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Abstract—Extracting actionable intelligence from distributed,
heterogeneous, correlated, and high-dimensional data sources re-
quires run-time processing and learning both locally and globally.
In the last decade, a large number of meta-learning techniques
have been proposed in which local learners make online predic-
tions based on their locally collected data instances, and feed these
predictions to an ensemble learner, which fuses them and issues
a global prediction. However, most of these works do not provide
performance guarantees or, when they do, these guarantees are
asymptotic. None of these existing works provide confidence esti-
mates about the issued predictions or rate of learning guarantees
for the ensemble learner. In this paper, we provide a systematic en-
semble learning method called Hedged Bandits, which comes with
both long-run (asymptotic) and short-run (rate of learning) per-
formance guarantees. Moreover, our approach yields performance
guarantees with respect to the optimal local prediction strategy,
and is also able to adapt its predictions in a data-driven manner.
We illustrate the performance of Hedged Bandits in the context of
medical informatics and show that it outperforms numerous online
and offline ensemble learning methods.

Index Terms—Ensemble learning, meta-learning, online learn-
ing, regret, confidence bound, multi-armed bandits, contextual
bandits, medical informatics.

I. INTRODUCTION

UGE amounts of data streams are now being produced

by more and more sources and in increasingly diverse
formats: sensor readings, physiological measurements, GPS
events, network traffic information, documents, emails, trans-
actions, tweets, audio files, videos etc. These streams are then
mined in real-time to provide actionable intelligence for a va-
riety of applications: patient monitoring [2], recommendation
systems [3], social networks [4], targeted advertisement [5],
network security [6], [7], medical diagnosis [8] etc. Hence, on-
line data mining algorithms have emerged that analyze the corre-
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lated, high-dimensional and dynamic data instances captured by
one or multiple heterogeneous data sources, extract actionable
intelligence from these instances and make decisions in real-
time. To mine these data streams, the following questions need
to be answered online, for each data instance: Which process-
ing/prediction/decision rule should a local learner (LL) select?
How should the LLs adapt and learn their rules to maximize their
performance? How should the processing/predictions/decisions
of the LLs be combined/fused by a meta-learner to maximize
the overall performance?

Existing works on meta-learning [6], [9]-[11] have aimed
to provide solutions to these questions by designing ensemble
learners (ELs) that fuse the predictions' made by the LLs into
global predictions. A majority of the literature treats the LLs as
black box algorithms, and proposes various fusion algorithms
for the EL with the goal of issuing predictions that are at least as
good as the best LL in terms of prediction accuracy. In some of
these works, the obtained result holds for any arbitrary sequence
of data instance-label pairs, including the ones generated by an
adaptive adversary. However, the performance bounds proved
for the EL in these papers depend on the performance of the
LLs. In this work, we go one step further and study the joint
design of learning algorithms for both the LLs and the EL. Our
approach also differs from empirical risk minimization (ERM)
based approaches [12], [13]. Firstly, most of the literature on
ERM is concerned with finding the best prediction rule on av-
erage. We depart from this approach and seek to find the best
context-dependent prediction rule. Secondly, data is not avail-
able a priori in our model. Predictions are made on-the-fly based
on the prediction rules chosen by the learning algorithm. This re-
sults in a trade-off between exploration and exploitation, which
is not present in ERM.

In this paper, we present a novel learning method which con-
tinuously learns and adapts the parameters of both the LLs and
the EL, after each data instance, in order to achieve strong
performance guarantees - both confidence bounds and regret
bounds. We call the proposed method Hedged Bandits (HB).
The proposed system consists of a new contextual bandit algo-
rithm for the LLs and two new variants of the Hedge algorithm
[11] for the EL. The proposed method is able to exploit the
adversarial regret guarantees of Hedge and the data-dependent
regret guarantees of the contextual bandit algorithm to derive
regret bounds for the EL. One proposed variant of the Hedge
algorithm does not require the knowledge of time horizon 7'
and achieves the O(y/T log M) on regret uniformly over time,
where M is the number of LLs. The other variant uses the

!"Throughout this paper the term prediction is used to denote a variety of tasks
from making predictions to taking actions.
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context/side information provided to the EL to fuse the predic-
tions of the LLs.

The contributions of this paper are:

® We propose two variants of the Hedge algorithm [11]. The
first variant, which is called Anytime Hedge (AH), is a
parameter-free Hedge algorithm [14]-[17]. We prove that
AH enjoys the same order of regret as the original Hedge
[11]. The second variant, which is called Contextual Hedge
(CH), is novel and uses the context information provided
to the EL when fusing the LLs’ predictions. Since the
sequence of context arrivals to the EL are not known in
advance, CH utilizes AH to learn the best LL for each
context.

e We propose a new index-based learning rule for each
LL, called Instance-based Uniform Partitioning (IUP). We
prove an optimal regret bound for IUP, which holds for any
sequence of data instance arrivals to the LL, and hence, also
in expectation.

® We prove confidence bounds for each LL with respect to
the optimal data-dependent prediction rule of that LL.

e Using the regret bounds proven for each LL and the EL,
we prove a regret bound for the EL with respect to the
optimal data-dependent prediction rule.

® We numerically compare IUP, AH and CH with state-of-
the-art machine learning methods in the context of medi-
cal informatics and show the superiority of the proposed
methods.

II. PROBLEM DESCRIPTION

This section describes the system model and introduces the
notation. I(-) is the indicator function, E[] is the expectation
operator. Ep|[-] denotes the expectation of a random variable
with respect to distribution P. Given a set S, A(S) denotes
the set of probability distributions over S and |S| denotes
the cardinality of S. For a scalar or vector z(¢) indexed by
te Nt :={1,2,...}, 27 := (2(1),..., 2(T)). Given a vector
v, v_; is the vector formed by the components of v except the
ith component. Random variables are denoted by uppercase let-
ters. Realizations of random variables are denoted by lowercase
letters.

The system model is given in Fig. 1. There are M LLs
indexed by the set M :={1,2,...,M}. Each LL receives
streams of data instances, sequentially, over discrete time steps
t € {1,2,...}. Theinstance received by LL 7 at time ¢ is denoted
by X, (t). Without loss of generality, we assume that X;(¢) is
a d;-dimensional vector in X; := [0,1]% .2 Let X := [[,.\, X;
denote the joint data instance set.

The collection of data instances at time t is denoted by
X (t) = {X;(t) }iem. For example, X (t) can include in a med-
ical diagnosis application real-valued features such as lab test
results; discrete features such as age and number of previous
conditions; and categorical features such as gender, smoker/non-
smoker, etc. In this example each LL corresponds to a (different)

The unit hypercube is just used for notational simplicity. Our methods can
easily be generalized to arbitrary bounded, finite dimensional data spaces, in-
cluding spaces of categorical variables.
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Fig. 1.  Block diagram of the HB. The flow of information towards the EL is

illustrated via a tree graph, where the LLs are the leaf nodes. After observing the
instance, each LL selects one of its prediction rules to produce a prediction, and
sends its prediction to the EL which makes the final prediction. Then, both the
LLs and the EL update their prediction policies based on the received feedback

y(t). Note that the EL only observes the predictions h(t) of the LLs but not
their instances @(t).

medical expert. The true label at time ¢ is denoted by Y (¢), which
is a random variable that takes values in the finite label set ).
Let J denote the joint distribution of (X (¢), Y(¢)). Itis assumed
that {(X (¢),Y(t))}{_, is i.i.d. Let J. denote the conditional
distribution of (X _;(¢), Y (¢)) given X;(t) = x;.

The set of prediction rules of LL 7 is denoted by F;. For
instance, a prediction rule can be a classifier such as an SVM
with polynomial kernel, a neural network or a decision tree.
Let F := U;emF; denote the set of all prediction rules. The
prediction produced by f € F; given context x; € X; is de-
noted by Yy (z;). Yy(x;) is a random variable whose distri-
bution is given by Q(z;), where Q; : X; — A()). Predic-
tion of f € F; at time ¢ is denoted by Y;(t) := Y;(X;(t)).
Let Z(t) := (X (1), Y (t), {Y; ()} ser). Then, {Z(t)}]_, is an
i.i.d. sequence. Realizations of the random variables X; (¢), Y (¢)
and Y} (t) are denoted by z; (t), y(t) and §; (t), respectively. The
accuracy of prediction rule f € F; for a data instance x € X; is
given as

7i(@) = E [I05 () = Y ()| Xi (1) = @

LL ¢ operates as follows: It first observes x;(t), and then se-
lects a prediction rule a;(t) € F;. The selected prediction rule
produces a prediction h; (t) = Ga, (1)(t).> Then, all LLs send
their predictions h(t) := {h;(t)};erm to the EL, which com-
bines them to produce a final prediction ¢(t). We assume that
the true label y(t) is revealed after the final prediction, by which
the LLs and the EL can update their prediction rule selection

3Without loss of generality we assume that only the selected prediction rule
produces a prediction. For instance, in big data stream mining, the LL may be
resource constrained and require to make timely predictions. The LL in this
setting is constrained to activate only one of its prediction rules for each data
instance. Moreover, observing the predictions of more than one prediction rule
will result in faster learning. Hence, all our performance bounds will still hold
when the LL observes the predictions of all of its prediction rules.
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strategy, which is a mapping from the history of past observa-
tions, decisions, and the current instance to the set of prediction
rules. We call rf(t) = 1(y¢(t) = y(t)) the reward of predic-
tion rule f, v;(t) :=I(h;(t) = y(t)) the reward of LL i and
reL(t) = I(g(t) = y(t)) the reward of the EL at time ¢. Random
variables that correspond to the realizations a; (t), h; (t), 7(t),
v; (t) and 7. (t) are denoted by A;(t), H;(t), Ry (t), Vi(t) and
Rgy (), respectively.

In our setup each LL is only required to observe its own data
instance and know its own prediction rules. However, the accu-
racy of the prediction rules is unknown and data dependent. The
EL does not know anything about the instances and prediction
rules of the LLs.* We assume that the accuracy of a predic-
tion rule obeys the following Holder rule, which represents a
similarity measure between different data instances.

Assumption I1: There exists L > 0, o > 0 such that for all
1€M, feF,andx, 2’ € X;, we have

mp (@) = mp (2)] < Ll — 2]

We assume that « is known by the LLs. Going back to our
medical informatics example, we can interpret Assumption 1 as
follows. If the lab tests, symptoms and demographic information
of two patients are similar, it is expected that they have the
same underlying medical condition, and hence, the (diagnosis)
prediction should be similar for these two patients.

III. PERFORMANCE METRICS: REGRET

In this section, we introduce several performance metrics to
assess the performance of the learning algorithms of the LLs
and the EL. First, we define the performance measures for the
LLs. We start by defining the optimal prediction rules and local
oracles (LOs) that implement these prediction rules. Let f*(x)
be the optimal prediction rule of LL ¢ for an instance = € X},
which is given by f;(x) € argmax;.z 7s(x). The accuracy
of f;(z) is denoted by 7} () := ms+(,) ().

LO i knows {7y (-)}sex perfectly. At each time step ¢ it
observes z; (¢) and then selects f;(x;(¢)) to make a prediction.
Since LL ¢ does not know {7/ (-)} rez a priori, we would like
to measure how well it performs with respect to LO . For this,
we define the data-dependent regret of LL ¢ with respect to LO
ias

T T
Reg,(T) := > Ry-(x, 1) (t) = > Ra,(1)(1).
t=1 t=1

The strategy of LO 4 only depends on X! = (X;(1),

.., X;(T)). Thus, we would like to measure how well LL i
performs given X ZT For this, we define the conditional regret
of LL 7 as

Reg, (T|X] ) := E [Reg;(T)| X ] (1

The algorithm we propose in Section IV almost surely (a.s.) up-
per bounds the conditional regret with a deterministic sublinear

4We consider the case when the EL has access to a subset of the features of
the instances in Section VII, and propose a learning algorithm for this case.

function of time. The expected regret of LL i is defined as
Reg,(T) := E [Reg;(T)]
= E [E [Reg;(7)|X[]] = E [Reg,(T|X])] .

This implies that a deterministic upper bound on
Reg; (T| X7 that holds a.s. also holds for Reg, (T').

Next, we define the performance measures for the EL. Con-
sider any realization {v! };c of the random reward sequence
{VT}icm of the LLs. The best LL for this realization is de-
fined as I, where I, € argmax; ., 2/, v;(t). In Section V,
we propose a learning algorithm for the EL, whose total reward
is close to the total reward of I, for any realization {vZT Yiem-
To measure the distance between total rewards, we define the
pseudo-regret of the EL given {v! };cq as

T
> Re(t)

where the expectation is taken with respect to the randomization
of the EL. In Section V we bound Regg, (") by a sublinear
function of T', which implies that limy .. Regg (T')/T = 0.
Regp (T') compares the performance of the EL with the best
LL, which makes it a relative performance measure. This is the
standard approach taken in prior works in ensemble learning
[11], [18]. Since LLs themselves are learning agents, Regg, (7')
depends on the learning algorithms used by the LLs. Next, we
propose a benchmark for the performance measure of the EL
that is independent of the learning algorithms used by the LLs.

The optimal LO denoted by <", is given as " €
argmax; . v B[], Ry-(x,(1))(t)]. LO s total predic-
tive accuracy is greatest among all LOs. On the other
hand, the best LL in expectation is defined as i; €

T
Regp (1) == vy, (t) —E 2)
t=1

arg max;q E[Zf:1 Ry, (1) (t)]. We would like to emphasize
the fact that the expected reward of LL ¢ depends on the learn-
ing algorithm used by the LL, while the expected reward of LO
1 is the optimal that can be achieved given the prediction rules in
Fi. Hence, the latter upper bounds the former. This implies that
E[ZtT:1 RA":* o ()] < E[Zil Ry (x,.(1))(t)]. As an absolute
measure of ﬁerformance we define the expected regret of the
EL as

Regy (T) :==E —E

T
Y Re(t)| O
t=1

which compares the EL with the best LO in terms of the expected
reward.

Our goal is to jointly design algorithms for the LLs and
the EL that minimize the learning loss (i.e. the growth rate
of Regg; (T)). This can be viewed equivalently as maximizing
the learning speed/rate of the LL and the EL algorithms. We will
prove in the Section VI a sublinear upper bound on Regg; (T'),
meaning that the proposed algorithms have a provably fast rate
of learning, and the average regret Regg; (T')/T of the proposed
algorithms converges asymptotically to 0. A learning algorithm
that achieves sublinear regret guarantees that (in expectation)
the number of prediction errors it makes is in the order of that of

T
> Ry x,an ()
t=1
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Fig.2. Illustration of different partitions used by IUP for LLs 7 and j. Accuracy
parameter is updated for the shaded sets in the partitions, which contains the
current feature vector.

IUP for LL 4:

Input: 7', m;, d;
Initialize sets: Create partition 7 of [0, 1]% into m%:
identical hypercubes
Initialize counters: Ny , =0,Vf € Fy,pe P, t =1
Initialize estimates: 7}, =0, Vf € Fi, p € P;
while ¢ > 1 do

Find the set p* = p;(t) € P; that x;(t) belongs to

Compute the index for each f € F;:

for feF; do

if N« >0 then

Gopr = Wb + \/ s (14 2log@Fm 7))
sP

else
9% p+ = +00
end if
end for )
Select a; = argmax ¢ r, g% ,~ (break ties randomly)
Predict h;(t) = §a, (t)
Observe the true label y(t) and the reward

vi(t) = I(hi(t) = y(t)) .
ﬁéi,p* A (7}21 p* Néi,p* + i (t))/(NZ”’p* + 1)

Niopr & Noope +1
t—t+1
end while
Fig. 3. Pseudocode of IUP for LL 1.

the optimal LO, which knows the accuracies of the prediction
rules for each instance in advance.

IV. AN INSTANCE-BASED UNIFORM PARTITIONING
ALGORITHM FOR THE LLS

Each LL uses the Instance-based Uniform Partitioning (IUP)
algorithm given in Fig. 3. TUP is designed to exploit the similar-
ity measure given in Assumption 1 when learning the accuracies
of the prediction rules. Basically, [UP partitions & into a finite
number of equal sized, identically shaped, non-overlapping sets,
whose granularities determine the balance between approxima-
tion accuracy and estimation accuracy: increasing the size of a
set in the partition results in more past instances falling within
that set, which positively affects the estimation accuracy, but also
allows more dissimilar instances to lie in the same set, which
negatively affects the approximation accuracy. IUP strikes this
balance by adjusting the granularity of the data space partition

891

based on the information contained within the similarity mea-
sure (Assumption 1) and the time horizon 7'.°

Let m; be the partitioning parameter of LL ¢, which is used
to partition [0, 1]%/ into mff identical hypercubes. This partition
is denoted by 7;.% IUP estimates the accuracy of each prediction
rule for each set (hypercube) p € P;, separately, by only using
the past history from instance arrivals that fall into hypercube p.
For each LL ¢, IUP keeps and updates the following parameters
during its operation:

e N } » (t): Number of times an instance arrived to hypercube

p € P; and prediction rule f of LL ¢ is used to make the
prediction prior to time ¢.

o fr} ,(t): Sample mean accuracy of prediction rule f € F;

at time ¢.

An illustration of the partitions used by IUP for each LL is
given in Fig. 2. IUP strikes the balance between exploration and
exploitation by keeping the following set of indices for each
p€P;and f € F’

2 _aq 2log(2|F;|m{ 7). (4)
Np ()
The second term in (4) is an inflation term that decreases with the
square root of N} (£). The (1 + 2log(2|F; |m{' T%/?) termis a
normalization constant that is required for the regret analysis in
Theorem 1. These types of indices are commonly used in online
learning [20] to tradeoff exploration and exploitation.

At the beginning of time step ¢, LL ¢ observes w;(t),
and identifies the hypercube p;(t) € P; that contains x;(t).
Then, it selects a;(t) € argmax ., g;’pﬁ(t)(t) and predicts

g}',p(t) - ﬁ;‘,[)(t) +

hi(t) = Ya, (+) (t). The second term of the index reflects the un-
certainty in the estimated value ﬁ}vp(t). It decreases as more
observations are gathered from prediction rule f for data in-
stances that lie in p. Hence, g'j‘}_’p(t) serves as an optimistic
estimate of the accuracy of f for data instances in p. LL ¢ ex-
plores when a; (t) ¢ Arg max;cr, ﬁjcp ) (t), and exploits when
a;(t) € argmax gz T (t)(t). In exploration, it chooses a
prediction rule with suboptimal estimated accuracy and high
uncertainty, while in exploitation it chooses the prediction rule
with the highest estimated accuracy. In Section VI, we will show
that the choice of the index in (4) results in optimal learning.

V. ANYTIME HEDGE ALGORITHM FOR THE EL

In this section, we consider a parameter-free variant of
the Hedge algorithm, called the Anytime Hedge (AH), whose

5The doubling trick [19] allows any learning algorithm T" that requires the time
horizon as an input to run efficiently (with the same time order of regret) without
the knowledge of the time horizon. With the doubling trick, time is partitioned
into multiple phases (j = 1,2,...) with doubling lengths (77,75, ...). For
instance, if the first phase is set to last for T time steps, then the length of the jth
phase is equal to 27! T time steps. In each phase j, an independent instance of
the original learning algorithm I', denoted by I';, is run from scratch, without
using any information available from the previous phases. With the doubling
trick, I'; ’s time horizon input is set to 2717 When we run IUP for LL i with
the doubling trick, the only modification that is needed is to set the partitioning
parameter of phase j to m; = [(2/71T)1/(2e+di)7],

SInstances laying at the edges of the hypercubes can be assigned to one of
the hypercubes in a random fashion without affecting the derived performance
bounds.

"When N;  (t) = 0, we set g} (t) to +oc.
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Anytime Hedge (AH)

Input: A non-increasing sequence of positive real numbers

{77(?5)}teN+

Initialization: L;(0) =0 fori e M, t=1

while ¢t > 1 do )
Receive predictions of LLs: h(t)
Choose the LL I(t) to follow according to the distribution
q(t) == (q1(t), - - ., qu(t)) where

exp(—n(t)Li(t — 1))
iy exp(—n(t)L;(t — 1)

Predict Q(t) = }L1<t) (t)
Observe the true label y(t)
Receive the reward 7pL(t) = I(g(t) = y(t)) and observe
losses of all LLs: [;(t) := I(hi(t) # y(t)) for i € M
Set L;i(t) = Li(t — 1) + 1;(t)
t—t+1

end while

a(t) =

Fig. 4. Pseudocode of AH.

pseudocode is given in Fig. 4. Hedge [11] is an algorithm that
uses the exponential weights update rule. It achieves O(v/T)
regret under the prediction with expert advice model. In this
model, the goal is to compete with the best expert given a pool
of experts. Hedge takes as input a parameter 7, that is called
the learning rate. The regret of Hedge is minimized when 7 is
carefully selected according to the time horizon 7.

Unlike the original Hedge, AH does not require a priori
knowledge of the time horizon. The EL uses AH to produce
the final prediction 7(t).® Although, numerous parameter-free
variants of Hedge are introduced in prior works [14]-[17], to the
best of our knowledge the regret analysis for AH is new. Specif-
ically, in Theorem 2.3 of [17], regret bound for a parameter-free
Exponentially Weighted Average Forecaster is derived. How-
ever, it is assumed that (i) the prediction of the EL is a deter-
ministic weighted average of the predictions of the LLs, and
(i1) the space of predictions and the loss functions are convex.
In contrast to this, in our setting (i) the prediction of the EL is
probabilistic, and (ii) the space of prediction is a finite set )
and the loss functions I(h;(t) # y(t)) and 1(§(t) # y(t)) are
indicator functions.

AH keeps a cumulative lossferror vector L(t) =
(Li(t),...,La(t)), where L;(t) denotes the number of pre-
diction errors made by LL ¢ by the end of time step ¢. After ob-
serving fL(t), AH samples its final prediction Y(t) from this set
according to probability distribution g(¢) = (g1 (t), - - ., qu (t)),
where

Pr(Y (1) = h(t)) = (1) = ]\?XP( n(t)Li(t —1))
> j—1 exp(=n(t)L;(t — 1))

where {n(t)};cn+ is a positive non-increasing sequence. This
implies that AH will choose the LLs with smaller cumulative
error with higher probability.

8We decided to use AH as the ensemble learning algorithm due to its simplic-
ity and regret guarantees. In practice, AH can be replaced with other ensemble
learning algorithms. For instance, we also evaluate the performance when LLs
use IUP and the EL uses Weighted Majority (WM) algorithm [10] in the numer-
ical results section. Unlike AH, WM uses ¢; (¢) as the weight of the prediction of
LL i. It sets the weight of y € Y to be w,, (t) = ZH}I (t)=y € (t) and predicts

§(t) € argmax, ¢y wy, (t).

VI. ANALYSIS OF THE REGRET

In this section we prove bounds on the regrets given in (1)
and (3), when the LLs use IUP and the EL uses AH as their
algorithms. The following theorem bounds the regret of each
LL.

Theorem 1: Regret bounds for LL i. When LL ¢ uses TUP
with the partitioning parameter m; € N T, given X ZT =z! we
have

Reg,(T|X] = a]) <14 2Ld}*m T + | F|m"

+ 24,/ |Film® T, 5)

Specifically, when m; = [T"/(2¢+4)7 we have

dl

a+d;
Reg,(T|X! =] ) <T™ 6 C; + T™ T 2% | F|+1 (6)

where  C; = 24,, | F[1/?24/2 4 2145 A, =

2(2(1 + 210g(2|}}|m?’T%)). From (6), it immediately
follows that

and

(i+f][ (]l
Reg, (T|X]) < T¥50 C; + T%7 2% | 7| + 1 as.

- atd; d;
Reg;(T) < T71 Cy + T 0 2% | F| + 1.

Proof: See Appendix B. |

Theorem 1 states that the difference between the expected
number of correct predictions made by LO ¢ and IUP increases as
asublinear function of the sample size 7. Time order of the terms
that appear in (5) are balanced when m; = [T%/(2¢+4:)7 This
means that the average excess prediction error of [UP compared
to the optimal policy converges to zero as the number of data
instances grows (approaches infinity). The regret bound enables
us to exactly calculate how far IUP is from the optimal strategy
for any finite 7', in terms of the average number of correct predic-
tions. Basically, we have Reg, (T') /T = O(T~ T ). Moreover

the rate of growth of the regret, which is O(T%) is optimal
[21] (up to a logarithmic factor), i.e., there exists no other learn-
ing algorithm that can achieve a smaller rate of growth of the
regret.

Remark 1: The memory complexity of TUP is O(|F;|m{").
For m; = [T'/(2¢+4)7 it becomes O(|F;|T%/(2*+4)), For
memory bounded LLs, with a bound M; € N on the partition-
ing parameter, we can set m; = min{[7"/**4)] M;}. In
this case, LL i will incur sublinear regret when [T/ (2 +di)7] <
M;. Otherwise, the regret may not be sublinear. However,
we can still obtain an approximation guarantee for IUP,
since limy o Reg, (T|X7T)/T = 2Ld"/*m;®. This implies
that IUP’s average reward will be within 2Ldf/ QMZ.’“ of the
average reward of LO .

Remark 2: Time order of the regret decreases as « increases
(given that T > d;”d’/ ? holds. Otherwise, the bound given in
Theorem 1 becomes trivial). This can be observed by investigat-
ing Assumption 1. Given two instances x and «’ and a prediction
rule f, as «v increases, difference between the prediction accu-
racies of f for two instances x and 2’ that lie in the same set
of the partition decreases. The constant that multiplies the time
order of the regret increases as L increases. This holds because
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as L increases, the difference between prediction accuracies of
f for x and 2’ may become larger.

As a corollary of the above theorem, we have the following
confidence bound on the accuracy of the predictions of LL ¢
made by using IUP.

Corollary 1: Confidence bound for LL ©. Assume that LL
uses IUP with the value of the partitioning parameter m;
given in Theorem 1. Let ACC; (t) be the event that the
prediction rule chosen by IUP for LL 7 at time ¢ has
accuracy greater than or equal to 7)(x;(t)) —e. For any
time ¢, we have Pr(ACC,(t))>1—1/T, where ¢ =

o (1+ 2log(2l Al TH) + 2Ly T,

Proof: See Appendix C. |

Corollary 1 gives a confidence bound on the predictions made
by IUP for each LL. This guarantees that the prediction made
by IUP is very close to the prediction of the best prediction rule
that can be selected given the instance. For instance, in medical
informatics, the result of this corollary can be used to calculate
the patient sample size required to achieve a desired level of
confidence in the predictions of the LLs. For instance, for every
(¢, 0) pair, we can calculate the minimum number of patients N*
such that, for every new patient n > N*, IUP will not choose
any prediction rule that has suboptimality greater than € > 0
with probability at least 1 — d, when it exploits (To achieve this
we need to set the second term in (4) appropriately). Moreover,
Corollary 1 can also be used to determine the number of patients
that need to be enrolled in a clinical trial to achieve a desired
level of confidence on the effectiveness of a drug.

The theorem below bounds the pseudo-regret of AH for any
realization of LLs’ rewards, hence almost surely.

Theorem 2: When AH is run with learning parameter
n(t) = \/log M/t, for any reward sequence {v! }ics,
the pseudo-regret of the EL with respect to the best LL
is bounded by Regg (T) < 2y/Tlog M. Hence, we have

max; e pm Zthl Vi(t) — E [Zle REL(t)] < 2y/TlogM as.,
where the expectation is taken with respect to the randomization
of the EL.

Proof: The proof is given in the online appendix [22]. W

The next theorem shows that the expected regret of the EL
given in (3) grows sublinearly over time and the term with the
highest regret order scales with F,,x = max;ca |F;| rather
than ||, which is the sum of the number of prediction rules of
all the LLs.

Theorem 3: Regret bound for the EL. When the EL runs AH
with learning parameter 7(¢) = +/log M/t and all LLs run TUP
with the partitioning parameter given in Theorem 1, the expected
regret of the EL with respect to the best LO ¢* is bounded by

atd;y

d;
Regy, (T) < T2+ Cp 4 TP 0w 247

+2/TlogM + 1

where the definition of Cj- is given in Theorem 1.
Proof: See Appendix D. |
Theorem 3 proves that the highest time order of the regret
does not depend on M, since C;- only depends on |F;-| <

Fel
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Flnax but not on | U;eng F;|. This implies that the effect of the
number of LLs to the learning rate is negligible. Since regret is
measured with respect to the optimal data-dependent prediction
strategy of the best LL (identical to the best LO), the benchmark
will generally improve as LLs with higher performances are
added to the system. Moreover, the learning loss with respect
to the benchmark is only slightly affected by introducing new
LLs to the system. Therefore, the performance of the EL will
generally improve as LLs with higher performances are added
to the system.

VII. EXTENSIONS

Active EL: Since IUP selects a prediction rule with high un-
certainty when it explores, the prediction accuracy of an LL can
be low when it explores. Since the EL combines the predic-
tions of the LLs, taking into account the prediction of an LL
which explores can reduce the prediction accuracy of the EL.
In order to overcome this limitation, we propose the following
modification: Let A(t) C M be the set of LLs that exploit at
time ¢. If A(¢) = 0, the EL will randomly choose one of the
LLs’ prediction as its final prediction. Otherwise, the EL will
apply an ensemble learning algorithm (such as AH or WM)
using only the LLs in (A(¢). This means that only the predic-
tions of the LLs in .A(¢) will be used by the EL and only the
weights of the LLs in A(¢) will be updated by the EL. Our
numerical results illustrate that such a modification can indeed
result in an accuracy that is much higher than the accuracy of the
best LL.

Contextual EL (CEL): The predictive accuracy of the EL can
be further improved if it can observe a set of contexts that yields
additional information about the accuracies of LLs’ prediction
rules. For instance, these contexts can be a subset of the data
instances that LLs observe, or some other side observation about
the instance that the EL currently examines.

We assume that CEL can observe dg; -dimensional context
in addition to the predictions of the LLs. Let xg.(t) be the
context observed at time ¢ by the EL, which is an element of
Xgr = [0, 1]%5. The learning algorithm we propose for CEL
is called Contextual Hedge (CH). Similar to IUP, CH parti-
tions the context space into equal sized, identically shaped,
non-overlapping sets, and learns a different LL selection rule
for each set in the partition. With this modification, the EL can
learn the best LL for each set in the partition, which will yield a
higher predictive accuracy than learning the best LL only based
on the number of correct predictions.

The pseudocode of the CH is given in Fig. 5. CH runs a
different instance of the AH in each set p of its context space
partition Pgy.. The cumulative loss vector it keeps for p at time
t is denoted by Ly, (t) = (L1 (t), ..., Ly a(t)), where Ly, ;(t)
denotes the number of prediction errors made by LL ¢ by the
end of time step ¢ for contexts that arrived to p. Ngp,(t) de-
notes the number of context arrivals to p by the end of time
t. At the beginning of time step ¢, CH identifies the set in P
that zg (t) belongs to, which is denoted by pgp(t). After CH
receives the set of predictions fL(t) of the LLs, it samples its fi-
nal prediction from this set according to probability distribution
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Contextual Hedge (CH)
Input: A non-increasing sequence of positive real numbers
{n(t)}ren+» meL and deL
Initialize sets: Create partition Pgr, of [0, 1]%F into (g )%
identical hypercubes
Initialize counters: Ngp,p = 0,Vp € Prr, t =1
Initialize losses: Lyp; =0, Vi € M, p € PrL
while ¢ > 1 do
Find the set in Pgr that zgL(¢) belongs to, i.e., pec(t). Let
p = pec(t)
Set NEL,p — NEL’p +1 .
Receive predictions of LLs: h(t)
Choose the LL I(t) to follow according to the distribution
q(t) == (qu(t), ..., qn(t)) where

o exp(=n(NeL,p) Lp,i )
i(t) = M
Zj:l exp(—n(New,p) Lp,j)

Predict §(t) = hy(t)

Observe the true label y(t)

Receive the reward e (t) = [(3(t) = y(t)) and observe
losses of all LLs: {;(t) = (hz(t) # y(t)) fori € M
Set Lp,; < Lp; +1;(t) fori €

t—t+1
end while
Fig.5. Pseudocode of CH.
q(t) = (q1(t),...,qu(t)), where
Pr(Y (t) = hi(1)) = :(t)
exp(—=N (VL pe (1) (1) Ly (1), (8 — 1))

Zﬁl exp(—1(NeL,pg (1) (1)) Lpg 1), ( — 1)) .

Standard Hedge algorithm is not suitable in this setting be-
cause it requires the knowledge of Ngp ,(T") beforehand for
each p € PgL. However, AH works properly because it can up-
date its learning parameter 7)(-) on-the-fly for each p € P,
using the most recent value of Ngp ,(t). Let Z,(t) :={l <t:
xpL(l) € p} denote the set of times in which the contextis in p by
time t. For a given sequence of LL rewards {v! };c\ and con-
text arrivals xf; we define the best LL for set p € Py, of the
EL as

i, € arg max Z v; (1
EM ez (1)

The contextual pseudo-regret of CEL is defined as

T T
— Z”@tw (t) — Z Rev(t)
t=1 t=1

where the expectation is taken with respect to the randomization
of CH. The following theorem bounds the regret of CH based
on the granularity of the partition it creates.

Theorem 4: Regret bound for CH. When CEL runs CH with

learning parameter 7)(t) = /log M/t and partitioning param-
eter mgr, the contextual pseudo-regret of the CEL is bounded

by
Regep (T) < 24/ T (mgy)% log M

for any ({v] }iem, @y ).

@)

Regcg (T)

Proof: See Appendix E. |

The regret bound given in Theorem 4 is obtained with-
out making any distributional assumptions on data instance
and context arrivals. Given a fixed time horizon 7', this re-
gret bound increases at rate mé'iL/ ®. Since the trivial re-
gret bound Regqp (T) < T always holds, the bound in
Theorem 4 guarantees that the regret is sublinear only if
mgL < (T/(41log M))'/ e Tt might seem counter-intuitive that
the regret is minimized when mgp, = 1. The reason for this is
that our benchmark 25:1 vis (t) given in the left-hand side

of (7) reduces to the benchmark max; e Ele v;(t) given in
(2) when mgr, = 1. The next lemma shows that the reward of
the benchmark in (7) is non-decreasing in mgp when mgy, is
chosen from {1,2,4,8,...}.

Lemma 1: Consider m’ and m in {1,2,4,8,...} such that
m’ > m. Let P’ (P) be the partition of Xy formed by m’ (m).
Let p/'(t) (p(t)) denote the set in P’ (P) that zgr (t) belongs to.
For any ({v! }icum, L, ), we have

T
Z p’(f Z p(f

t=1
Proof: Due to the fact that m’ and m are chosen from
{1,2,4,8,...}, each p’ € P’ is included in exactly one p € P°
Moreover, each p € P includes exactly (m'/m)® sets in P’.
Let S, denote the set of p’ € P’ such thatp’ C p. Forany p € P

we have
) < Z max Z vi(1).

P'ES, 1€2,/(T)

max
teM
1€2, (T)

Hence,

T
Z () ):Z%%{ Z v; (1)

peP leZ,(T)
S S mar 3wl
- ieM l( )
peEP P'ES, lez,(T)
T
= myx ) wlh=2 v
ieM (1)
p'epP’ leZp/(T) t=

]

Theorem 4 and Lemma 1 shows the tradeoff between approx-
imation and estimation errors. The benchmark we compare CH
against improves (never gets worse) as mgy. increases. Ideally,
we would like CH to compete with >/, Vit }(t), i.e., with

respect to the best LL given context xgy (¢). For zgp (¢ ) € p, CH
approximates z’?m »y With 7. Learning (estimating) ¢y U ()} is
harder than learning 7, because the past observatlons that CH
can use to learn z?z L)) is less than or equal to (usually less
than) that it can use to learn 7,,. This is the reason why the regret
increases with mg; . The optimal value for mg can be found by
pre-training CH before its online deployment.

9 Assignment of the contexts that lie on the boundary to one of the adjacent
sets can be done in any predetermined way without affecting the result.
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VIII. ILLUSTRATIVE RESULTS

In this section, we evaluate the performance of several HB-
based methods and compare them with numerous other state-of-
the-art machine learning methods on a breast cancer diagnosis
dataset from the UCI archive [23].

A. Simulation Setup

Description of the dataset: The original dataset contains 569
instances and 32 attributes, of which one attribute is the ID num-
ber of the patient and one attribute is the label. Each instance
contains features extracted from the images of fine needle as-
pirate (FNA) of breast mass. There are 30 clinically relevant
attributes. The diagnosis outcome (label) is whether the tumor
of the patient is malignant or benign.

Benchmarks: We compare HB with several state-of-the-art
centralized and decentralized benchmarks. A centralized bench-
mark is a machine learning algorithm that has access to all the
features of an instance. A decentralized benchmark on the other
hand, applies the same LL and EL structure as the HB. Hence,
each LL has access to a subset of features. However, the al-
gorithms used to train the LL and the EL are different from
the HB.

In the first set of experiments, we compare the HB methods
with centralized benchmarks such as Support Vector Machine
(SVM) and Logistic Regression (LR). In the second set of exper-
iments, we study the performance of various ensemble learning
methods for the EL, by fixing the learning algorithm of the
LLs as IUP. In the third set of experiments, we evaluate the
impact of system variables such as the number of LLs and past
history on the performance of the HB methods. In the fourth
set of experiments, we consider the extensions described in
Section VII.

The list of the algorithms used by the EL in this section is
given below.

e Adaptive Boosting (AdaBoost) [11].

e Perceptron Weighted Majority (PWM) [6], [24].

® Blum’s variant of Weighted Majority (Blum) [25].

e Herbster’s variant of Weighted Majority (TrackExp) [26].

We also compare performance of the HB with standard bench-
marks that are widely used in learning theory, which are listed
below.

e Best LL: LL with the highest accuracy over the dataset.

e Worst LL: LL with the lowest accuracy over the dataset.

e Average LL: Accuracy averaged over all the LLs.

When IUP is used, we assume that each LL has two predic-
tion rules: rule 1 always predicts malignant, and rule 2 always
predicts benign. Hence, using IUP, each LL is learning the best
prediction for each set in its feature space partition.

General setup: For all the simulations, each algorithm is run
50 times. The reported results correspond to the averages taken
over these runs.

For the HB, we create 3 LLs, and randomly assign 10 at-
tributes to each LL as its feature types for each run indepen-
dently. The LLs do not have any common attributes. Hence,
d; =10 for all 4 € {1,2,3}. Each run of the HB is done over
T = 10000 data instances that are drawn independently and uni-
formly at random from the 569 instances of the original dataset
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except Experiment 1 and 2, in which training and test samples
are separated (for offline algorithms).

Performance metrics: We report three performance metrics
for the above experiments: prediction error rate (PER), false
positive rate (FPR) and false negative rate (FNR). PER is defined
as the fraction of times the prediction is different from the true
label. FPR and FNR are defined as the prediction error rate for
benign cases and malignant cases, respectively. The main goal
of diagnosis is to minimize the FPR, given a tolerable threshold
for the FNR selected by the system user. In the simulations,
the threshold for FNR is set to be 3%, which is considered to
be a reasonable level in breast cancer diagnosis [27]. Using
this threshold, we can re-characterize the performance metric as
follows.

minimize FPR subject to FNR < 3%.

FNR can be set below 3% by introducing a hyper-parameter
which trade-offs FPR and FNR. The details are explained below.

For IUP, frip (ﬁ;ﬁp) denotes the estimated accuracy for ma-
lignant (benign) classifier for feature set p of LL 7. Prediction
is performed using the indices given in (4). LL ¢ will predict
malignant if g{ , > g} .'"" Otherwise, it will predict benign.
Let Ayp be the hyper-parameter for IUP. We can modify the
prediction rule of IUP as follows: LL ¢ predicts malignant if
hip X g , > g5, Otherwise, it predicts benign. It is obvious
that when hyp > 1, LL ¢ classifies more cases as malignant,
which yields a decrease FNR and an increase FPR.

For SVMs and logistic regression, the hyper-parameter is the
decision boundary between the malignant and benign cases.
Assume that we assign label 1 to the malignant case and O to
the benign case. An unbiased decision boundary will classify
every output that is greater than 0.5 as malignant and less than
0.5 as benign. If we perturb the decision boundary such that it
lies below 0.5, then it is expected that SVM and LR classify
more cases as malignant. This yields a decrease in FNR and an
increase in FPR.

In order to set FNR just below 3%, we first randomly select
a hyper-parameter value and run the corresponding algorithm
50 times, and then calculate FPR and FNR. After this step, the
hyper-parameter is adjusted to minimize the distance between
FNR and the threshold. The reported PER and FPR correspond
to the ones that are obtained for the hyper-parameter value which
makes FNR just below 3%.

To compare the performance of various algorithms, we intro-
duce the concept of improvement ratio (IR). Let PM(A) denote
the performance of algorithm A for metric PM. PM can be any
loss metric such as PER, FPR, FNR. The IR of algorithm A with
respect to algorithm B is defined as

(PM(B) — PM(A))/PM(B).

B. Experiment 1 (Table I, Fig. 6)

This experiment compares HB against LR, SVM, AdaBoost
(all trained offline); and Best LL, Average LL and Worst LL
benchmarks. The training of the offline methods is performed

lOWithoutv loss of generality, we assume that the prediction of LL 7 is malig-
nant when gi‘p =g »
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TABLE I
COMPARISON OF HB WITH OFFLINE BENCHMARKS

Units(%) Average Standard Deviation
Performance Metric PER | FPR FNR | PER | FPR | FNR
HB(IUP + WM) 2.96 2.61 2.99 0.73 1.26 0.88
HB(IUP + AH) 3.83 4.46 2.98 0.85 1.43 0.79
Logistic Regression | 6.04 8.48 2.94 2.18 4.07 1.3
AdaBoost 6.91 9.55 2.99 2.58 4.82 1.83
SVMs 9.73 14.21 2.98 2.5 4.19 1.98

Best LL of IUP 3.39 3.57 2.99 0.85 1.43 0.79
Average LL of IUP | 4.68 6.17 2.97 0.89 1.49 0.85
Worst LL of IUP 6.23 9.06 2.99 1.62 2.71 1.54
—>€— HB with WM E

—e— Logistic Regression
AdaBoost

Prediction Error Rate(%)

0 10 20 30 40 50 60 70 80 90 100
Benign patient rate in training set (%)

Fig. 6. PER of HB, LR and AdaBoost as a function of the composition of the
training set.

as follows. LR and SVM are trained in a centralized way and
have access to all 30 features. In the test phase, they observe all
the 30 features of the new instance and make a prediction. Ad-
aBoost is trained in a decentralized way. It has 3 weak learners
(logistic regression with different parameters), which are ran-
domly assigned to 10 of the 30 attributes. These weak learners
do not share any common attributes.

For each run, offline methods are trained using different
285 (50%) randomly drawn instances from the original 569
instances. Then, the performances of both the HB and bench-
marks are evaluated on 10,000 instances drawn uniformly at
random from the remaining 284 instances (excluding 285 train-
ing instances) for each run.

As Table I shows, HB (IUP + WM) has 2.96% PER and 2.61%
FPR when the FNR is set to be just below 3%. Hence, the PER
IR of HB (IUP + WM) with respect to the best benchmark
algorithm (LR) is 0.51. We also note that the PER IR of the
best LL with respect to the second best algorithm is 0.44. This
implies that the ITUP used by the LLs yields high classification
accuracy, because it is able to learn online the best prediction
given the types of features seen by each LL.

HB with WM outperforms the best LL, because it takes
a weighted majority of the predictions of LLs as its final

prediction, rather than relying on the predictions of a single
LL. As observed from Table I, all LLs have reasonably high
accuracy, since PER of the worst LL is 6.23%. In contrast to
WM, AH puts a probability distribution over the LLs based on
their weights, and follows the prediction of the chosen LL. With
highly accurate LLs, the deterministic approach (WM) works
better than the probabilistic approach (AH), because in almost
all time steps, the majority of the LLs make correct predictions.

Another advantage of HB is that it has low standard deviation
for PER, FPR and FNR, which is expected since IUP provides
tight confidence bounds on the accuracy of the prediction rule
chosen for any instance for which it exploits.

In Fig. 6, the performances of HB (with WM), LR and Ad-
aBoost are compared as a function of the training set com-
position. Since both LLs and the EL learn online in HB, its
performance does not depend on the training set composition.
On the other hand, the performance of LR and AdaBoost highly
depends on the composition of the training set. Although these
benchmarks can be turned into an online algorithm by retrain-
ing them after every time step, the computational complexity
of the online implementations for these algorithms will be high
compared to that of the HB. Therefore, implementing the online
versions of these benchmarks are not feasible when the dataset
under consideration is large, and decisions have to be made
on-the-fly.

C. Experiment 2 (Table II)

This experiment compares HB against four ensemble learning
algorithms: AdaBoost, PWM, Blum and TrackExp. The goal
of this experiment is to assess how the algorithm used by the
EL impacts the performance. To isolate this effect, all the LLs
use the same learning algorithm. The learning algorithms we
use for the LLs are IUP (online), LR and SVM (offline). In
this experiment, the performance metric is the accuracy for the
1001st patient. All of the other simulation details are exactly the
same as in Experiment 1.

As seen in Table II, performance of the HB is better than the
other ensemble learning methods when the FNR threshold is set
to 3%. More specifically, the performance improvement ratio of
HB (with WM) in comparison with the second best algorithm
(TrackExp) is 0.08 and 0.11 in terms of PER and FPR when [UP
is used by the LLs.

D. Experiment 3 (Fig. 7)

This experiment analyzes the performance of the HB as a
function of two system parameters: the number of LLs and the
dataset size. Firstly, we analyze the performance using differ-
ent numbers of LLs - from 2 to 30 -, over 10000 patients (as
in Experiment 1). In this simulation, all the LLs have access
to different types of attributes. Hence, as the number of LLs
increase, the number of attributes per LL decreases. This can
be viewed as increasing the amount of decentralization in the
system. Secondly, we analyze the performance as a function of
the total number of patients that have arrived so far. For this
case, the number of LLs is fixed to 3.
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TABLE II
COMPARISON OF HB WITH OTHER ENSEMBLE LEARNING METHODS

Unit(%) Local Learner Algorithm
IUP Logistic Regression SVMs
Ensemble Learning Algorithm | PER | FPR | FNR | PER | FPR | FNR | PER | FPR | FNR
HB(with WM) 272 | 196 | 294 | 281 | 271 | 297 | 343 | 3.51 | 297
HB(with AH) 435 | 5.05 | 293 | 3.6l 3.81 295 | 463 | 5.11 2.97
AdaBoost 3.02 | 3.09 | 298 | 328 | 3.15 | 297 | 427 | 4.16 | 295
PWM 311 | 282 | 296 | 296 | 3.08 | 296 | 3.95 | 455 | 2.96
Blum 3.09 | 3.12 | 293 3.5 378 | 3.00 | 3.68 | 4.18 | 2.95
TrackExp 297 | 221 299 | 3.03 | 3.05 | 293 | 4.02 | 3.81 2.99
Best LL 396 | 469 | 296 | 3.22 33 299 | 396 | 426 | 2.96
Average LL 522 | 7.04 | 298 4.5 458 | 294 | 5.64 5.8 2.92
Worst LL 6.55 | 9.41 2.97 6.4 6.48 | 297 | 636 | 7.03 | 2.94
3 20 TABLE IV

—&—HB with WM
—O—HB with AH
16 Best LL
—3¥— Average LL

PER(%)

0 5 10 15 0
Number of features seen by each LL

2000 4000 6000

Number of past patients

8000 10000

Fig. 7. Left: Number of features seen by each LL vs PER, Right: Number of
past patients vs PER.

TABLE III
PERFORMANCE IN EXPLORATION AND EXPLOITATION STEPS

Units(%) | Exploration | Exploitation | Average
PER 50.34 3.79 4.51
FPR 42.88 2.51 2.94
FNR 55.88 5.93 7.11
Ratio 1.52 98.48 100.00

Effect of the number of LLs: The left Fig. 7 shows the per-
formance of the HB with WM and AH as a function of the
number of LLs. In this case, the number of features seen by
each LL is roughly equal to 30/M. As M increases both the
performance of the LLs and the EL decreases. The decrease in
the performance of the LLs is due to the fact that they see less
features, and each LL has less information about the data. The
decrease in the performance of the EL is due to the decrease in
the performance of the LLs.

Effect of the number of previously diagnosed patients: The
right Fig. 7 shows the performance of the HB as a function
of the number past patients. As expected, the performance im-
proves monotonically with the number of past patients, which
is consistent with the regret results we have obtained.

E. Experiment 4

1) Extension 1: Active EL (Tables Il and 1V): Table III
shows the percentage of times the LLs explore and exploit.
The LLs are in exploration in 1.5% of the time steps, and the
LLs’ overall accuracy in these steps is around 50%.

PERFORMANCE IMPROVEMENT WITH ACTIVE EL

Units(%) HB (with WM)
Best LL HB HB with Active EL
PER 3.39 2.96 2.60
FPR 3.57 2.61 2.12
FNR 2.99 2.99 2.98
Units(%) HB (with AH)
Best LL HB HB with Active EL
PER 3.39 3.83 3.30
FPR 3.57 4.46 3.46
FNR 2.99 2.98 2.98

PER(%)
PER(%)

4[M b
S(M

—8—HB with WM
—O—HB with Hedge

0 10 20 30

Rate of missing labels (%)

40 50 5 10 15

Rate of incorrect labels (%)

20

Fig. 8. Left: Performance degradation due to missing labels. Right: Perfor-
mance degradation due to erroneous labels.

If the EL only considers the predictions of the LLs that ex-
ploit (Active EL), both HB with WM and AH have improved
performance compared to the original HB, as shown in Table IV.
Specifically, the PER IRs of Active EL (with WM or AH) with
respect to the original HB (with WM or AH) are 0.12 and 0.14,
respectively.

2) Extension 2: Missing and Erroneous Labels (Fig. 8): In
this section, we illustrate the degradation in performance that
results from randomly introducing missing or erroneous labels.
When the label is missing, the LLs and the EL do not update
their learning algorithms. Fig. 8 shows the affect of the missing
label rate to the PER. It is observed that when 50% of the labels
are missing, the PER degradation is only around 1% for both
HB (with AH) and HB (with WM). This shows the robustness
of HB to missing labels.

Next, we introduce erroneous labels (for binary labels, this
correspond to flipped labels). Since the LLs and the EL update
their learning algorithms when the label is incorrect, this results
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TABLE V
COMPARISON OF CEL WITH ORIGINAL HB AND THE BEST LL IN TERMS OF
PER, FPR AND FNR (dj;;, = 3 FOR CEL(WM), dj;;, = 4 FOR CEL(AH))

Units (%) PER | FPR | FNR

CEL(WM) 2.31 1.48 | 2.98

CEL(AH) 3.49 | 4.01 2.95

HB(WM) 296 | 2.61 2.99

HB(AH) 383 | 446 | 298

Best LL of IUP | 3.39 | 3.57 | 2.99
TABLE VI

PERFORMANCE OF CEL AS A FUNCTION OF THE NUMBER OF
FEATURES THAT CEL CAN OBSERVE

CEL CEL
+WM +AH
drr, PER | FPR | FNR | PER | FPR | FNR
0 (Original HB) | 2.96 | 2.61 2.99 3.83 4.46 2.98
1 2.71 2.13 2.99 4.16 | 5.07 2.97
2 2.33 1.47 3.00 374 | 431 2.98
3 2.31 1.48 2.98 3.64 | 4.16 2.96
4 2.42 1.61 2.92 349 | 4.01 2.95
5 2.46 1.54 2.97 4.03 4.95 2.98
6 2.58 1.71 2.93 4.35 5.34 2.99

in inaccurate accuracy estimates. Fig. 8 shows the affect of the
erroneous label rate to the PER. For instance, when 10% of the
labels are erroneous, the PER degradation is less than 2% for
both HB (with AH) and HB (with WM).

3) Extension 3: Contextual EL(CEL): Thisexperiment stud-
ies CEL introduced in Section VII. CEL is compared with the
original HB and the best LL (each LL uses IUP). In addition
to this, the predictive accuracy of the proposed method as a
function of the number of features assigned to the CEL (dgy ) is
computed. The simulation parameters are exactly the same as
the parameters used in Experiment 1.

As Table V shows, CEL with WM has 2.31% PER, 1.48%
FPR, and 2.98% FNR. Hence, the performance improvement
ratios with respect to the original HB (IUP+WM) approach
are 0.22 and 0.43 in terms of PER and FPR, respectively. In
addition, the performance IRs with respect to the best LL are
0.32 and 0.59 in terms of PER and FPR, respectively. In other
words, CEL with WM significantly outperforms the original HB
(IUP+WM) and the best LL in terms of both PER and FPR. The
reason for these improvements is that CEL learns the best LL
for each feature set in its partition, rather than learning the best
LL in overall.

Table VI shows the performance of CEL as a function of the
number of features observed by the EL. When WM is used, the
performance improves until dg;, = 3, while when AH is used
the performance improves until dg;, = 4. The reason that the
performance does not improve monotonically with dgp, is the
tradeoff between estimation and approximation errors, which is
described in detail in Section VII.

4) Effect of o« on performance (Table VII): As « in
Assumption 1 changes, optimized partitioning parameter m; =
[T/ (2a+d1)] changes. In illustrative results, we set 7' = 10000,
M = 3andd; = 10forall LLs. Thus, if & > 1.65, m; = 2. Oth-
erwise, m; = 3. Table VII shows that the optimal performance
is achieved when m; = 2.

TABLE VII
PERFORMANCE OF HB FOR DIFFERENT a@ VALUES
Units(%) HB (WM) HB (AH)
o m; | PER | FPR | FNR | PER | FPR | FNR
> 1.65 2 296 | 2.61 | 299 | 383 | 446 | 298
< 1.65 3 556 | 6.81 | 298 | 6.46 | 9.02 | 2.97

IX. RELATED WORKS

In this section, we compare our proposed method with other
online learning and ensemble learning methods in terms of the
underlying assumptions and performance bounds.

Heterogeneous data observations: Most of the existing en-
semble learning methods assume that the LLs make predictions
by observing the same set of instances [10], [28]-[31]. Our
methods allow the LLs to act based on heterogeneous data
streams that are related to the same event. Moreover, we im-
pose no statistical assumptions on the correlation between these
data streams. This is achieved by isolating the decision making
process of the EL from the data. Essentially, the EL acts solely
based on the predictions it receives from the LLs.

Our proposed method can be viewed as attribute-distributed
learning [9], [32]. In attribute-distributed learning, learners ob-
serve different features of the same instance and make local
predictions. These local predictions are merged into a global
prediction by a fusion center (EL). Numerous papers have con-
sidered the attribute-distributed learning model and proposed
collaborative training algorithms to train the LLs [33], [34].
However, these algorithms require information exchange be-
tween the LLs. In contrast to these works, in our proposed work,
information exchange is only possible between an LL and the
EL. Hence concerns about data security and privacy are ruled
out in our work.

There is a wide range of literature that develops distributed
estimation techniques in which distributed LLs come up with
consensus-based [35] or diffusion-based [36] parameter esti-
mates by iteratively exchanging their local parameters com-
puted based on the local observations. Unlike these works, in
which the optimal parameter estimation problem is formulated
as a distributed optimization problem, in our work the optimal
prediction rule selection problem is formulated as a learning
problem, and we explicitly focus on balancing the tradeoff be-
tween exploration and exploitation. Moreover, we do not make
any restriction on the type of classifiers (prediction rules) used
by LLs (except the similarity assumption), and do not require
any message exchange between LLs.

Data-dependent oracle benchmark vs. empirical risk mini-
mization: Our method can be viewed as online supervised learn-
ing with bandit feedback, because only the estimated accuracies
of the prediction rules chosen by the LLs can be updated after
the label is observed. Most of the prior works in this field use
empirical risk minimization techniques [12], [13] to learn the
optimal hypothesis. Let H; := &; — F; denote a hypothesis for
LL ¢, which is simply a mapping from the data instance that LL
1 observes to the set of prediction rules of LL ¢. Since the data
instance space is taken as [0, 1]%, there are infinitely many hy-
pothesis. The optimal hypothesis for LL 7 is H; (z;) = f(x;).
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As opposed to our work, ERM assumes access to N
ii.d. samples of the data instances, the label and the pre-
dictions (given as {(z(t),y(t),{9;(t)}ser)}1) by which
the loss of any hypothesis H; can be evaluated. Using
these i.i.d. samples, the empirical risk of H; is calculated
as Risk(H;) = £ Y/ [Rye(a, (1)) (t) = Rit, (s, (1) (£)]. For LL
i, ERM seeks out to find a hypothesis H; such that H; €
argminy, .,y Risk(h).

There are several important differences between ERM and
our approach: In our approach the LLs and the EL update their
hypothesis on-the-fly as more data and observations are gath-
ered. IUP is an alternative to solving for the hypothesis that
minimizes the empirical risk at each time step. Moreover, our
algorithms are: (i) guaranteed to converge to the optimal hy-
pothesis, and the convergence rate is explicitly characterized in
terms of the regret bounds; (ii) work efficiently even when the
hypothesis space H; is infinite or very large by partitioning A;;
(iii) work under partial feedback, i.e., only the prediction of the
selected prediction rule is observed, hence the samples available
at time step ¢ are ((t),y(t), {¥a, (1) (t) }icat}). Moreover, not
all of these are observed by the same learner.

Reduced computational and memory complexity: Most en-
semble learning methods require access to the entire dataset [11]
or process the data in chunks [28]. For instance, [28] considers
an online version of AdaBoost, in which weights are updated in
a batch fashion after the processing of each data chunk is com-
pleted. Unlike this work, our method processes each instance
only once upon its arrival, and do not need to store any past in-
stances. Moreover, the LLs only learn from their own instances,
and no data exchange between LLs are necessary. The above
properties make our method efficient in terms of memory and
computation, and suitable for distributed implementation.

Decentralized consensus optimization (DCO): The goal in
DCO is to maximize a global objective function subject to
numerous local constraints [37]—-[40]. In this framework, dis-
tributed agents, which only have access to local information,
exchange messages to cooperate with each other, in order to
maximize the global payoff. The message exchange process
continues until a predefined stopping criterion is satisfied. Un-
like DCO, in our work, both local and global payoff functions
are not known in advance. The LLs and the EL can only obtain
noisy feedback about these payoffs, which is whether a pre-
diction error happened or not. Moreover, the optimal actions
(prediction rules) depend on the data instance (context), and
hence are dynamically changing. In addition, the information
only flows from the LLs to the EL, and there is only a single
message exchange at each decision (time) step. Unlike maxi-
mizing the global objective function of a single-shot decision
problem, our goal is to maximize the cumulative reward incurred
over multiple decision steps.

X. CONCLUSION

In this paper we proposed a new online learning method that
jointly considers the learning problem of the LLs and the EL.
The proposed method comes with confidence and regret guaran-
tees, which is very important in practice for many applications.
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Our theoretical results show that the time order of the regret for
the EL is not affected by the number of LLs, which implies that
the convergence speed of the EL to the optimal remains almost
unchanged when the number of LLs in the system is increased.
Our extensive numerical results show the superiority of the pro-
posed approach in terms of its predictive accuracy. Specifically,
Contextual EL performs significantly better than other ensemble
learning methods, since it can utilize more information about
the data features. We also proposed various other extensions to
our proposed methods to deal with low confidence predictions
during explorations and adaptation to missing labels.

APPENDIX A
PRELIMINARIES FOR THE PROOF OF THEOREM 1

All the expressions used in the proofs below are related to
LL :. To simplify the notation, we drop subscripts/superscripts
related to LL ¢ from the notation. For instance, we use 7, (t)
instead of 7 (t), Ny, (t) instead of N} (t), p(t) instead of
pi(t) and f* instead of f/(x) when the data instance we refer
to is clear from the context.

The regret is computed by conditioning on X! = 7. Let
7} (t) denote the time step in which the ¢th context arrives to p €
P;of LLi. Let z,(t) = x; (T;)(t)) Trp(t) =1y (T}"; (1), 0y (t) =
om0, A7 (0) = 77 (7 (D), Nyp,(t) = Ny, (ri(t) and
ap(t) = a;(7,(t)). Let N, (T') (or simply N, (")) be the number
of context arrivals to p € P; by the end of time 7'. Let

Cf’P(t) = \/NfQ (t)

Foranyp € P;, f € Fiandt € {1,...,N,(T)}, we define the
following lower confidence bound (LCB) and upper confidence
bound (UCB):

(1 + 21og (2| ;| (my)= T)).

Ly p(t) == max{7y,(t) — Cy,(t), 0}
Upp(t) = min{7s, (t) + Cy,p(t), 1}

Let UC(f,p,v) = U2y {m (3, (1) & [Ly (1) — v, Uy (1)
+ v]} denote the event that LL ¢ is not confident about the
accuracy of its prediction rule f at least once for instances in p
by time T'. Throughout our analysis we set v = L(v/d; /m;)~.
Let UC(p,v) := U;cr, UC(f,p,v) and

UC(v) := Upep, UC(p, v). 8)

For each p € P; and f € F; let Ty, :=sup,c, 7f(x) and
Ty, o= infee, mp ().

APPENDIX B
PROOF OF THEOREM 1

We will bound the regret in each p € P; separately. Then, we
will sum over all p € P; to bound the total regret. Preliminaries
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are given in Appendix A.

Reg; (T|X])

wa Xi(1)

T
~E lz a0 (X (t))‘X?] O

The first term in (9) is obtained by observing that

T

=D > B[RS (G0) = NIXT]
t=1 feF
T

=20 > WA (Xi(t) = NE[Ry (1) XT ]
t=1 feF

Let F;_; be the sigma field generated by X JAL LY!' ! The
second term in (9) is obtained by observmg that

[E[R;(O)I(A;(t) = f)lF ] 1XT]  (10)
t=1 feF;
T
=> > E[(A(t) = HE[R; (1) Fa] | XT] (1)
t=1 feF
T
=" ST E[MA®) = fmp(Xi(1)| XT ] (12)
t=1 feF

where (10) is by the law of iterated expectations, (11) is by the
fact that I(A4;(¢) = f) is F;_; measurable, (12) is by definition
of ms(-) and the fact that Ry (t) is independent of all random
variables in (X7, AI"' V') except X;(t).

Forp € P;, let

13)

Using (9) we obtain

Ny (T)
Reg,(T|X] =x]) = Tz, (1) (Tp (1))
peP; t=1
Ny (T)
B[ XS w0 0| XT =l
peP; t=1
= Reg, ,(T|X] =a]) (14)
pEP;

The expectation in (13) is taken with respect to the randomness
of A,(1),..., A, (N,(T)) given XTI = 2. By the definition
of TUP, condltloned on X7 =z A,(t) only depends on ran-
dom variables A, (1 ),V},(l) Ay (t—1),V,(t —1). Since,
V,(t) = RA,,(l),p( ), we conclude that {flp(t)}i\ll(m only

depends on random variables R, := Ufcr {R;,(t) t\’:;l(T)

Hence, the expectation in (13) is taken with respect to the con-
ditional distribution of R, given ! .

Since {(X (), Y (t),{Y}(t)}ser)}_, is an i.id. sequence,
random variables R¢(t), t =1,...,T conditioned on X T are
independent. Since R (t) € {0,1}andE [R; (t)|X] = 2! ] =
7 (zi(t)), we can say that conditioned on X} =/,
{R;(t)}_, is asequence of independent Bernoulli random vari-
ables with parameters {m (z; (t))}{_, for f € F;. Withan abuse
of notation, in the subsequent analysis in this section, s (t) will
denote the random reward of f conditioned on X;(t) = z;(t),
and all the expectations are taken with respect to the random
variables defined above, unless otherwise stated. Hence, given
X! = 2!, we drop the conditioning on X from the notation
and simply write

N, (T) Ny (T)
Reg, ,(T) =Y mp(z, 1) (@ (1) —Er, | D 7 1y(& (1)
t=1 t=1

By the law of total expectation we have
E [Reg; ,(T)] = E [Reg, ,(T)|UC(p,v)] Pr(UC(p,v))
+E [Reg; ,(T)|UCC (p,v)] Pr(UC (p, v))

v)) +E [Reg; ,(T)|UC (p,v)] .

We will use the results of following lemmas to upper bound
(15).

Lemma 2: (Bound on Pr(UC(f,p,v))): Pr(UC(f,p,v)) <
L FmdT). ~

Proof: Equivalently, we can define {Rf_,p(t)}i\i’l(T)

< T Pr(UC(p, (15)

in the

following way: Let {nt}i\i’l(T) be a sequence of i.i.d. ran-
dom variables uniformly distributed in [0, 1]. Then, Ry, (t) =
I(n: < mp(Zp(t))). We can express the sample mean reward (ac-
curacy) of f as s, (t) = ;: Ry (D@, (1) = f)/Nyp(t).
From the definitions of Ly , (t), Uy, (t) and UC(f, p,v), it can
be observed that the event UC(f, p,v) happens when 7y, (¢)
remains close to (or concentrates around) 7 (Z,(t)) for all
te{l,...,N,(T)}.



TEKIN et al.: ADAPTIVE ENSEMBLE LEARNING WITH CONFIDENCE BOUNDS

This motivates us to use the concentration inequality given
in Appendix F, which is derived in [41] from a similar concen-
tration inequality in [42]. This inequality requires the expected
reward from an action to be equal to the same constant at all time
steps. This is clearly not the case for 7 (Z, (t)) since elements
of {Z,(t) i\gl(T) are not identical which makes distributions of
R;,(t),te{1,...,N,(T)} different.

In order to overcome this issue, we propose a novel sandwich
technique. Based on 7, we define two new sequences of random
variables, whose sample mean values will lower and upper
bound 7, (t). The best sequence is defined as { Ry, (t)}ivz”l(T)
where Ry ,(t) = I(m <7 7rf »), and the worst sequence is
defined as {Ef,p( )}f 1T where Ry ,(t) =10 <z, ,). Let
_ f—1 =
T)p (f) =300 Rep (DU (1) = f)/Nyp(t) and zp,(t) :=

e ! .

1=1 By, (D1@, (1) = f)/ Ny p(t). Wehaver, , () <7y (t)
<7rp(t) Vt e {1,...,N,(T)} almost surely. Let Ly, (t) :=
max{7 s, (t) = Cyp(t), 0}, Upp(t) := min{7y, (¢) + Cp,y
(t)> 1}’ Lf,p(t) = max{ﬂf,p(t) - nyp (t>7 O} and Qf.;n (t) =
min{z; ,(t) + Cf (), 1}. It can be shown that

{mr (@ (1) & [Lyp(t) — v, Upp(t) + 0]}
CA{mp (@ (1) ¢ [Lyp(t) — v, Upp(t) + 0]}
U {ﬂ—f (i‘p(t)) ¢ [Lf,p(t) - Uva,p(t) + U}}

The following inequalities can be obtained from Assumption 1.

(B (1)) < gy < (i <t>>+L(@) (16)
w0 -1 (Y2) <z, <m@@). an

Since v =
that

L (Vd;/mi)*,

using (16) and (17) it can be shown

{7 (@ (1) & [Lyp(t) = 0, Upp(t) + 0]}
CH{Trp & [Lrp(t).Urp(t)]}, and

{mp (2 (1) & [Ly,p(t) —v, Uy, (1) + 0]}
CHmpp ¢ Ly, (), Upp (O]}

Using the equation above and the union bound we obtain

Pr(UC(f,p.v)) < Pr (U {7y, ¢ (L1 (8),T7 ()]}
+Pr (U ey, & Ly, (8, Uy, D]}) -

Both terms on the right-hand side of the inequal-
ity above can be bounded using the concentration in-
equality in Appendix F. Using & = 1/(2|F;|(m;)*T) in
Appendix F gives Pr(UC(f,p,v)) < 1/(|Fi|(m;)% T) since
1+ Nf-,p(T) <T.

Lemma 3: On event UCY(p,v) we have m(Z,(t)) —
T, (1) (@ (1) < Us (1,0 (t) — La, 1) (1) + 20 for all te
{1,...,N,(T)}.

Proof: Uz, (1), (t) +v > Uy, (t) + v since IUP selects the
decision rule with the highest index at each time step. On event
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UCY (p, v) this implies 7+ (&, (t)) < Ua, (1).p(t) + v. The proof

concludes by observing that 5 ;) (%, (%)) > Lz, (1), (t) —von

event UCY (p, v). [ |
Lemma 4: (Bound on E [Reg; ,(T)| uce (p, v)]):

E [Reg; ,(T)|UC (p, v)]

< 20N, (T) + 2Am, /| Fi| N, (T) + | Fil

where A, = 21/2(1 + 21og(2/F|(m, )4 T*).
Proof: Let Ty, :={t < N,(T) : a,(t) = f}. By Lemma 3,

E[Reg; , (T)|UC (p,v)] < 20N, (T)

+E Z Z (U4, ¢ _L/IF(t),p(thCC(P’U)
feF tety,
(18)
Next, we show
Z Z a,(t),p Ldﬁ(’)P(t))
feFi teTy ,
1
< 1+ A, = (19)
J;. ' Z Nf.p(t)
g {teTs p:Ny,p (1) 21} '
A, —_—
SEETI S o T
feF: =0
<|Fil 4240, Y \/Npp(T) (20)
fEF:
< |Fil + 24m, /|1 Fi [N, (T) o2y

where (19) follows from the definition of pr(t) and

Uy, (t), (20) follows from the fact that ZAf p(T)=1 = <
fo 13

(l/f dx = 2,/Ny,(T) and (21) is obtained by ap-

plying the Cauchy-Schwarz mequahty given in Appendix G and
observing that N, (T)> > .= Ny, (T). |
Lemma 2 and the union bound yields

Pr(UC(p, v)) < 1/((ms)" T). (22)
Upper bounding (15) by Lemma 4 and (22) gives
1
E[Reg; ,(T')] < ) + 20N, (T') + 245, 1/ | Fi | Ny (T)
+ | Fil- (23)

Using (14) together with (23) results in
Regi(T|XZ-T = sz)

<Z(

T+ 20N, (T) + [Fi| + 24, EINp(T)>
pEP;

<1+ 20T 4 |Fi|(mi)® + 24,7/ |1 Fil (mi)& T (24)
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where the last inequality follows from the Cauchy-Schwarz in-
equality and }° _p N, (T) = T'. The result of the theorem is

obtained from (24) by setting m; = [T/ (2¢+di)7,
APPENDIX C
PROOF OF COROLLARY 1

Using (22), (8) and the union bound, we obtain (for any LL 7)
Pr (UCC (L(—‘/”T)“)> > 1 — %. Lemma 3 states that on event

m;

uce (L(ﬂ)“> we have

m;
7"_f["(ar:,(t))(xi () — Wai(t)(xi (t))
< Ua, 41,95 (8) (Npi () () = L (), (2) (Npi (1) (1))
)\
ey (*ﬁ ) .

m;

The result follows from the definition of Uy, (t), Ly ,(t) and
the fact that m; = [T/ (2e+di)7],

APPENDIX D
PROOF OF THEOREM 3

Since the result of Theorem 2 holds for any realization
{vT};cam of the reward sequence, for any distribution over the
reward sequence, we have

T T
E() Vi) —E|Y Re(t)| <2/TlogM. (25)
t=1 =1

The equation above holds since E[maxjen Y, Vi(t)] >
E[ZtT:l V;+(t)] for any distribution over the reward sequence.

Regg; (T') can be re-written as
T T
Regy (T) =E ZRf,**(X,*(t)) (t] —E ZRAI*<t> (t)| (26)
t=1 t=1

T

T
+E | V()| —E | ReL(t)

t=1

27)

since E[/_, Ra,.)(t)] = E[>.]_, Vi-(t)]. The result follows
from bounding (26) by using Theorem 1, and (27) by (25).

APPENDIX E
PROOF OF THEOREM 4

Since CH keeps and updates a separate probability distribu-
tion over the LLs for each p € Pgr, regret given in (7) can be
re-written as

> v ()-E

1€2,(T)

> Re(l)

leZ,(t)

Regep (T') = Z

PEPEL

By Theorem 2 we obtain

S —E | SRe(l)| <2y/ Ve, (T)log M. (28)

lez,(T) leZ,(T)

Using (28), the Cauchy-Schwarz inequality given in Appendix
G and the fact that > NeL,(T) =T we get

2 2. Ral)

PEPEL IGZF(T)

PEPEL

Z Ui; (l) —E

€2, (T)

<2logM ¥ \/NEL,p(T) < 2\/T(mEL)dEL log M.

PEPEL

APPENDIX F
CONCENTRATION INEQUALITY (APPENDIX A IN [41])

Consider a prediction rule f of LL ¢ for which the rewards
are generated by an i.i.d. process { R(t)}/_, withm; = E[R(t)],
where the noise R(t) — 7 isbounded in [-1,1]. Let N (T") > 1
denote the number of times f is selected by LL ¢ by the end of
time 7. Let 77 (T) = S2/_, I(a;(t) = f)R(t)/N;(T). For any
0 > 0 with probability at least 1 — § we have

|7 (T) — 7y

iz (1o (RN e

APPENDIX G
CAUCHY-SCHWARZ INEQUALITY

| <x,y>|<,<xx><y,y >, where x and y are D-
dimensional real-valued vectors and < -, - > denotes the stan-
dard inner product.

APPENDIX H
A BOUND ON DIVERGENT SERIES

Forp>0,p# LY0, 1/(t#7) <1+ (T2 —1)/(1 - p).
Proof: See [43]. | |
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