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ABSTRACT

ON THE MINIMAL NUMBER OF ELEMENTS GENERATING
AN ALGEBRAIC SET

Mesut Şahin

M.S. in Mathematics

Supervisor: Assoc. Prof. Dr. Ali Sinan Sertöz

August, 2002

In this thesis we present studies on the general problem of finding the minimal

number of elements generating an algebraic set in n-space both set and ideal

theoretically.
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ÖZET

BİR CEBİRSEL KÜMEYİ ÜRETEN MİNİMAL ELEMAN
SAYISI ÜZERİNE

Mesut Şahin

Matematik Bölümü, Master
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Ağustos, 2002

Bu tezde n boyutlu uzayda bir cebirsel kümenin hem kümesel hem de ideal teorik

olarak üretilmesi için gerekli olan minimal eleman sayısının bulunması problemi

sunulmuştur.
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1

introduction and statement of

results

In this thesis we will present studies on the general problem of finding the min-

imal number of elements generating an algebraic set in n space both set and

ideal theoretically. This problem may be investigated in algebraic and analytic

category; we will deal with algebraic category in this thesis.

Let k be an algebraically closed field of characteristic zero and X be affine or

projective n space and Y ⊆ X be an algebraic set. We say that Y is generated

by m elements set theoretically if we can write

Y = Z(f1, ..., fm).

Let µ(Y ) be the minimal number of elements generating Y set theoretically. So

µ(Y ) ≤ m if Y is generated by m elements set theoretically.

We say that Y is generated by m elements ideal theoretically if I(Y ) can be

generated by m elements. Let µ(I(Y )) be the minimal number of elements gen-

erating Y ideal theoretically. So µ(I(Y )) ≤ m if Y is generated by m elements

3



1. INTRODUCTION AND STATEMENT OF RESULTS 4

ideal theoretically. We define codimension of Y as codim(Y ) = n − dimY . It is

easy to see that

codim(Y ) ≤ µ(Y ) ≤ µ(I(Y )).

Y is called a complete intersection set theoretically if

µ(Y ) = codim(Y ).

If moreover

µ(I(Y )) = codim(Y ),

then Y is called a complete intersection ideal theoretically. If Y is a complete

intersection ideal theoretically, i.e. µ(I(Y )) = codim(Y ) then it follows from

codim(Y ) ≤ µ(Y ) ≤ µ(I(Y )) that µ(Y ) = codim(Y ), i.e Y is a complete inter-

section set theoretically. But the converse is not true. For example the projective

twisted cubic curve is a set theoretic complete intersection even though it is not

an ideal theoretic complete intersection.

We present studies on the general problem of finding the minimal number of

elements generating an algebraic set in n space both set and ideal theoretically.

We state and give a detailed proof of Eisenbud and Evans’ Theorem 2.10 and

Theorem 2.13, which suggests the best possible answer known to the problem

mentioned above [7].

Although the minimal number µ(Y ) ≤ n, for an algebraic set Y in the set

theoretic case due to Eisenbud and Evans’ result, it may be arbitrarily large in

the ideal theoretic case due to Bresinsky [6]. So there is no upper bound on the

minimal number of elements generating Y ideal theoretically.

It is still an open question to decide whether Eisenbud and Evans’ result is

best possible in the set theoretic case. We consider curves to solve this problem

at least for special cases. A curve C is a complete intersection set theoretically, if
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µ(C) = n− 1. Hence the open problem turns out to be whether every irreducible

(even smooth) space curve is a set theoretic complete intersection of 2 surfaces.

The answer of corresponding question in 4 space is negative. Since the surface

S = Z(x, y)
⋃

Z(z, w) is not a complete intersection of 2 hypersurfaces. We say

a noetherian topological space Y is connected in codimension 1, if the following

condition is satisfied “whenever P is a closed subset of Y and codim(P, Y ) > 1

then Y −P is connected.” To show that S is not complete intersection it remains

to prove that S is not connected in codimension 1, by a Theorem 3.4 of Hartshorne

[11]. Since P = {(0, 0, 0, 0)} is a closed subset of S, codim(P, S) = 2− 0 = 2 > 1

and S − P = [Z(x, y)− {(0, 0, 0, 0)}] ⋃[Z(z, w)− {(0, 0, 0, 0)}] is not connected,

S is not connected in codimension 1, hence S is not a complete intersection set

theoretically.

So the problem mentioned above can be divided into two parts:

(i) Set Theoretic Case

The first general result was given in 1882 by Kronecker [15]. He showed that

any radical ideal in a polynomial ring in n variables over k is the radical of an ideal

generated by n + 1 polynomials, i.e. µ(Y ) ≤ n + 1. For a long time, Kronecker’s

result was believed to be the best possible due to an example of Vahlen [30].

Vahlen’s example was a curve in the complex projective 3 space, which he claimed

could not be written as an intersection of 3 surfaces. Vahlen’s error was noticed

in 1942 when Perron [21] gave explicitly 3 surfaces, whose intersection is exactly

the curve given by Vahlen. Vahlen’s error was that he could not separate the

notion and description of ideal and set theoretic complete intersections.

In 1961, Kneser showed that Perron’s result is a special case of the fact that

indeed every space curve C is an intersection of 3 surfaces, i.e. µ(C) ≤ 3 in 3

space [14].
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In 1963, Forster generalized affine analogue of Kronecker’s result to Noethe-

rian rings, i.e. any radical ideal in an n dimensional Noetherian ring R can be

generated by n+1 elements up to radical, i.e. any radical ideal in R is the radical

of an ideal generated by n + 1 elements [8].

Eisenbud and Evans generalized Kneser’s result in 1973 to n spaces by proving

that any radical ideal in an n dimensional Noetherian ring can be generated by n

elements up to radical [7]. Storch also generalized independently Kneser’s result

in 1972, but he only considered the affine case [26].

Let us define affine monomial curves in An and affine monomial space curves.

Definition 1.1 Let k be a field of characteristic zero and m1 < . . . < mn be

positive integers such that gcd(m1, . . . , mn) = 1. An affine monomial curve

C(m1, . . . , mn) in An is given parametrically by

x1 = tm1

x2 = tm2

...

xn = tmn

where t is an element of the ground field k. If n = 3, then C(m1,m2,m3) is called

an affine monomial space curve.

Here are some special results:

in An

(1) All monomial space curves in A3 are the set theoretic complete intersection

of two surfaces [3].
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(2) The monomial curve C(m1,m2,m3,m4) is a set theoretic complete intersec-

tion in A4 if and only if < m1,m2,m3,m4 > is a symmetric semigroup, for

the definition of a symmetric semigroup see section 3.3, [4].

(3) For any n ≥ 4, if some n − 1 terms of m1, . . . , mn form an arithmetic se-

quence then the monomial curve C(m1, . . . , mn) is a set theoretical com-

plete intersection [20]. As a corollary to this result: The monomial curve

C(n, an−sd, . . . , an−d, an+d, . . . , an+td) is a set theoretical complete inter-

section where a, n, s, d are positive integers with an > sd and gcd(n, d) = 1.

Definition 1.2 We say a curve C in P3 is a set theoretic complete inter-

section on a surface S if there exist another surface T such that C is the

intersection of S and T .

in Pn

(4) Rational normal curves are set theoretic complete intersections in Pn [22].

The rational normal curve in Pn is the nth Veronese image of the projective

line, i.e. vn(P1) ⊂ Pn, where Veronese map is defined as follows:

vn : P1 → Pn, vio,i1 = xi0
0 xi1

1

where i0, i1 are nonnegative integers such that i0 + i1 = n and vio,i1 denotes

homogeneous coordinates of Pn.

(5) All monomial curves in P3 whose projective coordinate rings are Cohen-

Macaulay are set theoretic complete intersections. But the smooth monomial

curve C4 = (t4, t3u, tu3, u4) whose coordinate ring is not Cohen-Macaulay is

not a set theoretic complete intersection on anyone of the three binomial

surfaces f1 = x2
0x2 − x3

1, f2 = x0x3 − x1x2 and f3 = x1x
2
3 − x3

2 even though

Z(C4) = Z(f1, f2, f3). It is an open question whether C4 is a set theoretic

complete intersection [23].
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(6) Smooth monomial curves in P3 of degree > 3 are not set theoretic complete

intersections on bihomogeneous surfaces [29]. A bihomogeneous surface in

P3 is a surface defined by a bihomogeneous polynomial F . A polynomial

F =
∑

av0v1v2v3x
v0
0 xv1

1 xv2
2 xv3

3 ∈ k[x0, x1, x2, x3]

is called bihomogeneous of type (d, a1, a2) and degree (a, b) if av0v1v2v3 = 0

for all (v0, v1, v2, v3) with

v0(d, 0) + v1(a1, d− a1) + v2(a2, d− a2) + v3(0, d) 6= (a, b).

(7) Smooth monomial curves in P3 of degree > 3 are not set theoretic complete

intersections on surfaces with at most ordinary nodes as singularities or of

degree at most three or cones [13].

(8) Smooth monomial curves in P3 of degree > 3 are not set theoretic complete

intersections on any binomial surfaces [27].

A binomial surface in P3 is a surface defined by a binomial f of the following

form:

f = av0v1v2v3x
v0
0 xv1

1 xv2
2 xv3

3 − aµ0µ1µ2µ3x
µ0

0 xµ1

1 xµ2

2 xµ3

3

where
∑3

i=0 vi =
∑3

i=0 µi.

(9) All monomial curves in P3 which are set theoretic complete intersections on

two binomial surfaces are exactly those that are ideal theoretic complete

intersections [28].

(ii) Ideal Theoretic Case

The minimal number of equations needed to define a space curve can be ar-

bitrarily large due to an example of Macaulay given in 1916 [17]. His example

was a curve in A3 with large number of singularities, so the ideal of curve needs

arbitrary large number of generators even locally at these singularities. For any
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r > 1, Macaulay constructed a curve C in A3 such that µ(I(C)) > r. For more

details see [[9],page 310].

Definition 1.3 The monomial curve Cn
m is defined parametrically as follows

x1 = ta1 , x2 = ta2 , · · · , xn = tan

where a1 = 2n−4m(m + 1), a2 = 2n−4(m(m + 1) + 1), a3 = 2n−4(m + 1)2, a4 =

2n−4((m + 1)2 + 1), a5 = 2n−4(m + 1)2 + 2n−5, ai = 2n−4(m + 1)2 + 2n−5 +
∑i

j=6(−1)j2n−j, for i ≥ 6, with m ≥ 2 and n ≥ 4.

In 1999, Arslan S.F. gave the description of the ideal of the monomial curve

Cn
m in his article [2] and showed that µ(I(Cn

m)) = 2m + n− 1.

It is worthwhile to find how many generators are necessary to define a curve

locally (which means that in a neighborhood of any point of the curve), and then

knowing the answer we can consider the curve globally. This is the so called local

global principle; first we prove a theorem on the local ring then, we try to get an

analogue of the theorem on the global ring.

In 1963, Forster used this local global principle to show that every smooth

curve in A3 can be defined by 4 equations ideal theoretically [8].

In 1970, Abhyankar proved that 3 equations are enough to define a smooth

curve in A3. Moreover he proved that smooth curves of genus ≤ 1 in A3 are

complete intersections ideal theoretically, if their degree is ≤ 5, [1].

According to Serre all smooth curves of genus ≤ 1 would be ideal theoretically

complete intersections, if every projective module of rank 2 over k[x1, x2, x3] would

be free [25].

In the same year 1970, Segre claimed that he has found smooth curves of genus
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≤ 1 in A3 which are not complete intersection ideal theoretically (i.e. cannot be

defined by 2 equations ) [24].

In 1971, Murthy has shown that, in the polynomial ring k[x1, x2, x3], over a field

k, any ideal of height 2 which is locally a complete intersection can be generated

by 3 elements [18]. This means that if C is a curve in A3 which is generated

by 2 elements in a neighborhood of any point of C, then I(C) is generated by 3

elements. We give an example to show that any prime ideal of height 2 need not

be generated by 2 polynomials, for details see Remark 4.1. Murthy also gives an

example to show that the ideal corresponding even to a nonsingular curve in 3

space need not be generated by 2 elements.

In 1974, Murthy and Towber [19] proved that every projective module of rank

2 over k[x1, x2, x3] is free. Hence it follows from this result together with Serre’s

result that every smooth curve in A3 of genus ≤ 1 can be defined by 2 equations

ideal theoretically, which shows that the Segre’s claim is false.

Here are some special results:

in An

(1) Herzog proved that for the monomial curve C(m1,m2,m3), I(C) is generated

by 2 elements iff < m1,m2,m3 > is a symmetric semigroup [12].

(2) Bresinsky showed that there are some monomial curves needing arbitrarily

large minimal number of equations to define them ideal theoretically [6].

(3) Bresinsky also showed that for the monomial curve

C(m1,m2,m3,m4)

if

< m1,m2,m3,m4 >
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is symmetric then I(C) is generated by 3 or 5 elements [5].

For higher dimensions the question, whether the symmetry implies existence of

a finite upper bound for the minimal number of elements generating a monomial

curve C(m1, . . . ,mn) ideal theoretically, is open.

In projective case the situation is completely different since the local global

principle doesn’t hold.



2

µ(Y ) ≤ n for an algebraic set Y

in an n space

In this chapter, we will state theorems which are the answers of the following

question. What is the minimal number of elements generating an algebraic set?

First we state and prove the theorem of Kronecker, which says that µ(Y ) ≤ n+1,

for an algebraic set in n space and then we present Forster’s theorem, which is

the affine generalization of Kronecker’s result to any Noetherian ring. Finally we

state and give a detailed proof of Eisenbud and Evans’ theorem, which suggests

the best possible answer so far to the question above.

2.1 Theorem of Kronecker

Let us first state the theorem of Kronecker and then prove it for projective n

space, since affine case follows from projective case. We use Geyer’s notes [9] in

this section.

12
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Theorem 2.1 (Kronecker,[15]) Every algebraic set in n space is defined by

n + 1 elements set theoretically.

For projective n space the theorem above can be stated as follows:

Theorem 2.2 Every algebraic set in Pn is defined by n+1 homogeneous polyno-

mials set theoretically.

To prove Theorem 2.2 we need a lemma:

Lemma 2.3 ([16], Lemma 3.2, page 49) If φ is a homogeneous polynomial of

degree m in the polynomial ring k[x1, . . . , xn+2] over an algebraically closed field

k, then making a linear transformation yi = xi + λixn+2, for all i = 1, . . . , n + 1

and λi ∈ k, φ takes of the following form

φ∗(y1, . . . , yn+1, xn+2) = φ(−λ1, . . . ,−λn+1, 1)xm
n+2 +

m−1∑
j=0

ψj(y1, . . . , yn+1)x
j
n+2

where φ(−λ1, . . . ,−λn+1, 1) 6= 0 and ψj’s are homogeneous of degree m − j, for

all j = 0, . . . , m− 1.

Proof: First assume that φ is a homogeneous polynomial of degree 2 in the

polynomial ring k[x1, x2]. Let φ(x1, x2) = ax2
1 + bx1x2 + cx2

2 and y = x1 + λx2.

Defining φ∗(y, x2) = φ(x1, x2) we get

φ∗(y, x2) = φ(y − λx2, x2) = a(y − λx2)
2 + b(y − λx2)x2 + cx2

2

= (aλ2 − bλ + c)x2
2 + (by − 2aλy)x2 + (ay2)

= φ(−λ, 1)x2
2 + ψ1(y)x2 + ψ0(y)

where ψ1(y) = (b − 2aλ)y is homogeneous of first degree and ψ0(y) = ay2 is

homogeneous of second degree. Since k is an infinite field, we may choose λ so
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that φ(−λ, 1) 6= 0. This is because every nonzero polynomial in one variable may

have at most finitely many zeroes.

Therefore, we have proved for n = 0 and m = 2 that

φ∗(y1, . . . , yn+1, xn+2) = φ(−λ1, . . . ,−λn+1, 1)xm
n+2 +

m−1∑
j=0

ψj(y1, . . . , yn+1)x
j
n+2

where ψj’s are homogeneous of degree m− j, for all j = 0, . . . , m− 1.

Now letting

φ =
∑

v1+...+vn+2=m

av1...vn+2x
v1
1 . . . x

vn+1

n+1 x
vn+2

n+2 ,

and putting yi−λixn+2 instead of xi in the above expression for all i = 1, . . . , n+1

we get

φ∗ =
∑

v1+...+vn+2=m

av1...vn+2(y1 − λ1xn+2)
v1 . . . (yn+1 − λn+1xn+2)

vn+1x
vn+2

n+2 .

Thus by binomial expansion we get

φ∗ =
∑

v1+...+vn+2=m

av1...vn+2(y1k1 − λv1
1 xv1

n+2) . . . (yn+1kn+1 − λ
vn+1

n+1 x
vn+1

n+2 )x
vn+2

n+2 ,

and

φ∗ = xm
n+2

∑
v1+...+vn+2=m

av1...vn+2(−λ1)
v1 . . . (−λn+1)

vn+1 + · · · .

Here the last · · · is used instead of terms in which xn+2 has power less than m.

Hence

φ∗(y1, . . . , yn+1, xn+2) = φ(−λ1, . . . ,−λn+1, 1)xm
n+2 +

m−1∑
j=0

ψj(y1, . . . , yn+1)x
j
n+2

where ψj’s are homogeneous of degree m − j, for all j = 0, . . . , m − 1. To

accomplish the proof we need to show that λ1, . . . , λn+1 can be chosen so that

φ(−λ1, . . . ,−λn+1, 1) 6= 0. This is a consequence of the following fact:

If k is an infinite field and F ∈ k[x1, . . . , xr] is a nonzero polynomial then there

exist λ1, . . . , λr ∈ k so that F (λ1, . . . , λr) 6= 0. This can be proven by induction
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on r. If r = 1 then F can have at most finitely many zeroes. Since k is infinite

we may choose λ1 such that F (λ1) 6= 0. If r > 1 then assume that the claim is

true for r − 1. Let F (x1, . . . , xr) ∈ k[x1, . . . , xr] be a nonzero polynomial. Then

we can write F in the following form

F (x1, . . . , xr) =
N∑

i=0

Gi(x1, . . . , xr−1)x
i
r.

Since F is a nonzero polynomial, there exist i such that Gi is a nonzero poly-

nomial in k[x1, . . . , xr−1]. By induction hypothesis, for this fixed i, there exist

λ
(i)
1 , . . . , λ

(i)
r−1 ∈ k such that Gi(λ

(i)
1 , . . . , λ

(i)
r−1) 6= 0. Thus F (λ

(i)
1 , . . . , λ

(i)
r−1, xr) is a

nonzero polynomial in one variable and by the first case there exist λ
(i)
r ∈ k so

that F (λ
(i)
1 , . . . , λ

(i)
r ) 6= 0.

Proof of Theorem 2.2: [[9],page 215] Since every algebraic set is defined by

a finite number of polynomials due to Hilbert’s basis theorem, it suffices to show

that any algebraic set defined by n + 2 homogeneous polynomials is defined by

n + 1 homogeneous polynomials, set theoretically. In this way we can decrease

the number of defining polynomials by one, so this step can be iterated. We can

suppose that the degrees of polynomials are the same, since f = 0 is equivalent

to the following system of equations

xr
0f = . . . = xr

nf = 0

where [x0 : . . . : xn] ∈ Pn, that is, (x0, . . . , xn) 6= (0, . . . , 0). The transcendence

degree of k[x0, . . . , xn] over k is n+1. If we take n+2 homogeneous polynomials

f1, . . . , fn+2 of the same degree d in the polynomial ring k[x0, . . . , xn], then these

polynomials must be algebraically dependent, since their number is greater than

the transcendence degree of the polynomial ring k[x0, . . . , xn]. Algebraically de-

pendent means (f1, . . . , fn+2) is a zero of some nonzero polynomial φ of degree

m, that is,

φ(f1, . . . , fn+2) ≡ 0
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Since φ = 0 is equivalent to φi = 0, where φi is the homogeneous component

of φ of degree i, we may suppose that φ is homogeneous of degree m.

By making a linear transformation gi = fi + λifn+2, for all i = 1, . . . , n + 1

and λi ∈ k, we get another polynomial equation by using Lemma 2.3:

φ∗(g1, . . . , gn+1, fn+2) = 0

where the coefficient of fm
n+2 in φ∗ is φ(−λ1, . . . ,−λn+1, 1). Since k is an infinite

field (k is algebraically closed) and φ(x0, . . . , xn) is a nonzero polynomial we can

choose λi so that φ(−λ1, . . . ,−λn+1, 1) 6= 0. Hence we get the following

0 = φ∗(g1, . . . , gn+1, fn+2) = φ(−λ1, . . . ,−λn+1, 1)fm
n+2 +

m−1∑
j=0

ψj(g1, . . . , gn+1)f
j
n+2

Since gi’s are homogeneous of the same degree d in x0, . . . , xn we can assume

that the polynomials ψj’s are homogeneous of degree m− j in g1, . . . , gn+1. Since

j < m, ψj’s have positive degree, thus ψj(g1, . . . , gn+1) vanishes whenever gi’s

vanish for all i = 1, . . . , n + 1. In this case fn+2 vanishes by the equality above.

It follows from gi = fi +λifn+2 = 0 that fi = 0, for all i = 1, . . . , n+1. Therefore

we have shown that

Z(f1, . . . , fn+2) ⊇ Z(g1, . . . , gn+1).

Conversely if fi = 0, for all i = 1, . . . , n+2 then by gi = fi +λifn+2 we get gi = 0,

for all i = 1, . . . , n + 1. Hence

Z(f1, . . . , fn+2) = Z(g1, . . . , gn+1).

¤

Remark 2.4 Let R be a Noetherian ring and N = Rad(0) be the nilradical ideal

of R. If R = R/N , I = (I + N)/N, fi = fi + N and Rad(I) = Rad(f1, . . . , fn)

then

Rad(I) = Rad(f1, . . . , fn).
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Proof : Since fi ∈ I, it suffices to show that Rad(I) ⊆ Rad(f1, . . . , fn). Take any

h ∈ Rad(I), i.e., hr ∈ I, for some positive integer r. This implies that

hr + N = (h + N)r ∈ I ⇒ h + N ∈ Rad(I) = Rad(f1, . . . , fn)

Then by the definition of a radical ideal we have

hs + N ∈ (f1, . . . , fn) = (f1 + N, . . . , fn + N)

for some positive integer s. It means that

hs + N = (k1 + N)(f1 + N) + . . . + (kn + N)(fn + N)

where ki ∈ R. By the multiplication and summation in R/N we have

hs + N = (
n∑

i=1

kifi) + N

which means that

hs − (
n∑

i=1

kifi) ∈ N.

Thus we have

(hs −
n∑

i=1

kifi)
t = 0

for some positive integer t. By Binomial expansion we have the following

hst −
n∑

i=1

k′ifi = 0

where k′i ∈ R. Thus we end up with

hst =
n∑

i=1

k′ifi ∈ (f1, ..., fn) ⇒ h ∈ Rad(f1, ..., fn)

¤

Proposition 2.5 ([16], Prop.1.5, page41) Let S be a reduced ring with only

finitely many minimal prime ideals and let dimS = 0. Then S is isomorphic to

a finite direct product of fields.
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Proof: Let ℘1, ..., ℘k be the minimal prime ideals of S. If dimS = 0, then there

is no prime ideal other than those. Thus they are maximal ideals and therefore

also pairwise relatively prime i.e. ℘i + ℘j = S, for all i 6= j. Chinese Remainder

Theorem [[16], Prop.1.7, page41] tells us that if ℘1, ..., ℘k are pairwise relatively

prime ideals of S then the canonical ring homomorphism

ϕ : S −→ S/℘1 × ...× S/℘k

is onto and its kernel is

Ker(ϕ) =
k⋂

i=1

℘i.

Since S is reduced, we have

N =
k⋂

i=1

℘i = (0).

Thus ϕ is injective and S is isomorphic to S/℘1 × ... × S/℘k where S/℘i’s are

fields, since ℘i’s are maximal ideals. ¤

Proposition 2.6 ([16], Lemma1.1, page 123) Let S be a commutative ring

with identity which is isomorphic to a finite direct product of commutative rings

with identity S1× ...×Sk. Then S is a Principal Ideal Domain ⇔ each Si in the

product is a Principal Ideal Domain.

Proof: Any ideal I of S is of the form I = I1× ...× Ik where each Ii is the image

of I in the ring Si. Ii = (fi) ⇔ I = (f1, ..., fk). ¤

Let us give the following two very well known propositions for completeness:

Proposition 2.7 Let S be a reduced ring and ℘1, . . . , ℘k be the minimal prime

ideals of S. Let U = S − {⋃k
i=1 ℘i} and I be an ideal of S. Then Rad(IU) =

(Rad(I))U .
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Proof: By the definition of the localization we have that

Rad(IU) = {f/u|(f/u)r ∈ IU , r ≥ 1}
= {f/u|f r ∈ I, ur ∈ U, r ≥ 1}

and

(Rad(I))U = {f/u|f r ∈ I, u ∈ U, r ≥ 1}

It follows from ur ∈ U ⇔ u ∈ U and the definitions of the sets that

Rad(IU) = (Rad(I))U

¤

Proposition 2.8 Let ℘ be a prime ideal and I, J some ideals in a commutative

ring R with identity. If ℘ ⊇ IJ , then ℘ ⊇ I or ℘ ⊇ J .

Proof: Take any y ∈ J and suppose that ℘ 6⊇ I, i.e. ∃x ∈ I − ℘. Now consider

xy ∈ IJ ⊆ ℘. Since ℘ is a prime ideal, xy ∈ ℘ ⇒ x ∈ ℘ or y ∈ ℘. By the

assumption on x, we must have y ∈ ℘ , which means that J ⊆ ℘. ¤

2.2 Affine generalization to Noetherian rings

Forster generalized Kronecker’s Theorem 2.1 to Noetherian rings in the affine

case. We state and prove Forster’s theorem by a modified version of the proof

which is given in [9].

Theorem 2.9 (Forster,[8]) If R is an n dimensional Noetherian ring and I is

a radical ideal in R then there exist elements f1, . . . , fn+1 ∈ I such that

I = Rad(f1, . . . , fn+1)
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Proof: [[9], page218] We will prove this by using induction on n. Let n = 0

and N be the nilradical ideal of R then R/N is a reduced ring. It follows from

Proposition 2.5 and Proposition 2.6 that R/N is a principal ideal domain, so there

exist f ∈ R such that (I +N)/N = (f +N). By Remark 2.4, we get I = Rad(f).

Now let n > 0 and ℘1, ..., ℘k be the minimal prime ideals of R. They are

finitely many because in a noetherian ring every proper ideal J is the intersection

of finitely many primary ideals Qi, i = 1, . . . , k, by Theorem 2.17 in [16]. Since

radical of a primary ideal is a prime ideal we get that

Rad(J) =
k⋂

i=1

Rad(Qi) =
k⋂

i=1

℘i.

Radical of an ideal J is the intersection of minimal prime ideals that contains J ,

so minimal prime ideals cannot be infinitely many, which can be seen for example

by taking J = (0).

Consider the set

U = S −
k⋃

i=1

℘i.

Clearly U is a multiplicatively closed set, since 1 ∈ U and a, b ∈ U implies that

ab ∈ U because of the primeness of ℘i’s. Thus ℘i’s are the maximal ideals of

RU . Therefore RU is zero dimensional and by the zero dimensional case there

exist f1 ∈ R such that IU = Rad((f1)U) in RU . By using Proposition 2.7, we

get IU = (Rad(f1))U . Since R is a Noetherian ring, I is finitely generated. If

h1, ..., hm are generators of I, then hi ∈ I implies that hi/1 ∈ IU = (Rad(f1))U .

Thus there exist some ui ∈ U such that uihi ∈ Rad(f1), i = 1, ...,m.

Let u = u1...um. Then u ∈ U , since U is multiplicatively closed. Hence we

have

uI ⊆ Rad(f1).
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Since u ∈ U , no ℘i contains u, for i = 1, ..., k, thus we have (u) 6⊆ ℘i. Therefore

in R/(u), no ideal chain contains prime ideals ℘i, which implies that

dimR/(u) ≤ n− 1.

Let R∗ = R/(u) and I∗ = (I + (u))/(u). By the induction hypothesis there exist

f ∗2 , ..., f ∗n+1 ∈ I∗ such that I∗ = Rad(f ∗2 , ..., f ∗n+1) in R∗. Let f2, ..., fn+1 ∈ R such

that f ∗i = fi + (u), for all i = 2, ..., n + 1.

We claim that I ⊆ Rad(f1, ..., fn+1). Since we have

I =
⋂
℘⊃I

℘

and

Rad(f1, ..., fn+1) =
⋂

℘⊃(f1,...,fn+1)

℘

to prove our claim it suffices to show that if ℘ is any prime ideal of R such

that ℘ ⊇ (f1, ..., fn+1) then ℘ ⊇ I. Since ℘ ⊇ (f1, ..., fn+1) ⊇ (f1) we have

℘ ⊇ Rad(f1) ⊇ uI. By Proposition 2.8, either ℘ ⊇ (u) or ℘ ⊇ I.

In the first case ℘ ⊇ (u), ℘∗ = ℘/(u) is a prime ideal and ℘ ⊇ (f1, ..., fn+1)

implies that

℘∗ ⊇ (f2, ..., fn+1)/(u) = (f ∗2 , ..., f ∗n+1)

from which follows that

℘∗ ⊇ Rad(f ∗2 , ..., f ∗n+1) = I∗.

Thus in this case

(℘ + (u))/(u) = ℘/(u) = ℘∗ ⊇ I∗ = (I + (u))/(u)

which implies that ℘ ⊇ I.

Therefore in both cases we show that ℘ ⊇ I. Thus we have proved that

I ⊆ Rad(f1, ..., fn+1). Since f1, . . . , fn+1 ∈ I it follows that Rad(f1, ..., fn+1) ⊆ I.

Hence I = Rad(f1, ..., fn+1). ¤
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2.3 Eisenbud and Evans’ Theorem for affine n space

Theorem 2.10 (Eisenbud and Evans [7]) Let R = S[x] be a polynomial ring

for some Noetherian ring S of dimension n − 1 and I be an ideal of R. Then

there exist n elements g1, . . . , gn ∈ I such that Rad(I) = Rad(g1, ..., gn).

Proof: We will prove the theorem by induction on n = dimR. So first assume

that n = 1, which means that dimS = 0. Let N be the nilradical ideal of S, then

S/N is reduced and it follows from Proposition 2.5 that

S/N ∼= S1 × ...× Sk

for some fields Si, where i = 1, ..., k. Since Si’s are fields, Si[x]’s are PID.

Proposition 2.6 implies that R/N = S/N [x] ∼= S1[x] × ... × Sn[x] is a PID.

Hence there exist g ∈ I ⊆ R such that (I + N)/N = (g + N). Therefore

Rad(I) = Rad(g), by Remark 2.4.

Now assume that n > 1. Let ℘1, ..., ℘k be the minimal prime ideals of S and

let

U = S −
k⋃

i=1

℘i

Since the minimal prime ideals ℘i’s are also maximal, the dimension of SU is

zero, hence the dimension of RU is one. By the one dimensional case there exist

g1 ∈ I such that Rad(IU) = Rad((g1)U) in RU . By using Proposition 2.7 we get

(Rad(I))U = (Rad(g1))U .

Since every ideal in a Noetherian ring is finetely generated, I is a finitely

generated ideal of R. Let h1, ..., hm be the generators of I. Then hi ∈ Rad(I),

which implies that hi/1 ∈ (Rad(I))U = (Rad(g1))U . Thus there exist some ui ∈ U

such that uihi ∈ Rad(g1), for all i = 1, ..., m.
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Let u = u1...um. Then u ∈ U , since U is multiplicatively closed. Thus we have

that

uI ⊆ Rad(g1).

Since u ∈ U , no ℘i contains u, for all i = 1, ..., k. Hence we have (u) 6⊆ ℘i.

Therefore in R/(u), no ideal chain contains prime ideals ℘i, which implies that

dimR/(u) ≤ n− 1.

Let R∗ = R/(u) and I∗ = I + (u)/(u). By the induction hypothesis there exist

g∗2, ..., g
∗
n ∈ I∗ such that Rad(I∗) = Rad(g∗2, ..., g

∗
n) in R∗. Let g2, ..., gn ∈ I such

that g∗i = gi + (u), for all i = 2, ..., n.

We claim that Rad(I) ⊆ Rad(g1, ..., gn). Since we have

Rad(I) =
⋂
℘⊃I

℘

and

Rad(g1, ..., gn) =
⋂

℘⊃(g1,...,gn)

℘.

To prove our claim it suffices to show that if ℘ is any prime ideal of R such that

℘ ⊇ (g1, ..., gn) then ℘ ⊇ I. Since ℘ ⊇ (g1, ..., gn) ⊇ (g1) we have that

℘ ⊇ Rad(g1) ⊇ uI.

By Proposition 2.8, either ℘ ⊇ (u) or ℘ ⊇ I.

In the first case ℘ ⊇ (u), ℘∗ = ℘/(u) is a prime ideal and ℘ ⊇ (g1, ..., gn)

implies that

℘∗ ⊇ (g2, ..., gn)/(u) = (g∗2, ..., g
∗
n).

It follows that

℘∗ ⊇ Rad(g∗2, ..., g
∗
n) = Rad(I∗) ⊇ I∗.
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Thus in this case

℘ + (u)/(u) = ℘/(u) = ℘∗ ⊇ I∗ = I + (u)/(u)

which implies that ℘ ⊇ I.

Therefore in both cases we show that ℘ ⊇ I. Thus we have proven that

Rad(I) ⊆ Rad(g1, ..., gn). Since g1, . . . , gn ∈ I we have Rad(g1, ..., gn) ⊆ Rad(I).

Hence Rad(I) = Rad(g1, ..., gn). ¤

Corollary 2.11 Every algebraic set in An can be generated by n polynomials set

theoretically.

Proof: Let k be an algebraically closed field and S = k[x1, . . . , xn−1] be the

polynomial ring of dimension n− 1. Let R = S[xn] and Y be an algebraic set in

An. By using Theorem 2.10 above, for the ideal I(Y ), we get g1, . . . , gn ∈ I(Y )

so that Rad(I(Y )) = Rad(g1, . . . , gn). Therefore we have that

Y = Z(I(Y )) = Z(g1, . . . , gn).

¤

2.4 Eisenbud and Evans’ Theorem for projective n space

Let S =
∑

i≥0 S(i) and S+ =
∑

i>0 S(i). We assume that S+ is generated by S(1).

Relevant prime ideals are prime ideals which do not contain the irrelevant

prime ideal S+ of S. Projective dimension of S is the length of a maximal

chain of relevant prime ideals of S. Note that if S is a noetherian graded ring of

projective dimension n− 1, then the projective dimension of S[x] is greater than

or equal to n. For projective analogue of Eisenbud and Evans’ theorem we need

to give a lemma about division of polynomials.
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Lemma 2.12 (Eisenbud and Evans, [7]) Let S be a ring and f, g ∈ S[x] some

polynomials having degrees d and e respectively, with d ≤ e. If u ∈ S is the leading

coefficient of f, then for all N > e− d there exist polynomials h and r such that

uNg = fh + r

and the degree of r in x is less than d. Moreover, if S is a graded ring and f and

g are homogeneous polynomials then h and r can be chosen homogeneous as well.

Theorem 2.13 (Eisenbud and Evans, [7]) Let R = S[x] be a graded poly-

nomial ring for some noetherian graded ring S of projective dimension n − 1.

If I ⊂ S+R is a homogeneous ideal then there exist homogeneous elements

g1, . . . , gn ∈ I such that Rad(I) = Rad(g1, . . . , gn).

Proof: The proof goes by induction on n, as in the proof of Theorem 2.10.

If n = 0, S+ is the nilpotent ideal of S, since Rad(0) is a prime ideal and there

is no relevant prime ideal in S, so S+ ⊆ Rad(0). The converse is always the case.

Thus Rad(I) is the nilradical of R which is the radical of the ideal (0), generated

by the empty set of elements.

If n > 0, then assume that P1, . . . , Pk are the minimal relevant prime ideals

of S. We will show that there exist elements u ∈ S+ and g1 ∈ I such that

u 6∈ ⋃k
i=1 Pi and

uI ⊆ Rad(g1).

For this let us define for all i = 1, . . . , k

Ii = (I + PiR)/PiR ⊆ R/PiR.

For hi ∈ I, let h∗i ∈ Ii be a homogeneous polynomial having the lowest possible

degree in x such that hi = h∗i + PiR, for all i = 1, . . . , k. Choose a homogeneous
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element, si ∈ S such that

si ∈ (
k⋃

j=1

Pj)− Pi

and choose s ∈ S(1) −⋃k
i=1 Pi; here we must show that S(1) −⋃k

i=1 Pi 6= ∅, if it

is empty, then S(1) ⊆ ⋃k
i=1 Pi which implies that S+ ⊆ (

⋃k
i=1 Pi)

⋃
(
∑

i>1 S(i)).

This gives a contradiction S+ ⊆ Pi, for some i. If h∗i = 0 then choose ui ∈ S+ to

be any homogeneous element such that ui 6∈ Pi. If h∗i 6= 0 and u∗i is the leading

coefficient of h∗i then choose ui ∈ S+ to be a homogeneous element such that

ui = u∗i + Pi. Multiplying each hi, ui and si by a suitable power of s we can

assume that for all i and j,

deg(hi) = deg(hj)

deg(ui) = deg(uj)

deg(si) = deg(sj).

Let g1 =
∑k

i=1 sihi and u = (s(
∑k

i=1 siui))
N where N is sufficiently large. Clearly

u ∈ S+ since ui ∈ S+. Since Pi is a prime ideal, si 6∈ Pi and ui 6∈ Pi implies that

siui 6∈ Pi. Thus

(
k∑

i=1

siui) 6∈
k⋃

i=1

Pi

on the other hand s 6∈ ⋃k
i=1 Pi hence

u 6∈
k⋃

i=1

Pi.

We claim that uI ⊆ Rad(g1); to see this let us fix i and define the following:

g1 = g∗1 + PiR

u = u∗ + PiR

si = s∗i + PiR

then g∗1 ∈ Ii is s∗i h
∗
i since it is the image of g1 in R/PiR, i.e.

g1 =
k∑

i=1

sihi =
k∑

i=1

(s∗i h
∗
i + PiR)
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Therefore the degree of g∗1 is the minimal among the degrees in x of elements of

Ii. By definition of u,

u = (s(
k∑

i=1

siui))
N = (s∗ + PiR)N(

k∑
i=1

s∗i u
∗
i + PiR)N .

We have that u∗ = (s∗)N(s∗i u
∗
i )

N is a multiple of a large power of the leading

coefficient s∗i u
∗
i of g∗1, thus by Lemma 2.12 we get u∗k = lg∗1 +r, for all k ∈ Ii with

the degree of r in x is less than the degree of g∗1 in x. So r = 0, since degree of g∗1

is the minimal. Therefore we conclude that u∗Ii ⊆ (g∗1). Because u ∈ S+ it follows

that uI ⊆ S+R. On the other hand u∗Ii ⊆ (g∗1) implies that uI ⊆ ((g1) + PiR),

for all i, therefore we get

uI ⊆ (S+R)
⋂

((g1) + PiR). (2.1)

Every prime ideal of R contains either S+R or some PiR. Let P be any prime

ideal of R such that P ⊇ (g1). If P ⊇ S+R then we have P ⊇ uI by Equation

2.1. If P ⊇ PiR, for some i, then we have P ⊇ uI again by Equation 2.1. So

P ⊇ (g1) implies that P ⊇ uI which means that uI ⊆ Rad(g1) as desired. ¤

Corollary 2.14 Every algebraic set in Pn can be generated by n homogeneous

polynomials set theoretically.

Proof: Let k be an algebraically closed field and S = k[x0, . . . , xn−1] be the

homogeneous polynomial ring of projective dimension n − 1. Let R = S[xn]

and Y be an algebraic set in Pn. Without loss of generality we may assume

that [0 : · · · : 0 : 1] ∈ Y ⊂ Pn. Then I(Y ) ⊆ S+R = (x0, . . . , xn−1). By

using Theorem 2.13 above, for the ideal I(Y ), we get g1, . . . , gn ∈ I(Y ) so that

Rad(I(Y )) = Rad(g1, . . . , gn). Therefore we have that

Y = Z(I(Y )) = Z(g1, . . . , gn)

¤



3

Monomial Curves that are

complete intersection

3.1 Introduction and monomial curves

In this chapter we will prove that all monomial space curves in A3 are set theoretic

complete intersection of two surfaces [3]. This gives a partial answer to the well

known question of whether every monomial curve in An is a set theoretic complete

intersection.

Later we will give an example of a monomial curve which is a set theoretic

complete intersection in A4.

Let us first define affine monomial curves in An and then prove that all affine

monomial space curves are set theoretic complete intersection in the next section.

Definition 3.1 Let k be a field of characteristic zero and m1 < . . . < mn be

positive integers such that gcd(m1, . . . , mn) = 1. An affine monomial curve C =

28
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C(m1, . . . , mn) in An is given parametrically by

x1 = tm1

x2 = tm2

...

xn = tmn

where t is an element of the ground field k.

3.2 All monomial space curves are complete intersection

set theoretically

By [12], the prime ideal I(C) ⊆ k[x1, x2, x3] corresponding the monomial space

curve C = C(n1, n2, n3) is given by

I(C) = (f1 = xm1
1 − xm12

2 xm13
3 , f2 = xm2

2 − x1
m21xm23

3 , f3 = xm3
3 − xm31

1 xm32
2 )

where all components are positive integer satisfying the following relations

m1 = m21 + m31

m2 = m12 + m32

m3 = m13 + m23.

Lemma 3.2 (Bresinsky,[3]) J = (f1, f2, f3)
⋂

(xm21
1 , xm12

2 ) = (f1, f2, x
m21
1 f3, x

m12
2 f3)

Proof: ⊇ is trivial as

f1, f2, x
m21
1 f3, x

m12
2 f3 ∈ (f1, f2, f3)

and

xm21
1 f3, x

m12
2 f3 ∈ (xm21

1 , xm12
2 ).
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So we only need to show that f1, f2 ∈ (xm21
1 , xm12

2 ) but these are evident from the

following equalities

f1 = xm1
1 − xm12

2 xm13
3 = xm21

1 xm31
1 − xm12

2 xm13
3 ∈ (xm21

1 , xm12
2 )

f2 = xm2
2 − xm21

1 xm23
3 = xm12

2 xm32
2 − xm21

1 xm23
3 ∈ (xm21

1 , xm12
2 ).

For the converse inclusion consider the polynomial

f =
3∑

i=1

gifi ∈ I

then

g3f3 ∈ (xm21
1 , xm12

2 )

since f1 and f2 are already in (xm21
1 , xm12

2 ). It is easy to see that (xm21
1 , xm12

2 ) is

irreducible and primary. Since f3 is not in

(x1, x2) = Rad(xm21
1 , xm12

2 )

by the definition of primary ideal g3 must be in the ideal (xm21
1 , xm12

2 ), which

implies that

g3 = p1x
m21
1 + p2x

m12
2

where p1, p2 ∈ k[x1, x2, x3].

Hence

f =
3∑

i=1

gifi = g1f1 + g2f2 + (p1x
m21
1 + p2x

m12
2 )f3 ∈ (f1, f2, x

m21
1 f3, x

m12
2 f3).

¤

Lemma 3.3 (Bresinsky,[3]) We have (f1, f2, x
m21
1 f3, x

m12
2 f3) = (f1, f2)

Proof: ⊇ is trivial. ⊆ can be deduced by the equalities

xm21
1 f3 = −xm32

2 f1 − xm12
3 f2,
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xm12
2 f3 = −xm31

1 f2 − xm23
3 f1.

¤

Corollary 3.4 Z(f1, f2) = C
⋃

L , where the line L is the x3 -axis.

Proof: It follows from Lemma 3.2 and Lemma 3.3 that J = (f1, f2) thus

Z(f1, f2) = Z(J) = Z(f1, f2, f3)
⋃

Z(x1, x2) = C
⋃

L. ¤

Indeed we can prove Corollary 3.4 directly as follows:

Proof of Corollary 3.4: Take a point p = (a, b, c) ∈ Z(f1, f2). We may

have two cases, either a = 0 or not. If a = 0 then b = 0 by f2(p) = 0. Hence

p = (0, 0, c) ∈ L.

If a 6= 0 then b 6= 0 and c 6= 0 by f1(p) = 0. Hence a,b and c are all nonzero

which follows that

f1(p) = 0 ⇒ am1 = bm12cm13 ⇒ cm13 = am1b−m12

f2(p) = 0 ⇒ bm2 = am21cm23 ⇒ cm23 = a−m21bm2

Therefore we get

cm3 = cm13cm23 = am1−m21bm2−m12 = am31bm23

which means that f3(p) = 0, i.e. , p ∈ C. ¤

Theorem 3.5 (Bresinsky, [3]) If g ∈ I(C) such that f2 ∈ Rad(g, f1) and g =

±xα
3 + h, where h ∈ (x1, x2) and α is a positive integer, then C = Z(g, f1).

Proof: It is immediate from (g, f1) ⊆ I(C) that

C = Z(I(C)) ⊆ Z(g, f1).
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For the converse, we take a point p = (a, b, c) ∈ Z(g, f1) and show that p ∈ C.

Either a = 0 or a 6= 0. In the first case a = 0, we get b = 0 and c = 0, from

f2(p) = 0 and g(p) = 0, respectively. So p = (0, 0, 0) ∈ C in this case. In the

second case if we assume that b = 0 or c = 0 then we get a = 0, by f1(p) = 0,

which is a contradiction. So a, b and c are all nonzero in the second case. Consider

the following facts

f1(p) = 0 ⇒ am1 = bm12cm13 ⇒ cm13 = am1b−m12 ,

f2(p) = 0 ⇒ bm2 = am21cm23 ⇒ cm23 = a−m21bm2 .

Therefore we get

cm3 = cm13cm23 = am1−m21bm2−m12 = am31bm23

which means that f3(p) = 0, i.e. p ∈ C. ¤

According to above Theorem 3.5, to show that C is the set theoretic complete

intersection of the surfaces g = 0 and f1 = 0, the only thing we need is to

construct a polynomial g ∈ I(C) such that f2 ∈ Rad(g, f1) and g = ±xα
3 + h

where h ∈ (x1, x2). To construct such a polynomial g we first take

fm1
2 = (xm2

2 − xm21
1 xm23

3 )m1 = xm2
2 k ± xm21m1

1 xm23m1
3

where k ∈ (x1, x2), and then subtract or add

xm21m1
1 xm23m1

3 f1 = xm1m21
1 xm1m23

3 − x
m1(m21−1)
1 xm12

2 xm13+m1m23
3 ,

and lastly divide by xm12
2 . At the end we get a polynomial

g = xm32
2 k ± x

m1(m21−1)
1 xm13+m1m23

3 .

Note that if m21 = 1 then

g = xm32
2 k ± xm13+m1m23

3 = ±xα
3 + h

where h ∈ (x1, x2) and α = m13+m1m23. If m21 6= 1 we will show that the process,

i.e. subtracting or adding proper multiples of f1 and dividing by xm12
2 , can be
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carried through m21 times. Let ↪→ denote a change of a term by subtracting or

adding proper multiples of f1 .

Proposition 3.6 If we apply ↪→ to the term xa
1x

b
2x

c
3 ,n times , this term turns

into the form xa−nm1
1 xb+nm12

2 xc+nm13
3 .

Proof: Let us prove it by induction. For n = 1 we have the following

xa
1x

b
2x

c
3 − xa−m1

1 xb
2x

c
3(x

m1
1 − xm12

2 xm13
3 ) = xa−m1

1 xb+m12
2 xc+m13

3 .

Suppose that the proposition is true for n − 1 and applying ↪→ one times more

we’ll show that it is also true for n. Assume that we get the term

x
a−(n−1)m1

1 x
b+(n−1)m12

2 x
c+(n−1)m13

3

after applying ↪→ to xa
1x

b
2x

c
3 , (n− 1) times. Subtracting

xa−nm1
1 x

b+(n−1)m12

2 x
c+(n−1)m13

3 f1

from the above term we get that

xa−nm1
1 xb+nm12

2 xc+nm13
3 .

¤

By binomial theorem we have the following

fm1
2 = (xm2

2 − xm21
1 xm23

3 )m1 =

m1∑
j=0

(−1)j


 m1

j


 x

(m1−j)m21

1 xjm2

2 x
(m1−j)m23

3 .

The terms of this expansion can be made divisible by xm12
2 , m21 times, as follows:

For j=0, xm1m21
1 xm1m23

3 turns into xm21m12
2 xm1m23+m21m13

3 after applying ↪→ m21

times by the Proposition 3.6.

For j = m21 the term

xm21m31
1 xm2m21

2 xm23m31
3 = xm21m31

1 xm12m21
2 xm32m21

2 xm23m31
3
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is already divisible by xm12
2 , m21 times.

For 1 ≤ j ≤ m21 − 1 the term

x
(m1−j)m21

1 xjm2

2 x
(m1−j)m23

3

turns into the form

x
(m1−j)m21−(m21−1)m1

1 x
jm2+(m21−1)m12

2 x
(m1−j)m23+(m21−1)m13

3

after applying ↪→ (m21 − 1) times by the Proposition 3.6.

Therefore we construct a polynomial

g0 = xm21m12
2 xm1m23+m21m13

3 + h0

after applying ↪→ to fm1
2 , m21 times, where h0 ∈ (x1, x2) is divisible by xm12

2 , m21

times. If we divide g0 by xm12
2 , m21 times, then we get another polynomial

g = xm1m23+m21m13
3 + h

where h ∈ (x1, x2).

Hence we have just constructed a polynomial g which is needed in the state-

ment of the Theorem 3.5 to show that C is the set theoretic complete intersection

of the surfaces g = 0 and f1 = 0. This construction provides the existence of such

a polynomial g for all monomial space curves.

Let us give some examples to see concrete surfaces whose set theoretic complete

intersections are those monomial space curves given first. These examples are

given to make more clear all steps in the proof of the Theorem 3.5.

Examples

(i) The affine twisted cubic
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The simplest example of a set theoretic complete intersection is the well known

affine twisted cubic curve C = C(1, 2, 3) given parametrically by

x1 = t1

x2 = t2

x3 = t3

where t ∈ k. By the computer program Macaulay [10] we get ideal of C as

I(C) = (f1 = x2
1 − x2, f2 = x2

2 − x1x3, f3 = x3 − x1x2)

Let us first find a representation of the twisted cubic being complete intersection

set theoretically, by using the idea in the proof of the Theorem 3.5 as follows:

f 2
2 = (x2

2 − x1x3)
2 = x4

2 − 2x1x
2
2x

3 + x2
1x

2
3

If we subtract

x2
3f1 = x2

1x
2
3 − x2x

2
3

from f 2
2 and divide by x2, we get the polynomial

g = x2
3 + x3

2 − 2x1x2x3.

It is easy to see that f 2
3 = g + x2

2f1 and f 2
2 = x2g + x2

3f1, hence, the affine

twisted cubic curve is the set theoretic complete intersection of the surfaces

f1 = x2
1 − x2 = 0

and

g = x2
3 + x3

2 − 2x1x2x3 = 0.

Now let us show that the affine twisted cubic curve is indeed an ideal theoretic

complete intersection, that is, I(C) = (f1 = x2
1 − x2, f3 = x3 − x1x2). It suffices
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to prove that I(C) ⊂ (f1 = x2
1−x2, f3 = x3−x1x2), since the converse is already

true. This is evident from the following relation

f2 = −x2f1 − x1f3 ∈ (f1, f3).

Hence the affine twisted cubic curve is a complete intersection ideal theoretically

but it is proved in the last chapter that the projective twisted cubic is not.

(ii) C=C(2,3,5)

This example illustrates all steps in the proof of the Theorem 3.5. We know

from the computer program Macaulay [10] that the ideal corresponding this curve

can be generated by the following polynomials :

f1 = x3
1 − x2

2

f2 = x3
2 − x2

1x3

f3 = x3 − x1x2.

By using the same idea as in the proof of the Theorem 3.5 we consider the

following

f 3
2 = (x3

2 − x2
1x3)

3 = x9
2 − 3x2

1x
6
2x3 + 3x4

1x
3
2x

2
3 − x6

1x
3
3.

By adding

x3
1x

3
3f1

to f 3
2 and dividing by x2

2 we get the following

x7
2 − 3x2

1x
4
2x3 + 3x4

1x2x
2
3 − x3

1x
3
3.

Similarly by adding x3
3f1 to the above equation we get
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x7
2 − 3x2

1x
4
2x3 + 3x4

1x2x
2
3 − x2

2x
3
3.

It can easily be seen that the third term of the above equation is not divisible

by x2
2, to make it divisible by x2

2 we subtract

3x1x2x
2
3f1

hence we get

x7
2 − 3x2

1x
4
2x3 + 3x1x

3
2x

2
3 − x2

2x
3
3.

Finally dividing the last equation by x2
2 we get the polynomial

g = x5
2 − 3x2

1x
2
2x3 + 3x1x2x

2
3 − x3

3.

Therefore C is the set theoretic complete intersection of the surfaces

f1 = x3
1 − x2

2 = 0

and

g = x5
2 − 3x2

1x
2
2x3 + 3x1x2x

2
3 − x3

3.

3.3 Set theoretical complete intersections in A4

A semigroup S is a set with an associative law of composition and with an identity

element. But elements of S are not required to have inverses. The semigroup

generated by n1, n2, n3, n4 ∈ N = {0, 1, 2, . . .} is denoted by < n1, n2, n3, n4 >
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and defined as follows

< n1, n2, n3, n4 >= {
4∑

i=1

aini | ai ∈ N}

where N denote the nonnegative integers. Let c be the greatest integer not in S.

S is called a symmetric semigroup if c− z ∈ S whenever z is not in S. By using

the same idea as in the proof of the Theorem 3.5, Bresinsky [4] shows that if the

semigroup

< n1, n2, n3, n4 >

is symmetric, then the monomial curve

C = C(n1, n2, n3, n4)

is a complete intersection set theoretically. He uses the fact that I(C) is generated

by 3 or 5 polynomials [5] to prove that C is a set theoretic complete intersection.

Since in the first case µ(I(C)) ≤ 3 the curve C is indeed an ideal theoretical

complete intersection, he is interested in the second case µ(I(C)) ≤ 5 and he

showed that µ(C) ≤ 3 in any case. We will not give the proof of this theorem,

C(n1, n2, n3, n4) is a set theoretic complete intersection, in the general case but

we will cover all steps in the proof by proving it on an example:

Let us consider an irreducible monomial curve C = C(5, 6, 7, 8). It can be

found that the generators of the prime ideal I(C), using the computer program

Macaulay as follows

I(C) = (f1 = x3
1−x3x4, f2 = x2

2−x1x3, f3 = x2
3−x2x4, f4 = x2

4−x2
1x2, f5 = x2x3−x1x4)

Lemma 3.7 (Bresinsky, [4]) f5 ∈ Rad(f1, f2, f3, f4).

Proof: It is easy to see that

f 2
5 = x2

3f2 + x2
1f4 + x1x2f1 ∈ (f1, f2, f4),
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that is, f5 ∈ Rad(f1, f2, f3, f4). ¤

Infact f5 ∈ (f1, f2, f4) for this example but we need f3 for other examples.

Corollary 3.8 (Bresinsky, [4]) I(C) = Rad(f1, f2, f3, f4).

Proof: It is clear that Rad(f1, f2, f3, f4) ⊆ (f1, f2, f3, f4, f5) = I(C). The con-

verse is a direct consequence of Lemma 3.7. ¤

Let us show that the following fact

Rad(f1, f2, f3) = Rad(f1, f2, f3, f4)
⋂

(x1, x2, x3).

This is equivalent to show that

Lemma 3.9 (Bresinsky, [4]) We have the following

Z(f1, f2, f3) = Z(f1, f2, f3, f4)
⋃

Z(x1, x2, x3).

Proof: ⊇ is obvious. To prove the converse take an element p = (a, b, c, d) ∈
Z(f1, f2, f3). Either a = 0 or not. If a = 0 then b = 0 by f2(p) = 0 which implies

that c = 0 by f3(p) = 0 so p ∈ Z(x1, x2, x3). If a 6= 0 then b 6= 0 otherwise c = 0

by f3(p) = 0 which gives a contradiction a = 0 by f1(p) = 0. Since a 6= 0, c and d

are nonzero by f1(p) = 0. Thus a, b, c and d are all nonzero. The following facts

accomplish the proof

f1(p) = 0 ⇒ a3 = cd

f2(p) = 0 ⇒ b2 = ac

f3(p) = 0 ⇒ c2 = bd.

It follows from the first and last equalities that bcd2 = a3c2, that is, bd2 = a2(ac).

From the second equality we get bd2 = a2b2 which implies that d2 = a2b, that is

f4(p) = 0 which provide that p = (a, b, c, d) ∈ Z(f1, f2, f3, f4). ¤
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Therefore Z(f1, f2, f3) = C
⋃

L where the line L is the x4 axis. We want to

lose L in the union, to do this we should find a new polynomial g ∈ I(C) such

that g = ∓xµ
4 + h , where h ∈ (x1, x2, x3) is a polynomial and µ is a positive

integer.

Theorem 3.10 (Bresinsky, [4]) If g ∈ I(C) is a polynomial such that f2 ∈
Rad(g, f1, f3) and g = ∓xµ

4 + h , where h ∈ (x1, x2, x3) is a polynomial and µ is

a positive integer, then we have C = Z(g, f1, f3).

Proof: It is clear that C ⊆ Z(g, f1, f3). To prove converse, we take any point

p = (a, b, c, d) ∈ Z(g, f1, f3). Then f2(p) = 0, since f2 ∈ Rad(g, f1, f3). Either

a = 0 or not. If a = 0 then b = 0 by f2(p) = 0 which implies that c = 0 by

f3(p) = 0. It follows that d = 0, from g(0, 0, 0, d) = ∓dµ + h(0, 0, 0) = 0 , where

h ∈ (x1, x2, x3) is a polynomial and µ is a positive integer. So p = (0, 0, 0, 0) ∈ C.

If a 6= 0 then b 6= 0 otherwise c = 0 by f3(p) = 0 which gives a contradiction

a = 0 by f1(p) = 0. Since a 6= 0, c and d are nonzero by f1(p) = 0. Thus a, b, c

and d are all nonzero. The following facts accomplish the proof

f1(p) = 0 ⇒ a3 = cd

f2(p) = 0 ⇒ b2 = ac

f3(p) = 0 ⇒ c2 = bd.

It follows from the first and last equalities that bcd2 = a3c2, that is, bd2 = a2(ac).

From the second equality we get bd2 = a2b2 which implies that d2 = a2b, that is

f4(p) = 0 which provide that p = (a, b, c, d) ∈ Z(f1, f2, f3, f4) = C. ¤

According to above Theorem 3.10 to show that C(5, 6, 7, 8) is a set theoretic

complete intersection it suffices to construct such a polynomial g. To construct

it consider

f 3
2 = x6

2 − 3x4
2x1x3 + 3x2

2x
2
1x

2
3 − x3

1x
3
3
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by adding x3
3f1 to f 3

2 we get

x6
2 − 3x4

2x1x3 + 3x2
2x

2
1x

2
3 − x4

3x4

again by adding x4f
2
3 to the above equation we get

x6
2 − 3x4

2x1x3 + 3x2
2x

2
1x

2
3 + x2

2x
3
4 − 2x2x

2
3x

2
4.

We want to get a term consist only of a power of x4. If we can divide every term

by x2
2 we are done. It can easily be seen in the above expression that the last

term is not divisible by x2
2. To make it divisible let us add 2x2x

2
4f3 to the last

equation. Hence we have

x6
2 − 3x4

2x1x3 + 3x2
2x

2
1x

2
3 − x2

2x
3
4.

Now we can divide every term by x2
2 to get

g = x4
2 − 3x2

2x1x3 + 3x2
1x

2
3 − x3

4.

By the construction of g we have

f 3
2 = x2

2g − x3
3f1 − x4f

2
3 − 2x2x

2
4f3 ∈ (g, f1, f3)

that is, f2 ∈ Rad(g, f1, f3). Therefore C = Z(g, f1, f3), that is, C is the set

theoretical complete intersection of the hypersurfaces

g = x4
2 − 3x2

2x1x3 + 3x2
1x

2
3 − x3

4 = 0,

f1 = x3
1 − x3x4 = 0

and

f3 = x2
3 − x2x4 = 0.



4

Examples for the ideal

theoretical case

In this chapter we suggest examples to point out that the minimal number of poly-

nomials generating an algebraic set in an n space is n set theoretically, it may be

much larger than n ideal theoretically. We present a theorem of Bresinsky which

says that there are some monomial curves in An with n > 3, having arbitrary

large minimal number of elements to generate their ideal [6]. These examples also

show the strength of Eisenbud and Evans’ Theorem 2.10 and Theorem 2.13.

Let us first quote the work of Bresinsky [6]. Let C = C(n1, n2, n3, n4) be the

monomial curve defined by

n1 = rs

n2 = rd

n3 = rs + d

n4 = sd

where s ≥ 4 is even integer, r = s + 1, d = s− 1. Bresinsky shows that we must

have s polynomials to generate C ideal theoretically, i.e. µ(I(C)) ≥ s. Thus

42
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for any integer s ≥ 4, we can construct a monomial curve whose defining ideal

requires at least s generators.

4.1 A monomial curve C in A3 with µ(C) = 2, µ(I(C)) = 3

In the first chapter we mentioned a result of Murthy which tells us that any prime

ideal of height 2 in k[x1, x2, x3], which is a complete intersection locally, that is,

in a neighbourhood of any point of the corresponding curve the prime ideal can

be generated by 2 polynomials, can be generated by 3 polynomials. The following

remark shows that this result is best possible:

Remark 4.1 A prime ideal of height 2 in k[x1, x2, x3], which is a complete in-

tersection locally, need not be generated by 2 polynomials.

Proof: In chapter 3, we gave a general proof of the theorem that all monomial

space curves are complete intersection set theoretically but now we will show that

although the curve C defined below is a complete intersection of 2 surfaces its

ideal cannot be generated by 2 polynomials. Let us consider a monomial space

curve C = C(3, 4, 5) defined parametrically by

x1 = t3

x2 = t4

x3 = t5

If we define a homomorphism

ϕ : k[x1, x2, x3] 7−→ k[t]

x1 = t3
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x2 = t4

x3 = t5

then we can easily show that Ker(ϕ) = I(C) is a prime ideal and generated by

the following polynomials:

f1 = x3
1 − x2x3

f2 = x2
2 − x1x3

f3 = x2
3 − x2

1x2

by the computer program Macaulay [10].

Let g = x4
1 − 2x1x2x3 + x3

2 be another polynomial, by following equalities

f 2
1 = x2

2f3 + x2
1g

f 2
2 = x2

1f3 + x2g

we get I(C) ⊂ Rad(f3, g) so Z(f3, g) ⊂ C.

Conversely f3(t
3, t4, t5) = g(t3, t4, t5) = 0, i.e., C ⊂ Z(f3, g). Hence C is the

complete intersection of the surfaces g = 0 and f3 = 0.

Affine coordinate ring A(C) of the curve C is isomorphic to k[t], since ϕ is

indeed an isomorphism. Hence dim(C) = dimA(C) = 1. Since I(C) is prime

ideal, C is irreducible and its coordinate ring A(C) is integral domain. For any

integral domain D which is a finitely generated k-algebra we have

dim(D) = dim(D/P ) + height(P )

Hence height(I(C)) = 2 by dim(k[x1, x2, x3]) = 3. Let us show that I(C) cannot

be generated by two polynomials. Let

deg(x1) = 3

deg(x2) = 4

deg(x3) = 5
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thus we get the following

deg(f1) = 9

deg(f2) = 8

deg(f3) = 10

Suppose that I(C) = (g, h). If g, h have degree greater than 8 then f2 is not in

the ideal generated by g and h which is a contradiction hence one of them must

have degree 8, say deg(g) = 8. A monomial xm1
1 xm2

2 xm3
3 has at least degree 3 so

a polynomial contained in the ideal generated by g must has at least degree 11.

So f1 and f3 is not in the ideal generated by g. If degree of h is greater than 9

then f1 is not in the ideal generated by g and h, so degree of h must be 9. But

in this case f3 is not in the ideal generated by g and h which is a contradiction.

Hence I(C) cannot be generated by 2 polynomials.

4.2 A monomial curve C in A4 with µ(C) ≤ 4, µ(I(C)) ≤ 9

In this example we see that although the minimal number of polynomials gener-

ating C is 4 set theoretically, it is 9 ideal theoretically. This shows the strength

of Eisenbud and Evans’ Theorem 2.10. Let us consider the monomial curve C

defined parametrically by

x1 = t12

x2 = t13

x3 = t16

x4 = t17.

It follows from the computer program Macaulay [10] that the generators of
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I(C) are the following polynomials

f1 = x4
3 − x2x

3
4

f2 = x2x3 − x1x4

f3 = x4
2 − x3

1x3

f4 = x1x
3
3 − x2

2x
2
4

f5 = x1x
3
2 − x3

4

f6 = x2
1x

2
3 − x3

2x4

f7 = x2
1x

2
2 − x3x

2
4

f8 = x3
1x2 − x2

3x4

f9 = x4
1 − x3

3

It can be easily checked that the following equalities hold

f1 = x2f5 − x1f3 − x3f9

f 2
4 = x2

1x2x
2
3f5 + (x4

4 − x3
1x

2
3)f3 − x2

1x
3
3f9 − (x2

1x3x
3
4 + 2x1x2x

2
3x

2
4)f2

f 2
6 = x2

2x
2
4f3 + x3

1x3f4 − 2x2
1x

2
2x3x4f2

f 2
7 = x4

2f9 − x2
3x4f5 + (x3

2x
2
3 + 2x1x

2
2x3x4)f2

f 2
8 = x5

3x4f5 + (x2
1x

2
2 − x4

2x
3
3)f9 + (2x2

1x2x
2
3 − x3

2x
5
3 − 2x1x

2
2x

4
3x4)f2

thus we get f1, f4, f6, f7, f8 ∈ Rad(f2, f3, f5, f9) which implies that

I(C) = Rad(f2, f3, f5, f9).

Hence C = Z(f2, f3, f5, f9).
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4.3 Projective twisted cubic curve

Projective twisted cubic curve C is a monomial curve in P3 having parametric

representation as follows

x = u3

y = u2t

z = ut2

w = t3

where (0, 0) 6= (u, t) ∈ k2. We know from the computer program Macaulay [10]

that the homogeneous prime ideal I(C) of the projective twisted cubic curve is

generated by the following polynomials

f1 = xw − yz

f2 = y2 − xz

f3 = z2 − yw.

Now let us show that although the projective twisted cubic curve is a complete

intersection set theoretically, it is not a complete intersection ideal theoretically,

i.e. µ(I(C)) > 2 and µ(C) = 2.

Let f = zf3 + wf1 = z3 − 2yzw + xw2. It is easy to see that

C = Z(f1, f2, f3) ⊆ Z(f, f2).

On the other hand, we have

f 2
1 = xf + z2f2,

f 2
3 = zf + w2f2,

which implies that Z(f, f2) ⊆ C = Z(f1, f2, f3).

Therefore C = Z(f, f2) and µ(C) = 2.

To show that C is not a complete intersection ideal theoretically, let us choose

the following degrees, in fact the degrees can be chosen in different ways, in order
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to make proof in short we choose

deg(w) = 3

deg(z) = 4

deg(y) = 5

deg(x) = 6

thus we get

deg(f1) = 9

deg(f2) = 10

deg(f3) = 8

Suppose that I(C) = (g, h), for some homogeneous polynomials g and h. If g

and h have degree greater than 8 then f3 is not in the ideal generated by g and h

which is a contradiction hence one of them must have degree 8, say deg(g) = 8. A

monomial xm1ym2zm3wm4 has at least degree 3 (when mi = 0, for i = 1, 2, 3 and

m4 = 1), so a polynomial contained in the ideal generated by g must has at least

degree 11. So f1 and f3 is not in the ideal generated by g. If degree of h is greater

than 9 then f1 is not in the ideal generated by g and h, which is a contradiction,

so degree of h must be 9. But in this case f3 is not in the ideal generated by g

and h which gives a contradiction. Hence I(C) cannot be generated by g and h

polynomials, i.e., µ(I(C)) > 2.



5

Future Researches

As a last word, I would like to mention some prospective problems on which

research may proceed based upon the results presented in this thesis.

Historically, the problem of finding the minimal number of elements generating

an algebraic set in n space was treated by Kronecker in 1882 [15]. Kronecker

succeeded to prove that n + 1 elements suffice to generate an algebraic set in

n space. In 1973, Eisenbud and Evans improved the result for sufficiency to n

elements, by using the methods of Commutative Algebra [7]. Hence the next

natural aim would be to reduce this minimal number of sufficient elements to

n−1. This is not always possible, which is the case for zero dimensional algebraic

sets in n space by Theorem 4 in [[9], page 204]. So the next aim would be to

characterize under which condition it is possible to reduce this minimal number

to n − 1. As a general problem it is very hard to determine the reduction to

n− 1. So a natural path for research may be to investigate the characterization

of reducibility of this minimal number to n− 1 in some certain special cases such

as monomial curves in n space or irreducible smooth curves in 3 space.

49
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A result of Bresinsky tells us that this minimal number reduces to n − 1 for

monomial curves of type C(m1, . . . , mn) for which 〈m1, . . . , mn〉 is a symmetric

semigroup in the case of affine n = 4 space [4]. My current insight through

the mentioned result is that this minimal number reduces to n − 1(= 3) for

the monomial curves C(m1, . . . , mn) for which 〈m1, . . . , mn〉 may not be a sym-

metric semigroup in the case of n = 4. It may be interesting to show that if

〈m1,m2,m3〉 is a symmetric semigroup and m4 is the greatest integer which is

not in 〈m1,m2,m3〉, then the monomial curve C(m1,m2,m3,m4) is a complete

intersection set theoretically.

Another result of Robbiano and Valla tells us that if the projective coordinate

ring of a monomial curve in P3 is Cohen Macaulay then this curve is a set theoretic

complete intersection of 2 surfaces [23]. So a further insight of research may start

with the rational quartic curve C4 = (t4, t3u, tu3, u4) whose projective coordinate

ring is not Cohen Macaulay.

From a different direction, ideal theoretically, Bresinsky has constructed some

monomial curves in An whose defining ideals need arbitrary large minimal number

of generators [6]. Arslan S.F. has recently constructed a family of monomial

curves in An whose ideals need arbitrary large minimal number of generators. He

has also shown that the ideal of the Cohen Maculay tangent cone of the curve

that he constructed, need arbitrary large minimal number of generators [2]. So

my current insight for prospective research is to construct such counter examples

to exclude the characterization of the minimal number of generators under some

certain condition in projective case.
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