’s information-entropy formula. Refer-

ence [25] presents a new variational principal that concerns both the phase and

intensity of a wave in the framework of geometrical-optics approximation of the

wave equation which may be of use understanding the nature of information

transmission.

The practical information transmission limitation of optical laws has also been

studied with a sampling approach. In [15], Gori gives an account of the uses of

sampling in optics. DOF, fundamental properties of Fresnel transform and their

optical significance, Mellin transform and exponential sampling, role of sampling

in coherence theory are the main subjects reviewed in this work. Reference [26]

focuses on the convolution kernel describing the Fresnel diffraction and provides

a reconstruction method. In [27], reconstruction of Fresnel fields sampled with

nonideal sampling devices is studied.

To exploit the relationships between information contained in optical fields

in different areas of space, it is possible to focus on the signal recovery problem

with a numerical approach. Reference [28] gives an overview of the method

of Projection onto Convex Sets (POCS) and other iterative methods for image
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recovery. Reference [29] provides a generic introduction to image recovery by

the method of POCS. Reference [30] provides an application of this method to

optics in the context of resolution enhancement. Reference [31] presents another

application of method of POCS. In this work, the authors assume the optical

field is known at some random points in space and reconstruct the optical field

at other points by POCS.

In our numerical examples, we will employ the fractional Fourier transform

(FRT) as an example system because it captures the essence of wave propagation

in a mathematically pure way. Reference [32] provides a comprehensive account

of FRT and its history. The FRT, which is a generalization of the ordinary

Fourier transform implies a more general formulation of the area of optical in-

formation processing. In [32], references to the milestones of the development

of FRT and its applications are given. This book also presents an overview of

basic concepts and tools which have been important in the history of optical

information processing such as DOF, Wigner distribution and Gabor expansion.

A review which clarifies the concept of DOF as the area of the space-frequency

support and which emphasizes its difference from the space-bandwidth product

is also given.

References [33] and [34] present a general overview of the relationship between

information theory and optics. To describe the optical spatial channel and its

information theoretic characteristics, these texts provide introductory material

on information theory, diffraction and signal analysis. The relationship between

the concept of entropy in thermodynamics and entropy in information theory is

extensively studied. Information provided by observations is discussed with a

strict connection to the wave nature of light and quantum theory. Several appli-

cations in the area of optical information processing including image restoration,

wavelet transforms, pattern recognition, computing with optics and fiber-optic

communication are also covered.
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Optical systems are frequently modelled as linear systems. The relationship

between samples of the output of linear shift-variant systems and the input are

also studied within a signal processing and communication framework. Reference

[35] has shown that a bandlimited signal of finite energy passing through a single-

input multiple-output system can be uniquely reconstructed from the samples of

outputs of the system under some conditions on the system. Reference [36]

studies recovery of input from finitely many noisy output data where the system

is driven by a differential equation. Reference [37] investigates recovery of a signal

from a channel modelled as known linear time-invariant system from nonuniform

sampling of outputs. Reference [38] presents an approach based on Gabor time-

frequency space.

The problem of finding the optimal placements of sensors is investigated in

specific applications in several contexts including power systems and power de-

livery, robotics and automation and magnetics [39], [40], [41], [42]. In [43], the

importance of a framework for the general signal reconstruction problem is em-

phasized. This research focuses on developing efficient methods for determining

optimal combination of observations rather than on understanding information

flow in measurement process in an abstract manner.

The measurement selection problem is extensively investigated in the frame-

work of control theory with a special emphasis on controllability and observabil-

ity [44], [45]. In [45] Fisher information matrix is used as a tool for understanding

the nature of optimal measurement strategy problem.

In an information theory framework, sensors and the information content of

the output of sensors is an important subject. This subject is investigated in

the context of distributed sensing systems, noisy source coding, multi-terminal

source coding, and the CEO problem. In these works the emphasis is on coding of

observations. Several different scenarios are considered with a coding approach

in [46], [47], [48], [49], [50]. Another related work in the information theory
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framework is the subject of hypothesis testing. A hypothesis testing problem

under communication constraints is investigated in [51]. This work is similar to

the problem we have introduced in chapter 4 in the sense that the information

retrieval problem under communication constraints is investigated. However in

this problem the focus is on hypothesis testing, which is quite different from our

problem, where the estimation of the unknown vector is considered.
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Chapter 3

Preliminaries

3.1 Metrical Information

To understand the properties of metrical information provided by an observation,

it is necessary to understand how a measurement is made. This section and the

following sections present our understanding of a measurement and proposes a

mathematical model. It also proposes a measure of cost for doing a measurement

and exploits its relationship with the concept of number of distinguishable levels

and information theory.

3.2 Metrical Information and Measurement

Devices

This section discusses the relation between the metrical information in an ob-

served variable and a measurement device. It also proposes a mathematical

model for measurement devices.
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As stated earlier metrical information is related to the measure of the uncer-

tainty in the value of an observation. In an experiment which does not involve

quantum effects, the basic source of uncertainty is the measurement device. With

this in mind, we ignore the other sources of impreciseness in an obtained value

and consider the relationship between the metrical aspect of a measurement and

finite precision measurement devices.

When a physical quantity is measured, the result of the measurement is not

exactly the true value of the observed variable. Very small changes in the original

variable do not necessarily produce detectable output changes in the readings of a

measurement device. Even when the exactly same value is measured a number of

times, the measurement device will output different values concentrated around

the actual value. This measurement error is unavoidable in the case of both

analog and digital devices. In the case of an analog device the resolution of the

analog display is an important source of uncertainty. In the case of a digital

measurement device, intrinsic quantization in the digital display is an important

source of finite-precision.

Hence, we see the act of performing a measurement as a process which adds

uncertainty to a signal value. The following model is adopted:

s = g + m, (3.1)

where g is the original value to be measured, m models the uncertainty intro-

duced by the measurement device and s is the result of the measurement. With

this point of view, the only distinctive property of a measurement is statistical

properties of the noise introduced by it.
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3.3 Cost of Doing a Measurement

In our model, a cost is associated with every measurement. We propose the

following function for the cost of a measurement

C = log

(
σ2

s

σ2
m

)
= log

(
1 +

σ2
g

σ2
m

)
, (3.2)

where σ2
s is the variance of the observation and σ2

m is the variance of the noise

introduced by the measurement device. In writing these equations, it is assumed

that original value to be measured and noise introduced by the measurement

device are uncorrelated.

C can be interpreted as a measure of the number of distinguishable levels

which can be resolved by the measurement device. Moreover, this definition can

be seen as a measure of the information transfer capacity of the measurement

channel. These interpretations are discussed in sections 3.4 and 3.5.

3.4 Discussion of the Model

This section discusses the plausibility of the proposed model for the measurement

devices and the cost associated with a measurement.

3.4.1 Number of Distinguishable Levels

Most of the measurement devices are characterized by their accuracy, i.e. the

number of input levels that they can distinguish. A measurement device, digital

or analog, effectively has finite number of distinguishable output levels. Another

characteristic of the measurement devices is scalability of their ranges. That is,

once you buy a measurement device you can arrange it to different ranges and
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use it to measure variables with different ranges. We want our model to reflect

these properties of physical measurement devices as much as possible.

Let a measurement device have one distinctive property: the number of input

levels that it can distinguish, i.e. its dynamic range. It is assumed that the total

range R of a measurement device can be adjusted. For example, let our device be

able go distinguish 10 levels. We assume we can freely use it to measure a range

of 100 Volts with 10 Volts accuracy or a range of 10 Volts with 1 Volt accuracy.

Assume that the measurement error introduced by a measurement device

can be modelled as Gaussian additive noise. Our assumption of range scalability

implies that the variance of this additive noise should change as the range R of

the measurement device is scaled.

To illustrate this idea, let us consider a Gaussian random variable with a

known variance σ2 to be quantized with uniform quantization. Let the number of

quantization intervals be Nq. To have the minimum mean-square error (MMSE)

between the quantized variable and the original continuous variable, there is a

best quantization interval ∆ for each Nq for a given σ2 [52]. The range covered

by this quantization is given as ∆ × Nq. It is possible to plot curves of Nq

versus ∆ for different σ2 values. A figure illustrating this idea is given in Figure

A.1 in Appendix A. Within this scheme ∆ can be considered as a measure of

uncertainty in each quantized variable. This interpretation may seem implausible

for the values near the ends of the ranges, but these values are probably on the

tails of the distribution, hence they are already unlikely.

We associate a measurement scenario with this quantization scenario as fol-

lows: We consider a digital measurement device with number of distinguishable

levels Nq. This device will measure the value of a Gaussian random variable

with a known variance. The device is arranged to a range of ∆ × Nq where ∆

is determined by the plot of Nq versus the best ∆ for this particular variance.
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Numerical results show that for a given number of distinguishable levels the ratio

of σ2to ∆2 is roughly constant and increases with increasing Nq. Figure A.2 in

Appendix A illustrates this observation. Since in the quantization scheme ∆ is

considered as a measure of uncertainty on the quantized variable and in the mea-

surement scheme a noise is associated with uncertainty of measured values, ∆

can be interpreted as a characteristic of the uncertainty of the noise introduced

by the measurement device. Since it is the ratio of σ2 to ∆2 which is constant,

∆ is interpreted as the standard deviation of the measurement noise. This ob-

servation suggests using ratio of variance of the observed signal to variance of

the noise as a measure of the number of distinguishable levels for a measurement

device.

Another observation can be made by considering measurement of a uniform

random variable which is in the range [−R/2, R/2] [53]. Consider a device which

outputs the sum of the value of this variable with a noise term that is uniform

in the range [−∆/2, +∆/2]. Then the output will be in the range [−(∆ + R)/2,

+ (∆ + R)/2] and the number of distinguishable levels in the output will be

given by (∆ + R)/∆ = 1 + R/∆. This is the output range divided by the

range of the noise term. This idea is illustrated in Figure 3.1. Comparison

of this result with the argument of the log term in equation 3.2 is instructive

in understanding the general form of 1 + · · · . This observation supports using

the ratio of observed signal’s characteristics to noise characteristics rather than

the ratio of original signal’s characteristics to noise characteristics as a measure

of number of distinguishable levels. For a Gaussian random variable, range is

thought to be proportional to standard deviation. Hence it is plausible to use the

ratio of standard deviation of output to standard deviation of noise as a measure

of number of distinguishable levels in the case of Gaussian random variables.

With this observation and the motivation supplied by the mentioned simula-

tions, let ρ be defined as a measure of the number of distinguishable levels of a
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Figure 3.1: Illustration of how the number of distinguishable levels is obtained
when an uncertainty is added to a signal

measurement device

ρ = %
σ2

s

σ2
m

, (3.3)

where % is a positive constant. With an abuse of notation we use the term

“number of distinguishable levels” also for ρ.

3.4.2 Cost Function

Let the number of distinguishable levels of a measurement device be ρ. Let the

cost of using this device for one measurement be given by a function C(ρ). Since

we assume range of a measurement device can be scaled freely according to need,

cost of using a device doesn’t depend on the range it is adjusted to.

Observations on the plausible cost function

Before defining a cost function, we investigate the properties the plausible cost

function should have.
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I. Each measurement should have a nonnegative cost:

C(·) ≥ 0. (3.4)

II. Cost function should be an increasing function of ρ.

III. Cost of using a measurement device with ρ = 1, i.e. measuring with one

level should be 0.

IV. The plausible cost function of using a measurement device C should be a

function of the number of distinguishable levels C(ρ) such that

m× C(ρ) ≥ C(ρm), (3.5)

where m is the number of usages of the measurement device [53]. If this

inequality is not satisfied, there will be no point in having measurement de-

vices with large number of distinguishable levels. This inequality guarantees

that using a measurement device with large number of distinguishable lev-

els is at least as economical as using a measurement device with a smaller

number of distinguishable levels repeatedly to effectively measure the same

number of distinguishable levels.

V. Since doing a measurement with a noise with infinite variance doesn’t pro-

vide us any information, it should have zero cost.

VI. Doing a measurement without noise or with noise that only introduces a

bias term (i.e. noise with zero variance) should have an infinite cost. This

is because the original value of the output vector can be recovered perfectly

in this case.

VII. Measuring a deterministic signal, i.e. a signal with zero variance, should

have zero cost.
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The fact that the logarithm function takes products to sums and satisfies

equation 3.5 motivates the usage of a logarithm function in the definition of our

cost function. Therefore the following function is proposed for the cost function:

C(ρ) = K log(K1ρ). (3.6)

Here K and K1 are positive constants. K1 is chosen to be positive so that the

logarithm function is defined. K is chosen to be positive to be consistent with

item I.

This cost function satisfies equation 3.5 for all K1 ≥ 1. The only K1 satisfying

strict equality is 1. To satisfy item III, K1 is chosen as 1. Since we assume that

the range of the measurement devices can be adjusted, it is possible to choose the

ranges a measurement device is adjusted in a clever way to obtain more accurate

measurements. That is, a measurement device with ρ levels can be used to

distinguish between more than ρ levels by using the device more than once at

the same measurement. Suppose we first use the measurement device adjusted

to the range R1 to determine the most significant figure. Then we can change

the range to R2 = R1/ρ and do the same measurement to determine the second

significant figure. Then the cost of these measurements are K log(ρ)+K log(ρ) =

2K log(ρ). The same measurement could also be done with this accuracy by using

a measurement device with ρ2 levels only once. This measurement has the cost

of K log(ρ2) which is the same as the cost of using the the previous method.

The constant % in the definition of number of distinguishable levels can be

changed with a different value without violating the inequality stated in equation

(3.5). These constraints do not force K and % to have specific values. This

observation implies an arbitrariness in the constants in the definitions of number

of distinguishable levels and the cost function as far as our observations on the

plausible cost function is considered. As a result, we arbitrarily choose K and

% as 1. Hence the cost associated using a measurement device with number of
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distinguishable levels equal to ρ is defined as

C(ρ) = log(ρ), (3.7)

where the base of the logarithm determines the unit of cost. With this definition

item V is consistent with choosing the definition of number of distinguishable

levels as in equation 3.3 instead of ρ = %
σ2

g

σ2
m

. While we can not strictly claim this

definition is unique, it is fully consistent with our observations, and seems the

most plausible choice.

3.5 Connections to Information Theory

This section exploits the links between our definition of cost function and some

information-theoretic concepts.

3.5.1 Channel Capacity

Modelling the measurements as a process that causes uncertainty in the measured

values by introducing an additive noise implies a channel capacity interpretation

for our problem. A measurement is seen as a noisy channel whose input is a

sample of the signal to be observed and whose output is the observation. All

definitions of standard information-theoretic concepts in this section are adopted

from [54].

For a channel the most natural parameter to consider is its capacity. Channel

capacity can be informally defined as the maximum rate such that the message

at one side of the channel can be transmitted over the channel with so that

the original message is reconstructed on the other side of the channel with high
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probability. Capacity of a channel with input x and output y is given by

Rc = max
p(x)

I(x; y) (3.8)

where I(x; y) is the mutual information between x and y. More information on

mutual information is given in section 3.5.2.

A channel with Gaussian additive noise is called a Gaussian channel. The

channel capacity of a Gaussian channel with noise variance σ2
z and power con-

straint p on the input is given by

Rc = max
E[(x)2]≤p

I(x; y) = 0.5 log(1 + p/σ2
z). (3.9)

This capacity is achieved when x is Gaussian distributed with zero-mean and

variance p.

Our choice of the cost function—with a scaling—is the same as the channel

capacity for a channel which has the input g with E[(g)2] ≤ σ2
g and output s:

0.5× C = 0.5 log

(
1 +

σ2
g

σ2
m

)
= Rc. (3.10)

If the input is assumed to be zero-mean Gaussian distributed with variance

σ2
g , this capacity is achieved with the input distribution we have. For any other

distribution, I(g; s) will be smaller. Hence the Gaussian distribution is the dis-

tribution which gives the maximum cost among the distributions satisfying the

power constraint E[(g)2] ≤ σ2
g .

In a channel, the sender side sends an input signal, the channel distorts

this signal, and the receiver side tries to decide what was the original signal

sent. If this decision is successful, then the channel can be said to transmit

some information. Hence channel capacity can interpreted as a measure of the
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maximum number of distinguishable inputs. For a random variable, the number

of distinguishable inputs means different amplitude levels. Hence number of

distinguishable inputs for a channel, i.e. the capacity of a channel and the number

of distinguishable levels at the output are closely related. This close connection

may be interpreted as a guideline for the definition of the plausible cost function.

Hence the 0.5 scaling factor in front of Rc may be implying that it is more

natural to use the ratio of standard deviations instead of variances as a measure

of number of distinguishable levels.

3.5.2 Mutual Information

Mutual information between two random vectors x and y is denoted by I(x; y)

and is given by

I(x; y) = h(x)− h(x/y) = h(y)− h(y/x), (3.11)

where h(x) and h(x/y) are entropy and conditional entropy as defined in [54].

We have seen that when g and m is Gaussian

0.5× C = I(g; s) = h(s)− h(s/g), (3.12)

where I(g; s) is the mutual information between g and s. Mutual information is

the measure of the average reduction in the uncertainty of one random variable

due to knowledge of another. With this concept, it is possible to talk about the

amount of information one random variable contains about another. The fact

that the cost of a measurement is the same as the mutual information between

observed random variable and result of measurement—up to a scaling factor—

implies an inherent connection between the cost of doing a measurement and

information provided by it.
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Chapter 4

Metrical Information

This section presents one of the possible problem formulations which can be used

to exploit the relationship between the metrical information content of the input

signal and the output signal. To isolate the metrical information problem from

the structural information problem, we assume the structural sampling strategy

is fixed and formulate our problem in a discrete framework. We discuss the best

measurement strategy while measurements are done with measurement devices

with different number of distinguishable levels.

4.1 System Model and Notation

This section presents the system model and notation for the case where the

problem is investigated in a discrete framework. In this framework we assume

the structural sampling strategies are chosen appropriately and samples of the

input signal can be used as a good representation of the input signal.
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The actual values of the vector that will be measured is formed according to

the linear system of the vector form

g = Hf + n, (4.1)

where f is the unknown vector we want to obtain information about, n is the

inherent system noise and g is the vector that we attempt to observe.

These values will be measured by some measurement devices. We consider

the model

s = g + m (4.2)

= Hf + n + m, (4.3)

where m models the uncertainty introduced by the measurement devices.

In this system f ,g,n,m are column vectors with N ,M ,M ,M elements respec-

tively. H is an M ×N matrix. We assume f ,n,m are Gaussian distributed with

zero mean and covariance matrices of f and n are known. We also assume f ,n

and m are independent. The covariance matrices of n and m are diagonal. (Since

the measurement devices may be calibrated if they are biased, it is reasonable to

assume that m is a zero-mean random vector.)

The mean of a random vector is given by x̄ = E [x]. The covariance matrix for

a variable x is given by Kx = E [(x− x̄)(x− x̄)†] where † denotes the transpose.

4.2 Preliminaries

In this vector model, we see the measurement process as a sum of M parallel

independent measurement channels as illustrated in Figure 4.1.
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Figure 4.1: Measurement process as M parallel independent channels

The total measurement cost is given as the sum of the cost of each measure-

ment

C =
M∑
i=1

Ci. (4.4)

As the figure and the definition of the cost function suggests the problem at

hand can be interpreted as an estimation problem under a communication cost

constraint.

4.3 Problem Formulation—MMSE Estimation

As a criteria for information supplied by a measurement, the mean-square error

when f is estimated from s by MMSE estimation method is used. Since f and s

are jointly Gaussian, the MMSE estimate of f is equal to the MAP estimate of

f given s. We would like to learn the trade-off between the cost of the measure-

ments and the information gained. This problem can be formulated as a vector

optimization problem as

min
σm

(with respect to R2
+) X(σm), (4.5)
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where

σm = [σm1 ... σmi
... σmM

]†, (4.6)

X(σm) = [tr (Kε) ,

M∑
i=1

Ci], (4.7)

σ2
mi
≥ 0, i = 1, ..., M (4.8)

ε = f − f̂ , (4.9)

f̂ = E [f | s] = KfH
†K−1

s s, (4.10)

Kε = E [Kf/s] = Kf −KfH
†K−1

s HKf , (4.11)

Ks = HKfH
† + Kn + Km, (4.12)

Km = diag(σ2
mi

), (4.13)

Ci = log

(
σ2

si

σ2
mi

)
. (4.14)

In this formulation R2
+ denotes the non-negative orthant. This is an opti-

mization problem with two objectives to be minimized. One is the MMSE and

the other is the cost of measurements. We would like to minimize both, but

there is no unique way to convert the benefit of low MMSE and low cost to each

other. Hence what we investigate is the Pareto optimal points. A point is Pareto

optimal if there is no other solution that performs at least as well on both criteria

and strictly better on at least one criterion.

By applying scalarization, which is a standard technique for finding Pareto

optimal points of a vector optimization problem we arrive at the scalar problem

min
σm

λ†X(σm), (4.15)
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where the variables are as defined below. Here λ Â 0, where Â denotes com-

ponentwise strict inequality. For different values of λ, different Pareto optimal

solutions of the vector optimization problem 4.5 is found.

A closely related problem is the problem of minimizing the MMSE for a given

cost

min
σm

tr (Kε) (4.16)

such that
M∑
i=1

Ci ≤ Cmax. (4.17)

The Lagrangian of this problem is the same as the scalarization of the vector

optimization problem. The problem of minimizing the cost for a given MMSE

also has the same Lagrangian. This problem is similar to the source coding

problem in which a random vector is to be represented with the minimum finite

number of bits under a distortion criterion.

The following are some observations on the range of our analysis:

• Our approach can handle the case where some of the measurements are not

done at all. Hence we can determine which of the available measurements

should be done in order to have a good estimate of the original vector. We

know that any measurement with infinite noise variance will be effectively

of no use and is not to have been done in the first place. With our definition,

these types of measurements have zero cost.Thus measurements which are

not worth doing will appear as measurements with infinite noise variance

at the outcome of optimization procedure.

• Our approach can handle the case where there are repeated observations.

Whenever a specific measurement is repeated with different measurement

noises yielding a particular MMSE, the equivalent noise that will yield the

same MMSE with only one measurement has a lower cost. That is, doing
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one measurement always has a lower cost than repeating the measurements

to achieve a particular MMSE. Hence if an optimum noise is found for a

particular measurement, it is guaranteed that there is no better solution

which takes into account the possibility that observations can be repeated.

Details are given in Appendix B.

The fact that the optimal solutions for the noisy source representation prob-

lem and the channel capacity problem comes from transforming the vectors into

appropriate domains motivates an approach which focuses on finding a suitable

transformation for our problem. We expect that this suitable transformation

will concentrate the information in independent coordinates and the useful infor-

mation will be easily distinguished. One disadvantage of this type of approach

comes from the fact in our scheme it is not possible to change the original vector

before measurement, whereas while quantizing a vector or sending a message

through a channel, it is possible to alter them before they face information losing

effect of being quantized or being sent over a channel. Secondly, it may not be

possible to transform back to the original domain in a meaningful way even if

the solution is found in the transformed domain. For instance, if the optimal

solution requires us not to measure some of the components of the transformed

vector, this solution would not be expressible in the original domain for most

of the cases, because the number of the components of the original vector that

the component which were decided not to be measured in the diagonal domain

transforms back to will be more than one. In the light of these observations, one

may consider using a linear map before measurement to transform the vector to

be observed into an appropriate domain. It is expected that if the cost of using a

linear map is assumed to be zero, this approach will yield better performance for

a given cost constraint compared to the one that directly observes the original

vector.
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Another plausible measurement scenario is the case where the set of available

measurement devices are explicitly stated. This corresponds to the case where

there are only certain devices with certain accuracies available to us. Here the

noise variances of available measurement devices will be given and we will try to

find the best assignment of measurement devices to measurements. The problem

formulation will be the same except that the cost limit will be changed to σmi
∈ V

where the set V denotes the set of available measurement devices.

The problems presented in this section may be also interpreted in an exper-

iment design framework. In this framework the goal of the problem will be to

choose the measurements in a way that an error and/or cost criteria is satisfied.

4.3.1 Illustrative Examples

In this section some simple examples which illustrate the solution of the problem

presented in section 4.3 for some special cases are presented.

Throughout this section kxij denotes the ith row jth column of Kx matrix.

We use the notation k̄x for the vector [kx11 . . . kxii . . . kxMM ]†. For convenience

we assume the notation log represents the natural logarithm throughout this

section.

1-Dimensional case

When a single random variable (N = 1) is to be measured once (M = 1), we

refer to this case as 1-Dimensional case. Since there is only one measurement,

the problem of finding the best measurement strategy such that the best error

and cost is obtained is not meaningful. However there is still a curve which

shows the trade-off between the cost and the error. In this case the matrices

H, Kf , Kn, Km become the one-dimensional scaling factor h and the variances
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Figure 4.2: Error versus cost curve for the 1-dimensional case

kf , kn, km. For this case the error d is given as

d = kf − h2k2
f

h2kf + kn + km

. (4.18)

The cost is given as

C = log(1 +
h2kf + kn

km

). (4.19)

The trade-off curve for h = 2, kf = 1, kn = 0.1 is given in Figure 4.2 as an

illustrative example. Here percentage error is calculated as d
kf

. The only cost-

error pairs which are achievable are the ones on the curve.

Diagonal Case

When the matrices H, Kf , Kn are diagonal, we refer to this case as the diagonal

case. For this case we look at the problem of the scalarization of the vector

optimization problem:

min
k̄m

M∑
i=1

log

(
1 +

kgii

kmii

,

)
+ ν

M∑
i=1

(
kf ii −

h2
iikf

2
ii

h2
iikf ii + knii + kmii

)
, (4.20)
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Figure 4.3: Error versus cost curve for the diagonal case

where ν is an nonnegative parameter. Taking derivative with respect to kmii and

equating it to zero gives the following optimal values for kmii

kmii =





kgii
2

νh2
iikf

2
ii
−kgii

if νh2
iikf ii

2 − kgii > 0

∞ if νh2
iikf

2
ii − kgii ≤ 0.

(4.21)

The trade-off curve for the diagonal case can be obtained by varying the parame-

ter ν. For high values of error, ν will be small. Here we see that for some cases

it would be better not to do some of the measurements. This case occurs for

high values of error, where it becomes unnecessary to measure every component

of the vector.

The trade-off curve for the diagonal case is illustrated in Figure

4.3. While generating this trade-off curve H,Kf and Km are taken

to be diag([2.4782, 1.6749, 2.5185]†), diag([0.98038, 0.716, 0.36592]†) and

diag([0.075862, 0.19519, 0.14654]†) respectively. We look at some of the cost-

error pairs on the graph. For example, to obtain an error of 69.90%, the optimal

method is to measure the first two components of the vector with noise variances
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6.5112 and 7.2217, and totally discard the third component. To obtain an er-

ror of 54.71%, the optimal allocation is to measure the three components of the

vector with noise variances 3.4, 2.5 and 1561.1. To obtain an error of 8.35%, the

optimal method is given by the following noise variances: 0.0372, 0.0884, and

0.0467. These examples show how the third component becomes important as a

better performance in terms of error is desired.

4.4 Numerical Results

This section presents some numerical results illustrating the solution of the prob-

lem presented in section 4.3. These results show the trade-off between cost and

error when we estimate f from s.

The system matrix H is taken to be the 8 by 8 real equivalent of the 4 by

4 complex FRT matrix of order a = 0.4. Since the present formulation has

not yet been generalized to complex matrices, we have used the real equivalent

of the complex matrix. The real equivalent of a complex matrix is formed as

follows [55]:

We consider the complex matrix Ā, and the linear system model

ȳ = Āx̄, (4.22)

where x̄ and ȳ are complex vectors and Ā is a complex matrix. Here x̄ = xr +jxi

with j =
√−1, and xr and xi are real random vectors. We form the composite

real vector corresponding to a complex vector x̄ as x = [xr xi]
†. We investigate

whether a real valued matrix A satisfying the equivalent real model

y = Ax (4.23)
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exists. Such an A matrix exists and is given by

A =


 Ār −Āi

Āi Ār


 , (4.24)

where Ār = <{Ā} and Āi = ={Ā}.

For the generation of FRT matrix, an implementation of algorithm presented

in [56], [57] and in chapter 6 of [32] is used. This implementation is available

at [58].

Our purpose is to obtain Pareto optimal curve between cost and error. There-

fore, ideally we would find the minimum error for a given cost or the minimum

cost for a given error. However since an efficient method for this could not be

obtained, a brute-force method was employed. For this purpose, a maximum

noise variance σ2
max is selected. Then 8 different variances are formed uniformly

on the range from 0 to σ2
max. These correspond to different numbers of distin-

guishable levels. One permutation of these 8 noise variances determine the noise

of 8 measurement devices and constitute one measurement scenario. There are 88

different scenarios. For each scenario cost and error is determined and marked

on the cost-error plane. Points formed with this procedure cover a particular

range of cost. To be able to cover the whole cost-error plane, this procedure is

repeated for four different values of σ2
max: a max(σ2

g) where a = 0.1, 1, 4 and 100.

An arbitrary covariance matrix is used for Kf . The results are shown in Figure

4.4. The percentage error is obtained by normalizing the error as follows:

100
ε

M∑
i=1

E [f 2]

. (4.25)

To be able to display the huge amount of points (4×88), some of the points from

each data set have been omitted on the plot. The points that are shown on the

figure have been chosen so that the ones near the boundary are kept.
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Figure 4.4: Illustration of the achievable region in the cost-error plane (8× 8)

It is seen on the plot that the decrease in the percentage error is almost linear

for the low values of cost. This linear relationship is so steep that it is relatively

economical to decrease the error for the low values of cost. For instance halving

the error from 100% to 50% costs less than 10 bits. With increasing cost the rate

of error decrease becomes smaller. Reducing the error from 50% to 10% takes

about 20 bits. After reaching the error of 10% with a cost about 30 bits, the rate

of error decrease becomes much more smaller. The error that would be achieved

if the measurements were perfect (corresponding to infinite cost) is 1.97%. The

error for 60 bits is roughly near this level, and it takes 30 bits to reach that level

from the error of 10%. Since after the cost of 60 bits the error decrease is very

small, it would not be meaningful to increase the cost more than 60 bits for most

of the cases.

For greater numbers of measurements, scanning the cost-error plane with this

method becomes computationally infeasible because of memory requirements.

For instance, for 16 measurements 1616 data points will be needed. Hence a

different approach has been adopted for greater number of measurements. In

this method again a maximum noise variance σ2
max is determined. Then M
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different variances are formed randomly on the range from 0 to σ2
max according

to a uniform distribution. Corresponding error and cost is found and marked

on cost-error plane. This is done (M/2)M/2 times. This randomly generated

measurement noise variances cover a particular range of cost. To be able to cover

the whole cost-error plane, this procedure is repeated for four different values of

σ2
max: a max(σ2

g) where a = 0.1, 0.5, 2 and 4. The 16 × 16 case is illustrated in

Figure 4.5. Since this method is based on randomly generated noise variances,

the trade-off curve obtained is less reliable than the previous method where the

space of possible noises is scanned with a particular resolution. Nevertheless,

even in the worst case, the curve obtained by this method provides an upper

boundary for the actual trade-off curve.

This plot is similar to the plot of 8× 8 case. Similar conclusions regarding to

the rate of decrease of error with increasing cost can be drawn. In this case the

error that would be achieved if the measurements were perfect (corresponding

to infinite cost) is 13.09%. The error is roughly at this level for a cost of 100

bits. Hence for most of the applications, it would be unnecessary to pay more

than 100 bits. Comparing the plots in Figure 4.4 and Figure 4.5 reveals that

the cost required to reach the minimum error possible (100 bits) is roughly the

twice of the 8×8 case (60 bits). This loose relationship is not surprising because

the linear system represents the same transform (real equivalent of the FRT

of order 0.4) for vectors of different length and the number of measurements

for the current case (16) is twice the number of measurements for the previous

case (8). Still, it should be emphasized that the trade-off curve heavily depends

on the input probability distribution, and conclusions regarding to information

transfer capability of a system cannot be drawn without reference to the input

distribution.
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Figure 4.5: Illustration of the achievable region in the cost-error plane (16× 16)

We underline that only the lower left boundary of these plots is meaningful

and represents the trade-off between cost and error. The remaining points are

merely outcomes of the brute-force method.

4.5 Precise Measurements Case

When the uncertainty introduced by the measurements are small with respect

to the range of g, we name this case as the precise measurements case. This is

the case where Ks is near Kg. Hence we use the first order approximation of the

inverse of a positive definite symmetric matrix K [59]

(K + ∆K)−1 ≈ K−1 −K−1∆KK−1. (4.26)

Then

K−1
s ≈ K−1

g −K−1
g KmK−1

g (4.27)

46



and, using the linearity of the trace operator, the MMSE becomes

tr
(
Kf −KfH

†K−1
g HKf

)
+ tr

(
KfH

†K−1
g KmK−1

g HKf

)
. (4.28)

The first part is the error that would be present even if the measurements were

perfect. This error is unavoidable, since its origin is the information transfer

capability of the physical phenomena itself. The second additive error component

is due to the imperfect measurements. We denote these errors as Ds and Dm

respectively.

Throughout this section kxij denotes the ith row jth column of Kx matrix.

We use the notation k̄x for the vector [kx11 . . . kxii . . . kxMM ]†. For convenience

we assume the notation log represents the natural logarithm throughout this

section.

Dm can be expressed as

tr
(
KfH

†K−1
g KmK−1

g HKf

)
= tr

(
KmK−1

g HKfKfH
†K−1

g

)
(4.29)

= tr (KmP ) (4.30)

=
M∑
i=1

kmiipii, (4.31)

where pii is the diagonal elements of P . Here the last equality follows from the

fact Km is diagonal.

Then the cost minimization problem for a given error constraint can be for-

mulated as follows:

min
k̄m

M∑
i=1

log

(
1 +

kgii

kmii

)
(4.32)

such that
M∑
i=1

kmiipii ≤ D (4.33)

k̄m º 0. (4.34)
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k̄m = [km11 . . . kmij . . . kmMM ]† (4.35)

kmi
≥ 0 i = 1, ...,M. (4.36)

Here D = Dt − Ds and D ∈ R+ . When the total allowed error Dt is

smaller than the error introduced by the process, the optimization problem has

no solution. Here k̄g º 0, since kgii are the variances of components of a random

vector.

Following observations can be made on this optimization problem:

• This is a convex optimization problem. The constraint function on error

is affine, hence a convex function of optimization variable k̄m. The non-

negativeness constraint on components of k̄m is linear, hence convex.

The convexity of the objective function can be seen by restricting its domain

to a line. We define x(t) = x(z+tv) and consider k̄m = z+tv where z ∈ Rm

and z + tv ≥ 0 We have

x(t) =
M∑
i=1

log

(
1 +

kgii

zi + tvi

)
(4.37)

Second derivative of x(t) with respect to t is

x
′′
(t) =

M∑
i=1

kgiiv
2
i

2zi + 2tvi + kgii

[(zi + tvi)2 + kgii(zi + tvi)]2
. (4.38)

Since x
′′
(t) ≥ 0 for z + tv ≥ 0, the problem is convex.

• Since a k̄m ∈ R++ can be found which satisfies the inequality constraints

with strict inequalities, Slater’s condition holds. Since the problem is con-

vex, this implies strong duality.

• Since this is a convex problem with differentiable objective and constraint

functions with strong duality, KKT conditions are necessary and sufficient
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for optimality of both the dual and primal problem. Hence optimal value

of k̄m can be found by KKT conditions.

We introduce the Lagrange multipliers λ ∈ RM for the inequality constraints

k̄m º 0 and ν ∈ R for the error constraint. Then we have the KKT conditions

k̄m º 0, (4.39)

λ º 0, (4.40)

ν ≥ 0, (4.41)

λikmii = 0, i = 1, . . . M (4.42)

ν

(
M∑
i=1

kmiipii −D

)
= 0, (4.43)

∇
(

M∑
i=1

log

(
1 +

kgii

kmii

))
+ ν∇

(
M∑
i=1

kmiipii −D

)
− λi∇ (kmii

) = 0. (4.44)

Solution of these equations result in

kmii =
−kgii +

√
kg

2
ii +

4kgii

νpii

2
, (4.45)

where the parameter ν > 0 and is chosen such that the total error is D, that is

(
M∑
i=1

kmiipii −D

)
= 0 (4.46)

is satisfied.

Although equation 4.45 gives the optimum km values for a particular level

of error, it is possible to obtain the trade-off curve between cost and error with

this equation. By changing the parameter ν, it is possible to satisfy the equation

4.46 for different D’s and find the corresponding cost C and Dt. Then C and Dt

will be a particular point on the curve. It is possible to find the other points on
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Figure 4.6: Comparison of cost-error curves (C1: trade-off curve derived from
the data presented in Figure 4.4. C2: trade-off curve obtained for precise mea-
surements case.)

the curve by varying ν. As ν goes to 0, kmii goes to infinity and the curve for

low values of cost, high values of error will be obtained. As ν goes to infinity,

kmii goes to 0 and the curve for high values of cost and low values of error will

be obtained.

For a particular value of error, it is possible to solve the problem of precise

measurements by finding the parameter ν. When ν is determined, optimum noise

for each measurement device can be found by equation 4.45, and the correspond-

ing cost can be found. By repeating this procedure for different values of error,

it is possible to obtain the trade-off curve between cost and error. Figure 4.6

shows this curve for 8× 8 case mentioned in section 4.4. To find the parameter

ν, a trial and error approach has been adopted, positive-real numbers are tried

with a step-size of 0.001. Then with equation 4.45 noise levels of measurement

devices are determined. The corresponding error is compared with allowed error.

When equation 4.46 is satisfied, the procedure is stopped. Error and cost are

marked on cost-error plane. The points found by this method for different values

of error are shown as C1 on the plot. C2 is the lower-left boundary derived from
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the data presented in Figure 4.4. As expected, the solution from the precise

measurements case approaches to the general solution for high values of cost.

4.6 Problem Formulation—Mutual Informa-

tion

This section presents one of the possible problem formulations to understand

how much information is transferred from the unknown vector to the observa-

tions when the measurements are done with finite precision. As the measure of

information, we use the mutual information between the unknown vector f and

the measured vector s. We want to find the best measurement strategy so that

I(f ; s) is maximized when the total cost is limited.

This problem has an interesting channel capacity interpretation. The mea-

surement process is modelled by parallel Gaussian channels. The total capacity

of these channels are limited, which is given by the allowed cost. Hence this

formulation aims to maximize the mutual information between the input and

the output of a process when a part of it has a limited capacity.

This problem can be formulated as

max
σm

I (f ; s) (4.47)

such that

C =
M∑
i=1

Ci ≤ Cmax, (4.48)

where

σm = [σm1 . . . σmi
. . . σmM

]†, (4.49)

Km = diag(σ2
mi

), (4.50)
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Ci = log

(
σ2

si

σ2
mi

)
, (4.51)

I (f ; s) = 0.5(log |det(Ks)| − log |det(Kn + Km)|). (4.52)

A vector optimization problem related to this problem can be also formulated as

in Section 4.3.

4.7 Remarks

The definitions of information-theoretic concepts in this section are adopted from

[54].

Conditional mutual information: The conditional mutual information of

random variables x and y given z is defined by

I(x; y/z) = h(x/z)− h(x/y, z). (4.53)

Chain Rule for mutual information: Mutual information between two

vectors can be written as the sum of conditional mutual information expressions.

I(x; y) = I(x; y1, . . . , ym) (4.54)

=
M∑
i=1

I(x; yi/y1, . . . , yi−1) (4.55)

= I(x; y1) +
M∑
i=2

I(x; yi/y1, . . . , yi−1) (4.56)

= I(x; y1) + I(x; y2/y1) +
M∑
i=3

I(x; yi/y1, . . . , yi−1) (4.57)

= I(x; y1) + I(x; y2/y1)+, . . . , +I(x; yM/y1, . . . , yM−1) (4.58)
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Hence mutual information between the unknown vector f and the observation

vector s can be written in terms mutual information between f and components

of s. Hence the total information given by an observation about an unknown

vector can be written as the sum of the information given by the first component

plus the information given by the second component when the first component

is given plus the information given by the third component when the first and

the second components are known and so on up to the information given by the

last component when all the other components are given.

4.8 Numerical Results

This section presents some numerical results illustrating the solution of the prob-

lem presented in section 4.6. These results show the trade-off between the cost

of the measurements and the mutual information between the observed vector

and the unknown vector.

The approach adopted to obtain the numerical results and H, Kf and Kn

are the same with section 4.4. Throughout this section we use the term mutual

information for the expression in equation 4.52 without the 0.5 scaling factor.

Figure 4.7 gives the results for the 8 × 8 case. The curve shows an almost

linear relationship with a slope of one for low values of cost. This observation

can be explained as follows: Using Hadamard’s inequality on equation 4.52, the

following relationship is obtained between I(f ; s) and total cost

|det(Ks(Kn + Km)−1)| ≤
M∏
i=1

(
1 +

σ2
gi
− σ2

ni

σ2
ni

+ σ2
mi

)
≤

M∏
i=1

(
1 +

σ2
gi

σ2
mi

)
, (4.59)

where the left inequality holds with equality if only if the matrix Ks(Kn +Km)−1

is diagonal. Here the total cost constraint provides an upper limit for I(f ; s).

For the cases of low cost, σ2
mi

is high compared to σ2
gi

, and Ks(Kn + Km)−1 will
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Figure 4.7: Illustration of the achievable region in the mutual information-cost
plane (8× 8)

be characterized by the diagonal matrix Km + Kn. Hence mutual information

will be close to the upper limit. For higher values of cost, σ2
mi

is smaller, mutual

information moves away from the upper limit. As the allowed cost is increased,

the rate of increase in mutual information decreases. For high values of cost, the

curve approaches to 44.25 bits, which is the mutual information that would be

achieved if the measurements were perfect (corresponding to infinite cost).

Figure 4.8 gives the results for the 16 × 16 case. For the 16 × 16 case,

the procedure is repeated for three different values of σ2
max: a max(σ2

g) where

a = 0.1, 0.5, 4. This time the linear relationship for low values of cost does

not show itself as clear as the previous case. Yet the curve stays below this

linear bound and moves away from it as the cost increases. In this case the

mutual information that would be achieved if the measurements were perfect

(corresponding to infinite cost) is 39.75 bits.
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Figure 4.8: Illustration of the achievable region in the mutual information-cost
plane (16× 16)
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Chapter 5

Structural Information

In this chapter we present a framework within which the relationship between

the structural information content of the input signal and the output signal can

be exploited. Throughout this section, we assume that the process is completely

known.

5.1 Introduction

Although the information we want to extract about the input signal f may be

different for different applications, we will assume that the basic aim is to recover

f . Then the measure of success of our measurement strategy will be the quality

of the recovered signal f̂ . Quality of the samples of the input signal or the output

signal will be important to the extent they contribute to this recovery process.

Otherwise they are only intermediate variables.

Structural information is related to the organization of the measurements in

space. That is the spatial scheme of representing a signal in space. By organi-

zation of the samples, we mean the relative positions of the intended sampling
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points. Sampling structure may be uniform or irregular. It may cover a part of

the signal or all of it.

Although each measurement device is used to obtain the signal value at a

particular point, in practice this may be impossible due to the imperfectness

of measurement devices. The mechanism for putting sensors at given locations

may not be precise enough which may result in an uncertainty on true sampling

locations. Furthermore, the probes of the measurement device may be insensitive

such that the measured value is the result of some averaging procedure around

the intended measurement position. A review of these sampling issues are given

in [60].

For a large class of averaging functions, a bandlimited signal is uniquely

determined by the local averages by taking more dense samples required by the

Nyquist rate. In this case, the required rate is determined by the band of the

signal and the extension of averaging functions in the space [61]. Hence while

associating a cost with a measurement made with such a device, the intimate

relationship with cost of taking more dense samples should be preserved.

5.2 A Simplified Problem Formulation

This section presents a simplified formulation which still captures some of the

basic properties of doing measurements in a continuous space.

We assume that measurements are perfect with respect to their features re-

lated to metrical information and structural information. That is, every mea-

surement is done at the intended point of measurement without any averaging

effect or jitter or any uncertainty on the measured value.

We assume a uniform sampling strategy. There are three important parame-

ters related to a uniform sampling strategy: the extension of the space where the
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samples are in, the sampling interval and the number of samples. Two of these

parameters are independent, whereas one of them is a function of the other two.

Since the number of samples is associated with the degrees of freedom of a set

of signals, it is natural to choose it as one of the principal parameters.

We assume that the cost of a measurement strategy depends on the num-

ber of samples taken. We want to sample the output signal with a minimum

cost as much as possible and obtain the best performance in terms of recovered

continuous signal.

5.3 Stochastic Framework

We assume that the random process f(x) is input to the linear system. The

output is denoted by L{f(x)}. n(x) is the random process denoting the process

noise.

g(x) = L{f(x)}+ n(x) (5.1)

We assume that f and n are zero mean random vectors with known correlation

functions. Since the processes are zero mean, correlation functions are the same

with the covariance functions.

Throughout this section, we assume that any random process we consider is

zero-mean. This assumption is not restrictive, since if a random process y(x) un-

der consideration is not zero-mean, it is possible to define the zero-mean random

process y(x) − ηy(x), where ηy(x) is the mean function of the random process,

and treat the mean and the centered random process separately.
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5.3.1 Extension of a Random Process

We assume that the extension of a random process f is determined by its auto-

correlation function.

We assume that the extension in space domain is determined by the variance

function of the random process. We assume that there exists a ∆u such that

Rf (x, x) is negligible for the values of satisfying |x| > ∆u/2. For the values of

|x| > ∆u/2, f(x) will not vary too much and hence can be treated as if it is

deterministic and known. We take ∆u as the extension of f in space domain.

The extension in frequency domain is determined by the 2-dimensional

Fourier transform of the autocorrelation function of the random process:

Sf (v, v′) =

∫ ∫
Rf (x, x′)exp(−2πj(vx− v′x′))dxdx′. (5.2)

If f is wide-sense stationary, Sf (v, v′) reduces to Sf (v)δf (v − v′) where δ is the

Dirac delta function and Sf (v) is the usual power spectral density of f . For a

random process, stationary or not, we look at Sf (v, v′) at v = v′. We assume

that there exists a ∆µ such that Sf (v, v′) is negligible for the values of satisfying

|v| > ∆µ/2. We take ∆µ as the extension in frequency domain. This definition

is consistent with the definition of frequency extent for bandlimited wide-sense

stationary (WSS) random processes.

5.3.2 Problem Formulation

We observe M samples of g(x). Given ḡ = [g(y1) ... g(yi) ... g(yM)]T =

[g1 ... gi ... gM ]T we want to recover f(x) for a particular x. We denote the

value to be estimated as fx and the estimate f̂(x) or as f̂x. We restrict ourselves

59



to the affine estimators:

f̂(x) =
M∑
i=1

ax,igi + bx (5.3)

= aT ḡ + bx (5.4)

By the orthogonality of the error f(x) − f̂(x) to the observation vector ḡ, the

parameters of the estimator that minimizes the MMSE error is given as [62]

aT
x = kfxḡK

−1
ḡḡ (5.5)

bx = 0. (5.6)

Then the estimation error is given by

εx = kfxfx − kfxḡK
−1
ḡḡ kḡfx (5.7)

Since we are dealing with zero-mean random processes, correlations are the same

with covariances. Hence we are justified to investigate the correlation relation-

ships in our model.

The cross correlation between any two random processes y(x) and z(x) is

defined by [63]

Ryz(x1, x2) = E [y(x1)z
∗(x2)]. (5.8)

Then the following hold for our model

Rfg(x1, x2) = L∗2{Rff (x1, x2)}, (5.9)

Rgg(x1, x2) = L1{Rfg(x1, x2)}+ Rnn(x1, x2), (5.10)

where Li means the space variable of the operator L is xi and L∗ denotes the

linear operator with kernel h∗(x, x′).
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The estimate and the estimation error can be rewritten in terms of these

correlation functions. kfxḡ can be formed by looking at Rfg(x1, x2) for a constant

x1 = x and sampling at a finite number of points x2 = y1 ... yi ... yM

The total error in estimating f for the duration of f we are interested can be

written as

ε =

∆u/2∫

−∆u/2

εxdx. (5.11)

5.4 Numerical Results

This section provides the numerical results showing the relationship between the

number of samples, the location of samples and the error. For this purpose, the

problem described in section 5.2 is addressed.

In this formulation, one of the principal parameters were assumed to be the

number of samples. To choose the other parameter, we focus on the extension

of a signal in space and frequency domain. We consider two different scenarios.

In the first one, we fix the length of the interval that the samples are taken in.

This length is taken to be the extension of the random process defined in section

5.3.1. We assume that samples are taken in the interval −∆u/2 < x < ∆u/2

uniformly. Then we observe the error as the number of samples increases. In this

case the sampling interval vary as the number of samples vary. In the second

scenario, we fix the sampling interval and take it to be the 1/∆µ. This choice

is in accordance with the mean-square sampling theorem for bandlimited WSS

random processes. We observe the error as the number of samples is increased.

In this case the range the samples are taken vary with the number of samples.

We assume that the input random process f(x) is real. As the linear operator,

the real part of fractional Fourier transform has been used. For computation of
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Figure 5.1: Error versus number of samples

the FRT, the algorithm described in [64] and on page 298 of chapter 6 of [32] is

used. This implementation is available at [65].

The autocorrelation function of f is taken to be

Rf (x1, x2) = a(x1)exp(−0.5(x1 − x′2)
2)a(x′2), (5.12)

where

a(x) =
1

1 + 0.05x2
. (5.13)

This non-stationary covariance function is formed by the vertical scaling method

described in [66] for forming a non-stationary covariance function from a station-

ary covariance function. The process noise variance is taken to be 0.05×σ2
g . The

percent error is calculated according to the following formula

100
ε

∆u/2∫
−∆u/2

E‖f(x)‖2dx

. (5.14)

The integrals other than the ones containing the FRT are calculated numerically

with 211 points with trapezoid rule. Extension in space is determined by finding

the points that the signal drops to exp(−3) of its peak value. Extension in

frequency domain is determined with the same criteria by taking into account

the rapid fluctuations in this domain.
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The results for the first scenario are shown in Figure 5.1. These results show

that the general trend of error is to decrease, but the error does not necessar-

ily decrease as the number of samples increases. In producing this graph we

increased the number of samples in a uniform manner rather than adding new

samples to the previously existing ones. Therefore the sampling points are re-

arranged for each number of samples. This rearrangement produces effects which

cause secondary fluctuations from the general downward trend.

The deviations from the general trend may be explained by the relative im-

portance of the sampling points. When two sampling strategies with different

number of sampling points are compared, the position of the samples are also

important. If some of the important sampling points are not covered by a sam-

pling strategy, error may be more even if the number of samples increased. An

illustrative case can be seen in Figure 5.1 by looking at the first three points cor-

responding to 1, 2, 3 samples respectively (For the case with one sampling point,

the sample is assumed to be taken at the middle of ∆u). The case with one sam-

pling point results in less error than the case with two sampling points. Since

the samples of the two samples case correspond to the tails of the correlation

function, these samples do not convey much information about the other points.

The sample at the middle conveys more information. The information revealed

by the three samples case is roughly the same with the one sample case, because

contributions of the two samples at the tails to the estimation process is very

small.

These results are obtained without searching the optimal locations. For some

cases, it may be possible to fine-tune the sampling locations so that the error

strictly decreases as the number of samples increases.

Numerical results for the second scenario are shown in Figure 5.2. Compar-

ison of the first and the second scenario for low number samples show that the

error for the second scenario is lower. This may be due to the fact that in this
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Figure 5.2: Error versus number of samples

case the low number of samples are concentrated around the origin where the

correlations are high, where in the first scenario these samples are distributed

around a large range, on whose tails the correlations are low. Although the er-

ror is less for low number of samples, for high number of samples this approach

cannot reach the error level of the previous method. This may be due to the

fact that in the current scenario the range covered by the samples is not large

enough. This result may be indicating that when a sufficient number of samples

are taken from the middle of the distribution, it is better to take samples from

the tails instead of taking more samples around the middle.
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Chapter 6

Structural and Metrical

Information

In this chapter we present a unified framework within which the relationship

between both the structural and metrical information of input and output signals

can be exploited. Therefore this chapter combines and generalizes to some degree

the developments of chapters 4 and 5. The framework of this chapter is the same

with chapter 5 unless otherwise stated.

We consider a set of measurements as an experiment strategy which is char-

acterized by its features related to both metrical information and structural in-

formation. To model the nature of doing an experiment in an abstract manner,

without losing its roots in the underlying physical phenomena, we associate a

cost with each measurement in a measurement scheme.

Metrical information were investigated in chapter 3.1. For convenience, we

repeat some of the crucial ideas here. In our framework a measurement device

is characterized by the number of distinguishable levels associated with it. Each

measurement has a cost. Cost of a measurement is defined as cost of using the

particular measurement device in this measurement. Cost of using measurement
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device solely depends on the device’s dynamic range. A measurement device can

be adjusted to different ranges and be used with the same cost regardless of the

range it is adjusted.

Structural information is related to resolution in space, i.e. the scheme of

grasping the details of a signal in space.

6.1 A Simplified Problem Formulation

This section presents a simplified formulation which still captures some of the

basic properties of doing measurements in a continuous space.

We assume that measurements have metrical inaccuracy, but they are per-

fect with respect to structural aspect. That is, every measurement is done at

the intended point of measurement without any averaging effect or jitter, but

there is uncertainty on the measured value. Although it is possible to allow dif-

ferent number of distinguishable levels for each measurement, we assume every

measurement is done with the same number of distinguishable levels.

We assume a uniform sampling strategy. We assume that the cost of a mea-

surement strategy depends on the number of samples taken and the cost of each

measurement associated. We want to sample the output signal with a minimum

cost as much as possible and obtain the best performance in terms of recovered

continuous signal.

6.2 Stochastic Framework

We assume the random process f(x) is input to the linear system. The output

is denoted by L{f(x)}. n(x) and m(x) are also the random processes denoting
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the process and measurement noise respectively.

s(x) = L{f(x)}+ n(x) + m(x) (6.1)

= g(x) + m(x). (6.2)

We assume f ,n, and m are zero-mean with known correlation functions. Since the

processes are zero-mean, correlation functions are the same with the covariance

functions.

We observe M samples of s(x). Given s̄ = [s(y1) ... s(yi) ... s(yM)]T =

[s1 ... si ... sM ]T , we want to recover f(x) for a particular x. We denote the value

to be estimated as fx and the estimate f̂(x) or as f̂x. We restrict ourselves to

affine estimators.

With the analysis performed in section 5.3.2, the estimation error is found to

be

εx = kfxfx − kfxs̄K
−1
s̄s̄ ks̄fx . (6.3)

The following hold for our model

Rfs(x1, x2) = L∗2{Rff (x1, x2)}, (6.4)

Rss(x1, x2) = L1{Rfs(x1, x2)}+ Rnn(x1, x2) + Rmm(x1, x2). (6.5)

The estimate and the estimation error can be rewritten in terms of these correla-

tion functions.kfxs̄ can be formed by looking at Rfs(x1, x2) for a constant x1 = x

and sampling at a finite number of points x2 = y1 ... yi ... yM The total error in

estimating f for the duration of f we are interested can be written as

εT =

∆u/2∫

−∆u/2

εxdx. (6.6)
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6.3 Numerical Results

This section provides the numerical results illustrating the relationship between

the error and measurement strategy. The framework is based on the problem for-

mulation presented in section 6.1. The approach adopted to obtain the numerical

results is the same with section 5.4 unless otherwise stated.

In chapter 5, the measurements were assumed to be done perfectly (corre-

sponding to infinite cost). In this chapter we allow uncertainty on the mea-

surements. Although in the most general case, each measurement in a certain

measurement strategy would be done with a different number of distinguishable

levels, we assume that the number of distinguishable levels is constant for all

sampling points.

We consider two different scenarios as in section 5.4, In the first case, it is

assumed that the interval samples are taken in is constant. In the second case, it

is assumed that the sampling interval is constant. These parameters are chosen

as described in section 5.4. For both of the cases, a measurement scenario has

two parameters: the number of samples and the number of distinguishable levels.

Using the number of samples, we determine the location of samples. Then we

calculate the variance of measurement noise at each sample point so that the

number of distinguishable levels is constant in each sampling point. Then we

calculate the error for this measurement strategy. Then we vary the number of

samples and the number of distinguishable levels of measurement devices and

observe the change in the error.

The results for the first case are presented in Figure 6.1. For number of

distinguishable levels varying from 2 to 64 and number of samples varying from

1 to 64, the error and cost are found and marked on cost-error plane. This plot

indicates the way in which the number and location of samples, and the accuracy

of detectors should be chosen. It shows similar properties to the trade-off curves
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Figure 6.1: Error versus cost

in chapter 4, and similar conclusions can be drawn. For example, the error

decrease for low values of cost is very steep. For halving the error from 100%

to 50%, the cost needed is less than 50 bits. Then the rate of error decrease

becomes smaller. For instance for halving the error from 20% to 10%, more than

150 bits are required. For most of the applications, a budget larger than 250 bits

will be unnecessary, since the bits paid do not result in significant error decrease

after this cost value.

The results for the second case are presented in Figure 6.2. For number of dis-

tinguishable levels ρ from 2 to 80 and number of samples from 1 to 80, error and

cost is found and marked on cost-error plane. On the plot different lines showing

a downward trend can be distinguished. Each of these lines corresponds to a

different constant number of distinguishable levels. We see that for a given num-

ber of distinguishable levels, error is non-increasing with increasing the number

of samples. The lower left one of these which corresponds to the case of ρ = 2

determines the lower-left boundary of the achievable cost-error region for low

values of error. Hence to obtain low values of error, it is better to increase the

number of samples rather than using more precise devices. This observation may

be indicating that when samples are taken at a rate that is sufficient to grasp
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Figure 6.2: Error versus cost

the details of a signal, the burden of more precise devices is too much compared

to the error decrease they offer.

The change in the error for high values of error as the number of samples

and the number of distinguishable levels vary can be seen more clearly in Figure

6.3. This figure gives the error-cost plot for 2 and 3 samples with ρ varying from

2 to 80. It is seen that for relatively low values of cost (1-8 bits), it is better

to measure with 2 samples. For relatively high values of cost, it becomes better

to measure with M = 3. As the number of distinguishable levels increase, cost

increases, but the decrease in the error is not as fast as the M = 3 case.

Comparison of Figure 6.1 and Figure 6.2 reveals that the approach based on

the extension of the signal in space yields better results. For instance we see

that for reducing the error from 100% to 30%, 50 bits are required in the first

scenario, whereas 100 bits are required in the second one. In the first scenario,

250 bits are sufficient to reach the error level of 10%, whereas error with even

500 bits is about 20% for the second one.
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Chapter 7

Conclusions

In this thesis, we have presented a novel framework to understand the

information-theoretic relationships in linear systems. Our basic goal was to un-

derstand what happens to the information contained in a signal after it is passes

through a linear system. For this purpose, we reconsidered an interpretation

of information which distinguishes structural and metrical information as two

fundamental concepts.

We have provided an understanding of a measurement and proposed a mathe-

matical model. We have also proposed a measure of cost for doing a measurement,

which is a new approach in understanding a measurement. We have exploited

this cost function’s relationship with the concept of number of distinguishable

levels and information theory.

We have investigated the problem separately with special emphasis to metri-

cal information and structural information. For the case of metrical information

we have focused on the accuracy of measurements, namely the resolution in am-

plitude. Two different trade-offs have been considered: the trade-off between the

error and the cost, and the trade-off between the mutual information and the

cost. These trade-offs illustrate the kinds of problems which can be formulated in

72



our framework. We have provided an analytic solution for the error-cost problem

for the precise measurements case. We have provided numerical results which

show how the achievable region forms on the cost-error plane. The boundary of

this achievable region indicates the optimal way in which the accuracy of detec-

tors should be chosen. Numerical results showing similar relationships between

the cost and the mutual information are also presented.

We have investigated the problem related to structural information, where

the emphasis is on the organization of the samples in space. The trade-off be-

tween the error and the cost is discussed. To understand the nature of resolving

power in space, two different sampling scenarios with uniform sampling strategy

are considered. First of these scenarios assumes that the optimal interval that

samples are taken in is the extension of the signal in space and takes it as one of

the given parameters of the sampling strategy. In the second one, it is assumed

that the sampling interval should be one of the principal parameters of a sam-

pling strategy and the optimal sampling interval is derived from the extension

of the signal in frequency domain. We have provided numerical results which

show how the error changes as number of samples change for these two different

sampling scenarios. It is seen that the first strategy performs better for most of

the cases.

Finally, we have unified the two frameworks and presented a framework in

which the relationship between the error and the cost by means of both structural

and metrical information can be investigated. To understand the relationship be-

tween the resolution in amplitude and resolution in space, numerical results are

presented. These results indicate the optimal way in which the number and lo-

cation of samples and the accuracy of detectors should be chosen. This final

unification, while somewhat simplified, captures the fundamental relationship

and trade-off between structural and metrical information and allows us to opti-

mize with respect to the cost of the detection process as well as the costs of the
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sampling strategy. For instance it becomes possible to answer questions in the

nature of whether it is preferable to use a high number of less accurate or lower

number of more accurate detectors.

7.1 Possible Extensions

This section provides some generalizations and extensions.

• The analytic solution of the problems posed in this thesis may be investi-

gated. It may be also beneficial to focus on numerical approaches to obtain

the Pareto optimal points.

• Since optical fields, which represent an important application area, have

complex values, generalization to complex distributions and complex sys-

tem kernels is important.

• It may be interesting to solve the problem for distributions other than the

Gaussian case. Some cases which may have priority above others can be the

cases of correlated noise and uniform noise. The ambiguity in the definition

of the cost function for other distributions can be resolved if our definition

of cost is interpreted as the capacity of measurement channel. Then the

problem can be stated as finding the best measurement strategy when the

sum of capacities of measurement channels is limited.

• Since our aim is to understand how much information knowing s gives

about the field in general, instead of looking at the error in estimating a

particular signal, we can investigate the error in estimation of the set of

the signals that are important for us and related to g. This problem can

be posed as the problem of estimating Af where the matrix A is a random

matrix obeying a probability distribution.
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• We may want to model the measurement process such that buying measure-

ment devices have large costs, but when a measurement device is bought it

can be used repeatedly with a little cost. This approach focuses on the long

term budget considerations from an alternative practical view-point. It will

be useful when the main concern is setting up a framework for doing exper-

iments with a limited budget rather than understanding the information

theoretic relationships.

• Set of available measurement devices may be characterized by various ways.

We may have upper and lower limit constraints on the capacity of some of

the measurements in addition to upper limit on total cost. Lower limits

on capacity of a particular measurement device may indicate our desire

to learn the value of a particular measurement with an accuracy greater

than a predefined value. An upper limit may be the result of available

measurement devices (i.e., the available set of measurement devices maybe

such that it is not possible to do any of the measurements with an accuracy

greater than a particular value). In our formulation these limits will appear

as limits for noise variances.

• We may investigate best measurement strategy with a linear map before

measurement. The best measurement strategy may require us to first map

the output of the linear system to a suitable eigenvalue domain before

measurement. In this domain, important information will be concentrated

in specific locations. So we can distinguish the important information from

the rest, and measure it with greater accuracy as required.

• A unified framework which relates measurement device selection problem

and the coding problem can be posed. The noise present on the outputs

of a sensor essentially maps signal to a finite number of distinguishable

levels. The encoding of observations also represents the signals with a fi-

nite number of bits. Then there is a connection between the number of
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distinguishable levels in a sensor output and the number of bits used to en-

code a quantity. A quantity that is preferred to be encoded with a greater

number of bits will also be preferred to be measured with a device with a

greater number of bits. The loss of information as a results of performing

a measurement may be investigated in a unified framework with effects of

compressing a measurement data for transmission and storage purposes.

For instance, in sensor networks the links to the decision center gener-

ally have limited capacity. Then it will be meaningless to pay to obtain

the values of these parameters with great accuracy. Hence the problem

of determining a measurement strategy and the problem of compressing

measurement values for transmission should be investigated together.
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APPENDIX A

Quantization of a Gaussian

Random Variable

This section provides figures related to uniform quantization of a Gaussian ran-

dom variable. These figures are referred to in section 3.4.

We consider quantization of a random variable and find the best quantization

interval ∆ for a given number of intervals Nq. The error criteria is the expected

square-error between the quantized variable and the original variable. Curves

of Nq versus ∆ for different σ2 values are given in Figure A.1. Here Nq is the

number of sampling intervals and ∆ is the length of best interval. Here σ2
1 = 2,

σ2
2 = 3 and σ2

3 = 4.

Figure A.2 shows that for a given number of distinguishable levels Nq the

ratio of σ2 to ∆2 is roughly constant and increases with increasing Nq. Although

the graph is plotted for three different σ2 values given above, they are indis-

tinguishable in the resolution limits of the graph, since the ratio σ2

Nq
is roughly

independent of σ2.
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APPENDIX B

Repeated Observations

This section provides the analysis that proves our approach is general enough

so that it can handle the case where there are repeated observations. We prove

whenever a specific measurement is repeated with different measurement noises

yielding a particular MMSE, the equivalent noise that will yield the same MMSE

with only one measurement has a lower cost.

B.1 Measurement of a Random Variable with

Repeated Observations

Let the observation of a Gaussian random variable only once be modelled as

si = gi + mi. (B.1)

Here gi ∈ R is a zero-mean random variable with variance σ2
gi
. mi is a zero-mean

Gaussian random variable with variance σ2
mi

.
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The MSE of MMSE estimate of gi from si is given by

σ2
gi
σ2

mi

σ2
gi

+ σ2
mi

. (B.2)

Let the observation of a Gaussian random variable p times be modelled as

s = egi + m, (B.3)

where m ∈ Rp is Gaussian with zero-mean and models the measurement noise.

e is a vector of ones in Rp. This model describes the case in which each time

same random variable gi is observed with possibly different noise levels. These

different noise levels are modelled as noises with different variances.

The MSE of MMSE estimate of gi from s is given by

σ2
gi
σ2

m−eqv

σ2
gi

+ σ2
m−eqv

, (B.4)

where σ2
m−eqv = (

p∑
i=1

1
σ2

mi

)
−1

.

Looking at equations (B.2) and (B.4) the equivalent noise mMMSE that gives

the MMSE obtained with repeated measurements with only one measurement is

the noise with variance σ2
mMMSE

= (
p∑

i=1

1
σ2

mi

)
−1

.

Cost of MMSE equivalent noise for observing a random variable once is

smaller than cost of repeated measurements:

C(mMMSE) < C(m). (B.5)
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B.2 Measurement of a Random Vector with Re-

peated Observations

We will consider the vector model

s = Ēg + m, (B.6)

where Ē is a matrix of rank M with M columns. Rows of this matrix is selected

from rows of the M by M identity matrix with selection more than once is

allowed. This matrix shows which of the observations are repeated.

Let one of the measurements be repeated and let the index of the repeated

measurement be 1. Since the indexing of measurements can be freely changed,

this assumption is general enough.

sr = Ērg + mr, (B.7)

where Ēr is a P + M − 1 by M matrix. Ēr is given as follows:

Ēr =


 Ēr1

Ēr2


 , (B.8)

where Ēr1 is a matrix with P identical rows eT
1 . eT

1 is the first row of a M by M

identity matrix: eT
1 =

(
1 0 ... 0

)T

. Ēr2 is the M − 1 by M sub-matrix of

the M by M identity matrix obtained by omitting the first row.

mr is a vector of P + M − 1 components representing the measurement noise

with covariance matrix Kmr = diag(σ2
mri

):

mr =


 mr1

mr2


 , (B.9)
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where mr1 is a vector of P components giving the noise added to different in-

stances of the repeated observation and mr2 is a vector of M − 1 components

representing the measurement noise added to the other observations. The co-

variance matrix is given by Kmr = diag(σ2
mri

) = diag(diag(σ2
mr1i

), diag(σ2
mr2i

)).

We would like to find the equivalent measurement that will substitute the

repeated measurements. The model for finding this equivalent noise is the fol-

lowing:

so = Ēog + mo, (B.10)

where Ēo is the identity matrix. mo is a vector of M components:

mo =


 mo1

mo2


 . (B.11)

Here mo1 is the equivalent noise with variance σ2
mo1

. mo2 and mr2 comes from

the same distribution. That is Kmo2 = Kmr2 .

RESULT: Under the models given above, the MMSE error obtained from an

experiment with one measurement from each component of the original vector g

and the MMSE error obtained from repeated measurements case is equal if and

only if σ2
mo1

= (
p∑

i=1

1
σ2

mr1i

)
−1

εsr = εso ⇔ σ2
mo1

= (

p∑
i=1

1

σ2
mr1i

)

−1

. (B.12)

Here the MSE of the MMSE estimate of g obtained from sr is denoted by εsr ,

and the MSE of the MMSE estimate of g obtained from so is denoted by εso .

PROOF: For a system y = Hx + n, MMSE is given as

ε = tr(Kx −KxH
†(HKxH

† + Kn)−1HK†
x). (B.13)
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Instead of MMSE, we look at the matrices

H†(HKxH
† + Kn)−1H. (B.14)

These are the parts that are different for the two measurement scenar-

ios we consider. Throughout the proof, we make use of the identity


 A B

C D



−1

= diag(0, D−1)+


 I

−D−1C


 (A−BD−1C)−1

[
I −BD−1

]
.

(B.15)

For repeated measurements case, we use the identity (B.15) on

(HKgH
† + Kmr)

−1 with the first P by P sub-block as A matrix (all

noise covariance are assumed to be positive-definite.) We then use

the Woodbury identity on (A−BD−1C)−1 part.

For the case where each measurement is done once, we use the identity

B.15 on (Kg +Kmo). The first 1 by 1 subblock is used as A subblock.

Equating the error generating matrices for repeated case and reduced

case reveals that the equivalent noise should be σ2
mo1

= (
p∑

i=1

1
σ2

mr1i

)
−1

.

Since inverse of power of noise component comes as multiplicative

component for a part of the trace that gives the MMSE, solution is

unique. This equivalent noise power is same as the one obtained for

repeated measurement of a random variable case.

For this value of noise power, MMSE’s are equal. Hence converse is

also true.

From the inequality B.5, for a given repeated measurement scenario, the

equivalent noise that gives the same MMSE has always a less cost. Hence for a

given MMSE, it is not possible to obtain a better cost with repeated measure-

ments.
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B.3 Finding the MMSE with Cost Equivalent

Noise

The noise variance that gives the same cost with the repeated observations is

found. The relationship between the cost equivalent noise and MMSE equivalent

noise is as follows:

σ2
cost−eqv < σ2

MMSE−eqv. (B.16)

Hence

εsmcost−eqv
< εsmr

. (B.17)

Therefore, for every repeated measurement scenario, there is a measurement

scenario where each measurement is done only once and better MMSE is achieved

with the same cost.

B.4 Relationship between f̂ and ĝ

LEMMA: If we find the equivalent noise such that g is estimated with the same

error as in the repeated measurement case, then we guarantee that f is also

estimated with its original error.

PROOF: we know the equivalent noise mo such that

Ē†(ĒKgĒ
† + Kmr)

−1)Ē = (Kg + Kmo)
−1 (B.18)

holds. For f , the error generating matrix for repeated observations

case is

KfH
†Ē†(ĒKgĒ

† + Kmr)
−1)ĒHKf . (B.19)
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For f , the error generating matrix for reduced observations case is

KfH
†(Kg + Kmo)

−1HKf . (B.20)

These two are equivalent whenever equation (B.18) holds.
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APPENDIX C

Covariance Matrices

This section provides the covariance matrices of the input used for the simulations

presented in sections 4.4 and 4.8. Expression C.1 gives the Kf matrix for the

8× 8 case. Expressions C.2 and C.3 give the first and second 16× 8 sub-blocks

of the 16 by 16 Kf matrix for the 16× 16 case. The numerical values are shown

with 5 digits.




1.0709 0.0404 −0.1565 0.1793 −0.1602 0.1898 0.1674 −0.2036

0.0404 0.6139 −0.2293 0.1629 0.1610 −0.0552 −0.1143 −0.0320

−0.1565 −0.2293 0.9382 −0.2917 −0.0988 −0.0232 0.0283 0.0943

0.1793 0.1629 −0.2917 1.2866 0.1175 −0.0367 −0.0795 −0.1363

−0.1602 0.1610 −0.0988 0.1175 0.8029 −0.1824 −0.2060 0.0914

0.1898 −0.0552 −0.0232 −0.0367 −0.1824 1.2477 0.2185 −0.0464

0.1674 −0.1143 0.0283 −0.0795 −0.2060 0.2185 1.1280 −0.0785

−0.2036 −0.0320 0.0943 −0.1363 0.0914 −0.0464 −0.0785 1.2176




(C.1)
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0.5764 0.0463 0.0221 −0.2332 0.2549 0.0056 0.1708 0.0077

0.0463 0.3272 0.1151 −0.0316 0.1163 −0.0768 −0.1094 −0.0233

0.0221 0.1151 1.0220 −0.2191 0.1860 −0.2010 −0.0581 −0.1033

−0.2332 −0.0316 −0.2191 0.5522 −0.2182 0.2082 −0.0703 0.0203

0.2549 0.1163 0.1860 −0.2182 0.7841 −0.0383 0.1899 0.0092

0.0056 −0.0768 −0.2010 0.2082 −0.0383 0.9867 −0.0541 −0.0099

0.1708 −0.1094 −0.0581 −0.0703 0.1899 −0.0541 0.4659 −0.1851

0.0077 −0.0233 −0.1033 0.0203 0.0092 −0.0099 −0.1851 0.9207

0.0885 −0.1293 0.0848 −0.1329 0.1153 −0.0446 −0.0446 −0.0323

−0.0791 −0.0350 0.0391 0.0373 0.2489 −0.0569 −0.0616 0.2194

−0.0056 −0.0570 −0.0118 0.0158 0.0169 −0.2081 0.1955 −0.1817

−0.0290 0.0464 0.0225 −0.1849 0.0537 −0.1168 0.1514 0.1170

−0.1419 −0.0378 −0.0765 0.1209 −0.0918 0.0351 −0.0002 −0.1231

−0.0797 0.0535 −0.0199 0.2146 0.1093 −0.2332 0.0972 0.0643

0.1897 −0.0861 −0.0139 0.0513 0.2265 0.1601 0.1526 −0.1905

0.0603 0.2859 0.1353 0.0536 −0.0794 −0.0181 −0.2632 0.0495




(C.2)
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0.0885 −0.0791 −0.0056 −0.0290 −0.1419 −0.0797 0.1897 0.0603

−0.1293 −0.0350 −0.0570 0.0464 −0.0378 0.0535 −0.0861 0.2859

0.0848 0.0391 −0.0118 0.0225 −0.0765 −0.0199 −0.0139 0.1353

−0.1329 0.0373 0.0158 −0.1849 0.1209 0.2146 0.0513 0.0536

0.1153 0.2489 0.0169 0.0537 −0.0918 0.1093 0.2265 −0.0794

−0.0446 −0.0569 −0.2081 −0.1168 0.0351 −0.2332 0.1601 −0.0181

−0.0323 −0.0616 0.1955 0.1514 −0.0002 0.0972 0.1526 −0.2632

0.1354 0.2194 −0.1817 0.1170 −0.1231 0.0643 −0.1905 0.0495

0.7926 0.2576 −0.1418 0.0429 0.1767 0.0161 0.1011 −0.0673

0.2576 0.8550 −0.0939 −0.0090 0.0551 0.1988 0.0776 −0.1219

−0.1418 −0.0939 0.9649 −0.0754 −0.1074 0.1559 0.1550 −0.0752

0.0429 −0.0090 −0.0754 0.7521 −0.0604 0.0051 −0.2081 −0.2012

0.1767 0.0551 −0.1074 −0.0604 0.5350 0.1177 0.0010 −0.0055

0.0161 0.1988 0.1559 0.0051 0.1177 1.1707 −0.0677 0.0993

0.1011 0.0776 0.1550 −0.2081 0.0010 −0.0677 0.6868 0.0282

−0.0673 −0.1219 −0.0752 −0.2012 −0.0055 0.0993 0.0282 0.8340




(C.3)
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