
Щ Ш Ш Ш  М Д Ш А в Е М Е Г ч Т :

İ C : T - 'ö l l İ £ l ^ t l D  D Ä T Ä S A S i " M ’A f i Ä ^ E I i / i £ H T  S Y l T l l t ^ S

\p̂ '-pí .·*::. '̂ * : Г;?*:.̂ :̂ ;,' ■

. i Υ--·:ϊ ГЕ · ■ ϊ ад ist;:.,. Л .



STORAGE M AN AG EM EN T AN D  IN D EXIN G  IN 
OBJECT-ORIENTED DATABASE M A N A G E M E N T  SYSTEMS

A THESIS
SUBM ITTED TO THE DEPARTM ENT OF COM PUTER

ENGINEERING AND  
INFORMATION SCIENCES

AND THE INSTITUTE OF ENGINEERING AND SCIENCES 
OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 
FOR THE DEGREE OF 
MASTER OF SCIENCE

......

By
Reda AL-HAJJ 

June 1990



6 <f.

Ί 9 9 θ

’̂ 094



I certify that I have read this thesis and in my opinion 
it is fully adequate, in scope and in quality, as a 

thesis for the degree of Masters of Science.

Prof.Dr rincipal Advisor)

I certify that I have read this thesis and in my opinion 
it is fully adequate, in scope and in quality, as a 

thesis for the degree of Masters of Science.

Prof.Dr. Asuman .gaç

I certify that I have read this thesis and in my opinion 
it is fully adequate, in scope and in quality, as a 

thesis for the degree of Masters of Scien^

Asst.Prof.Dr. Kemal Oflazer

Approved for the Institute of Engineering and Sciences:

Prof.Dr. Mehmet Baray, Director of the Institute of Engineering and Sciences.



A B ST R A C T
STORAGE M A N A G E M E N T AND IN D EXIN G  

IN OBJECT-ORIENTED DATABASE M A N AG EM EN T
SYSTEM S

Reda AL-HAJJ
M,S. in Computer Engineering and Information Sciences 

Supervisor : Prof.Dr. Erol Arkun 
June 1990

Storage management and indexing methods used in existing conventional database management 
systems are not appropriate for the object-oriented database management systems due to the 
distinctive features of the later systems. A model for storage management suitable for object- 
oriented database management systems is proposed in this thesis. It supports object identity, 
multiple inheritance, composite objects, a fine degree of granularity and schema evolution.

An index provides fast access to data stored in files at the price of using additional storage space 
and an overhead in update operations. Work has been carried out on indexing and an indexing 
method for the object-oriented database systems is proposed. Identity and equality indexes are 
treated. Object identity and information hiding are provided. Schema changes are handled without 
affecting existing indexes. It is general enough to be applicable to most existing object-oriented 
database systems. The mapping of the proposed storage and indexing approaches into a relational 
database scheme is also presented.

Keywords: object-oriented database management systems, storage management, inheritance, 
data encapsulation, identity, schema evolution, degree of granularity, composite 
objects, indexing, identity index, equality index.

111



ÖZET
NESNESEL VERİ TABANI SİSTEMLERİNDE  

VERİ SAKLAM A VE INDEKSLEME

Reda AL-HAJJ
Bilgisayar Mühendisliği ve Enformatik Bilimleri Yüksek Lisans 

Tez Yöneticisi: Prof.Dr· Erol Arkun 
Haziran 1990

Klasik veri tabanı sistemlerinde kullanılmakta olan veri saklama ve indeksleme metotları nesne- 
sel veri tabanı sistemlerinde kullanılmaya uygun değildir. Bu tezde nesnesel veri tabanı sistem­
lerinde kullanılmaya uygun bir veri saklama modeli sunulmaktadır. Bu model nesne kimliği, çoklu 
sınıf sıradüzeni, bütünleşik nesneler, küçük granül olanağı ve çoklu sınıf sıradüzeni günlemesini 
içermektedir.

Fazladan bellek kullanma ve güncelleme işlemlerindeki dezavantajlarına rağmen indeksleme, 
kütüklerde saklanan verilere hızlı bir şekilde erişimi sağlar. Bu çalışmada nesnesel veri taban­
ları için bir indeksleme metodu da önerilmektedir. Bu indeksleme metodu hem nesneleri, hem de 
her nesnenin bileşenlerini ayrı ayrı indeksleme olanağı sağlar. Böylece nesne kimliği ve bilgi gizlen­
mesi sağlanır. Çoklu sınıf sıradüzeni üzerindeki değişiklikler oluşturulmuş indeksleri etkilemez. Bu 
metod, klasik veri tabanı yönetim sistemlerinde de kullanıma uygundur. Nesnesel veri tabanları 
için önerilen veri saklama ve indeksleme metotlarının bağıntısal veri tabanlarına dönüşümleri de 
sunulmaktadır.

Anahtar Kelimeler: nesnesel veri tabanı sistemleri, yardımcı bellek, bilgi gizlenmesi, küçük 
granül olanağı, indeksleme, bütünleşik nesneler, çoklu sınıf sıradüzeni.

IV



AC K N O W LE D G EM EN TS

I am very grateful to my supervisor Prof.Dr. Erol Arkun who gave his suggestions and comments 
throughout the period of thesis research. He contributed to the thesis in a fundamental way with 
his thoughtful comments and observations. Without his steadfast encouragement I would not have 
undertaken this work, nor finished it once started. I wish to thank the Bilkent University and the 
Department of Computer Engineering and Information Science for providing a pleasant climate in 
which this work could be undertaken. Thanks are also extended to Faruk Polat for translating the 
abstract into Turkish. My heart is filled with affectionate gratitude to the members of my family 
for the moral support they provided.



Table of Contents
1. Introduction 1

2. Problem Definition and Requirements Analysis 3
2.1. Problem Definition 3

2.1.1. Why Object-Oriented Systems? 3
2.1.2. Object Identity 4
2.1.3. Information Hiding 4
2.1.4. Inheritance 5
2.1.5. Clustering 5
2.1.6. Composite Objects 6
2.1.7. Persistence 6
2.1.8. Schema Evolution 7
2.1.9. Structural Dynamism: Extensible Object Size 7

2.2. Goals and Requirements Specification 8
2.2.1. Efficient Use of Memory 10

3. Existing Approaches to Storage Management II
3.1. Introduction 11
3.2. ORION 12
3.3. EXODUS 13
3.4. GeniStone 15
3.5. ENCORE 16

4. Description of the Object Storage Model 23
4.1. Rationalization 23

4.1.1. A Step Toward the Proposed System 24
4.2. The Proposed Model 24

4.2.1. Tables and Mappings 24
4.2.2. An Example 26
4.2.3. Construction of the IT and NT 32
4.2.4. Why to Separate Atomic from Nonatomic Values? 33

4.3. Characteristics of the Proposed System 33
4.3.1. Efficiency of Access and Memory Utilization 33
4.3.2. Schema Evolution 33
4.3.3. Composite Objects 33
4.3.4. Clustering 34
4.3.5. Locking 34

4.4. Comparisons and Evaluations 34

5. Indexing 35
5.1. What is Indexing 35
5.2. Problem Definition 35

5.2.1. What to Index? 35
5.2.2. Identity Indexes and Equality Indexes 36

5.3. Requirements of Indexing in Object-Oriented Systems 36
5.3.1. Improving Performance 37
5.3.2. Conserving Encapsulation 37
5.3.3. What Should be Indexed? 37

5.4. Existing Approaches to Indexing 38
5.4.1. Indexing in GemStone 38
5.4.2. Indexing in the CONTAINER 38
5.4.3. Indexing in EXODUS 39
5.4.4. Problems with the Described Approches 39

VI



6.

5.5. A Proposed Indexing Method 39
5.5.1. Identity Index 39
5.5.2. Equality Index 42
5.5.3. Index Creation 42
5.5.4. Schema Changes and Indexing 45
5.5.5. Query Processing 45
5.5.6. Application to Other Systems 46
5.5.7. Comparisons and Evaluations 46

Integrity Vs. Operations and Schema Changes 49
6 . 1 .

6 . 2 .

6.3.
6.4.

Integrity Preservation 
Operations
6.2.1. Addition 

Deletion 
Fetching 
Saving 
Updating

Schema Evolution 
Ease of Implementation
6.4.1. Data Structures 

Function of the Storage System 
How to Interact with the Storage system?

6 . 2. 2.
6.2.3.
6.2.4.
6.2.5.

6.4.2.
6.4.3.

49
49
50 
56 
60 
63 
63
63
64 
64 
64 
64

7 Mappings
7.1. Mapping Objects into Secondary Storage

7.1.1. Replacement Policy
7.1.2. Fetching Policy

65
65
65
68

7.2. Mapping the Storage System into a Relational Database System 69

8. Conclusions 73

References 74

vu



2 . 1 .

3.1.

3.2.

3.3.

4.1.

4.2.

4.3.

4.4.

4.5.

4.6.

4.7.

4.8.

4.9.

4.10.

4.11.

5.1.

5.2.

5.3.

5.4.

Related chunks

An example o f a large storage object

The dereferencing process from an external UID to an object 

The structure of the DBF and the segment 

A three dimensional object model 

Representation of a chunk inside the segment 

Representation of a segment

LIST OF FIGURES
9

15

19

20 

25 

25 

25

Mapping dimensions of the object storage model into the IT, the NT and the segment 27

Format of the Disk Object Table (DOT)

A class hierarchy

An instance in the ’’ student” class

The constructed DOT 30

The constructed IT

The constructed NT

The constructed segments

The constructed ROT for the example in Section 4.2.2. 

The constructed SOT for the example in Section 4.2.2. 

The augmented format of the Disk Object Table (DOT) 

The constructed DOT for the example in Section 4.2.2.

27

28

29

30

31 

31

40

41 

44 

44

vm



2 . 1 .

3.1.

3.2.

3.3.

4.1.

4.2.

4.3.

4.4.

4.5.

4.6.

4.7.

4.8.

4.9.

4.10.

4.11.

5.1.

5.2.

5.3.

5.4.

Related chunks

An example of a large storage object

The dereferencing process from an external UID to an object 

The structure of the DBF and the segment 

A three dimensional object model 

Representation of a chunk inside the segment 

Representation of a segment

LIST OF FIGURES
9

15

19

20 

25 

25 

25

Mapping dimensions of the object storage model into the IT, the NT and the segment 27

Format o f the Disk Object Table (DOT)

A class hierarchy

An instance in the ’’ student” class 

The constructed DOT 30 

The constructed IT 

The constructed NT 

The constructed segments

The constructed ROT for the example in Section 4.2.2. 

The constructed SOT for the example in Section 4.2.2. 

The augmented format of the Disk Object Table (DOT) 

The constructed DOT for the example in Section 4.2.2.

27

28

29

30

31 

31

40

41 

44 

44

Vlll



4.1.

5.1.

6 . 1 . 

6 .2 .

6.3.

6.4.

6.5.

6 . 6 .

6.7.

6. 8. 

6.9.

6 . 10 .

6 . 1 1 .

6 . 1 2 .

7.1.

7.2.

Construct the IT, the NT for Objects in the database 32

Construct the IT, NT, SOT and ROT for Objects in the database 43

LIST OF ALGORITHMS

Add a class to the class hierarchy/lattice

Add a chunk to a class

Add an object to the database

Add an instance variable to a class

Delete a chunk from a class

Delete a class

Delete an Object

Delete an instance variable from a class 

Retrieving instances of a class 

Retrieving all the chunks of an object 

Retrieving a chunk 

Save a chunk

Find space in main memory 

Evaluate an Expression

51

53

54

55

57

58

59

60 

61 

62 

62 

63

67

68

IX



Chapter 1

INTRODUCTION

A database system deals with a huge amount of information that lives beyond the lifetime of the 
generating application. In addition, it is not possible to keep all the database information resident 
in main memory to serve a running application; only a small part of the information could be 
present in main memory and the rest should be kept on external storage on a permanent basis.

Traditional data models, such as the relational one, have achieved great efficiency in data storage 
and retrieval by restricting the modeling power; in particular, the database is assumed to be 
a complete and accurate model of a world where all the individual objects are restricted to be 
primitive values like numbers and strings and all their interrelationships are known and explicitly 
stated. The relational model of data has a flat view of the world, with all information expressed 
in the form of tables.

After conventional database management systems failed to satisfy the needs of new application 
areas -including Office Information systems (OIS), Artificial Intelligent (AI), Computer Aided 
Design/ Manufacturing (CAD/CAM ), and others-one research direction on database systems is 
concerned withextending the object-oriented approach [16] to the database field and hence many 
object-oriented database systems have been designed [2, 7, 11, 22, 40, 45, 54, 56].

Although there is no clear definition of what object-orientation is; there are some basic concepts 
and properties of this approach. In an object-oriented system, all conceptual entities are modeled 
as objects which combine the properties of the procedures and data. In other words, an object has 
two parts: a private part and a public interface.

The private part specifies the internal implementation of the object and the public interface is 
used to communicate with other objects. These two parts capture both the state and the behaviour 
of the object. The state of an object is represented by instance variables, and the behaviour of the 
object is encapsulated in methods. In addition, both methods and instance variables are hidden 
from other objects.

Objects interact using the interface part to access the private part. The interface part of an 
object constitutes the messages understandable by the object and sent by other objects on the 
need to access the private part of the object. So, methods are invoked by messages.

Objects that have the same private part definition and interface part, may be collected into a 
class that includes the common definition of the private part and interface part. More than that, 
an object may have a part of its private part defined in an object in another class; so instead of 
duplicating the definition of the same part in the two classes, objects in the former class are said 
to inherit the common part from objects defined in the later class; leading to a class hierarchy if 
objects in the a class inherit from only one class, or a class lattice if objects in a class could inherit 
from more than one class.

Informally, an object-oriented system may be defined as a system which supports data encapsu­
lation and inheritance. Another definition states that an object-oriented system is a system that 
supports data encapsulation and not necessarily inheritance [49].

The results reported here represent a continuation of the research work on the object-oriented 
database management system QDS. The earlier results qf this research are: the design of an Object

1



rU A  P T EU  1. TNTJinDT^rTTON

Memory [32], a Message-Passing Model [44], and a Storage Manager [31, 45], the design of a Data 
Definition and Data Manipulation Language [53] and a Run-Time Environment [54, 57].

The emergence of object-oriented systems necessitates the development of new storage and in­
dexing techniques due to the nature of object-oriented constructs [49] that make it not possible to 
use the existing conventional techniques, at least without some adjustments [24, 36].

In this thesis, we describe a model for storage management and indexing in object-oriented 
database management systems [4, 5]. In Chapter 2, problems of storage management in object- 
oriented database management systems are stated; goals and requirements to be achieved by 
the proposed storage system are identified. Problems arise due to the new constructs of object- 
orientation, such as encapsulation, inheritance, composite objects, complex objects, and schema 
evolution. The goal is to solve these problems as much as possible. In chapter 3, a study on 
related work on storage management is presented; the problems encountered with such approaches 
are identified. In chapter 4, the proposed object storage model is explained; the new structures 
employed are described and properties of the model are mentioned. Finally, a comparative study 
and evaluation of the proposed system is carried out.

Due to encapsulation and information hiding, indexing becomes a nontrivial problem to treat. 
However, a treatment of the indexing problem in object-oriented database management systems, 
consistent with the proposed storage system, is presented in Chapter 5. We tried to stay within 
the realm of object-orientation in the proposed indexing method. Problems of indexing in object- 
oriented database management systems are stated; goals and requirements to be achieved by the 
proposed indexing method are identified; related work is described; identity and equality indexes 
within the realm of the proposed system are discussed; index set up is described; application to 
the existing storage systems is described; comparisons and evaluations are presented.

One of the primary functions of a database system is to maintain the integrity of the database, i.e., 
to preserve the consistency and correctness of the database. Integrity preservation and how different 
operations are performed are discussed in Chapter 6. Also the algorithms for each operation are 
presented. In Chapter 7 the mapping of objects between main memory and secondary storage 
is explained and the mapping of the proposed storage model into a relational database system is 
presented. Chapter 8 includes the conclusions.



Chapter 2

PROBLEM DEFINITION AND
REQUIREMENTS
SPECIFICATION

2.1 Problem Definition

A database management system must be capable of handling large amounts of data. Dealing with 
large amount of data usually involves storing theni on on-line, direct access secondary storage 
devices such as disks, and making information available to the application system by managing the 
transfer of data between main memory and secondary storage devices. Object-oriented database 
management systems have distinguishing characteristics that make it not possible to use the storage 
techniques of conventional database management systems in object-oriented database management 
systems. Due to these distinguishing features, that are to be discussed in the following sections, 
new storage techniques to be discussed in Chapter 3 are under research.

2.1.1 W hy Object-Oriented Systems?

A database is normally used to maintain a model of reality. Traditional data models, such as the 
relational one, have achieved great efficiency in data storage and retrieval by restricting modeling 
power, in particular, the database is assumed to be a complete and accurate model of the world 
where all the individual objects are restricted to be primitive values like numbers and strings, and 
all their interrelationships are known and explicitly stated. The relational model of data has a 
flat view of the world, with all information expressed in the form of tables. While undeniably of 
extensive value, this makes traditional data models unsuitable for a number of situations [9], for 
example:

. when complex objects are the natural way of describing the domain,

. when information about the domain is incomplete or becomes available incrementally, and

. when the database should be taking a more active role in deducing relationships rather that 
being a passive repository of data.

Object-oriented database systems is a new approach that tries to model the real world by rep­
resenting each item by an object. Because many items have common properties, behaviors, and 
structure they said to fall in the same class. A class keeps the definitions common to its objects 
and all the functions that are applicable to the objects that the class acquires.

Object-oriented database sys(,ems have evolved after .it became a fact that existing conventional 
database systems are not able to model well enough the new application areas, like Office Automa­
tion, Computer Aided Design and Manufacturing, and Artificial Intelligence. Object-Oriented 
database management systems can be distinguished from their more conventional counterparts by



their ability to deal with arbitrary object types in an environment that is constantly changing. 
It should be noted that an object-oriented database management system is a natural evolution of 
conventional database technology.

With conventional database systems, an item undergoes some normalizations before it comes to 
the state which can be represented in the database. These normalizations are required due to the 
restricted data types defined in conventional database systems. Such restrictions lead to a semantic 
gap between items in the real world and their representations in conventional database systems.

Instead, the new research area, titled Object-oriented database systems, tries to overcome the 
semantic gap by dealing with each item as a stand alone object which has its own behaviour and 
structure. An object can been looked at as a closed box. Nothing is known related to what is 
found inside the box, except that it is possible to communicate with the box using some messages, 
understandable by the object. By message passing [1], it is possible to extract what is needed from 
the closed box; even if it is not known how the messages are to be executed inside the box. The 
object receives the message and replies by giving the result of the message interpretation, without 
allowing the message sender to know how the result was obtained.

In object-oriented database systems, an entity is no longer represented by using tuples (records) 
with atomic attributes (fields) of restricted types. Instead, an object forms the basis in object- 
oriented systems, to replace tuples and records used with conventional systems. An object models 
the real world in a better and more powerful way than all the preceding representations [49]. 
Objects are more powerful than records in that, they do not have only atomic fields as the values 
for their attributes (instance variables), but an attribute may have another object as its value. 
This may go on by nesting to have an object^s instance variable as another object, up to the level 
that all the attributes of the final object in the link are atomic.

Storage management in an object-oriented database management system can be computationally 
expensive for the functions of storage allocation, object identity maintenance, garbage collection, 
and variable size object management. Large number of small objects, and small number of very 
large objects, must both be handled efficiently in both storage space and access time.

'1 CUAPTJ::ii 2. PROBLEM D LPiBniO A Ai\D REOUIREMLATS SBEClPlOA'i'lON

2.1.2 Object-Identity

The mapping of main memory objects [32] to their secondary storage counterparts must preserve 
the identity [33] of objects. Identity is that property of an object that distinguishes it from other 
objects. One powerful technique for supporting identity is through surrogates which are system 
generated globally unique identifiers, completely independent of any physical location or object 
values, called Object Oriented Pointers (OOPs). An OOP is the identity of an instance object in 
a class. The private memory of an instance object is a contiguous series of words which is called a 
chunk [32]. Objects interact by message passing [44] using object identity, not contents.

It is important that the identity of an object remains unchanged regardless of changes in its state, 
both in its internal main memory representation and external secondary storage representation. 
The concept of object-oriented pointers (OOPs) in main memory should be further extended 
to cover secondary storage. The mapping of main memory objects to their secondary storage 
counterparts must preserve the identity of the object. This implies that operations like retrieving or 
storing an object must be idempotent, i.e., if the same object is stored multiple times consecutively, 
its final effect should be the same as if the operation has been performed only once. The storage 
manager may employ different techniques to improve performance of retrieval, yet, the preservation 
of object identity must always be ensured.

2.1.3 Information Hiding

Information hiding [42] provides reliability and modifiability by reducing interdependencies among 
software components. The state of a software module is contained in private variables (the state of 
an object is contained in its private part), visible only from within the scope of the module. Only 
a localized set of procedures directly manipulates the data found in the private part. In addition, 
since the internal state variablesi^of a module are not directly accessed, a carefully designed module 
interface may permit the internal data structures and procedures to be changed without affecting



/. P R O B L E M  D E F IN I1 'ION 5

the implementation of other system modules. Object-orientation provides information hiding since 
an object captures both the state and the behaviour of an entity.

2.1.4 Inheritance

Objects that are defined to be in class B may have some properties that are also inherited from 
objects of some other class A. In this case instead of listing again all the properties with their 
accessing functions in the definition of class B, we let class B to inherit those properties from class 
A. Then with every object defined in class B we link an object that is defined in class A. Class A is 
called the superclass of class B, and class B is the subclass of class A. Class A contains two kinds 
of objects. The first kind contains objects defined in conjunction with its subclasses. The second 
kind contains objects that are rooted in class A without any external reference to them from the 
subclasses.

An instance X in class A, which is defined in conjunction with an instance Y  in class B, cannot be 
found, because within class A nothing is included with the instances to refer to which instances in 
class B they are related to. Therefore, to find the instance in class A that is defined in conjunction 
with an instance in class B, communicate with the instance in class B, by sending a message to 
it, asking for the instance in class A. In other words, instances in class B contain references to 
instances in class A as supers. These references are considered unidirectional because no references 
are found from instances in class A to those in class B. Having in hand an instance from class A 
it is not possible to find the instance that references it as the super from class B.

Objects in class B are composed of two parts. The first part is an instance in class B, while the 
second part is an instance in class A. Each part is called a chunk. A chunk is that part of an object 
which is restricted to hold the properties and behavior as imposed by being in a particular class.

By this representation of classes, an object may inherit properties from one, called simple inher­
itance, or more classes, called multiple inheritance. In simple inheritance, a class can have at most 
one immediate superclass. While in multiple inheritance a class may have one or more immediate 
superclasses, forming a superclass list [49]. However, in both cases, one or more classes may form 
the subclass list of a certain class. In other words, more than one class may inherit properties from 
the same class.

Inheritance introduces name conflicts, i.e. the problem of two or more classes having variables or 
methods with the same name. The conflict may be between a class and one of its superclasses or 
between the superclasses of a class. The conflict problem between a class and one of its superclasses 
may also be seen in simple inheritance, and is solved by giving priority to the class. To solve the 
conflict problems in multiple inheritance, either all variable or method names of the superclasses 
must be distinct or the priority order for the superclasses should be specified [3].

2.1.5 Clustering

Forcing objects that have some properties in common to occupy adjacent locations on disk is known 
as clustering. Clustering is essentially an efficient and performance related usage of secondary stor­
age which is not unique to object-oriented database management systems. In relational systems, 
clustering may be seen as taking rows from separate relations and storing them together on the 
same disk page. This means that clustering will improve the performance of join queries because 
the rows that are to be joined together are stored together.

The aim of any clustering scheme is to organize semantically related data together, which re­
sults in reduced diskhead movement and reduced physical I/O . With object- oriented database 
management systems, clustering is not as easy as it is with the conventional database management 
systems. This is because objects are multi-dimensional instead of being flat. One dimension results 
from the fact that objects can have other objects as the values for their instance variables. Another 
dimension can be seen along the hierarchy/lattice due to inheritance.

Algorithms used for manipulati îng multi-dimensional data in main memory are highly inappropri­
ate for secondary storage, since they are usually implemented using linked structures and pointers; 
and such indirections are very expensive in secondary storage as they involve many disk lookups 
and transfers. Being disk-based in this sense does not simply mean paging main men;iory to disk



as it overflows. The database should be intelligent about staging objects between main memory 
and disk. It should try to group objects accessed together onto the same disk pages, and try to 
anticipate which objects in main memory are likely to be used again soon, and organize its query 
processing to minimize disk traffic [43].

G CJIAPTEH 2. PllOULEM DEEINITIOE AND REQUIREMENTS SPECIFICATION

2.1,6 Composite Objects

Many applications require the ability to define and manipulate a set of objects as a single logical 
entity. A composite object is an object with a hierarchy/lattice of exclusive components considered 
as a unit of storage, retrieval, and integrity. The hierarchy/lattice of classes to which the object 
belongs forms a composite object hierarchy/lattice [7].

The basic object-oriented data model does not support composite objects; an object references 
but does not own other objects. A composite object captures the IS-PART-OF between a parent 
class and its component classes, while a class hierarchy/lattice represents the IS-A relation.ship 
between superclasses and their subclasses.

Composite objects introduce the concept of dependent objects [7, 34] which adds to the integrity 
features of an object-oriented data model. A dependent object is one whose existence depends on 
the existence of other objects and is owned by a single object. Since a dependent object can not 
be created before its owner exists, the composite object hierarchy/lattice must be developed in a 
topdown fashion, i.e., the root object of the hierarchy/lattice must be created first and then the 
children. When an object of a composite object is deleted, all its dependent objects must also be 
deleted.

An object may contain references to both dependent and independent objects, or to only depen­
dent or independent objects. Such a general collection of objects is called an aggregate object. A 
composite object is, in fact, a special kind of an aggregate object.

When a composite object is instantiated all its parts are also instantiated. The instantiation 
process is recursive so composite objects can be used as parts. The automatic instantiation of all 
parts brings the restriction that a composite object can not be a part of itself An alternative is 
to instantiate parts on demand [49].

The composite object concept supports performance improvement through the clustering of re­
lated objects on disk. All components of a composite object can be clustered together, since 
whenever the root is accessed, most probably the other parts will also be accessed.

Composite objects increase information hiding and data encapsulation through the property of 
value propagation [7] which refers to the sharing of the value of an instance variable between 
instance objects.

2.1.7 Persistence

Information stored in the database should stay alive after the termination of the application that 
generates it. In other words, objects are expected to live beyond the user sessions in which they 
are created. The information managed must be persistent. The persistence of data should be 
transparent to the user and as a consequence, there should not be any specific operators to make 
an object persistent.

The assumption should be made that every kind of data should be potentially persistent, so that 
a procedure written to implement an algorithm on temporary data can work also on persistent 
data, and vice versa. Using different data types for persistent and temporary data is only an in­
convenience for the programmer, while a complete homogeneity between persistent and temporary 
data allows him to focus on the algorithmic aspects of the problem [3].

Persistent objects that have regular structure, i.e., objects that form classes of homogeneous 
records, can be stored in the persistent storage in some sophisticated way, grouping and splitting 
records optimize the access tinje for some critical operation. But, persistent objects that have 
complex structures can not be represented efficiently using simple schema on persistent storage.



2.1.8 Schema Evolution

One of the important requirements of object-oriented database systems is schema evolution, i.e., 
the ability to dynamically make a wide variety of changes to the database schema.

Conventional database systems allow only a few types of schema changes. This is because the 
applications they support, i.e., conventional record-oriented business applications do not require 
more than a few types of schema changes; and also the data models they support are not as rich 
as object-oriented data models. In addition, traditional database models, including the relational 
one, separate the static aspects of databases from the dynamic aspects, primarily by defining an 
essentially static database schema, and separately defining queries and transaction languages. On 
the other hand, a central aspect of the object-oriented paradigm in the context of databases can 
be incorporated directly into the database schema, in the form of methods.

Most object-oriented systems support only a few changes to the schema and to the clciss def­
initions without requiring system shutdown. The operations that should be supported by an 
object-oriented system can be listed as follows [6, 7]:

1. Changes to the contents of a class.

(a) changes to an instance variable.
i. Add a new instance variable to a. class

ii. Drop an existing instance variable from a class
iii. Change the name of an instance variable of a class
iv. Change the domain of an instance variable of a class
V .  Change the default value of an instance variable

(b) changes to a method

2. Changes to an edge in the class hierarchy/lattice.

(a) Make a class a superclass of another class
(b) Remove a class from the superclass list of a class
(c) Change the order of superclasses of a class

3. Class changes

(a) Add a new class
(b) Delete an existing class
(c) Change the name of a class

An important problem related to schema evolution is seen when the structure of a class having 
some instances is modified. One approach is to modify all instances to refiect these changes 
immediately after the change is made in the class definition. A second approach is just to modify 
the class definition and modify the instances whenever they are referenced. The first approach is 
cumbersome and presents an overhead. However, the second approach is very difficult to implement 
and may cause inconsistencies. It also requires a way of keeping track of which instances have been 
modified and which have not [41].

'J.L FIiOBLLM DEFİNrnO İS 7

2.1.9 Structural Dynamism: Extensible Object Size

Almost all of the conventional database management systems impose restrictions on the underlying 
data model, such as the size of a field. The effect of these restrictions may not be noticed in 
conventional data processing. However, in an environment -CAD/CAM , OIS, and AI- where there 
are objects of arbitrary size and structure, such restrictions can pose serious limitations.

Objects can be attributes in, and can inherit properties of, other objects. Due to that, the 
existing storage techniques used for conventional database systems are no more applicable to 
the Object-oriented database systems. This is because the object length is subject to change 
dynamically in object-oriented systems. There is no guarantee that two objects of the same class



will have the same length. Add to this, that an object length may change dynamically due to 
what follows. A class may be added to the superclass chain of a certain class, between a class and 
one of its superclasses; as a result, a new chunk is added to the instances of all classes along the 
hierarchy/lattice affected by the change. A class may be deleted from the superclass chain/list 
that an existing class is inheriting from; resulting in diminishing the size of instances of all classes 
affected by the change. In addition, in the same class, new instance variables may be added or 
existing instance variables may be deleted. Therefore, the class structure evolution, and dynamic 
updating facilities are added to the database. Hence, record-field storage techniques are not useful. 
They can not be used even to model the object-oriented system. Because with the object-oriented 
system, there is no restriction on the value of an instance variable, we have objects with extensible, 
dynamically changeable, length.

.S CUAPTKli 2. PliOBLEM DEEINITION AND REQUIREMENTS SPECLEICA'HON

2.2 Goals and Requirements Specification

Existing record-oriented database management systems fulfill many of the requirements of tra­
ditional database application domains, but they fall short of providing facilities well-suited to 
applications in OIS, CAD/CAM , and AI. The major goal, therefore, is to build a storage system 
that can meet the storage needs of the new application areas.

The proposed storage system should be flexible enough, so that it can be extended further in 
future research to include those database features that will be left out for the current time to keep 
the work within the scope of the current thesis work. Among the features that will be left out 
are some issues that are associated with multi-user database systems -such as authorization and 
concurrency control.

Bounds on the number and size of data objects should be determined only by the amount of 
secondary storage, not main memory limitations or artificial restrictions on data definitions. Thus, 
fields in a record can be of variable- length, with no fixed upper bound. Collections of objects such 
as arrays and sets, should not have a bound on the number of elements. Similarly, the total number 
of objects in a database system should not be arbitrarily limited. The system should handle both 
small and large objects with reasonable efficiency. The many small objects and the small number 
of large objects must be handled efficiently in both storage space and access time.

A goal that is also to be satisfied is that persistence of objects should be transparent to the users; 
since any object that a user has access to is implicitly persistent. The user does not need to specify 
direct operations on the persistent store of objects, it is rather the storage system’s responsibility 
to do address mappings and all the associated database activities.

Another goal is that the storage system should be responsible for managing the transfer of 
objects between main memory and secondary storage, while making sure that the object identity 
is preserved throughout its internal and external representation.

Another goal can be seen as the need to cluster objects that are likely to be used together onto 
the same storage area by taking into consideration the relation between objects due to inheritance 
or an object (or a collection) being the value of an instance variable in another object.

Another goal is to satisfy the storage of composite objects by considering the root object together 
with all the component objects as a unit of storage and retrieval from the secondary storage. 
Components of composite objects should be treated as dependent objects.

Another goal is to satisfy the schema evolution functions, A class may be added or deleted from 
the class hierarchy/lattice; an instance variable may be added or deleted from a class definition; in 
addition to other schema updates described in the previous section, all are intended to be satisfied 
by the proposed system.

An important goal is that the storage system should be designed in a way so that indexing can 
be provided for fast and alternative access paths to the persistent object store. Indexing should 
not go out the realm of object-oriented concepts.

Finally, stable storage of data objects on disk should be supported, while location transparency 
to the application programmers on the movement of objects between main memory and secondary 
storage should be provided.



Chunk 1

2.2. GOALS AND RLQUmDMDNTS SPECIFICATION

T eacher

(a)

University
STUDENT

(b)

Figure 2.1: Related chunks

(a) Nested chunks
(b) Super chunks

chunk3



2.2.1 Efficient Use of Memory

It is obvious that a database in any system is treated differently by different applications. All the 
information may not be interesting to a user that is only accessing the database for only a small 
piece of information. So why to let the information to be transferred entirely to the main memory. 
Instead, if only the needed information can be accessed then less space will be used in the main 
memory. The free space can be used to hold other useful information.

In addition, sometimes the whole information about an object, from which we need only a chunk, 
may be large enough so that it can not fit in main memory all at once. In this case, in addition to 
main memory loss think of time loss due to more accesses to get to the required piece. More than 
that, the problem will be more complicated and loss will be more and more if we need pieces from 
a set of objects that cannot fit each alone in main memory or even all in main memory at once!.

For example, on accessing a university database system as shown in Figure 2.1, for getting 
information about a student only chunk 1 is needed. So why to have chunk2 and chunks in main 
memory! Instead, if only chunkl can be brought to main memory, then three chunks, which are 
instances in the student class, may be present in main memory at once. These three chunks will 
occupy nearly the same space which was to be occupied by chunkl, chunk2 and chunks altogether. 
Another application may need to have chunk2 and chunks and may be the three chunks at once. 
So why not to serve the application with the needed chunks only.

lU CllAP'n:ii 2. PliOBLEM UKFh\rnOi\ AND RKQUmEiMENTS SEECJEi(JATi.ON



Chapter 3

EXISTING APPROACHES TO 
STORAGE MANAGEMENT

3.1 Introduction

Object-oriented database management systems arose after existing data models, including the rela­
tional model, failed to satisfy the requirements of the new application areas. Each new application 
area has a specialized set of operations that must be efficiently supported by the database system. 
Efficient support for the specialized operations of each new application area is likely to require new 
types of storage structures and access methods as well.

Although the relational model has a flat view of the world, with all information expressed in 
the form of tables, some models have been proposed with extensions to the relational model to 
accommodate object-oriented needs. Those systems were derived by enforcing some object-oriented 
concepts into a relational model.

In [29] an attempt to fold the concept of hierarchy into a relational model of data storage is 
done by permitting classes to be used as attribute values in a relation. Other data models like 
POSTGRES [51] makes several extensions to relational algebra to be able to support object- 
oriented databases.

The database management system IRIS [20, 24, 36] is a research prototype of a next generation 
database management system, designed at the Hewlett-Packard Laboratories. The IRIS database 
management system has a relational storage subsystem that supports the dynamic creation and 
deletion of relations, concurrency, recovery, indexing, and buffer management.

ODDESSY [22] is implemented using Smalltalk-80 by incorporating the major features of the 
Semantic Data Model (SDM), the Structural Model and the entity-relationship model and aims 
at transforming the conceptual model into normalized relations using rules to generate functional 
dependencies which in turn produce third normal form relations, and Anally mapping the logical 
design onto a specific Relational Database Management System.

On the other hand, other systems deal with the concept of storage management away from the 
existing systems; without any need to transform an object-oriented problem into, say a relational 
one. ODE [2] is a database system and environment based on the object paradigm. In ODE all 
persistent objects of the same type are grouped together into a cluster; the name of the cluster is 
the same as the name of the corresponding type; i.e., one cluster is allocated per class. Search is 
done by simply iterating over the contents of a cluster.

Gordion [23] is a server developed at the Microelectronics and Computer Technology Corporation 
to provide permanence and sharing of objects within an object- oriented environment. Gordion 
has the ability to communicate with multiple languages; it supports concurrency control; it has 
the ability to manipulate objects of arbitrary size. The storage system of Gordion uses a hashing 
scheme and UNIX files to store pbjects. Among the major functional components of Gordion are 
history and inquiry and maintenance.

11



I rilAPTEIi 3. EXISTING APTliÜAClíES TO S'TORAGE MANAGEMENT

The Complex Record Manager [19] is a storage manager to manipulate complex objects, and 
further supports set-oriented data structuring capabilities that can be made use of by a relational 
database system for supporting non-first-normal- form relations.

The CONTAINER [31, 45] is a storage system, developed at Bilkent University to support the 
interaction of the Object- Oriented Database System (ODS) [54] with the external storage. In the 
CONTAINER all components of an object are clustered together according to the philosophy that 
all components need to be brought into main memory as the root object is accessed.

The following few sections include detailed descriptions of some other object-oriented systems.

3.2 ORION

ORION [6, 7, 8, 25, 35] is an object-oriented database system being designed and implemented 
in the Advanced Computer Architecture Program at Microelectronics and Computer Technology 
Corporation, MCC. ORION serves many applications from the CAD/CAM , AI, and OIS domains, 
with multimedia documents. ORION supports the basic concepts in object-oriented systems, 
namely, objects, classes, inheritance and methods. Concerning inheritance, the system supports 
multiple inheritance, leading to class lattices. ORION has been implemented using CommonLisp.

ORION manages secondary storage by placing all instances of a class in the same storage segment. 
Thus, a class is associated with a single storage segment, and all its instances reside in that storage 
segment. Storage segment allocation for classes is done automatically. All storage functions are 
transparent to the user. The storage subsystem provides access to objects on disk. It manages the 
allocation and deallocation of segments of pages on disk, places objects in the database, searches 
the database for objects, moves pages of data to and from the disk.

However, ORION takes care of the fact that, some objects^ existence is dependent on the existence 
of other objects in the system. For example, a vehicle is an object which contains a body object, 
the body object has a set of door objects, and each door has a position object and a color object. A 
body object is a part of a vehicle instance, a set of doors is a part of a body, and position is a part of 
a door, and so on. The existence of the position object depends on the existence of the door object, 
whose existence depends on the existence of the body, whose existence depends on the existence of 
the vehicle itself. A door and a body are examples of dependent objects, whose existence depends 
on the existence of other objects. A dependent object can be owned by exactly one object. The 
body of a vehicle is owned by one specific vehicle and cannot be generated without the existence 
of that vehicle. The vehicle is a composite object, because it is composed of subobjects which are 
dependent on it. A composite object consists of a root object connected to multiple dependent 
objects.

In the secondary storage, composite objects violate the rule that one storage segment is assigned 
per class. It is so because, composite objects are likely to be accessed together. Therefore, it will 
be advantageous if multiple classes, more than one class, are stored in the same storage segment. 
This leads to composite objects being treated as units of storage. ORION considers a composite 
object as a unit for clustering related objects on disk. The root object as well as dependent objects 
that constitute a composite object, may usually be considered a single unit for the purpose of 
retrieval from the database. If the root object is referenced, it is often the case that all, or most 
dependent objects will be referenced as well. Thus, it is considered advantageous to store all 
constituents of a composite object as close to one another as possible. A composite object can be 
stored in a sequence of linked pages. A new page is added if the object increases in size, and pages 
may be released or compacted if the size of the object decreases. The only problem occurs when 
two composite objects exchange parts. The two objects should also exchange storage locations. 
However, ORION does not perform this reclustering. Moreover, ORION is not intelligent enough 
to identify those classes that share or are stored in the same segment. It is the responsibility of 
the user to specify which classes are to be stored in the same storage segment.

ORION supports dynamic schema evolution [6]. It is one of the distinguishing characteristics 
of the system. A detailed study of schema evolution requirements has been carried out by the 
developing team of ORION. Soipe of the major function handles in schema evolution are to add a 
new class, add a new instance variable to a class, delete an existing class, and delete an existing 
instance variable from a class.



0.0. h. .\ (jDIjS j;j

A new class may be defined as a specialization of an existing class or classes, which form the 
superclasses of the new class. The new class may redefine some of the instance variables and 
methods. Conflicts are resolved following the rules discussed in Section 2.1.4.

Addition of a new instance variable to a class is treated differently by the class and its subclasses. 
If there is a conflict with an inherited instance variable, the new instance variable will override 
the old definition. All instances of the class will be modified to include the new instance variable. 
Subclasses of the class, to which a new instance variable is added, will inherit the new instance 
variable, but if there is a conflict the new variable will be ignored.

On deleting an existing class, all its instances are deleted automatically, but its subclasses are not 
deleted. The deleted class is removed from the superclass list of its subclasses. The superclasses 
of the deleted class will replace it in the superclass list of its subclasses. Instance variables and 
methods of the deleted class will cease to exist. So, the subclasses of the deleted class will lose 
the instance variables and methods they inherit from the deleted class. If the definitions of the 
instance variables and methods in the deleted class have overridden some other definitions, these 
definitions will be inherited. If the class to be deleted is the domain of a variable in a class, the 
superclass of the deleted class will be taken as the domain of the variable unless another domain is 
specified. When an instance of a class is dropped, all objects that reference it will be referencing 
a non-existing object. ORION does not automatically identify references to non-existing objects, 
because of the performance overhead.

On deleting an instance variable from a class, the class may inherit the same instance variable 
from a superclass if there was a conflict involving the deleted instance variable. All subclasses that 
inherit the deleted instance variable will be affected by the change. Methods which involve the 
deleted instance variable will become invalid, they may be deleted or else redefined.

Another schema evolution operation could be the change of the domain of an instance variable 
of a class. The domain of an instance variable is always a class and the domain of an instance 
variable can only be changed to a superclass of the old domain. Thus, the instances of the class 
undergoing the change are not affected.

In addition, ORION supports versions [14].

3.3 EXODUS

EXODUS [11, 12], Extensible Object-oriented Database System, is being designed in the Computer 
Science Department at the University of Wisconsin, as a modular and modifiable system rather than 
as a complete database system intended to handle new application areas. EXODUS is intended 
more as a toolbox that can be easily adapted to satisfy the needs for new application areas. Later, 
a data model named EXTRA and a query language named EXCESS [12] were developed for the 
EXODUS extensible database system. EXTRA and EXCESS are intended to serve as a test vehicle 
for tools developed under the EXODUS extensible database system project.

In some sense, EXODUS is a software engineering project-the goal is to provide a collection 
of kernel DBMS facilities plus software tools to facilitate the semi- automatic generation of high 
performance, application specific DBMSs for new applications. EXODUS makes use of a new 
programming language, E; E is an extension of C that includes support for persistent objects via 
the Storage Object Manager of EXODUS, which is at the lowest level of the system. E is the 
implementation language for all components of the EXODUS system.

The Storage Object Manager provides support for concurrent and recoverable operations on 
arbitrary size storage objects. The basic abstraction at the bottom level of the EXODUS is the 
storage object; an untyped uninterpreted variable length byte sequence of arbitrary size. Class 
instances are mapped into storage objects in a one-to-one manner. The storage object is the basic 
unit of data in the Storage Object Manager.

The Storage Object Manager provides capability for reading, writing, and updating storage ob­
jects, or pieces of them, without regard for their size. Buifer management, concurrency control, 
and recovery mechanisms for operations on shared storage objects are also provided. A versioning 
mechanism is supported. Whenever persistent objects are referenced, the E translator is respon­
sible for adding the appropriate calls to fix/unfix buffers, read/write the appropriate piece of the



CHAPTER 3. EXISTIRG APPHÜACHES PO ST0RA(3P MARArPEhiEA'P

underlying storage object, lock/unlock objects, log images and events.

Layered above the Storage Object Manager is a collection of access methods that provides asso­
ciative access to files of storage objects.

The Storage Object Manager provides a procedural interface, including procedures to generate 
and destroy files that contain storage objects, to generate and destroy storage objects within the 
file, and to open and close these files for certain scans. A file of storage objects is known as a file 
object. The Storage Object Manager provides a call to get the object identifier (ID) of the next 
object within a file object. It also provides a call to get a pointer to a range of bytes within a given 
storage object that helps in reading a part of a storage object. For writing storage objects, a call 
is provided to tell EXODUS that a subrange of the bytes that were read have been modified. For 
shrinking/growing storage objects, calls to insert bytes into and delete bytes from a specific offset 
in a storage object are provided, as is a call to append to the end of an object. In addition, the 
Storage Object Manager is desired to accept a variety of performance related hints about where 
to place a new object and how large the object is expected to be.

The storage objects can either be small or large, a distinction that is known only within the 
Storage Object Manager. Small storage objects reside on a single disk page, whereas large storage 
objects occupy potentially many disk pages. In either case, the object identifier (OID) of a storage 
object is an address of the form (page#, slot#). The OID of a small storage object points to the 
object on disk; for a large storage object, the OID points to its large object header. A large object 
header can reside on a slotted page with other large object headers and small storage objects, and 
it contain pointers to other pages involved in the representation of the large object. Other pages 
in large storage objects are private rather than being shared with other objects. When a small 
storage object grows to the point where it can no longer be accommodated on a single page, the 
Storage Object Manager will automatically convert it into a large storage object, leaving its object 
header in place of the original small object. Storage objects are accessed with a dense surrogate 
index.

Conceptually, a large storage object is an uninterpreted byte sequence; physically it is represented 
as a B-f tree like index on byte position withih the object plus a collection of leaf blocks, with all 
data bytes residing in the leaves. The large object header contains a number of (count, page#) 
pairs one for each child of the root. The count value associated with each child pointer gives the 
maximum byte number stored in the subtree rooted at that child, and the rightmost child pointeras 
count is therefore, also the size of the object. Internal nodes are similar, being recursively defined 
as the root of another object contained within its parent node, so an absolute byte offset within 
a child translates to a relative offset within its parent node. The left child of the root in Figure 
3.1 contains bytes 1-421, and the right child contains the rest of the objects, bytes 422-786. The 
rightmost leaf node in Figure 3.1 contains 173 bytes of data. Byte 100 within this leaf node is byte 
192-1-100=292 within the right child of the root, and it is byte 421+292=713 within the object as 
a whole.

The storage object manager provides primitive support for versions of storage objects. One 
version of each storage object is retained as the current version, and all the preceding versions are 
simply marked as being old versions. The Storage Object Manager provides concurrency control 
and recovery services for storage objects.

In EXODUS, buffer space is allocated in variable length buffer blocks, which are integral numbers 
of contiguous pages rather than in single page units. When an EXODUS client requests that a 
sequence of N bytes be read from an object X, the non-empty portions of the leaf blocks of X 
containing the desired byte range will be read into one contiguous buffer block, in byte sequence 
order, placing the first data byte from a leaf page in the position immediately following the last 
data byte from the previous page. A scan descriptor will be maintained for the current region of X 
being scanned, including such information as the OID of X, a pointer to its buffer block, the length 
of the actual portion of the buffer block containing the bytes requested by the client, a pointer 
to the first such byte, and information about where the contents of the buffer block came from. 
The client will receive a pointer to the scan descriptor through which the buffer contents may be 
accessed.

Concerning the file object, related storage objects can be placed in the same storage file for 
sequential scanning purposes on them. File objects provide support for objects that need to be 
co-located on disk. Like large stôrage objects, a file object is identified by an OID which points to



1. CFM!^'TONF

DID

Figure 3.1: An example of a large storage object

its root, an object header; storage objects and file objects are distinguished by a header bit. When 
a file is created, it is constrained to contain objects of only one class. This is not restrictive as it 
first sounds, as all objects are transitively considered of every class from which they inherit. Thus 
a file of objects of class Object may contain objects of every subclass in the lattice.

Finally replication has been introduced into the storage system of EXODUS to speed up query 
processing. For this purpose three replication strategies are in use [13].

3.4 GemStone

GemStone [37, 38, 39, 40, 46] is an object-oriented database system developed at Servio Logic 
Corporation. It combines the data type definition and code inheritance of Smalltalk-80 [15, 21, 26, 
30], i.e., object-oriented programming features with permanent data storage, concurrency control, 
transactions and secondary indexing features of database technology. GemStone has overcome the 
impedance mismatch problem, found in conventional database systems, by providing an object 
oriented database language, OPAL. OPAL is used for data definition, data manipulation, and 
general computations. OPAL is a computationally complete language and can express various 
associative searches on a collection.

The GemStone system has two major pieces. Gem or the object manager, and Stone or the 
executor, corresponding to virtual machine and object memory of the standard Smalltalk imple­
mentation. Stone provides secondary storage management, concurrency control, authorization, 
transactions and recovery, in addition to its job of managing the workspaces for active sessions. 
Objects are referenced in Stone using unique surrogates called Object Oriented Pointers. GemStone 
organizes its memory around an object table, which supports the mapping between an object's 
OOP and a chunk of memory holding the state of the object. Stone is built upon the underlying 
VMS file system. The data model provided by Stone is simpler than the full GemStone model, 
and only provides operators for structural update and accesses. The usage of OOPs to reference 
objects means that objects can be moved easily in secondary storage. It is not necessary to store 
an object together with all the objects that it references, they can be stored separately, but the 
OOPs for the values of an obj^.ct's instance variables are grouped together.

The object manager performs operations related to the storage and access of objects. It handles



operations related to concurrency control and secondary storage management. These operations 
are transaction control, authorization, data replication, recovery, and directory management. In 
addition, it provides access to different versions of the data. Each user session has its own object 
manager with a private object space. Sessions have shared access to the permanent database 
through transactions. GemStone supports simple inheritance in addition to other basic concepts 
of object-oriented systems, namely class, method, and object.

All objects in the system reside in a disk based object space which is divided into repositories. A 
repository represents a dismountable partition of the object space and is implemented as a direct 
access disk file. Repositories are divided into disjoint regions, called segments, for purposes of 
authorization and concurrency control. In other words, the objects in a GemStone database are 
partitioned into logical units called segments. A segment is a chunk of object storage which is 
owned by a particular user, who can store objects in it, and grant access to other users. The 
database administrator, or a savvy application programmer should be able to hint to GemStone 
that certain objects are often used together, and so should be clustered together on the disk. If an 
application has a group of private objects, all those and no others can be placed together in one 
segment. Segments expand to accommodate the objects stored in them.

Repositories may be replicated on disk against media failures. Replication is used instead of 
transaction log files. Because repositories of objects are dismounted, a mechanism must be provided 
to preserve consistent object identity when information is taken off-line and later brought back 
on-line. GemStone hides from application designers the paging of objects between secondary 
and primary memory, and supports objects larger than the size of the server^s primary memory. 
GemStone supports auxiliary storage structures that provide alternative paths to data, and should 
give users some control over physical grouping of objects, to improve efficiency of specific access 
paths

Stone supports five storage formats for objects [37]. In addition. Stone has several subcompo­
nents. The transaction manager is shared by all invocations of the Stone and handles concurrent 
use to the database in an optimistic manner. For each session, it records accesses to the database 
and validates them for consistency when a transaction commits. Read-only transactions are given 
priority over read-write transactions, when they require a commit. The approach is based on 
the assumption that read-only transactions are more frequent than read-write transactions. The 
directory manager generates and maintains directories which handle object histories. The linker 
incorporates updates made by a transaction in the permanent database at commit time, calling 
for restructuring of directories as needed. The Linker is called by the Boxer whose job is to fit 
objects into tracks after the database changes. The track manager schedules reads and writes of 
tracks. The commit manager provides save writing for groups of tracks since versions are kept. No 
garbage collection is needed; garbage collection for temporary data can be done by discarding the 
workspace at the end of a session.

lO CHAPTER 3. EX IS'PIN C APPRu a CRES TO ST(jRACE MAX AG EM PAT

3.5 ENCORE

ENCORE [27, 47, 48, 58, 59, 60] is a two level storage system for object oriented database systems 
developed at Brown University. In ENCORE objects are mapped through two levels of abstraction. 
The first level is responsible for managing the use of persistent object store. It is a typeless backend, 
results in a stream of bytes for each object. The second level, takes the responsibility of the type 
system.

For the first level, an OBject SERVER, known as ObServer, reads and writes chunks of memory 
from secondary storage. The first level brings to the second level a stream of bytes and the second 
level has to form the objects by using the type system. ObServer is used at Brown University not 
only as the backend of an object-oriented database system, but also as the storage system for an 
object-oriented interactive programming environment. ObServer is a general purpose system that 
can serve many applications like the mail or blackboard systems.

The server is a resource which manages chunks of memory allocated in a shared memory space. 
A chunk is a contiguous string of bytes. The server must allocate space and a Unique IDentifier 
(UID), for each chunk that it stores. So, to maintainthe correspondence between UIDs and the 
chunks of memory is one of the principal functions of the server.



The second level, the type level, is normally referred to as ENCORE, Extensible and Natural 
Common Object REsource. The type level deals with the semantics of objects through type 
definitions.

The system supports concurrent access. Concurrent access to the shared memory is accomplished 
by means of UNIX Remote Procedure Calls (RPC) mechanism. By means of RPC, the type level 
communicates with the ObServer in asynchronous fashion. Having more than one process being 
able to run concurrently, each process that wants to communicate with the server must bind a 
model called the client into its image. Therefore, it is possible for the client and the server to 
reside on different machines. When a process needs to request service from the server, it makes a 
call on the client code that hides the details of the RPC interface. The ENCORE model uses the 
server as a backend. It makes calls directly on its main copy of the client model. If there are two 
different processes on two different machines using the ENCORE database system, separate copies 
of ENCORE must reside on each machine, using the common server.

The chunks of memory that are managed by the server can be used to implement type objects 
as presented by the ENCORE interface. In an object-oriented database system, the type lattice 
introduces the problem of an object being an instance of more than one type. Consider the type 
Toyota as a subtype of the type Car. An instance X of the type Toyota is also an instance of the 
type Car. There will be a chunk of storage that represents the part of X that is an instance of 
Toyota, and a chunk of storage that represents the part of X that is an instance of Car. The term 
instance is used to refer to each chunk and the term object to refer to the aggregate of all instances 
that make up X.

The reading and writing of objects is done on block basis. On object creation, UID allocation 
is separated from storage allocation. This allows an application to request UIDs in anticipation 
of their use without reserving space for them in the file. Space is not allocated until the objects 
are actually written. The UIDs of deleted objects are not reused, however, since references to the 
objects may remain in the databcise.

ENCORE deals with abstract objects that are instances of types. These types participate in 
inheritance relationships and allow for the implementation of an object to be distributed across 
several type definitions. At the type level, every object might consist of several instances, one 
instance for each type in which it participates. For example, if Toyota is a subtype of Car, Car is a 
subtype of Vehicle, and Vehicle is a subtype of Object, then a given Toyota will be an instance of 
all the four types. Since each type has its own private representation as required by the abstract 
data type scheme, the Toyota object would need four chunks of storage for its representation. Each 
of these chunks would be accessible through the operations of the corresponding type.

A single UID is associated with each object. When a UID is dereferenced, it leads to a header 
block for that object. Conceptually, the header is a part of the chunk for the instance of the type 
object that every object must have. The header for object X contains some general bookkeeping 
information, as well as a set of pairs of the form (t,p), where t is a pointer to a type object, and p is 
a pointer to the beginning of the chunk that holds the representation of the instance of t which is a 
part of X. Most often, those chunks are allocated contiguously such that the pointer p is the offset 
into that contiguous storage at which the chunk for t begins. In this case, there would be a single 
UID for the large chunk that contains the instance chunks. This UID is the one that is used by 
ENCORE to represent the object identity. It is also possible for the chunks to be noncontiguous. 
Since p can be a UID, the chunks can be stored in any physical location. The decision, whether to 
allow instances of different types for the same object to be stored in different storage areas, would 
depend on the access patterns for objects of the given type. Internal UID are only used by the 
Observer, they are not available to the application programs.

To achieve efficiency, the segment is used to cluster groups of related objects on the disk. A 
segment contains objects that the object-oriented database system expects a client to access during 
a transaction, thus eliminating frequent disk head motion and single object transfers. So, a segment 
clusters a logically related set of objects into a variable sized single package. The transferred 
segment is expected to contain other objects that are to be accessed by the client, leading to 
preloading of required objects. A segment is the unit of transfer for objects between a client and 
the server, and from secondary storage to main memory. Objects may migrate from one segment 
to another by being deleted from' the first segment and inserted into the second.

Once a client receives a segment, the objects are individually placed in an object hash table and



CHAPTER  .7. EXISTING APPROACHES TO STORAGE MANAGEMENT

the segment is freed. The client has no further use for the segment structure once it has acquired 
its objects. The server, then, receives a set of object changes from the client containing a client’s 
operation, and other information necessary for the change to take place in the server’s copy of the 
segment. By returning only the final changes to the server in one package, the amount of network 
traffic is minimized and the server processing is reduced. Sending every change on isolated fashion 
may lead to the access of the communication network for every change.

A client may have a unique name for the segment group that it uses. Different clients may have 
common segments in their segment groups. When a client requests an object, the server returns 
the segments in which the object resides.

The Observer maintains master segments containing the current versions of all objects resulting 
from committed object changes. A client obtains from the server copy segments the client accesses 
locally. Clients may share the same copy segments by each having a copy at their location.

Whereas segments provide accesses to objects in groups, the UID provides individual object 
accesses. External and internal UIDs are employed in the ENCORE system. An external UID 
provides a user with a constant reference to a database object. When the server dereferences a 
valid external UID, there results an internal UID, manipulated by the system to locate an object 
physically. Both internal and external UID have the same length of 32-bits quantities that are 
allocated sequentially from a free-list by the server upon the request from a client creating objects. 
The internal structure of the internal and external UIDs is different. Each external UID maps 
either directly or indirectly into one or more internal UIDs. A mapping to multiple internal UIDs 
results from replicated objects.

Object replication requires an object to appear in more than one segment, everywhere it is 
referenced. This scheme, of course, incurs a penalty for update, but is extremely useful for objects 
that are either seldom updated or read only.

The server sequentially allocates external UIDs that are not recycled when objects are deleted. 
Deleted objects have external UIDs that map to a tombstone internal UID. This makes it possible 
to detect a reference to an object that no longer exists. The dereferencing process from an external 
UID to an object is shown in Figure-3.2. The various mappings are maintained in two files called 
the Object Location Table (OLT) and Duplicate Object Table (DOT). In Figure-3.2, the code 
field in the UID structure indicates the UID type, either external or internal. This information is 
used in both the client and the server processes. The OLT maintains the external to internal UID 
mapping.

Due to replication of objects, an external UID may have more than one corresponding internal 
UID. So, an external UID maps to an index in the DOT that is maintained by the server and 
provides the internal UIDs with all copies of a replicated object. When dereferencing an external 
UID that maps to a replicated object, the system checks whether a client already has a segment 
containing the object. If so, the corresponding internal UID is returned; otherwise, the object is 
fetched using an internal UID.

Updating a replicated object is a more costly operation, because every copy of the object in each 
segment has to be updated. The system guarantees that the update of all copies of a replicated 
object occurs automatically. Thus, a client cannot obtain a segment that contains a duplicate copy 
of X until all segments containing X have been updated.

All database objects are contained in at least one segment. A DataBase File (DBF) represents a 
separate and independent set of objects and type specifications. A segment contains a pointer table 
and a set of objects. Each segment object is referenced by exactly one entry in the pointer table. 
Segments are stored in the DBF. The DBF structure is similar to that of the segment, a pointer 
table and a set of segments. The pointer table comprises one or more pointer table blocks and 
additional fixed sized blocks are inserted as segments acquire more objects. This feature reduces 
the frequency of segment expansion each time an object is installed. The structure of the DBF 
and the segment are show in Figure 3.3.

A DBF contains the number.of Segment Pointer Table Entries (SPTEs), the Segment Pointer 
Table (SPT), and segments. The number of SPTEs represents the next available segment number 
to allocate. Each SPTE is composed of an offset to specify the segment location within the file, 
and a size to specify the number of bytes occupied by the segment.



19

OLT FILE

Figure 3.2: The dereferencing process from an external UID to an object



CilAPTER :'k EXUniRf"; XPVnOACUi:':; TO STOUAGI·: MANAOIOUTTT'

SP T E -0

SPTE-N

NUMBER OF SPTEs

offset size

segment -  i

#
•
•

segment -  i

SEGMENT
POINTER
TABLE

SEGMENTS

OPTE-0

OPTE-N

NUMBER OF OPTEs

offset size OLTindex

OBJECT-i

•
•
•

OBJECT -  i

OBJECT
POINTER
TABLE

OBJECTS

Figure 3.3: The structure of the DBF and the segment



о. к у  C O R E 21

А segment in secondary storage, likewise, contains three sections: the number of Object Pointer 
Table Entries (OPTEs), an Object Pointer Table (OPT), and objects, corresponding to the SPTEs, 
SPT, and segments of the DBF. An Object Location Table Index (OLTindex) is introduced in the 
OLT to provide a back pointer to the OLT that facilitates object migration.

Overflow blocks are added to the segments as the sizes of the objects expand or new objects are 
added to the segment. Objects in the overflow blocks are accessed as though, the segment and 
overflow blocks were contiguous in main memory.

Object structure depends on the user defined type specification, but this does not affect the 
Observer, since it handles an object as a string of bytes when installing and retrieving objects.



22 err A PTER EXTSTTNC APPRO A CTJES TO STOP A HE MA NA OEMEKT



Chapter 4

DESCRIPTION OF THE 
OBJECT STORAGE MODEL

4.1 Rationalization

In general, regardless of the underlying data model, database management systems take care of 
secondary storage management. Secondary storage management is considered necessary because 
persistence is an important aspect of any database management system. Items generated by a 
database application must have the ability to stay alive after the application terminates. They 
should be persistent to be referenced when they are needed, or else deleted. External storage is, 
therefore, important to keep persistent items of the databcise.

Concerning object-oriented database management systems, persistent storage should have the 
capability to keep all constituent chunks of every object in the database; but the efficiency of 
performing different operations on stored chunks should also be considered. Different approaches 
exist in each system trying to overcome some disadvantages found in other systems, but having 
some disadvantages that are considered minor with respect to its application domains. It can be 
said that one storage system is preferred to other systems because it has more advantages or fewer 
disadvantages than others.

The CONTAINER [31] tries to cluster chunks of an object into the same container. In the 
CONTAINER system it is supposed that on accessing a chunk all related chunks will be accessed 
sooner or later. So all the chunks are clustered together to be fetched into main memory by one disk 
access if possible. But if a chunk is found in more that one container, then it is physically included 
in one container with its OOP replacing it in the rest. It is clear that this clustering strategy is 
inefficient in trying to iterate over chunks that are instances in the same class, because to get a 
single chunk all the contents of the container in which it is found are brought to main memory. 
This results in more disk accesses and loss of time and space. In addition, not all the chunks that 
form an instance of a class may be needed so all the contents of the container should not be needed 
in the main memory at the same time. The storage philosophy that the CONTAINER depends 
is best applicable for composite objects where component chunks are dependent and likely to be 
accessed together.

A second approach is that used by ENCORE [27], where chunks of an object are stored as 
near to each other as possible and mostly in contiguous storage locations. In ENCORE, chunks 
are replicated wherever it is necessary to improve the performance of retrieval operations at the 
expense of costly updates.

A third approach is that used by ORION [7]; ORION assigns a separate storage area for each 
class to include its instances. This approach has the advantage of being efficient in iterating over 
all instances of the same class. It is inefficient in trying to get some of the chunks of an object or 
even a chunk that falls deep within the object as a super or a value for an instance variable.

23



e n  A PTFJl ‘1. DFSrnrPTfON O F  TUF OJUFCT FTORA CF MODFL

4.1.1 A Key Step Towards the Proposed System

The Object Memory Module [32] provides the primitive functions that are necessary in the devel­
opment of the whole system. When a new instance of a class is generated, a chunk of memory is 
allocated. This instance will also be an instance of the superclass in the class hierarchy/lattice. 
Since every class has its own private representation, a separate chunk is allocated for each class in 
the superclass chain up to the OBJECT class. The value for a non-atomic valued instance variable 
within an object can also be an instance in a class.

The key step in the proposed storage system is to assign a separate storage area per class to hold 
from each instance in the class only instance variables with atomic values, and keep track of the 
relations between objects in other storage areas. For each instance in a class information related 
to its immediate supers and values of non-atomic instance variables are kept in these two other 
areas using only the OOPs as the information representing object relationships. This approach 
overcomes the inefficiency in fetching a chunk related to another chunk of an object. The areas 
separated for the non-atomic values are accessed until the OOP of the target chunk is obtained. 
Then the storage area isolated for the chunk^s class is accessed and the target chunk itself is fetched.

4.2 The Proposed Model

The object model can be treated as a three dimensional system as shown in Figure 4.1. The 
first dimension represents instances in the same class. The second dimension represents nesting 
of objects, i.e., objects that are values of instance variables. The third dimension represents class 
inheritance chains.

Some instances in a class may be root chunks, nothing referencing them either as a super or as 
a nested subobject. Others may be chunks referred to by some chunks from subordinate classes or 
from nesting chunks in other classes. The former reference is along the inheritance dimension and 
the later is along the nesting dimension.

A chunk X which is referenced by some other chunk Y  is called Y^s immediate super chunk if the 
class in which chunk X is an instance is a superclass of the class in which chunk Y  is an instance.

On the other hand, a chunk X which is referenced by some other chunk(s) Y  is called Y ’s 
immediate nested chunk if the class in which chunk X is an instance is the range for an instance 
variable defined in the class in which chunk Y  is an instance. In some cases the value of an 
instance variable may be a collection in another class. In other words, more than one chunk which 
are instances in the same class as chunk X may form the value for an instance variable of chunk 
Y. This group of chunks in which X falls, forms a collection which is referred to as the value for 
the instance variable in chunk Y.

4.2.1 Tables and Mappings

Taking into consideration class references along the nesting and inheritance dimensions, a given 
class C may have say R>0 immediate superclasses and at the same time C may have S>0 classes 
as the ranges for its S non-atomic valued instance variables. An instance X in class C is inheriting 
an instance from each of its R superclasses and the values for the S non-atomic valued instance 
variables of C are found in the S range classes.

Atomic valued properties of each class are collected together in one place called a segment. So a 
segment may be defined as the storage area which keeps track of all instances of a class. A chunk’s 
representation is shown in Figure 4.2; while a segment’s representation is shown in Figure 4.3.

A chunk Y as an instance in C, may have S non-atomic instance variables each of which may 
have a single chunk or a collection as its value; each of the value chunks whether single or in a 
collection is said to be an immediate nested chunk of Y. The chunk Y  is called the nesting chunk. 
To keep track of all immediate nested chunks of chunk Y, a variable length record can be built to 
include:

{ C h u n k Y  -  OOP{Class.OOP,Chunk.OOP,FlagY)



THE rnOPOSFD MODEÍ.

CLASS
INHERITANCE
DIMENSION

INSTANCE
DIMENSION

Figure 4.1: A Three Dimensional Object Model

CHUNK^OP INSTANCE-YARIABLEi INSTANCE-YARIABLE2 • ·  · INSTANCE_YARlABLE|g

Figure 4.2: Representation of a chunk inside the segment

CHUNK ^ CHUNK2 • · · CHUNK|vj

Figure 4.3: Representation of a segment



where chunk-OOP and class-OOP are representing an immediate nested chunk and its class, re­
spectively. The Flag is set to 1 for all chunks but the last which has a value of 0 for the Flag, that 
as a collection form the value for an instance variable.

However, the immediate nested chunks of Y  have their own respective immediate nested chunks; 
thus each one should have a variable length record similar to that formed for chunk Y. All such 
records may be accumulated together to form a table, call it a Nesting Table (NT). Each class may 
have its own NT.

On the other hand, a chunk Y  may be referencing 0<R<1 immediate super chunks in case of 
class hierarchy or R>0 immediate super chunks in case of class lattice. Here also, variable length 
records may constitute the following structure:

{ChunkJY  -  OOP{Class.OOP, Chunk.O O Py)

to show the immediate super chunks of chunk Y, if any. A separate record is to be built for each 
chunk to show its immediate super chunks along the class inheritance dimension. All these records 
may be collected in a table, call it an Inheritance Table (IT). Each class may have its own IT.

Concerning composite objects, the relationships between the constituent chunks of a composite 
object are not reflected into the IT and NT but the constituent chunks of a composite object are 
collected together in the same segment because they are likely to be accessed as a single unit.

Here a direct mapping is seen between the three dimensions, namely instances of a class, nesting 
of objects and class inheritance on one side and the segment, the NT, and IT on the other side as 
shown in Figure 4.4.

In this way, three relations have been defined. The first relation is between atomic valued parts 
of chunks in the same class, the second relation is between nesting chunks and their immedi­
ate nested chunks, and the third relation is between chunks and their immediate super chunks, 

where X and Y are instances in the same class; 
where Y  is an immediate nested chunk of the nesting chunk X; 
where Y  is an immediate super chunk of X.

It is important to notice that for a chunk to be stored on the disk, the chunk has to be in one 
of the segments. So, to access a chunk in its segment information which relates a chunk^s OOP 
with the chunk^s address in the segment of its class, the addresses of the records that represent 
the chunk in the NT and IT have to be kept in a table, call it a Disk Object Table (DOT). The 
DOT contains an entry for each chunk. As shown in Figure 4.5 an entry in the DOT includes the 
chunk’s OOP, the chunk’s class OOP, the chunk’s address in the segment of its class, the address 
of the record that contains the OOPs of the chunk’s immediate nested chunks in the NT, and the 
address of the record that contains the OOPs of the chunk’s immediate super chunks in the IT.

By having an entry for every chunk in the DOT and using the chunk’s OOP, its class and the 
three addresses associated with the given chunk can be obtained. It is obvious that all accesses to 
the segments, IT, and NT to get the information related to a given chunk are to pass through the 
DOT, using the chunk’s OOP. In other words, the DOT is the first table to be accessed on any 
trial to get information related to a chunk.

20 CHAPTER 4. DESCRIPTION OF THE OBJECT STORAGE MODEL

X R1 Y
X R2 Y
X R3 Y

4.2.2 An Example

The following example is given to illustrate the described structures. Consider the class hierarchy 
given in Figure 4.6. The class “course” is the range for the instance variable “course” defined in 
the class “student” and the class “teacher” is the range for the instance variable “teacher” defined 
in the class “course” .

Suppose that there is one instance in the class “student” as shown in Figure 4.7. On constructing 
the DOT one entry is included for each class to show the address of its segment, and one entry per 
chunk as shown in Figure 4.8. in  Figure 4.8, PA, SA, CA and TA stand for the addresses of the 
segments for the person, student, course and teacher classes, respectively. SN and CN stand for 
the starting address of the NT for the student and course classes respectively. A zero is written 
for the NT addresses o f the person and teacher classes because they have no NT entries. SI and 
TI are the addresses of the IT for the student and teacher classes respectively. A zero address is



4.2. THE PROPOSED MODEL 27

CLASS
INHERITANCE

^  : Equivalent Representations

Figure 4.4: Mapping dimensions of the object model into the IT, the NT and the segment

ADDRESS ADDRESS ADDRESS

CHUNK-DOP CLASS_jOOP IN SEGMENT IN NT IN IT

Figure 4.5: Format of the Disk Object Table (DOT)



28 CHAPTER 4. DESCRIPTION OF THE OBJECT STORAGE MODEL

Figure 4.6: A Class sub-hierarchy

written for the IT addresses of the the person and course classes because they have no IT entries. 
PAl is the address of OOP6 relative to the starting address of the segment of the person class. A 
zero is entered for the segment address of the other chunks because each is the first chunk in the 
segment of its clctss. The NT and IT addresses for all the chunks are 0, either to indicate that no 
entries corresponding to the chunk is found or to show that the entry for the chunk is that found 
at the starting address of the table. Notice that there is no entry for OOPS in the DOT because 
the information related to OOPS is included in the NT.

Remember that every class may have its own IT and NT. In this example all the IT entries for 
all the chunks are shown in one table and also the NT entries of all the chunks are presented in one 
table. As shown in Figure 4.9 the IT includes two variable length records to show the immediate 
super chunks in the ‘^person” class of each of the “teacher” and the “student” chunks. As shown in 
Figure 4.10 the NT contains two variable length records to show the immediate nested chunks of 
each of the “student” and the “course” chunks in the “course” and “teacher” classes respectively. 
As shown in Figure 4.11 there are four segments one per class instances. A segment contains only 
the atomic valued instance variables.



4.2. THE PROPOSED MODEL
29

Figure 4.7; An instance in the “student” class



30 CHAPTER A DESCRIPTION OF THE OBJECT STOR.ACE MODEL

CHUNK^OP CLASSED P ADDRESS
IN

SEGMENT

ADDRESS
IN
NT

ADDRESS
IN
IT

00P1 STUDENTOOP 0 0 0

00P2 PERSON.OOP 0 0 0

00P4 COURSE.OOP 0 0 0

OOPS TEACHEROOP 0 0 0

00P6 PERSON OOP PA1 0 0

PERSON.OOP PERSON.OOP PA 0 0

STUDENT OOP STUDENTooP SA SN SI

COURSE-OOP COURSÊ OP CA ON 0

TEACHER .OOPTEACHEROOP TA 0 Tl

Figure 4.8: The constructed DOT

 ̂ °°^1,(PERS0N_00P, OOP2 ))

( 00P5  ̂ ( p eRSON-OOP, OOP. ) )

Figure 4.9: The consiructed IT



4.2. THE PROPOSED MODEL 31

( OOP (SET-OOP, 00P3^ 1), (C0URSE_00P, OOP4, 0 ) )

( OOP (TEACHER-OOP,00P5  ̂ 0 ) )

Figure 4.10: The constructed NT

STUDENT

COURSE OOP4 CODE ROOM

i

CA

TEACHER

TA

PERSON 00P2 NAME SURNAME ADDRESS AGE OOPg NAME SURNAME .ADDRESS AGE

PA PA1

Figure 4.11: The constructed segments



:i2 ClIArrER 4. JJESCIUPTION OF THE OBJECT STORACE MODEL

Procedure Build-IT-NT; 
begin

For every class (C) in the class hierarchy/lattice do 
begin

If (supers(C )oO B JE C T ) then { in the OBJECT class, there are no instances } 
begin

For every instance (i) in C do 
begin

vlr= OOPi; { vlr is the variable length record that shows the immediate supers of chunk 
i in C }

For j = l  to R do { R is the number of supers of C } 
begin

vlr=vlr||(class_OOPj, super(ij)); { super(ij) returns the OOP of the super chunk
within class j of i}

end;
If (R>0) then AppendJT(vlr); 

end; 
end;

If (there are S>0 non-atomic instance variables in C) then 
{ S is the number of range classes for instance variables of C } 

begin
For every instance (i) in C do 

begin
vlrl=OOPi; { vlrl is the variable length record that shows the immediate nested chunks 

of i }
For j = l  to S do 

begin
If (value(j) is a collection) then 

begin
m=size(collection);
For k = l to m-1 do 

begin
vlrl=vlrl||(class-OOPj, OOPk, 1); { 1 is the value of the Flag } 

end; 
end 

else
m=value(j);

vlrl=vlrl||(class-OOPj,OOPm,0);
end;
Append-NT(vlrl);

end;
end;

end;
end;

Algorithm 4.1 Construct the IT and NT for objects in the database

4.2.3 Construction of the IT and NT

According to Algorithm 4.1, take chunks from class C which are related by R l; as a consequence, 
atomic valued parts of these chunks can be stored in one segment. By applying R2 to those 
chunks, the variable length records to represent the nested chunks of chunks in class C in the NT 
are obtained. By applying R3 to the chunks in class C, the variable length records to represent 
them in the IT are obtained. Therefore, by the application of relations R2 and R3 to instances 
in class C, the variable length records to represent them in the NT and IT are obtained. Apply 
relations R2 and R3 for chunks in each class in the hierarchy/lattice to get more variable length 
records to represents instancesr' of the classes in the NT and IT. The application of relation R2 
stops when all the chunks of the remaining classes have all instance variables with atomic values. 
Relation R3 stops to be applicable when the chunks of the remaining classes have no immediate 
super chunks. This condition holds when a class is the immediate subclass o f the OBJECT class.



d.:l CllARACTEiilSriCS OF ТЛЕ PliOFOSED SYSTEM

The repeated application of relations R2 and R3, as stated above, leads to the construction of 
the NT and IT of the class hierarchy/lattice.

4.2.4 W hy Separate Atomic from Nonatomic Values?

A segment contains chunks from the same class. Remember that the OOPs of the immediate 
super chunk(s) of any chunk were included in the chunk^s entry in the IT. Also, the OOPs of 
the immediate nested chunks of the same chunk were included in the chunk’s entry in the NT. 
Therefore, there is no need to duplicate these OOPs inside the chunks within the segment. Another 
reason for not including these OOPs inside the chunks within a segment is that the usage of these 
OOPs is only to access new chunks and this can be done from the IT and the NT. Hence, as shown 
before the chunks inside a segment include the values of the atomic valued instance variables only.

The IT and the NT can be used to find the OOP of the target chunk starting at the root chunk of 
the object. By following from the IT and NT the records which show the immediate super chunks 
and the immediate nested chunks, any chunk between the root chunk and the target chunk can 
be obtained. After getting the OOP of the target chunk the values of its atomic valued instance 
variables can be obtained from the related segment.

4.3 Characteristics of the Proposed System

The following are some of the characteristics of the proposed storage model.

4.3.1 Efficiency of Access and Memory Utilization

To get to a chunk of an object, which is neither an immediate super chunk, nor an immediate 
nested chunk of the object’s root chunk, all chunks between the root chunk and this target chunk 
must be accessed either along the inheritance/ or nesting dimension. On accessing a chunk that is 
found between the root chunk and the target chunk, from each chunk either an immediate super 
chunk or an immediate nested chunk is accessed. Therefore, the instance variables needed in each 
chunk, except those of the target chunk, are only non-atomic valued instance variables. Hence, 
the instance variables which have atomic values, need not be accessed except in the target chunk. 
Due to this, only the IT and the NT being indexed can be efficiently used to find the OOP of the 
target chunk starting at the root chunk of the object.

4.3.2 Schema Evolution

Handling schema changes properly and efficiently are among the important aspects of any proposed 
storage system. Clearly, it is highly desirable for a storage system to satisfy as many schema 
operations as possible. Schema changes are presented in Chapter 6 after the description of the 
operations.

4.3.3 Composite Objects

Being composed of dependent chunks a composite object is thought to be a unit of storage and 
retrieval. In the proposed system, component chunks of a composite object are treated altogether 
as a single chunk in storage and retrieval operations depending on the well known philosophy that 
components of a composite object are likely to be accessed together. However, the user should 
indicate which objects are composite or which classes have composite instances.

Remember that, the IT and NT are introduced to facilitate access to target chunks within objects 
without any need to access the intermediate chunks in their entirety. With composite objects the 
situation is different, all component chunks are to be accessed together. Therefore, the fact that 
component chunks of a composite object are related by R2 or R3 need not to be reflected onto the 
NT and IT respectively. As a whole, components of a composite object are all aggregated together



34 CHAPTER 4. DESCRIPTION OF THE OBJECT STORAGE MODEL

to form a single chunk that can be stored into a segment. The OOP of any of the component 
chunks of a composite object maps onto the single chunk as a whole, to facilitate the retrieval of 
all component chunks of a composite object depending on a one component chunk retrieval.

4.3.4 Clustering

Clustering of chunks is governed by data semantics and frequency of expected operations. Different 
chunks are related by R l, R2 or R3. Being related by R l, chunks from a class are candidates to be 
clustered together into one segment. For composite objects, all constituent chunks of a composite 
object are clustered together.

Other clustering possibilities exist. For instance, the supers of an instance in IT can be clustered, 
or nested chunks of an instance in NT can be clustered.

4.3.5 Locking

Information related to an instance of a class is found in three locations, IT, NT, and the segment. 
Accesses to one of the nested, inherited, or atomic parts of an object do not affect the remaining 
two parts; so, the accessed part can be locked leaving other parts still accessible. This results in 
the achievement of finest degree of granularity for more concurrency.

4.3.6 Comparisons and Evaluations

The proposed storage system uses a new approach in storage management for object-oriented 
systems. While existing storage systems store together the whole chunk, i.e., instance variables 
with atomic values together with non-atomic values; the proposed storage system separates external 
references from atomic valued instance variables due to the fact that external references are not 
needed until related chunks are required.

It became impossible with existing systems to access a nested chunk without passing all the way 
through chunks leading to it without violating the encapsulation principle. For example, to get the 
name of the manager of the department for an employee, it is necessary to fetch the two chunks 
which lead to the manager's chunk; in other words, employee’s chunk and department’s chunk 
are to be accessed before getting to the manager’s chunk. To access a nested or inherited chunk, 
therefore, all chunks leading to that chunk are to be fetched into main memory with the attendant 
memory overhead in addition to a loss in time.

Comparatively large main memory allocations are needed in systems like the CONTAINER where 
chunks of an objects are clustered into contiguous storage locations and fetched together. On the 
other hand, in systems like GemStone and EXODUS where chunks are spread over the disk space, 
or like ORION and ODE where instances of a class are clustered into one storage area, it is possible 
to have one of the chunks leading to the target chunk in main memory at a time; because each 
fetched chunk, except the target, can be overlaid by the next chunk leading to the target chunk.

While this is the situation with existing systems, in the proposed system a target chunk is accessed 
by having only the small amount of required information in main memory at any time; the required 
information comes from the IT and the NT since these tables include only chunk references but 
not the atomic values in the chunks. For instance, to get the manager of an employee, no chunk 
except the manager’s chunk is fetched into main memory as chunk references are followed in the 
NT.

Concerning schema evolution, most schema changes include adjustments to chunk references that 
can be done with more flexibility in the IT and NT.

Another important distinguis'liing feature of the propbsed system is the finest granularity achieved 
due to the separation of chunk contents between a segment, the IT, and the NT.

Finally, with systems that cluster all chunks of an object together, it is cumbersome to iterate 
over instances of a class; but with the proposed system, a segment clusters atomic valued parts of 
the instances of a class facilitating such operations.



Chapter 5

INDEXING

5.1 Indexing Basics

In general, an index is a collection of <key.value, address> pairs used to facilitate access to a 
collection of records. For instance, an index is found at the end of most books including an 
alphabetically ordered list of keywords each followed by page numbers of those pages in which the 
keyword can be found. This is done to facilitate the usage of the book by employing keywords as 
the search arguments.

In database systems, an index consists of a collection of entries one for each data record or group 
of data records, and a pointer or disk address which allows immediate access to those records; could 
also be a symbolic value, i.e., primary key of the referenced record (OOP of the object chunk). An 
entry per record is called a dense index [55], while an entry per more than one record is called a 
sparse index [55].

Hashing and B-trees [28] are well known indexing methods. Although hashing is fast, it does 
not facilitate an easy access to records in the order of sorted key values. B-trees are quite fast and 
permit access to records in the order of sorted key values; a common need in database systems, at 
the expense of extra storage.

The index provides easy access to data stored in files at the price of using more storage space. 
But decreasing the required access time is more important than decreasing the amount of storage 
used; as the price of storage continuously decreases in parallel with developments in technology.

5.2 Problem Definition

The additional features of object-oriented systems [49], such as information hiding and encap­
sulation, inheritance, complex and composite objects, object identity, and schema changes make 
it more nontrivial to handle the indexing problem with such systems. These features are what 
conventional database systems lack. The basic problem in indexing in a database system is to 
efficiently select from a collection those records meeting a selection criteria. We may want to find 
all objects that either contain a given object, or an object equal to a given object as the value of a 
particular instance variable. But, the nonnormalized nature of objects introduce some difficulties 
and also accessing an object by its value is somewhat contradictory to the notion of object-oriented 
identity and the data encapsulation principle.

5.2.1 Indexed Objects

Indexing approaches used in conventional database systems are vague no more applicable in object- 
oriented systems, because the new features are to be taken into consideration on deriving an 
indexing model for an object- oriented database system. On indexing objects on their internal 
structure, one limitation is how deeply to index.

35



36 CHAPrER 5. INDEXING

We can index on either immediate atomic valued instance variables known as single level indexing, 
or on instance variables found in inherited or nested objects known as multilevel indexing.

Indexing on the atomic valued instance variables of an object is straightforward. Any change 
to the value of an atomic valued instance variable can be reflected into the index without any 
problems.

With multilevel indexing, problems arise because an object’s position in an index can be invali­
dated by a change in a subobject that is not manifested in the object itself, i.e., any chunk within 
a complex object can be accessed directly inside its class cts a root chunk, and changes due to 
such accesses can not be reflected to other chunks that reference the changed chunk either along 
the nesting dimension or along the inheritance dimension. In other words, the difficulty arises 
on trying to index on instance variables of those objects found along the nesting and inheritance 
dimensions, because the relationships along these two dimensions are unidirectional and many to 
one in the forward direction, i.e., directed away from the root chunk of an object, not towards 
it. It is necessary to keep the relationships in the backward direction, i.e., from the referenced 
chunks towards the root. The relationship is ^̂ many to one” in the forward direction and “one to 
many” in the backward direction. Keeping both the forward and backward references along the 
nesting and inheritance dimensions will facilitate indexing at any depth within an object without 
any problems.

5.2.2 Identity Indexes and Equality Indexes

Identity is a distinguishing property of objects found in a database [33]; each object has its own 
identity. Regardless of the change in the contents of an object, its identity remains unchanged; i.e., 
object identity is preserved. One powerful technique for supporting identity is through surrogates. 
An OOP is the identity of an instance object in a class. The private memory of an instance object 
is a contiguous series of words which is called a chunk [32].

As discussed in Chapter 4, an object may reference other objects along the nesting and inheritance 
dimensions as its nested and super chunks, respectively. Therefore, indexes may be built on the 
identities of objects found at a certain level along the nesting or inheritance dimension within the 
indexed objects. Such an index is called an identity index, because it depends on the identity 
of the index argument; regardless of the contents. -An important thing to point out here is that, 
identity index is applicable for non-atomic valued instance variables.

An identity index facilitates accesses to objects in a class depending either on their identities 
or on the identity of objects found in another class and referenced by objects in the former class. 
The reference may be either in the forward or in the backward direction along the nesting or 
inheritance dimension. Depending on the given identities, access to the objects in the former class 
can be facilitated.

Additionally, it is also possible to build an index based on the value of an atomic valued instance 
variable, called an equality index. So, an equality index may be built based on the internal state 
of objects; such an index may support range searches on values of the key instance variable.

An equality index facilitates accesses to objects in a class depending on the value of an atomic 
valued instance variable. Given a possible value for an atomic valued instance variable, an equality 
index establishes the identities of objects having that value in their instance variables. Depending 
on the result of the comparison of a given search argument with the value of an atomic valued 
instance variable in the class, objects from the class are located.

While an identity index deals with object identities, an equality index deals with the values of 
some instance variable included within objects.

5.3 Requirements of Indexing in Object-Oriented Systems

Indexing is an important issue in the storage management of database systems. The presence of 
an index in a database system facilitates associative access to objects found within the database, 
instead of searching the whole database to find the same objects in the absence o f indexes. Indexes



5.3. REQUIREMENTS OF INDEXING IN OBJECT-ORIENTED SYSTEMS 37

are especially useful when the user wishes to select a small subset of a large collection based on 
the value of a specific instance attribute; the search argument. Indexes are, therefore, helpful for 
operations iterated over members of a large collection; but it is necessary to get the same answer 
on evaluating a query with or without indexing.

The concept of object-orientation has introduced some new features such as information hiding 
and encapsulation, inheritance, complex and composite objects, and object identity that make it 
not possible for conventional indexing methods to be still applicable with object-oriented database 
systems. Current relational database systems use indexes for fast access to records in a single 
relation or to achieve efficiency in natural join operations. However, it is misleading to equate 
relations with classes. A relation serves both to provide the scheme for its component tuples and 
to collect all those tuples. In an object-oriented database system a class defines the structure of its 
instances, but rarely keeps track of all those instances. Instead, collection objects -bags and sets- 
serve to group those instances. One of the differences between object- oriented database systems 
and relational database systems is that objects are not flat. One should be able to index on the 
instance variables that are found several levels deep in an object, along the nesting or inheritance 
dimension; i.e., given a value for an instance variable (atomic value or object identity), one should 
be able to find efficiently the objects that reference this value and are several levels away in the 
inheritance or nesting dimension.

5.3.1 Improving Performance

Searching a large collection by a sequential scan will give unacceptable performance with disk- 
based objects. Searching for elements should be at least logarithmic in the size of the collection, 
rather than linear. Thus, object- oriented database systems should support associative access on 
elements of large collections to avoid sequential iteration over all the elements on every access. 
They should supply storage representations and associative access methods in support of locating 
an element by its internal state. They should support equality and identity indexes.

5.3.2 Conserving Encapsulation

Information hiding and complex objects [35] are two of the important distinguishing features of 
object-oriented systems. Complex objects are those objects that are related to some other objects 
along the nesting and inheritance dimensions. An important contribution of object-orientation in 
database systems is that what is found inside an object is invisible to the outside environment of 
the object, even the relations along the nesting and inheritance dimensions are so. The only way 
by which values can be extracted from within an object is through message sending [44]. It is 
not necessary for the sender to know how the message is interpreted by the receiving object; the 
interpretation is done internally inside the object, transparent to the surrounding environment, by 
executing the method that corresponds to the received message. The object, therefore, receives a 
message and gives an answer, if required, without letting the sender to know how the answer is 
obtained or even the internal structure of the object.

5.3.3 What Should be Indexed?

Accesses to objects depending on the value of some instance variable require a search of all objects 
in the same class in the absence of an index. In addition, accesses to referencing chunks located in 
the backward direction along the nesting or inheritance dimension with respect to the referenced 
chunk some of whose characteristics are given, require index employment in order not to spend a 
considerable amount of time in sequentially performing a forward access to extract the referencing 
chunk(s). Finally, the presence of equality indexes on atomic valued instance variables is necessary 
for improved performance.



38 CHAPTER 5. INDEXING

5.4 Existing Approaches to Indexing

5.4.1 Indexing in GemStone

Indexing in GemStone [37, 40] is based on the structure-instance variables- of objects and it is 
supported at the Stone level. In order to facilitate associative access, both paths and instance 
variable typing have been introduced into OPAL; the database language supported by GemStone. 
A path is a variable name, a path prefix, followed by a sequence of one or more instance variable 
names called links to form a path suffix. Both equality and identity indexes are supported in 
GemStone. To build an index on a collection using a particular path, the path expression must be 
defined for every object in the collection. Finally, OPAL differentiates between selection expressions 
and associative queries by the use of brackets and braces. Braces indicate an associative query, 
whereas brackets indicate a selection expression.

5.4.2 Indexing in the CONTAINER

An indexing model was added to the CONTAINER [31, 45] in order to provide alternative access 
paths to objects, based on the values of their instance variables, i.e. to provide associative access 
to objects.

Indexing can be provided on the immediate instance variables of an object or on the inherited 
instance variables or on the instance variables that belong to the objects referenced by the indexed 
object. Indexing is performed on classes, which means that all instances o f  that class are indexed; 
thus the methods updating the value of an instance variable in an indexed class can provide easier 
index handling services. An index is created by specifying a pair of the form:

< classJndex^pathyinstance-variable-index^path >

Where the first component, classJndex-path, specifies the class on which the index is to be built, 
and the second component, instance_variableJndex_path, specifies the actual instance variable pro­
viding the key for the index set. Both components use the path expression described by GemStone. 
The formal definitions of these path expressions, as they are used in the CONTAINER, are pre­
sented below, yet, informally the classJndex-path contains in its first component the target class, 
whose objects will be returned by indexed access, followed by zero or more classes separated by 
dots, and the last component being the class that contains the instance variable being indexed by 
the instance-variable_index-path. The instance_variabledndex_path has in its last component the 
instance variable being indexed and the whole path shows the way to access that instance variable 
from the object which is an instance of the class being indexed, and whose OOP will be associated 
with the value of this instance variable.

A class-index-path is a string of the form:
Al.A2...An where Ai belongs to {user defined classes} and Ai is a subclass of Ai+1 for i= l...n -l 

and there does not exist any i such that Ai=Class class, which has all the classes as its instances 
[32], and the indexed instance variable is among the instance variables of An.

An instance_variable_index_path is a string of the form:
Vl.V2...Vn where Vi belongs to {instance variables of class Vi-1) for i=2...n.
If n = l then V is called a simple index path.

Indexing a path Al.A2...An on the instance variable V will associate the OOPs of the objects 
found in class AI with the value of V in the corresponding object, i.e. given a value for V, all 
OOPs of objects in class AI associated with that value of V are returned.

If V is a simple index path, i.e. it is an immediate instance variable of class An, then this is a 
oneJeveLindex. MultiJeveLindexing is performed by indexing each link along the variable path 
rather than maintaining a single index for the whole path.

Each index specification is independently specified by a B.tree. A one-level index is straightfor­
ward, but multilevel indexes have been designed by a sequence of index components, one for each 
link along the path, as described for Gemstone in the previous section.



5..̂ . A PliOPUbLD LNDKXiMG METHOD

5.4.3 Indexing in EXODUS

39

In EXODUS [11, 13], the indexing problem is treated by using the path concept introduced by 
GemStone, but by adding data replication concept. The designing group argue that there is 
basically no reason why an index can not be built on replicated data, and by allowing indexes to 
be built on replicated data, new indexing opportunities are created.

It is necessary to emphasize that in EXODUS replication was added to the path dependent 
indexing method to gain efficiency. To illustrate how replication is used by EXODUS indexes, 
consider the following example [13]:

Replicate Emp.dept.org.name 
Build index on Emp.dept.org.name

Here Emp, dept, and org stand respectively for employee, department, and organization; name is 
an instance variable defined within organization.

Because of replication, an index for the path Emp.dept.org.name can be built on the replicated 
values that are stored in Emp. The index would map organization names directly to objects in 
Emp, and could support queries that require an associative lookup on the path Emp.dept.org.name. 
A direct object-to-object mapping is provided by EXODUS indexing model that uses replication; 
this is the result of adding replication to the path concept introduced by GemStone where the 
mapping is indirect via B-tree components.

5.4.4 Problems with the Described Approaches

The described approaches treat the indexing problem by violating some object-oriented features, 
namely accessing information inside objects supposed to be hidden and the interaction with objects 
by means other than message passing. The three mentioned systems use the path concept initially 
introduced by GemStone.

A path describes the relation between objects by making their internal structure visible to the 
outside, a violation to the information hiding principle of object-oriented systems. While the in­
troduction of the path concept has many advantages in forming the basis for some indexing models 
for object-oriented systems, it is not suitable for object- oriented systems if their distinguishing 
features are to be preserved.

Finally, the usage of two different query formats for associative and selection accesses by Gem­
Stone introduces an impedance mismatch problem in OPAL.

5.5 A  Proposed Indexing Method

Although the path dependent indexing approach introduced by GemStone may also be used in the 
proposed storage system [4], it is important to treat the indexing problem within this system from 
a different point of view by taking advantage of its particular structure. It is also important to 
preserve the distinguishing features of object-oriented systems.

5.5.1 Identity Index

An important requirement in indexing is to be able to access certain chunks depending on the 
identity of a given chunk which is related to the former in either of the directions along the 
inheritance or nesting dimension. A second one is to be able to access certain chunks depending 
on the comparison of a search argument to the value of some instance variable within a collection 
of chunks; as discussed in section 5.5.2.

Recall from Chapter 4 that in the storage model, we defined three relations, R l, R2, and R3. 
Here, the discussion will start with the inverse of relations R l, R2, and R3, i.e., 7?2"· ,̂ and

Consider x and у to be any two chunks in say classes Cx and Cy respectively.



'i U lA!Uh;XlNG

R l-i= :R l because (x R1 y) iff x and y are chunks in the same class, and (x R1 y) gives (y R1 
x), i.e., (y x) is satisfied.

(x R2 y) iff y is the value for a non-atomic valued instance variable in x, then (y R2~^ x) because 
X is an instance with an instance variable having the value y.

(x R3 y) iff y is a super chunk of x, then (y /23"^ x) because x is a subobject of y or x inherits 
from y.

Therefore, if two objects in different classes are related by R2 or R3 then the same two objects 
are related by 722"  ̂ or /23"”  ̂ respectively.

Via the relation 722” ,̂ for each object y we can find all objects, say x, such that (x 722“  ̂ y); the 
group of objects obtained are referencing y along the forward nesting dimension as their immediate 
nested chunk. Because the number of objects related to y by 722“  ̂ is arbitrary, a variable length 
record with the following format is built to show the immediate referencing chunks of y.

{OOPy{OOPC, O O PxY)

where OOPy and OOPx are the OOPs of the chunks and OOPc is the OOP of the class C in which 
X  is an instance.

For each object having a nested object in the database, a variable length record can be formed 
using 722“  V All those variable length records form what we call a Referencing Object Table (ROT).

The ROT serves to establish all objects that are referencing a given object as their immediate 
nested chunk along the nesting dimension. Returning back to the example given in Section 4.2.2, 
the corresponding ROT is shown in Figure 5.1.

( 00P4^ ( STUDENT_00P, OOP. ) )

( 00P5^ ( C0URSE_00P, OOP4 ) )

Figure 5.1: The constructed ROT for the example in Section 4.2.2

By the same way, using relation 723” ^ for each object y as a super chunk we can find all 
subobjects, say x, such that (x 723"  ̂ y). The obtained group of objects have y as an immediate 
super chunk along the inheritance dimension. An object y can be the immediate super chunk of 
more than one object, so a variable length record with the following format:

{OOPy {OOPC, OOPx)*)

where OOPy and OOPx are OOPs of the chunks and OOPC is the OOP of the class C in which 
X  is an instance, is formed to show all the objects that are related to y by 723“ ^ For each object



5.0. A PROPOSED INDEXING METHOD 41

acting as a super chunk of some object in the database, a variable length record can be formed 
using R3~^. All variable length records obtained using form what we call SubObject Table 
(SOT).

The SOT serves to locate all the immediate subobjects of a given object, i.e., all the objects with 
which the given object is related by R3. The SOT for the example in Section 4.2.2 is shown in 
Figure 5.2.

( 00P2^( STUDENT-OOP,OOP| ) ) 

( 0 0 P6 , ( TEACHER_OOP, OOP0 ) )

Figure 5.2: The SOT for the example in Section 4.2.2

Given an expression of messages and as described in Section 5.5.5, it is possible to establish the 
class of an object receiving a message and push it into a stack. The OOPs of the objects in the 
class at the top of the stack are used to get the OOPs of the objects in the class to become the 
top of the class after popping the stack.

Therefore, the SOT and ROT facilitate locating of any chunk x that references a given chunk 
y, regardless of how deep y is with respect to x. Knowing the OOP of y, the SOT or the ROT is 
accessed to get the subobjects o f y or the objects that are referencing y as their immediate nested 
chunk. By repeating this look up using the obtained chunks instead of y, any object x can be 
reached. In other words, given the identity of an object, all objects that are referencing the given 
object in the backward direction along the nesting or inheritance dimensions can be obtained from 
the ROT and SOT.

On the other hand, to find all chunks found in the forward direction along the nesting or inher­
itance directions with respect to a given chunk y, the IT and NT are used. The identity of y is 
used to get from the IT or NT the immediate supers or nested chunks of y. By repeating this look 
up with the obtained chunks instead of y, the target chunks are reached.

The SOT and ROT give objects^ identities not their locations. Using its established identity and 
accessing the DOT, the location of the object in the segment of its class can be reached.

The IT, NT, SOT and ROT are structured as B-trees with chunk_OOP as the index argument. 
Identity indexes are, therefore, based on the ROT and SOT if the target object falls in the backward 
direction along the nesting or inheritance dimension with respect to the given object and on the NT 
and IT if the target object falls in the forward direction along the nesting or inheritance direction 
with respect to the given object.

It may be required to find in a class objects that are referencing objects in another class; given



42 CHAPTERS. INDEXING

the identities of the later objects. Here, the target objects are found in the reverse direction along 
the nesting or inheritance dimension with respect to the given objects. In the absence of an identity 
index, one should iterate over all the instances in the former clciss. For each such instance, the 
IT and NT are traced to find out objects referencing that instance. On the other hand, using an 
identity index, the SOT and ROT contain indirect references from the given object to the target 
objects. The SOT and ROT are used to extract the target objects from the former class. This 
is done transparently to the user and even without any hints from the user. Therefore, given a 
chunk^s OOP and using the SOT and the ROT, all the instances of a certain class that reference 
the given chunk as a super or nested sub object can be found.

Depending, therefore, on the identity of a chunk, all related chunks in a target class may be 
located.

5.5.2 Equality Index

An identity index helps in locating objects depending on the identity of some objects they reference; 
but what if access is to be done based on a predicate on the value of some atomic valued instance 
variable within the referenced objects? An equality index is introduced for such situations. An 
equality index look up is actually a two step process; in the first step the object identities of objects 
that satisfy the predicate are formed and in the second step identity index is applied based on the 
resultant identities in the first step.

An indexing technique given in [55] is used in constructing equality indexes. It relates different 
possible values of the search argument to the object identities. This relationship is based on the 
value of the instance variable defined in the class whose instances are to be indexed. Such an 
instance variable should be defined locally inside the class; neither inherited, nor nested. For 
different values of the instance variable, the identities of the objects that have the same value are 
collected together. Such collections facilitate the retrieval of object identities for objects possessing 
the same value of the indexed instance variable.

To satisfy the requirements of range queries B-trees are used to implement the equality indexes. 
A B-tree is built to index instances of a certain class on the values of some instance variable defined 
locally within the class. Hence, given a possible value for an instance variable, the B-tree related to 
that instance variable can be accessed to get the OOPs of chunks that contain the search argument 
as the value of their indexed instance variable or to satisfy the search predicate. Then the identity 
index is used to get to the chunks themselves.

5.5.3 Index Creation

An index cannot be used until it is created. So the first step in index manipulation is index 
creation.

Two index creation methods may be thought of; in the first method, an index is set up auto­
matically, i.e., for identity indexes SOT and ROT are set up and for each specified atomic valued 
instance variable defined in a class an equality index is set up. In the second method, the user is 
given means to set up an index. The means required in the second method are nothing more than 
provision of messages for staying within the realm of object-orientation.

The philosophy to be followed in index creation is to automatically set up SOT and ROT to 
serve for identity indexes; but to use the second method for equality indexes.



5.5, A PROPOSED WDEXING METHOD 43

Procedure Build-IT-NTJSOT-ROT; 
begin

For every class (C) in the class hierarchy/lattice do 
begin

If (supers(C )oO B JE C T) then 
begin

For every instance (i) in C do 
begin

vlr= OOPi; { vlr is the variable length record that will show the immediate supers of 
chunk i in C }

For j= l  to R do { R is the number of supers of C } 
begin

vlr=vlr||(class_OOPj, super(i j ) ) ;  { super(i j )  finds the super chunk of i in class j } 
a=Locate_SOT(super(ij));
If (a is found) then

Append_record((class_OOPc,OOPi)) { Add to the record found the node that shows
i as a subobject }

else
Append_SOT( super(i j ) ,  (class_OOPc,OOPi)); { Add a record to represent the

super of i in the SOT }
end;
If (R>0) then AppendJT(vlr); 

end; 
end;

If (there are S>0 non-atomic instance variables in C) then { S is the number of range classes
for instance variables of C }

begin
For every instance (i) in C do 

begin
vlrl=OOPi; { vlrl is the variable length record that shows the immediate nested chunks 

of i }
For j= l  to S do 

begin
If (value(j) is a collection) then 

begin
m=size(collection);
For k = l to m-1 do 

begin
vlrl=vlrl||(class-OOPj, OOPk, 1); { 1 is the value of the Flag } 
b=Locate_ROT(OOPk); 
if (b is found) then 

Append_record( (class-OOPc, OOPi)) 
else

Append-ROT(OOPk, (class-OOPc, OOPi)); 
end; 

end 
else

m=value(j);
vlrl=vlrl||(class-OOPj,OOPm,0);
Locate-ROT(OOPk); 
if (found) then

Append-record( (class-OOPc, OOPi))
else

Append_ROT(OOPk, (class.OOPc, OOPi));
end;
Append-NT(vlrl);

end;
end;

end;
end;

Algorithm 5.1 Construct the IT, NT, SOT and ROT for the objects in the database



44 CHAPTER 5. INDEXING

According to Algorithm 5.1, the SOT and ROT are built in parallel with the IT and NT. For 
every object x in a clciss, R3 is applied to find the supers of x in the range classes, i.e., the 
superclasses of x's class. The result of the application of R3 using x is a variable length record that 
shows the immediate supers of x. However, the application of is done in parallel with R3
with the range classes of R3 as the domain classes for and the domain class of R3, i.e., x's
class, as the range for iZ3“ ^ The result of jR3"·̂  is the addition of a node to the variable length 
record in SOT of each of the immediate supers of x, to show x as an immediate subobject. By the 
same way, the application of R2~^ is done in. parallel with the application of R2 to result in the 
addition of a node to the variable length record in ROT of each of the immediate nested chunks 
of X to show X as an immediate referencing chunk.

As shown in Figure 5.3, two columns are added to the DOT to keep the address of the record 
that represents a chunk in the ROT and SOT. The DOT for the example of Section 4.2.2 is given 
in Figure 5.4. In Figure 5.4 OR and TR stand for the starting address of the ROT of the “course” 
and “teacher” cleisses respectively. PS is thê  address of the SOT of the “person” class while PSl 
is the address of the record of OOP6 relative to PS.

CHUNKJOOP CLASS_jOOP ADDRESS ADDRESS ADDRESS ADDRESS
IN IN IN IN

SEGMENT NT IT ROT

ADDRESS
IN

SOT

Figure 5.3: The augmented format of the Disk Object Table (DOT)

CHUNK_OOP CLASS_00P ADDRESS
IN

SEGMENT

ADDRESS
IN
NT

ADDRESS
IN
IT

ADDRESS
IN
ROT

ADDRESS
IN

SOT

00P1 STUDENTOOP 0 0 0 0 0

00P2 PERSON.OOP 0 0 0 0 0

00P4 C0URSE.00P 0 0 0 0 0

OOPS TEACHERoOP 0 0 0 0 0

00P6 PERSON OOP PA1 0 0 0 PS l

PERSON.OOP PERSON-OOP PA 0 0 0 PS

STUDENTOOP STUDENToop SA SN SI 0 0

COURSE_jOOP C0URSE_j00P CA CN 0 CR 0

TEACHER .OOPTEACHEROOP TA 0 Tl TR 0

Figure 5.4: The DOT for the example in Section 4.2.2

For the creation of an equality index, the following is proposed. In ODS [54] two instance methods 
are automatically generated with the definition of an instance variable. For the manipulation of 
each defined instance variable two messages, get<variable_name> and set<variable_name> are 
provided. A third method can be generated to index instances of a class on a defined instance 
variable. The message index<variable_name> can be sent to the class to set up an index on 
that instance variable. The third method, however, when executed builds up a B-tree out of the



5.5. A PROPOSED INDEXING METHOD 45

instances of the class where the index argument instance variable is defined. For example, the 
instance variable ’salary’ is defined in the class ’teacher’ . In ODS two methods are generated for 
this instance variable and executed on sending the messages setsalary() and getsalary(). A third 
method can be generated to set up an index on ’salary’ within the class ’teacher’ and executed 
on sending the message indexsalary() to the class ’teacher’ . The third method builds an equality 
index based on the ’salary’ instance variable. The result is a B-tree that relates different values of 
the ’salary’ instance variable to the identities of the instances of the class ’teacher’ .

It is possible to create an equality index for more than one class in the hierarchy/lattice. An 
instance variable defined in the class serves as the index argument. It is also possible for more 
than one instance variable in a class to be the index argument for an equality index. For such 
cases, variables may be added to the class definition to represent certain permutations of its 
instance variables. On creating an equality index on more than one instance variable, the message 
index<variable> may then be sent to the class. An Index Directory (ID) is used to keep information 
related to all equality indexes set up in a database. The ID includes the pair (instance variable 
OOP and the address of B-tree root) for each instance variable that serves as the index argument 
for an equality index. The ID is constructed as a B-tree with instance variable OOP as the index 
argument.

5.5.4 Schema Changes and Indexing

It is important to consider the relationship between schema changes [6] and the proposed indexing 
approach. We claim that schema changes do not affect existing indexes. How and to what extent 
this claim is achieved is discussed next.

The proposed indexing approach defines two kinds of indexes, identity index and equality index. 
Identity index introduces SOT and ROT that show the immediate nesting and the immediate 
referencing objects for all objects found in the database.

On the other hand, an equality index involves a preliminary look up step after which an identity 
index is applied. This step is required to retrieve identities of the chunks that satisfy the comparison 
condition between a search argument and an atomic valued instance variable in a class. The ID is 
accessed based on the instance variable OOP to get the address of the root of the B-tree serving 
the equality index on the instance variable. Then the B-tree is accessed using the search argument 
to obtained object identities.

It is obvious that schema changes will not affect an equality index, unless the change is to a class 
whose instances are indexed by the preliminary step in an equality index. Even identity indexes 
will not be affected by schema changes, except for the addition of new instances to a class or the 
deletion of existing instances from a class where entries need to be added to or deleted from the 
SOT, ROT, IT and NT.

For instance, suppose that instances in class ’employee’ reference instances in class ’person’ and 
instances in class ’manager’ along the inheritance and nesting dimensions respectively. An equality 
index may be set up on an instance variable of class ’manager’ . An identity index is automatically 
set up for instances of classes ’employee’ , ’manager’ , and ’person’ . The addition of the class 
’department’ between the classes ’employee’ and ’manager’ will affect neither the equality nor the 
identity indexes. Because instances from class ’manager’ will keep on satisfying the equality index 
which is local to class ’manager’ . The identity index built before will be automatically extended 
to include instances of ’department’ class.

5.5.5 Query processing

In a message based object-oriented language, on instantiating an expression of the form:

< object > < messagel > < message2 > · · · <  messageN >

until no message is left, every object receiving the succeeding message produces a new object, that 
replaces the receiving object-message pair. The result of the whole expression will be the final 
object which has no messages left to receive.



‘I b CIIAPTKR 5. INDEXIPIG

In processing an expression, it is possible to establish the class of an object receiving a message 
and push it into a stack. The class of the object that receives the last message, i.e., top element 
of the stack, is used in the case of an equality index to look up the ID for the address of the 
root of the B-tree that indexes instances of this class on the value of the instance variable given 
by the last message. The B-tree is accessed to extract the identities of instances that meet the 
comparison condition following the last message. But if there is no equality index set up on the 
instance variable, all instances of the class at the top of the stack receives the last message to get 
iteratively the OOPs of the objects that meet the comparison condition.

Depending on the OOPs of the resultant objects from the previous step, the SOT and ROT are 
accessed to get the OOPs of the objects in the class popped from the stack; the same thing is 
repeated with the objects obtained from the previous step, until the stack becomes empty.

5.5.6 Application to Other Systems

The proposed indexing approach meets the index requirements for the existing object-oriented 
storage systems.

Inheritance and nested objects are common in all object-oriented systems, they are among the 
basic constructs of object-orientation. Due to that, with any object-oriented database management 
system R2, R3, R2~^, and can be applied to objects in the database to build the NT, IT,
ROT, and SOT.

Equality index is applicable as it is without any change, since an equality index indexes instances 
of a class depending on different possible values of an index argument.

5.5.7 Comparisons and Evaluations

The indexing problem in object-oriented database systems is not a trivial issue, due to the men­
tioned distinguishing features of object-oriented systems. To index an object-oriented database 
system in such a way that all the objects that satisfy a given search argument can be located 
without any violations of the object-oriented concepts and principles is the goal.

The indexing methods used by the described existing methods are all using the path concept 
which is not an object-oriented construct; on the contrary it violates some of the object-oriented 
principles. A path is nothing more a trace of the internal structure of objects. A path includes 
a detailed description of the way, derived from the internal structure of objects, to be followed in 
searching for the target objects. How the nesting and inheritance dimensions are to be followed, 
on going from the root chunk of an object to the target chunk, is found within the path. Such a 
description violates the fact that the internal structure of an object must be hidden from the outside 
and is accessible only via message passing. From this point of view, therefore, an indexing method 
that depends on message passing is preferable for not to go out of the realm of object-orientation.

In addition, any change to the class hierarchy/lattice will be reflected by changing those paths 
and rebuilding the indexes that include something related to the changed part of the class hierar- 
chy/lattice. It is, therefore, necessary to have a system that stands unchanged regardless of minor 
changes in the class hierarchy/lattice. By minor changes we mean changes that do not affect the 
instance variable on which indexing is done.

The proposed indexing method is dependent on message passing. Minor changes in class hi­
erarchy/lattice do not affect the existing indexes in the proposed method. Simply, the proposed 
indexing method tries not to violate the object- oriented concepts.

Notice that the IT, NT, SOT, ROT are automatically built transparent to the user. Given 
the identity of an object these tables serve in locating objects in some other class related to the 
former object. An equality index gives the identities of instances in a class that meet a predicate. 
In the absence of an equality index a sequential iteration is done over all the instances of the 
class to receive the last message in an expression. Having the identities in hand, identity index is 
manipulated. This is not facilitated by any of the described approaches where iteration is done 
over the instances of the class to receive the first message in the absence of an index. Each instance 
is instantiated using the expression; a time consuming process.



.3.5. A  PROPOSED INDEXING METHOD '1:7

Moreover, to satisfy the indexing requirements in GemStone OPAL was adjusted to differen­
tiate between associative accesses and sequential selection where braces and brackets were used 
respectively, resulting in an impedance mismatch problem in the language.



■18 С Н А Р Т Е ІІ 5. IN D E X IN G



Chapter 6

INTEGRITY VS. OPERATIONS 
AND SCHEMA CHANGES

6.1 Integrity Preservation

The preservation of integrity [17, 28] of a database system is concerned with the maintenance of the 
correctness and consistency of data. The databeise implementor is responsible for the problem of 
maintaining the correctness and consistency of the database. Clearly in any database environment 
it is desirable that maintaining the correctness and consistency of relationships in the database is 
not a user responsibility.

Concerning object-oriented database systems, maintaining the integrity of the database after a 
deletion operation is the crucial point. On deleting an instance from a class it is necessary to 
consider the references to the deleted chunk along the nesting and inheritance dimensions. Unless 
informed about the deletion other objects will keep the reference to the deleted chunk and this 
may result in more accesses to recognize the absence of the chunk.

In existing object-oriented database management systems a chunk captures the atomic and non- 
atomic valued instance variables. Dropping all the references to a deleted chunk is a time consuming 
operation if not impossible. Nothing related to the referencing chunks is known when deleting a 
chunk. To drop all the references it is necessary to iterate over all the instances in the classes that 
define some instance variable which has the class of the deleted chunk as its range. It seems to be 
an inefficient operation. Due to that, the existing object-oriented database systems are satisfied 
by doing more accesses to recognize the absence of a chunk over dropping all the references to a 
deleted chunk. For instance. Encore marks the OOPs of the deleted chunks unreachable to serve 
the accesses to a deleted chunk. It is a short run solution. Inefficiency appears in the long run 
considering that the more accesses are done on every trial to access a deleted chunk.

The introduction of the IT, NT, ROT and SOT adds much to the maintenance of the database 
integrity. These tables help in dropping all the references to a deleted chunk. The SOT and the 
ROT show the references in the backward direction along the inheritance and nesting dimensions. 
Via these two tables references to a deleted chunk can be efficiently dropped without any troubles. 
The detailed description of integrity preservation in the proposed system is presented next in this 
Chapter.

6.2 Operations

The key consideration in any storage management system is how different operations of addition, 
deletion, fetching, saving, and updating of entries c^n be handled efficiently. Efficiency is an 
important issue in storage systems. In this section a description of the operations is presented 
and the related algorithms are included. It is important to emphasize that all the operations are 
message based. The operations are manipulated by message-passing for not to go out of the realm 
of object-orientation. Messages are sent to a class, an object or a chunk. A received is interpreted

49



by executing the method that implements the algorithm of the corresponding operation.

The policy to be followed for the deletion operation is that a chunk can not be deleted unless it 
is a root chunk. A root chunk has no entry in the SOT. An exception is that a non-root chunk 
can be deleted as being an instance in a deleted class; although it has an entry in the SOT. The 
immediate super chunks of a deleted non-root chunk replaces it as immediate super chunks of its 
immediate subobjects. References along the nesting dimension cease to exist after the deletion, 
i.e., the references to a deleted chunk as immediate nested chunk will disappear.

6.2.1 Addition

50 CHAPTER 6, INTEGRITY VS. OPERATIONS AND SCHEMA CHANGES

There are many candidates for the addition operation: a class may be added to the class hierar- 
chy/lattice, an object with all its constituting chunks may be added; a chunk may be added to a 
class, or even an instance variable can be added to the definition of a class.

According to Algorithm 6.1 the addition of a class may be done either at the leaves or between 
a class and one of its superclasses. Chunks in the new class, being related by R l, are put in a new 
segment. Chunks inside the new segment are related to other chunks in other segments either by 
the relation R2 or by the relation R3. These relations are reflected by adding entries to the IT, 
NT, ROT and SOT to represent the chunks in the new segment. One entry per new chunk, is 
added to the DOT.

The addition of a new class results in the insertion of a new entry in the DOT to hold the class 
OOP together with the starting address of the segment’s class.

According to Algorithm 6.2 the addition of a new chunk to a class is handled by adding the 
chunk to the segment of its class. An entry is added to the IT and another to the NT to reflect 
the relations of the new chunk to other chunks. An entry representing the new chunk is added to 
the DOT.

According To Algorithm 6.3 the addition of a new object is recursively done by starting with the 
root chunk and adding each reachable chunk until no more chunks are left.



0.2. O P L Iu V n O is S ol

Procedure Add_Class(OOPl,OOP,OOP2); { add class OOP as superclass of OOPl and subclass
of OOP2}

begin
Locate-DOT(OOPl); { find the entry for the subclass OOPl }
Generate_Segment(OOP); { to initialize a segment for the new class }
For each instance (i) in OOPl do 

begin
j=:generate_super(i,OOP); { to generate the super chunk in class OOP for chunk i } 
AppendJSegment(OOPj); { to put the atomic valued instance variables of the generated 

chunk in the segment }
Locate JT(O O Pi); { find the record of i in the IT }
k=Locate-record(OOP2); { find the node that represents the super chunk of i in

class 0 0 P 2  }
Append JT(O O Pj,k); { to show the previous immediate super of i in 0 0 P 2  as the immediate 

super chunk of j in class 0 0 P 2  }
Replace_record(OOPi,k,(OOP,OOPj)); { to replace node k in the record of i in the IT by the

node that shows j as a new immediate super chunk
}

Locate-SOT(OOPk);
m=Locate_record(OOPl); { find the node that represents the subobject in class OOPl } 
Append-SOT(OOPj, m);
Replace_record(OOPk,m,(OOP,OOPj));
If (j has S non-atomic valued instance variables) then 

begin
vlr=OOPj;
For 1=1 to S do 

begin
If (value(l) is a collection) then 

begin
n=size(collection);
For p = l  to n-1 do 

begin
vlr=vlr||(Class-OOPl, OOPp,l);
Locate-ROT(OOPp);
If (found) then 

Append_record(OOP,OOPj) 
else

Append_ROT(OOPp, (OOP,OOPj)); 
end; 

end 
else

n=value(l);
vlr=vlr||(class_OOPl, OOPn,0);
Locate_R0T(00Pn);
If (found) then

Append_record(OOP,OOPj)
else

A ppend-R 0T(00Pn, (0 0 P ,0 0 P j)) ;
end;
Append-NT(vlr);

end;
Append-DOT(OOPj, OOP, address_in_segment, address-in_NT, address-in.IT,

address-in_ROT, address_in_SOT);
end;
If (there are some instances rooted in class OOP) then 

begin
For each instance (j) rooted in OOP do 

begin
Append-segment(OOPJ);
k=super(j,OOP2); {the super chunk in class 0 0 P 2  of chunk j }
AppendJT(OOPj, (0 0 P 2 ,0 0 P k ));



CHAPTER 6. INTEGRITY VS. OPERATIONS AND SCHEMA CHANCES

end;
end;

Locate-SOT(OOPk);
If (found) then

Append_record(OOP,OOPj)
else

Append_SOT(OOPk, (OOP, OOPj));
If (j has S non-atomic valued instance variables) then 

begin
vlr=OOPj;
For 1=1 to S do 

begin
If (value(l) is a collection) then 

begin
n=size(collection);
For p = l to n-1 do 

begin
vlr=vlr||(Class_OOPl, OOPp,l);
Locate-ROT(OOPp);
If (found) then 

Append_record(OOP,OOPj) 
else

Append-ROT(OOPp, (OOP,OOPj)); 
end; 

end 
else

n=value(l);
vlr=vlr||(class_OOPl, OOPn,0);
Locate-ROT(OOPn);
If (found) then

Append.record(OOP,OOPj)
else

Append.ROT(OOPn, (OOP,OOPj));
end;

Append-NT(vlr);
end;

Append-DOT(OOPj, OOP, address_in-segment, address_in_NT, addressJnJT, 
address-in-ROT, address_in_SOT);

end;

Algorithm 6.1. Add a class to the class hierarchy/lattice



0.2. OPEUATJ.ONS

Procedure Add_chunk(OOP, class-OOP); { adding the chunk given its OOP and the class-OOP } 
begin

Locate-DOT(class-OOP);
Append-segment(class-OOP, OOP); { to add the atomic valued instance variables to the

segment of the class}
vlr=OOP;
For i= l  to R do { suppose the class class-OOP has R supers} 

begin
k=super(OOP, i); { the super of the chunk OOP in class i } 
vlr=vlr||(OOPi, OOPk);
Locate-SOT(OOPk);
If (found) then

Append_record(class_OOP, OOP)
else

Append_SOT(OOPk, (class-OOP, OOP);
end; .

If (R>0) then Append-IT(vlr);
If (OOP has S non-atomic valued instance variables) then 

begin 
vlr=OOP;
For 1=1 to S do 

begin
If (value(l) is a collection) then 

begin
n=size(collection);
For p = l to n-1 do 

begin
vlr=vlr||(Class-OOPl, OOPp,l);
Locate-ROT(OOPp);
If (found) then

Append_record(class_OOP,OOP)
else

Append-ROT(OOPp, (class-OOP,OOP));
end;

end
else

n=value(l);
vlr=vlr||(class-OOPl, OOPn,0);
Locate-ROT(OOPn);
If (found) then

Append_record(class_OOP,OOP)
else

Append-ROT(OOPn, (class_OOP,OOP));
end;
Append-NT(vlr);

end;
Append_DOT(OOP, class-OOP, address-in-segment, address_in_NT, addressinJT, 

address_in_ROT, address_in_SOT);
end;

Algorithm 6.2 Add a chunk to a class



54 CHAPTER 6*. iNTEURLTY VS. OPERATIONS AND SCHEMA CHANGES

Procedure Add_object(OOP,class-OOP); { add the object with the root OOP in class-OOP } 
begin

Locate-DOT(class-OOP);
Append-segment(class-OOP,OOP);
If (supers(class_OOP)o^OBJECT’) then 

begin 
vlr=OOP;
For i= l  to R do { suppose the class has R superclasses} 

begin
k=super(OOP,i); { the super of chunk OOP in the class i } 
vlr=vlr||(OOPi,OOPk);
Locate-SOT(OOPk);
If (found) then

Append_record(class-OOP, OOP)
else

Append_SOT(OOPk, (class-OOP, OOP);
Add_object(OOPk, OOPi); { add the object OOPk to the class OOPi } 

end;
If (R>0) then AppendJT(vlr); 

end;
If (there exist S nonatomic valued instance variables) then 

begin 
vlr=OOP;
For i= l  to S do 

begin
If (value(i) is a collection) then 

begin
n=size(collection);
For p = l to n-1 do 

begin
vlr=vlr||(Class-OOPi, OOPp,l);
Locate-ROT(OOPp);
If (found) then

Append_record(class_OOP,OOP)
else

Append_ROT(OOPp, (class_OOP,OOP));
Add_object(OOPp, class.OOPi); 

end; 
end 

else
n=value(l);

vlr=vlr||(class_OOPl, OOPn,0);
Locate-ROT(OOPn);
If (found) then

Append-record(class-OOP,OOP)
else

Append-ROT(OOPn, (class.OOP,OOP));
Add_object(OOPn, class_OOPi); 

end;
Append-NT(vlr);

end;
Append-DOT(OOP, class-OOP, addressJn-segment, address-iii-NT, address-in_IT, 

address_in_ROT, address_in_SOT);
end;

Algorithm 6.3 Add an object to the database



0.2. Ol^KRAUONS

Procedure Add-Instance_Variable(IV,OOP); { to add the instance variable IV to the class OOP } 
begin

Locate-DOT(OOP);
If (atomic_valued(IV)) then 

begin
get -segment (OOP);
For each instance (i) in OOP do 

begin
Add-value(IV);
Adjust-DOT(OOPi); { to update the address of the chunk i in the segment } 

end 
end 

else 
begin

For each instance (i) in OOP do 
begin

Locate-NT(OOPi); 
j=value(IV);
If (j is a collection) then 

begin 
vlr=” ;
n=size(collection);
For p = l to n-1 do 

begin
vlr=vlr||(Class-OOPj, OOPp,l);
Locate-ROT(OOPp);
If (found) then

Append_record(OOP,OOPi)
else

Append-ROT(OOPp, (OOP,OOPi));
end;

end
else

n=value(j);
vlr=vlr||(class_OOPj, OOPn,0);
Locate-ROT(OOPn);
If (found) then

Append_record(OOP,OOPi)
else

Append-ROT(OOPn, (OOP,OOPi));
end;

end;
end;

Algorithm 6.4 Add an instance variable to a class

According to Algorithm 6.4, the addition of a new instance variable to a class can be done in two 
different ways each depending on whether the instance variable is atomic or non-atomic. In the 
first method, applicable when the new instance variable has an atomic value, the segment of the 
class to which the new instance variable is to be added, is accessed using its address as obtained 
via the DOT using the class-OOP. The segment’s contents are changed by adding the value of the 
new instance variable to each chunk. In the second method, applicable when the new instance 
variable has a non-atomic value, the NT is adjusted to reflect the change.



6.2.2 Deletion

6(3 CHAI/TKli 0. INlKGUil Y VS. Ul'l^UATlUS'S A.NU SCHEMA CHANGES

It is obvious that, anything which can be added, can also be deleted. Therefore, the candidates 
for the deletion operation are the same as those for addition, namely, a class, a chunk, an object 
with all its chunks, and an instance variable.

The OOP of a chunk can be found within the segment, in which the chunk is put, and in five 
tables, the DOT, the IT, ROT, SOT and the NT.

According to Algorithm 6.5 a chunk is deleted by deleting the entry of the chunk from the DOT; 
deleting the records of the chunk from the IT, ROT, SOT and NT; deleting the chunk from the 
segment in which it is found.

According to Algorithm 6.6 the deletion of an immediate super chunk of a certain chunk can be 
done in the IT. By being able to delete individual super chunks, a superclass may be deleted from 
the superclass list of a class by doing N super chunk deletions, one for each chunk in the class. The 
super(s) of the deleted super will replace it in the superclass(list) of its subclasses as immediate 
super(s).

According to Algorithm 6.7 the deletion of an object is done recursively starting by deleting the 
root chunk after specifying chunks reachable from it. The process is repeated until all chunks of 
the object are deleted.

According to Algorithm 6.8 the deletion of an instance variable depends on whether the instance 
variable has a chunk or a collection as its value or just an atomic value. An instance variable which 
has a chunk (or a collection) as its value can be deleted inside the NT by deleting the node(s) that 
represent the value of the instance variable from the record of the chunk. The deletion of atomic 
valued instance variables can be done within the related segment.



urJ:JtAT10s\S ■J I

Procedure Delete-chunk(OOP); { the chunk should be a root chunk with no reference to it from
elsewhere as a super chunk }

begin
Locate-DOT(OOP);
Locate-SOT(OOP); { to check if OOP is a root or not }
If (not found) then 

begin
Drop-chunk(OOP); { to delete the atomic valued instance variables } 
j=Locate JT(O O P);
DropJT(OOP);
For every node (i) in j do 

begin
Locate-SOT(OOPi);
Drop_xecord(OOPi,OOP); { delete the node that represents the chunk OOP, in the record

of i }
end;

p=Locate_NT(OOP);
Drop-NT(OOP);
For every node (k) in p do 

begin
Locate_ROT(OOPk);
Drop_record(OOPk,OOP);

end;
p=Locate_ROT(OOP);
Drop-ROT(OOP);
If (p is found) then 

begin
For every node k in p do 

begin
Locate-NT(OOPk);
Drop_record(OOPk,OOP);

end;
end;

Drop-DOT(OOP); {  delete the entry of the chunk from the DOT }
end;

end;

Algorithm 6.5 Delete a chunk from a class



(.AJAPllAi 0. ¡.h'lhAjjRiiy VS. UΓl·^RA'JA .̂f.\SAi\AJ 'A.JlUAMA (.■llAAiA'.S

Procedure Delete-class(OOP); { to drop a class from the class hierarchy/lattice given its OOP } 
begin

Locate-DOT(OOP);
Drop-segment(OOP);
For every instance (i) in OOP do 

begin
j=LocateJT(OOPi);
DropJT(OOPi);
k=Locate-SOT(OOPi);
Drop_SOT(OOPi);
If (k is found) then 

For every node (m) in k do 
begin

n=Locate_IT(OOPm);
Drop_record(OOPm,OOPi);
Append-record(OOPm, j); 

end;
If (j is found) then 

For each node (o) in j do 
begin

p=Locate_SOT(OOPo);
Drop_record(OOPo,OOPi);
Append_record(OOPo, k); 

end;
jl=Locate_NT(OOPi);
Drop_NT(OOPi);
kl=Locate_ROT(OOPi);
Drop-ROT(OOPi);
If (kl is found) then

For every node (m l) in kl do 
begin

nl=Locate_NT(OOPml);
Drop_record(OOPml, OOPi); 

end;
If (j 1 is found) then

For every node (o l) in j l  do 
begin

pl=Locate_ROT(OOPol);
Drop_record(OOPol, OOPi); 

end;
Drop-DOT(OOPi);

end;
Drop-DOT(OOP);

end;

Algorithm 6.6 Delete a class



0,2, OPERATIONS 59

Procedure Delete-object(OOP); { OOP of the root chunk } 
begin

Locate-DOT(OOP);
k=Locate^O T(O O P);
If (k is found) then

write ( ’can not delete’ , OOP)
else

begin
Drop-SOT(OOP);
kl=Locate_ROT(OOP);
For every node n in kl do 

begin
p=Locate_NT(OOPn);
Drop_record(OOPn,OOP);

end;
Drop_ROT(OOP);
Locate^egment(class_OOP(OOP));
Drop-chunk(OOP); { to delete the atomic valued instance variables } 
j=Locate_IT(OOP);
If (j is found) then 

begin
DropJT(OOP);
For every node m in j do 

begin
t=Locate_SOT(OOPm);
If (size(t)> l) then { m is the super chunk of more than one chunk } 

begin
write(’can not delete’ , OOPm);
Drop _record(OOPm,OOP); 

end 
else 

begin
Drop-SOT(OOPm);
Delete-object(OOPm);

end;
end;

end;
u=Locate_NT(OOP);
If (u is found) then 

begin
Drop-NT(OOP);
For every node v in u do 

begin
w=Locate_ROT(OOPv);
Drop_record(OOPv, OOP);
Delete-object(OOPv); 

end; 
end;

Drop-DOT(OOP);
end;

end;

Algorithm 6.7 Delete an object



GU CHAPTER 6. ItsTEGRrJ'Y VS. OPERATlOiS'S AMD SCHEMA CHANGES

Procedure Delete-instance_variable(IV,OOP); { delete the instance variable IV from the class
OOP }

begin
Locate-DOT(OOP);
If (atomic_valued(IV)) then 

begin
get-segment (O O P);
For each instance (i) in OOP do 

begin
Drop-instance-variable(i,IV); { delete the instance variable IV from the chunk i } 
Adjust-DOT(OOPi); { to reflect the new address } 

end; 
end 

else 
begin

For every instance (i) in OOP do 
begin

Locate-NT(OOPi);
r=range(IV); { the range class of IV }
j=Locate_record(OOPi, OOPr); { the first node from the range class r in the record of

OOPi }
If (F lagyl) then { the value of IV is a collection } 

begin 
repeat

m=Locate-ROT(OOPj);
Drop_record(OOPj, OOPi); { delete from the record of 0 0 Pj in ROT the node of

OOPi }
Drop_record(OOPi, OOPr); { delete the located node }
j=Locate-record(OOPi, OOPr); { the next node from the range class r in the record

of OOPi }
until (Flag=0); 

end;
Drop-record(OOPi, OOPr); 

end; 
end; 

end;

Algorithm 6.8 Delete an instance variable from a class



6.2.3 Fetching

The candidates for the fetching operation may be chunks from the same class; chunks which 
together form an object; or a single chunk. Actually all of the candidates involve chunk fetching.

According to algorithm 6.9 chunks from the same class are fetched in the segment for the class. 
The DOT is accessed only once to fetch the starting address of the segment.

Procedure Fetch-class(OOP); { to fetch instances of a class given its OOP } 
begin

Locate_DOT(OOP); 
get -segment (OOP); 

end;

fj.2. OIXRATIONS Gi

Algorithm 6.9 Retrieving instances of a class

According to Algorithm 6.10 an object is fetched recursively by fetching the root chunk. The 
process is repeated for chunks reachable from a fetched chunk until no more chunks are left un­
fetched.

According to Algorithm 6.11 to fetch a single chunk, it is necessary to have its OOP in hand. 
The DOT is accessed using the OOP to get the class-OOP of the chunk along with its address 
within the segment.



62 CHAPTER 6. INTEGRITY VS. OFERATLONS AND SCHEMA CHANCES

Procedure Fetch-object(OOP); { OOP of the root chunk} 
begin

Locate-DOT(OOP);
Lo cat e .segment (class.OOP(OOP)); 
j=Locate.IT(OOP);
If (j is found) then 

begin
For every node (n) in j do 

begin
Fetch.object(OOPn);

end;
end;

k=Locate-NT(OOP);
If (k is found) then 

begin
For every node (m) in k do 

begin
Fetch.object(OOPm);

end;
end;

end;

Algorithm 6.10 retrieving all the chunks of an object

Procedure Fetch.chunk(OOP); 
begin

Locate.DOT(OOP);
Locate.DOT(class-OOP(OOP)); { locate in the DOT the entry of the class of the given

chunk }
get-chunk(OOP);

end;

Algorithm 6.11 Retrieving a chunk



Ö.3. SCHEMA EVOLUTION

6.2.4 Saving

63

The candidates for the saving operation are the same as those for fetching. Actually all of the 
candidates are treated as chunk saving.

According to Algorithm 6.12 on saving a chunk, the DOT is checked, using the chunk OOP, to 
find if the DOT includes an entry for the chunk. If the check succeeds then the address of the 
chunk in the segment of its class is extracted from the DOT and the new version of the chunk 
replaces the old version in the segment with the related records of the chunk in the IT and NT 
being adjusted to reflect the change in the non-atomic valued instance variables, otherwise the 
chunk is added as per the procedure of Section 6.1 above.

Procedure Save.chunk(OOP); begin 
Locate-DOT(OOP);
If (found) then 

begin
If (changed(atomic_values)) then 

begin
Lo cate legmen t (cl ass -OOP(OOP));
replace-chunk(OOP);{reflect the change in the atomic values} 

end;
If (changed(nonatomic-values)) then 

begin
j=Locate_NT(OOP);
For each node (m) in j do 

If (changed(m)) then
Adjust-ROT(OOPm); { reflect the presence or absence of a node in j } 

Adjust-NT(OOP); { reflect the change in the non-atomic valued instance variables } 
end 

else
Add.chunk(OOP, class_OOP(OOP)); 

end; 
end;

Algorithm 6.12 Save a chunk

6.2.5 Updating

An object and a chunk are all candidates for an update operation. The update operation can be 
seen as executing a fetch operation followed by a save operation, or a deletion operation followed 
by an addition operation.

6.3 Schema Evolution

Handling schema changes properly and efficiently is among the important aspects of any proposed 
storage system. Clearly, it is highly desirable for a storage system to support as many schema 
operations as possible.

An important advantage due to the separation of non- atomic references through IT, ROT, 
SOT and NT is realized here, whereby changes to an edge in the class hierarchy/lattice can be 
performed solely via the IT without any need to access individual chunks. Making a class a 
superclass of another class can be done solely via the IT that contain information related to the 
change. Removing a class from the superclass list of a class can again be done solely via the IT 
that contains information related to the change by dropping references to instances of the deleted 
class. Changing the order of the superclasses of a class can also be done inside the IT.

The IT, ROT, SOT and the NT contain all the associations between chunks which are instances 
in different classes.

A new atomic valued instance variable may be added to a class definition resulting in the value



04 CUAl'TEli 6. hSTEGIUTY VS. Ol'lCliATlOtsS A!\.U SCHEMA CllASGES

of the new instance variable being added to the existing chunks found in the segment representing 
the class.

6.4 Ease of Implementation

6.4.1 Data Structures

It is necessary to keep in consideration the possibility of implementing what is being proposed on 
the SUN workstations running under the Unix operating system.

The DOT can be seen cis a file; a record in the file contains one field per column of the DOT. 
Entries in the ROT, SOT, IT and the NT, are represented using variable length records. The 
entries of each class in each of the four tables are kept in a separate file, i.e., four files per class.

A chunk in a segment is represented by a record whose fields correspond to instance variables 
with atomic values. Each segment is represented by a separate file.

For every method definition in a class, there is a method file in the secondary storage where the 
code implementing the method is kept.

The general structure of the class hierarchy/lattice, including instance variables defined in each 
class and relations between classes are kept in a separate file to be loaded at the beginning of each 
session.

6.4.2 Functions of the Storage System

One of the principal functions of the storage system is to maintain the correspondence between 
objects^ OOPs and chunks of memory. It is responsible for the storage, retrieval, and update of 
chunks that reside in persistent store. It also guarantees that a chunk is stored in exactly one 
segment by checking the DOT before the addition of any chunk.

An important function of the storage system is to load and maintain the tables used by the 
Object Memory [32]; namely the instance variable definition table (IVDT), method definition 
table (MDT), instance access table (lAT), and the class hierarchy/lattice. Information inside the 
file that contains class hierarchy/lattice definition, should be kept up-to-date to reflect the final 
situation of the class hierarchy/lattice.

6.4.3 How to Interact with the Storage System?

Being a stand alone model in a database management system, the storage system has to provide 
some means by which other modules can access it. The interaction with the storage system can be 
done by using the interface of the algorithms described in Section 6.2. Dealing with those algorithms 
satisfies all the necessary operations of addition, storage, deletion, retrieval, and update of chunks 
in persistent store. The interaction should be message based for not to violate the object-oriented 
concepts, the messages should be sent to classes, objects or chunks based on the desired operation. 
The methods that implement the discussed algorithms are accumulated under the OBJECT class 
to facilitate their usage by all the classes in the class hierarchy/lattice.



Chapter 7

MAPPINGS

7.1 Mapping Objects into Secondary Storage

Programs and data grow larger than the size of main memory. So, part of the program is kept in 
main memory at a time and the rest in secondary storage. The operating system is responsible 
for managing the transfer of program parts between main memory and secondary storage. This 
method is known as virtual memory [52]. In computers without a virtual memory system, a virtual 
address [50] is put directly into the memory bus [50] and causes the physical memory word with the 
same address to be read or written. On using virtual memory, a virtual address does not go directly 
to the memory bus. Instead, a virtual address goes to the Memory Management Unit (MMU) [52]. 
The MMU is a chip or a collection of chips that maps a virtual address into the corresponding 
physical memory address. Most virtual memory systems use a technique called paging [10, 52] 
where the virtual address space is divided into units of equal sizes called pages. Another technique 
that does not necessitate that the sizes of the units be equal is called segmentation [10].

The attempt to access a missing page or segment is called a page fault or a segment fault 
respectively [50]. Following the same terminology, we call the attempt to access a missing object 
an object fault.

The correspondence between the objects of a database system and the main memory counterparts 
that store them is specified in an Object Table (OT) [32]. The OT has one entry per object. The 
OT keeps track of objects that are in main memory; not all objects. So it is enough to check the 
OT to know whether the object is in main memory or in secondary storage. For each class, a 
number field is assigned. Classes are numbered in ascending order of accessing their instances, i.e., 
on accessing instances from a class it is assigned a number larger than the numbers assigned to the 
classes whose instances are accessed before. The usage of this field is discussed next in conjunction 
with the replacement policy.

On accessing an object its flag is checked. If the object is not in main memory, an object fault 
is said to happen. Each time an object is loaded, an entry is added to the OT. More object faults 
result in more I/O  traffic and slow down the system performance. Therefore, it is important to 
decide on the policy to be used for deciding what object to fetch into main memory and what 
object already in main memory the newly fetched object is to replace.

7.1.1 Replacement Policy

To replace an object the following can be done. If there is a vacant location, a newly fetched 
object can be stored in that location. If no location is vacant, room must be made by replacing 
an object currently in main memory. The key point is the choice of which object to replace. It 
is necessary for the replacement policy to minimize the I/O  traffic, and hence object faults. If a 
read-only object can be recognized, the traffic represented by saving it back to secondary storage 
can be eliminated.

The following policies may be thought of following the page replacement policies [10, 52]. Random

65



GG CHAPTER 7. MAPPINGS

selection of the object to be replaced and replacing the object that has been in main memory for 
the longest time or First-In-First-Out (FIFO) are two easy to implement policies. Replacing the 
object to which no reference has been made for the longest time or Least Recently Used (LRU) 
and replacing the object to which the fewest references have been made in a given interval or Least 
Frequently Used (LFU) are two other replacement policies.

The replacement policy to be used is given in Algorithm 7.1. Numbering the classes in ascending 
order of accessing their instances is the criteria to be followed in the replacement policy; known as 
aging in operating systems concept [10]]. Object from the class with the minimum assigned number 
are the candidates to be replaced on fetching an object into main memory because numbers are 
assigned in increasing order of accessing. However, replacing unchanged objects has priority over 
replacing changed objects because an unchanged object is a read-only object. Therefore, to find 
an unchanged chunk instances from all the numbered classes but the last are checked in ascending 
order of numbering. If an unchanged chunk is not found, the process is repeated to find a changed 
chunk. On the other hand, if all the chunks in the main memory are from the class of the object 
to be fetched, a check is done for an unchanged instance else for a changed instance of the class.



7.i. MAPPING OBJECTS INTO SECONDARY STORAGE 67

Procedure Find-Space(class-OOP); { find space for an object in the class with class-OOP } 
begin

If (max_number>min_number) then { there are objects from more than one class in 
main memory, min_number is the number assigned to the class whose instances are 
fetched before instances of all other classes and max-number is the number assigned 
to the class whose instances are fetched after instances of all other classes } 

begin
If (number(class-OOP)=min_number) then
min-number=min_number+l;
max-iiumber=:max-number4-l;
number(class-OOP)=max-number;
i=min-number;
check='not changed’ ;
repeat
j=Locate-OT(class-OOP(i), check); { find an unchanged chunk from the class with the

number i }
If (found) then 

begin
If (checks’not changed’) then overwrite 
else 

begin
save_chunk(chunk-OOP(j)); { using Algorithm-6.12 } 
overwrite; 

end; 
end 

else 
begin

i= i+ l;
If (i=max-number) then 

begin
If (check=’not changed’) then { look for a changed chunk } 

begin
i=min-number; 
check=’changed’ ; 

end 
else
If (check=’changed’) then { look for a non-changed chunk in the class with the

maximum number } 
check=’not changed’ ;

end
else
If (i>max-number) then

begin { look for a changed chunk in the class with the maximum number } 
i=max_number; 
check=’changed’ 

end; 
end;

until (found); 
end

else { there are chunks from only the class with the maximum number in main memory } 
begin

checks’not changed’ ; 
i=max-number;
repeat { look for a non-changed chunk, else a changed chunk from the class whose instances 

are accessed }
j=Locate-OT(class-OOP(i), check);
If (found) then 

begin
If (check=’not changed’) then overwrite 
else 

begin



68 CHAPTER 1. MAPPINGS

save-chunk(chunk-OOP(j));
overwrite;

end;
end

else
check=^changed’ ; 

until (found); 
end; 

end;

Algorithm 7.1 Find space in main memory

7.1,2 Fetching Policy

The simplest policy for choosing which objects to have in main memory is to load all objects used 
by the database at start. Having all the objects in main memory will eliminate all object faults. 
But having more objects than the main memory can keep at once necessitate the presence of part 
of the objects in main memory and the rest in secondary storage. An object is fetched only on 
demand as a result of an object fault. It is guaranteed that every object fetched in indeed needed 
and will be accessed.

According to Algorithm 7.2 on evaluating an expression an object is fetched when it is needed, 
otherwise accesses passing through the object are followed inside the IT and NT.

Procedure Find_Object(OOP, expression); { finds the resultant object resulting from the expression
being received by the object OOP}

begin
OOP(0)=OOP;
For i= l  to (N-1) do { assume N messages in the expression} 

begin
If (OOP(i-l) is not in main memory) then 

begin
Locate-DOT(OOP(i-l));
Find_Space(class_OOP(OOP(i-l)); { using Algorithm-7.1 }
If (nested) then { OOP(i) is a nested chunk of OOP(i-l) }

Locate-NT(OOP(i-l))
else

If (super) then { OOP(i) is a super chunk of OOP(i-l) }
LocateJT(OOP(i-l));

end;
OOP(i)=receive(OOP(i-l), message(i)); { the object OOP(i-l) receives the message(i) to

give OOP(i) }
end;

If (OOP(N-l) is not in main memory) then 
begin

Find-Space(class-OOP(OOP(N-l))); { using Algorithm 7.1 }
Fetch-chunk(OOP(N-l)); { using Algorithm 6.11 } 

end;
end;

Algorithm 7.2 Evaluate an Expression



7.2. MAPPING THE STORAGE SYSTEM INTO A RELATION DATABASE SYSTEM 69

7.2 Mapping the Storage System into a Relation Database 
System

Object-oriented database systems and relational database systems are two major database research 
areas in recent years. A relational database is a collection of relations [17, 18, 28, 55]. Taking 
all the constructs of the relational database system into consideration, the proposed storage and 
indexing approaches are to be mapped into a relational scheme.

In the proposed system six structures were defined, namely the IT, NT, SOT, ROT, DOT and 
segment. The IT keeps for each chunk in the database a variable length record that includes the 
chunk-OOP and the class.OOP -chunk_OOP pair to show the immediate supers of the chunk. 
For each variable length record in the IT, each class.OOP -chunk-OOP pair is preceded by the 
chunk-OOP of the chunk that owns the record to get triples. All the triples resulting from the 
transformation of the variable length records in the IT can be the tuples in a relation with three 
attributes, called IT-Relation. The three attributes are chunk-OOP, clciss-OOP, and chunk-OOP. 
The first attribute shows the OOP of a chunk while the second and third attributes show the 
class-OOP and chunk-OOP of an immediate super of the former chunk.

IT-Relation(OOPy, OOPC, OOPx)

where OOPy and OOPx are chunk OOPs and OOPC is the class OOP of OOPx.

To get all the immediate supers of a chunk, a selection is done from the IT-Relation for all the 
tuples that have the given chunk-OOP as the value for the first attribute. To get the immediate 
super in a given class of a given chunk, a selection is done from the IT-Relation based on equating 
the value of the given chunk-OOP and class-OOP to the first and second attributes respectively.

Concerning the SOT ,that shows for each chunk its immediate sub-objects, it contains vari­
able length records of the same format with the records found in the IT. So following the same 
construction steps described for the IT-Relation, the SOT-Relation can be constructed. It has 
three attributes, namely the chunk-OOP and the class-OOP and the chunk-OOP. The first at­
tribute shows the OOP of a chunk while the second and third attributes show the class-OOP and 
chunk-OOP of an immediate subobject of the former chunk.

SOT-Relation(OOPy, OOPC, OOPx)

where OOPy and OOPx are chunk OOPs and OOPC is the class OOP of OOPx.

To get all the immediate subobjects of a chunk, a selection is done from the SOT-Relation for all 
the tuples that have the given chunk-OOP as the value for the first attribute. To get the immediate 
sub object in a given class of a given chunk, a selection is done from the SOT-Relation based on 
equating the value of the given chunk-OOP and class-OOP to the first and second attributes 
respectively.

However, adding a column to the IT-Relation to keep the class-OOP for the chunk of the first 
column will render the SOT-Relation unnecessary.

IT-Relatioii-Adjusted(OOPy, OOPCy OOPCx, OOPx)

where OOPy and OOPx are chunk OOPs and OOPCx and OOPCy are the class OOPs of OOPx 
and OOPy.

Selection from IT-Relatioii-Adjusted can be done based on the first column for a forward reference 
along the inheritance dimension, and the third column for backward references.

The ROT shows for each chunk its immediate referencing chunks, it contains variable length 
records of the same format with the records found in the IT. So following the same construction 
steps described for the IT-Relation, the ROT-Relation can be constructed. It has three attributes, 
namely the chunk-OOP and the class-OOP and the chunk-OOP. The first attribute shows the 
OOP of a chunk while the second and third attributes show the class-OOP and chunk-OOP of an 
immediate referencing chunk of the former chunk.



7 0 CHArTKli 7. MAPPINGS

ROT-Relation(OOPy, OOPC, OOPx)

where OOPy and OOPx are chunk OOPs and OOPC is the class OOP of OOPx.

To get all the immediate referencing chunks of a chunk, a selection is done from the ROT-Relation 
for all the tuples that have the given chunk_OOP as the value for the first attribute. To get 
the immediate referencing chunk in a given class of a given chunk, a selection is done from the 
ROT-Relation based on equating the value of the given chunk-OOP and class-OOP to the first 
and second attributes respectively.

The NT shows for each chunk its immediate nested chunks, it contains variable length records 
of the same format with the records found in the IT except that pairs are replaced by triples 
with the Flag as the third argument. So following the same construction steps described for the 
IT-Relation, the NT-Relation can be constructed. It has four attributes, namely the chunk-OOP 
and the class-OOP, the chunk-OOP and the Flag. The first attribute shows the OOP of a chunk 
while the second and third attributes show the class-OOP and chunk-OOP of an immediate nested 
chunk of the former chunk and the Flag is set to 1 for all the nested chunks that are found in the 
same collection.

NT-Relation(OOPy, OOPC, OOPx, Flag)

where OOPy and OOPx are chunk OOPs and OOPC is the class OOP of OOPx.

To get all the immediate nested chunks of a chunk, a selection is done from the NT-Relation for all 
the tuples that have the given chunk-OOP as the value for the first attribute. To get the immediate 
nested chunk in a given class of a given chunk, a selection is done from the NT-Relation based 
on equating the value of the given chunk-OOP and class.OOP to the first and second attributes 
respectively.

However, adding a column to the NT-Relation to keep the class-OOP for the chunk of the first 
column will render the ROT-Relation unnecessary.

NT_Relation_Adjusted(OOPy, OOPCy OOPCx, OOPx, Flag)

where OOPy and OOPx are chunk OOPs and OOPCx and OOPCy are the class OOPs of OOPx 
and OOPy.

Selection from NT-Relation-Adjusted can be done based on the first column for a forward refer­
ence along the nesting dimension, and the third column for backward references.

The segment contains from each chunk its atomic valued instance variables. For each segment a 
relation is defined with one attribute per atomic valued instance variable. The first attribute shows 
the OOP of the chunk and the rest contain the values of the atomic valued instance variables. To 
get all the atomic valued instance variables of a chunk, a selection is done from the relation defined 
for the segment of the class for all the tuples that have the given chunk-OOP as the value for the 
first attribute. To get the value for a single atomic valued instance variable of a given chunk, a 
selection is done from the relation for all the tuples that have the given chunk-OOP in the first 
attribute. A projection on the column that represent the desired instance variable is done.

The DOT includes for each chunk, its OOP, the class-OOP, and five addresses one for the 
information related to the chunk in each of the segment, the IT, the NT, the ROT and the SOT. 
It serves in giving the address of the information related to a given chunk in the five mentioned 
locations. But as it is shown above, chunk-OOP is enough to get the corresponding information 
from the IT-Relation, NT-Relation, ROT-Relation, SOT-Relation and the relation that repre.sent 
the segments. So, this table need not to be represented by a separate relation. Indeed, the 
information found in the DOT has been distributed aiijong the above defined relations.

To summarize, the IT, NT, SOT and ROT can be mapped into a relational system by two 
different representations. In the first representation three attributes are defined for each of the 
IT, ROT and SOT and an additional fourth attribute is defined for the NT. The three attributes 
are a chunk-OOP and the pair (class-OOP, chunk-OOP) for an immediate related chunk. The 
fourth attribute in the NT is the Flag that keeps track of collections. In the second representation



7.2. MAPPING THE STORAGE SYSTEM INTO A RELATION DATABASE SYSTEM 71

the ROT-Relation and SOT-Relation are removed after the addition of a column to each of the 
IT-Relation and NT-Relation. The added attribute keeps the class-OOP of the chunk in the first 
column.



72 CHAPTER 7. MAPPINGS



Chapter 8

CONCLUSIONS

The proposed storage system is a new approach to storage management in object-oriented database 
management systems. The proposed storage system supports multiple inheritance of which simple 
inheritance is a special case.

The introduction of IT, NT, and segments facilitates much schema changes, results in the finest 
degree of granularity, and improves the number of disk accesses.

It is not a problem to access instances of a class, because they are clustered into segments. 
Segments for related classes are grouped into sets to improve access to all chunks of an object.

The user need not worry about persistence of objects, it is carried out automatically by the 
system.

Version control is not supported by the storage system. In order to be able to represent the 
temporal aspects of the data, the basic storage scheme used for object instance variables has to 
be modified. Instead of a value, a value and a time pair must be stored for each instance variable. 
However, a future work can be carried out on version control and the proposed storage system can 
be extended to satisfy version control.

Performance appears to be the fundamental problem with most object-oriented programming 
languages and database management systems. One performance problem is that, the instances of- 
a class are accessed by searching them all in the absence of indexing.

The presented indexing methods satisfy the indexing requirements of the proposed storage sys­
tem. It also satisfies the indexing requirements of existing object- oriented database systems. 
We claim this because the proposition is based on the inheritance and complex objects features 
of object-oriented systems; and these two features are common to all object-oriented database 
systems. Multilevel indexing is achieved. Identity and equality indexes are considered.

Being message based, the discussed indexing method does not violate the encapsulation concept 
of object-oriented systems. Schema changes do not affect an existing index, unless the change is 
to the index argument instance variable.

The user does not need to worry about identity index set up which is done automatically by the 
system. The user has the opportunity to set up an equality index where it is considered necessary.

Finally, the introduction of the IT, NT, ROT and SOT adds much to the integrity of the database. 
Using these tables, the deletion of a chunk can be handled because these tables keep relations 
between chunks in the forward and reverse directions along the nesting and inheritance dimensions.

At the end, the mapping of the proposed storage and indexing approaches into a relational scheme 
is presented. So the proposed storage system and indexing approaches can be either implemented 
from scratch or put on top of an existing relational database system.

73



REFERENCES

1- Agha, G., A Message Passing Paradigm for Object Management, Database Engineering, 
VoL8, no.4, December 1985, pp. 311-318.

2 - Agrawal R., Fehani N.H., ODE (Object Data Model): The Language and Its Implementation, 
Proceeding of the ACM SIGMOD International Conference on Management of Data, 1989, 
pp.36-45.

3 - Albano A., et al., A Strongly Typed, Interactive Object- Oriented Database Programming 
Language, Proc. of the Workshop on Object-Oriented Database Systems, September 1986, 
pp.94-103.

4 - Al-Hajj R., E. Arkun, A Model for Storage Management in Object-oriented Database Man­
agement Systems, Proceeding of the Fifth International Symposium on Computer and Infor­
mation Sciences, October 1990, Cappadocia , Turkey.

5 - Al-Hajj R., E. Arkun, A Model for Indexing in Object- oriented Database Management 
Systems, Proceeding of the Fifth International Symposium on Computer and Information 
Sciences, October 1990, Cappadocia , Turkey.

6 - Banerjee, J.H.J. Kim, W. Kim, and H.F. Korth, Schema Evolution in Object-Oriented Per­
sistent Databases, Proc. of the 6th Advanced Database Symposium (Tokyo, Japan, Aug.) 
Information Processing Society of Japan’s Special Interest Group on Database Systems, 1986, 
pp.23-31.

7 - Banerjee, J. et al, Data Model Issues for Object-Oriented Applications, ACM Transactions 
on Office Information Systems, vol.5, no.l, Jan.1987, pp.3-26.

8 - Banerjee, J., W. Kim,, and, K. C. Kim, Queries in Object- Oriented Databases, MCC Tech­
nical Report, 1987.

9 - Borgida A., et al.. Classic: A structural data model for objects. Proceeding of ACM SIGMOD 
International Conference on Management of Data, 1989, pp.58-67.

10- Calingaert P., Operating system Elements: A User Perspective, Prentice Hall, Inc., 1982.

11- Carey, M.J. and Dewitt D.J., The Architecture of the EXODUS Extensible DBMS, Proceed­
ings of the International Workshop on Object-Oriented Database Systems, Sept 23- 26, 1986 
Pacific Grove, pp.52-65.

12- Carey M.J., et. al., A Data Model and Query Language for EXODUS, Proceeding of ACM 
SIGMOD International Conference on Management of Data, 1988, pp.413-422.

13- Carey M.J. and Shekita E.J., Performance Enhancement Through Replication in an Object- 
Oriented Database Management System, Proceeding of ACM SIGMOD International Con­
ference on Management of Data, 1989, pp.325-336.

14- Chou, H.T. and W. Kim, A unifying Framework for Version Control in a CAD Environment, 
Proc. International Conference on Very Large Databases, Kyoto, Japan.

15- Copeland, G., and D. Maier, Making Smalltalk a Database System, Proc.ACM SIGACT /  
SIGMOD International Conference on the Management of Data, 1985.

16- Cox, Brad J., Object-Oriented Programming An Evolutionary Approach, Addison-Wesley, 
1986.

17- Date, C.J., An Introduction to Database Systems, Fourth Edition, vol.l and vol.2, Addison- 
Wesley, 1986.

18- Date, C.J., An Introduction to Database Systems, Addison-Wesley,Vol.2, 1983.

19- Deppish, U., et al., A Storage System for Complex Objects, Proceedings of the International
Workshop on Object-Oriented Database Systems, Sept 23-26, 1986 Pacific Grove, pp.52-65.

\
20- Derrett N. et al., Some Aspects of Operations in an Object-Oriented Database, Data Engi­

neering, 1985, pp.302-310.



21- Diedehch, J., and J. Milton, Experimental Prototyping in Smalltalk, IEEE Software, May 
1987, pp.50-64.

22- Diederich, J., ODDESSY: An Object-Oriented Database Design System, Proc. of the Third 
International Conference on Data Engineering, Feb 3-5 1987 L.A., U.S.A., pp.235-245.

23- Ege, A., Ellis, L.A., Design and Implementation of GORDION, an Object Base Management 
System, Proc. of the Third International Conference on Database Engineering, Feb 3-5 1987 
L.A., U.S.A. pp.226-234.

24- Fishman, D.H., et al., IRIS: An Object-Oriented Database Management System, ACM Trans­
actions on Office Information Systems, vol.5, no.l, January 1987, pp.48- 69.

25- Garza J.F. and Kim W., Transaction Management in Object- Oriented Database System, 
Proceeding of ACM SIGMOD International Conference on the Management of Data, 1988, 
pp.37-46.

26- Goldberg, A., and D. Robson, Smalltalk-80: The Language and Its Implementation, Addison 
Wesley, 1983.

27- Hornick, M.F., and S.B. Zdonik, A Shared, Segmented Memory System for an Object- 
Oriented Database, ACM Transactions on Office Information Systems, vol.5, no.l, January 
1987, pp.70-95.

28- Hughes J.G., Database Technology: A software engineering approach, Prentice Hall, 1988.

29- Jagadish H.V., Incorporating Hierarchy in a Relational Model of Data, Proceeding of ACM 
SIGMOD International Conference on Management of Data, 1989, pp.78-87.

30- Kaehler, T., and D. Patterson, A Small Taste of Smalltalk, Byte, August 1986, pp.145-159.

31“  Karaorman, M., Secondary Storage Management in an Object-Oriented Database Manage­
ment System, M.S. Thesis, Bilkent University, Ankara, July 1988.

32- Kesim, N., An Object-Oriented Database Management System, M.S. Thesis, Bilkent Univer­
sity, Ankara, July 1988.

33- Khoshafian, S.N., and G.P. Copeland, Object Identity, ACM OOPSLA^86 Proceedings, Sept. 
1986.

34- Kim W, Bertino E., Garza J.F., Composite Objects Revised, Proceeding of ACM SIGMOD’ 
International Conference on Management of Data, 1989, pp.337-347.

35- Kim , W., H. Chou, and, J. Banerjee, Operations and Implementations of Complex Objects, 
IEEE Transactions on Software Engineering, Vol. 14, No. 7, July 1988.

36- LyngbaeK, P., and V. Vianu, Mapping a Semantic Database Model to the Relational Model, 
ACM SIGMOD International Conference on Management of Data, 1987, pp.132-142.

37- Maier, D., and J. Stein, Indexing in an Object-Oriented DBMS, Proc. of the Workshop on 
Object-Oriented Database Systems, September 1986.

38- Maier, D., A. Otis, and A. Purdy, Object-Oriented Database Development at Servio Logic, 
Database Engineering, IEEE, vol.8, no.4, December 1985.

39- Maier, D., J. Stein, A. Otis, and A. Purdy, Development of an Object-Oriented DBMS, ACM 
Conference on Object- Oriented Programming Systems, Languages and Applications, 1986.

40- Maier, D., and, J. Stein, Development and Implementation of an Object-Oriented DBMS, 
Research Directions in Object-Oriented Programming, Shriver, B., and, P. Wegner Eds, 1987.

41- Nierstrasz O.M., Active Objects in Hybrid, OOPSA’87 Proceedings.

42- Nierstrasz O.M., What is Object in Object-Oriented Programming? Objects and Things, 
ed. D.Tsichritzis, Centre Universitaire DHnformatique, Üniversite de Geneve, March 1987, 
pp.1-13.

43- Ossher, H., A Mechanism for Specifying the Structure of Large, Layered Systems, Research 
Directions in Object- Oriented Programming, ed. B. Shiver, and P. Wegner, MIT Press 
Series in Computer Systems, 1987, pp.218-251.



44- Ozelci, M.S., Message Passing in an Object-Oriented Database Management System, M.S. 
Thesis, Bilkent University, Ankara, July 1988.

45- Ozelci, S.M., N. Kesim, M. Karaorman, E. Arkun, An Experimental Object-oriented 
Database Management System Prototype, Proc.of the Third International Symposium on 
Computer and Information Sciences, October 1988, Cesme, Turkey.

46- Purdy A., et al.. Integrating an Object Server with other Worlds, ACM Transactions on 
Office Information Systems, Vol.5, No.l, January 1987, pp.27-47.

47- Skarra, A.H., and S.B. Zdonik, Type Evolution in an Object-Oriented Database, Research 
Directions in Object- Oriented Programming, ed. B. Shiver, and P. Wenger, MIT Press 
Series in computer Systems, 1987, pp.393-415.

48- Skarra, A.H., and S.B. Zdonik, An Object Server for an Object-Oriented DBMS, Proceedings 
of the International Workshop on Object-Oriented Database Systems, Sept.23- 26, 1986 
Pacific Grove, pp.196-204.

49- Stefik, M., and D.G. Bobrow, Object-Oriented Programming: Themes and Variations, AI 
Magazine, January 1986, pp.40-62.

50- Stone H.S., High-Performance Computer Architecture, Addison-Wesley Publishing Company, 
1987.

51- Stonebraker M., Object Management in POSTGRES Using Procedures, Proc. of the Work­
shop on Object-Oriented Database Systems, September 1986, pp.66-72.

52- Tanenbaum A.S., Operating Systems: Design and Implementation, Prentice Hall, Inc., 1987.

53- Turkmen, S., Data Definition and Manipulation Languages for an Object-Oriented Database 
Management System (ODS), M.S. Thesis, Bilkent University, Ankara, July 1989.

54- Turkmen , S., C. Yengul, E. Arkun, An Object-Oriented Database System Prototype, Pro­
ceeding of the Fourth International Symposium on Computer and Information Sciences, Oc­
tober 1989, Cesme, Turkey.

55- Ullman, J.D., Principles of Database Systems, Computer Science Press, 1982.

56- Woelk D., et al.. Enhancing the Object-Oriented Concepts for Database Support, Proceed­
ing of the Third International Conference on Database Engineering, Feb 3- 5 1987 L.A.', 
U.S.A.,pp.291-292.

57- Yengul C., A run-Time Environment for an Object-Oriented Database Management System, 
(ODS), M.S. Thesis, Bilkent University, Ankara, July 1989.

58- Zdonik, S.B., Why Properties are Objects or Some Refinements of 'is-a\ ACM/IEEE Joint 
Computer Conference, 1986, pp.41-47.

59- Zdonik, S.B., Maintaining Consistency in a Database with Changing Types, ACM SIGPLAN 
Notices 21:10, Oct. 1986, pp.120-127.

60- Zdonik S.B., Object Management Systems for Design Environments, Data Engineering, 1985, 
pp.259-266.


