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ABSTRACT

IDENTIFICATION AND STABILITY ANALYSIS OF
PERIODIC MOTIONS FOR A PLANAR LEGGED

RUNNER WITH A RIGID BODY AND A COMPLIANT
LEG

Güneş Bayır

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Ömer Morgül

August, 2013

The Spring-Loaded Inverted Pendulum (SLIP) model is an extensively used and

fundamental template for modeling human and animal locomotion. Despite its

wide use, the SLIP is a very simple model and considering the effects of body

dynamics only as a point mass. Although the assumption of a point mass for the

upper body simplifies system dynamics, it prevents us from performing detailed

analysis for more realistic robot platforms with upper trunks. Hence, we consider

an extension to the classic SLIP model to include the upper body dynamics in

order to better understand human and animal locomotion.

Due to its coupled rotational dynamics, extending the SLIP model to the

Body-Attached Spring-Loaded Inverted Pendulum (BA-SLIP) brings additional

difficulties in the analysis process, making it more difficult to obtain analytical

solutions. Consequently, simulations have been used to reveal the periodic struc-

ture behind locomotion with this model, and to find fixed points of discretized

system dynamics. These fixed points correspond to periodic motions of the sys-

tem and are important in designing controllers since they are used as steady-state

control targets for most applications. The main concern of this thesis is to find

fixed points of the BA-SLIP model and to investigate the dimension of the fixed

point manifold.

We performed extensive simulation studies to find fixed points of the system

and the properties of the underlying space with a PD controller. Our simula-

tions revealed the existence of periodic gaits, in which the upper body should be

downward oriented for stable locomotion. Additionally, a region of stability is

found such that the model sustains periodic gaits when it stays inside this region.
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Finally, we show that fixed points for running with upright body orientation are

unstable when system dynamics are regulated with a constant parameter con-

troller. We also present some simulation results which indicate the existence of

stable periodic motions when controllers with time varying parameters, that use

current state information, are used.

Keywords: Spring-Mass Hopper, Spring-Loaded Inverted Pendulum (SLIP),

Legged Locomotion, Fixed Point, PD Control.



ÖZET

ESNEK BACAKLI VE GÖVDE EKLENMİS.
DÜZLEMSEL BİR BACAKLI ROBOTUN PERİYODİK

HAREKETLERİNİN BELİRLENMESİ VE
KARARLILIK ANALİZİ

Güneş Bayır

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Ömer Morgül

Ağustos, 2013

Yaylı Ters Sarkac. (YTS) insan ve hayvan hareketini modellemek ic.in tasarlanmıs.,

genis. kullanım alanı olan, temel bir s.ablondur. Popülerliḡine raḡmen, vücut di-

namiklerini temsil etmek ic.in YTS basit kalmaktadır c.ünkü üst gövde sadece bir

noktasal kütle olarak gösterilmis.tir. Noktasal kütle varsayımı sistem dinamik-

lerini basitles.tirse de, üst gövde dinamiklerinin de dahil olduḡu daha gerc.ekc.i

robotik platformlarını detaylı bir analiz imkanından yoksun bırakmaktadır. Bu

nedenle, insan ve hayvan hareketini daha iyi anlamak ic.in, klasik YTS modelinin

bir üst gövde ile genis.letilmis. halini temel alıp c.alıs.malarımızı yürüttük.

Birles.ik dairesel dinamikler yüzünden, YTS modelini Gövde-Eklenmis. Yaylı

Ters Sarkac. (GE-YTS) modeline genis.letmek analizine bazı zorluklar getirmis.
olup, analitik c.özümler elde etmeyi zorlas.tırmıs.tır. Bu yüzden, modelin periyo-

dik hareketlerini ac.ıḡa c.ıkarmak ic.in benzetim tabanlı analizler kullanılmıs.tır;

bu analizler sistem dinamiklerinin sabit noktalarını bulmak ic.in faydalı ola-

caktır. Sabit noktaların sistemin periyodik hareketlerine kars.ılık geldiklerini be-

lirtmekte fayda vardır, bu sabit noktalar denetleyici tasarımında büyük önem

tas.ımaktadırlar c.ünkü birc.ok uygulamada yatıs.kın durum denetleyici hedefleri

olarak kullanılabilirler. Bu tezin ana hedefi GE-YTS modelinin sabit noktalarını

bulmak ve bu noktaların ic.inde bulunduḡu uzayı ve boyutunu incelemektir.

Sistemin sabit noktalarını bulmak ve bu noktaların ic.inde bulunduḡu uzayın

özelliklerini incelemek ic.in Orantılı Türevli (OT) denetleyici kullanılarak, kap-

samlı benzetim c.alıs.maları yapılmıs.tır. Sonuc. ta, bu c.alıs.malarımız bazı periyo-

dik adımların varlıḡını ac.ıḡa c.ıkarmıs. olup, denetleyici parametrelerinde durum

bilgisi kullanılmadıḡı zaman, bu adımlarda kararlılık ic.in gövde ac.ısının as.aḡıya
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doḡru olması gerektiḡi görülmüs.tür. Ek olarak, modelin periyodik adım atmaya

devam etmesi ic.in bir kararlılık bölgesi bulunmus.tur. Son olarak, gövde ac.ısının

yukarıya doḡru olduḡu durumda kos.ma ic.in bulunan sabit noktaların ac.ık-döngü

parametre kullanan denetleyicide kararsız olduḡu görülmüs.tür. Ayrıca, bazı ben-

zetim sonuc.ları kapalı döngü parametre kullanan, yani durum bilgisini kullanıp

adım bas.ı parametre düzeltmesi yapan, denetleyiciler varlıḡında vücut yukarı

doḡru meyilli iken periyodik hareketlerin varlıḡını göstermektedir.

Anahtar sözcükler : Yay-Kütle Zıplayanı,Yaylı Ters Sarkaç (YTS), Bacaklı

Hareket, Sabit Nokta, Açık-Döngü Parametreli Kontrol.
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their guidance, encouragement and patience throughout my graduate experience.

Their profound knowledge about theory and applications on my interest area

directed me towards success.

The initial ideas of this thesis was proposed to me by Uluç Saranlı, and I’m
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Chapter 1

INTRODUCTION

“Life begins with motion” - that is a famous motto of all times. Although there are

many distinguishing features of living creatures with respect to objects surround-

ing them, motion is the most concrete and observable characteristic of animals

and plants. In particular, locomotion talent of humans and animals make them

the rulers of their environment since they have the capability of changing the

world around them by locomotion and the use of their intelligence.

There are many reasons for humans and animals to locomote, such as finding

food and a good habitat to live, or escape from predators in nature. Animals and

humans do this task in very different forms such as walking, swimming and flying.

The interesting notion here is that it does not matter how small intelligence an

animal may have, it can perform extreme locomotion tasks with relative ease.

With the beginning of new technology age, humans tried to build robotic

systems that can locomote like animals in nature to create extra labor. This

concept is known as bio-inspired robotics. Recent advances in this field show

much progress in legged and limbless locomotive, climber and jumper robots to

make human life easier. These robots can be used in various fields, such as rough

terrain surveillance, military intelligence, space research, etc.

One of the most important applications in bio-inspired robotics is locomotion
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on rough terrain in a stable and robust manner because most applications require

earth surface missions for robots. Although there are different approaches for land

locomotion, such as wheeled or tracked systems, the utility of legged morphologies

for robust and efficient locomotion have been observed [1, 2] if we want to build

robots that can negotiate rough terrain as animals do.

In this thesis, we study periodic motions of and perform stability analysis for

the locomotion patterns of a Body-Attached Spring-Loaded Inverted Pendulum

(BA-SLIP). Such an analysis would be quite useful in implementing control al-

gorithms for robots that have an upper trunk to be stabilized during locomotion.

Periodic motions in such a system correspond to fixed points of an associated

Poincaré map, namely the apex-return map, associated with locomotion dynam-

ics. In contrast to existing studies in literature, we perform detailed analysis to

find fixed points of this return map and investigate the dimension of the fixed

point manifold.

1.1 Motivation and Background

Locomotion is achieved via complex, high-dimensional, nonlinear, dynamically

coupled interactions between an organism and its environment [3]. In order to

understand these complex dynamics, we use reduced-order mathematical mod-

els. From the perspective of biomechanics research, the Spring-Loaded Inverted

Pendulum (SLIP) model is a successful descriptive tool for running animals [4].

The SLIP model, a point mass attached to a massless leg endowed with a

linear spring, was established as a simple and accurate descriptive tool to analyze

the dynamics of animal locomotion for different sizes and morphologies [5, 6, 7].

This idea paved the way towards building successful robot platforms such as

Raibert’s hoppers [8], the ARL-Monopods [9], the Bow-Leg design [10] and the

BiMasc [11].

One of the main problems with the standard SLIP model is the representation

of the body by just a single point mass [12]. As a result, one can neglect the

2



problem of trunk stabilization. However, this is a major issue for bipedal robotic

platforms and cannot be ignored if we want to mimic animal locomotion.

Upright walking has significant advantages as observed in different scientific

disciplines [13, 14, 15, 16, 17]. On the other hand, the addition of a trunk instead

of a point mass requires more complex models and yields similarly complex control

strategies. Although mathematical models have been proposed for the SLIP

model with a trunk [18], they mostly focus on Virtual Pivot Point (VPP) concept

for analysis and controller design.

Motivated from these studies in the literature, we start by introducing a loss-

less SLIP model with a trunk, called the Body-Attached Spring-Loaded Inverted

Pendulum (BA-SLIP) model, for a monopedal robot platform as illustrated in

Fig. 1.1. In contrast to existing studies on the analysis and control of SLIP

model with a trunk [18, 19, 20], our goal is to focus on the identification and

analysis of periodic solutions to the system and to investigate the dimension of

the fixed point manifold for our BA-SLIP model.

Figure 1.1: The Body-Attached Spring-Loaded Inverted Pendulum (BA-SLIP)
model.

3



In Fig. 1.1, a trunk with mass m and inertia I is connected to a massless

spring leg with stiffness k and length ρ, through a pivot point around which

the trunk can freely rotate, at a distance d from the center of mass (CoM) of

the trunk. This model consists of two important dynamical components: Linear

and rotational. The effect between the CoM and the hip joint couples these two

dynamics, resulting in more complex behavior than the classical SLIP model [21].

Our goal is to identify periodic motion patterns admitted by our model for

sagittal plane locomotion. Since periodic motions correspond to fixed points

of Poincaré maps associated with locomotion dynamics, in particular the apex-

return map, we try to identify fixed points of this map to reveal periodic motions.

These fixed points are mostly used as steady-state control targets for locomotion.

Additionally, in the case of nonlinear systems, such as our model, we start the

analysis by first deriving dynamical equations and examining the system around

limit cycles, so called fixed points. These fixed points depend on system parame-

ters, such as gravity, mass and inertia of the upper trunk, leg stiffness and distance

between leg-body joint and center of mass. The resulting system dynamics are

highly non-linear which complicates further analysis. Consequently, to decrease

the dimension of the optimization problem, these parameters are held constant

throughout the thesis. Finally, we seek to find a dimension for the fixed point

manifold, so that we can build an intuition for controllers we may implement for

further analysis.

1.2 Methodology

As discussed in Section 1.1, the point mass assumption adopted by SLIP models

cannot represent animal-like locomotion as accurately as models with trunks.

Therefore, a new model which considers the effect of an upper trunk is needed.

In the first part of the thesis, the BA-SLIP model is considered to represent the

system dynamics for animal-like locomotion. Afterwards, we derive the equations

of motion for this model using Lagrangian dynamics and perform simulations on

the second order differential equations.
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Following the derivation of necessary equations, we identify fixed points of the

apex return map function. As mentioned earlier, identification of fixed points is

crucial for designing control algorithms since they are mostly used as steady-state

control targets. Therefore, we performed step by step simulations to identify fixed

points of the system for different states.

Finally, we focus on identifying the dimension of the fixed point manifold by

using extensive simulation studies performed for different states. The results of

this study revealed intuitional information about periodic structure behind animal

locomotion. We also used eigenvalue analysis to prove stability of different cases

to attribute a theocratical perspective to our findings.

1.3 Contributions

The very first contribution in this thesis is a different analysis, specifically int the

choice of the coordinates, on the mathematical model, the BA-SLIP. The model

considered in this paper may be utilized as a reasonably accurate descriptive

tool for the analysis of sagittal plane locomotion, however it does not consider

the effect of damping in the system. We derived the analytical expressions for

our lossless model and performed extensive simulation studies to systematically

analyze its behavior.

After obtaining analytical expressions for model dynamics, the most signif-

icant contribution in this thesis is to find the fixed points of a single-stride for

planar locomotion. As mentioned earlier, identification of these fixed points is

important in the linearization of system dynamics, furthermore they can be used

as steady-state control targets for locomotion.

After finding fixed points of the system, their stability is investigated by cal-

culating the numerical Jacobian and finding eigenvalues of the linearized system.

As a result of this procedure, we found some important properties, such as the

body incline patterns, of stable fixed points under the proposed control scheme.

5



The final contribution of this thesis is extensive simulation studies performed

to identify the dimension of the fixed point manifold of the system dynamics.

With this knowledge in mind, we may have the opportunity to define a reasonable

domain and goal regions for our return map function in which we have fixed

points, yielding stable locomotion.
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Chapter 2

BACKGROUND AND

EXISTING WORK

This chapter introduces background for the spring-mass hopper as well as a sum-

mary of existing work on the SLIP model with an upright trunk, including its

stability analysis and controller design. The necessary background for models,

controllers and optimization methods used throughout the thesis is explained at

the beginning of each chapter.

2.1 The SLIP Model

Biomechanists discovered the Spring-Loaded Inverted Pendulum (SLIP) model,

illustrated in Fig. 2.1, as a metaphor for the locomotion of running animals [4].

As mentioned earlier, subsequent research in biomechanics established the SLIP

model as an accurate descriptive tool for different running animals as diverse as

humans and cockroaches [5, 6, 7].

Despite its apparent simplicity, the SLIP model represents difficulties from an

engineering point of view for conducting formal analysis and designing control

algorithms. The SLIP model is a hybrid dynamical system with nonlinear stance
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Figure 2.1: The Spring-Loaded Inverted Pendulum (SLIP) model.

dynamics that are non-integrable under the effect of gravity [22]. Motivated by

this problem, several analytical approximations to support the analysis of its

behaviors and the design of associated controllers have been proposed [12, 23,

24, 25, 26]. We give detailed information on the system model and dynamics for

the BA-SLIP model in Chapter 3. Hence, we will end the discussion of the SLIP

model here and continue with the existing work on the body attached spring

loaded inverted pendulum model.

2.2 Existing Work: The Body-Attached SLIP

Model

In addition to the approach introduced in this thesis, there are several studies

on the stability analysis and control of stable upright walking using SLIP-like

models. A widely used strategy for stabilizing the trunk is to measure the pitch

angle with respect to the ground and apply a PD control [8, 27] or a higher level
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control [28] in robots with spring-like behavior.

In [19], Maus et al. investigate trunk stability based on the bipedal SLIP

model. The control strategy proposed in [19] is to apply a hip torque such that

the Ground Reaction Force (GRF) acting on the toe is directed towards a point

on the body axis above the center of mass (CoM). Using such a control strategy

leads to a damped pendulum-like pitch motion during walking and running. The

dynamic stability of the system is analyzed by using a Poincaré map the system

variables (z, ẏ, θh, θ̇h) at each apex state. The system is considered stable if a

periodic solution exists and all eigenvalues of the Jacobian of the Poincaré map

at the periodic solution have magnitudes less than one. A Newton-Raphson

algorithm is utilized to find periodic solutions. Results of this study show that

the proposed strategy [19] leads to a pendulum-like pitching motion mounted at a

point P, which is called as Virtual Pivot Point (VPP). The model also predicts a

hip torque profiles similar in shape and magnitude to observed in human walking.

Based on the conclusions presented in [19], Maus et al. introduced the concept

of Virtual Pivot Point, which is used as a support point above the center of mass

[20]. The goal of this study was to demonstrate how the VPP concept explains

dynamic stability during an upright bipedal gait [20]. Experimental evidence is

also provided, showing that this concept is not limited to human walking. In [20],

the model of a body which represents an unstable inverted pendulum that needs

to be stabilized on top of two springy legs, is used. As in [19], a hip torque during

the stance of each leg is introduced to redirect its GRF to a VPP somewhere along

the body’s long axis [20].

Additionally, a second key role of the trunk model is proposed in [20]. Ac-

cording to [20], adjusting the VPP location offers a simple way to change the

speed of the model. This is mainly due to the fact that GRF is always directed

towards the VPP. Hence, the acceleration and deceleration of the trunk must be

accompanied by a forward and backward lean, respectively. This is a simple way

to control the speed of the model proposed in [20]. Experimental studies of [20]

yield that VPP for each step can be defined as the single point at which the total
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transferred angular momentum remains constant and the sum-of-squares differ-

ence to the original angular momentum over time is minimal. Additionally, it

is shown that stabilizing posture by applying the VPP concept is not unique to

human walking. Experiments suggest that similar observations have been made

in other animals, including in dogs and chickens [20].

Following the introduction of the Virtual Pivot Point (VPP) concept in [20],

Rummel and Seyfarth performed a deeper investigation of the stabilization of

the trunk using VPP [29]. In [20], the fundamental control strategy to stabilize

the trunk is to apply a hip torque such that the trunk is transferred to a virtual

hanging pendulum about a VPP. However, this strategy requires the generation

of a hip torque, which could possibly increase the energy consumption of the

robot. Following this idea, the goal of [29] is to investigate if the required hip

torque could partially be generated passively using hip springs. It is obviously

clear that a passive contribution for trunk stabilization would reduce the robot’s

energy consumption during locomotion [29].

Although the implementation of stabilizing control strategies for a robot is

a challenging problem, fundamental strategies can also be deduced from simple

simulation models [29]. For instance, a bisecting strategy for passive stabilization

of the trunk was first investigated on a simple passive walker model before it

was implemented in [30]. Although this kind of control approaches guarantee

trunk stability, it is not similar to the way humans keep their trunk upright [29].

Therefore, [29] uses the control strategy of [20] and tries to investigate the effect

of hip springs on passive stabilization.

Actually, the implementation of hip springs in robots was found to be helpful

to facilitate swing leg motion and stabilize the gait [31, 32]. However, since hip

springs are attached between the legs, they do not contribute to trunk stability.

In [33], it is mentioned that tendons, when attached between upper body and legs,

could positively contribute to the swing leg motion. This idea was previously used

in ARL-monopod II and it has been shown that a single torsional spring decreases

the energy consumption of the hip actuator [34]. Motivated from these examples,

[29] tries to investigate the effect of hip springs, attached between upper body and
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legs, to the stabilization of the upright trunk. Extensive simulation studies show

that in a highly reduced model, two separated springs per leg surrounding the hip

facilitate stabilization of the trunk during walking [29]. It has also been shown

that these passive elements reduce the energy consumption of the hip actuator

when arranged in parallel [29].

Following developments on the analysis and control of trunk stabilization,

Sharbafi et al. proposed a new leg adjustment strategy, which is combined with

the previous Virtual Pivot Point (VPP) concept, to induce stable hopping of

the SLIP model extended with an upright trunk [35]. The main goal of [35] is to

achieve robust stable hopping with a trunk in the sagittal plane, defined with zero

forward velocity. In contrast to [36], placing the leg at a given fixed angle with

the ground will not be sufficient to stabilize hopping in this case. Hence, an extra

control layer adjusting leg angle during the swing phase should be introduced

with respect to standard VPP control strategies [19, 20].

Previous studies on the Virtual Pivot Point (VPP) concept mostly focused

on a fixed VPP in a frame attached to the trunk [19, 20]. This strategy was

enough to stabilize the posture but it results in slow steady-state convergence

and moderate robustness against the perturbations [35]. It has been shown that

placing the VPP out of the body frame axis could be used for maneuvers [19]

and the compensation of energy losses [37]. Similar approaches are used in [35]

to solve issues regarding disturbance rejection and robustness.

The simplest leg placement strategy using a pre-defined angle of attack with

respect to ground cannot yield a stable hopping for a SLIP model with an up-

right trunk as shown for running in [36] and walking in [38]. There are studies,

focusing on leg adjustment strategies based on CoM velocity, inspired from Raib-

ert’s approach for adjusting foot landing position based on horizontal velocity

[39]. Peuker et al. also investigated various strategies for leg adjustment [40].

However, the most robust strategy is to adjust the leg angle with respect to both

COM velocity and gravity, which is also used in [35].

In the former control strategy based on the VPP concept, the VPP position

is held constant and torque is used to redirect the GRF to this fixed point on
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the trunk axis [20]. In contrast to this approach, [35] proposes a new event-based

control strategy in which the VPP position is adapted in each apex for the next

stance phase using the current system state. This is crucial to improve perfor-

mance and robustness of the hopping motion. After defining controllable system

dynamics, [35] uses two control strategies to choose the state feedback gain; Dead-

beat control and Discrete LQR. Both of these controllers resulted in considerable

improvements regarding disturbance rejection and robustness against perturba-

tions.

Following the stabilizing controller of [35], Sharbafi et al. investigated possible

applications of such control strategies on real robot platforms [41]. To accom-

plish this goal, they first extended the SLIP model with trunk to a more realistic

physical model by adding leg damping and mass to the model presented in [35].

Another contribution of [41] is to add a third layer controller to the two-layer

control strategy of [35], so that they can regulate the apex height during locomo-

tion.

Linearizing system dynamics around a fixed point decouples the vertical po-

sition dynamics as discussed in [41]. The goal of the hopping height control is to

stabilize vertical position dynamics, ensuring that absolute values of eigenvalues

are smaller than one [41]. There exist different control strategies using leg rest

length and stiffness adjustment [42, 43, 44]. The height control layer of [41] uses

the leg rest length adjustment strategy at each apex. They evaluate stable hop-

ping by quantifying the largest perturbation from which the system can recover.

Results in [41] show that the controller is capable of stabilizing the system and

can handle large perturbations. However, disturbance rejection of such a control

strategy is generally slow.

Different from the previous research on the control of the SLIP model with

an upright trunk based on the Virtual Pivot Point concept, Poulakakis et al.

developed a hybrid controller that induces stable running gaits on an asymmetric

spring-loaded inverted pendulum (ASLIP) model [45]. The ASLIP model includes

a torso pitch, whose dynamics are coupled to the leg motion [45]. The proposed

controller for ASLIP acts on two levels. On the first level, a continuous controller
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within a stride regulates the desired torso posture. On the second level, an event-

based controller stabilizes closed-loop system dynamics along a periodic SLIP

orbit [45]. Results of this study can be treated as a first step toward a general

framework of controller design exhibiting compliant hybrid zero dynamics.

2.3 Open Problems

Section 2.2 gives detailed information about existing literature on the analysis

and control of Spring-Loaded Inverted Pendulum (SLIP) model with an upper

trunk. The VPP concept of [20] provided a good basis for most studies on the

body-attached SLIP models. However, we require further analysis of the BA-

SLIP model if we want to introduce feedback controller models, which use closed

form solutions and limit cycles of the system dynamics. Therefore, a systematic

investigation of the periodic solutions related to the SLIP models with an upper

trunk must be introduced in order to initiate novel studies on the control of

BA-SLIP models.

Motivated from this problem, we introduce our BA-SLIP model with a con-

troller to characterize the fixed points of the dynamical system. Our goal here is

to get some intuition about the fixed points of the BA-SLIP model in order to

design new controllers that regulates in the fixed point manifolds. We also inves-

tigate the stability properties of these fixed points and try to find the dimension

of the fixed point manifold in the following chapters.
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Chapter 3

BODY ATTACHED SLIP

MODEL

3.1 Body Attached SLIP Template

The SLIP Model illustrated in Fig. 3.1, consists of a rigid body attached to

a massless leg with a linear spring of stiffness k through a pivot point d away

from its center of mass. During locomotion, this model alternates between stance

phase, during which the toe is fixed on the ground, and flight phase, during which

the body follows a ballistic trajectory while freely rotating around its pivot point.

The flight phase is divided into two sub phases: ascent and descent, according

to vertical velocity of the body. The stance phase is also divided into two sub

phases: compression and decompression. Fig. 3.2 illustrates a complete step from

one apex state to the next, labeling all relevant phases, sub phases and transition

events. Properties of these events will be explained in detail in the following

paragraphs.

Flight : The time interval when the robot is completely in the air, and does not

have any physical contact with the ground. In this phase, the whole body

rotates around its center of mass. In our model, since the leg is assumed
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Figure 3.1: The Body-Attached Spring-Loaded Inverted Pendulum (BA-SLIP)
model with cartesian and polar coordinates.

to be massless, the total center of mass is the center of mass of the upper

body, and therefore rotational dynamics are governed around this point.

While freely rotating around the center of mass, the robot also follows a

ballistic trajectory under the effect of gravity.

Ascent : A portion of the flight phase, where the body gains gravitational

potential energy, i.e. is moving up. In this phase, the vertical velocity

is positive but decreasing.

Descent : A portion of the flight phase, where the body loses gravitational

potential energy, i.e. is moving towards the ground. In this phase, the
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Figure 3.2: All phases and transition events related to the Body-Attached Spring-
Loaded Inverted Pendulum (BA-SLIP) model.

vertical velocity is negative and increases in magnitude.

Stance : The time interval when the toe is completely in physical contact with

the ground. In this phase, the body rotates around its leg joint (pivot

point), following an arc-like trajectory resulting in more complex and cou-

pled dynamical equations.

Compression : A portion of the stance phase, where the spring length is

smaller than the rest length and is continuing to get smaller. In this

phase, the potential energy of the spring increases, and the system

stores energy for liftoff.

Decompression : A portion of flight phase, where the spring length is

smaller than the rest length but increasing. In this phase the potential

energy of the spring decreases, being transferred into kinetic energy.

In addition to these phases and sub phases, the model also includes four

transition events resulting in phase changes during locomotion. Now, we focus

on general characteristics of these events.

Apex : This is the transition event from ascent and to descent. During ascent,

the body moves upward with positive vertical velocity, and in descent the
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Table 3.1: Notation associated with the BA-SLIP model used throughout the
thesis

BA-SLIP States, Event States

ρ, ρ̇ Leg length and its rate of change

θ1, θ̇1 Leg angle with the vertical and its rate of change

θ2, θ̇2 Angle between body and leg and its rate of change
qs Stance configuration in polar coordinates, qs = [ρ θ1 θ2]

T

Xs Stance state vector in polar coordinates, Xs = [ρ θ1 θ2 ρ̇ θ̇1 θ̇2]
T

y, z Horizontal and vertical body positions
ẏ, ż Horizontal and vertical body velocities
yf , zf Horizontal and vertical foot positions

θh, θ̇h Body angle with the horizontal and its rate of change
qf Flight configuration in cartesian coordinates, qf = [y z θh]

T

Xf Flight state vector in cartesian coordinates, Xf = [y z θh ẏ ż θ̇h]
T

SLIP Parameters

m, g Body mass and gravitational acceleration
I Body inertia
d Distance between the CoM and the pivot point
ρo Leg rest length
k Spring constant
V Total potential energy
T Total kinetic energy
E Total mechanical energy

Torque Parameters

θtd Touchdown leg angle
τ Hip torque command during stance
Kp Torque proportional constant
Ka Torque desired velocity

Return maps

r() Return map for the BA-SLIP model
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body moves downward with negative vertical velocity. So, the sign change

in the vertical velocity triggers the apex event and can be detected by the

zero crossing of the following function during flight:

ga(t) := ż(t). (3.1)

Touchdown : This is the transition event from flight to stance. During descent,

the robot is completely in the air and moves downward. While moving

down, the foot touches the ground at some instant. This moment is referred

to as touchdown and it can be detected by checking the zero crossing of the

vertical foot position during flight:

gtd(t) := z(t)− ρcos(θ1) + dcos(θ1 + θ2). (3.2)

Bottom : This is the transition event from compression and to decompression.

During compression, the leg length is decreasing, and during decompression

the leg length is increasing. So, the sign change in the leg length rate triggers

the bottom event and can be detected by checking the zero crossing of the

following function during stance:

gb(t) := ρ̇(t). (3.3)

Liftoff : This is the transition event from stance to flight. It occurs when the

foot is about to leave the ground. The foot can only leave the ground when

the ground reaction force on it is equal to zero. This event can be detected

by the zero crossing of the following function during decompression:

glo(t) := −k(ρ(t)− ρ0). (3.4)

As described in transition event definitions, the highest point during flight is

defined as the apex point for each stride. Using the system parameters, the apex

point for the nth stride is defined as

qn := [zn, θh, ẏn, θ̇h]
T . (3.5)
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3.2 BA-SLIP Dynamics

As mentioned in previous sections, the BA-SLIP model has hybrid properties

which requires separate analysis of stance and flight dynamics. This section

provides a complete overview of motion dynamics.

3.2.1 Analysis Methodology

Dynamic equations of the model are written using the Lagrangian method, in

which the Lagrangian of a system is found and replaced in the Euler-Lagrange

Equation
d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= τqi , (3.6)

where L = T − V is the Lagrangian, T is the total kinetic energy and V is

the total potential energy of the system. The variables qi are the generalized

coordinates for the system. In each phase (flight and stance), there are three of

them, resulting in a 6 element state vector. The details of these variables are

given in the next subsections. τqi is the torque component defined for coordinate

qi.

3.2.2 Flight Dynamics of BA-SLIP

The BA-SLIP model has a rigid body which can freely rotate. Therefore, during

the flight phase, while following a ballistic trajectory under the effect of gravity,

this body independently rotates around its center mass.

During the flight phase, since the spring/leg length and angle between the leg

and the normal is not important, it’s more convenient to use cartesian coordinates

in the dynamical analysis. Therefore, the coordinate vector is defined as

q =


y

z

θh

 . (3.7)
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During flight, the kinetic energy, T of the system can be written as

T =
1

2
mẏ2 +

1

2
mż2 +

1

2
Iθ̇2h, (3.8)

where the first term stands for the horizontal kinetic energy, the second term

stands for the vertical kinetic energy and the last term stands for the rotational

kinetic energy of the trunk.

The potential energy can be written as

V = mgz, (3.9)

which is due to the potential energy of the upper trunk with respect to the ground,

where the leg is massless.

So, the Lagrangian of the system is

L = T − V =
1

2
mẏ2 +

1

2
mż2 +

1

2
Iθ̇2h −mgz. (3.10)

After substituting in Euler-Lagrange Equation for every coordinate component,

we get the following dynamical equations (Details of the derivation are given in

Appendix A): 
ÿ

z̈

θ̈h

 =


0

−g

0

 . (3.11)

From the equations above, the state vector of cartesian coordinates can be

defined as

Xf :=
[
y z θh ẏ ż θ̇h

]T
, (3.12)

and the corresponding flight dynamics are

Ẋf :=
[
ẏ ż θ̇h 0 −g 0

]T
, (3.13)
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which can be written as

Ẋf =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


Xf +



0

0

0

0

−g

0


. (3.14)

3.2.3 Stance Dynamics of BA-SLIP

During stance, the robot follows an arc like trajectory since the leg is rotating

around the ground contact point without slipping. Polar coordinates will be

better suited for this trajectory, so we define a coordinate vector with polar

variables as

q =


ρ

θ1

θ2

 . (3.15)

The associated polar coordinate transformation is given as

y = yf − ρ sin θ1 + d sin(θ1 + θ2)

z = zf + ρ cos θ1 − d cos(θ1 + θ2)
. (3.16)

Here, the cartesian coordinates, vertical and horizontal positions, are written

in terms of polar coordinates and system parameters, leg length, leg angle and

the body-leg angle. This transformation is important because in the derivation

of dynamical equations for the stance phase we need the Lagrangian formulation

in terms of only polar coordinates.

Similarly, the leg length can be written in terms of vertical and horizontal

positions and body-leg angle as

ρ =

√
y2 + z2 − d2 sin2 θ2 + dcosθ2. (3.17)
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Finally the body reference frame angle can be written in polar coordinates

using geometric arguments as

θh = θ1 + θ2 − π/2. (3.18)

Before writing the Lagrangian of the system, we need to find the counterparts

of vertical, horizontal and rotational velocities’ in polar coordinates. Taking

derivatives of both sides of equations (3.16),(3.18), we obtain the following first

order velocity equations in polar coordinates:

ẏ = −ρ̇ sin θ1 − ρ cos θ1θ̇1 + d cos(θ1 + θ2)(θ̇1 + θ̇2), (3.19)

ż = ρ̇ cos θ1 − ρ sin θ1θ̇1 + d sin(θ1 + θ2)(θ̇1 + θ̇2), (3.20)

θ̇h = θ̇1 + θ̇2. (3.21)

During stance, the Lagrangian of the system slightly changes, because this

time, we must account for spring dynamics as well. Kinetic energy for the stance

phase can be written as

T =
1

2
mẏ2 +

1

2
mż2 +

1

2
I(θ̇1 + θ̇2)

2, (3.22)

where the first two terms are due to kinetic energies resulting from horizontal

and vertical velocities, respectively, and the last term stands for the rotational

kinetic energy. Different from equation (3.8), stance rotational kinetic energy is

written in terms of polar coordinate variables using equation (3.18).

The potential energy, V , of the system is

V = mgz +
1

2
k(ρ− ρ0)

2, (3.23)

where the first term stands for the trunk’s gravitational potential energy with

respect to ground reference frame, and the second term stands for the spring

potential energy of the leg. So, the Lagrangian of the system is

L = T − V =
1

2
mẏ2 +

1

2
mż2 +

1

2
I(θ̇1 + θ̇2)

2 −mgz − 1

2
k(ρ− ρ0)

2. (3.24)
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After applying the polar coordinate transformations given in Equation (3.16), we

obtain the polar Lagrangian equation as

L =
1

2
m
(
ρ̇2 + ρ2θ̇21 + d2(θ̇1 + θ̇2)

2 + 2d(θ̇1 + θ̇2)(ρ̇ sin θ2 − ρθ̇1 cos θ2)
)

+
1

2
I(θ̇1 + θ̇2)

2 −mgρ cos θ1 +mgd cos(θ1 + θ2)−
1

2
k(ρ− ρ0)

2. (3.25)

Subsequently, applying Lagrange equation (3.6), to each coordinate component

leaves us with the second order dynamical equation

Mq̈ = f(q, q̇). (3.26)

where M and f(q, q̇) are given as

M =


1 d sin θ2 d sin θ2

d sin θ2 ρ2 − 2dρ cos θ2 + d2 + I/m d2 − dρ cos θ2 + I/m

d sin θ2 d2 − dρ cos θ2 + I/m d2 + I/m

 , (3.27)

f(q, q̇) =



ρθ̇21 − g cos θ1 − k
m
(ρ− ρ0)− d cos θ2(θ̇1 + θ̇2)

2

−2ρ̇θ̇1(ρ− d cos θ2) + gρ sin θ1−
θ̇1θ̇22dρ sin θ2 − θ̇22dρ sin θ2 − gd sin(θ1 + θ2)

τ
m
+ ρ̇θ̇12d cos θ2 + θ̇21dρ sin θ2 − gd sin(θ1 + θ2)


. (3.28)

We can write this system in the standard form as

Mq̈+B(q, q̇)q̇+G(q) = T, (3.29)

where M is the same matrix, and B(q, q̇), G(q) and T are given as

B =


0 d cos θ2θ̇1 − ρθ̇1 d cos θ2(θ̇2 + 2θ̇1)

2θ̇1(ρ− d cos θ2) −θ̇22dρ sin θ2 θ̇2dρ sin θ2

−θ̇12d cos θ2 −θ̇1dρ sin θ2 0

 , (3.30)
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G =


k
m
(ρ− ρ0) + g cos θ1

−gρ sin θ1 + gd sin(θ1 + θ2)

gd sin(θ1 + θ2)

 , (3.31)

T =


0

0
τ
m

 . (3.32)

The details of the derivation procedure can be found in Appendix B.

From the equations above, the state vector for polar coordinates can be defined

as

Xs :=
[
ρ θ1 θ2 ρ̇ θ̇1 θ̇2

]T
. (3.33)

3.3 Formulation of the Control Problem

This section focuses on the formulation of the control problem for the BA-SLIP

template. It briefly describes control parameters used and how they were chosen.

Control of BA-SLIP model seeks to reach stable apex states during locomotion

through the use of discrete, per-step control inputs, as well as the continuous

torque during stance.

3.3.1 Definition of Fixed Point and Its Importance

BA-SLIP state X in Cartesian coordinates is defined in (3.12). Let us define

Xn as the apex state at the nth stride, Xn+1 as the apex state at the (n + 1)th

stride, and assume that un is the control input vector applied at the nth stride of

Poincaré section at apex with ż = 0 enables us to define a discrete apex return

map of the form

Xn+1 = r(Xn,un). (3.34)
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Here, the function r depends on the composition of the dynamics given by (3.13)

and (3.26). Since the closed form solutions of such function is not possible, we

rely on its numerical computation by using the dynamics defined in Section 3.2.

Hence, a fixed point X∗ of the system given by (3.34) is a vector in Rm which

satisfies the equation

X∗ = r(X∗,u∗). (3.35)

Since horizontal position is non-cyclic and vertical velocity is always constant

and zero at apex points, as defined in event transition sections, its form can be

defined as

X∗ :=


z∗

θ∗h

ẏ∗

θ̇∗h

 . (3.36)

The objective here is to find control inputs using the above return map for a

given apex state to make it a fixed point of this dynamical system. Fixed points

are very important since they correspond to periodic motions and can be used as

steady state control targets.

3.3.2 Possible Modes of Control

Based on the SLIP and BA-SLIP models, two important control parameters are

common in many control techniques:

• The touchdown leg angle with the vertical, θtd: This is an essential com-

ponent for most legged systems. Its control is a relatively simple objective

because the only thing to consider is making sure that the leg reaches the

desired angle before touchdown occurs.

• The mechanical energy change, ∆E: In many applications, it’s indispens-

able to control the total mechanical energy by injecting into the system or

ejecting from it. This component generally requires more effort to control

and may be implemented in various ways [10, 25, 46]. Some of these control
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methods include Leg-Stiffness Control (LSC), Two-Phase Stiffness Control

(TPSC), Leg Length Control (LLC), Torque Actuated Control(TAC).

In LLC, injection of mechanical energy is achieved by compressing the spring

leg during flight and effectively releasing it during stance. An example application

is the Bow-Leg robot [47]. In LSC, ∆E is controlled by changing the leg stiffness

during flight as in [48]. TPSC is the inverse version of LSC, where the leg stiffness

is changed in stance [49]. The last one, TAC, is of more interest to us since our

model uses this strategy through an actuator at the hip joint. A negative or

positive torque is applied to the body during stance phase resulting changes

in the total mechanical energy. Example applications using this model include

quadrupeds [50], RHex hexapod [51], as well as a number of other monopedal

platforms [21, 46, 52, 53], that use a single rotary actuator for each leg. The

reason for choosing torque actuated control (TAC) scheme is to be able to easily

utilize the robot model given in [21].

3.3.3 Torque Model

As described in the previous section, we will utilize torque actuation control

scheme (TAC). For the torque model, we use the following control law, which

consists of four parameters:

τ = −Kp(θ2 − θ2d)−Kd(θ̇2 − θ̇2d). (3.37)

In this torque formulation, Kp and Kd are proportional and derivative gains,

θ2d and θ̇2d are desired body-leg angle and its desired rate of change. It’s a classic

PD controller that aims to reach steady state behavior by applying negative

feedback. To be more specific, assuming that we want θ2 = θ2d, if θ2 > θ2d, we

apply a negative torque on the body, resulting in clockwise motion of the trunk,

which decreases θ2 and make it closer to the desired value. If θ2 < θ2d, we apply

counter-clockwise torque on the trunk, which results increase on body-leg angle,
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θ2, again making it closer to the desired value. Similar intuition is valid on the

derivative component.

X ∗ u = f (X*)

Xn

Physical SLIP 

       Plant

u Xn+1

Figure 3.3: Control diagram, X∗ is the desired state, u is the control parameters
for reaching X∗ and, Xn is the current apex state.

Fig. 3.3 represents the main control diagram implemented in this thesis. Here,

Xn is the current apex state vector, Xn+1 is the next apex state vector, X∗ is

the desired apex state vector, and u is the control input in order to reach the

desired apex state. This vector consists of torque parameters of (3.37), and the

touchdown leg angle, θtd. The function f represents a mapping between desired

apex states and control inputs. The control input is only specified by the desired

apex state vector, X∗, and does not utilize the state information, Xn. Hence,

the resulting control algorithm is open-loop. Since the closed form expression of

the function f requires the integration of system dynamics and is very difficult

to write, we try to investigate it numerically in Chapter 4 by performing various

simulations.
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Chapter 4

SIMULATIONS AND RESULTS

In this chapter, we present simulation results regarding the model given in Chap-

ter 3. More specifically, brief subsections for the following subjects of interest are

given:

• Fixed points of the control problem described in Section 3.3,

• Stability analysis of fixed points,

• Stability regions around fixed points,

• Results regarding the fixed point manifold dimension,

• Time-varying control strategies for unstable fixed points

4.1 Simulation Environment

This subsection contains a brief information about the simulation environment,

utilities used, algorithm choices and finally performance criterion. First, the

development environment and utilities are briefly discussed, then for the opti-

mization problem, the algorithm choices are presented and advantages and dis-

advantages of each of them are listed, and finally a short discussion on tolerances
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of optimization algorithms is given.

4.1.1 Simulation Environment and Toolboxes

All of the simulations, graphics, plots and numerical analysis presented in this

chapter are obtained by using MATLAB. This chapter focuses on the problem

of finding the fixed points of the model in the previous chapter, i.e. the points

which satisfy the global minimum of the objective function which will be ex-

plained in section 4.2. MATLAB has two important toolboxes for this purpose;

Optimization Toolbox and Global Optimization Toolbox.

Global Optimization Toolbox has the following algorithm options: Global

Search, Direct Search, Genetic Search, Simulated Annealing, Multi objective Op-

timization. Most of these algorithms are good with objective functions with less

points satisfying global minimum, and start searching for optimum solutions using

randomized choices in order to scan all basins of attraction, instead of derivative

search.

Optimization Toolbox contain more alternatives for standard and large-scale

optimization algorithms, which generally use gradient information. This is ben-

eficial when we have an intuitive idea about the global solution neighborhood to

begin the search. As it will be discussed in more detail in the following sections

of this chapter, since the BA-SLIP model has a lot of fixed points (points that

satisfy the global minimum), and we have some intuitive idea about how these

solutions might lie on the space, the latter toolbox (Optimization Toolbox) is

more appropriate for our problem.

4.1.2 Algorithms

The Optimization Toolbox has a variety of functions for optimization problems.

Since, in our model, some of the solution parameters must contain lower and upper

bounds in order to comply with the physical constrains, constrained minimization
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algorithms are of interest to us. For this problem, there are four types of algorithm

choices available:

• Trust-region-reflective Algorithm: This algorithm type requires the

analytical gradient of the objective function and therefore does not suit to

our problem.

• Interior-point Algorithm: This is a large-scale algorithm and mostly

specialized to operate on sparse matrices [54]. On the other hand, our model

mass matrix presented in equation (3.27) is not primarily populated with

zeros.

• Active-set Algorithm: This is not a large-scale algorithm and can take

large steps which speeds up the global minimum search. This property is

very important and might be extremely useful when working with a high

dimensional input space.

• SQP: Like active-set algorithm, this one is not a large-scale method and

similar to active-set in the problem formulation and might sometimes be

advantageous for fast convergence [55] .

Our optimization problem has a parameter space having at least seven di-

mensions. It’s a high dimensional space with many fixed points, in other words,

points satisfying global minimum value of the objective function. According to

above algorithm descriptions, our optimization problem needs algorithms which

are flexible and fast in parameter spaces with high dimensions, does not need an

analytical gradient, does not need sparse linear algebra, and therefore best fits

with Active-Set and SQP algorithms. All of the simulations in Chapter 4, use

these two main algorithms.

4.1.3 Tolerances

As explained in subsection 4.1.2, SQP and Active-Set nonlinear optimization

algorithms were chosen for our optimization problem. For these algorithms, there
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are two important tolerance factors that needs to be considered carefully while

searching for fixed points:

• TolFun: Lower bound on the change of the objective function during an

iteration step,

• TolX: Lower bound on the size of the iteration step, in other words, the

Euclidian-norm of the distance between the two input vectors at consecutive

iteration steps.

Iterations end when the corresponding objective function values and step size

at the last step is smaller than TolX or TolFun. So, although an infinite precision

simulation is not possible in order to get accurate results, these values should be

as small as they can while complying with differential solver’s tolerances. So, in

most of our simulations, TolFun and TolX values are taken as 10−11. Only when

searching for fixed points in a relatively small domain, they have been changed

to 10−12 for finding better results.

4.2 Fixed Point Characterization and Perfor-

mance Criterion

Fixed points are important because they reveal periodic motion patterns in the

locomotion, and can be used as steady state targets. A fixed point of our dynam-

ical system is a vector X∗ that satisfy the equation X∗ = r(X∗,u∗), where u∗ is

the steady state control input and r is the vector return map defined in Chapter

3. In order to find the fixed points of our model, extensive simulations have been

made using the chosen algorithms explained in detail in section 4.1. Consider-

ing our return map given in equation (3.34), a fixed point theoretically satisfies

X∗ = Xn+1 = Xn, i.e. there is no error between consecutive steps. However, in

simulative approaches this is not reasonable in most cases, since computers work

with finite precision. Since the return map domain and range vector elements

does not constitute a countable set, we have to put an error threshold in order to
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classify the resulting points as fixed or not. Therefore, an error function given as

below should be defined:

ϵn =
∥Xn+1 −Xn∥

∥Xn∥
. (4.1)

The intuition behind dividing withXn is calculating the percentage error made

in consecutive steps, i.e. normalizing the error function, because absolute error

may not be very useful in most cases, especially where we don’t have a clue about

the magnitude ofXn. This error function will be used as the objective function for

the optimization, and the global minimum value we’re looking for is 0, because of

the definition of fixed point. However, as it will be explained in more depth in the

following sections, considering stable and unstable fixed point candidates acquired

from simulations, an error threshold 10−5 will be enough for being a candidate

fixed point. In other words, if ϵn < 10−5, most probably we are near a fixed point,

and couldn’t find it precisely. Due to optimization algorithms, differential solver

precisions and small numerical noise in finite-precision arithmetics in Matlab, the

given point can be characterized as a fixed point of the system. This hypothesis

is supported even more clearly in the following sections where stable fixed points

are investigated, because optimization algorithms give global minimum as nearly

10−5 for these points, however since they’re stable, after a few steps, the objective

function decreases below 10−12.

4.3 Fixed Points for a Given Horizontal Velocity

In this section we explain the motivation behind finding fixed points for a given

horizontal velocity, present simulation results regarding our BA-SLIP model, and

investigate the stability behavior of these fixed points.

4.3.1 Motivation

It’s very important to find a fixed point for any, in some reasonable range, given

horizontal velocity because it means that we can find a periodic motion pattern,
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and run the robot in any velocity we want. Since the locomotion of interest is

in the sagittal plane, to be able to run the robot in a desired horizontal velocity

constitutes an important steady state control target.

For an average human body, maximum locomotion speed is 22 km/h [56]. In

[57], some experimental results supporting linear correlation between comfortable

locomotion speed and leg length of human body are presented. Since human leg

length is nearly 1 meters [58], and our robot has leg length 20 cm, [21], we might

consider our robot speed as nearly at most 22 / 5 = 4.4 km / h, which corresponds

to 1.2 m/s approximately. Since this is an upper bound, we might round down this

number to 1 m/s in order to decrease simulation time. Therefore, a reasonable

range for the horizontal velocity can be determined as

0 ≤ ẏ ≤ 1. (4.2)

In order to show that, for any given horizontal velocity in the range given in

equation (4.2), there exist a fixed point; we must choose a step size as small

as we can. Considering the dimension of our optimization problem, step size of

horizontal velocity is chosen as 0.01, dividing the range in equation (4.2) into 100

equal pieces.

4.3.2 Algorithm Diagram

As described in section 4.2, in order to find a fixed point, we have to minimize

the objective function given in equation (4.1); which is a classical optimization

problem and we can use the algorithms discussed in Algorithms section. Fig. 4.1

represents an overview of our algorithm. It takes an initial guess on the parame-

ters, p0, consisting of torque coefficients, touchdown leg angle, apex height, body

angle and body angle rate; and converges to optimum configuration by using

Active-Set or SQP Algorithms.

In the above figure, a horizontal velocity in the range [0,1] is given as input to

the optimization; and Matlab finds a fixed point candidate with given horizontal

velocity. The stopping criteria block controls if the objective function is less than
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Optimization Algorithm
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Figure 4.1: Optimization diagram constructed for finding the fixed point configu-
ration, p∗; height, body angle, body angle rate, torque parameters and touchdown
angle, given the desired horizontal velocity, ẏ∗.

TolFun or TolX. In order to enhance the performance, optimizations are run

again by using the previous optimization’s output as initial condition to the next

optimization, until the error between two consecutive steps is below an acceptable

threshold. Fig. 4.2 illustrates this concept clearly.
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Figure 4.2: Enhanced version of the diagram given in Fig. 4.1. This diagram
contains an additional step which checks the output parameters if they satisfy
the fixed point criterion or not, and continues optimization if they do not satisfy.
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Figure 4.3: Relation between horizontal velocity, ẏ, and apex height, z for fixed
points found. In the optimization procedure, horizontal velocity is given as in
input to the loop and remaining parameters are read as output. Therefore, the
apex height values are the results of the optimization loop.

4.3.3 Results and Discussion on the Stability

Fig. 4.3 shows the relationship between horizontal velocity and apex height of

the fixed points. One important observation that can be made from this figure is

most apex height values are nearly 0.3 meters. That’s because of the lower limit

on apex value in the constrained optimization algorithm, since below some height

threshold robot can not actually open its leg or jump due to physical constraints

such as its actual leg and body length. Apparently, if the robot jumps from lower

heights, the error that’s made between consecutive steps will be less. This result

is intuitive however while at the same time being speculative because we might

miss other periodic motion patterns. There might be different height - horizontal

velocity combinations that lead us to better and more stable locomotions. Proof

of this concept is obvious when we look at bigger horizontal velocities in this

figure. At ẏ between 0.65 and 0.95, we have apex height, z, between 0.4 and

0.55 meters. After ẏ = 0.95, apex height again becomes nearly 0.3 meters. Upon

this result, we might infer that apex height is not unique for a given horizontal
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velocity, in other words, fixed point manifold dimension is bigger than 1.

Fig. 4.4 shows the body angle versus horizontal velocity. According to this

plot, we can see that the trunk is in almost at upright position at the fixed points,

i.e. θh ≈ π/2. Some simulation results, as we will present in section 4.4, show that

this is not the only case for fixed point distribution. There is another distribution

we encounter when the body is downward oriented, i.e. θh ≈ −π/2. However, in

both situations there is not much deviation from −π/2 or π/2.

Figure 4.4: Relation between horizontal velocity, ẏ, and body angle, θh for fixed
points found. Body angle is the trunk orientation with respect to the ground
reference frame, and independent of leg orientation.

Finally, Fig. 4.5 shows the maximum absolute eigenvalues of the Jacobian ma-

trix with respect to changing horizontal velocity, numerically found to investigate

the stability behaviors of our fixed points. According to this plot, eigenvalues are

all greater than nearly 3, resulting in unstable behavior.

For stable motion we need to have maximum absolute eigenvalue less than

1, since this is a discrete map. Unstable fixed points are only important for

themselves, not the points in their neighborhood, because if we start near an

unstable fixed point, its vector field pushes us out, and therefore apex vectors,

Xn diverge. Because of finite precision arithmetics due to computer hardware, it’s
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Figure 4.5: Relation between horizontal velocity, ẏ, and maximum of the abso-
lute eigenvalues of the numeric Jacobian matrix, J . These eigenvalues show the
stability patterns of given fixed points.

nearly impossible to have the fixed point with no numerical noise. For instance,

the apex configuration shown in Fig. 4.6, is one of the very intuitive fixed points;

hopping on the ground with vertical body alignment and no horizontal velocity.

It’s physically obvious that if we do not have damping and do not apply any

torque, the robot will hop forever. This result is also found in our optimization

for ẏ = 0, however, the error between consecutive apexes is found to be nearly

10−12 in Matlab due to numerical roundoff errors(e.g. we cannot represent π/2

exactly in numerical analysis because the number is irrational).

To sum up, we could find a fixed point for any given horizontal velocity in the

specified range but these fixed points turned out to be unstable and discontinuous

with respect to apex height. Therefore, it’s better to look for fixed points for a

given height and horizontal velocity pair, and examine stability behaviors for

both upright and downward body angle orientations. Related simulations are

presented in the next section.

37



Figure 4.6: Realization of hopping in place. Body angle is 90 degrees, leg angle
is 0 degrees, no horizontal speed is present and no torque is applied. The body
falls from a specified height with vertical orientation, touches the ground and lifts
off after some time and goes back to the height where it’s been thrown since no
damping factor is present in the system.

4.4 Fixed Points for a Given Height and Hori-

zontal Velocity

In this section we explain the motivation behind finding fixed points for a given

horizontal velocity and apex height pair, present simulation results regarding

our BA-SLIP model, and investigate the stability behavior of these fixed points.

Also, different from the previous section, we consider the two cases of fixed point

spaces: upward body orientation and downward body orientation, because stabil-

ity behaviors of these two spaces will be totally different in the proposed control

scheme.

4.4.1 Motivation

As described in the previous section, we could find fixed points for any given

horizontal velocity, but there were numerical evidence showing that these fixed

points are not unique, and there might exist multiple apex heights satisfying fixed

38



point criterion for a given horizontal velocity. This time a similar grid search on

the space of horizontal velocity, ẏ, and apex height, z, must be conducted so that

for reasonable values of these state parameters, we can find fixed points and their

control parameters. The horizontal velocity and apex height ranges are chosen

to be as follows:

0.1 ≤ ẏ ≤ 1, 0.3 ≤ z ≤ 0.7 (4.3)

because, as described in section 4.3.1, ẏ range is intuitive, and apex height must

be greater than the leg length + pivot-COM distance to be able to physically

jump, which corresponds to 0.24 meters in our case. An average human cannot

jump to heights three times his/her leg length, so, our range for BA-SLIP model

with 0.2 meters is far more greater than the reasonable range for human body

jump. For these simulations, the step size for horizontal velocity is taken as 0.1,

and for apex height as 0.05 meters, resulting in 90 grid squares in the specified

region.

4.4.2 Algorithm Diagram

The optimization problem here is very similar to the one described in section

4.4.2 and can be depicted as in Fig. 4.7.

p
0

Optimization Algorithm

p= [�p | Xp] = [Kp Kd �td �2d �2d | �h �h]

y*, z*

  Construct 

State Vector

Xn

�p 

Xn+1
  Active-Set or 

SQP Algorithm

Stopping Criteria
p*

pn+1

pn+1

Return Map  Construct 

State Vector

Xn

�p 

Xn+1

Decision 

  Block

p*

Iterated Optimization Algorithm

n > threshold

p

y*, z*

Figure 4.7: Optimization diagram constructed for finding the fixed point config-
uration; body angle, body angle rate, torque parameters and touchdown angle,
given the desired horizontal velocity, ẏ∗, and apex height, z.
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In Fig. 4.7, as described in the preceding subsection, a horizontal velocity in

the range [0.1,1] and apex height in the range [0.3,0.7] is given as input to the

optimization; and Matlab finds a fixed point candidate at that horizontal velocity-

apex height pair. In order to enhance the performance, we do the simulations

again with the initial conditions found in the previous optimization up to an

acceptable between the two consecutive apex states, as we did in section 4.4.2.

4.4.3 Results and Discussion on the Stability

In this section simulation results are presented in two subsections; upward and

downward body orientation because of their different stability properties.

4.4.3.1 Upward Body Orientation

Simulation results show that for almost any given apex height-horizontal velocity

pair in the range given in equation (4.3), there exists a fixed point with upward

body orientation, with nearly body angle, θh, is being equal to 90 degrees.

Figure 4.8: Colormap of the body angle, θh with respect to changing horizontal
velocity, apex height pairs.
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There are only two (ẏ, z) pairs which the optimization couldn’t find a fixed

point. These pairs are (0.1, 0.65) and (0.1, 0.7) and their neighborhood is shown

as blue region in Fig. 4.8. After all, this is rather intuitive since the robot does not

have much horizontal velocity but large potential energy due to its apex height.

Fig. 4.8 shows a color map of the body angle versus horizontal velocity and

apex height with respect to the color bar given in the right. According to this

plot, we can see that the trunk is almost at the upright position, i.e. θh ≈ π/2.

It can be seen that all of the fixed point angles are in the neighborhood 1 degree

neighborhood of 90 degrees. Other angles such as 30, 45 and 60 degrees don’t

appear in the solutions. This is rather intuitive because of the fact that when the

body starts with vertically aligned, the gravity force acting on the trunk is less

likely to affect towards rotating it around the leg joint. Similar logic can be used

to justify the fixed points with body angle nearly −90 degrees.

Figure 4.9: Maximum of the absolute eigenvalues of Jacobian matrix numerically
calculated at fixed points, λmax, with respect to changing apex height, z, and
horizontal velocity, ẏ. Apex height is in meters and horizontal velocity is in m/s.

Moreover, Fig. 4.9 shows the maximum absolute eigenvalues of the Jacobian

matrix with respect to changing horizontal velocity and apex height, numerically
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found to investigate the stability behaviors of our fixed points. According to this

plot, eigenvalues are all greater than nearly 3, resulting in unstable behavior.

4.4.3.2 Downward Body Orientation

Simulation results show that for any given apex height-horizontal velocity pair in

the range given in equation (4.3), there exists a fixed point with downward body

orientation, with nearly body angle, θh, is being equal to -90 degrees.

Figure 4.10: Body angle, θh, with respect to changing apex height, z, and horizon-
tal velocity, ẏ. Apex height is in meters, horizontal velocity is in meters/second
and body angle is in degrees.

Fig. 4.10 shows the body angle versus horizontal velocity and apex height.

According to this plot, we can see that the trunk orientation, θh, is nearly -90

degrees in all fixed points; and the maximum deviation on the fixed point body

angles is 0.5 degrees, which means the body angle does not deviate much from

-90 degrees, while ẏ and z change in the specified domain.

Fig. 4.11 examines the stability property of these fixed points, calculating

numerical Jacobian and finding the eigenvalues with maximum absolute value
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Figure 4.11: Maximum of the absolute eigenvalues of jacobian matrix numerically
calculated at fixed points, λmax, with respect to changing apex height, z, and
horizontal velocity, ẏ. Apex height is in meters and horizontal velocity is in m/s.
The dark blue corresponds to eigenvalues with magnitude less than 1, which are
stable fixed points.

and comparing them with 1 for each apex height and horizontal velocity pair. It

seems that stable fixed points form a continuous region on the ẏ− z plane. Next

subsection investigates some of the properties of this region in a deeper manner.

4.5 Stability Region

In the previous sections, it was numerically shown that for upward body orienta-

tion, there were no stable fixed points; however, for downward body orientation,

there seems we have a stable region of points in ẏ−z plane. To further investigate

this region, the following color map could be used.

According to Fig. 4.12, the blue regions indicate stability and as it goes to red

regions, fixed points become more unstable. According to this plot, we have our

fixed points mostly in the regions where z is in the interval [0.35, 0.45] meters.
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Figure 4.12: A color map version of eigenvalues calculated in Fig. 4.11. This 2D
version plot is useful for better investigating the stability region of fixed points
in the ẏ − z plane.

When apex height, z, is 0.4 all horizontal velocities, result in stable periodic

motion with proper control inputs. When apex height increases, z becomes 0.45,

horizontal velocities bigger than 0.4 result in stable locomotion; and when apex

height decreases, z becomes 0.35, horizontal velocities smaller than 0.4 results

in stable locomotion. In order to support this argument, randomly chosen 150

points in this region are taken into optimization shown in Fig. 4.7, and their

stability properties are investigated, using eigenvalue analysis of the numerical

Jacobian matrix. Randomized search of these stable points resulted in all success,

i.e. all turned out to be stable. Therefore, the region shown in the colormap Fig.

4.12, is supported by randomized trials.

Besides stable fixed points, there exist a region in ẏ − z plane such that a

point in this region does not necessarily need to be a fixed point, but, its control

target can be adjusted as the nearest stable fixed point. In other words, a robot

configuration for a given horizontal velocity and apex height, we have an unstable

fixed point; and by applying the control parameters of the nearest stable fixed

point, the robot can locomote with different velocity and apex height, but in a

stable manner.
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For instance, in Fig. 4.13, the point shown with red cross is an unstable fixed

point. Applying its control inputs found from the optimization leads to falling,

meaning ẏ = 0 and z = 0 in the plot.

Figure 4.13: In the left figure, the red cross represents an unstable fixed point,
and the blue dashed curve represents ẏ − z trajectory under its corresponding
control inputs found from the optimization. The trajectory ends at (0,0) point
which corresponds to falling. In the right figure, horizontal velocity and apex
heights are plotted with respect to number of steps.

However, by applying the control inputs of the nearest stable fixed point, the

same unstable point converges to the stable one and continues moving forward. In

Fig. 4.14, the point shown with red cross is an unstable fixed point and the point

shown with blue circle is a stable fixed point, both found from the optimization.

Applying the control inputs associated with the circular point, robot can locomote

stably at the desired velocity and apex height as illustrated.

Example given in Fig. 4.14 illustrates that some unstable fixed points can

converge to nearby stable fixed points by applying the right control parameters.

However, that may not be possible for every unstable and stable fixed point

pairs. The reason of convergence illustrated in Fig. 4.14 is that the unstable

fixed point projected onto the control parameters’ plane of the stable fixed point

is in the domain of attraction of the stable fixed point. The domain of attraction

of these fixed points is a high dimensional region and cannot be visualized easily.

Therefore, projections onto some useful and understandable lower dimensional
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Figure 4.14: In the left figure, the red cross represents an unstable fixed point,
blue circular point represents a stable fixed point, and the blue dashed curve
represents ẏ− z trajectory under the stable point’s control inputs found from the
optimization. The unstable fixed point converges to stable one after some number
of steps. In the right figure, horizontal velocity and apex heights are plotted with
respect to number of steps.

spaces should be used, to get a better intuition. Fig. 4.15 illustrates the projection

of the domain of attraction of the fixed point given by blue circle in the figure

to the horizontal velocity - apex height plane. To be short, let us define these

regions as convergence regions. So, if a point is inside the convergence region of

one stable fixed point, we can apply the control input associated with the stable

fixed point and make the particular point converge to the stable fixed point.

In order to generalize, it’s better to show all stable fixed points’ convergence

regions in one plot. Fig. 4.16 shows the union of all these convergence regions.

Here, blue circles represent all of the stable fixed points found from the optimiza-

tion given in section 4.4.2, and the blue solid line is the bound for the total unified

convergence region. This figure indicates that if our initial apex state’s horizon-

tal velocity and apex height coordinate pair is in this region, it’s guaranteed that

this state can be made to converge to one of the stable fixed point configurations

represented by blue circles. And note that the convergence region found in Fig.

4.15 is a subset of this unified region.
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Figure 4.15: The red cross represents the unstable fixed point, blue circular point
represents a stable fixed point, and the blue solid curve is the bound for stability
effect region of the stable fixed point.

Figure 4.16: Union of convergence regions of all the stable fixed points.

In the light of the findings presented in this section if body orientation is

chosen as downward, we can apply control inputs to many of the ẏ − z pairs for

stable and periodical locomotion pattern, resulting in a fixed point space with

dimension at least 2.

4.6 Fixed Point Manifold Dimension

From the simulations shown up to here, we cannot conclude with certainty but

it can be inferred that the fixed point manifold dimension is at least 2, because
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we have numerical evidence that the stable fixed points form a two dimensional

region in ẏ − z plane as shown in section 4.5. In order to better understand

the fixed point space and investigate its dimension, it’s necessary to introduce a

third variable in our grid search. In this section, it will be important to check

whether the dimension could be three or not. A necessary condition for a three

dimensional space is that it must constitute a volume. If the fixed point space has

a volume, then for a given fixed point with ẏ and z, we must find a continuous

region of body angles, θh, such that they all are again fixed points. In order to

check this concept, θh is swept all over the range [−π, π] for a chosen fixed point.

In Fig. 4.17, resulting error versus body angle, θh is plotted.

Figure 4.17: For ẏ = 0.9, z = 0.45, and changing θh, optimization converges to
nearby stable points but different ẏ − z pairs.

Here, as we expect, the error is minimum when the body angle is nearly near

π/2 or −π/2. Therefore, based on numerical evidence, it’s not guaranteed to

find control parameters for any given (ẏ, z, θh) triple, to make it a fixed point

of the system. However, we might consider finding fixed points for any given

(ẏ, z) and θh is being in some small continuous interval. In order to investigate

this possibility, a small scale search on the body angle with step size π/3200 is

performed near a chosen stable fixed point.
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Figure 4.18: For ẏ = 0.9, z = 0.45, and changing θh, optimization converges to
nearby stable points but with different ẏ − z pairs.

As shown in Fig. 4.18, for different but close θh, there exist fixed points

because the error between two consecutive apex states are very small. However,

when looked at these points’ vector fields, they converge to different but close ẏ

and z pairs as explicitly shown in Fig. 4.18. This implies a small perturbation

in the body angle results in small perturbations in ẏ and z pairs, which does not

indicate a volume but may be a surface in ẏ, z, θh space because changing body

angle results in changes in other variables, which may indicate a relationship

between them. In other words, these three variables may depend on each other

in some manner, and therefore there is not enough evidence to say that the fixed

point manifold is a three dimensional space, however it’s supported by lots of

numerical evidence that it’s greater than or equal to 2.
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4.7 Time-Varying Control Strategies for Unsta-

ble Fixed Points

4.7.1 Motivation

In the previous sections, all of our focus was on the stable fixed points with

downward body orientation. We found that many of the downward oriented

robot configurations could result in stable periodic locomotion by applying the

right control inputs; however unstable fixed points with upward body orientation

still remains as a problem. According to simulations in the preceding sections

made for these points, it can be inferred that a constant parameter torque model

may not be enough for upright locomotion. Therefore, it would be useful to

investigate time varying control inputs. Basically, our upright fixed points are

unstable even with small numerical errors such as 10−12 are present between

consecutive apex states. Since these points are unstable, the robot falls if it starts

moving with one of these configurations after some number of steps (sometimes

less than 10 steps). Here, the number of steps is directly correlated with the

maximum absolute eigenvalue being close to 1 or not. These unstable fixed points

were found by using our optimization procedure described in section 4.3.2. The

idea is using this algorithm iteratively at each step to find the control parameters

that best fit to the current state, as illustrated in Fig. 4.19.

Xn

un

BA-SLIP Plant

Optimization 

  Algorithm

Xn+1

Figure 4.19: Time varying control algorithm. The control input un is calculated
at each apex state, again.
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As depicted in the above figure, this time the control input vector is not con-

stant, and real time parameter adjustments are made possible. The control input

to be applied is calculated using the current apex state, but from optimization.

In other words, let initial apex configuration be X1, and by applying control

input, u1, next apex configuration, X2, is obtained with very small error. In

order to decrease the next step error, X2, is given to our optimization and a new

control input, u2 is found for minimizing the error between X2 and X3, and the

algorithm continues similarly. This work requires much computation, because at

each step a new optimization begins in a 7 dimensional space. However, these

results are important for building some intuition on controller templates we can

implement in future.

4.7.2 Simulation Results

The time varying strategy described in the previous subsection is applied to some

of the unstable fixed points and resulted in stable motion for large number of steps

as shown in Fig. 4.20.

Figure 4.20: Right figures represent horizontal velocity, ẏ, and apex height, z,
changes with respect to number of steps, n, under time varying control. The left
figure is the 2D trajectory of this change.

Fig. 4.20 indicates that under time varying control, the robot model can hop
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over 2000 steps, and can continue its locomotion. In the end of its motion, the

error between two consecutive steps becomes nearly 10−10. However, applying

the parameters found for the 2048th step does not resolve unstability problem,

because when this parameters are applied, the robot hops at most 23 times as

depicted in Fig. 4.21, and then again falls. Reason for this is the unstability

behavior of the fixed point configuration under constant control template we

applied throughout this thesis. These results support the need for time varying

and state adaptive control templates, that the parameters can slightly change in

order to stably move.

Figure 4.21: The apex configuration at X2048 is applied to control input found
u2048, and the robot falls after 23rd step, i.e. at apex configuration X2061.

While the robot converges to its steady state target as depicted in Fig. 4.20,

the parameters change slowly in each step, forming curves that look like contin-

uous functions. The parameter changes of this 2048 step movement are shown in

Fig. 4.22.

To sum up, comparing Fig. 4.20 and Fig. 4.21 indicates the need for time

varying control inputs; and Fig. 4.22 supports the idea that control parameters

may have underlying functional forms that can be exploited to guess the next

control input to be applied. However, the main problem here is calculating the

next step control input in a reasonable amount of time since the robot will need

to move fast, and the optimization algorithm performs this job very slowly. To

be able to do that, a mathematical study must be performed over the change of

parameters of many unstable fixed points, and this work is left for future studies.
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Figure 4.22: Torque parameters, Kp, Kd, θtd, θ2d, θ̇2d and error ϵn, with respect to
number of steps, n, under time varying control, respectively from left to right
and up to down.
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Chapter 5

CONCLUSION

In this thesis, we performed a different mathematical analysis on the model, Body-

Attached Spring-Loaded Inverted Pendulum (BA-SLIP). Based on this analysis

we considered some control strategies in order to reveal the periodic motion be-

haviors behind this locomotion. In the controller design, due to complex and

nonlinear characteristics of the model dynamics, we focused on simulative ap-

proaches, which shows some numerical evidence of stable and periodic running.

Periodic motion in such a system corresponds to a fixed point of a special

map, namely the apex-return map, associated with the locomotion dynamics.

Under this knowledge, we performed extensive simulation studies on finding the

fixed points of the system for any given horizontal velocity and apex height pair in

some reasonable range. The fixed points found were categorized into two subtitles:

fixed points with upward body orientation and fixed points with downward body

orientation. There is enough numerical evidence which allows us to assume that

these fixed points form a region in a high dimensional space, namely manifold,

and we investigated the dimension of it by presenting some numerical evidence.

In addition, after finding the fixed points of our apex-return map, their stabil-

ity properties are investigated using numerical Jacobian. The fixed points with

upward body orientation were found to be unstable under our control strategy.

However, some of the points with downward body orientation were stable. We
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tried to find the basins of attraction of these stable fixed points and projected

the regions into horizontal velocity - apex height plane, therefore constructed a

unified region which involves some of horizontal velocity - apex height pairs that

can be stabilized under corresponding control inputs.

Finally, we performed simulations on some of the fixed points with upward

body orientation that were unstable in our proposed control scheme, to investigate

their locomotive patterns. We presented some numerical results showing that the

upward body oriented fixed points can be stabilized using time-varying control

inputs. These results may stimulate more discussion on adaptive and time varying

control strategies, and can be a basis for future implementations and ideas, in

order to mimic upright locomotion.

55



Bibliography

[1] P. Holmes, R. Full, D. Koditschek, and J. Guckenheimer, “The dynamics of

legged locomotion: Models, analyses, and challenges,” SIAM Review, vol. 48,

pp. 207–304, May 2006.

[2] D. Wooden, M. Malchano, K. Blankespoor, A. Howardy, A. A. Rizzi, and

M. Raibert, “Autonomous navigation for BigDog,” in Proceedings of the

IEEE International Conference on Robotics and Automation, (Anchorage,

Alaska), May 3-8 2010.

[3] R. J. Full and D. E. Koditschek, “Templates and anchors: Neuromechanical

hypotheses of legged locomotion,” Journal of Experimental Biology, vol. 202,

pp. 3325–3332, 1999.

[4] R. M. Alexander and A. S. Jayes, “Vertical movement in walking and run-

ning,” Journal of Zoology, London, vol. 185, pp. 27–40, 1978.

[5] R. M. Alexander, “Three uses for springs in legged locomotion,” Interna-

tional Journal of Robotics Research, vol. 9, no. 2, pp. 53–61, 1990.

[6] R. Blickhan and R. J. Full, “Similarity in multilegged locomotion: Bounc-

ing like a monopode,” Journal of Comparative Physiology A: Neuroethology,

Sensory, Neural, and Behavioral Physiology, vol. 173, no. 5, pp. 509–517,

1993.

[7] C. T. Farley and D. P. Ferris, “Biomechanics of walking and running: Cen-

ter of mass movements to muscle action,” Exercise and Sport Science Rev.,

vol. 26, pp. 253–283, 1998.

56



[8] M. H. Raibert, Legged Robots That Balance. Cambridge, MA, USA: MIT

Press, 1986.

[9] P. Gregorio, M. Ahmadi, and M. Buehler, “Design, control, and energetics of

an electrically actuated legged robot,” Transactions on Systems, Man, and

Cybernetics, vol. 27, pp. 626–634, August 1997.

[10] G. Zeglin, The Bow Leg Hopping Robot. PhD Thesis, Carnegie Mellon Uni-

versity, Pittsburgh, PA, USA, October 1999.

[11] J. W. Hurst, J. Chestnutt, and A. Rizzi, “Design and philosophy of the

bimasc, a highly dynamic biped,” in Proceedings of the IEEE International

Conference on Robotics and Automation, (Roma, Italy), April 10-14 2007.

[12] W. J. Schwind, Spring Loaded Inverted Pendulum Running: A Plant Model.

PhD Thesis, University of Michigan, Ann Arbor, MI, USA, 1998.

[13] T. Weaver and R. Klein, “The evolution of human walking,” in In Human

Walking, Lippincott: Williams & Wilkins, 2006.

[14] E. D. Brul, “The general phenomenon of bipedalism,” American Zoologist,

vol. 2, no. 2, pp. 205–208, 1962.

[15] H. Pontzer, D. Raichlen, and M. Sockol, “The metabolic cost of walking in

humans, chimpanzees, and early hominins,” Journal of Human Evolution,

vol. 56, no. 1, pp. 43–54, 2009.

[16] W. Wang and R. Crompton, “The role of load-carrying in the evolution of

modern body proportions,” Journal of Anatomy, vol. 204, no. 5, pp. 417–430,

2004.

[17] W. Wang and R. Crompton, “Energy transformation during erect and ’bent-

hip, bent-knee’ walking by humans with implications for the evolution of

bipedalism,” Journal of Human Evolution, vol. 44, no. 5, pp. 563–579, 2003.

[18] M. Horst-Moritz, Towards understanding human locomotion. PhD Thesis,

Technische Universität Ilmenau, Germany, 2013.

57



[19] H.-M. Maus, J. Rummel, and A. Seyfarth, “Stable upright walking and run-

ning using a simple pendulum based control scheme,” in International Con-

ference on Climbing and Walking Robots, (Coimbra, Portugal), September

08-10 2008.

[20] H. M. Maus, S. W. Lipfert, M. Gross, J. Rummel, and A. Seyfarth, “Upright

human gait did not provide a major mechanical challenge for our ancestors,”

Nature Communications, vol. 1, no. 6, p. 70, 2010.

[21] I. Uyanık, Adaptive Control of a one-legged hopping robot through dynam-

ically embedded spring-loaded inverted pendulum template. M.S. Thesis,

Bilkent University, Ankara, Turkey, August 2011.
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Appendix A

Derivation Of Flight Dynamics

The Lagrangian of the system in flight coordinates is

L = T − V =
1

2
mẏ2 +

1

2
mż2 +

1

2
Iθ̇2h −mgz. (A.1)

Recall that the Euler-Lagrange equation is

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= τqi , (A.2)

where qi is the coordinate components and τqi is the torque related with coordinate

qi. For qi = y, the first component of Euler-Lagrange equation is

∂L

∂ẏ
= mẏ. (A.3)

Taking time derivative of (A.3) gives

d

dt

(
∂L

∂ẏ

)
= mÿ. (A.4)

The second component is
∂L

∂y
= 0. (A.5)

Substituting (A.3), (A.4) and (A.5) into (A.2) gives the first equation of motion

where τy = 0:

ÿ = 0. (A.6)
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Now, for qi = z, the first component of Euler-Lagrange equation is

∂L

∂ż
= mż. (A.7)

Taking time derivative of (A.7) gives

d

dt

(
∂L

∂ż

)
= mz̈. (A.8)

The second component is
∂L

∂z
= −mg. (A.9)

Substituting (A.7), (A.8) and (A.9) into (A.2) gives the second equation of motion

where τz = 0:

z̈ = −g. (A.10)

Finally, letting qi = θh
∂L

∂θ̇h
= Iθ̇h. (A.11)

Taking time derivative of (A.11) gives

d

dt

(
∂L

∂θ̇h

)
= Iθ̈h. (A.12)

The second component is
∂L

∂θh
= 0. (A.13)

Substituting (A.11), (A.12) and (A.13) into (A.2) gives the third equation of

motion where τθh = 0:

θ̈h = 0. (A.14)

Combining (A.6), (A.10), and (A.14), gives the equations in closed form as
ÿ

z̈

θ̈h

 =


0

−g

0

 . (A.15)
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Appendix B

Derivation Of Stance Dynamics

Cartesian coordinates can be written in terms of polar coordinates as shown

below:

y = yf − ρ sin θ1 + d sin(θ1 + θ2)

z = zf + ρ cos θ1 − d cos(θ1 + θ2)

θh = θ1 + θ2 − π/2.

(B.1)

Taking derivative of both sides yield

ẏ = −ρ̇ sin θ1 − ρ cos θ1θ̇1 + d cos(θ1 + θ2)(θ̇1 + θ̇2)

ż = ρ̇ cos θ1 − ρ sin θ1θ̇1 + d sin(θ1 + θ2)(θ̇1 + θ̇2)

θ̇h = θ̇1 + θ̇2.

(B.2)

Squaring ẏ and ż gives

ẏ2 =ρ̇2 sin2 θ1 + ρ2 cos2 θ1θ̇1
2
+ d2(θ̇1 + θ̇2)

2 cos2(θ1 + θ2)

+ 2ρρ̇θ̇1 sin θ1 cos θ1 − 2d cos(θ1 + θ2) sin θ1ρ̇(θ̇1 + θ̇2)

− 2ρd cos θ1 cos(θ1 + θ2)(θ̇1 + θ̇2)θ̇1,

(B.3)

ż2 =ρ̇2 cos2 θ1 + ρ2 sin2 θ1θ̇1
2
+ d2(θ̇1 + θ̇2)

2 sin2(θ1 + θ2)

− 2ρρ̇θ̇1 sin θ1 cos θ1 + 2d sin(θ1 + θ2) cos θ1ρ̇(θ̇1 + θ̇2)

− 2ρd sin θ1 sin(θ1 + θ2)(θ̇1 + θ̇2)θ̇1.

(B.4)
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Then, their sum is

ẏ2 + ż2 =ρ̇2 + ρ2θ̇1
2
+ d2(θ̇1 + θ̇2)

2 + 2dρ̇(θ̇1 + θ̇2) sin θ2

− 2ρdθ̇1(θ̇1 + θ̇2) cos θ2.
(B.5)

The Lagrangian of the system is

L = T − V =
1

2
mẏ2 +

1

2
mż2 +

1

2
I(θ̇1 + θ̇2)

2 −mgz − 1

2
k(ρ− ρ0)

2. (B.6)

This equation can be written in polar coordinates as follows using equation

(B.5):

L =
1

2
m
(
ρ̇2 + ρ2θ̇21 + d2(θ̇1 + θ̇2)

2 + 2d(θ̇1 + θ̇2)(ρ̇ sin θ2 − ρθ̇1 cos θ2)
)

+
1

2
I(θ̇1 + θ̇2)

2 −mgρ cos θ1 +mgd cos(θ1 + θ2)−
1

2
k(ρ− ρ0)

2. (B.7)

Recall that the Euler-Lagrange equation is

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= τqi , (B.8)

where qi is the coordinate components and τqi is the torque related with coordinate

qi.

For qi = ρ, the first component of Euler-Lagrange equation is

∂L

∂ρ̇
=

1

2
m

[
2ρ̇+ 2d(θ̇1 + θ̇2) sin θ2

]
= mρ̇+md(θ̇1 + θ̇2) sin θ2. (B.9)

Taking time derivative of (B.9) gives

d

dt

(
∂L

∂ρ̇

)
= mρ̈+md(θ̈1 + θ̈2) sin θ2 +md cos θ2(θ̇1 + θ̇2)θ̇2. (B.10)

The second component is

∂L

∂ρ
= mρθ̇21 −md cos θ2θ̇1(θ̇1 + θ̇2)−mg cos θ1 − k(ρ− ρ0). (B.11)

Substituting (B.9), (B.10) and (B.11) into (B.8) gives the first equation of

motion where τρ = 0:

mρ̈+md(θ̈1 + θ̈2)sinθ2 +mdcosθ2(θ̇1 + θ̇2)
2 −mρθ̇1

2
+

mgcosθ1 + k(ρ− ρ0) = 0.
(B.12)
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Now, we repeat the same procedure for θ1. Let qi = θ1.

∂L

∂θ̇1
=m

[
ρ2θ̇21 + d2(θ̇1 + θ̇2) + d sin θ2ρ̇− dρ cos θ2(θ̇1 + θ̇2)−

dρ cos θ2θ̇1

]
+ I(θ̇1 + θ̇2).

(B.13)

Taking time derivative of (B.13) gives

d

dt

(
∂L

∂θ̇1

)
=m

[
2ρρ̇θ̇1 + ρ2θ̈1 + d2(θ̈1 + θ̈2) + d cos θ2ρ̇θ̇2

+ d sin θ2ρ̈− dρ cos θ2(θ̈1 + θ̈2) + dρ sin θ2θ̇2(θ̇1 + θ̇2)

− dρ̇ cos θ2(θ̇1 + θ̇2)− dρ cos θ2θ̈1 + dρ sin θ2θ̇1θ̇2

− d cos θ2ρ̇θ̇1

]
+ I(θ̈1 + θ̈2),

(B.14)

which yields

d

dt

(
∂L

∂θ̇1

)
=ρ̈(md sin θ2) + θ̈1(mρ2 +md2 − 2md cos θ2 + I)

+ θ̈2(md2 −mdρ cos θ2 + I) + ρ̇θ̇1(2mg − 2md cos θ2)

+ θ̇1θ̇2(2mdρ sin θ2) + θ̇2
2
(mdρ sin θ2).

(B.15)

The second component is

∂L

∂θ1
= mgρ sin θ1 −mgd sin(θ1 + θ2). (B.16)

Substituting (B.13), (B.15) and (B.16) into (B.8) gives the second equation

of motion where τθ1 = 0 as

ρ̈(md sin θ2) + θ̈1(mρ2 +md2 − 2md cos θ2 + I)

+ θ̈2(md2 −mdρ cos θ2 + I) + ρ̇θ̇1(2mg − 2md cos θ2)

+ θ̇1θ̇2(2mdρ sin θ2) + θ̇2
2
(mdρ sin θ2)−mgρ sin θ1

+mgd sin(θ1 + θ2) = 0.

(B.17)

Finally, we repeat the same procedure for θ2. Let qi = θ2.

∂L

∂θ̇2
=m

[
d2(θ̇1 + θ̇2) + d sin θ2ρ̇− dρ cos θ2θ̇1

]
+ I(θ̇1 + θ̇2). (B.18)

67



Taking time derivative of (B.18) gives

d

dt

(
∂L

∂θ̇2

)
=ρ̈(md sin θ2) + θ̈1(md2 + I −mdρ cos θ2) + θ̈2(md2 + I)

− ρ̇θ̇1(md cos θ2) + ρ̇θ̇2(md cos θ2) + θ̇1θ̇2(mdρ sin θ2).

(B.19)

The second component is

∂L

∂θ2
= mdρ̇(θ̇1 + θ̇2) cos θ2 +mdρθ̇1(θ̇1 + θ̇2) sin θ2 −mgd sin(θ1 + θ2). (B.20)

Substituting (B.18), (B.19) and (B.20) into (B.8) gives the third equation of

motion where τθ2 = τ as

τ =ρ̈(md sin θ2) + θ̈1(md2 + I −mdρ cos θ2) + θ̈2(md2 + I)

− ρ̇θ̇12md cos θ2 − θ̇21mdρ sin θ2 +mgd sin(θ1 + θ2).
(B.21)

Combining (B.12), (B.17) and (B.21) into matrix form leaves us with the

second order dynamical system

Mq̈ = f(q, q̇), (B.22)

where M and f(q, q̇) are given as

M =


1 d sin θ2 d sin θ2

d sin θ2 ρ2 − 2dρ cos θ2 + d2 + I/m d2 − dρ cos θ2 + I/m

d sin θ2 d2 − dρ cos θ2 + I/m d2 + I/m

 , (B.23)

f(q, q̇) =



ρθ̇21 − g cos θ1 − k
m
(ρ− ρ0)− d cos θ2(θ̇1 + θ̇2)

2

−2ρ̇θ̇1(ρ− d cos θ2) + gρ sin θ1−
θ̇1θ̇22dρ sin θ2 − θ̇22dρ sin θ2 − gd sin(θ1 + θ2)

τ
m
+ ρ̇θ̇12d cos θ2 + θ̇21dρ sin θ2 − gd sin(θ1 + θ2)


. (B.24)
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We can write this system in the standard form as

Mq̈+B(q, q̇)q̇+G(q) = T, (B.25)

where M is the same matrix, and B(q, q̇), G(q) and T are given as

B =


0 d cos θ2θ̇1 − ρθ̇1 d cos θ2(θ̇2 + 2θ̇1)

2θ̇1(ρ− d cos θ2) −θ̇22dρ sin θ2 θ̇2dρ sin θ2

−θ̇12d cos θ2 −θ̇1dρ sin θ2 0

 , (B.26)

G =


k
m
(ρ− ρ0) + g cos θ1

−gρ sin θ1 + gd sin(θ1 + θ2)

gd sin(θ1 + θ2)

 , (B.27)

T =


0

0
τ
m

 . (B.28)

69


