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ABSTRACT

ITERATIVE FITTING APPROACH TO CR-MREPT

Çelik Boğa

M.S. in Electrical and Electronics Engineering

Advisor: Yusuf Ziya İder

June 2019

Electrical properties (conductivity, σ, and permittivity, ε) imaging, reveals

information about the contrast between tissues. Magnetic Resonance Electrical

Properties Tomography (MREPT) is one of the electrical properties imaging tech-

niques, which provides conductivity and permittivity images at Larmor frequency

using the perturbations in the transmit magnetic field, B+
1 . Standard-MREPT

(std-MREPT) method is the simplest method for obtaining electrical properties

from the B+
1 field distribution, however it suffers from the boundary artifacts

between tissue transitions. In order to eliminate this artifact, many methods are

proposed. One such method is the Convection Reaction equation based MREPT

(cr-MREPT). cr-MREPT method solves the boundary artifact problem, however

Low Convective Field (LCF) artifact occurs in the resulting electrical property

images.

In this thesis, Iterative Fitting Approach to cr-MREPT is developed for inves-

tigating the possibility of elimination of LCF artifact. In this method, forward

problem of obtaining magnetic field with the given electrical properties inside

the region of interest is solved iteratively and electrical properties are updated at

each iteration until the difference between the solution of the forward problem

and the measured magnetic field is small. Forward problem is a diffusion con-

vection reaction partial differential equation and the solution for the magnetic

field is obtained by the Finite Difference Method. By using the norm of the dif-

ference between the solution of the forward problem and the measured magnetic

field, electrical properties are obtained via Gauss-Newton method. Obtaining

electrical property updates at each iteration, is not a well conditioned problem

therefore Tikhonov and Total Variation regularizations are implemented to solve

this problem. For the realization of the Total Variation regularization, Primal

Dual Interior Point Method (PDIPM) is used. Using the COMSOL Multiphysics,
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simulation phantoms are modeled and B+
1 data for each phantom is generated for

electrical property reconstructions. 2D simulation phantom, modeled as an in-

finitely long cylindrical object, is assumed to be under the effect of the clockwise

rotating radio-frequency (RF) field. Second phantom modeled, is a cylindrical

object with finite length and z- independent electrical properties, that is placed

in a Quadrature Birdcage Coil (QBC). Third phantom modeled is a cylindrical

object placed in a QBC, with z- dependent electrical properties. In addition to

the simulation phantoms, z- independent experimental phantoms are also created

for MRI experiments.

Conductivity reconstructions of 2D simulation phantom, do not suffer from

LCF artifact and have accurate conductivity values for both Tikhonov and To-

tal Variation regularizations. While, 2D center slice reconstructions of the z-

independent simulation and experimental phantoms do not have LCF artifact,

resulting conductivity values are lower than the expected conductivity values.

These low conductivity values are obtained because of the inaccurate solution of

the forward problem in 2D for 3D phantoms. When Iterative Fitting Approach

is extended to 3D, such that solution of the forward problem is also obtained in

3D, resulting electrical property reconstruction does not have LCF artifact and

obtained conductivity values are as expected for both z- independent simulation

and experimental phantom. Reconstructions obtained for the z- dependent sim-

ulation phantom shows that electrical properties varying all 3 directions can be

accurately reconstructed using Iterative Fitting Approach. For Iterative Fitting

Approach reconstructions, voxel size of 2 mm is used for the 3D experimental

phantom and voxel size of 1.5 mm is used for all simulation phantoms and 2D

experimental phantom.

Reconstructions obtained for all phantom with Iterative Fitting Approach are

LCF artifact free. Conductivity reconstructions obtained using Tikhonov and

Total Variation regularizations have similar resolutions (1-2 pixels) but Total

Variation regularization results in smoother conductivity values inside the tissues

compared to the Tikhonov regularization.

Keywords: Magnetic Resonance Imaging (MRI), Inverse Problem, Magnetic Res-

onance Electrical Properties Tomography (MREPT), Convection-Reaction equa-

tion based MREPT (cr-MREPT), Conductivity, Tikhonov Regularization, Total

Variation Regularization.



ÖZET

KR-MREÖT İÇİN YİNELEMELİ YAKLAŞTIRMA
YÖNTEMİ

Çelik Boğa

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Danışmanı: Yusuf Ziya İder

Haziran 2019

Elektriksel özellik (iletkenlik, σ, and elektriksel geçirgenlik, ε) görüntüleme,

dokular arasında kontrast hakkında bilgiler vermektedir. Bu görüntüleme

tekniklerinden birisi olan Manyetik Rezonans Elektriksel Özellik Tomografisi’nde

(MREÖT), Larmor frekansında, transmit manyetik alandaki, B+
1 , bozulmalar

kullanılarak iletkenlik ve elektriksel geçirgenlik görüntüleri oluşturulmaktadır.

Standart-MREÖT (stt-MREÖT), B+
1 kullanan en basit MREÖT yöntemi ol-

makla beraber bu yöntemle elde edilen görüntülerde dokular arası geçişlerde sınır

artefaktları gözlemlenmektedir. Bu artefaktı ortadan kaldırmak amacıyla birçok

yöntem önerilmiştir. Bu yöntemlerden bir tanesi Konveksiyon Reaksiyon den-

klemi temelli MREÖT’dir (kr-MREÖT). kr-MREÖT yöntemi sınır artefaktını

ortadan kaldırmakla beraber elde edilen elektriksel özellik görüntüleri Düşük Kon-

vektif Bölge (DKB) artefaktından etkilenmektedir.

Bu tezde, DKB artefaktının ortadan kaldırılma ihtimalini araştırmak üzere

Yinelemeli Yaklaştırma Yöntemi geliştirilmiştir. Bu yöntemde, ilgilenilen bölge

içerisindeki elektriksel özellikler kullanılarak manyetik alanı hesaplama ileri

problemi yinelemeli olarak çözülür ve ilgilenilen bölge içerisindeki elektriksel

özellikler, problemin çözümü ve ölçülen manyetik alan arasındaki fark azalana

kadar güncellenir. İleri problem difüzyon konveksiyon reaksiyon kısmi difer-

ansiyel denklemi olup, çözümü Sonlu Farklar Yöntemi ile elde edilmektedir.

İleri problemin çözümü ile ölçülen manyetik alanın farkı kullanılarak, elektrik-

sel özellikler, Gauss-Newton yöntemiyle elde edilir. Her yinelemede elektriksel

özellik güncellemeleri elde etme problemi iyi koşullu bir problem olmadığı için

Tikhonov ve Total Varyasyon regülarizasyonları bu problemin çözümünde kul-

lanılmıştır. Total Varyasyon regülarizasyonu Birincil İkincil İç Nokta Yöntemi
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(BİİNY) ile gerçeklenmiştir. COMSOL Multiphysics kullanılarak benzetim fan-

tomları oluşturulmuş ve fantomlar için B+
1 verileri oluşturulmuş ve elektriksel

özellik geriçatımları kullanılmıştır. 2B benzetim fantomu, saat yönünde dönen

radyo-frekans (RF) alanının etkisi altındaki, sonsuz uzunluktaki bir silindirik

obje olarak modellenmiştir. Modellenen ikinci fantom, kuş kafesi sarımı içerisine

yerleştirilmiş, elektrik özellikleri z- yönünde değişmeyen, sabit uzunluktaki bir

silindir obje olarak modellenmiştir. Üçüncü fantom ise kuş kafesi sarımı içerisine

yerleştirilmiş, elektrik özellikleri z- yönünde değişen, sabit uzunluktaki bir silindir

obje olarak modellenmiştir. Benzetim fantomlarını yanısıra, deneysel fantomlar

hazırlanmış ve MRG deneylerinde kullanılmıştır.

Tikhonov ve Total Varyasyon Regülarizasyonu ile elde edilen 2B benzetim fan-

tomu iletkenlik geriçatımlarında DKB artefaktı görünmemekle birlikte iletkenlik

değerleri de beklenildiği gibi bulunmaktadır. z- bağımsız deneysel ve benzetim

fantomlarının 2B merkez kesit geriçatımlarında DKB artefaktı olmamakla beraber

iletkenlik değerlerinin beklenen değerlerin aşağısında kaldığı gözlemlenmiştir.

Bu durumun sebebi, 3B fantomların 2B ileri problem çözümünün kusurlu ol-

masıdır. Yinelemeli Yaklaştırma Yöntemi 3B olarak gerçeklendiğinde, ileri prob-

lemin çözümü 3B’ta elde edildiğinde, z- bağımsız benzetim ve deneysel fantom-

ların elektriksel özellik geriçatımlarında DKB artefaktının olmadığı ve iletkenlik

değerlerinin de doğru bir şekilde bulunduğu gözlemlenmiştir. z- bağımlı benze-

tim fantomu geriçatımlarında 3B’ta değişen iletkenlik yapılarının da Yinelemeli

Yaklaştırma Yöntemi ile doğru bir şekilde görüntülenebildiği gözlemlenmiştir.

Yinelemeli Yaklaştırma Yöntemi geriçatımlarında, tüm benzetim fantomları ve

2B deneysel fantom için 1.5 mm’lik, 3B deneysel fantom için 2 mm’lik vokseller

kullanılmıştır.

Yinelemeli Yaklaştırma Yöntemi ile edilen elektriksel özellik geriöatımlarında

DKB artefaktı gözlemlenmemektedir. Tikhonov ve Total Varyasyon regülarizasyonları

ile edilen iletkenlik geriçatımları benzer çözünürlükte olmakla beraber Total

Varyasyon regülarizasyonu ile elde edilen görüntülerde dokular içi iletkenlik

değerlerinin daha düz olduğu gözlenmiştir.

Anahtar sözcükler : Manyetik Rezonans Görüntüleme (MRG), Ters Prob-

lem, Manyetik Rezonans Elektriksel Özellik Tomografisi (MREÖT), Konvek-

siyon Reaksiyon Denklemi Temelli MREÖT (kr-MREÖT), İletkenlik, Tikhonov

Regülarizasyonu, Total Varyasyon Regülarizasyonu.
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Chapter 1

Introduction

Magnetic Resonance Imaging (MRI) is an essential diagnostic tool in medicine

due to the fact that it is a non-invasive imaging modality which does not use

ionizing radition. MRI has many imaging parameters, hence by adjusting these

parameters many contrast mechanisms can be realized. Most commonly used

contrast sources are spin density and relaxation times, but there are many other

contrast sources that have clinical use such as stiffness, diffusion and magnetic

susceptibility. One of such contrast sources, is the electrical properties and it will

be also the focus of this thesis. Electrical property imaging is benefical since it

provides a contrast between benign and malignant tissues.

Use of the electrical properties and the different electrical property imaging

methods will be discussed in the next section. It will be followed by the objective

and scope of the thesis. In the last section, organization of the thesis will be

given.
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1.1 Background of Electrical Properties Imag-

ing

Objective for the electrical property imaging is obtaining conductivity (σ) and

permittivity (ε) of the imaged object. It has been shown that malignant tis-

sues have increased conductivity compared to the benign tissues [1,2]. Therefore,

electrical property imaging can be used as a contrast mechanism for the differenti-

ation of the benign and malignant tissues. Moreover, electrical property imaging

is also utilized in other applications such as specific absorption rate (SAR) calcu-

lation [3], hyperthermia treatment [4] and transcranical magnetic stimulation [5].

For electrical property imaging first methods introduced are electrical

impedance tomography (EIT) [6, 7] and magnetic induction tomography (MIT)

[8–10]. For inducing current in the imaged object, EIT method uses surface

electrodes whereas MIT uses external coils. Because of the surface potentials,

measurements are not very sensitive to the electrical properties at the interior

regions. Hence, electrical property reconstructions obtained using EIT have low

resolution at the interior regions of the imaged objects. Similarly in MIT, mea-

sured field by the external coil is not very sensitive to the electrical properties at

the interior regions, leading to low resolution electrical property reconstruction

at the interior regions. For solving the low resolution problem at interior regions,

magnetic resonance electrical impedance tomography (MREIT) has been devel-

oped [11–16]. In this method, surface electrodes are utilized to induce currents

in the frequency range of 10 Hz - 10 kHz. Then, generated magnetic field is

measured by the MRI for the reconstruction of the electrical properties of the

imaged object. However, when external currents below the safety limits are used

in MREIT, problem of low resolution at the interior regions reoccurs.

Magnetic resonance electric properties tomography (MREPT), aims to obtain

the electrical properties at the Larmor frequency, via the perturbations in the

transmit radio frequency (RF) field. MREPT is introduced by Haacke (1991) [17],

first successful implementation is done by Wen (2003) [18] and systematic research

on the subject is started by Katscher (2009) [3].
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1.2 Standard Magnetic Resonance Electrical

Properties Tomography (std-MREPT)

In the most widespread formulation of MREPT [19], the electrical properties

are obtained through admittivity, γ = σ + iωε. In a clock-wise rotating com-

ponent of the transmitted RF magnetic field density, B+
1 , curl of both sides of

Ampere’s Law is taken and with the rearrangement of the terms Equation 1.1

can be obtained [19]:

−∇2B+
1 =

∇γ
γ
× (∇×B+

1 )− iωµ0γB
+
1 (1.1)

Assumption of locally constant electrical properties, i.e. Local Homogeneity

Assumption (LHA),the gradient term (∇γ
γ
× (∇×B+

1 )), can be neglected. With

this assumption 1.1 reduces to Equation 1.2, which is the standard MREPT for-

mulation (std-MREPT). Therefore, admittivity can be obtained through Equa-

tion 1.3.

∇2B+
1 = iωµ0γB

+
1 (1.2)

γ =
∇2B+

1

iωµ0B
+
1

(1.3)

Despite the widespread use of standard MREPT, electrical property recon-

structions obtained via Equation 1.3 suffers from the boundary artifacts due to

the elimination of the gradient term in Equation 1.1. These artifacts appear at

the transitions between regions with different admittivities. From the conduc-

tivity reconstruction in Figure 1.1, it can be seen that boundary artifacts are

prominent at the transitions between low and high conductivity regions.

There are several approches to eliminate the boundary artifacts. Hafalir intro-

duced convection-reaction equation based MREPT (cr-MREPT) where a partial

differential equation is solved via numerical methods, in order to obtain the elec-

trical properties [21]. In cr-MREPT, gradient term is not eliminated and electri-

cal property reconstructions are obtained without boundary artifacts. Similarly,

“gradient based Electrical Properties Tomography (gEPT)”, introduced by Liu
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Figure 1.1: std-MREPT Conductivity Reconstruction.

has the same approach where gradient term is not eliminated. In gEPT, B+
1 is

obtained via multichannel transceiver coil and gradient of the electrical proper-

ties is obtained from this measured B+
1 [22]. Another approach is the “Contrast

Source Inversion based EPT (CSI-EPT)” where object is assumed as a scatterer

placed in the field generated by the RF coil [23]. Using spatial integration starting

from a seed point, electrical properties are obtained. Electrical property values

are updated until the solution of integral based forward problem matches the

measured B+
1 .

When both conductivity and permittivity is to be imaged, magnitude and

phase of the complex B+
1 has to be measured for the reconstruction. In order to

reduce the required number of measurements and scan time, phase-based methods

are introduced where only B+
1 phase is for the conductivity reconstruction. In

Equation 1.4, standard phase-based MREPT formulation is given [24]. Transcieve

phase is denoted as φ.

σ =
∇2φ

2ωµ0

(1.4)

Formulation given in Equation 1.4 also utilizes LHA which causes boundary

artifacts in the conductivity reconstructions. To remedy this, Gurler introduced

a partial differential equation based method similar to the Hafalir’s method but

only phase of the complex B+
1 is used [25].
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1.3 Convection Reaction Equation Based Mag-

netic Resonance Electrical Properties To-

mography (cr-MREPT)

In convection reaction equation based MREPT (cr-MREPT), gradient term

(∇γ
γ
×(∇×B+

1 )) is not neglected. Using µ0H
+ instead of B+

1 , x and y components

of the Equation 1.1 can be written as

−∇2Hx =
1

γ

[
∂γ

∂y

(
∂Hy

∂x
− ∂Hx

∂y

)
− ∂γ

∂z

(
∂Hz

∂x
− ∂Hx

∂z

)]
− iωµ0γHx

−∇2Hy =
1

γ

[
∂γ

∂z

(
∂Hz

∂y
− ∂Hy

∂z

)
− ∂γ

∂x

(
∂Hy

∂x
− ∂Hx

∂y

)]
− iωµ0γHy

(1.5)

Then, −∇2H+ = −∇2Hx − i∇2Hy is calculated and obtained as follows:

−2∇2H+ =− i1
γ

∂γ

∂x

(
∂Hy

∂x
− ∂Hx

∂y

)
+

1

γ

∂γ

∂y

(
∂Hy

∂x
− ∂Hx

∂y

)
− 1

γ

∂γ

∂z

(
2
∂H+

∂z
− ∂Hz

∂x
− i∂Hz

∂y

)
− 2iωµ0γH

+

(1.6)

Using the fact∇· ~H = 0, and the definition of H+,
(∂Hy

∂x
− ∂Hx

∂y

)
can be obtained

as in Equation 1.7.(
∂Hy

∂x
− ∂Hx

∂y

)
=

(
∂Hy

∂x
− ∂Hx

∂y

)
− i
(
∂Hx

∂x
+
∂Hy

∂y
+
∂Hz

∂z

)
= −2i

(
∂H+

∂x
− i∂H

+

∂y
+

1

2

∂Hz

∂z

) (1.7)

Using the Equation 1.7, Equation 1.6 can be written as

∇2H+ =− 1

γ

∂γ

∂x

((
∂H+

∂x
− i∂H

+

∂y

)
+

1

2

∂Hz

∂z

)
− 1

γ

∂γ

∂y

(
i

(
∂H+

∂x
− i∂H

+

∂y

)
+
i

2

∂Hz

∂z

)
− 1

γ

∂γ

∂z

[
∂H+

∂z
− 1

2

∂Hz

∂x
− i

2

∂Hz

∂y

]
− iωµ0γH

+

(1.8)
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By defining u = 1
γ

and multiplying Equation 1.8 with u, Equation 1.9 can be

written as

~β · ∇u+∇2H+u− iωµ0H
+ = 0 (1.9)

where

∇u =


∂u
∂x
∂u
∂y

∂u
∂z

 =


1
γ2

∂γ
∂x

1
γ2

∂γ
∂y

1
γ2

∂γ
∂z

 , β =


∂H+

∂x
− i∂H+

∂y
+ 1

2
∂Hz

∂z

i∂H
+

∂x
+ ∂H+

∂y
+ 1

2
∂Hz

∂z

∂H+

∂z
− 1

2
∂Hz

∂x
− i

2
∂Hz

∂y

 (1.10)

Assuming Hz = 0 (valid assumption for birdcage coil) and electrical properties

does not change in z-direction, ∂u
∂z

= 0, Equation 1.9 can be written in 2D form

as follows

~F · ∇u+∇2H+u− iωµ0H
+ = 0 (1.11)

where

∇u =

[
∂u
∂x
∂u
∂y

]
, ~F =

[
∂H+

∂x
− i∂H+

∂y

i∂H
+

∂x
+ ∂H+

∂y

]
(1.12)

Electrical property reconstructions obtained via cr-MREPT method are free,

namely, of the boundary artifacts. However, radical changes in the reconstructed

electrical properties, namely, Low Convective Field (LCF) artifact, occurs at the

regions where the magnitude of the convective term, Fx = −iFy =

(
∂H+

∂x
−i∂H+

∂y

)
,

is low. In Figure 1.2(a), conductivity reconstruction obtained via cr-MREPT

method is shown, it can be seen that there are no boundary artifacts at the

transitions regions but there is LCF artifact at the central region coinciding with

the low convective field magnitude which is given in Figure 1.2(b).

In the literature, several methods have been proposed to eliminate the LCF

artifact. First method is the addition of an artificial diffusion term to Equation

1.10, which was proposed by Li [26]. Objective of this method is to stabilize

the numerical scheme via artificial diffusion, such that the LCF artifact is elim-

inated. Without noise, addition of diffusion term into the partial differential

equation eliminates the LCF artifact. However, with the addition of the noise,

this method cannot eliminate the LCF artifact completely. Figure 1.3 shows that

without noise, addition of the artifical diffusion term eliminates the LCF artifact.
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Figure 1.2: (a) cr-MREPT Conductivity Reconstruction. (b) Magnitude of the
Convective Field Fx

However, with the addition of the noise LCF artifact is again prominent despite

the use of artifical diffusion in cr-MREPT equation.

Ariturk proposed a method to eliminate the LCF artifact, in which multi-

transmit transverse electromagnetic array is used in two different configurations.

When H+ data obtained from both configurations are used simultaneously for

electrical property reconstruction, LCF artifact is eliminated in the resulting

electrical property reconstructions [27]. In order to achieve this, configurations

adjusted such that the LCF region in both reconstructions are non-overlapping.

While this method provides LCF artifact free conductivity reconstruction using

the cr-MREPT method, it requires additional TX array hardware at the MRI

scanner.
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Figure 1.3: (a) cr-MREPT Conductivity Reconstruction (b) Noisy cr-MREPT
Conductivity Reconstruction (c) cr-MREPT Conductivity Reconstruction with
Diffusion (d) Noisy cr-MREPT Conductivity Reconstruction with Diffusion

Another method proposed by Yildiz, is to use dielectric padding near the

imaged object in 2 different positions [28]. Two scans of the object is required

such that position of the pad is shifted leading to a shift of LCF artifact to non-

overlapping regions in each scan. Therefore, solving the cr-MREPT equation

simultaneously leads to a LCF artifact free reconstruction of electrical properties.

In this method LCF artifact is eliminated in the cost of increased scan time.

Since position of the pad has to be changed and pad object combination has to

be imaged each time, required scan time is doubled.
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1.4 Objective and Scope of the Thesis

In the literature, methods are proposed for the elimanation of the LCF artifact

in electrical property reconstructions obtained via cr-MREPT. However, proposed

methods either require additional scan time and hardware or not robust against

noise. In this thesis, Iterative Fitting Approach to cr-MREPT is developed for

obtaining LCF artifact free electrical property reconstructions.

In Iterative Fitting Approach, forward problem of obtaining H+ is solved using

the electrical properties obtained at the previous iteration and electrical proper-

ties are updated at each iteration using the difference between the solution of the

forward problem and the actual H+ data.

Using the cr-MREPT equation (Equation 1.9), forward problem of obtaining

a solution for H+ inside the region of interest can be obtained as follows:

~θ · ∇H+ + u∇2H+ − iωµ0H
+ = 0

~θ =

[
∂u

∂x
+ i

∂u

∂y
,
∂u

∂y
− i∂u

∂x
,
∂u

∂z

]T (1.13)

The uniqueness theorem proved by Ammari in 2015 [29], states that if the

electrical properties inside the region of interest along with the H+ at the region

boundaries are known, H+ inside the region of interest can be accurately calcu-

lated. This theorem shows that solution of the forward problem is accurate for

the electrical property distribution at each iteration.

Instead of using the 3D cr-MREPT equation, using the 2D cr-MREPT equa-

tion (Equation 1.11) forward problem for 2D can be obtained as follows.

~θ·∇H+ + u∇2H+ − iωµ0H
+ = 0

~θ =

[
∂u

∂x
+ i

∂u

∂y
,
∂u

∂y
− i∂u

∂x

]T (1.14)

After solving the forward problem, electrical property updates are obtained

by minimizing the norm between solution of the forward problem and the actual
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H+ data. Obtaining the electrical propety updates at each iteration is an ill-

conditioned problem, which is a common case for inverse problems. In order to

overcome this ill-condition, Tikhonov and Total Variation regularizations are used

with Iterative Fitting Approach. 2D and 3D electrical property reconstructions

are obtained via Iterative Fitting Approach with Tikhonov and Total Variation

regularizations for simulation and experimental phantoms.

1.5 Organization of the Thesis

This thesis has 4 chapters.

In Chapter 2, the developed method for LCF artifact elimination, Iterative

Fitting Approach is elucidated. Mathematical background for the method is pre-

sented: forward problem formulation, solution of the forward problem, solution

for electrical properties using the aforementioned forward problem and implemen-

tation of the Tikhonov and Total Variation regularization are discussed. Necessity

of the 3D extension of the Iterative Fitting Approach is discussed. Simulation and

experimental methods used for magnetic field data generation and measurement,

are explained.

In Chapter 3, results for accuracy of the forward problem solution is presented

along with the results for 2D and 3D implementation of the Iterative Fitting

Approach with Tikhonov and Total Variation regularizations.

In Chapter 4, concluding remarks are stated along with the summary of the

Iterative Fitting Approach method. Possible future work in implementation and

realization of the Iterative Fitting Approach is discussed.
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Chapter 2

Theory and Methods

2.1 Iterative Fitting Approach to cr-MREPT

2.1.1 Forward Problem Formulation

In cr-MREPT method, electrical property reconstructions are obtained by solv-

ing Equations 1.9 and 1.11 inside a region of interest (ROI).

~β · ∇u+∇2H+u− iωµ0H
+ = 0

~β =

[
∂H+

∂x
− i∂H

+

∂y
, i
∂H+

∂x
+
∂H+

∂y
,
∂H+

∂z

]T (2.1)

Equation 2.1 is the cr-MREPT partial differential equation where u = 1
γ

and

coefficients are obtained from H+ and its derivatives. This is the inverse problem

formulation for obtaining the electrical property reconstructions. It is also an

implicit solution of electrical property reconstructions.
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Using the cr-MREPT equation, forward problem of calculating H+ data inside

the region of interest using the electrical properties inside the region is obtained

as follows.

~θ · ∇H+ + u∇2H+ − iωµ0H
+ = 0

~θ =

[
∂u

∂x
+ i

∂u

∂y
,
∂u

∂y
− i∂u

∂x
,
∂u

∂z

]T (2.2)

Forward problem is also a partial differential equation but unknowns are the

H+ values and coefficients are calculated using electrical properties, u. Using

this formulation, electrical property reconstructions are obtained via an iterative

method with two steps. First, forward problem is solved to calculate H+ inside

the ROI using the electrical property values from the previous iteration. For

the first iteration, uniform distribution of the electrical properties is used. Then,

electrical property values are updated using the difference between calculated H+

and measured H+. When calculated H+ values and measured H+ values become

close, electrical properties inside the region of interest will be obtained. This

method is called ”Iterative Fitting Approach (IFA)”.

Iterative Fitting Approach is realizable because of the uniqueness theorem

proved by Ammari, in 2015 [29].Without this theorem, H+ calculation, had to be

done for the entire 3D space at the first step and electrical property updates would

be calculated for the entire 3D space. However, using this theorem, Iterative

Fitting Approach can be realized for the region of interest inside the imaged

object.

Iterative Fitting Approach can also be realized in 2D space as well as 3D space

with using the 2D cr-MREPT equation for a single slice. If electrical proper-

ties are assumed to be translationally uniform in the z- direction, corresponding

forward problem in 2D form can be written as in Equation 2.3. This forward

problem formulation was provided previously but it has been provided again for

emphasizing the 2D formulation before continuing to following sections. In this
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formulation, ∇ = [ ∂
∂x
, ∂
∂y

]T is the 2 dimensional gradient operator.

~θ·∇H+ + u∇2H+ − iωµ0H
+ = 0

~θ =

[
∂u

∂x
+ i

∂u

∂y
,
∂u

∂y
− i∂u

∂x

]T (2.3)

In Chapter 3, results for the solution of the forward problem is provided. It can be

seen that H+ can be calculated accurately using the actual electrical properties

inside the desired region which falls inline with the Ammari’s uniqueness theorem.

2.1.2 Discretization of the Forward problem

In general forward problem, Equation 2.3, does not have an analytical solution.

Therefore, H+ inside the region of interest is calculated using numerical methods.

In the Iterative Fitting Approach, Finite Difference Method is used on a uniform

grid to solve the forward problem.

H+ values and the electrical properties on the nodes of this uniform grid is de-

noted as H and U respectively. Using the central difference formulas, derivatives

in x- and y- directions ( ∂
∂x

and ∂
∂y

) and the Laplacian (∇2) operator matrices are

constructed. Derivative operator matrices in x- and y- direction on the nodes

of the uniform grid, are denoted as Dx and Dy respectively. Laplacian operator

matrix is denoted as D2. Finite Difference Method is used for the operator matrix

construction are as follows.

∂ui,j
∂x

=
ui+1,j − ui−1,j

2dx
,
∂2ui,j
∂x2

=
ui+1,j − 2ui,j + ui−1,j

dx2

∂ui,j
∂y

=
ui,j+1 − ui,j−1

2dy
,
∂2ui,j
∂y2

=
ui,j+1 − 2ui,j + ui,j

dy2

(2.4)

Then, using these operator matrices, partial differential equation of forward

problem is converted to a set of linear equations in the form of AH = 0. Formu-

lation of the coeffecient matrix A, using the discrete operator matrices and the
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electrical properties, is given in Equation 2.5.

A = diag[(Dx − iDy)U ]Dx + diag[(Dy − iDx)U ]Dy + diag[U ]D2 − iωµ0I (2.5)

diag[] operator converts a N × 1 vector into a N × N matrix with diagonal

entries are the vector itself (ith diagonal entry of the matrix is the ith element of

the vector) and other entries are equal to zero. It can be seen that coefficient

matrix A is dependent on the electrical properties and their derivatives.

A matrix and H vector partitioned with respect to inner and boundary nodes

resulting in AinHin = −AbounHboun = b. Unknown H+ values at the inner nodes

are denoted as Hin and Hboun denotes the H+ values at the boundary nodes.

Hboun values are selected as the measured H+ values at the same boundary nodes

for satisfying the condition for the Ammari’s uniqueness theorem.

2.1.3 Solution for Electrical Properties

In order to obtain the solution for electrical properties, conductivity (σ) and

permittivity (ε), the L2 norm between the calculated H+ values from the for-

ward problem (denoted as Hc
in at the inner nodes) and the measured H+ values

(denoted as Hm
in at the inner nodes) has to be minimized. This leads to the

minimization problem given in Equation 2.6.

min ||Hc
in −Hm

in||22 (2.6)

Using the Taylor series expansion, solution of the forward problem at the inner

nodes, Hc
in, can be written as follows

Hc
in = H0

in +
∂Hc

in

∂U

∣∣∣∣
U0,H0

in

(U − U0) +
1

2

∂2Hc
in

∂U2

∣∣∣∣
U0,H0

in

(U − U0)2 + . . . (2.7)

In Equation 2.7, H0
in and U0 are the calculated Hin and U values from the

previous iteration.
∂Hc

in

∂U

∣∣
U0,H0

in
term is the Jacobian matrix and it will be denoted
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as S. Electrical property updates, ∆U , will be defined as ∆U = U−U0. Therefore,

by ignoring the higher order terms, Hc
in can be modeled as follows.

Hc
in = H0

in + S∆U (2.8)

Then inserting Equation 2.8 into Equation 2.6, Equation 2.9 can be obtained

as follows

min ||H0
in −Hm

in + S∆U ||22 (2.9)

Electrical property updates, ∆U , can be obtained via the solution of the mini-

mization problem given in Equation 2.9 at each iteration until the solution of the

forward problem, Hc
in and the measued H+ data are close.

For solving the minimization problem, real and imaginary parts of the ∆U

are seperated such that Equation 2.9 transformed to Equation 2.10. Where new

Jacobian matrix is generated by using the fact that Jacobian matrix for imaginary

part of ∆U is Jacobian matrix for real part of ∆U multiplied with i. Subcript r

denotes the real part and subscript i denotes the imaginary part.∣∣∣∣∣
∣∣∣∣∣
[
H0
in,r

H0
in,i

]
−

[
Hm
in,r

Hm
in,i

]
+

[
Sr −Si

Si Sr

][
∆Ur

∆Ui

] ∣∣∣∣∣
∣∣∣∣∣
2

2

(2.10)

2.1.4 Calculation of Jacobian Matrix

At each iteration of Iterative Fitting Approach method, Jacobian matrix S

has to be calculated. Due to the lack of analytical relation between electrical

properties and the coefficient matrix A, Jacobian matrix S is calculated using

numerical methods. Equation 2.11 shows the formulation of the Jacobian matrix

for N inner nodes.

S =
[∂Hin

∂u1

. . .
∂Hin

∂uN

]
(2.11)
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2.1.4.1 Finite Difference Based Method

First calculation method for the S matrix is the Finite Difference Based

method. In Finite Difference Based method an element of U , that belongs to

inner nodes, is increased slightly and using this new U vector, forward problem is

solved. Then, using forward differencing column of the S matrix corresponding

to that index will be calculated. Repeating this procedure for all inner nodes, S

matrix will be calculated.

However, this method requires a long computation time due to the fact that

for each inner node solution of a linear system has to be calculated, i.e. matrix

inversion is calculated at each step. Due to the immense number of inner nodes,

calculating S matrix with this method results in long iteration times. Hence,

using the Finite Difference based method significantly increases required time for

the electrical property reconstructions.

2.1.4.2 Semi-Analytic Method

In order to reduce the computation time for the calculation of S matrix, semi-

analytic method is developed. Total differential of the forward problem, AinHin =

b, for a interior point can be obtained as in Equation 2.12.

∂A

∂ui
H0
in + A0

∂Hin

∂ui
=

∂b

∂ui
(2.12)

H0
in is the solution of the forward problem, calculated Hin, for that iteration,

A0 is the coeffient matrix used for the solution of the forward problem and ui

is the electrical property value at inner node i. And by rearranging the terms

Equation 2.12 can be written as follows.

∂Hin

∂ui
= A0

−1

[
∂b

∂ui
− ∂A

∂ui
H0
in

]
(2.13)

Using Equation 2.13, each corresponding column of S matrix can be calcu-

lated for each ui until the S matrix is completed. However, ∂A
∂ui

and ∂b
∂ui

cannot

16



be calculated analytically but using Equation 2.5 and index information of the

finite difference operator matrices, they can be calculated numerically. Defining

Bi = ∂b
∂ui
− ∂A

∂ui
H0
in, for each inner node and taking common term A−10 out of the

paranthesis, Equation 2.11 can be written as follows.

S = A−10

[
B1 . . . BN

]
(2.14)

With Equation 2.14, Jacobian matrix S can be calculated using a single linear

system of equation solution. Whereas finite difference based method requires N

linear system of equation solution. Therefore, semi-analytic calculation method

is significantly faster and computationally efficient. For example, for 3925 in-

ner node, S matrix is calculated in 14 seconds with the semi-analytic method,

where using finite difference based calculation method S matrix takes 255 sec-

onds. Which indicates that using the developed semi-analytic method, reduces

the required computation time for each iteration and for overall electrical property

reconstruction.

2.1.5 Regularization

Using the definition H+ = 1
2
(Hx + iHy), Fx = (∂H

+

∂x
− i∂H+

∂y
) term in Equation

1.11 can be written as follows:

Fx =
∂Hx

∂x
+
∂Hy

∂y
+ i(

∂Hy

∂x
− ∂Hx

∂y
) (2.15)

Using the fact that∇Ḣ = 0 and assuming ∂Hz

∂z
, Equation 2.15 can be simplified

to Fx ∼= i
2
(∂Hy

∂x
− ∂Hx

∂y
). Then by using the z- component of the Ampere’s Law,

Equation 2.16 can be obtained [27].

2iFx = γEz (2.16)

Equation 2.16, shows that magnitude of the convective field, Fx, is directly

related to the electric field, Ez. In the regions where magnitude of the Fx is close
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to 0, magnitude of the Ez is also close to 0. This indicates an insensitivity to the

γ values for the regions with low Fx magnitude therefore in the solution of the

forward problem. This creates an ill-condition in the problem for obtaining the

electrical property updates at each iteration.

Singular value decomposion of the real and imaginary separated S matrix

is calculated, where matrix V consists of right singular vectors, which are the

basis functions of the solution space. In Figure 2.1(a-p), magnitude of the im-

ages obtained from the columns of V are shown for the singular values number

1, 10, 30, 50, 100, 200, 500, 1000, 3000, 5000, 7000, 7500, 7600, 7700, 7800 and 7850.

Where largest singular value is number 1 is and the smallest singular values is

number 7820. Figure 2.2, shows the normalized singular value decomposition for

real and imaginary seperated S matrix is given.

Figures 2.1 and 2.2, shows that small singular values correspond to the basis

functions relating the electrical property updates at the region where magnitude

of the Fx. Which indicates that there is in ill-condition for obtaining the electrical

property updates, arising from the insensitivity to the electrical property values

at the LCF region.
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Figure 2.1: (a-p) Magnitude of the Images Obtained
from the Columns of V for the Singular Values number
1, 10, 30, 50, 100, 200, 500, 1000, 3000, 5000, 7000, 7500, 7600, 7700, 7800 and
7850
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Figure 2.2: Normalized Singular Value Decomposition for Real and Imaginary
Seperated S Matrix

Due to the ill-conditioned nature of the problem, electrical property updates

cannot be obtained directly from the minimization problem given in Equation

2.10. In Figure 2.2, normalized singular values of the S matrix, for 3925 inner

nodes (real and imaginary parts are seperated), with respect to the largest singu-

lar value is given where the condtion number, value of the lowest singular value,

indicates that Equation 2.10 is an ill-conditioned problem.

In order to obtain a solution for ∆U , regularization terms are added to the

minimization problem. With the addition of the regularization term, ill-condition

of the problem is reduced such that solution for ∆U can be obtained. Moreover,

with the application of the regularization to Equation 2.10, artifacts in the elec-

trical property reconstructions such as boundary and LCF artifacts will also be

eliminated. Tikhonov and Total Variation Regularization is used for reconstruc-

tions with Iterative Fitting Approach.
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2.1.5.1 Tikhonov Regularization

First regularization used in Iterative Fitting Approach is the Tikhonov regu-

larization. In order to realize this regularization, ||∆U ||22 term is added to the

minimization problem given in Equation 2.9, with regularization parameter λ.

Resulting minimization problem is as follows.

||H0
in −Hm

in + S∆U ||22 + λ||∆U ||22 (2.17)

Equation 2.17 is a quadratic problem and solution of ∆U in the least squares

sense is obtained as

∆U = (STS + λI)−1(ST (H0
in −Hm

in)) (2.18)

When real and imaginary parts of the electrical property updates, ∆U ’s, are

seperated Equation 2.17 is transformed into Equation 2.19.∣∣∣∣∣
∣∣∣∣∣
[
H0
in,r

H0
in,i

]
−

[
Hm
in,r

Hm
in,i

]
+

[
Sr −Si

Si Sr

][
∆Ur

∆Ui

] ∣∣∣∣∣
∣∣∣∣∣
2

2

+

∣∣∣∣∣
∣∣∣∣∣
[

∆Ur

∆Ui

] ∣∣∣∣∣
∣∣∣∣∣
2

2

(2.19)

With the implementation of Tikhonov regularization, ill-condition of the prob-

lem is reduced due to the fact that lowest singular value has a lower limit due

the ||∆U ||22 term. Limit itself is related to the regularization parameter λ. In

figure 2.3, normalized singular values for the coefficient matrix of Equation 2.19

is given and it can be seen that condition number of the problem is reduced.

2.1.5.2 Total Variation Regularization

In general, Tikhonov regularization results in smoother transitions between

different regions, whereas Total Variation regularization results in sharper transi-

tions [30, 31]. Therefore, for obtaining sharper transitions between tissues, Total

Variation regularization is also implemented with Iterative Fitting Approach. For

the realization of Total Variation regularization,
∫

Ω
|∇U |dΩ term is added to the
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Figure 2.3: Normalized Singular Value Decomposition for Real and Imaginary
Seperated S Matrix with Tikhonov Regularization with λ = 0.005

minimization problem given in Equation 2.9. Resulting minimization problem is

given in Equation 2.20 and β is the regularization parameter.

||H0
in −Hm

in + S∆U ||22 + β

∫
Ω

|∇U |dΩ (2.20)

Total Variation regularization term,
∫

Ω
|∇U |dΩ, is not differentiable due to

the L1 norm, hence, the solution of the Equation 2.20 can only be obtained via

approximations of it’s derivative [31, 32]. Primal Dual Interior Point Method

(PDIPM) is used for the implementation of the Total Variation regularization

since this method is previously used for MREIT [33] and std-MREPT [34] con-

ductivity reconstructions.
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2.1.5.3 Primal Dual Interior Point Method (PDIPM)

In the PDIPM, the Total Variation term is discretized for each index and

resulting in
∑

i |LiU |, where Li is ith row of the summation of derivative operator

matrices in x- and y- directions (L matrix). Total Variation regularized problem

formulation with discretized Total Variation term, given in Equation 2.21, is

labeled as the primal problem.

arg min
U

||H0
in −Hm

in + S∆U ||22 + β
∑
i

|LiU | (2.21)

Then, by defining auxilary variables χ, for each index i, L1 norm can be written

as follows.

|LiU | = max
χi,|χi|≤1

χiLiU (2.22)

By inserting Equation 2.22 into the primal problem, Equation 2.21, a second

equivalent problem is obtained as in Equation 2.23. This is the dual problem and

auxilary variables χ’s are the dual variables.

max
χi,|χi|≤1

arg min
U

||H0
in −Hm

in + S∆U ||22 + β
∑
i

χiLiU (2.23)

For the feasible points where |χi| < 1, cost function of primal problem (Equa-

tion 2.21) takes larger values than the cost function of the dual problem (Equation

2.23). But both cost functions take the same value at a single point, which is

the optimal point for both functions. This optimal point can be obtained by

reducing the difference between primal and dual problem cost functions, called

the primal-dual gap. ∑
i

(
|LiU | − χiLiU

)
(2.24)

Thus, in feasible region, solution in PDIPM framework can be obtained by

solving the following set of equations.

|χi| ≤ 1,(
|LiU | − χiLiU

)
, i = 1, 2, . . .

ST (H0
in −Hm

in + S∆U) + βLU

(2.25)
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However, absolute value in primal-dual gap is not differentiable. In order

to achieve differentiability, |LiU | is approximated as
√
|LiU |2 + α. Which is

differentiable and as α → 0,
√
|LiU |2 + α → |LiU |. Therefore, using small

α values, differentiability will be achieved without deviating much from |LiU |.
Then using the Gauss Newton method, linear system of equations for ∆U and

∆χ is obtained as follows.[
STS βLT

KL −E

][
∆U

∆χ

]
= −

[
ST (H0

in −Hm
in) + βLTχ

LU − Eχ

]
ηi =

√
(LiU)2 + α, E = diag(η)

Ki = diag(1− χiLiU

ηi
), i = 1, 2, . . .

(2.26)

At each iteration, individual updates for electrical properties and dual variables

can be calculated from Equation 2.27, using Equation 2.26.

∆U = −
(
STS+βLTE−1KL

)−1(
ST (H0

in −Hm
in) + βLTE−1LU

)
∆χ = −χ+ E−1LU + EKL∆U

(2.27)

For ensuring that dual variables, χ’s, are in the feasible region for all indeces,

|χi| < 1, some form of normalization has to be applied for either the update

itself or the updated dual variables.In the Iterative Fitting Approach applications,

updated dual variables are normalized as follows at an iteration k.

χk =
χk−1 + ∆χ

max(χk−1 + ∆χ)
(2.28)

2.1.5.4 Discretization of Total Variation Term

When L matrix in Equation 2.21 is generated using the derivative operator

matrices constructed via central differencing formulas, ill-conditionedness of the

problem decreases. However, ill-conditioned nature of the problem still promi-

nent. Compared to Figure 2.2, in Figure 2.4 it can be seen that addition of Total

Variation regularization with the L matrix constructed using central difference

formulas reduces the ill-condition of the problem but compared to the Figure 2.3,
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ill-condition of the problem is not reduced to a comparable level of Tikhonov

regularization.

Figure 2.4: Normalized Singular Value Decomposition for Real and Imaginary
Seperated S Matrix with Total Variation Regularization Using Central Difference
Formulas

However, when forward or backward difference formulas are used ill-condition

of the problem futher decreases, as it can be seen in Figure 2.5. Therefore,

averaging of electrical property updates obtained via solution of Equation 2.20

using forward and backward differencing, is applied so that drawbacks of forward

and backward difference formulas will be mitigated.
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Figure 2.5: Normalized Singular Value Decomposition for Real and Imaginary
Seperated S Matrix with Total Variation Regularization Using (a) Forward Dif-
ference Formulas (b) Backward Difference Formulas
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2.1.6 Extension to 3D

From 2D central slice reconstructions of simulation and experimental phan-

toms(Figure 3.13(e,h) and 3.15(e,h) in Chapter 3), it can be seen that Iterative

Fitting Approach results in inaccurate conductivity values for 3D objects. This

problem arises since 2D forward problem formulation, Equation 2.3, results in

inaccurate solution of H+ in the slice. Therefore, electrical property updates

cannot be obtained correctly which leads to inaccurate electrical property recon-

structions.

For solving this problem, Iterative Fitting Approach is extended for obtaining

3D electrical property reconstructions so that solution of the 3D forward problem

is similar to the measured H+ and accurate conductivity values will be obtained

using the Iterative Fitting Approach.

Another advantage of the 3D electrical property reconstruction is elimination

of the z- independent electrical property assumption required for dimensionality

reduction of the 3D formulations. This assumption is not valid for complex

structures such as brain, where electrical properties vary in all 3 dimensions.

With the 3D reconstruction method, electrical property reconstructions of 3D

varying structures can be obtained more accurately.

However, for 3D reconstructions, required MRI scan time increases due to the

fact that 3D H+ data is required for the reconstruction. Moreover, required

computation time and memory is also increased signifacntly due to the number

of unknowns.

Determining the number of slices used for 3D Iterative Fitting Approach is

critical since there will be error propagation from the boundary slices, top and

bottom slices, which will effect the electrical property reconstructions. In Figure

2.6 (a-f), center slice of the conductivity reconstructions obtained via Iterative

Fitting Approach with Tikhonov regularization at 5th iteration using 5,7,9,11,13

and 15 slices are given respectively. It can be seen from the Figure 2.6 that using

less than 9 slices results in erronous conductivity reconstructions. However, there
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are no significant difference between conductivity reconstructions at the center

slice when 11, 13 and 15 slices are used. Therefore, 11 slices will be used for the

3D Iterative Fitting Approach electrical property reconstructions for reducing the

required computation time.

Figure 2.6: (a-f) Center Slice of the Conductivity Reconstruction obtained via
Iterative Fitting Approach with Tikhonov Regularization using 5, 7, 9, 11, 13
and 15 Slices

2.2 Simulation Methods

Using the COMSOL Multiphysics, simulation phantoms are modeled and H+

data for each phantom is generated. This generated H+ data is used for electrical

property reconstructions. Simulation phantoms are modeled based on the method

proposed by Gurler [35].

First phantom modeled is the 2D simulation phantom, where infinitely long

cylindrical object is assumed to be under the effect of the clockwise rotating radio-

frequency (RF) field. Hence, 2D H+ data that does not change in z- direction

is obtained. With the assumption of infinitely long cylindrical object, it is also

assumed that electrical properties does not change in z- direction. 2D triangular
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mesh with 1 mm mesh size is used for the electromagnetic simulation of this

phantom.

Second phantom modeled in the COMSOL Multiphysics, is a cylindrical object

that is placed in a Quadrature Birdcage Coil (QBC). Using this phantom, 3D H+

is generated. For enabling the use of H+ in only the central slice of the object,

electrical properties are given as z- independent. Such that assumption made for

obtaining 2D equations will be somewhat satisfied. In Figure 2.7, model of this

phantom is given.

Figure 2.7: z- Indepedent 3D Phantom Model Inside the Quadrature Birdcage
Coil (First 3 Rungs are not Shown)

Third phantom modeled is again a cylindrical object placed in a QBC, but

electrical properties of the anomalies inside the phantom are z- dependent. In

Figure 2.8, geometry of 3D varying anomalies inside this phantom along with the

placement of this phantom inside the QBC is given. In this phantom, anomalies

with different electrical properties are designed as 3 cylinders, height is 0.6 cm

and radius is 1 cm, with centers in the center slice of the cylindrical object.

For 3D simulation phantoms, tetrahedron based, variable size mesh has been

used for the phantom and the coil. The maximum element size was set to be 1.3

mm for the regions inside the phantom where −0.5 cm < z < 0.5 cm and inside

all of the capacitors, and 1 cm for the remaining parts of the phantom and for

the dielectric regions of the coil.
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Figure 2.8: (a) 3D Phantom Model Inside the Quadrature Birdcage Coil (First 3
Rungs are not Shown) (b) xy- Cross Section of Anomalies at the Center Slice of
3D Phantom

2.3 Experimental Methods

2.3.0.1 Phantom Preparation

Experimental phantoms are designed as cylindrical z- independent phantoms

with 15 cm height and 6 cm radius. Background of the phantom is an agar-saline

gel (20 g/L Agar, 2 g/L NaCl, 1.5 g/L CuSO4 ) with expected conductivity of

0.5 S/m [21]. Anomalies are created as cylindrical holes in the background agar-

saline gel , with the same height as gel, filled with saline solution (6 g/L NaCl,

1.5 g/L CuSO4). Anomalies have expected conductivity of 1 S/m [21].

Figure 2.9: Top View of the Experimental Phantom used in 3D Reconstructions
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2.3.0.2 Sequences and Parameters

For complex B+
1 mapping, phase and magnitude maps of the B+

1 obtained

seperately using different pulse sequences. B+
1 phase map is obtained via balanced

Steady State Free Precision (bSSFP) pulse sequence. On the other hand, B+
1

magnitude map is obtained using Bloch-Siegert Shift based method.

For the 2D reconstructions of the experimental phantoms, 2D bSSFP is used for

the B+
1 phase mapping at the central slice with the following sequence paramters:

FOV = 20 cm × 20 cm, Slice Thickness = 2 mm, Flip Angle = 40o , TR/TE =

4.68/2.34 ms, Matrix Size= 128× 128 and 1024 averages. 2D Bloch-Siegert Shift

based method is used obtaining the B+
1 magnitude, with the following sequence

parameters: FOV = 20 cm× 20 cm, Slice Thickness = 2 mm, Flip Angle = 55o,

TR = 100 ms, TE = 11 ms, Matrix Size= 128 × 128, 32 averages, Fermi pulse

with off-resonance = 1000 Hz.

For the 3D reconstructions of the experimental phantoms, multi-slice bSSFP

sequence is used for the B+
1 phase mapping at the central slice with the following

sequence paramaters: FOV = 17.5 cm×17.5 cm×4 cm, Slice Thickness = 2 mm,

Flip Angle = 40o , TR/TE = 4.58/2.29 ms, Matrix Size= 128× 128× 20 and 32

averages. Multi-slice Bloch-Siegert Shift based method is used obtaining the B+
1

magnitude, with the following sequence parameters: FOV = 17.5 cm×17.5 cm×
4 cm, Slice Thickness = 2 mm, Flip Angle = 55o, TR = 100 ms, TE = 15 ms,

Matrix Size= 128 × 128 × 20, 16 averages, Fermi pulse with off-resonance =

1000 Hz and duration of 6 seconds.

In the B+
1 phase data, linear phase shifts between slices are observed, due

to the multi-slice acquisition. Phase shifts are shown in Figure 2.10(a) for the

pixel at the center of the imaged object (b) for a pixel close to the edge of the

imaged object. When a second order polynomial curve fit is used to determine

the linear phase shifts for each pixel, it is observed that for each pixel slope of

the linear phase shift is not identical therefore removal of the linear term in the

second order polynomial for each pixel will not suffice. However, considering that

imaged region in z- direction is relatively small, it can be assumed that phase
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does not change significantly in z- direction. Therefore, phase is assumed to be

constant in z- direction and phase of the center slice is assigned to the all the

other slices.

Figure 2.10: (a) Phase of the Center Pixel for All Slices (b) Phase of an Outer
Pixel for All Slices

2.4 Selection of Initial Electrical Property Dis-

tributions

In Iterative Fitting Approach, initial electrical property distributions have to

be assigned in order to solve the forward problem for the first iteration. For

electrical property reconstructions of the simulation phantoms, initial electrical

property distribution is selected as uniform electrical properties with the back-

ground electrical property values in the region of interest. For the experimental

phantom, initial electrical properties distribution is selected as the uniform distri-

bution of the expected electrical property values of the background in the region

of interest. However, if the electrical property values are not known before hand,

selection of the initial distribution can be done by selecting a uniform distribution

of approximate average value of electrical properties in the region of interest.
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Chapter 3

Results

3.1 Forward Problem Results

In order to test the solution of the forward problem, actual electrical properties

of the simulation phantoms are for obtaining H+ data for the simulation phan-

toms. H+ data for the simulation phantoms are obtained using the COMSOL

Multphysics and these H+ data will be denoted as the measured H+ data and

H+ obtained by solving the forward problem will be denoted as calculated H+.

In Figure 3.1, (a) Magnitude of measured H+ for 2D simulation phantom,

(b) Magnitude of calculated H+ for 2D simulation phantom and (c) difference

between measured and calculated H+ are given. From Figure 3.1, it can be

seen that calculated H+ matches the measured H+ and difference between them

is at most less than 1%. In fact this is only at the internal boundaries where

we also expect numerical errors due to mesh based approximations. Since the

internal boundaries are discontinuities in the electrical property distributions,

difference between calculated and measured H+ is more enhanced. Difference

between calculated and measured H+ is given in Figure 3.1(c). Figure 3.1 shows

that using the forward problem H+ can be solved accurately in 2D for the 2D

simulation phantom.
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Figure 3.1: (a) Magnitude of Measured H+ for 2D Simulation Phantom (b) Mag-
nitude of Calculated H+ for 2D Simulation Phantom (c) Magnitude of Difference
Between Calculated and Measured H+ for 2D Simulation Phantom

In Figure 3.2, (a) Magnitude of measured H+ at the center slice for z- indepen-

dent 3D simulation phantom, (b) Magnitude of calculated H+ at the center slice

for z- independent 3D simulation phantom and (c) difference between measured

and calculated H+ at the center slice are given. From Figure 3.2, it can be seen

that difference between calculated H+ and measured H+ is around 10 % which

incidicates that solution of the forward problem is erroneous for the single slice

of 3D objects.

When 3D forward problem formulation is used for the 3D calculation of the

H+ in z- independent 3D simulation phantom, difference between measured and

calculated H+ reduces. In 3D case, 1st and 21th slices of the measured H+ is

also given as boundary conditions. In Figure 3.3, (a,c) first and (b,d) 11th slices

of magnitude of the measured and calculated H+ are given. For the solution

of the forward problem 21 slices are used. In Figure 3.4 (a-g), magnitude of the

difference between measured and calculated H+ at slices 1, 4, 7, 11, 15, 18 and 21

are given. Similar to the z- independent 3D simulation phantom case, difference

between measured and calculated H+ increases at the middle slices and decreases

at the slices near the boundary layers.

34



Figure 3.2: (a) Magnitude of Measured H+ for z- Independent 3D Simulation
Phantom at the Center Slice (b) Magnitude of Calculated H+ for z- Independent
3D Simulation Phantom at the Center Slice (c) Magnitude of Difference Between
Calculated and Measured H+ for z- Independent 3D Simulation Phantom at the
Center Slice

Figure 3.3: (a) Magnitude of Measured H+ for z- Independent 3D Simulation
Phantom at 1st Slice (b) Magnitude of Measured H+ for z- Independent 3D Sim-
ulation Phantom at 11th Slice (c) Magnitude of Calculated H+ for z- Independent
3D Simulation Phantom at 1st Slice (d) Magnitude of Calculated H+ for z- Inde-
pendent 3D Simulation Phantom at 11th Slice
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Figure 3.4: (a-g) Magnitude of the Difference Between Measured and Calculated
H+ for z- Independent 3D Simulation Phantom at Slices 1, 4, 7, 11, 15, 18 and
21
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Figures 3.3 and 3.4 shows that using the 3D forward problem formulation,

H+ can be accurately calculated in 3D for 3D phantoms on the contrary to the

forward problem solution for 3D phantom only at the central slice. In all slices,

difference between measured and calculated H+ is less than 1% but difference

between them is even smaller near the boundary slices compared to the central

slices. For example, difference at slice 18 and 4 is similar but they are less than

the difference at the 11th slice.

For the 3D simulation phantom case, where electrical properties vary in all

directions, difference between calculated H+ (using the 3D forward problem for-

mulation) and öeasured H+ is also less than 1% for all slices. For the solution

of the forward problem in 21 slices, 1st and 21th slices chosen as boundary layers

and value of the measured H+ at these slices are used as boundary values. In

Figure 3.5 (a-g), magnitude of the difference between measured and calculated

H+ at slices 1, 4, 7, 11, 15, 18 and 21 are given.
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Figure 3.5: (a-g) Magnitude of the Difference Between Measured and Calculated
H+ for z- Independent 3D Simulation Phantom at Slices 1, 4, 7, 11, 15, 18 and
21
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3.2 Electrical Property Reconstructions of 2D

Objects

In Figure 3.6(a) actual conductivity distribution of the 2D phantom is given.

Conductivity reconstruction obtained via std-MREPT and cr-MREPT are given

in Figure 3.6(b) and (c) respectively. It can be seen that conductivity recon-

struction obtained via std-MREPT method suffers from boundary artifacts and

conductivity reconstruction obtained via cr-MREPT has the LCF artifact in the

central region (highlighted with red circle).

Figure 3.6: (a) Actual Conductivity Distribution of the 2D Phantom (b) std-
MREPT Conductivity Reconstruction of the 2D Phantom (c) cr-MREPT Con-
ductivity Reconstruction of the 2D Phantom (d-f) 1st, 3rd and 5th Iteration of
the Conductivity Reconstruction via Iterative Fitting Approach with Tikhonov
Regularization, λ = 10−3 (g-i) 2nd, 4th and 7th Iteration of the Conductivity Re-
construction via Iterative Fitting Approach with Total Variation Regularization,
β = 10−8
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Figure 3.6(d-f) shows the 1st, 3rd and 5th iteration of the conductivity re-

construction via Iterative Fitting Approach with Tikhonov regularization with

regularization parameter λ chosen as 10−3. As it can be from the 5th iteration of

Iterative Fitting Approach with Tikhonov Regularization, obtained conductivity

reconstruction is free of both boundary and LCF artifact.

Similarly, Figure 3.6(g-i) shows the 2nd, 4th and 7th iteration of the conductivity

reconstruction via Iterative Fitting Approach with Total Variation regularization

with regularization parameter β chosen as 10−8. As it can be from the Figure

3.6(i), obtained conductivity reconstruction is, again, free of both boundary and

LCF artifact. However, compared to the conductivity reconstructions obtained

using Total variation regularization has smoother values inside the tissues whereas

ones obtained using Tikhonov regularization slightly varies inside the tissues.

In Figure 3.7 and 3.8, conductivity profiles of conductivity reconstructions

obtained via Iterative Fitting Approach with Tikhonov regularization using reg-

ularization parameters λ = 10−2, 5 × 10−3, 10−3, 5 × 10−4, 10−4 derivative of

these proflies are given respectively.

In Figure 3.9 and 3.10, conductivity profiles of conductivity reconstructions

obtained via Iterative Fitting Approach with Total Variation using regularization

parameters β = 10−7, 5× 10−8, 10−8, 5× 10−9, 10−9 derivative of these profiles

are given respectively.

For the 2D simulation phantom, Figures 3.7 and 3.9 indicate that for Tikhonov

regularization as λ increases transition between tissues become smoother and

when λ decreases transitions become sharper but conductivity values vary inside

the tissues where it should be constant. For Total Variation regularization,β value

is chosen as 10−7, transition between tissues become overly smoothened but for

lower values of β transition between tissues are sharper and close to each other.

However, when β value is chosen as 10−9, conductivity values inside the tissues

varies where conductivity values are expected to be constant.
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Figure 3.7: Profiles of the Conductivity Reconstructions obtained via Iterative
Fitting Approach with Tikhonov Regularization Using Different λ Values on x-
axis

Figure 3.8: Derivatives of the Profiles in Figure 3.7
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Figure 3.9: Profiles of the Conductivity Reconstructions obtained via Iterative
Fitting Approach with Total Variation Regularization Using Different β Values
on x- axis

Figure 3.10: Derivatives of the Profiles in Figure 3.9
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Using the derivatives of the profiles given in Figures 3.7 and 3.9, Full Width

Half Maximum (FWHM) of the reconstructions can be obtained as a resolution

measure.FWHM values are obtained as in Table 3.1, for both regularizations on

a uniform grid with pixel size of 1.5 mm.

Tikhonov Regularization
λ FWHM (mm) FWHM (pixels)

10−2 5.1 3− 4
5× 10−3 3.5 3− 4

10−3 2.5 1− 2
5× 10−4 2.1 1− 2

10−4 2 1− 2
Total Variation Regularization

β FWHM (mm) FWHM (pixels)
10−7 6.3 4− 5

5× 10−8 2.3 1− 2
10−8 2.1 1− 2

5× 10−9 2.1 1− 2
10−9 1.8 1− 2

Table 3.1: FWHM Values Obtained for Iterative Fitting Approach with Tikhonov
and Total Variation Regularization

From Table 3.1, it can be seen that reconstructions obtained using Tikhonov

regularization can match the FWHM of the reconstructions obtained using Total

Variation regularization as β decreases. Compared to the Tikhonov regulariza-

tion, conductivity reconstruction obtained using Total Variation regularization

results in more smooth conductivity values inside the tissues. However, for both

regularization as λ and β values decrease variance in the conductivity values in-

creases especially at tissue transitions resulting in inaccurate conductivity values.
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3.3 2D Electrical Property Reconstructions of

z- Independent 3D Objects

For 2D reconstruction of 3D z- independent objects, H+ data only at the

central slice is used. In iterative Fitting Approach reconstructions, 2D forward

problem is solved for obtaining the H+ data of the center slice of the 3D z-

independent object at each iteration. Uniform grid with pixel size of 1.5 mm

is used for the electrical property reconstructions obtained via Iterative Fitting

Approach. For the noisy simulation cases, SNR is chosen as 350.

In Figure 3.11, conductivity reconstructions for the z- independent 3D simu-

lation phantom via cr-MREPT method is shown. (a) cr-MREPT conductivity

reconstruction without regularization (b) cr-MREPT conductivity reconstruction

with artificial diffusion (c) cr-MREPT conductivity reconstruction with Tikhonov

regularization (addition of ||u||22 term to the cost function) (d) cr-MREPT con-

ductivity reconstruction with L2 norm of gradient of unknowns (addition of

||∇u||22 term to the cost function) (e) cr-MREPT conductivity reconstruction

with Tikhonov regularization (addition of ||∇2u||22 term to the cost function).

In Figure 3.12, conductivity reconstructions obtained with the same methods in

Figure 3.11 is given when the noise is present in the H+ data.

In Figure 3.13, (a) std-MREPT conductivity reconstruction of the z- inde-

pendent 3D simulation phantom, (b) cr-MREPT conductivity reconstruction of

the z- independent 3D simulation phantom, (c-e) 1st, 5th and 9th iteration of the

conductivity reconstruction via iterative fitting approach with Tikhonov regular-

ization with regularization parameter λ = 5 × 10−2 and (f-h) 3rd, 9th and 13th

iteration of the conductivity reconstruction via iterative fitting approach with

Total Variation regularization with regularization parameter β = 10−6 (i) profiles

of the conductivity reconstructions obtained via Iterative Fitting Approach using

Tikhonov and Total Variation regularizations (j) derivatives of the profiles in (i),

are given. In Figure 3.14, 1st, 5th and 9th iteration of the conductivity reconstruc-

tion via Iterative Fitting Approach with Tikhonov (a-c) and Total Variation (d-f)

regularizations of z- independent 3D simulation phantom with noise is shown.
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Figure 3.11: (a) cr-MREPT Conductivity Reconstruction of z- independent 3D
Simulation Phantom (b) cr-MREPT Conductivity Reconstruction of z- inde-
pendent 3D Simulation Phantom with Artificial Diffusion (c = −10−1(c) cr-
MREPT Conductivity Reconstruction with the Addition of Tikhonov Regular-
ization (λ = 107) of z- independent 3D Simulation Phantom (d) cr-MREPT Con-
ductivity Reconstruction with the Addition of L2 Norm of Gradient of Unknowns
(λ = 5× 102) of z- independent 3D Simulation Phantom (e) cr-MREPT Conduc-
tivity Reconstruction with the Addition of Laplacian Regularization (λ = 10−2)
of z- independent 3D Simulation Phantom
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Figure 3.12: (a) cr-MREPT Conductivity Reconstruction of z- independent 3D
Simulation Phantom with Noise (b) cr-MREPT Conductivity Reconstruction of
z- independent 3D Simulation Phantom with Artificial Diffusion (c = −10−1) with
Noise (c) cr-MREPT Conductivity Reconstruction with the Addition of Tikhonov
Regularization λ = 106 of z- independent 3D Simulation Phantom with Noise
(d) cr-MREPT Conductivity Reconstruction with the Addition of L2 Norm of
Gradient of Unknowns λ = 5 × 101 of z- independent 3D Simulation Phantom
with Noise (e) cr-MREPT Conductivity Reconstruction with the Addition of
Laplacian Regularization λ = 10−4 of z- independent 3D Simulation Phantom
with Noise (SNR = 350)
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Figure 3.13: (a) std-MREPT Conductivity Reconstruction of the z- indepen-
dent 3D Simulation Phantom (b) cr-MREPT Conductivity Reconstruction of the
z- independent 3D Simulation Phantom (c-e) 1st, 5th and 9th Iteration of the
Conductivity Reconstruction via Iterative Fitting Approach with Tikhonov Reg-
ularization, λ = 5 × 10−2 (f-h) 3rd, 9th and 13th Iteration of the Conductivity
Reconstruction via Iterative Fitting Approach with Total Variation Regulariza-
tion, β = 10−6 (i) Profiles of the Conductivity Reconstructions Obtained via
Iterative Fitting Approach using Tikhonov and Total Variation regularizations
(j) Derivatives of the Profiles in (i)
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Figure 3.14: (a-c) 1st, 5th and 9th Iteration of the Conductivity Reconstruction
via Iterative Fitting Approach with Tikhonov Regularization of z- independent
3D Simulation Phantom with Noise, λ = 5×10−2 (d-f) 3rd, 9th and 13th Iteration
of the Conductivity Reconstruction via Iterative Fitting Approach with Total
Variation Regularization, β = 10−6 of z- independent 3D Simulation Phantom
with Noise (SNR = 350)

Conductivity reconstructions obtained using Iterative Fitting Approach with

Tikhonov regularization (Figure 3.13(c-e)) and with Total Variation regulariza-

tion (Figure 3.13(f-h)) for the 3D z- independent simulation phantom, are free

of boundary artifacts. However, effect of the LCF artifact can be seen in the

conductivity reconstructions. While the anomalies and background are clearly

separated in the conductivity reconstructions obtained via Iterative Fitting Ap-

proach, resulting conductivity values are inaccurate in the sense that conductivity

values of the anomalies are 1.5 S/m and anomalies in the reconstructions have

values around 1.2 S/m. Which is the result of the inaccurate solution of the 2D

forward problem solution for 3D objects. While Total Variation regularization

results in smoother conductivity values inside the tissue regions, compared to

the Tikhonov regularization for 3D z- independent simulation phantom. When

noise is present, reconstruction obtained are similar to each other meaning that

smoothness advantage of the Total Variation is mitigated.

In Figure 3.15; (a) std-MREPT conductivity reconstruction of the experiment
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phantom, (b) cr-MREPT conductivity reconstruction of the experiment phantom,

(c-e) 1st, 5th and 9th iteration of the conductivity reconstruction via iterative

fitting approach with Tikhonov regularization with regularization parameter λ =

10−2 and (f-h) 3rd, 11th and 16th iteration of the conductivity reconstruction via

iterative fitting approach with Total Variation regularization with regularization

parameter β = 10−6 (i) profiles of the conductivity reconstructions obtained via

Iterative Fitting Approach using Tikhonov and Total Variation regularizations

(j) derivatives of the profiles in (i), are given. are given.

Similar to the z- independent 3D simulation phantom conductivity reconstruc-

tions using the Iterative Fitting Approach, conductivity reconstruction of the ex-

perimental phantom obtained using the Iterative Fitting Approach, Figure 3.15,

is free of boundary and LCF artifacts but conductivity values at the anomalies

are low compared to the std-MREPT and cr-MREPT reconstructions obtained

using the same H+ data.

From Figure 3.13(e,h) and 3.15(e,h), it can be seen that for both simulation and

experimental phantoms, regardless of the choice of the regularization (Tikhonov

or Total Variation), Iterative Fitting Approach results in low conductivity values

at the anomalies which is the result of the inaccurate solution of 2D forward

problem for 3D center slice H+ data.

Despite the inaccurate conductivity values, profiles of the conductivity recon-

structions for both simulation and experimental phantoms and their derivatives

show that FWHM of the conductivity reconstructions are 2-3 mm. Since the elec-

trical property reconstructions are obtained using 1.5 mm uniform grid, FWHM

is around 2 pixels for used λ and β for Tikhonov and Total Variation regulariza-

tions.
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Figure 3.15: (a) std-MREPT Conductivity Reconstruction of Experiment Phan-
tom (b) cr-MREPT Conductivity Reconstruction of Experiment Phantom (c-e)
1st, 5th and 9th Iteration of the Conductivity Reconstruction via Iterative Fitting
Approach with Tikhonov Regularization, λ = 10−2 (f-h) 3rd, 11th and 16th It-
eration of the Conductivity Reconstruction via Iterative Fitting Approach with
Total Variation Regularization, β = 10−6 (i) Profiles of the Conductivity Re-
constructions Obtained via Iterative Fitting Approach using Tikhonov and Total
Variation regularizations (j) Derivatives of the Profiles in (i)
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3.4 3D Electrical Property Reconstructions of

z- Independent 3D Objects

For the 3D electrical property reconstruction of z- independent 3D objects

using Iterative Fitting Approach, 11 slices are used and voxel size is chosen as 1.5

mm for z-independent 3D simulation phantom and 2 mm for the experimental

phantom. 6th slice is chosen as the center slice and 5 slice offset is used. First

and last 3 slices of conductivity reconstructions are not shown due to the error

propagation from boundary layers. This error occurs because electrical properties

at the boundary layers are assumed to be uniform where, it is not uniform for z-

independent anomalies

In Figure 3.16, (a-f) 4th to 8th slices of 11 slice 3D cr-MREPT reconstruction

for the z- independent 3D simulation phantom, (g) conductivity profile on Line

1(Figure 3.16 (f)) and (h) conductivity profile on Line 2(Figure 3.16 (f)) are given.

As it can be seen from the Figure 3.16 (a-f), LCF artifact occurs at each slice of

the 3D cr-MREPT reconstruction.

In Figure 3.17, (a-f) 4th to 8th slices of 11 slice Iterative Fitting Approach

with Tikhonov regularization (λ = 10−2) conductivity reconstruction obtained at

the 5th iteration for the z- independent 3D simulation phantom, (g) conductivity

profile on Line 1 (Figure 3.17 (f)) and (h) conductivity profile on Line 2 (Figure

3.17 (f)) are given.

In Figure 3.18, (a-f) 4th to 8th slices of 11 slice Iterative Fitting Approach with

Total Variation regularization (β = 10−6) conductivity reconstruction obtained at

the 9th iteration for the z- independent 3D simulation phantom, (g)conductivity

profile on Line 1 (Figure 3.18 (f)) and (h) conductivity profile on Line 2 (Figure

3.18 (f)) are given.
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Figure 3.16: (a-e) 4th to 8th Slices of 11 Slice 3D cr-MREPT Reconstruction for
the z- Independent 3D Phantom (f) Profile on Line 1 (g) Profile on Line 2 (First
and last 3 Slices are not Shown)
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Figure 3.17: (a-e) 4th to 8th Slices of 11 Slice Iterative Fitting Approach with
Tikhonov Regularization (λ = 10−2) Conductivity Reconstruction at Iteration
5 for the z- independent 3D Simulation Phantom (f) Profile on Line 1 and (g)
Profile on Line 2
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Figure 3.18: (a-e) 4th to 8th Slices of 11 Slice Iterative Fitting Approach with Total
Variation Regularization (β = 10−6) Conductivity Reconstruction at Iteration 9
for the z- independent 3D Simulation Phantom (f) Profile on Line 1 and (g)
Profile on Line 2
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From Figures 3.16, 3.17 and 3.18, it can be seen that when Iterative Fitting

Approach with Tikhonov or Total Variation regularization is used for 3D electri-

cal property reconstruction of the z- independent 3D simulation phantom is used,

LCF artifact is eliminated. However, on the contrary to expected, conductivity

reconstructions obtained using Total Variation regularization does not result in

sharper transitions between tissue boundaries compared to the Tikhonov regu-

larization. From the profiles, Figure 3.17(g) and Figure 3.18(g), it can be seen

that LCF artifact is eliminated for both cases but tissue transitions are similar.

However, inside the tissues, Total Variation regularization results in smoother

conductivity values compared to the Tikhonov regularization. Which is advanta-

geous since inside the tissues conductivity values are constant.

For 3D electrical property reconstruction of z- independent experimental phan-

tom, 11 slices are used. 6th slice is chosen as the center slice and 5 slice offset is

used. First and last 3 slices of conductivity reconstructions are not shown due

to the error propagation from boundary layers similar to the z- independent 3D

phantom case.

When 3D Iterative Fitting Approach is used for the experimental phantom,

similar results are obtained to z- independent 3D phantom. However, due to the

presence of the noise, resulting conductivity reconstructions are also noisy.

In Figure 3.19, (a-e) 4th to 8th slices of 11 slice 3D cr-MREPT reconstruction

for the experimental phantom is given. As it can be seen from the Figure 3.19

(a-f), LCF artifact occurs at each slice of the 3D cr-MREPT reconstruction.

In Figure 3.20, (a-e) 4th to 8th slices of 11 slice Iterative Fitting Approach with

Tikhonov regularization (λ = 0.1) conductivity reconstructions obtained at the

9th iteration for the z- independent 3D simulation phantom is given.
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Figure 3.19: (a-e) 4th to 8th Slices of 11 Slice 3D cr-MREPT Reconstruction for
the Experimental Phantom

Figure 3.20: (a-e) 4th to 8th Slices of 11 Slice Iterative Fitting Approach with
Tikhonov Regularization (λ = 10−1) Conductivity Reconstruction at Iteration 9
for the Experimental Phantom
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Figure 3.21: (a-e) 4th to 8th Slices of 11 Slice Iterative Fitting Approach with Total
Variation Regularization (β = 10−4) Conductivity Reconstruction at Iteration 12
for the Experimental Phantom

From Figures 3.20 and 3.21, it can be seen that conductivity reconstructions

obtained via 3D Iterative Fitting Approach using Tikhonov and Total Variation

regularization does not have LCF artifacts. For the experimental phantom, re-

constructions obtained via Tikhonov and Total Variation regularizations result

similar tissue transitions.

3.5 3D Electrical Property Reconstructions of

3D Objects

For the 3D electrical property reconstruction of 3D simulation phantom using

Iterative Fitting Approach, 11 slices are used and voxel size is chosen as 1.5 mm

for 3D simulation phantom . 6th slice is chosen as the center slice and 5 slice

offset is used. For the 3D simulation phantom case, first and last slice have

the exact electrical property values as the boundary layers therefore there is no

error propagation from boundary layers. Hence, all 11 slices can be accurately

reconstructed.

In Figure 3.22, (a-k) 1st to 11th slices of 11 slice 3D cr-MREPT reconstruction

for the z- ,dependent 3D simulation phantom, (l) x- profile of the conductivity
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for the top anomaly at the 6th slice and (m) y- profile of the conductivity for the

top anomaly at the 6th slice (n) z- profile of the conductivity for the top anomaly

are given.

In Figure 3.23, (a-k) 1st to 11th slices of Iterative Fitting Approach with

Tikhonov regularization (λ = 10−2) conductivity reconstruction obtained at the

3rd iteration for the 3D simulation phantom, (l) x- profile of the conductivity for

the top anomaly at the 6th slice and (m) y- profile of the conductivity for the top

anomaly at the 6th slice (n) z- profile of the conductivity for the top anomaly are

given.

In Figure 3.24, (a-k) 1st to 11th slices of Iterative Fitting Approach with

Tikhonov regularization (β = 10−6) conductivity reconstruction obtained at the

5th iteration for the 3D simulation phantom, (l) x- profile of the conductivity for

the top anomaly at the 6th slice and (m) y- profile of the conductivity for the top

anomaly at the 6th slice (n) z- profile of the conductivity for the top anomaly are

given.
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Figure 3.22: (a-k) 1st to 11th Slices of 11 slice 3D cr-MREPT Reconstruction for
the z- Independent 3D Simulation Phantom, (l) x- Profile of the Conductivity for
the Top Anomaly at the 6th Slice (m) y- Profile of the Conductivity for the Top
Anomaly at the 6th Slice (n) z- Profile of the Conductivity for the Top Anomaly
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Figure 3.23: (a-k) 1th to 11th Slices of Iterative Fitting Approach with Tikhonov
Regularization (λ = 10−2) Conductivity Reconstruction Obtained at the 3rd It-
eration for the 3D Simulation Phantom, (l) x- Profile of the Conductivity for
the Top Anomaly at the 6th Slice (m) y- Profile of the Conductivity for the Top
Anomaly at the 6th Slice (n) z- Profile of the Conductivity for the Top Anomaly
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Figure 3.24: (a-k) 1th to 11th Slices of Iterative Fitting Approach with Total
Variation Regularization (β = 10−6) Conductivity Reconstruction Obtained at
the 5th Iteration for the 3D Simulation Phantom, (l) x- Profile of the Conductivity
for the Top Anomaly at the 6th Slice (m) y- Profile of the Conductivity for the
Top Anomaly at the 6th Slice
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From Figures 3.17 and 3.18, it can be seen that when Iterative Fitting Ap-

proach with Tikhonov or Total Variation regularization is used for 3D electri-

cal property reconstruction of the 3D simulation phantom is used, conductivity

changes in all directions are captured. Similar to the previous results, conductiv-

ity reconstructions obtained using Total Variation regularization are smoother

inside the tissues compared to the conductivity reconstructions obtained via

Tikhonov regularization. No significant difference between conductivity recon-

structions obtained via Tikhonov and Total Variation regularizations, can be

observed at the tissue transitions. From the profiles given in Figure 3.17(l,m,n)

and 3.18(l,m,n), it can be seen that transitions between low and high conductivity

regions are similar for both regularizations.

62



Chapter 4

Conclusion and Discussion

MREPT carries a potential for being an important diagnostic tool in medicine,

since contrast between benign and malign tissues can be obtained via noninvasive

procedure without the need for external hardwares. Widely used std-MREPT

method causes electrical property reconstructions with boundary artifacts be-

tween tissue transitions due to “Local Homogeneity Assumption” and obtained

electrical property reconstructions are significantly affected from noise. Which

detriments std-MREPT’s potential for the clinical applications. On the other

hand, cr-MREPT method eliminates the boundary artifact problem of the std-

MREPT and it is less susceptible to noise. However, cr-MREPT method suffers

from the LCF artifact, which occurs at the positions where magnitude of the

convective field is low. In this thesis, Iterative Fitting Approach is developed

for cr-MREPT, which aims to obtain electrical property reconstructions without

boundary and LCF artifacts.

In the development of Iterative Fitting Approach, first forward problem of

obtaining H+ using the electrical properties is formulated using the cr-MREPT

equation. Forward problem is discretized using central differencing formulas so

that solution of the forward problem can be obtained via the Finite Difference

Method. Using the uniqueness theorem proved by Ammari, solution of the for-

ward problem is obtained in the desired ROI inside the imaged object. Then,
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forward problem is solved using the electrical properties from previous iteration

to obtain calculated H+ for that iteration. In order to obtain a solution for the

electrical properties inside the ROI, norm of the difference between measured H+

and calculated H+ is minimized. By Taylor series expansion and ignoring higher

order terms, calculated H+ is formulated in terms of calculated H+ at that it-

eration, Jacobian matrix and the electrical property updates for that iteration.

By solving this minimization problem, electrical property updates that minimizes

the difference is obtained for each iteration. However, real and imaginary parts

of the unknowns are seperated in the solution process. Final electrical property

reconstructions are obtained after the sufficient number of iterations.

Obtaining electrical properties from the difference between measured and cal-

culated H+ is a ill-conditioned problem. Therefore, in order to obtain solution

for electrical property updates at each iteration regularization is used. Tikhonov

and Total Variation regularization is used to reduce the ill-conditionedness of the

problem. When Tikhonov regularization is used, minimization problem is still

quadratic and solution for the electrical property updates can be obtained with

ease. When Total Variation regularization is used, due to the fact that L1 norm

is not differentiable, solution can only be obtained via approximations. Primal

Dual Interior Point Method is used for the realization of the Total Variation

regularization.

When 2D Iterative Fitting Approach with Tikhonov and Total Variation reg-

ularization is used for 2D simulation phantom in noiseless environment, obtained

conductivity values are accurate and LCF artifact is eliminated in the recon-

structions. Using the profiles on the x- axis of the conductivity reconstructions

obtained using Iterative Fitting Approach with Tikhonov and Total Variation reg-

ularization with different regularization parameters, spatial resolution properties

of the developed method is analyzed. By taking the derivative of these profiles,

FWHM of the conductivity reconstructions is calculated. Calculated FWHM

values indicate that depedending on the regularization reconstructions obtained

with both Tikhonov and Total Variation regularization can have FWHM value

of 1-2 pixels. Which shows that using Iterative Fitting Approach, high resolu-

tion electrical property reconstructions can be obained regardless of the choice
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of the regularization. However, reconstructions obtained using Total Variation

regularization has smoother conductivity values inside the tissue regions.

When 2D Iterative Fitting Approach with Tikhonov and Total Variation reg-

ularization is used for 3D z- independent object, obtained conductivity recon-

structions are free of boundary and LCF artifacts but conductivity values are

inaccurate (conductivity of 1.5 S/m for anomalies and 0.5 S/m for background,

reconstructed conductivity of 1.2 S/m for anomalies and 0.4 S/m for back-

ground). The reason behind this is the inaccurate solution of the 2D forward

problem for the center slice of the 3D z- independent simulation phantom. In

the noisy environment, Iterative Fitting Approach still manages to eliminate the

LCF artifact but there is no clear difference between electrical property recon-

structions obtained via Tikhonov and Total Variation regularization. This shows

that in a noisy environment, smoothness advantage of the Total Variation reg-

ularization disappears. Reconstructions obtained for the center slice of the z-

independent experimental phantom also shows that conductivity values are in-

accurate (expected conductivity of 1 S/m for anomalies and 0.5 S/m for back-

ground, reconstructed conductivity of 0.8 S/m for anomalies and 0.4 S/m for

background). Despite the inaccurate conductivity values, resulting conductivity

reconstructions are free of LCF artifact. Falling in line with the noisy simulation

case, reconstruction obtained using Tikhonov and Total Variation regularization

do not have clear difference between them.

Iterative Fitting Approach is extended for 3D electrical property reconstruction

such that forward problem is solved in 3D and electrical property reconstructions

are also obtained in 3D. Conductivity reconstructions obtained via 3D Iterative

Fitting Approach, has the accurate conductivity values (conductivity of 1.5 S/m

for anomalies and 0.5 S/m for background, reconstructed conductivity of 1.5

S/m for anomalies and 0.5 S/m for background) and free of boundary and LCF

artifacts. Another benefit of the 3D reconstruction is that complex structures

with electrical properties that varies in all directions can be imaged without any

assumption of z- indepencency. Iterative Fitting Approach with Total Variation

regularization results in smoother conductivity values inside the tissues, compared

to the Tikhonov regularization. When 3D Iterative Fitting Approach is used
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for z- independent experimental pahntom, this advantage fades because of the

presence of the noise, therefore similar reconstructions for both Tikhonov and

Total Variation regularizations are obtained.

3D Iterative Fitting Approach with Tikhonov or Total Variation regulariza-

tion yields accurate, high resolution and artifact free conductivity reconstructions.

Even though, Total Variation regularization results in smoother conductivity val-

ues inside the tissues, this advantage disappers with the presence of the noise.

Moreover, on the contrary to the literature, Tikhonov and Total Variation regu-

larizations have similar transitions across tissue boundaries in electrical property

reconstructions obtained via Iterative Fitting Approach. Since smoothness ad-

vantage of the disappears in a noisy environment and spatial resolutions of the

reconstruction obtained via Iterative Fİtting Approach with Tikhonov and Total

Variation regularization are similar, Tikhonov regularization is more favorable to

use in real life applications.

In the electrical property reconstructions obtained 3D Iterative Fitting Ap-

proach, first and last 3 slice are erronous due to the error propagation from the

boundary layers. Which indicates that only 5 slices of a 11 slice reconstruction is

usable. For solving this issue, implementation of the Iterative Fitting Approach

without boundary nodes can be developed. Moreover, 3D Iterative Fitting Ap-

proach requires high computation time and memory for electrical property recon-

structions due to the increased number of unknowns. As a future work, solution

of the linear systems at each iteration can be obtained via iterative methods that

requires less memory and that are parallelizable. Such that memory requirement

can be reduced by using iterative methods instead of direct methods and compu-

tation time can be reduced by the parallel implementation of the iterative meth-

ods for solution of linear systems. Even if the memory and computational time

requirements are reduced using iterative solvers and parallelization techniques,

in order to reconstruct elelcrical properties in large region Iterative Fitting Ap-

proach should be used in a high performance setup. Again, as a future work

Iterative Fitting Approach can be implemented in a high performance computing

setup so that electrical property reconstructions in large region of interest can be

obtained.
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