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A B S T R A C T  

A novel algorithm is proposed for efficiently smoothing the 
slices of the Wigner distribution by exploiting the recently 
developed relation between the Radon transform of the am- 
biguity function and the fractional Fourier transformation 
[ I ] .  The main advantage of the new algorithm is its abil- 
ity to  suppress cross-term interference on chirp-like auto- 
components without any detrimental effect to the auto- 
components. For a signal with N samples, the computa- 
tional complexity of the algorithm is O(N log N )  flops for 
each smoothed slice of the Wigner distribution. 

1. I N T R O D U C T I O N  

Time-frequency representations have found important ap- 
plication areas in analysis, synthesis and detection of non 
stationary signals by revealing the signals joint time and 
frequency content [a ,  31. Much of the research in time- 
frequency signal processing has been devoted to design of 
new time-frequency representations. Among the represen- 
tations developed so far the Wigner distribution [4] has at- 
tracted much of the attention because of its nice theoretical 
properties including the preservation of the marginals and 
high auto-component concentration [2,  51. The Wigner dis- 
tribution of a signal z ( t )  is given as 

W z ( t , f )  = / z ( t  + t ’ / 2 ) z * ( t  - t’/2)e-32rtt’ dt’ , ( 1 )  

where ( t ,  f )  denote the time and frequency coordinate. As it 
becomes clear from this definition, the Wigner distribution 
is a bilinear representation. Therefore the Wigner distri- 
bution of a multi-component signal z ( t )  = xz, zi ( t )  con- 
tains m(m- 1 ) / 2  cross terms of the form 2!&{WZiZj ( t ,  f)}, 
i < j ,  in addition to the auto-components W z i Z i ( t , f ) ,  
where WZtzj(t ,f)  is the cross WD [2, 31 of the signals 
zt.i(t) and z j ( t ) .  The cross-terms usually interfere with the 
auto-components and decreases the interpreteability of the 
Wigner distribution. Thus the existence of cross-terms lim- 
its the use of the Wigner distribution in some practical ap- 
plications. 

The cross-terms of the Wigner distribution have been 
extensively analyzed [6, 71. It has been found that the 
cross terms lie at mid-time and mid-frequency of the auto- 
components, they are highly oscillatory and the frequency 
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of oscillations increases with the increasing distance in time 
and frequency and they might have a peak value as high as 
twice that of the auto-components. Based on these obser- 
vations it has been suggested that some sort of smoothing of 
the Wigner distribution is necessary to suppress the cross- 
terms at  the expense of broadening of the auto-components. 
In a unified framework, the representation obtained by low- 
pass filtering the Wigner distribution are studied under 
the name of Cohen’s bilinear class of shift invariant dis- 
tributions. In this class, the time-frequency representation 
TF,(t, f )  of a signal z ( t )  is obtained as [2] 

TF,(t, f) = // A,(v, T ) ~ ( v ,  T)e-32r(ut+T’) dvd7 1 ( 2 )  

where 4(v, T) is the kernel of the distribution and &(v, T) 
is the (symmetric) ambiguity function (AF) which is the 
2-D inverse Fourier transform of the Wigner distribution: 

The drawback of this class of distributions is that a fixed 
kernel can perform well only for a limited class of signals. 
On the other hand for a large class of signals, there is a 
trade-off between good cross-term suppression and high 
auto-component concentration. Therefore to obtain high- 
quality time-frequency representation, the kernel must be 
adapted to the characteristics of the input signal to obtain a 
data-adaptive smoothing. These considerations led to the 
development of Cohen’s class of time-frequency representa- 
tions with data-dependent kernels [2]. 

The basis of the recent research on the design of data- 
dependent kernels is the following observation: In the am- 
biguity plane, the auto-components lie around the origin 
and the cross-terms lie away from the origin [6]. Thus by 
designing a kernel 4(v,  7) which is apt to the characteristics 
of the data in the ambiguity plane, higher quality represen- 
tations (more easily interpretable) are obtained (8, 91. The 
disadvantages of this approach are as follows: the obtained 
methods are computationally expensive, and kernel which 
is globally optimal does not necessarily produce locally op- 
timal results. 

In this paper, a novel approach to design a new time- 
frequency representation is proposed. In contrast to the 
vast body of previous work, the proposed approach is based 
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on the Radon transform of the ambiguity function of the in- 
put signal, which is called as the Radon ambiguity function 
transform (RAFT) [l]. The proposed time-frequency rep- 
resentation cannot be described by either a fixed or signal 
dependent kernel, therefore it does not belong to Cohen’s 
class. However, by performing windowing on the resultant 
RAFT’S, it eliminates significant part of the cross-terms 
without reducing the auto-component concentration. 

In Section 2 
the mathematical details of the new approach are given, in 
Section 3 some simulation results are presented and finally 
in Section 4 conclusions are drawn. 

The outline of the paper is as follows. 

2. DIRECTIONAL SMOOTHING OF THE 
WIGNER DISTRIBUTION 

The most important drawback of the approaches based on 
the low-pass filtering of the WD is that, the low-pass filter 
is applied in all directions of the Wigner plane. Naturally 
this leads to broadening of the auto-components, because 
the auto-components may not have a low-pass characteris- 
tic along all orientations. For instance the slice of the WD 
of a linear chirp has a low-pass characteristic when the slice 
is along the chirp’s major axis, but is has significant high 
frequency content when the slice is lying along its minor 
axis as illustrated in Fig. 1 .  Thus the directional smooth- 
ing of the WD by using low-pass filters with data-adaptive 
cut off frequencies appear to be the natural solution to the 
problem. By this way the oscillatory cross-terms with sig- 
nificant high-frequency content are suppressed without es- 
sentially decreasing the auto-component concentration. At 
the end what we get is a high resolution timefrequency 
representation. 

In this work, we assume that supports of the auto- 
components or the regions of the Wigner plane which are 
suspected to contain auto-components are specified before- 
hand. What has to be done is to efficiently smooth the 
slices of these regions with data-adaptive low-pass filters. 
In the next subsection we develop a procedure to efficiently 
smooth any arbitrarily chosen slice of the WD. 

2.1. Directional smoothing algorithm 

Suppose that we want to smooth the non-central slice of 
the Wigner distribution W, which passes through the point 
(to, fo) and makes an angle of 4 with the t imeaxis as shown 
in Fig. 2 .  I t  is straightforward to prove that this non- 
central slice of the Wigner distribution W, is the same as 
the central slice of the Wigner distribution of a signal y(t) 
at the same angle 4 (see Fig. 2 )  provided that the latter 
signal is defined in terms of the original one through the 
relation 

y(t) = z(t + to)e-32=’ot . (4) 

Thus we can formulate the smoothing problem in terms 
of the WD W,. By denoting the radial slice of the WD 
W, as SLC [W,](r,(p) E WY(rcos4,rsin(P), and impulse 
response of the real smoothing filter as h( t ) ,  the directional 
smoothing can be mathematically expressed as 

S(T,4)  = h(r)  ; SLC [WYl(.,4) , (5) 

where s (r ,4)  is the slice of the smoothed Wigner distribu- 
tion. By using the projection slice theorem [lo], the central 
slice of the Wigner distribution W, can be expressed as the 
Fourier transform of the Radon transform of the ambiguity 
function A,: 

SLC [W,](r, 4) = / R D N  [Ay](X, 4)2-32mrX dX , (6) 

where the Radon transform of the ambiguity function is 
defined as 

R D N  [Ay](X, 4) = (A cos 4- s sin 4, X sin $+s cos 4) ds . 

(7) 

Thus (5) can be expressed in the (inverse) Fourier transform 
domain as 

S(X, 4) = H(N R D N  [AYl(X, 4) , (8) 

where S(X,+) is the inverse Fourier transform of the slice 
s(r, 4) with respect to the radial variable T ,  and H(X) is the 
inverse Fourier transform of the smoothing filter h( t ) .  This 
equation gives the basis of the algorithm for smoothing any 
slice of the Wigner distribution of a signal z(t) :  

1. Compute the Radon transform R D N  [A,](X,4) of 
the ambiguity function A,(v, T). 

2. Design a multiplicative filter H(X) to capture the en- 
ergy around the origin and suppress the cross-terms 
away from the origin. 

3. Apply the multiplicative filter H(X) to the Radon 
transform R D N  [A,](X, 4) to obtain S(X, 4). 

4. Compute the slice s (r ,4)  of the smoothed distribu- 
tion from S(X,4) by using the Fourier transforma- 
tion. 

This procedure can be repeated on different slices where 
adaptively chosen filters are utilized on each slice depend- 
ing on the auto-component location in the corresponding 
R D N  [Ay](&+). However to have a practically useful al- 
gorithm, we have to obtain the Radon transform of the 
ambiguity function efficiently. As we prove in Appendix A, 
the Radon transform of the ambiguity function A,(v, 7) can 
be computed as 

where a = 2 4 / ~  and z (a- l ) ( t )  is the ( a  - l ) th  order frac- 
tional Fourier transformation [Il l  of the signal x ( t )  and in 
polar format (d,  4 + ~ / 2 )  is the closest point on the non- 
central slice of the WD to the origin as shown in Fig. 2. 

3. SIMULATION 

In this section we investigate the performance of the pro- 
posed method in removing the cross-terms residing on the 
auto-components of the Wigner distribution. The synthetic 
test signal used in this simulation is generated by linearly 
combining 5 linear frequency modulated chirp signals with 
Gaussian envelopes. The intelligibility of the Wigner distri- 
bution of this multi-component signal is severely degraded 
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by the existence of cross-terms as seen in Fig. 3(a).  In 
Fig. 3 (b), the Wigner distribution is computed on rectan- 
gular grids which contain supports of three of the auto- 
components. By using the new approach, these slices of the 
auto-components are smoothed by data-adaptive low-pass 
filtering and the obtained slices are plotted in Fig. 3(c).  
In Fig. 3 (d), the difference of the smoothed slices from 
the actual auto-components is shown to illustrate the high 
accuracy time-frequency representation provided by the al- 
gorithm. 

In the next example we investigate the problem, where 
not only the interference terms but also one of the auto- 
components are superimposed on another auto-component. 
As shown.in Fig. 4(a), the Wigner distribution of the multi- 
component signal displays significant cross and auto-term 
noise on the chirp signal centered at the origin. In Fig. 4(b), 
the smoothed slices of the WD along this chirp signal are 
plotted. As it can be seen from this plot, the noise terms 
are greatly attenuated. 

4. CONCLUSIONS 

A fast algorithm is developed for smoothing slices of the 
Wigner distribution to suppress the oscillatory cross-term 
components yielding a highly accurate representation of the 
auto-terms of the Wigner distribution. The new algorithm, 
which is especially tailored for but not limited to chirp-like 
components, is based on the recently established relation- 
ship between the Radon ambiguity function transform and 
fractional Fourier transform. In contrast to the smooth- 
ing algorithms which work by applying a low pass filter 
globally to  the WD, the new algorithm works locally on 
the slices of the WD. As shown by simulation examples, 
the proposed algorithm avoids the usual trade-off between 
cross-term suppression and auto-term broadening by tak- 
ing into account the characteristics of the cross-terms on 
the WD slices. 
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A. THE RADON AMBIGUITY FUNCTION 
TRANSFORMATION 

In [l], it has been shown that the Radon transform of the 
ambiguity function Ay(v, T), can be computed as 

R D N  [A,I(X,4) = Y ( a - l ) ( W  Y & - l ) ( - W )  , (10) 

where a = Z+/T and y(a-l) is the ( a  - l)th order fractional 
Fourier transformation (FrFT) of the signal y ( t ) .  To express 
the RAFT of y ( t )  in terms of the input signal z ( t ) ,  we first 
obtain the FrFT of y ( t )  by using the basic properties of the 
FrFT [12]: 

(11) 
where p ( t )  = 27rt(fo sin 4 + to cos 4)  is the linear phase fac- 
tor and C = ezp(yr cos 4(f: sin 4 + t% cos 4 + fo to  sin 4 ) )  
is a unit magnitude complex constant. Since we have the 
freedom to choose ( t o , f o )  as any point which lies on the 
line LMT, shown in Fig. 2 ,  we use this freedom to sim- 
plify the expression for the FrFT of y( t ) .  By choosing 
( t o , f o )  (-dcos4,dsin$) as the closest point on Lw, 
to the origin (see Fig. 2 )  we simplify (11) as 

~ ( ~ - ~ ) ( t )  = Ce”(t)z(a-l)(t - tosin+ + f 0 c o s 4 )  , 

Y(a-l)( t )  = C”(a-l)(t - 4 ’ (12) 
Finally by substituting this relation into ( lo ) ,  we obtain the 
desired expression for the R.AFT of y( t ) :  
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B. THE MODIFIED FAST FRACTIONAL 
FOURIER TRANSFORM ALGORITHM 

To simulate the proposed method, we need a fast algorithm 
to compute the samples of ~ ( ~ - ~ ) ( t  +d) .  By using the algo- 
rithm given in this appendix, the required samples can be 
computed in O(N log N )  flops by using N uniformly spaced 
samples of z( t ) .  This algorithm is obtained by modifying 
the algorithm in [13] to incorporate the delay term d, and 
removing the condition that the time-bandwidth product 
of z ( t )  be integer. 

The Fast Fractional Fourier Transform Algorithm 
Given z(n/A,), -N/2  5 n 5 N / 2  - 1,  to compute 
za(mA,/(2N) + d), -N 5 m 5 N - 1. It  is assumed 
that z ( t )  is scaled before obtaining its samples so that 
its WD is confined into a circle with diameter A, 5 fi 
~ 3 1 .  

Steps of the algorithm: 
Interpolate the input samples by 2: 

if la'l E [0.5, 1.51 then 

else 

end if 

a' := (a  + 2 mod 4) - 2 % a' E [-2, 2) 

a'' := a' 

a'' := (a' + 1 mod 4) - 2 % a'' E (0.5, 1.5) 

4 := Ea'' 

a := co t4  
p := csc4 
A+ := e x p ( - - j x  sgn(sin +) /4+j+ /2)  

% Generate the sequence cl[m], c3[m] for -N 5 m 
% 5 N - 1 and cz[m] for -2N 5 m 5 2N - 1: 

I sin+1'/2 

e 2  
cg[m]  := e J A 4 N m  

c3[m] := e J " b ( $ $ - m + + & 4  

h,t,(mAz/(2N)) := &c3[m] (c2 * g)[m] 

% Compute the following sequences for -N 5 m 5 N-1: 
9 [ml := ~1 [m] z(m/2A,) 

%In the last step FFT is used to compute the convolution 
% in O(N1ogN) flops. 
if (a(  E [0.5, 1.51 then 

else 
za(mA,/(2N) + d )  := hat! (mA,/(2N)) 

% Compute samples of the ordinary FT using FFT. 
za(mA,/2N + d )  := {.F1 h,, i}(mAZ/(2N)) 

end if 

Figure 1: A chirp signal has a low-pass characteristic along 
its major axis (b), and it has considerable bandwidth in 
along its minor axis (c). 

t t 

Figure 2: The non-central (left) and central (right) slices 
of the Wigner distribution Wz(t ,  f )  and W,(t, f ) .  

Figure 3: The Wigner distribution (a), slices of the Wigner 
distribution (b), slices of the Wigner distribution smoothed 
with data-adaptive directional filtering (c), the difference 
of the smoothed slices from the auto-components only. 

Figure 4: The Wigner distribution (a), smoothed slices of 
the Wigner distribution along one of the auto-components 
(b). 
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