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ABSTRACT

FIXED ORDER CONTROLLER DESIGN VIA

PARAMETRIC METHODS

Karim Saadaoui

Ph.D. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. A. Bülent Özgüler

September 2003

In this thesis, the problem of parameterizing stabilizing fixed-order controllers

for linear time-invariant single-input single-output systems is studied. Using a

generalization of the Hermite-Biehler theorem, a new algorithm is given for the

determination of stabilizing gains for linear time-invariant systems. This algo-

rithm requires a test of the sign pattern of a rational function at the real roots of a

polynomial. By applying this constant gain stabilization algorithm to three sub-

sidiary plants, the set of all stabilizing first-order controllers can be determined.

The method given is applicable to both continuous and discrete time systems.

It is also applicable to plants with interval type uncertainty. Generalization of

this method to high-order controller is outlined. The problem of determining

all stabilizing first-order controllers that places the poles of the closed-loop sys-

tem in a desired stability region is then solved. The algorithm given relies on a

generalization of the Hermite-Biehler theorem to polynomials with complex co-

efficients. Finally, the concept of local convex directions is studied. A necessary

and sufficient condition for a polynomial to be a local convex direction of an-

other Hurwitz stable polynomial is derived. The condition given constitutes a

generalization of Rantzer’s phase growth condition for global convex directions.

It is used to determine convex directions for certain subsets of Hurwitz stable

polynomials.
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ÖZET

PARAMETRİK YÖNTEMLE SABİT MERTEBEDEN

DENETLEYİCİ TASARIMI

Karim Saadaoui

Elektrik ve Electronik Mühendisliği Doktora

Tez Yöneticisi: Prof. Dr. A. Bülent Özgüler

Eylül 2003

Bu tezde, doğrusal, zamanla-değişmeyen, tek-giriş ve tek-çıkışlı sistemleri kararlı

hale getiren sabit mertebeden denetleyicilerin parametrizasyonu problemi ince-

lenmektedir. Hermite-Biehler teoreminin bir genellemesi kullanılarak, doğrusal,

zamanla-değişmeyen sistemleri kararlılaştıran sabit kazançların belirlenmesi için

yeni bir algoritma geliştirilmiştir. Bu algoritma rasyonel bir fonksiyonun gerçek

bir polinomun köklerindeki değerlerinin işaret dizgesinin testine dayanmaktadır.

Bu sabit kazanç algoritmasını üç yardımcı sisteme uygulayarak, verilen bir

sistemi kararlı hale getiren birinci mertebeden denetleyiciler kümesi hesaplan-

abilir. Önerilen yöntem sürekli-zaman ve kesikli-zaman sistemlerine olduğu gibi

parametreleri bir aralıkta değer alabilen belirsiz sistemler kümesine de uygu-

lanabilir. Önerilen yöntemin herhangi bir mertebeden denetleyicilerin hesaplan-

masına genellemesi de verilmiştir. Daha sonra, bir kapalı-çevrim sisteminde iste-

nilen kutup atamayı elde edebilen tüm birinci mertebeden denetleyicilerin hesa-

planması problemi çözülmüştür. Bu amaçla verilen algoritma Hermite-Biehler

teoreminin kompleks katsayılı polinomlara bir genellemesine dayanmaktadır. Son

olarak, yerel konveks yönler kavramı incelenmektedir. Verilen bir polinomun

başka bir Hurwitz-kararlı polinomun konveks yönü olması için bir gerek ve yeter

koşul verilmiştir. Bu koşul, Rantzer’in global konveks yön için verdiği koşulun
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bir genellemesi olarak düşünülebilir. Verilen koşul, çeşitli Hurwitz-kararlı poli-

nom kümeleri için konveks yönler bulmakta kullanılabilir.

Anahtar kelimeler: Hermite-Biehler teoremi, Birinci-mertebeden denetleyi-

ciler, Kararlılık, Kararlı hale getirme, Bölgesel kutup atama, Yerel konveks yönler.
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Chapter 1

Introduction

Controllers are designed to make certain physical variables of a system behave

in a desired way by manipulating some input variables. In any controller design,

a first and essential step in the design process is to guarantee stability of the

resulting closed-loop system. Therefore, one natural approach to the synthesis

problem is to find the set of all stabilizing controllers for a given system and

then determine within this set controllers that satisfy extra design requirements.

In fact, parameterization of all stabilizing controllers for linear, time-invariant

plants was given in [1, 2] and it is known as the YJBK parameterization [3, 4].

Many synthesis techniques such as H∞, H2, and l1 optimal control [5, 6] are

based on YJBK parameterization. However, an important disadvantage of YJBK

parameterization is that the order or the structure of the controller can not be

fixed a priori. As a result, H∞ and H2 design techniques usually yield controllers

of high-order in comparison to the order of the plant to be controlled [7, 8, 9, 10].

Simple low-order controllers are usually preferred to complex high-order con-

trollers. It is known that more than 90% of the controllers used in industry are

of low-order being proportional-integral-derivative (PID) or first-order lead/lag
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CHAPTER 1. INTRODUCTION 2

controllers [11]. The widespread use of these low-order controllers is due to their

simplicity and practicality since in many cases a satisfactory behavior of the

closed-loop system is achieved by adjusting only three parameters. Many of the

elegant results of optimal control are rarely used in industry and this is an impor-

tant gap between the well established theory of optimal control and applications.

For these reasons, there is a need to design low-order controllers for high-order

plants. There are mainly three different approaches to do this: (i) Design a high-

order controller then approximate it with a low-order one (see [7] for different

techniques of controller reduction). (ii) Reduce the order of the plant model

so that a controller of low-order is obtained (see [12, 13, 14] and the references

therein). (iii) Fix the order of the controller and search parameters that minimize

a performance index. The main subject of this thesis falls into this third category.

In addition to fixing the order of the controller, fixing the structure of the

controller may be desired in some applications. In [15], an H2 optimal synthesis

method of controllers with relative degree 2 is suggested. The advantage of sta-

bilizing with a controller of relative degree 2 as advocated in [15] is the need for

the frequency response to roll-off as quickly as possible after the gain cross-over

frequency so that unmodeled high-frequency plant dynamics are not excited by

the controller dynamics. A linear programming approach that attempts to meet

the desired closed-loop specifications with fixed-order controllers was given in

[16]. In [17], sufficient conditions for the synthesis of H∞ fixed-order controllers

are derived. These conditions convert the controller design problem into a linear

matrix inequality feasibility problem. Synthesis of fixed-order controllers that

minimize an upper bound on the peak magnitude of the tracking error was given

in [18]. In [19], sufficient conditions for characterizing robust full and reduced

order controllers with worst case H2 performance bound were derived. We re-

fer the interested reader to [20]-[24] for more state-space design methods with

fixed-order controllers.
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An alternative design strategy would be to (a) parameterize all fixed-order,

fixed-structure stabilizing controllers and (b) among those that are obtained

search the ones which satisfy a specified performance. The solution to problem

(a) is an essential and a challenging first step. Designing an optimal low-order

controller, PID or first-order, can not be achieved without solving problem (a). It

also gives an answer to the best performance that can be achieved by these con-

trollers for a given plant. A step in this direction was taken in [25] parameterizing

the set of all stabilizing PID controllers. In fact, a lot of research has been done

for finding parameters of PID controllers that lead to a satisfactory performance,

see [26]-[33] and the references therein, but only a limited number of results have

been reported to find the set of all stabilizing PID controllers and, hence, to find

a compromising approach between the well established H∞, H2, and l1 optimal

techniques and the more practical low-order compensation methods.

In [25], a computational characterization of all stabilizing proportional-

integral (PI) and PID controllers was derived. This method is based on an

extension of the Hermite-Biehler theorem reported in [34], see [35]. The com-

putational method of [25] has been extended to compute all stabilizing PID gains

for discrete time systems in [36]. In [37], using the Nyquist plot an alternative

method for determining the set of all stabilizing PID controllers is developed.

The problem of determining all stabilizing PID controllers was also studied in

[38, 39] using graphical methods. In [40], it was shown that for a fixed value of

the proportional term the Hurwitz stability boundaries in the parameter space

of the integral and derivative terms are hyperplanes and the stability regions

are convex polyhedra. In [41], the problem of synthesizing PID controllers for

which the closed-loop system is internally stable and the H∞ norm of a related

transfer function is less than a prescribed level was addressed. Recently, a compu-

tational characterization of all admissible PID controllers for robust performance

was provided in [42]. None of the studies above give a clue to extend the results
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to first-order controllers which are structurally different and hence need to be

considered separately.

The quest for an analytic design method for first-order controllers (e.g. phase-

lead, phase-lag) controllers has been around for decades. Many classical control

textbooks such as [43], [44] contain attempts to deductively obtain a first-order

stabilizing controller. In [43], for example, an analytic method for designing a

first-order controller is suggested although the authors emphasize that the design

is not guaranteed to succeed and it may lead to an unstable system.

In this thesis, we first study the problem of parameterizing the set of all sta-

bilizing first-order controllers. Although the number of parameters involved in

both PID and first-order controllers is the same, structures of these controllers

are different and the results found for PID controllers can not be directly ap-

plied to first-order controllers. We also establish that our method, unlike other

methods, can be extended to higher order controllers. An alternative approach

to the problem of determining all stabilizing first-order controllers for discrete

time systems was also taken in [45]. The solution given in [45] is based on a

Chebyshev representation of the characteristic equation on the unit circle. The

method relies on arbitrarily fixing one of the controller parameters and generating

the root distribution invariant regions in the space of the remaining two param-

eters. Once these regions are determined, a stability test has to be performed

to determine the stabilizing region. Unlike our method, no hint is given on how

to fix the first parameter. Hence, in order to determine the set of all stabilizing

first-order controllers by the approach of [45], one has to carry out the method

for an infinite range of the first parameter. The boundaries of the root distribu-

tion invariant regions are found by sweeping over all the frequencies (w ≥ 0 for

continuous time systems), hence another sweep over an infinite range has to be

carried out for the method to be applicable to continuous time systems. Note

also that this method can not be extended to higher-order controllers without
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arbitrarily fixing all but two of the controller parameters. This is due to the fact

that the stability boundaries are obtained by setting to zero the imaginary and

the real parts of the characteristic equation evaluated at a fixed frequency. The

computational method proposed in this thesis is free of these drawbacks.

The second problem studied in this thesis is the determination of local convex

directions for Hurwitz stable polynomials. The main motivation for studying con-

vex directions for Hurwitz stable polynomials comes from the edge theorem [46]

which states that, under mild conditions, it is enough to establish the stability of

the edges of a polytope of polynomials in order to conclude the stability of the en-

tire polytope. Each edge is a convex combination λr(s)+(1−λ)q(s), λ ∈ [0, 1] of

two vertex polynomials r(s), q(s). If the difference polynomial p(s) = r(s)− q(s)
is a convex direction for q(s), then the stability of the entire edge can be inferred

from the stability of the vertex polynomials. In [47], Rantzer gave a condition

which is necessary and sufficient for a given polynomial to be a convex direction

for the set of all Hurwitz stable polynomials. However, this global requirement

is unnecessarily restrictive when examining the stability of a particular segment

of polynomials. It is of more interest to determine conditions for a polynomial to

be a convex direction for a given polynomial, or still better, for specified subsets

of Hurwitz stable polynomials.

Various solutions to the edge stability problem are already well-known [48]-

[52]. Bialas [53] gave a solution in terms of the Hurwitz matrices associated

with r(s) and q(s). The segment lemma of [54] gives another condition which

requires checking the signs of two functions at some fixed points. In [55], [34]

and [56], various definitions of local convex directions have been used. Among

these, the following geometric characterization of [55] is the most relevant one

to edge stability we have described above: A polynomial p(s) is called a (local)

convex direction for q(s) if the set of α > 0 for which q(s) + αp(s) is Hurwitz

stable is a single interval on the real line. Note that, if p(s) is a convex direction in
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this sense, the stability of q(s) and p(s)+q(s) implies the stability of q(s)+αp(s)

for all α ∈ [0, 1] but not vice versa, i.e., the main definition used in [55] and [34]

is more stringent than the one concerning the edge stability. In this thesis we will

use the definition given in [56]; namely, a local convex direction with respect to

q(s) is a polynomial p(s) such that all polynomials which belong to the convex

combination of q(s) and q(s) + p(s) are Hurwitz stable.

One motivation for deriving an alternative condition to those of [53] and [54]

is to make contact with Ranzter’s condition starting with the less stringent def-

inition of local convexity. A second motivation is that none of the above local

results seem to be suitable in determining convex directions for subsets of Hurwitz

stable polynomials. Our main result is shown to be suitable for obtaining con-

vex directions for certain subsets of Hurwitz stable polynomials. The condition

provided also gives Rantzer’s condition in a rather straightforward manner when

it is satisfied by every Hurwitz stable polynomial. It is thus one natural local

version of the global condition of Rantzer.

Although our two main problems (1) parameterizing stabilizing controllers

with fixed-order and fixed-structure and (2) determining local convex directions

for Hurwitz stable polynomials are two different problems, one contribution of

this thesis is to show that they can be treated in the unifying framework of the

Hermite-Biehler theorem and its extensions.

Contents of the thesis can be summarized as follows: In Chapter 2, we review

the Hermite-Biehler theorem and its generalizations. In [34] a generalization of

the Hermite-Biehler theorem, applicable to not necessarily Hurwitz stable poly-

nomials, was given. The generalized theorem gives the root distribution of a

real polynomial with respect to the imaginary axis. Based on this generaliza-

tion, we show how to determine the number of distinct real negative roots of a
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real polynomial without explicitly calculating them. This will prove fundamen-

tal in parameterizing different types of controllers that stabilizes a given linear,

time-invariant plant. In [41], a generalization of the Hermite-Biehler theorem

to polynomials with complex coefficients was given. We also use this result to

compute the number of real roots of a real polynomial, which is in turn used to

solve the problem of stabilization with guaranteed damping.

In Chapter 3, we give the non-graphical method of [34] for the determination

of stabilizing gains for linear, time-invariant, single input, single output systems.

This method requires a test of the sign pattern of a rational function at the real

roots of a polynomial. Thereafter, we simplify this method and give an algorithm

which avoids the need for a search in an exponentially increasing set to determine

the solution. From a computational complexity point of view, our method requires

O(n2) arithmetic operations, whereas using Neimark D-decomposition [57] the

same problem can be solved with O(n3). We compare this method with the

recent Nyquist based method of [37]. We show how the algorithm developed in

this chapter can be applied to determine local convex directions.

In Chapter 4, a new method is given for the computation of the set of all

stabilizing proper first-order controllers for linear, time-invariant, scalar plants.

For clarity, we first solve the problem for plants having either all zeros or all poles

in the closed right-half plane. This restrictive assumption is then removed and a

solution is given for general plants with no restrictions on pole or zero locations.

The method requires the application of a modified constant gain stabilizing algo-

rithm to three subsidiary plants. It is applicable to both continuous and discrete

time systems. Using this characterization of all stabilizing first-order controller,

we give a design example where several time domain performance indices of the

closed-loop system are evaluated. We then solve the problem of determining

all stabilizing first-order controllers that achieve a desired damping ratio for the

closed-loop system. The algorithms given in this chapter can be applied to plants
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with interval type uncertainty. Finally in this chapter, we give an algorithm that

computes all stabilizing second-order controllers.

In Chapter 5, we use one version of the Hermite-Biehler theorem to study of

local convex directions [58]. A new condition for a polynomial p(s) to be a local

convex direction for a Hurwitz stable polynomial q(s) is derived. The condition is

in terms of polynomials associated with the even and odd parts of p(s) and q(s)

and constitutes a generalization of Rantzer’s phase growth condition for global

convex directions. It is then used to determine convex directions for certain

subsets of Hurwitz stable polynomials.

Finally, Chapter 6 contains some concluding remarks and directions for further

research.



Chapter 2

The Hermite-Biehler Theorem

In this chapter, we review the Hermite-Biehler theorem and its generalizations.

It is well known that studying stability of a dynamical system is one of the most

fundamental problems in control theory. For linear time-invariant systems this

is equivalent to finding conditions under which all the roots of a polynomial

are in the open left-half complex plane. Routh-Hurwitz criterion is one of the

first and most known tests for checking Hurwitz stability of a polynomial. See

[59, 60, 61, 62, 63] for a detailed description of Routh-Hurwitz test and vari-

ous other methods for checking stability of continuous as well as discrete time

systems. Among these methods the Hermite-Biehler theorem seems to have sev-

eral advantages. In addition to its use as a test for stability of polynomials, the

Hermite-Biehler theorem played a central role in the first proof of the Kharitonov

theorem pertaining to interval polynomials [64]. In [34] a generalization of the

Hermite-Biehler theorem, applicable to not necessarily Hurwitz stable polynomi-

als, was given. The generalized theorem gives the root distribution of a given

real polynomial with respect to the imaginary axis. This will prove fundamen-

tal in parameterizing different types of controllers that stabilizes a given linear,

time-invariant plant.

9
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2.1 The Hermite-Biehler Theorem

In this section, we state the Hermite-Biehler theorem which gives a necessary

and sufficient condition for Hurwitz stability of a given polynomial of real coeffi-

cients. We first review some elementary facts on polynomials and Hurwitz stable

polynomials.

Let us denote the set of real numbers by R, the set of complex numbers by

C, and let C−, C0, C+ denote the points in the open left-half, jω-axis, and

the open right-half of the complex plane, respectively. Also let C0+ denote the

points in the closed right-half complex plane. Let R[s] denote the set of real

polynomials in s and deg ψ the degree in s of a non-zero polynomial ψ. Given a

set of polynomials ψ1, ..., ψk ∈ R[s] not all zero and k > 1, their greatest common

divisor (with highest coefficient 1) is unique and it is denoted by gcd {ψ1, ..., ψk}.
If gcd {ψ1, ..., ψk} = 1, then we say (ψ1, ..., ψk) is coprime. The derivative of ψ is

denoted by ψ′. The set H of Hurwitz stable polynomials are

H = {ψ ∈ R[s] : ψ(s) = 0 ⇒ s ∈ C−}.

The constant non-zero polynomials, i.e., the non-zero elements of R, are thus

considered Hurwitz stable. The signature σ(ψ) of a polynomial ψ ∈ R[s] is the

difference between the number of its C− roots and C+ roots. The signature thus

disregards the jω-axis zeros of the polynomial. Nevertheless, ψ ∈ H ⇔ σ(ψ) =

deg ψ holds. If {r1, ..., rt} are a finite number of real numbers and I is a subset

of {1, ..., t}, then

max
i∈I

ri, min
i∈I

ri

denote the maximum and the minimum of the numbers ri as i runs in I. If I
is the empty set, then the maximum is taken as −∞ and the minimum is taken

as +∞, for convenience. We will also use the notation r(±∞) for the limit as

s→ ±∞ of a real rational function r(s).
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Given ψ ∈ R[s], the even-odd components (a, b) of ψ(s) are the unique poly-

nomials a, b ∈ R[u] such that ψ(s) = a(s2) + sb(s2). The even-odd components

of a polynomial and the real and imaginary parts of ψ(jω), ã(ω) := Re {ψ(jω)}
and b̃(ω) := Im {ψ(jω)}, are related by

ã(ω) = a(−ω2), b̃(ω) = ωb(−ω2).

Also note that

deg ψ is even ⇒







deg a = deg ψ

2

deg b < deg ψ

2







,

deg ψ is odd ⇒







deg a ≤ deg ψ−1
2

deg b = deg ψ−1
2







.

(2.1)

If ψ 6= 0, then d := gcd {a, b} is well-defined. Since d(u0) = 0 for u0 ∈ C if

and only if s1 =
√
u0 and s2 = −√

u0 are both roots of ψ(s), the roots of d(s2)

correspond to roots of ψ(s) which are symmetrically located with respect to the

origin in the complex plane. As a consequence, if d(u) 6= 0 ∀u ≤ 0, then ψ(s)

has no roots on C0 except possibly a simple zero (i.e., a zero of multiplicity 1)

at the origin. Also note that if ψ(s) ∈ H, then d = 1 since otherwise there

would be at least one root of ψ(s) in C0+. It is actually possible to state a

necessary and sufficient condition for the Hurwitz stability of ψ(s) in terms of its

even-odd components (a, b). This result is the Hermite-Biehler theorem for real

polynomials. We state it in a suitable form for our purpose. Let us define the

signum function S : R → {−1, 0, 1} by

Sr =



















−1 if r < 0

0 if r = 0

1 if r > 0.

The proof of the following result can be found in [49, 59, 65]. See also [66] for

several results related to the Hermite-Biehler theorem.
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Proposition 2.1 [59] A non-zero polynomial ψ ∈ R[s] is Hurwitz stable if and

only if its even-odd components (a, b) are such that b 6≡ 0 and at the distinct real

negative roots v1 > v2 > ... > vk of b the following holds:

deg ψ =































Sb(0)[Sa(0) − 2Sa(v1) + 2Sa(v2) − . . .

+(−1)k−12Sa(vk−1) + (−1)k2Sa(vk)] for deg ψ odd

Sb(0)[Sa(0) − 2Sa(v1) + 2Sa(v2) − . . .

+(−1)k2Sa(vk) + (−1)k+1Sa(−∞)] for deg ψ even.

(2.2)

A pair of polynomials (a, b) is said to be a positive pair ([59], §XV, 14) if

Sa(0) = Sb(0), and the roots {ui} of a(u) and {vj} of b(u) are all real, negative,

simple, and satisfy

0 > u1 > v1 > u2 > v2 > ... > uk > vk when k := deg b = deg a,

0 > u1 > v1 > u2 > v2 > ... > uk > vk > uk+1 when k = deg b = deg a− 1.

Theorem 2.1 [59] A non-zero polynomial ψ ∈ R[s] is Hurwitz stable if and only

if its even-odd components (a, b) form a positive pair.

Consider Proposition 2.1. By (2.1), if deg ψ is odd, then deg b = (deg ψ−1)/2

so that deg ψ ≥ 2k+1. However, the maximum value the right hand side of (2.2)

can attain is also 2k+ 1. Similarly, if deg ψ is even, then it is easy to see by (2.1)

that deg ψ ≥ 2k+ 2 which is the maximum value the right hand side of (2.2) can

attain. It follows that (2.2) is satisfied if only if k = deg b, Sa(0) = Sb(0), and

in each interval (v1, 0), (v2, v1), ..., (vk, vk−1) (or (v1, 0), (v2, v1), ..., (−∞, vk)), the

polynomial a(u) has exactly one root. Proposition 2.1 then reads: ψ ∈ H if and

only if (a, b) is a positive pair.

We now give an example to show the application of Proposition 2.1 to a

Hurwitz stable polynomial.
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Example 2.1 Consider the real polynomial

ψ(s) = s7 + 2s6 + 4s5 + 5.4s4 + 4.69s3 + 3.58s2 + 1.47s+ 0.306.

The even-odd components (a, b) of ψ(s) are given by

a(u) = 2u3 + 5.4u2 + 3.58u+ 0.306,

b(u) = u3 + 4u2 + 4.69u+ 1.47.

Plots of a(u) and b(u) are shown in the figure below. We can easily see that (a, b)

form a positive pair. In fact, a(u) and b(u) have the following roots:

u1 = −0.1, u2 = −0.9, u3 = −1.7,

v1 = −0.5, v2 = −1.4, v3 = −2.1.

−2.5 −2 −1.5 −1 −0.5 0
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
a(u)
b(u)

o o o x x x 

Figure 2.1: Plots of even-odd parts (a, b) of ψ(s).

As deg ψ is odd, we use first equation in (2.2), Sb(0) = 1, Sa(0) =

1, Sa(v1) = −1, Sa(v2) = 1, Sa(v3) = −1. Hence

Sb(0)[Sa(0) − 2Sa(v1) + 2Sa(v2) − 2Sa(v3)] = 7.
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To verify that ψ(s) is indeed a Hurwitz stable polynomial, we give the roots of

ψ(s):

−0.0295 ± j1.3041, − 0.1101 ± j0.9508, − 0.3334 ± j0.2740, − 1.0541.

•

The “root interlacing condition” can be replaced by positivity of certain poly-

nomials of u. Consider the polynomials

Vψ(u) := a′(u)b(u) − a(u)b′(u),

Vsψ(u) := a(u)b(u) − u[a′(u)b(u) − a(u)b′(u)].
(2.3)

Lemma 2.1 [67] Let a, b ∈ R[u] be coprime with deg a = deg b ≥ 1 or with

deg a = deg b+ 1 ≥ 1. Then, (a, b) is a positive pair if and only if

(i) all roots of a and b are real and negative,

(ii) Vψ(u) > 0 ∀u < 0, (2.4)

(iii) Vsψ(u) > 0 ∀u < 0. (2.5)

Proof. Let k = deg a and l = deg b. Let u1 > u2 > . . . > uk and v1 > v2 > . . . >

vl be the roots of a and b, respectively. By hypothesis, ui, vi are real and either

k = l ≥ 1 or k = l + 1 ≥ 1.

[Only if] By definition, if (a, b) is a positive pair, then a(0)b(0) > 0 and

(i) k = l and 0 > u1 > v1 > u2 > v2 > . . . > uk > vl, (2.6)

(ii) k = l + 1 and 0 > u1 > v1 > u2 > v2 > . . . > vl > uk. (2.7)

By partial fraction expansion

b(u)

a(u)
= α0 +

k
∑

i=1

αi
u− ui

, (2.8)

a(u)

ub(u)
= β0 +

β1

u
+

l
∑

j=1

βj+1

u− vj
, (2.9)
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where α0 = 0 if k = l + 1 and β0 = 0 if k = l and where

αi =
b(ui)

a′(ui)
, i = 1, . . . , k, (2.10)

β1 =
a(0)

b(0)
, βj+1 =

a(vj)

vjb′(vj)
, j = 1, . . . , l. (2.11)

As all ui, vj are real and negative, we have Sa′(ui) = (−1)i−1Sa(0) and Sb′(vj) =

(−1)j−1Sb(0) for all i = 1, . . . , k; j = 1, . . . , l. By (2.6) and (2.7), we also have

Sa(vj) = (−1)j−1Sa(0) and Sb(ui) = (−1)i−1Sb(0) for all i = 1, . . . , k; j =

1, . . . , l. It follows that

αi = |αi|S
b(0)

a(0)
, i = 1, . . . , k, βj+1 = −|βj+1|S

a(0)

b(0)
, j = 1, . . . , l.

By differentiating (2.8) and (2.9) and multiplying by a(u)2 and u2b(u)2, respec-

tively, we obtain

Vψ(u) = a(u2)
k

∑

i=1

αi
(u− ui)2

= a(u)2
k

∑

i=1

|αi|
(u− ui)2

S b(0)

a(0)
, (2.12)

Vsψ(u) = b(u)2β1 + u2b(u)2
l

∑

j=1

βj+1

(u− vj)2
(2.13)

= b(u)2a(0)

b(0)
+ u2b(u)2

l
∑

j=1

|βj+1|
(u− vj)2

S a(0)

b(0)
.

The conditions (2.4) and (2.5) follow.

[If] If (2.5) (resp., (2.4)) holds, then the roots of a(u) are distinct; since if say

a(u) = (u − u0)
2a1(u) for some u0 < 0 and a1 ∈ R[u], then a(u0) = a′(u0) = 0,

which contradicts (2.5) (resp., (2.4)). Similarly, if b(u) has a negative root of

multiplicity greater than one, then (2.5) (resp., (2.4)) is contradicted. Since all

roots of a(u) and b(u) are real, negative, and distinct, it follows that the equalities

(2.9), (2.11) and (2.13) hold. By (2.5) and (2.13), we have

β1b(u)
2 +

l
∑

i=1

βj+1
u2b(u)2

(u− vj)2
> 0 ∀ u < 0. (2.14)
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Evaluating the left hand side at v1, . . . , vl, respectively, we obtain βj > 0, j =

2 . . . .l + 1. This yields Sb′(vj) = −Sa(vj) for j = 2, . . . , l + 1 by (2.11). On the

other hand, as u→ 0, the left hand side of (2.14) approaches β1b(0)2 = a(0)b(0) by

(2.11), so that b(0)a(0) > 0. Since all roots of b(u) are real and negative, we have

Sb′(vj) = (−1)j−1Sb(0), j = 1, . . . , l so that Sa(vj) = (−1)jSb(0) for j = 1, . . . , l.

This means that there are an odd number of roots of a(u) between each pair of

roots of ub(u). Since the degrees k and l can differ by at most 1 however, the

interval (vj, vj+1) must contain exactly one root of a(u) for j = 0, 1, . . . , l where

v0 := 0, vl+1 := −∞. The interlacing property (2.6) or (2.7) follows. �

Lemma 2.1 is an alternative statement of the Hermite-Biehler theorem, which

is suitable for studying convex directions. It was used in [67] to construct new

convex directions for Hurwitz stable polynomials. We will use this form of the

Hermite-Biehler theorem in Chapter 6 to study local convex directions. Finally,

root sensitivities of some polynomials can be computed in terms of Vψ and Vsψ.

Consider

φ1(α, u) := a(u) + αb(u),

φ2(α, u) := ub(u) + αa(u),

for α ∈ R. The equation φ1(α, u) = 0 implicitly defines a function u(α). The

root sensitivity of φ1(α, u) is defined by α du
dα

, and gives a measure of the variation

in the root location of φ1(α, u) with respect to percentage variations in α. The

root sensitivities of φ1(α, u) and φ2(α, u), respectively, are easily computed to be

Sψ(u) := a(u)b(u)
Vψ(u)

,

Ssψ(u) := ua(u)b(u)
Vsψ(u)

.
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2.2 Generalized Hermite-Biehler Theorem

In the previous section, Hermite-Biehler theorem was used to check Hurwitz sta-

bility of real polynomials. This theorem can be generalized to give more informa-

tion about the root distribution of a polynomial with respect to the imaginary

axis. This result will be used to determine the set of all stabilizing constant gains

for a given continuous time plant. The generalized Hermite-Biehler theorem was

first derived in [34]. The same result was then reproduced, see [35], in [68], see

also [69, 70]. The generalization of the Hermite-Biehler theorem to polynomials

with complex coefficients was given in [71].

We first state the following lemma needed in the proof of Theorem 2.2 below.

Let ψ(jω) = ã(ω) + jb̃(ω), and θ(ω) = arctan[ b̃(ω)
ã(ω)

]. Also, let 4∞
0 θ denote the net

change in the argument of ψ(jω) as ω varies from 0 to ∞. Then we can state the

following lemma of [59]:

Lemma 2.2 Let ψ(s) be a real polynomial with no roots on the imaginary axis.

Then

4∞
0 θ =

π

2
σ(ψ).

We now state and prove the generalized Hermite-Biehler theorem.

Theorem 2.2 [34] Let a non-zero polynomial ψ ∈ R[s] have the even-odd com-

ponents (a, b). Suppose b 6≡ 0 and (a, b) is coprime. Then, σ(ψ) = r if and only if

at the real negative roots of odd multiplicities v1 > v2 > ... > vk of b the following

holds:

r =































Sb(0−) [Sa(0) − 2Sa(v1) + 2Sa(v2) + . . .

+(−1)k−12Sa(vk−1) + (−1)k2Sa(vk)] for deg ψ odd

Sb(0−) [Sa(0) − 2Sa(v1) + 2Sa(v2) + . . .

+(−1)k2Sa(vk) + (−1)k+1Sa(−∞)] for deg ψ even,

(2.15)
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where b(0−) := (−1)m0b(m0)(0), m0 is the multiplicity of u = 0 as a root of b(u),

and b(m0)(0) denotes the value at u = 0 of the m0-th derivative of b(u).

Proof. [34] We first consider the case ψ(0) 6= 0. Since (a, b) is coprime, ψ(s)

has no zeros on C0 and a(0) 6= 0. Let the real negative roots (if any) with odd

multiplicities of a(u) be

u1 > u2 > · · · > ul

and define

U :=







{uj}lj=1 if m is even

{uj}lj=1

⋃ {ul+1 = −∞} if m is odd,
(2.16)

V :=







{vi}ki=1

⋃ {v0 = 0, vk+1 = −∞} if m is even

{vi}ki=1

⋃ {v0 = 0} if m is odd,
(2.17)

where m := deg ψ. We now order the elements of U ∪ V as

0 = t1 > t2 > · · · > tk+l+2 = −∞

and define the index sets I and J which distinguishes certain elements in {tj}:

i ∈ I ⇔ ti ∈ V and ti+1 ∈ U for i = 1, 2, . . . , k + l + 1,

j ∈ J ⇔ tj ∈ U and tj+1 ∈ V for j = 1, 2, . . . , k + l + 1.

By either tracing the Leonhard locus of ψ(jω) ([72], §V.1) or by Cauchy index

([59], XV.3) considerations, it is now easy to compute the net change in θ(ω) =

arg ψ(jω) as ω increases from 0 to ∞ as

∆∞
0 θ(ω) =

π

2
(
∑

i∈I
Sa(ti)Sb(ti+1) −

∑

j∈J
Sb(tj)Sa(tj+1)).

By Lemma 2.2, σ(ψ) = 2
π
∆∞

0 θ(ω) and we obtain

σ(ψ) =
∑

i∈I
Sa(ti)Sb(ti+1) −

∑

j∈J
Sb(tj)Sa(tj+1). (2.18)
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We now show that the right hand sides of (2.15) and (2.18) are the same. Suppose

first that deg ψ is even. The right hand side of (2.15) can be written as

Sb(0−)
k

∑

i=0

(−1)i(Sa(vi) − Sa(vi+1)). (2.19)

Let µi denote the number of {uj} between vi and vi+1 for i = 0, 1, . . . , k + 1.

Hence, we can rewrite (2.19) as

Sb(0−)

k
∑

i=0

2(µi mod 2)(−1)iSa(vi). (2.20)

On the other hand, the right hand side of (2.18) can be written as

∑

i:ui 6=0

(Sa(vi)Sb(vi−) − Sb(vi−)Sa(vi+1) ). (2.21)

By noting that Sa(vi) = Sa(vi+1) when µi is even for i = 0, 1, . . . , k, we obtain

that

σ(ψ) =
∑

i : ui odd

2Sa(vi)Sb(vi−). (2.22)

We also have Sb(vi−) = (−1)iSb(0−), since b(u) have i zeros between vi− and 0−

for i = 0, 1, . . . , k. Hence, the right hand sides of (2.20) and (2.22) are equal. For

the case deg ψ is odd, the equality of the right hand sides of (2.15) and (2.18)

can be shown similarly.

We now consider the case ψ(0) = 0. In this case by coprimeness of (a, b), ψ(s)

has a simple zero at the origin. Using

σ(ψ) =
2

π
∆∞

0+ θ(ω)

and repeating all the above arguments by appropriate modifications it is possible

to show that r given by (2.15) is again equal to σ(ψ). Here we only give a

heuristic argument. Let a1(u) be a polynomial obtained by a slight perturbation

of the coefficients of a(u) and let ψ1(s) := a1(s
2) + sb(s2). If the perturbations

are sufficiently small, then ψ1(s) is such that Sa(vi) = Sa1(vi) for i = 1, ..., k + 1
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and the root at s = 0 of ψ(s) moves either to C− or to C+. In either case,

r1 := σ(ψ1) = r± 1. By what has been proved, (2.15) holds with r, a replaced by

r1, a1. Using the fact that Sa(vi) = Sa1(vi) for i = 1, ..., k + 1, we obtain that

(2.15) holds with Sa(0) = 0. �

Another way of reaching the result in Theorem 2.2 is by using phase arguments

and making the following observations [68].

• For two consecutive roots vi and vi+1 of b(u) we have

4vi+1

vi
θ =

π

2
[Sa(vi) − Sa(vi+1)]Sb(v−i )

where v−i = vi − ε, ε > 0.

• If deg(ψ) is odd then

4∞
vk
θ =

π

2
Sa(vk)Sb(v−k )

•

Sb(v−i+1) = −Sb(v−i ), i = 1, . . . , k − 1,

and

Sb(0−) = Sb(0−)

where b(0−) := (−1)m0b(m0)(0), m0 is the multiplicity of u = 0 as a root

of b(u), and b(m0)(0) denotes the value at u = 0 of the m0-th derivative of

b(u).

Using these observations, we can show that (2.15) holds. We show it for deg ψ

odd, the case deg ψ is even follows similar arguments and is omitted. We have

4v1
0 =

π

2
Sb(0−)[Sa(0) − Sa(v1)],

4v2
v1

= −π
2
Sb(0−)[Sa(v1) − Sa(v2)],
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...

4vi+1

vi
= (−1)i

π

2
Sb(0−)[Sa(vi) − Sa(vi+1)],

...

4∞
vk

= (−1)k
π

2
Sb(0−)Sa(vk).

Since

4∞
0 = 4v1

0 + 4v2
v1

+ . . .+ 4vi+1

vi
+ . . .+ 4∞

vk
,

we have

4∞
0 =

π

2
Sb(0−)[Sa(0) − 2Sa(v1) + 2Sa(v2) + . . .+ (−1)kSa(vk)] for deg ψ odd,

and (2.15) follows.

Example 2.2 Consider the real polynomial

ψ(s) = s7 + 2s6 + 4s5 − 5.4s4 − 4.69s3 + 3.58s2 + 1.47s+ 0.306.

The even-odd components (a, b) of ψ(s) are given by

a(u) = 2u3 − 5.4u2 + 3.58u+ 0.306,

b(u) = u3 + 4u2 − 4.69u+ 1.47.

The polynomial b(u) has only one real negative root with odd multiplicity at v1 =

−4.9974. In addition, we have Sb(0−) = 1, Sa(0) = 1, and Sa(v1) = −1. As

degree of ψ(s) is odd, we use first equation in (2.15),

Sb(0)[Sa(0) − 2Sa(v1)] = 3.

To verify that ψ(s) has signature equal to 3, we give the roots of ψ(s):

−1.2703 ± j2.1732, − 0.1674 ± j0.1858, − 0.8980, 0.8867 ± j0.2714.

•
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2.3 Using the Generalized Hermite-Biehler

Theorem to Find the Number of Real Neg-

ative Roots of a Real Polynomial

Based on the generalized Hermite-Biehler Theorem, we state and prove the fol-

lowing result which enables us to compute the number of real negative roots of

a real polynomial. This problem is transformed to a signature computation of a

new constructed polynomial. Using the generalized Hermite-Biehler theorem the

transformed problem can be easily solved.

Lemma 2.3 A non-zero polynomial ψ ∈ R[u], such that ψ(0) 6= 0, has r real

negative roots without counting the multiplicities if and only if the signature of

the polynomial ψ(s2)+sψ′(s2) is 2r. All roots of ψ are real, negative, and distinct

if and only if ψ(s2) + sψ′(s2) ∈ H.

Proof. We first assume that (ψ, ψ′) is coprime. Suppose that ψ(u) has r real

negative distinct roots u1 > u2 > . . . > ur. Since ψ′(u) is the derivative of ψ(u),

it follows that between any two consecutive real negative roots ui and ui+1 of

ψ(u) there is an odd number of real negative roots of ψ ′(u): vi1 > vi2 > . . . > vij,

where j is an odd integer. Since

Sψ(vi1) = Sψ(vi2) = . . . = Sψ(vij),

it follows that

2Sψ(vi1) − 2Sψ(vi2) + . . .+ (−1)j2Sψ(vij) = 2Sψ(vi1).

In the interval (−∞, ur), ψ
′(u) must have an even number or real roots otherwise

ψ(u) have a real root in this interval contradicting the fact that ψ(u) has r real

negative roots. Assume that ψ(0) > 0. If ψ′(u) has an even number, k, of real
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roots v01, v02, . . . , v0k, between 0 and u1, then ψ′(0−) > 0 and

2Sψ(v01) − 2Sψ(v02) + . . .+ (−1)k2Sψ(v0k) = 0.

Finally, Sψ(0) = 1, Sψ(v11) = −1, Sψ(v21) = 1, . . ., Sψ(−∞) = (−1)r. Using

these facts in (2.15) of Theorem 2.2, we get

Sψ′(0−)[Sψ(0) − 2Sψ(v01) + . . .− 2Sψ(v11) + . . .+ (−1)rSψ(−∞)]

= Sψ(0) − 2Sψ(v11) + 2Sψ(v21) − 2Sψ(v31) + . . .+ (−1)rSψ(−∞)

= 2r

If ψ′(u) has an odd number of roots between 0 and u1, then ψ′(0−) < 0. In this

case, we obtain again the same result

Sψ′(0−)[Sψ(0) − 2Sψ(v01) + . . .+ 2Sψ(v11) − . . .+ (−1)r+1Sψ(−∞)]

= −[Sψ(0) − 2Sψ(v01) + 2Sψ(v11) − 2Sψ(v21) + . . .+ (−1)r+1Sψ(−∞)]

= 2r

Similar arguments apply in the case ψ(0) < 0 to give the same result; namely,

Sψ′(0−)[Sψ(0) − 2Sψ(v01) + . . .+ 2Sψ(v11) − . . .+ (−1)r+1Sψ(−∞)] = 2r.

Therefore, by Theorem 2.2, signature of ψ(s2)+sψ′(s2) is 2r. Conversely, suppose

that the signature of ψ(s2)+ sψ′(s2) is 2r. Using the second equation of (2.15) in

Theorem 2.2, it follows that ψ(u) changes sign exactly r times for u < 0. Hence,

ψ(u) has r real negative roots.

Now, let us examine the case of non-coprime pair (ψ, ψ ′). Since complex roots

of ψ(u) and ψ′(u) do not affect the signature of ψ(s2) + sψ′(s2), we consider only

the case of common real negative roots. Assume that ψ(u) and ψ ′(u) have a

common real negative root u1, then ψ(u) = (u − u1)ψ1(u) and ψ′(u) = ψ1(u) +

(u−u1)ψ
′
1(u1). Since u1 is also a root of ψ′(u1), it follows that u1 is a root of ψ1(u).

This shows that whenever (ψ, ψ′) are not coprime, ψ(u) has a root of multiplicity
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greater than 1. Let ψ(u) have a real negative root u1 with multiplicity greater

than 1. Repeating the same analysis as above, using the fact that u1 is also a

root of ψ′(u1), and that Sψ(u1) = 0, it follows that ψ(u) has r real negative roots

without counting the multiplicities if and only if the signature of ψ(s2) + sψ′(s2)

is 2r.

If ψ(u) has all its roots real, negative, and distinct, then r = deg ψ. By

the part we have just proved, signature of ψ(s2) + sψ′(s2) is 2r which is the

degree of ψ(s2) + sψ′(s2). Hence, ψ(s2) + sψ′(s2) ∈ H. The converse follows by

Hermite-Biehler theorem. �

2.4 Generalized Hermite-Biehler Theorem: Com-

plex Case

In this section, a generalization of the Hermite-Biehler theorem to polynomials

with complex coefficients [41] is presented. This result will be used to solve the

problem of stabilization with guaranteed damping. We also use this result to

compute the number of real roots of a real polynomial.

Given ψ ∈ C[s], the real and imaginary parts (ã, b̃) of ψ(s) are the unique

polynomials ã, b̃ ∈ R[ω] such that

ψ(jω) = ã(ω) + jb̃(ω).

Theorem 2.3 [25] Let a non-zero polynomial ψ ∈ C[s] of degree n have the

real-imaginary components (ã, b̃). Suppose b̃ 6≡ 0 and (ã, b̃) is coprime. Let ω1 <

ω2 < ... < ωk be the real, distinct finite roots of b̃ with odd multiplicities. Also let
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ω0 = −∞, ωk+1 = ∞, and ξn be the leading coefficient of ψ(s). Then

σ(ψ) =























































1
2
{Sã(ω0)(−1)k + 2

∑k

i=1 Sã(ωi)(−1)k−i − Sã(ωk+1)}S b̃(∞)

if n is even and ξn is purely real,

or n is odd and ξn is purely imaginary.

1
2
{2 ∑k

i=1 Sã(ωi)(−1)k−i}S b̃(∞)

if n is even and ξn is not purely real,

or n is odd and ξn is not purely imaginary.

(2.23)

Proof. See [25, 41]. �

The following result transforms the problem of determining the number of

real roots of a real polynomial to an equivalent problem of finding the signature

of a complex polynomial.

Lemma 2.4 A non-zero polynomial ψ ∈ R[u], has r real roots without counting

the multiplicities if and only if the signature of the complex polynomial ψ̄(s) is

−r, where ψ̄(jω) = ψ(w) + jψ′(w).

Proof. We first assume that (ψ, ψ′) is coprime. If deg ψ = n, then deg ψ′ = n−1,

deg ψ̄ = n, and the highest coefficient ξ̄n of ψ̄(s) depends only on the highest

coefficient ξn of ψ(ω). If n is even, then (jω)n is real. As ξn = (jω)nξ̄n is real,

it follows that ξ̄n is real. If n is odd, then (jω)n is imaginary and using similar

arguments it follows that ξ̄n is imaginary. In both cases, n even or odd, we use

the first equation of (2.23) in Theorem 2.3 to calculate the signature of ψ̄(s). Let

ψ(ω) have r real distinct roots ω1 < ω2 < . . . < ωr. Since ψ′(w) is the derivative

of ψ(w), it follows that between any two consecutive real roots ωi and ωi+1 of

ψ(ω) there is an odd number of real roots of ψ′(ω): vi1 < vi2 < . . . < vij, where

j is an odd integer. Since

Sψ(vi1) = Sψ(vi2) = . . . = Sψ(vij),
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it follows that

2Sψ(vi1) − 2Sψ(vi2) + . . .+ (−1)j2Sψ(vij) = 2Sψ(vi1).

In the interval (−∞, ω1) or (ωr,∞), ψ′(ω) has an even number of real roots

which do not affect the signature as the sign of ψ is the constant throughout the

interval. Finally note that Sψ(∞)Sψ′(∞) = 1, . . ., Sψ(v01)Sψ′(∞) = (−1)r−1,

Sψ(−∞)Sψ′(∞) = (−1)r. Using these facts in (2.23) of Theorem 2.3, we get

σ(ψ̄) =
1

2
{Sψ(−∞)(−1)r−1 + 2Sψ(v01)(−1)r−2 + . . .− Sψ(∞)}Sψ′(∞)

= −r

Therefore, by Theorem 2.3, signature of ψ̄(s) is −r. Conversely, let the signature

of ψ̄(s) be −r. Using the first equation of (2.23) in Theorem 2.3, it follows that

ψ(ω) changes sign exactly r times . Hence, ψ(ω) has r real roots. for non-coprime

pair (ψ, ψ′), repeating similar arguments it is easy to prove that ψ(ω) has r real

roots without counting the multiplicities if and only if the signature of ψ̄(s) is

−r. �



Chapter 3

Stabilizing Feedback Gains

In this chapter, we present a non-graphical method of [34] for the determination

of stabilizing gains for linear, time-invariant, single input, single output systems.

This method requires a test of the sign pattern of a rational function at the real

roots of a polynomial. Thereafter, we simplify this method and give an algorithm

which avoids the need for a search in an exponentially increasing set to determine

the solution. It has been shown based on the method of [34], that the set of all

stabilizing PID controllers can be calculated [25]. Finally in this chapter, we

compare these methods with the recent Nyquist based method of [37].

3.1 Introduction

In [34] the following old problem of control was considered:

Given coprime polynomials p(s), q(s) with real coefficients, determine condi-

tions under which a real number α exists such that φ(s, α) = q(s) + αp(s) has

degree in s equal to the degree of q and is Hurwitz stable, i.e., has all its roots in

27
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the open left-half complex plane. Determine the set of all such α if one exists.

If we define

A(p, q) := {α ∈ R : φ(s, α) = q(s) + αp(s) ∈ H , deg φ = deg q},

then the problem is to determine under what conditions A(p, q) 6= ∅ and to give

a description of A(p, q) if it is not empty.

There are several classical solutions to this problem. Evans root-locus method

and Nyquist stability criterion are among the most widely used graphical so-

lutions. The method of Hurwitz determinants as refined in [72] and Neimark

D-decomposition, [57], can be considered as non-graphical solutions. The last

three methods are based on the following. Let q(jω) = h̃(ω) + jg̃(ω) and

p(jω) = f̃(ω) + jẽ(ω). Consider the roots ωi, i = 1, ..., k̃ in [0,∞) of

g̃(ω)f̃(ω) − h̃(ω)ẽ(ω) = 0 (3.1)

and define

αi =



















− h̃(ωi)

f̃(ωi)
if f̃(ωi) 6= 0

− g̃(ωi)
ẽ(ωi)

if ẽ(ωi) 6= 0.

If f̃(ωi) = 0 and ẽ(ωi) = 0, then let αi := ∞. The values αi so defined partition

the real axis into a finite number of intervals. Each (open) interval belongs to

A(p, q) if and only if at one point α of this interval φ(s, α) is Hurwitz stable. The

method thus requires finding the roots of (3.1) and applying stability tests such

as Nyquist or Routh-Hurwitz at one point in each obtained interval.

3.2 A Simple Case

In order to display the main ideas and techniques used in [34], it is appropriate

to consider the relatively simple case when p(s) is either a non-zero constant or
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has all its roots in the open right-half complex plane, i.e.,

p(s) = 0 ⇒ s ∈ C+. (3.2)

In this case the set A(p, q) can be obtained using Proposition 2.1 in a straight-

forward manner.

Let (h, g) and (f, e) be the even-odd components of q and p, respectively, so

that

q(s) = h(s2) + sg(s2),

p(s) = f(s2) + se(s2).

Then,

ψ(s, α) := φ(s, α)p(−s) = q(s)p(−s) + αp(s)p(−s)

has even and odd components a(u) := H(u) + αF (u) and b(u) := G(u), where

H(u) = h(u)f(u) − ug(u)e(u),

F (u) = f(u)2 − ue(u)2,

G(u) = g(u)f(u)− h(u)e(u).

Let v0 := 0, vk+1 := −∞, and let v1 > v2 > ... > vk be the real negative roots

with odd multiplicities of G(u). Since p(−s) is Hurwitz stable, φ(s, α) ∈ H if and

only if ψ(s, α) ∈ H.

We now apply Proposition 2.1 of Chapter 2 to ψ(s, α). Suppose for some

α ∈ R, ψ(s, α) ∈ H. Then, a = H + αF and b = G satisfies the conditions of

Proposition 2.1. Here, deg ψ = n + m is odd if and only if the relative degree

n−m of p/q is odd. Let us first suppose that n−m is odd. By Proposition 2.1,

G(u) 6≡ 0, k = deg G = (n +m − 1)/2, i.e., G(u) has (n + m − 1)/2 roots all of

which are real, negative, simple, and

S[H(vi) + αF (vi)] = (−1)iSG(0), i = 0, 1, ..., k. (3.3)

Using the fact that F (vi) > 0 for all i = 0, 1, ..., k, it is easy to see that (3.3)
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implies

α := max
{i even}

{−H
F

(vi)} < α < ᾱ := min
{i odd}

{−H
F

(vi)} for G(0) > 0, (3.4)

α := max
{i odd}

{−H
F

(vi)} < α < ᾱ := min
{i even}

{−H
F

(vi)} for G(0) < 0, (3.5)

where i = 0, 1, ..., k and α, ᾱ are −∞, +∞, respectively, whenever the associated

set of indices is empty. It follows that if α ∈ A(p, q), then α is in the interval

(α, ᾱ). Conversely, suppose G(u) has k = (n+m−1)/2 real, negative, and simple

roots v1 > v2 > ... > vk and α satisfies (3.4) or (3.5). Then, α is easily seen to

satisfy (3.3) so that, by Proposition 2.1, ψ(s, α) ∈ H.

Let us now suppose that n−m is even. Suppose for some α ∈ R, ψ(s, α) ∈ H.

Then, by Proposition 2.1, G(0) 6≡ 0, k = deg G = (n + m)/2 − 1, i.e., G(u) has

(n + m)/2 − 1 roots all of which are real, negative, simple, (3.3) holds, and

S(H + αF )(−∞) = (−1)k+1SG(0). By (2.1), we have degH = (m + n)/2,

deg F = m which yields

m = n & (−1)mSG(0) > 0 ⇒ α > −H
F

(−∞),

m = n & (−1)mSG(0) < 0 ⇒ α < −H
F

(−∞),

m < n ⇒ SH(−∞) = (−1)k+1SG(0).

With the convention, vk+1 = −∞, the first two conditions imply that α satisfies

(3.4) or (3.5) for i = 1, ..., k + 1 = n whenever m = n. The third condition fixes

the sign of H(−∞). Conversely, suppose G(u) has k = (n+m)/2 real, negative,

and simple roots v1 > v2 > ... > vk and α satisfies (3.4) or (3.5) for i = 1, ..., k+1

when n = m and satisfies (3.4) or (3.5) for i = 1, ..., k when n > m together with

the condition SH(−∞) = (−1)k+1SG(0). Then, α is easily seen to satisfy (3.3)

so that, by Proposition 2.1, ψ(s, α) ∈ H.

We can summarize the results above as follows.
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Proposition 3.1 Let p(s) satisfy (3.2). If n − m is odd, then A(p, q) is non-

empty if and only if k = deg G = (n +m− 1)/2,

α = max
{i even}

{−H
F

(vi)} < ᾱ = min
{i odd}

{−H
F

(vi)} for G(0) > 0, (3.6)

α = max
{i odd}

{−H
F

(vi)} < ᾱ = min
{i even}

{−H
F

(vi)} for G(0) < 0, (3.7)

where i ∈ {0, 1, ..., (n + m − 1)/2}. If n = m, then A(p, q) is non-empty if

and only if k = deg G = n − 1 and (3.6) or (3.7) holds for i ∈ {0, 1, ..., n}.
If n − m is even and n > m, then A(p, q) is non-empty if and only if k =

deg G = (n+m)/2 − 1, SH(−∞) = (−1)k+1SG(0), and (3.6) or (3.7) holds for

i ∈ {0, 1, ..., (n+m)/2 − 1}. In case A(p, q) is non-empty, A(p, q) = (α, ᾱ).

The main idea is thus to apply Proposition 2.1 to ψ(s, α) rather than to φ(s, α)

since the odd component of the former is independent of α. The simplicity of

the case considered in this section is due to the fact that α ∈ A(p, q) if and

only if ψ(s, α) is Hurwitz stable. In general ψ(s, α) will have roots in C0+ even

though φ(s, α) is Hurwitz stable. This necessitates the use of Theorem 2.2 and

the analysis is considerably more involved.

3.3 The General Case

Let p, q ∈ R[s] be non-zero, with m = deg p and n = deg q and satisfy

(A1) n ≥ m, n ≥ 1.

(A2) (p, q) is coprime.

In this section a description of A(p, q) is given in Theorem 3.1 [34], under as-

sumptions (A1) and (A2). Note that if (A1) fails, then either n < m in which



CHAPTER 3. STABILIZING FEEDBACK GAINS 32

case A(p, q) = ∅ or n = m = 0 in which case A(p, q) = R − {− p

q
}. On the other

hand, if (A2) fails, then with t := gcd{p, q}, we have q = tq̄ and p = tp̄ for co-

prime polynomials (q̄, p̄). Then, A(p, q) 6= ∅ if and only if t ∈ H and A(p̄, q̄) 6= ∅,
in which case A(p, q) = A(p̄, q̄). Consequently, we can assume (A1) and (A2)

without loss of generality.

Let (h, g) and (f, e) be the even-odd components of q(s) and p(s), respectively.

By (A1), f(u) and e(u) are not both zero and d := gcd {f, e} is well-defined. Let

f = df̄ , e = dē

for coprime polynomials f̄ , ē ∈ R[u]. Then, the polynomial

p̄(s) := f̄(s2) + sē(s2) = p(s)/d(s2) (3.8)

is free of C0 roots except possibly a simple root at s = 0. Let (H,G) be the

even-odd components of q(s)p̄(−s). Also let F (s2) := p(s)p̄(−s). By a simple

computation, it follows that

H(u) = h(u)f̄(u) − ug(u)ē(u),

G(u) = g(u)f̄(u) − h(u)ē(u),

F (u) = f(u)f̄(u) − ue(u)ē(u).

(3.9)

These polynomials are related to q(jω)/p(jω) by

H

F
(−ω2) = Re{q(jω)

p(jω)
}, −ωG

F
(−ω2) = Im{q(jω)

p(jω)
}

whenever defined. If G 6≡ 0 and if they exist, let the real negative zeros with odd

multiplicities of G(u) be {v1, ..., vk} with the ordering

0 > v1 > v2 > · · · > vk, (3.10)

with v0 := 0 and vk+1 := −∞ for notational convenience, and let the real negative

zeros with even multiplicities of G(u) be {u1, ..., ul}.
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Theorem 3.1 [34] Let p, q ∈ R[s] satisfy the assumptions (A1), (A2) and let

F,G,H, {vi} be defined by (3.9), (3.10).

[Existence] The set A(p, q) is non-empty if and only if

(i) G 6≡ 0,

(ii) (F,G,H) is coprime,

(iii) There exists a sequence of signums

I =







{i0, i1, . . . , ik} for odd n−m

{i0, i1, . . . , ik+1} for even n−m,

where i0 ∈ {−1, 0, 1} and ij ∈ {−1, 1} for j = 1, . . . , k+1 satisfying (1)-(3):

(1)

F (vj) = 0 ⇒ ij = SH(vj)SG(0−), j = 0, 1, ..., k ,

n−m even&n > m ⇒ ik+1 = SH(vk+1)SG(0−),

(2)

n−σ(p) =







i0 − 2i1 + 2i2 + · · · + 2(−1)kik for odd n−m

i0 − 2i1 + 2i2 + · · · + 2(−1)kik + (−1)k+1ik+1 for even n−m.

(3)

max
j∈J−

H

F
(vj) < min

j∈J+

H

F
(vj),

where

J + := {j : ij ∈ Ifree, ijSF (vj)SG(0−) = 1},
J − := {j : ij ∈ Ifree, ijSF (vj)SG(0−) = −1},

Ifree denotes the set of signums not fixed by (1), and where G(0−) :=

(−1)m0G(m0)(0) with m0 being the multiplicity of u = 0 as a root of G(u).
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[Determination] Let (i)-(iii) hold. Let I1, I2, . . . , Iµ be the set of all signum

sequences that satisfy (iii) and let J ±
t := {j : ij ∈ It,free, ijSF (vj)SG(0−) = ±1}

for t = 1, ..., µ. Consider the µ open intervals defined by

At := (− min
j∈J+

t

H

F
(vj), − max

j∈J−

t

H

F
(vj)) (3.11)

for t = 1, 2, · · · , µ and the set of points

Â := {−H
F

(uj) : F (uj) 6= 0}

Then,

A(p, q) =

µ
⋃

t=1

At \ (Â ∩ At). (3.12)

Proof. For completeness of presentation we present the proof given in [34].

[Only if] Suppose A(p, q) 6= ∅ and let α ∈ A(p, q). Let ψ(s, α) := φ(s, α)p̄(−s)
which has even-odd components (H + αF,G). Thus, σ(φ) = n, σ(ψ) = n− σ(p̄),

and deg ψ is odd if and only if n − m is odd. Suppose u0 ∈ C is a root of

gcd{H+αF,G}. Since (H+αF,G) are the even-odd components of φ(s, α)p̄(−s),
it follows that s0 = ∓√

u0 (or 0 with multiplicity 2) are both roots of ψ(s, α). If

Re {s0} = 0, then as φ(s, α) is Hurwitz stable p̄(−s) must have two roots on C0.

This is not possible since p̄(s) has no zeros in C0 except possibly a simple zero at

s = 0. Hence Re {s0} 6= 0 and one of the roots, say s0 = −√
u0, is in C+. Since φ

is Hurwitz stable, s0 is a root of p̄(−s). Since gcd (f̄ , ē) = 1, −s0 can not also be a

root of p̄(−s) so that it is a root of φ(s, α). But φ(−s0, α) = q(−s0)+αp(−s0) = 0

implies by p̄(−s0) = 0 that q(−s0) = 0. This contradicts the assumption (A2).

Therefore, (H + αF,G) and hence (F,G,H) is coprime. Now if G ≡ 0, then by

coprimeness of (H +αF,G), ψ(s, α) is a constant. This implies that n = 0 which

contradicts the assumption (A1). Hence, (i) and (ii) hold and σ(ψ) = n − σ(p̄),

where ψ(s, α) = φ(s, a)p̄(−s). By Theorem 2.2, at the roots vj of G(u), (2.15)

holds with r = n − σ(p̄), a(u) := H(u) + αF (u), and b(u) := G(u). Therefore,
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the sequence of signums I = {ij} defined by

ij := S(H + αF )(vj)SG(0−) (3.13)

for j = 0, 1, . . . , k(, k+1) satisfies (2) of condition (iii). Note that, by coprimeness

of (H + αF,G), ij 6= 0 for j = 1, ..., k, k + 1. Moreover, i0 = 0 if and only if

(H + αF )(0) = φ(0, α)p̄(0) = 0. This can happen if and only if p̄(0) = 0 so that

ij ∈ {−1, 1} for j = 1, ..., k + 1 and i0 ∈ {−1, 0, 1}, where i0 = 0 if and only if

p̄(0) = 0. To prove that (1) and (3) of condition (iii) are satisfied, let us first

suppose n −m is even. By n ≥ m and by (2.1), it follows that deg H ≥ deg F ,

where equality holds if and only if n = m. Thus for j = k + 1, (3.13) gives

ik+1 = SH(−∞) when n > m, α > −H
F

(−∞) when ik+1SF (−∞)SG(0−) = 1,

and α < −H
F

(−∞) when ik+1SF (−∞)SG(0−) = −1. For j = 0, 1, ..., k, (3.13)

gives ij = SH(vj)SG(0−) when F (vj) = 0 and

α > −H
F

(vj) for all vj for which ijSF (vj)SG(0−) = 1,

α < −H
F

(vj) for all vj for which ijSF (vj)SG(0−) = −1.

It follows that

max
{j : ijSF (vj)SG(0−))=1}

−H
F

(vj) < α < min
{j : ijSF (vj)SG(0−)=−1}

−H
F

(vj),

or equivalently,

− min
{j : ijSF (vj)SG(0−)=1}

H

F
(vj) < α < − max

{j : ijSF (vj)SG(0−)=−1}

H

F
(vj).

This yields the inequality in (3). When n−m is odd, similar arguments applied

to j = 0, 1, ..., k give (iii). This proves the “only if” part of the “existence”

statement. By coprimeness of (H + αF,G), (H + αF )(uj) 6= 0 so that α 6∈ Â.

Therefore, A(p, q) ⊂ A, where A denotes the right hand side of (3.12).

[If] Suppose (i)-(iii) are satisfied. We prove that A ⊂ A(p, q) establishing the

“if” part of the “existence” statement as well as the description for A(p, q). Let
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us first consider

Ac := A ∩ {α ∈ R : (H + αF,G) is coprime}.

By the definition of the set Ac, (H + αF,G) is coprime for all α ∈ Ac and, by

(i), G 6≡ 0. Let α ∈ Ac belong to the interval Aν obtained by a signum set Iν
for some ν ∈ {1, ..., µ}. Thus, using (2) and noting that (3) holds for J −

ν and

J +
ν , it is easy to show that S(H + αF )(vj) = ijSG(0−) for all ij ∈ Iν . By

(2) of (iii), it follows that a := H + αF, b := G satisfy (2.15) of Theorem 2.2

so that σ(φ(s, α)p̄(−s)) = n − σ(p̄(s)). It follows that σ(φ(s, α) = n and hence

Ac ⊂ A(p, q). We now show that the set A\Ac of finite number of points is empty.

Suppose α0 ∈ A \ Ac so that there exists u0 ∈ C satisfying H(u0) + α0F (u0) =

0, G(u0) = 0. If F (u0) = 0, then gcd {F,G,H} 6= 0 which contradicts (ii). Thus,

F (u0) 6= 0. We consider two cases. First, suppose u0 is real and non-positive.

Then, u0 ∈ {v0, ..., vk, u1, ..., ul} and α0 = −H(u0)/F (u0). This contradicts the

fact that α0 ∈ A. Second, suppose that u0 is either a real positive number or

a non-real complex number. It follows that φ(±√
u0, α0)p̄(∓

√
u0) = 0 since u0

is a common zero of the even-odd components of φ(s, α0)p̄(−s). Note that both

±√
u0 can not be roots of p̄(s) since the latter has coprime even-odd components.

On the other hand, if p̄(±√
u0) = 0 and φ(∓√

u0) = 0, then (p, q) is not coprime

and (A2) is contradicted. Hence, both of ±√
u0 are the roots of φ(s, α0). Note

that Re{√u0} 6= 0 as u0 is either real positive or non-real complex. Consequently,

φ(s, α0) has a root in C+. But, since Ac is dense in A, any neighborhood in A

of α0 contains α1 ∈ Ac for which φ(s, α1) is Hurwitz stable. By the continuity of

the roots of φ with respect to α and by the fact that C− ∩ C+ = ∅, such an α0

can not exist. We have thus shown that A \ Ac is empty and hence A ⊂ A(p, q).

�
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Remark 3.1 The condition (2) of Theorem 3.1 together with the degree restric-

tion on G(u) limits k. By (2.1) and by condition (2) of the theorem, respectively,

k ≤ deg G ≤







n+deg p̄−1
2

, n−m odd

n+deg p̄
2

− 1, n−m even
, n− σ(p) ≤







2k + 1, n−m odd

2k + 2, n−m even.

Hence, in order for A(p, q) to be non-empty, it is necessary that

n−σ(p)−1
2

≤ k ≤ n+deg p̄−1
2

, n−m odd

n−σ(p)
2

− 1 ≤ k ≤ n+deg p̄
2

− 1, n−m even.
(3.14)

4

Remark 3.2 Let us determine the possible cases where the stabilizing values of α

can belong to infinite intervals, i.e., A(p, q) = (−∞, a1) and/or A(p, q) = (a2,∞)

where a1, a2 are real numbers. Recall that n = deg q, m = deg p, and let

r = n −m. We assume in what follows that r ≥ 1. From root-locus arguments,

whenever r ≥ 3, stabilizing values of α can not include an infinite interval. This

can be easily seen from the asymptotes of the root-locus. Moreover, as the roots

of q(s) + αp(s) tends to the roots of p(s) as α → ±∞, whenever p(s) has a root

in C+ stabilizing values of α can not include an infinite interval. Hence, the only

possible case of obtaining an infinite stabilizing interval is when



















r ≤ 2

&

p(s) has no roots on C+.

Now, using Theorem 3.1 we give a rigorous proof to the fact that whenever r ≥ 3

or p(s) has a root in C+, A(p, q) can not include an infinite interval. We first

assume that F (u) 6= 0 ∀u ≤ 0 (this means p(s) has no roots on the jω-axis). Let

us also assume that G(0−) > 0, the case of G(0−) < 0 follows similar arguments.

Case 1: we consider the case n−m = 3. Suppose that σ(p) = m (in this case all

roots of p(s) are in the open left-half plane). Then, n−σ(p) = 3. Let v1, . . . , vk be
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the real negative roots of G(u), with odd multiplicities. Since all vi, i = 0, . . . , k

are finite, with v0 = 0, values of H(vi)
F (vi)

i = 0, . . . , k are also finite. Hence, an

infinite stabilizing range can occur if and only if J + or J − is an empty set which

means that the signums must have the same sign. By a simple calculation, the

right-hand side of the first equation in (2) of Theorem 3.1 can either be 1 or −1

depending on whether k is even or odd and the signums being 1’s or −1’s. Hence,

the signature n−σ(p) = 3 can not be achieved with a such a sequence of signums.

Case 2: we consider the case n−m = 4. Since n−m is even, we have vk+1 = −∞
and H(vk+1)

F (vk+1)
= ±∞. Suppose that σ(p) = m, then n−σ(p) = 4. If all the signums

are alike (1 or −1), then n− σ(p) = 0 and a signature of 4 can not be achieved.

We consider four different cases where the signums are not of the same sign:

Case 2.1
H(vk+1)

F (vk+1)
= ∞ and ik+1 = 1. Since ik+1 ∈ J +, the only possibility of an

infinite interval is when minj∈J+
H(vj)

F (vj)
= ∞. This fixes all ij, j = 0, . . . , k to −1

otherwise minj∈J+
H(vj)

F (vj)
6= ∞. In such a case n− σ(p) = −2 when k is even and

n− σ(p) = 2 when k is odd. Hence a signature of 4 can not be achieved.

Case 2.2 H(vk+1)
F (vk+1)

= ∞ and ik+1 = −1. Since ik+1 ∈ J −, the only possibility of

an infinite interval is when maxj∈J−

H(vj)

F (vj)
= ∞. However, condition 3

max
j∈J−

H(vj)

F (vj)
< min

j∈J+

H(vj)

F (vj)

in Theorem 3.1 can not be satisfied as
H(vj)

F (vj)
, j = 0, . . . , k are finite. Hence, an

infinite stabilizing interval can not exist in this case.

Case 2.3
H(vk+1)

F (vk+1)
= −∞ and ik+1 = −1. Since ik+1 ∈ J −, the only possibility of

an infinite interval is when maxj∈J−

H(vj)

F (vj)
= −∞. This fixes all ij, j = 0, . . . , k

to 1 otherwise maxj∈J−

H(vj)

F (vj)
6= −∞. In such a case n−σ(p) = 2 when k is even

and n− σ(p) = 0 when k is odd. Hence a signature of 4 can not be achieved.

Case 2.4 H(vk+1)
F (vk+1)

= −∞ and ik+1 = 1. Since ik+1 ∈ J +, the only possibility of
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an infinite interval is when minj∈J+
H(vj )

F (vj )
= −∞. However, condition 3

max
j∈J−

H(vj)

F (vj)
< min

j∈J+

H(vj)

F (vj)

in Theorem 3.1 can not be satisfied as
H(vj)

F (vj)
, j = 0, . . . , k are finite. Hence, an

infinite stabilizing interval can not exist in this case.

Case 3: We now consider the case of p(s) having at least one root in the open

right-half plane, σ(p) = m − 2. If n − m = 1, then n − σ(p) = 3 and by case

1 an infinite stabilizing interval can not exist. If n −m = 2, then n − σ(p) = 4

and by case 2 an infinite stabilizing interval can not exist. Note that whenever

n − m ≥ 4 or p(s) has more than one root in the open right-half plane, similar

arguments hold and an infinite stabilizing interval can not exist. Now, we show

that when n = m and p(s) has a root in C+ a similar conclusion holds. In this

case, n− σ(p) = 2, H and F have the same degree, and H(−∞)
F (−∞)

is finite. Hence,

an infinite stabilizing interval can occur if and only if J + or J − is an empty

set which means that the signums must have the same sign. However, for these

sequences of signums n− σ(p) = 0 and a signature of 2 can not be achieved. 4

Example 3.1 Consider

q(s) = s6 + 2s5 + 5s4 + 5s3 + s2 + 0.5s− 0.05,

p(s) = s6 + 4s5 + 30s4 + 60s3 + 150s2 + 100s+ 100.

To determine A(p, q), we employ Theorem 3.1. By the method of Hurwitz deter-

minants, it is easy to see that p is Hurwitz stable, i.e., σ (p) = 6. Using (3.9), we

have

F (u) = u6 + 44u5 + 720u4 + 4800u3 + 16500u2 + 20000u+ 10000,

G(u) = −2u5 − 15u4 + 46.5u3 + 405.2u2 + 478u+ 55,

H(u) = u6 + 27u5 + 161u4 + 377.95u3 + 118.5u2 + 42.5u− 5.

The polynomial G(u) has one positive and four negative real zeros which are

v1 = −0.1289, v2 = −1.3783, v3 = −3.7921, v4 = −7.5823.
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Now, G(0−) = G(0) = 55 > 0, F (vi) > 0 for i = 0, ..., 5, and

H
F

(v0) = −0.0005, H
F

(v1) = −0.0012, H
F

(v2) = −0.1041,

H
F

(v3) = −0.1471, H
F

(v4) = −0.6207, H
F

(v5) = 1.

The signum sequences

I1 = {1, 1, 1, 1, 1, 1}, I2 = {1, 1, 1,−1,−1, 1},
I3 = {1,−1,−1,−1,−1, 1}, I4 = {−1,−1,−1,−1,−1,−1}

satisfy (3) in Theorem 3.1.iii. We obtain the four intervals

A1 = (0.6207,+∞), A2 = (0.1041, 0.1471), A3 = (0.0005, 0.0012), A4 = (−∞,−1)

and Â = ∅ so that A(p, q) = A1 ∪ A2 ∪ A3 ∪ A4.
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Figure 3.1: Root-loci of φ(s, α).

•
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Example 3.2 In this example, we illustrate how fixed signums can arise in the

candidate signum sequences. Consider

q(s) = s6 + s5 + 11s4 + 2s3 + 19s2 + 12,

p(s) = s5 + 3s4 + 4s3 + 6s2 + 4s.

We have p̄ = s3+3s2+2s, σ (p̄) = 2, G(u) = −(u+1)(u+2)(u+3)(u+4), F (u) =

−u(u − 1)(u− 4)(u + 2), H(u) = u(2u3 + 29u2 + 53u + 36). The zeros of G(u)

are v1 = −1, v2 = −2, v3 = −3, v4 = −4. Since F (v0) = 0, F (v2) = 0, by (1)

of Theorem 3.1.iii, i0 = 0 and i2 = 1 are fixed. We also have n − σ (p) = 4

and the signum sequences I1 = {0,−1, 1, 1, 1}, I2 = {0,−1, 1,−1,−1}, I3 =

{0, 1, 1,−1, 1} are the only ones that satisfy (2) of Theorem 3.1.iii. Moreover,

SG(0−) = −1, SF (v1) = 1, SF (v3) = SF (v4) = −1 and we have J −
1 = ∅,J +

1 =

{1, 3, 4},J−
2 = {3, 4},J+

2 = {1},J −
3 = {1, 3},J +

3 = {4}. Finally, H
F

(v1) =

−1, H
F

(v3) = 3, H
F

(v4) = 2 and the only signum sequence satisfying the third item

of Theorem 3.1 turns out to be I1 which yields A(p, q) = (1,+∞). •

3.4 The Dual Case

Let us now consider the set

B(p, q) := {β ∈ R : φ(s, β) = βq(s) + p(s) ∈ H , deg θ = deg q}.

If (A1) and (A2) hold, then the following relation between A(p, q) and B(p, q) is

immediate. If α ∈ A(p, q) and α 6= 0, then β := α−1 is in B(p, q). If 0 ∈ A(p, q),

then q ∈ H and the intervals (β1,∞), (−∞,−β2) are contained in B(p, q) for

some β1, β2 > 0. If β ∈ B(p, q) and β 6= 0, then α := β−1 is in A(p, q). If

0 ∈ B(p, q), then n = m, p ∈ H, and the intervals (α1,∞), (−∞,−α2) are

contained in A(p, q) for some α1, α2 > 0.
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We now state a counterpart to Theorem 3.1 which states conditions for B(p, q)

to be non-empty and gives a description of B(p, q).

By (A1), h and g are not both zero and b := gcd {h, g} is well-defined. Let

h = bh̄, g = bḡ

for coprime polynomials h̄, ḡ ∈ R[u]. Then, the polynomial

q̄(s) := h̄(s2) + sē(s2) = q(s)/b(s2) (3.15)

is free of C0 roots except possibly a simple root at s = 0. Let (E,D) be the

even-odd components of p(s)q̄(−s) and let C(s2) := q̄(s)q̄(−s). Similar to (3.9),

we have

E(u) = h̄(u)f(u)− uḡ(u)e(u),

D(u) = h̄(u)e(u) − ḡ(u)f(u),

C(u) = h̄(u)h(u) − uḡ(u)g(u).

(3.16)

If D 6≡ 0 and if they exist, let the real negative zeros with odd multiplicities of

D(u) be {x1, ..., xk} with the ordering

x1 > x2 > · · · > xk, (3.17)

with x0 := 0 and xk+1 := −∞ for notational convenience, and let the real negative

zeros with even multiplicities of D(u) be {y1, ..., yl}.

Theorem 3.2 [34] Let p, q ∈ R[s] satisfy the assumptions (A1), (A2) and let

C,D,E, {xj} be defined by (3.16), (3.17).

[Existence] The set B(p, q) is non-empty if and only if

(i) D 6≡ 0,

(ii) (C,D,E) is coprime,
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(iii) There exists a sequence of signums

I = {i0, i1, . . . , ik+1}

where i0 ∈ {−1, 0, 1} and ij ∈ {−1, 1} for j = 1, . . . , k+1 satisfying (1)-(3):

(1)

C(xj) = 0 ⇒ ij = SE(xj)SD(0−), j = 0, 1, ..., k.

(2)

n− σ(q) = i0 − 2i1 + 2i2 + · · ·+ 2(−1)kik + (−1)k+1ik+1.

(3)

max
j∈J−

E

C
(xj) < min

j∈J+

E

C
(xj) if D(0−) > 0,

max
j∈J+

E

C
(xj) < min

j∈J−

E

C
(xj) if D(0−) < 0,

where J + := {j : ij ∈ I, ijSC(xj) = 1} and J − := {j : ij ∈ I, ijSC(xj) =

−1} and where D(0−) := (−1)n0D(n0)(0) with n0 being the multiplicity of

u = 0 as a root of D(u).

[Determination] Let (i)-(iii) hold. Let I1, I2, . . . , Iµ be the set of all signum

sequences that satisfy (iii) and let J ±
t := {j : ij ∈ It, ijSC(vj) = ±1} for

t = 1, ..., µ. Consider µ open intervals defined by

Bt :=



























(− min
j∈J+

t

E

C
(xj), − max

j∈J−

t

E

C
(xj)) if D(0−) > 0

(− min
j∈J−

t

E

C
(xj), − max

j∈J+
t

E

C
(xj)) if D(0−) < 0
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for t = 1, 2, · · · , µ and the set of points

B̂ :=



















{−E
C

(yj) : C(yj) 6= 0} ∪ {0} if n > m

{−E
C

(yj) : C(yj) 6= 0} ∪ {− q

p
(∞)} if n = m .

Then,

B(p, q) =

µ
⋃

t=1

Bt \ (B̂ ∩ Bt). (3.18)

3.5 An Improved Algorithm

The following algorithm, which is based on Theorem 3.1, determines whether

Ar(p, q) is empty or not and outputs its elements when it is not empty, where

Ar(p, q) := {α ∈ R : σ[φ(s, α)] = σ[q(s)+αp(s)] = r} is the set of all real α such

that φ(s, α) has signature equal to r. Recall that the real negative zeros with

odd multiplicities of G(u) are denoted by {v1, ..., vk} with the ordering 0 > v1 >

v2 > · · · > vk, with v0 := 0 and vk+1 := −∞. For simplicity let us assume that

G(0−) > 0.

Algorithm 3.1 1. Consider all the sequences of signums

I =







{i0, i1, . . . , ik} for odd r −m

{i0, i1, . . . , ik+1} for even r −m,

where i0 ∈ {−1, 0, 1} and ij ∈ {−1, 1} for j = 1, . . . , k + 1. If F (vj) = 0,

then ij = SH(vj).

2. Choose all sequences that satisfy

r − σ(p) =







i0 − 2i1 + · · ·+ 2(−1)kik for odd r −m

i0 − 2i1 + · · ·+ 2(−1)kik + (−1)k+1ik+1 for even r −m.
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3. For each sequence of signums I = {ij} that satisfy step 2, let

αmax = max{−H
F

(vj)} for all vj for which ijSF (vj) = 1,

and

αmin = min{−H
F

(vj)} for all vj for which ijSF (vj) = −1.

The set Ar(p, q) is non-empty if and only if for at least one signum sequence

I satisfying step 2, αmax < αmin holds.

4. Ar(p, q) is equal to the union of intervals (αmax, αmin) for each sequence

of signums I that satisfy step 3. The set of points Â := {−H
F

(uj), j =

1, . . . , l : F (uj) 6= 0} must be excluded from Ar(p, q) as they correspond to

values of α for which q(s) + αp(s) has zeros on the jw−axis.

From a computational point of view, application of algorithm 3.1 is expen-

sive. The main disadvantage comes from checking condition 2. In order to find

the suitable signum sequences, we have to check condition 2 for 2k+2 different

candidate signum sequences in case p(s) has no roots in C0 and n−m is even. In

case p(s) has no roots in C0 and n−m is odd, the number of sequences is 2k+1.

Therefore, the number of sequences explodes exponentially as k increases. Since

some sequences that satisfy condition 2 fail to satisfy condition 3, it is possible to

improve Algorithm 3.1. In order to reduce the number of arithmetic operations

needed in algorithm 3.1, we have to first identify the signum sequences for which

condition 3 holds then proceed to check condition 2. We can show that two dif-

ferent signum sequences I1, I2 can not correspond to the same interval. Let us

define the following sets:

J +
1 := {j : ij ∈ I1, ijSF (vj) = 1},

J −
1 := {j : ij ∈ I1, ijSF (vj) = −1},

J +
2 := {j : ij ∈ I2, ijSF (vj) = 1},

J −
2 := {j : ij ∈ I2, ijSF (vj) = −1}.
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Since I1 6= I2, it follows that J +
1 6= J +

2 and J −
1 6= J −

2 . Using condition 3 in

Algorithm 3.1

max
j∈J−

1

H

F
(vj) 6= max

j∈J−

2

H

F
(vj),

and/or

min
j∈J+

1

H

F
(vj) 6= min

j∈J+

2

H

F
(vj).

In both cases I1 and I2 correspond to two different intervals as the endpoints of

the intervals are different.

Algorithm 3.2 1. If F (vj) 6= 0, then calculate

αi =







−H
F

(vi), i = 0, . . . , k for odd r −m

−H
F

(vi), i = 0, . . . , k + 1 for even r −m,

and sort them in ascending order

ᾱ0 < ᾱ1 < . . . < ᾱk+2 < ᾱk+3

where ᾱ0 = −∞ and ᾱk+3 = ∞.

2. Identify all the sequences of signums

I =







{i0, i1, . . . , ik} for odd r −m

{i0, i1, . . . , ik+1} for even r −m,

where i0 ∈ {−1, 0, 1} and ij ∈ {−1, 1} for j = 1, . . . , k + 1, that correspond

to the intervals (ᾱi, ᾱi+1) for i = 0, . . . , k + 2. If F (vj) = 0, then ij =

SH(vj).

3. For each signum sequence Ii from step 2, if

r − σ(p) =







i0 − 2i1 + 2i2 − 2i3 + · · · + 2(−1)kik for odd r − m

i0 − 2i1 + 2i2 − 2i3 + · · · + (−1)k+1ik+1 for even r − m.

holds, then (ᾱi, ᾱi+1) ∈ Ar(p, q). The set of points Â := {−H
F

(uj), j =

1, . . . , l : F (uj) 6= 0} must be excluded from Ar(p, q) as they correspond to

values of α for which q(s) + αp(s) has zeros on the jw−axis.
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In step 2 above it is easy to identify the signum sequences that lead to the different

intervals. Since αi’s are ordered in ascending order and SF (vj), j = 1, . . . , k + 1

are known, we can determine J − and J + for a particular interval (ᾱi, ᾱi+1). This

is equivalent to determining whether ij = 1 or ij = −1 for j = 0, 1, . . . , k+ 1 and

therefore identifying I for that particular interval. Algorithm 3.2 is similar to

Neimark D-decomposition described in the introduction with the advantage that

the application of some stability criterion at one interior point of each interval is

replaced by step 3. Using Neimark D-decomposition the problem can be solved

with O(n3) arithmetic operations whereas Algorithm 3.2 requires only O(n2)

arithmetic operations.

The algorithm above is easily specialized to determine all stabilizing propor-

tional controllers c(s) = α for the plant g(s) = p(s)
q(s)

. This is achieved by replacing

r in step 3 of the algorithm by n, the degree of φ(s, α).

Remark 3.3 By Step 3 of Algorithm 3.2, a necessary condition for the existence

of an α ∈ Ar(p, q) is that the odd part of [q(s) + αp(s)]p̄(−s) has at least r̄ =

max{0, b |r−σ(p)|−1
2

c} real negative roots with odd multiplicities. When solving a

constant stabilization problem, this lower bound is r̄ = max{0, b n−σ(p)−1
2

c}. 4

Example 3.3 In order to see the differences between Algorithm 3.1 and Algo-

rithm 3.2, let us consider the same plant in example 3.1 given by

q(s) = s6 + 2s5 + 5s4 + 5s3 + s2 + 0.5s− 0.05,

p(s) = s6 + 4s5 + 30s4 + 60s3 + 150s2 + 100s+ 100.

Table 1 summarizes the different steps needed in Algorithm 3.1. From the re-

sults below, we need to check 64 different signum sequences for condition 2 of

Algorithm 3.1. Among these sequences 12 satisfy this condition. We have also

to check the 12 sequences for condition 3. All this redundancy can be avoided
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by applying Algorithm 3.2. Table 2 summarizes the steps of Algorithm 3.2.

i0 i1 i2 i3 i4 i∞ i0 − 2i1 + 2i2 − 2i3 + 2i4 − i∞ Interval

1 -1 -1 -1 -1 -1 -1 0 (−∞,−1)

2 1 -1 -1 -1 -1 -1 2 No

3 -1 1 -1 -1 -1 -1 -4 No

4 1 1 -1 -1 -1 -1 -2 No

5 -1 -1 1 -1 -1 -1 4 No

6 1 -1 1 -1 -1 -1 6 No

7 -1 1 1 -1 -1 -1 0 No

8 1 1 1 -1 -1 -1 2 No

9 -1 -1 -1 1 -1 -1 -4 No

10 1 -1 -1 1 -1 -1 -2 No

11 -1 1 -1 1 -1 -1 -8 No

12 1 1 -1 1 -1 -1 -6 No

13 -1 -1 1 1 -1 -1 0 No

14 1 -1 1 1 -1 -1 2 No

15 -1 1 1 1 -1 -1 -4 No

16 1 1 1 1 -1 -1 -2 No

17 -1 -1 -1 -1 1 -1 4 No

18 1 -1 -1 -1 1 -1 6 No

19 -1 1 -1 -1 1 -1 0 No

20 1 1 -1 -1 1 -1 2 No

21 -1 -1 1 -1 1 -1 8 No

22 1 -1 1 -1 1 -1 10 No

23 -1 1 1 -1 1 -1 4 No

24 1 1 1 -1 1 -1 6 No

25 -1 -1 -1 1 1 -1 0 No

26 1 -1 -1 1 1 -1 2 No
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i0 i1 i2 i3 i4 i∞ i0 − 2i1 + 2i2 − 2i3 + 2i4 − i∞ Interval

27 -1 1 -1 1 1 -1 -4 No
28 1 1 -1 1 1 -1 -2 No
29 -1 -1 1 1 1 -1 4 No
30 1 -1 1 1 1 -1 6 No
31 -1 1 1 1 1 -1 0 No
32 1 1 1 1 1 -1 2 No
33 -1 -1 -1 -1 -1 1 -2 No
34 1 -1 -1 -1 -1 1 0 (0.0005,0.0012)
35 -1 1 -1 -1 -1 1 -6 No
36 1 1 -1 -1 -1 1 -4 No
37 -1 -1 1 -1 -1 1 2 No
38 1 -1 1 -1 -1 1 4 No
39 -1 1 1 -1 -1 1 - 2 No
40 1 1 1 -1 -1 1 0 (0.1041,01.471)
41 -1 -1 -1 1 -1 1 -6 No
42 1 -1 -1 1 -1 1 -4 No
43 -1 1 -1 1 -1 1 -10 No
44 1 1 -1 1 -1 1 -8 No
45 -1 -1 1 1 -1 1 -2 No
46 1 -1 1 1 -1 1 0 No
47 -1 1 1 1 -1 1 -6 No
48 1 1 1 1 -1 1 -4 No
49 -1 -1 -1 -1 1 1 2 No
50 1 -1 -1 -1 1 1 4 No
51 -1 1 -1 -1 1 1 -2 No
52 1 1 -1 -1 1 1 0 No
53 -1 -1 1 -1 1 1 6 No
54 1 -1 1 -1 1 1 8 No
55 -1 1 1 -1 1 1 2 No
56 1 1 1 -1 1 1 4 No
57 -1 -1 -1 1 1 1 -2 No
58 1 -1 -1 1 1 1 0 No
59 -1 1 -1 1 1 1 -6 No
60 1 1 -1 1 1 1 -4 No
61 -1 -1 1 1 1 1 2 No
62 1 -1 1 1 1 1 4 No
63 -1 1 1 1 1 1 -2 No
64 1 1 1 1 1 1 0 (0.6207,∞)

Table 3.1: Summary of the results of Algorithm 3.1.
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Interval Sequence i0 − 2i1 + 2i2 − 2i3 + 2i4 − i∞

(−∞,−1) {-1,-1,-1,-1,-1,-1} 0
(−1, 0.0005) {-1,-1,-1,-1,-1,1} -2

(0.0005, 0.0012) {1,-1,-1,-1,-1,1} 0
(0.0012, 0.1041) {1,1,-1,-1,-1,1} -4
(0.1041, 0.1471) {1,1,1,-1,-1,1} 0
(0.1471, 0.6207) {1,1,1,1,-1,1} 4

(0.6207,∞) {1,1,1,1,1,1} 0

Table 3.2: Results of Algorithm 3.2.

3.6 Nyquist Plot Based Method

In [37, 75], using the Nyquist plot an alternative method for determining the

set of all stabilizing gains is developed. The method is based on calculating the

location and direction of crossings of the Nyquist plot with the real axis. The

method is extended to calculate the set of all stabilizing PID controllers. In what

follows we summarize the method and compare it with the previously studied

methods that are based on an extension of the Hermite-Biehler theorem.

Consider a linear time-invariant system given by a proper rational transfer

function g(s) = p(s)
q(s)

, where p(s) and q(s) are real polynomials and q(s) has no

roots on the imaginary axis. Let

g(jω) =
p(jω)

q(jω)
=
f̃(ω) + jẽ(ω)

h̃(ω) + jg̃(ω)

so that f̃(ω) := Re{p(jω)}, ẽ(ω) := Im{p(jω)}, h̃(ω) := Re{q(jω)} and g̃(ω) :=

Im{q(jω)}. Note that

f̃(ω) = f(−ω2),

ẽ(ω) = ωe(−ω2),

h̃(ω) = h(−ω2),

g̃(ω) = ωg(−ω2),

where (h, g) are the even-odd components of q(s) and (f, e) are the even-odd
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components of p(s). By a simple computation, it follows that

g(jω) =
f(ω) + jωe(ω)

h(ω) + jωg(ω)

=
X(ω2)

Z(ω2)
+ jω

Y (ω2)

Z(ω2)

where

X(ω2) := h(−ω2)f(−ω2) + ω2g(−ω2)e(−ω2)

Y (ω2) := h(−ω2)e(−ω2) − g(−ω2)f(−ω2)

Z(ω2) := h(−ω2)2 + ω2g(−ω2)2

Let v := ω2. By noting that the imaginary part of g(jω) is given by

Im[g(jω)] = ω
Y (ω2)

Z(ω2)
,

we can find the real axis crossings of the Nyquist plot of g(jω). Let vi for i =

1, . . . , k denote the real positive roots of Y (v), also let v0 = 0 and Vk+1 = ∞.

Then, the real axis crossing points are αi = X(vi)
Z(vi)

for i = 0, . . . , k + 1. Since, the

closed-loop system characteristic equation is given by

1 + αg(s) = 0,

the closed-loop system has a pole on the border of the stability region if and only

if

1 + α∗g(jω∗) = 0.

Since α∗ is real and

α∗ = − 1

g(jω∗)
,

the imaginary part of g(jω∗) must be zero. Now, arranging the αi’s in ascending

order it is easy to see that for α ∈ (− 1
αi
,− 1

αi+1
) the number of unstable poles of the

closed-loop system remains constant. By calculating the number of unstable poles

of the open-loop system and the direction of crossing at the critical frequencies.

we can find the number of unstable poles of the closed-loop system for each

interval (− 1
αi
,− 1

αi+1
). The following algorithm was given in [75].
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Algorithm 3.3 1. Find the frequencies vi’s, i = 1, . . . , k.

2. Calculate the points αi = X(vi)
Z(vi)

, i = 1, . . . , k.

3. Relabel αi such that αi > αi+1.

4. Find the direction of crossing using either numeric or algebraic methods.

5. Calculate the number of unstable poles of the closed-loop system.

6. Form the intervals Ii and for each interval determine the number of unstable

poles of the closed-loop system from the previous step.

7. Return the intervals (if any) for which there is no unstable pole.

In step 4 above, the direction of crossing di is calculated as follows [75]:

di =



















(1 − (−1)l) SY l(vi) if 0 < vi <∞,

Syo if vi = 0,

Sy1 if vi = ∞,

where Y l(v) is the first non-zero derivative of Y (v) at the point vi, y0 is is the

last non-zero coefficient of Y (v), and y1 is the first coefficient of Y (v).

This method was later extended to compute all stabilizing PID controllers

c(s) = kds
2+kps+ki
s

in [37, 76]. By fixing Kp, values of ki and kd are found. It is

shown that the resulting stabilizing PID compensators form a finite number of

disjoint polyhedral sets in the parameter space.

We can see that Algorithm 3.2 and Algorithm 3.3 are similar. Algorithm 3.2

is based on an extension of the Hermite-Biehler theorem whereas Algorithm 3.3

is based on the Nyquist plot. Similarity of the algorithms can be seen from the

equivalences of H and X, G and Y , and F and Z. Also, from a computational

complexity point of view both algorithms require the same computational effort.
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In Algorithm 3.2 the number of unstable poles is calculated by a simple addition

of the signum of sequence that lead to that particular interval. In Algorithm 3.3

we can keep track of the number of unstable poles of the closed-loop system by

calculating the direction of crossing at the critical frequencies.

3.7 PI and PID Controllers

The method described for finding stabilizing gains can be extended to a “sweeping

algorithm” for determining PI controllers [25, 77]. A PI controller

c(s) = α1 +
α2

s
=
α1s+ α2

s
,

applied to a plant g(s) = p(s)
q(s)

, gives the closed-loop characteristic polynomial

φ(s, α1, α2) = sq(s) + (α1s+ α2)p(s).

Multiplying φ(s, α1, α2) by p̄(−s), we obtain

ψ(s, α1, α2) = φ0(s, α1, α2)p̄(−s)

= s2G(s2) + α2F (s2) + s[H(s2) + α1F (s2)].

Note that α1 appears only in the odd part and α2 appears only in the even

part. For every fixed value of α1, an application of the proportional controller

algorithm above yields the set of all α2 for which φ(s, α1, α2) is Hurwitz stable.

This PI controller algorithm of [25] thus relies on finding a suitable range for α1

over which the “sweeping” should be done. Such a range can be determined by

Remark 3.3.

The method described for PI controllers can be applied to PID controllers

with some modifications, [25]. A PID controller

c(s) = α1 +
α2

s
+ α3s =

α3s
2 + α1s + α2

s
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applied to g(s) gives

ψ(s, α1, α2, α3) = φ(s, α1, α2, α3)p̄(−s)
= s2G(s2) + α3s

2F (s2) + α2F (s2) + s[H(s2) + α1F (s2)].

(3.19)

Note that α1 appears only in the odd part. Therefore, a range of suitable α1 can

be found as described above. Since now two parameters α2, α3 appear linearly in

the even part, a modification of the algorithm in previous section is necessary for

obtaining the proper values of α2 and α3. For each admissible value of α1, a linear

programming problem has to be solved. In order to highlight the modification

in the algorithm, we consider a simple example. For a fixed value of α1, suppose

that the odd part of ψ(s) has three real negative roots with odd multiplicities

v1, v2, v3. Also, suppose that the sequence of signums {1,−1,−1, 1} gives the

correct signature and recall that v0 = 0. Then, values of (α2, α3) are obtained by

solving the following set of linear inequalities:































v0G(v0) + α3v0F (v0) + α2F (v0) > 0,

v1G(v1) + α3v1F (v1) + α2F (v1) < 0,

v2G(v2) + α3v2F (v2) + α2F (v2) < 0,

v3G(v3) + α3v3F (v3) + α2F (v3) > 0.

3.8 Application to Stability Robustness

In this section, we study the pairs of polynomials (p, q) for which A(p, q) is either

empty or a single interval, i.e., those pairs having the property:

(CC) α1, α2 ∈ A(p, q) for some α1 < α2 in R ⇒ α ∈ A(p, q) ∀ α ∈ [α1, α2].

The condition (CC) is a degree invariance and convexity condition on the family

of polynomials (q + Rp) ∩ H, where (q + Rp) := {q(s) + αp(s) : α ∈ R}. We
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refer the reader to [47], [74], [48] for motivations of studying (CC) when q(s) is a

stable polynomial.

By Theorem 3.1, we have the following characterization of (CC). Let p, q ∈
R[s] satisfy the assumptions (A1), (A2). The pair (p, q) satisfies (CC) if and

only if (i), (ii) of Theorem 3.1 hold, µ ≤ 1, and whenever µ = 1 it holds that

Aµ ∩ Â = ∅. Here, we identify an interesting class of pairs (p, q) satisfying (CC)

by a direct application of Theorem 3.1.

Corollary 3.1 Let p, q ∈ R[s] satisfy the assumptions (A1), (A2), n > m, and

n− σ(p) ≥







2k − 1, if n−m is even

2k, if n−m is odd.
(3.20)

Then, there is at most one signum sequence satisfying (1) and (2) of Theorem

3.1.

Proof. By (3.14) and (3.20), n − σ(p) can have the values {2k + 1, 2k, 2k − 1}
when n − m is odd and the values {2k + 2, 2k + 1, 2k} when n − m is even.

The first values are the maximum values the right hand side of (2) can attain

and the alternating sequence ij = (−1)jSG(0−), j = 0, 1, ... yields these values.

Considering the second values, we see that n− σ(p) is required to be even (resp.,

odd) when n − m is odd (resp., even). This is possible only if i0 = 0. In this

case the sequence i0 = 0, ij = (−1)jSG(0−), j = 1, 2, ... is the only sequence that

achieves these values. If n− σ(p) = 2k − 1 when n−m is odd, then the unique

sequence satisfying (2) is easily seen to be i0 = −SG(0−), ij = (−1)jSG(0−),

j = 1, ..., k. If n − σ(p) = 2k when n − m is even, then the two sequences

ij = (−1)jSG(0−), j = 1, ..., k and i0 = ±SG(0−), i∞ = ∓SG(0−) both satisfy

(2) of Theorem 3.1. By our assumption n > m, the signum i∞ is fixed by (1) of

Theorem 3.1 so that also in this case there is only one signum sequence satisfying

(1) and (2). �
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By (3.14), the condition (3.20) is easily seen to hold just in case

number of C− roots of p(s) ≤ deg G− k + 1, (3.21)

whether n−m is even or odd. If p(s) is either constant or has all its roots in C+,

then (3.21) holds. Moreover, by Proposition 2.1 applied to (q + αp)(s)p(−s), we

have deg G = k so that Â = ∅ and Corollary 3.1 yields the result of Proposition

3.1 in case n > m. To see other concrete examples of “one-interval” cases, suppose

p̄(s) satisfies

(A3) σ(p̄) ≤ −deg p̄+ 2.

By (3.8), the polynomial p̄(s) is free of C0 roots except possibly a simple root at

the origin. Thus, (A3) holds if and only if either of the following three holds:

(A3.i) p̄(s) = 0 ⇒ s ∈ C+,

(A3.ii) p̄(s) has one root at 0 and the rest in C+,

(A3.iii) p̄(s) has one root in C− and the rest in C+.

Note that if (A3) holds, then by (3.14) the inequality (3.20) also holds. Also by

(3.14), k ≥ deg G− 1 so that Â = ∅. We thus have the following re-discovery of

the best known “Rantzer polynomials”, see [78]. These classes are of course also

easily obtained from Theorem 2 in [47].

Corollary 3.2 If p ∈ R[s] satisfies (A3), then A(p,q) is an interval for all q ∈
R[s] satisfying (A1), (A2), and n > m. �

The following example shows that Corollary 3.1 covers many other non-trivial

pairs (p, q) satisfying (CC) with p(s) not a Rantzer polynomial.

Example 3.4 Consider p(s) = s2 +2s+1. Since p(s) is a second degree Hurwitz

stable polynomial, by [47], there are Hurwitz stable q(s) for which (CC) does not
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hold. However, the polynomial q(s) = s5+s4+4s3−s−1 is such that the condition

of Corollary 1 holds with G(u) = (u+ 1)3, n− σ(p) = 2k + 1 = 3. Consequently,

the pair (p, q) satisfies (CC). In fact, A(p, q) is the interval (1, 2). •

Now, let us restrict our attention to q ∈ H. In [55], the following definitions

are given for local convex directions:

Definition 3.1 (Analytic) Given a real Hurwitz stable polynomial q(s) of de-

gree n, a real polynomial p(s) with deg p < n is said to be a convex direction for

q(s) if all the roots Sj(α), j = 1, . . . , n of qα(s) = q(s) + αp(s), α ≥ 0 on the

punctured real imaginary axis jR \ {0} are simple and satisfy Re{S ′

j(α)} > 0.

Definition 3.2 (Geometric) Given a real Hurwitz stable polynomial q(s) of de-

gree n, a real polynomial p(s) with deg p < n is said to be a convex direction for

q(s) if the intersection of the ray q + R+p with the set Hn of real Hurwitz poly-

nomials of degree n is convex.

We note that (CC) is a slight generalization (to unstable q(s)) of the geometric

local concept of convex directions introduced in [55]. In particular, when q(s) is

Hurwitz stable, [55] gives conditions on the root-locus and the Nyquist plot of

p(s)
q(s)

for (CC) to hold on the positive (or negative) real-axis.

Fact 3.1 [55] Suppose that q(s) is a Hurwitz stable polynomial. A real polynomial

p(s) with deg(p) < deg(q) is a convex direction (analytic sense) if and only if the

Nyquist plot r(s) = p(s)
q(s)

on jR+ crosses the negative real axis R− only in the

clockwise direction, i.e., for every w ≥ 0

r(jw) ∈ (−∞, 0) =⇒ ∂arg(r(jw))

∂w
< 0.
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The global version of (CC) was introduced in [47] and can be shown to be

equivalent to characterizing the set of p(s) for which (p, q) satisfies (CC) for any

Hurwitz stable q(s). In Theorem 2 of [47], such p(s) are characterized by a phase

growth condition. In [48] and the references therein, one can find applications

of the concept of convex directions to stability robustness of various families of

polynomials.

Note that Fact 3.1 is equivalent to Corollary 3.1 applied to q ∈ H. Recall that

q(s)p(−s) = H(s2) + sG(s2), (3.22)

p(s)

q(s)
=

H(s2) − sG(s2)

C(s2)
(3.23)

where H(s2) and G(s2) are given in (3.9) and C(s2) is given in (3.16). Now,

let r1 be the minimum number of real negative roots of G(u) required for the

existence of a solution to A(p, q). If k the number of real negative roots of G(u)

is equal to r1 or r1 + 1, then only one alternating sequence of signums leads to

the signature n − σ(p). As q ∈ H, the signature of the polynomial q(s)p(−s) is

given by n−σ(p). Since φ(s, α) and q(s)p(−s) have the same odd part G(u), the

same signature, and only one alternating sequence of signums that leads to this

signature, it is possible to give a solution to the analytic version of local convex

directions problem in terms of the Nyquist plot of p(s)
q(s)

using (3.22) and (3.23).

Hence the equivalence between Corollary 3.1 and Fact 3.1 follow. Characterizing

p(s) for which the geometric definition holds is more involved. We have to include

the case where k ≥ r1 + 2. The following examples, show two cases for which

k ≥ r1 + 2 and local convexity condition holds in one case and fails in the other.

Example 3.5

q(s) = s6 + 2s5 + 5s4 + 5s3 + s2 + 0.5s+ 0.005,

p(s) = s5 + 4s4 + 30s3 + 60s2 + 150s+ 100.



CHAPTER 3. STABILIZING FEEDBACK GAINS 59

we have n − σ(p) = 1, k = 2, and r1 = 0. The solution is A(p, q) =

(−0.001, 0.005) ∪ (12.2489,+∞) and the corresponding sequence of signums are

{1,−1,−1}, {1, 1, 1}, hence p(s) is not a local convex direction for q(s). •

Example 3.6 [74]

q(s) = s5 + 3.2s4 + 250.3s3 + 75001.6s2 + 7500.2s+ 2500,

p(s) = s4 − 10s3 + 2525s2 + 23500s+ 325000.

we have n − σ(p) = 5, k = 4, and r1 = 2. The solution is

A(p, q) = (−0.0077, 0.0815) and the corresponding sequence of signums are

{1,−1,−1,−1, 1}. Although the condition of Fact 3.1 does not hold, p(s) is a

local convex direction for q(s). •



Chapter 4

Computation of First and Second

Order Controllers

In this chapter, a new method is given for determining the set of all stabilizing

proper first-order controllers for linear, time-invariant, scalar plants. We first

solve the problem for plants with either all its zeros or all its poles in the closed

right-half plane. This restrictive assumption is then removed and a solution is

given for plants with no restrictions on the location of its poles or zeros. The

method is based on a generalized Hermite-Biehler theorem and the application

of a modified constant gain stabilizing algorithm to three subsidiary plants. It

is applicable to both continuous and discrete time systems. Using this charac-

terization of all stabilizing first-order controller, we give a design example where

several time domain performance indices of the closed-loop system are evaluated.

We also show that the algorithm given in this chapter can be applied to plants

with interval type uncertainty. Finally, we extend the algorithm given for com-

puting all stabilizing first-order controllers to high-order controllers. This method

is also based on a generalized Hermite-Biehler theorem and the successive appli-

cation of a modified constant stabilization algorithm to a number of auxiliary

60
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plants.

4.1 Introduction

In this chapter, we consider the problem of determining stabilizing proper first-

order controllers. The plants are constrained to those having either all zeros or

all poles in the closed right-half plane excluding the origin. The algorithm that

will be given consists of a repeated application of the constant gain algorithm

of Chapter 3 to appropriate subsidiary plants. It is, hence, similar to the com-

putational algorithms of [25]. For constant gain, PI, or PID stabilization it is

possible to modify the characteristic polynomial in such a way that only one of

the controller parameters enter into the odd part (or the even part). This is

crucial for an algorithmic application of the constant gain result of [34]. In case

of proper first-order controllers or any controller of higher order, a reduction in

the number of parameters appearing in the even or the odd part of a modified

characteristic polynomial has not been obvious, as pointed out in [36]. In section

4.2, this difficulty is resolved for the particular class of plants described above

yielding a method of determination for general first-order proper controllers. This

special class of plants are considered first because the method is easy to follow.

In later sections, this restrictive assumption is removed and the general problem

is solved. We then show how to apply our method to plants with interval type

uncertainty. Finally, we solve the problem of determining the set of all stabilizing

controllers of a given degree for an arbitrary plant. We will solve the problem

for a second-order controller and show how to extend the algorithm to high-order

controllers. The method developed is again based on the application of a modified

proportional controller algorithm to a number of auxiliary plants.

We have seen in Chapter 3 that there are several classical solutions to the
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problem of finding the set of all stabilizing proportional controllers. However,

extensions of these methods to high-order controllers is not obvious. (i) Root-

locus method: this is the most widely used graphical solution to the problem of

finding the set of all stabilizing proportional controllers. However, as the order of

the controller increases the number of parameters increases accordingly. Hence, it

is difficult to use this method to solve the problem at hand. (ii) Routh-Hurwitz

criterion: with a first-order controller, an example can show that solving the

problem with this method is very difficult because we have to solve a highly

non-linear set of inequalities. (iii) Neimark D-decomposition: this method was

briefly described in Chapter 3. Since the number of parameters increases for a

high-order controller, a direct application of this method to determine high-order

controllers is not obvious.

In order to show the difficulties one might face when trying to solve this

problem with classical methods, let us consider the following example.

Example 4.1 Consider the plant g(s) = p(s)
q(s)

where

q(s) = s5 + 8s4 + 32s3 + 46s2 − 46s+ 17,

p(s) = s3 − 4s2 + s+ 2.

This plant is to be stabilized by a first-order controller c(s) = α2s+α3

s+α1
and all stabi-

lizing (α1, α2, α3) values are to be found. The closed loop characteristic polynomial

is

φ(s) = (s+ α1)q(s) + (α2s+ α3)p(s)

= s6 + (α1 + 8)s5 + (8α1 + α2 + 32)s4 + (32α1 − 4α2 + α3 + 46)s3

+(46α1 + α2 − 4α3 + 46)s2 + (46α1 + 2α2 + α3 + 17)s+ 17 + 2α3.

If we use Routh-Hurwitz criteria to solve this problem, then the following set of
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inequalities must hold:

(i) 8 + α1 > 0

(ii) 46α1 + 8α2
1 + α1α2 − α3 + 12α2 + 210 > 0

(iii) −336α2 + 160α1α2 − 48α2
2 + 16α2α3 + 16α2α3 + 6852 + 6369α1

+428α3 + 1680α2
1 + 97α1α3 + 210α3

1 + 12α2
1α3 − 4α1α

2
2 + α1α2α3

−α2
3 − α2

1α2 > 0

(iv) 270346α1 − 29706α2 + 142α1α2α3 − 10882α3 + 205596α2
1 − 38402α1α2

3237α1α3 + 52776α3
1 − 3924α2

2 + 2127α2α3 − 1491α2
1α2 − 1988α2

1α3

−3183α1α
2
2 − 1775α2

3 + 48α2
1α2α3 + 16α1α

2
2α3 − 4α1α2α

2
3 − 700α3

1α2

−336α3
1α3 − 263α2

1α
2
2 − 48α2

1α
2
3 + 198α2

2α3 − 6α3
2α3 − 64α2α

2
3 + 6716α4

1

−71α3
2 + 4α3

3 + 235479 > 0

(v) 81860800α1 + 779508α2 + 120212α1α2α3 − 982537α3 + 11747212α2
1

−882462α1α2 − 1554909α1α3 + 9378587α3
1 − 108168α2

2 + 104065α2α3

−1332384α2
1α2 − 559452α2

1α3 − 270619α1α
2
2 − 99727α2

3 + 7685α2
1α2α3

+11417α1α
2
2α3 − 4375α1α2α

2
3 + 2704α3

1α2α3 + 821α2
1α

2
2α3 − 196α2

1α2α
2
3

−142501α1α
2
3 + 40944α3

1α2 − 169206α3
1α3 − 151729α2

1α
2
2 − 33484α2

1α
2
3

−18768α4
1α2 − 21444α4

1α3 − 7712α2
2α3 − 10052α1α

3
2 − 67α2α

2
3 − 13498α3

1α
2
2

−3720α3
1α

2
3 − 802α2

1α
3
2 − 380α1α

3
3 + 2433884α4

1 + 308936α5
1 − 12336α3

2

−2470α3
3 − 6α1α

3
2α3 + 24α1α

2
2α

2
3 − 6α1α2α

3
3 − 60α3

2α3 − 12α1α
4
2

+294α2
2α

2
3 − 96α2α

3
3 − 72α2

1α
3
3 − 144α4

2 + 6α4
3 − 1017569 > 0

(vi) 17 + 2α3 > 0

Clearly the above inequalities are highly non-linear and there is no easy method for

obtaining a solution. Other classical methods such as the root-locus is graphical

in nature and therefore can not be used to solve the problem at hand. •
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4.2 All stabilizing First-Order Controllers for a

Special Class of Plants

Before giving the details of the algorithm that determines the set of all stabilizing

first-order controllers, recall the following results proved in Chapter 2.

Lemma 4.1 A non-zero polynomial ψ ∈ R[u], such that ψ(0) 6= 0, has r real

negative roots without counting the multiplicities if and only if the signature of

the polynomial ψ(s2)+sψ′(s2) is 2r. All roots of ψ are real, negative, and distinct

if and only if ψ(s2) + sψ′(s2) ∈ H.

We now give the details of an algorithm that computes all stabilizing first-

order controllers for a special class of plants. A first-order controller

c(s) =
α2s+ α3

s+ α1
,

applied to g(s) = p(s)
q(s)

gives the closed loop characteristic polynomial

φ0(s, α1, α2, α3) = (s+ α1)q(s) + (α2s+ α3)p(s),

= q0(s) + α3p0(s),

where

q0(s, α1, α2) = (s+ α1)q(s) + α2sp(s),

p0(s) = p(s).

Multiplying φ0(s, α1, α2, α3) by p̄0(−s) we obtain

ψ1(s, α1, α2, α3) = φ0(s, α1, α2, α3)p̄0(−s)
= s2G(s2) + α1H(s2) + α3F (s2)

+s[H(s2) + α1G(s2) + α2F (s2)].

(4.1)
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Note that α1, α2 appear in the odd part and α1, α3 appear in the even part. As

pointed out in [36], it is no longer possible to exploit the results given in the

previous chapter and proceed. A major modification in the PID algorithm of [25]

is hence needed.

Let us restrict the attention to plants g(s) = p(s)
q(s)

such that

p̄(−s) = 0 ⇒ s ∈ C−.

We consider such plants because the algorithm is simple and easy to follow. The

general case will be given in the next section. In this case p(s) has all its roots in

the closed right-half plane (with no zeros of odd multiplicity at the origin). We

need to find values of (α1, α2, α3) such that ψ1(s, α1, α2, α3) is a Hurwitz stable

polynomial. By Hermite-Biehler theorem, H(u) + α1G(u) + α2F (u) must have

all its roots real, negative, and distinct. By Lemma 4.1, it follows that

φ1(s, α1, α2) = H(s2)+α1G(s2)+α2F (s2)+s[H ′(s2)+α1G
′(s2)+α2F

′(s2)] (4.2)

is Hurwitz stable. The algorithm given below exploits this necessary condition.

Let B := gcd{F, F ′} so that F = BF̄ , F ′ = BF̄ ′ for coprime polynomials

F̄ , F̄ ′ ∈ R[u]. Let p̄1(s) := F̄ (s2) + sF̄ ′(s2). Then, by a straightforward compu-

tation,

ψ2(s, α1, α2) = φ1(s, α1, α2)p̄1(−s)

= H2e(s
2) + α1G2e(s

2) + α2F2e(s
2) + s[H2o(s

2) + α1G2o(s
2)],

where

H2e(u) = H(u)F̄ (u) − uH ′(u)F̄ ′(u),

G2e(u) = G(u)F̄ (u) − uG′(u)F̄ ′(u),

F2e(u) = F̄ (u)F̄ (u) − uF̄ ′(u)F̄ ′(u),

H2o(u) = H ′(u)F̄ (u) −H(u)F̄ ′(u),

G2o(u) = G′(u)F̄ (u) −G(u)F̄ ′(u).

(4.3)
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By Remark 3.3, it follows that the odd part of ψ2(s, α1, α2) should have at least

r real negative roots with odd multiplicities. Now the set of α1 ∈ R which

achieves r real negative roots with odd multiplicities in H2o(u) + α1G2o(u) can

be determined by applying Algorithm 3.2 to

q2(s) = H2(s) = H2o(s
2) + sH ′

2o(s
2),

p2(s) = G2(s) = G2o(s
2) + sG′

2o(s
2).

The following algorithm determines all gains α1, α2, α3 such that ψ1(s, α1, α2, α3) ∈
H:

Algorithm 4.1 1. Using Remark 3.3 and Algorithm 3.2, calculate the admis-

sible ranges for α1.

(a) Fix an α1 in the admissible range.

(b) Apply the proportional controller algorithm (Algorithm 3.2) to q1(s) =

H(s2)+sH ′(s2)+α1[G(s2)+sG′(s2)] replacing q(s) and p1(s) = F (s2)+

sF ′(s2) replacing p(s). (This calculates admissible values of α2 such

that φ1(s) is in H.)

i. Fix an α2 from the range determined in 1.b.

ii. Apply the proportional controller algorithm (Algorithm 3.2) to

q0(s) = (s + α1)q(s) + α2sp(s) and p0(s) = p(s). (This calcu-

lates all admissible values of α3 such that φ0(s) is in H.)

iii. Increment α2 and go to step 1.b.i.

(c) Increment α1 and go to step 1.a.

The Algorithm 3.2 is repeatedly used on three auxiliary plants:

g2(s) = p2(s)
q2(s)

= G2(s)
H2(s)

,

g1(s) = p1(s)
q1(s)

= F (s2)+sF ′(s2)
H(s2)+sH′(s2)+α1[G(s2)+sG′(s2)]

,

g0(s) = p0(s)
q0(s)

= p(s)
(s+α1)q(s)+α2sp(s)

.

(4.4)
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Noting that the odd part H(u)+α1G(u)+α2F (u) of [q0(s)+α3p0(s)]p̄(−s) must

have all its roots real, negative, and distinct, there is only one sign pattern that

satisfies step 2 of Algorithm 3.2. Therefore, a very simple version of the constant

gain stabilization problem is solved in step 1.b.ii for the third auxiliary plant for

each fixed (α1, α2).

Remark 4.1 The above first-order controller algorithm can be applied to plants

with poles in C0+ (except a pole of odd multiplicity at the origin), i.e.,

q̄(−s) = 0 ⇒ s ∈ C−,

where q̄(s) := h̄(s2) + sḡ(s2) = q(s)/l(s2), and l := gcd{h, g}. Consider a con-

troller of the form c(s) = s+α1

α2s+α3
. Multiplying φ0(s, α1, α2, α3) by q̄0(−s), we

obtain

ψ1(s, α1, α2, α3) = φ0(s, α1, α2, α3)q̄0(−s)

= s2D(s2) + α1E(s2) + α3C(s2)

+s[E(s2) + α1D(s2) + α2C(s2)],

where

E(u) = f(u)h̄(u) − ue(u)ḡ(u),

D(u) = e(u)h̄(u) − f(u)ḡ(u),

C(u) = h(u)h̄(u) − ug(u)ḡ(u).

As α1, α2 appear in the odd part and α1, α3 appear in the even part, the method

described above can be directly used with C,D,E replacing F,G,H to calculate

the parameters of all stabilizing controllers of the form c(s) = s+α1

α2s+α3
. 4

Example 4.2 We illustrate the details of the method on a fifth order plant. Con-

sider a proper first-order controller to stabilize the plant g(s) = p(s)
q(s)

where

q(s) = s5 + 3s4 + 29s3 + 15s2 − 3s+ 60,

p(s) = s3 − 6s2 + 2s− 1.
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The roots of q(s) are {−1.2576± j5.1476, −1.5574, 0.5363± j1.0414} and those

of p(s) are {0.1606 ± j0.3877, 5.6788}. Using (3.9), we have

H(u) = −u4 − 49u3 − 148u2 − 369u− 60,

G(u) = −9u3 − 196u2 − 101u− 117,

F (u) = −u3 + 32u2 + 8u+ 1.

The first step in the algorithm is to find values of α1 for which H2o(u)+α1G2o(u)

has the necessary number of real negative roots. To this end we consider

φ1(s, α1, α2) = H(s2) + sH ′(s2) + α1[G(s2) + sG′(s2)] + α2[F (s2) + sF ′(s2)].

As gcd(F, F ′) = 1, we multiply φ1(s) by p1(−s) = F (s2) − sF ′(s2). Since

deg φ1 − deg p1 = 2 is even and deg φ1 − σ(p1) = 8, the odd part of ψ2(s)

must have at least 3 real negative roots. This lower bound is met only by values

of α1 in (−1.9251, 1.8190). Now, we can fix α1 and solve a constant gain sta-

bilization problem by considering q1(s) and p1(s) of step 1.b in the algorithm to

find admissible values of α2. For these values of α2, use step 1.b.ii to calculate

admissible values of α3 such that φ0(s) ∈ H. With α1 = 1 and an increment

of 0.01 of α2 in step 1.b.iii, we obtain the stabilizing values of (α2, α3) shown in

Figure 4.1. Figure 4.2 shows values of (α1, α2) for which H(u)+α1G(u)+α2F (u)

has all its roots real, negative, and distinct and Figure 4.3 shows the stabilizing

set of (α1, α2, α3) values. •

4.3 The General Case

We now remove the restrictive assumption of the previous section and solve the

problem for an arbitrary plant of a given degree [82]. Recall that

φ0(s, α1, α2, α3) = (s+ α1)q(s) + (α2s+ α3)p(s)

= q0(s) + α3p0(s)
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Figure 4.1: Stabilizing set of (α2, α3) values for α1 = 1 for Example 4.2.

where

q0(s, α1, α2) = (s+ α1)q(s) + α2sp(s),

p0(s) = p(s).
(4.5)

and

ψ1(s, α1, α2, α3) = φ0(s, α1, α2, α3)p̄0(−s)
= s2G(s2) + α1H(s2) + α3F (s2)

+s[H(s2) + α1G(s2) + α2F (s2)].

(4.6)

The reasoning behind the algorithm which determines the set of parameters

α1, α2, α3 of a stabilizing first-order controller can be explained as follows. Sup-

pose φ0(s) is Hurwitz stable for some α1, α2, α3 ∈ R. By Remark 3.3, it follows

that the odd part H(u) + α1G(u) + α2F (u) of ψ1(s) has at least r1 = bn−σ(p0)
2

c
real negative roots with odd multiplicities. Suppose H(u) + α1G(u) + α2F (u)

has r1 real negative roots with odd multiplicities. By Lemma 4.1, σ[φ1(s)] = 2r1,

where

φ1(s, α1, α2) = H1(s) + α1G1(s) + α2F1(s)

= q1(s) + α2p1(s)
(4.7)
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Figure 4.2: Values of (α1, α2) for which the odd part has all its roots real, negative,
and distinct for Example 4.2.

and

H1(s) = H(s2) + sH ′(s2),

G1(s) = G(s2) + sG′(s2),

F1(s) = F (s2) + sF ′(s2),

q1(s, α1) = H1(s) + α1G1(s),

p1(s) = F1(s).

In order to find the suitable ranges of α1 and α2, we modify φ1(s, α1, α2) as follows.

Let B := gcd{F, F ′} so that F = BF̄ , F ′ = BF̃ ′ 1 for coprime polynomials

F̄ , F̃ ′ ∈ R[u]. Also let p̄1(s) := F̄ (s2) + sF̃ ′(s2). By a simple computation, it

follows that

ψ2(s, α1, α2) = φ1(s, α1, α2)p̄1(−s) = H2e(s
2) + α1G2e(s

2) + α2F2e(s
2)

+s[H2o(s
2) + α1G2o(s

2)],

1The prime notation is still kept in F̃ ′ although strictly speaking, F̃ ′ is not the derivative of
any of the polynomials above.
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Figure 4.3: Stabilizing set of (α1, α2, α3) values for example 4.2.

where

H2e(u) = H(u)F̄ (u) − uH ′(u)F̃ ′(u),

G2e(u) = G(u)F̄ (u) − uG′(u)F̃ ′(u),

F2e(u) = F (u)F̄ (u) − uF ′(u)F̃ ′(u),

H2o(u) = H ′(u)F̄ (u) −H(u)F̃ ′(u),

G2o(u) = G′(u)F̄ (u) −G(u)F̃ ′(u).

(4.8)

Once more by Remark 3.3, since σ[φ1(s)p1(−s)] = 2r1 − σ[p1(s)] the odd part of

φ1(s)p̄1(−s) should have at least r2 = b |2r1−σ(p1)|−1
2

c real negative roots with odd

multiplicities . Now the set of α1 ∈ R which achieves r2 real negative roots with

odd multiplicities in H2o(u)+α1G2o(u) can be determined by applying Algorithm

3.2 to

q2(s) = H2(s) = H2o(s
2) + sH ′

2o(s
2),

p2(s) = G2(s) = G2o(s
2) + sG′

2o(s
2).

The algorithm below traces the above steps backwards by repetition of the steps

(i)-(iii) below:
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(i) Pick a value of α1 such that the number of real negative roots with odd multi-

plicities of H2o(u) + α1G2ou) is r2 or greater.

(ii) Determine using Algorithm 3.2 all α2 ∈ R such that σ[φ1(s)] = 2r1. By

Lemma 4.1 and Remark 4.2, this is equivalent to determining values of α2 such

that H(u) + α1G(u) + α2F (u) has r1 real negative roots with odd multiplicities.

(iii) For every α2 determined, find using Algorithm 3.2 again, all α3 such that

φ1(s) is Hurwitz stable.

Algorithm 4.2 1. Partition the real axis into intervals (or union of intervals)

such that the number of real negative roots with odd multiplicities of H2o(u)+

α1G2o(u) is constant in each interval.

2. Fix r1 = bn−σ(p0)
2

c.

(a) Find admissible range of α1 from the intervals found in the first step.

i. Fix an α1 in the admissible range.

ii. Apply Algorithm 3.2 to q1(s) and p1(s). (This calculates admissible

values of α2 such that H(u)+α1G(u)+α2F (u) has r1 real negative

roots with odd multiplicities.)

A. Fix an α2 from the range determined in 2.a.ii.

B. Apply Algorithm 3.2 to q0(s) and p0(s). (This calculates all

admissible values of α3 such that φ0(s) is in H.)

C. Increment α2 and go to step 2.a.ii.B.

iii. Increment α1 and go to step 2.a.ii.

(b) If r1 < deg(H), then increment r1 by one and go to step 2.a.

Once again, Algorithm 3.2 is used on three auxiliary plants given by (4.4) to

obtain the admissible values of (α1, α2, α3).
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Remark 4.2 Lemma 4.1 gives a signature condition to count the number of dis-

tinct real negative roots, whereas in step 2.a.ii of the above algorithm we employ

Theorem 3.2 to ensure a certain signature for φ2(s). This way, the Algorithm

3.2 does not distinguish those parameters that ensures real negative roots of odd

multiplicities. However, Algorithm 3.2 misses only a finite number of parameter

values for the following reason: If H(u) + α1G(u) + α2F (u) has a real negative

root u0 of even multiplicity, then u0 is also a root of H ′(u) + α1G
′(u) + α2F

′(u)

with odd multiplicity. This corresponds to a conjugate pair of roots (with odd

multiplicity) of φ2(s) on the jw-axis. Values of α2 leading to this situation are

excluded from the solution set by Algorithm 3.2. If H(u) + α1G(u) + α2F (u)

has a real negative root u1 with odd multiplicity (not a simple root), then φ2(s)

has a conjugate pair of roots (with even multiplicity) on the jw-axis. We can

easily modify step 3 in Algorithm 3.2 such that values of α2 leading to the latter

situation are included in the solution set. The modification consists of including

(instead of excluding) the finite set of points Â in step 3 of Algorithm 3.2. 4

Example 4.3 Consider determining proper first-order controllers to stabilize the

plant g(s) = p(s)
q(s)

, where

q(s) = s5 + 3s4 + 29s3 + 15s2 − 3s+ 60,

p(s) = s3 − 6s2 + 2s+ 1.

The roots of q0(s) are {−1.2576 ± j5.1476, − 1.5574, 0.5363 ± j1.0414} and

those of p0(s) are {−0.2705, 0.6587, 5.6119} so that this is an unstable and non-

minimum phase plant. Using (3.9), we have

H(u) = −u4 − 49u3 − 142u2 − 339u+ 60,

G(u) = −9u3 − 194u2 − 43u− 123,

F (u) = −u3 + 32u2 − 16u+ 1.

A necessary condition for the existence of a stabilizing first-order controller is

that H(u) + α1G(u) + α2F (u) has at least r1 = bn−σ(p0)
2

c = 3 real negative roots
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with odd multiplicities. As gcd(F, F ′) = 1, we multiply φ1(s) by p1(−s). For

r1 = 3, σ(φ1)−σ(p1) = 6 and the odd part of φ1(s)p1(−s) must have at least r2 =

b |2r1−σ(p2)|−1
2

c = 2 real negative roots with odd multiplicities. Using Algorithm

3.2, α1 ∈ (−2.2917, 0.3088). Similarly, for r1 = 4, we find r2 = 3 and α1 ∈
(0.3088, 3.6000). Now let us follow the steps of Algorithm 4.2 for a fixed value of

α1 from the above intervals. For α1 = 1, we have

q1(s) = −s8 − 4s7 − 58s6 − 174s5 − 336s4 − 672s3 − 382s2 − 382s− 63,

p1(s) = −s6 − 3s5 + 32s4 + 64s3 − 16s2 − 16s+ 1.

Using step 2.a.ii in Algorithm 4.2, the range of admissible values of α2 for which

H(u) + α1G(u) + α2F (u) has 4 negative roots is α2 ∈ (−3.1602, 1.3297). With

α2 = 1, we obtain

q0(s) = s6 + 4s5 + 33s4 + 38s3 + 14s2 + 58s+ 60,

p0(s) = s4 − 6s3 + 2s+ 1.

Step 2.a.ii.B in Algorithm 4.2 gives the following solution α3 ∈ (−17.0988,−11.5621)

for α1 = α2 = 1 . Application of Algorithm 4.2, with a 0.05 increment of α2 in

step 2.a.ii.C and a 0.1 increment of α1 in step 2.a.iii, results in the set of stabi-

lizing (α1, α2, α3) values shown in figure 4.4. •

Remark 4.3 The method can also be applied to discrete time plants using a

bilinear transformation of the complex plane. Let the controller transfer function

be

c(z) =
α2z + α3

α1z + 1
.

By the bilinear transformation z = w+1
w−1

, we get

c(w) =
(α2 + α3)w + (α2 − α3)

(α1 + 1)w + (α1 − 1)
.

For a c(w) in this form, α1, α2, and α3 appear both in the even and odd parts of

ψ(w, α1, α2, α3) = φ(w, α1, α2, α3)p̄(−w). Let ᾱ2 = α2 +α3 and ᾱ3 = α2−α3. By
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Figure 4.4: Stabilizing set of (α1, α2, α3) values for Example 1.

a simple computation, it follows that

ψ(w, α1, ᾱ2, ᾱ3) = w2G(w2) −H(w2) + α1[w
2G(w2) +H(w2)] + ᾱ3F (w2)

+w[H(w2) −G(w2) + α1(H(w2) +G(w2)) + ᾱ2F (w2)].

Stabilizing controller parameters α1, ᾱ2, ᾱ3 and α2 = ᾱ2+ᾱ3

2
, α3 = ᾱ2−ᾱ3

2
are thus

obtained. The method hence applies to discrete time plants of arbitrary order. 4

Remark 4.4 If linear programming is used, then it is possible to extend the al-

gorithm to cover PID controllers. Let

c(s) =
α1s

2 + α2s+ α3

s+ α4

so that

ψ1(s, α1, α2, α3, α4) = s2G(s2) + α1s
2F (s2) + α3F (s2) + α4H(s2)

+s[H(s2) + α2F (s2) + α4G(s2)].
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Applying the steps 1 and 2.a.ii of the first-order controller algorithm to appropri-

ate polynomials, one first finds all admissible values of α2, α4. Then, step 2.a.ii.B

should be modified to determine values of α1, α3 using linear programming. Note

that this controller specializes to a proportional controller for α1 = α3 = α4 = 0,

PI controller for α1 = α4 = 0, PD controller for α3 = α4 = 0, PID controller for

α4 = 0, and to a first-order controller for α1 = 0.

By the same amount of effort, second order, type-1 controllers of the form

c(s) =
α1s

2 + α2s+ α3

s(s+ α4)
. (4.9)

can also be determined. Such a controller applied to g(s) gives

ψ1(s, α1, α2, α3, α4) = s2H(s2) + α4s
2G(s2) + α1s

2F (s2) + α3F (s2)

+s[s2G(s2) + α4H(s2) + α2F (s2)],

to which the algorithm is applicable. Note that (4.9) is a realizable (proper) PID

controller for large positive values of α4. 4

Remark 4.5 Let us assume that n = deg q > m = deg p and identify the

possibilities of obtaining infinite ranges for the stabilizing values of (α1, α2, α3).

Case 1: Infinite range for α1. The characteristic polynomial of the closed-loop

system can be written as

ψ(s) = sq(s) + (α2s+ α3)p(s) + α1q(s),

= q̃(s) + α1p̃(s),

where

q̃(s) = sq(s) + (α2s+ α3)p(s),

p̃(s) = q(s).

Using the fact that deg q̃ − deg p̃ = 1 and Remark 3.2, α1 can have an infinite

stabilizing range only if q(s) has no roots on C+.
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Case 2: Infinite range for α2. The characteristic polynomial of the closed-loop

system can be written as

ψ(s) = (s+ α1)q(s) + α3p(s) + α2sp(s),

= q̃(s) + α1p̃(s),

where

q̃(s) = (s+ α1)q(s) + α3p(s),

p̃(s) = sp(s).

Using the fact that deg q̃ − deg p̃ ≥ 1 and Remark 3.2, α2 can have an infinite

stabilizing range only if


















deg q − deg p = 1, 2

&

p(s) has no roots on C+.

Case 3: Infinite range for α3. The characteristic polynomial of the closed-loop

system can be written as

ψ(s) = (s+ α1)q(s) + α2sp(s) + α3p(s),

= q̃(s) + α1p̃(s),

where

q̃(s) = (s+ α1)q(s) + α2sp(s),

p̃(s) = p(s).

Using the fact that deg q̃ − deg p̃ ≥ 2 and Remark 3.2, α1 can have an infinite

stabilizing range only if


















deg q − deg p = 1

&

p(s) has no roots on C+.
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Infinite stabilizing ranges of (α1, α2, α3) causes problems in applying Algorithm

4.2, as we have to sweep over infinite ranges. However, by the above observations,

this happens only in case deg q − deg p = 1, 2 and p(s) and q(s) have all roots

in C−. Note that in such a situation an infinite set of stabilizing first-order

controllers exist. This can be seen from the fact that placing the zero and the pole

of the controller anywhere in the left-half plane, there always exists a value of α2

such that the closed-loop system is stable. In this case, we can solve the alternative

problem of placing the roots of the closed-loop system in a new restricted stability

region. This problem is solved in Section 4.5. In this way, in addition to avoiding

the infinite ranges of the controller parameters, we solve the more realistic problem

of stabilizing and achieving a desired performance for the step response of the

closed-loop system. 4

Remark 4.6 Remark 3.3 gives only a necessary condition for the existence of a

solution. Inherently this leads to some disadvantages. Not all values of of α1 ∈ I1

found in step 1 of Algorithm 4.2 are stabilizing values. In order to reduce the

effect of this disadvantage to a minimum, we can apply similar arguments to the

even part s2G(s2) + α1H(s2) + α3F (s2) of ψ1(s). This will give another interval

α1 ∈ I2. In addition, with

φ0(s) = s2g(s2)+α1h(s
2)+α2s

2e(s2)+α3f(s2)+s[h(s2)+α1g(s
2)+α2f(s2)+α3e(s

2)]

all the roots of the even and odd parts must be real, negative, and distinct. Using

similar arguments, we can compute two new intervals I3 and I4. Hence α1 ∈
I1 ∩ I2 ∩ I3 ∩ I4. Finally, in Algorithm 4.2 we first compute α1, then α2 and at

last α3. The order in which the computation of αi’s is done can be changed and

this can be seen from (4.6). 4
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4.4 Design Example

In this section, we give a design example. Using the characterization of all stabi-

lizing first-order controllers, we can evaluate the performance of the closed-loop

system with respect to controller parameters. Several time domain performance

specifications such as overshoot, rise time, settling time, and steady-state error

can be evaluated. In addition, H∞ and H2 norms of some closed-loop transfer

function can be minimized over the set of all stabilizing parameters of the first-

order controller. Before proceeding any further, we first present some standard

H∞ and H2 designs.

For comparison reasons, we consider the following example given in [70]. Let

G(s) =
s− 1

s2 + 0.8s− 0.2

be the transfer function of the plant to be stabilized. Note that this plant has a

pole and a zero in the right-half of the complex plane. In [70], an optimal H∞

robust controller was designed to minimize ||WT ||∞, where W (s) is a high-pass

filter given by

W (s) =
s+ 0.1

s+ 1
,

and T (s) is the complementary sensitivity function. The authors also designed

a controller that minimizes ||WGS||2 where S(s) is the sensitivity function. The

aim of the latter design is to minimize the H2 norm of a weighted transfer function

from a disturbance input to the output. Both of these designs were then compared

to the performance of PI controller.

Using YJBK parameterization, all proper controllers which stabilize the plant

were found [70]. Then, the parameter Q(s) was selected to minimize ||WT ||∞.

The optimal value is

vopt = inf
Q(s) stable

||WT ||∞
= 0.375
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where

Q(s) =
−5(s+ 1)(0.075s− 0.195)

s+ 0.1
.

As Q(s) is not proper, it was divided by τs + 1 where τ = 0.01 to give the

sub-optimal controller

c(s) =
−39.3s3 − 114.48s2 − 112.68s− 37.5

s3 + 141.6s3 + 275s+ 137.5
.

With this controller the minimum is

||WT ||∞ = 0.391.

For the H2 minimization problem, the same Q(s) was obtained, namely

Q(s) =
−5(s + 1)(0.075s− 0.195)

s+ 0.1

and the minimum value is

vopt = inf
Q(s) stable

||WGS||2
= 0.972.

Repeating the same procedure to make Q(s) proper, the following controller was

obtained

c(s) =
−39.3s3 − 114.48s2 − 112.68s− 37.5

s3 + 141.6s3 + 275s+ 137.5

and the minimum value is

||WGS||2 = 0.973.

Using a first-order controller of the form

c(s) =
α2s+ α3

s+ α1

we can study the transient response of the closed-loop system. In order to min-

imize the steady state error to ramp inputs, we chose α1 = 0.005 so that the
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Figure 4.5: Stabilizing set of (α2, α3) values for α1 = 0.005.

controller has a pole close to the origin and this controller behaves like a PI

controller. Figure 4.5 shows the stabilizing values of (α2, α3) for α1 = 0.005.

In Figure 4.6, the plot of ||WT ||∞ versus stabilizing values of (α2, α3) is given.

The minimum value of ||WT ||∞ is 0.578 obtained at α2 = −0.25 and α3 = −0.002.

Figure 4.7 shows the plot of ||WGS||2 for which the minimum is 1.054 obtained at

α2 = −0.3 and α3 = −0.002. Hence, we can evaluate the performance achievable

by this fixed-order and fixed-structure controller.

Fixing α1 = 0.005 and using the stabilizing values of (α2, α3), we can obtain

the plots of several time domain performance specifications versus the stabilizing

parameters of the controller.

• Overshoot: Figure 4.8 shows the plot of the percent maximum overshoot

over stabilizing values of (α2, α3). The minimum percent maximum over-

shoot is 20.8% obtained at α2 = −0.45 and α3 = −0.002.
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Figure 4.6: H∞ norm of W (s)T (s), minimum occurs at α2 = −0.25 and α3 =
−0.002.

• Settling time: Figure 4.10 shows the plot of the settling time over stabilizing

values of (α2, α3). The minimum settling time is 19.6s obtained at α2 =

−0.4 and α3 = −0.002.

• Rise time: Figure 4.12 shows the plot of the rise time over stabilizing values

of (α2, α3). The minimum rise time is 2.5s obtained at α2 = −0.75 and

α3 = −0.0272.

• Steady state error: Figure 4.14 shows the plot of the percent steady state

error over stabilizing values of (α2, α3). The minimum percent steady state

error is 0.85% obtained at α2 = −0.4 and α3 = −0.0562.

We can alternatively generate the level curves for the different time domain

performance indices, see Figures 4.9, 4.11, 4.13, and 4.15. Suppose that we are

given the following performance specifications:
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Figure 4.7: H2 norm of W (s)G(s)S(s), minimum occurs at α2 = −0.3 and α3 =
−0.002.

• Percent overshoot is less than 25%.

• Settling time is less than or equal to 25s.

By superimposing the level curves of the settling time and percent overshoot, we

can determine whether a stabilizing controller satisfying these requirement exists

or not.

Figures 4.16 through 4.18 shows the step responses for several values of α2

and α3. In Figure 4.16, the values of the stabilizing controller parameters are

chosen randomly to be α2 = −0.2 and α3 = −0.002. Figure 4.17 shows the step

response with the controller that leads to the minimum settling time and Figure

4.18 shows the step response of the controller that leads to minimum percent

steady state error.
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Figure 4.8: Overshoot, the minimum occurs at α2 = −0.45 and α3 = −0.002.
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Figure 4.12: Rise time, the minimum occurs at α2 = −0.75 and α3 = −0.0272.
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Figure 4.18: Step response using α2 = −0.4 and α3 = −0.0562.

4.5 Stabilizing First-order Controllers with De-

sired Stability Region

In many applications, stability of the closed-loop system is not enough, and usu-

ally it is required that the poles of the closed-loop system lie in a more restrictive

stability regions. In this section, we use the generalized Hermite-Biehler theorem

applicable to polynomials with complex coefficients and Lemma 2.4 to solve the

problem of determining stabilizing first-order controllers that place the poles of

the closed-loop system in a desired stability region. It is known that time do-

main specifications for a closed-loop system can be translated into desired closed-

loop pole locations in the frequency domain. These are specified in terms of the

damping ratio and damped natural frequency of the closed-loop poles. A desired

stability region S in the complex plane is shown in Figure 4.19. The region S is

the intersection of three regions S−γ, Sθ, and S−θ where
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Figure 4.19: Stability region S.

• S−γ := {s : s ∈ C, Re[s] < −γ}.

• Sθ := {s : s ∈ C, Re[se−jθ] < 0}.

• S−θ := {s : s ∈ C, Re[sejθ] < 0}.

S−γ is a shifted Hurwitz stability region, Sθ and S−θ are rotated Hurwitz stability

regions. In [83], it is stated that if if all the poles of the closed-loop system lie in

the region S, then the step response of the compensated system exhibits a settling

time of no more than 4/γ and a maximum overshoot corresponding to the angle θ.

In [84], the region S is approximated by a circular region and a design procedure

that combines linear-quadratic optimal control with regional pole placement is
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given. See also [85]-[94] for different methods of regional pole placement with

static full-state feedback controllers. Recently, a method for determining the set

of all proportional controllers that places the closed-loop poles in the region S was

given in [25]. Note, however, that using root-locus techniques the same problem

can be solved as shown in [95]. In what follows we give a method to determine the

set of all low-order dynamic controllers that places the poles of the closed-loop

system in the region S.

Given a plant g(s) = p(s)
q(s)

and a first-order controller c(s) = α2s+α3

s+α1
, our

objective is to find all values of (α1, α2, α3) such that the closed-loop characteristic

polynomial

φ(s, α1, α2, α3) = (s+ α1)q(s) + (α2s + α3)p(s)

has all its roots in the region S. This is equivalent to solving three subproblems

using the stability regions S−γ , Sθ, and S−θ and finding the intersection of the

solution sets.

Let us first solve the problem for the shifted Hurwitz stability region S−γ. Let

s = s1 − γ then

φ(s, α1, α2, α3) = φ(s1 − γ, α1, α2, α3),

= φγ(s1, α1, α2, α3).

By this change of variable, we solve the usual stabilization problem for the

new characteristic polynomial φγ(s1, α1, α2, α3) with q̃(s1) = q(s1 − γ) and

p̃(s1) = p(s1 − γ). Since we are using a dynamic controller, the new charac-

teristic polynomial is given by

φγ(s1, α1, α2, α3) = (s1 + α1 − γ)q̃(s1) + (α2s1 + α3 − α2γ)p̃(s1).
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Multiplying φγ(s1, α1, α2, α3) by p̄(−s1) we obtain

ψγ(s1, α1, α2, α3) = φγ(s1, α1, α2, α3)p̄(−s1)

= s2
1G(s2

1) − γH(s2
1) + α1H(s2

1) − α2γF (s2
1) + α3F (s2

1)

+s1[H(s2
1) − γG(s2

1) + α1G(s2
1) + α2F (s2

1)].

We can use the method discussed in Section 4.3 to find stabilizing values of

(α1, α2, α3).

Now let us consider the problem of determining the stabilizing values of

(α1, α2, α3) for the stability region Sθ. Let s = s1e
jθ, then

φ(s, α1, α2, α3) = (s + α1)q(s) + (α2s+ α3)p(s),

= (s1e
jθ + α1)q(s1e

jθ) + (α2s1e
jθ + α3)p(s1e

jθ).

Since θ is constant, we have ejθ = a + jb, q(s1e
jθ) = q̃(s1), and p(s1e

jθ) =

p̃(s1) where q̃(s1) and p̃(s1) are polynomials with complex coefficients. The new

characteristic polynomial is given by

φθ(s1, α1, α2, α3) = (s1(a + jb) + α1)q̃(s1) + (α2s1(a+ jb) + α3)p̃(s1).

Roots of φ(s, α1, α2, α3) in stability region Sθ is equivalent to roots of

φθ(s1, α1, α2, α3) in the open left-half complex plane. Using the generalized

Hermite-Biehler theorem applicable to complex polynomials and Lemma 2.4, we

outline in what follows a method to compute all values of (α1, α2, α3) such that

φθ(s1, α1, α2, α3) is Hurwitz stable. Let

q̃(jω) = h̃(ω) + jg̃(ω),

p̃(jω) = f̃(ω) + jẽ(ω),

p̃∗(jω) = f̃(ω) − jẽ(ω),

then

q̃(jω)p̃∗(jω) = H̃(ω) + jG̃(ω),

p̃(jω)p̃∗(jω) = F̃ (ω),
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where

H̃(ω) = h̃(ω)f̃(ω) + g̃(ω)ẽ(ω),

G̃(ω) = f̃(ω)g̃(ω) − h̃(ω)ẽ(ω),

F̃ (ω) = f̃ 2(ω) + ẽ2(ω).

Multiplying φθ(jω, α1, α2, α3) by p̃∗(jω) we obtain

ψθ(jω, α1, α2, α3) = φθ(jω, α1, α2, α3)p̃
∗(jω)

= [ − ω(bH̃(ω) + aG̃(ω)) + α1H̃(ω) − α2ωbF̃ (ω) + α3F̃ (ω)]

+j[ω(aH̃(ω) − bG̃(ω)) + α1G̃(ω) + α2ωaF̃ (ω)].

Since only α1 and α2 appear in the imaginary part of ψθ(jω, α1, α2, α3), we can use

the arguments developed in Section 4.3 to find stabilizing values of (α1, α2, α3).

As we are dealing with complex polynomials, we have to use Theorem 2.3 and

Lemma 2.4 instead of Theorem 2.2 and Lemma 2.3.

The last stability region is S−θ. It was shown in [25], for the case of pro-

portional controllers, that S−θ and Sθ have exactly the same set of stabilizing

controllers. This conclusion holds for first-order controllers. To see this, suppose

that for a given triplet (ᾱ1, ᾱ2, ᾱ3), s0 is a root of φ(s, α1, α2, α3), then

(s0e
jθ + ᾱ1)q(s0e

jθ) + (ᾱ2s0e
jθ + ᾱ3)p(s0e

jθ) = 0.

As q(s) and p(s) are real polynomials, it follows that

(s∗0e
−jθ + ᾱ1)q(s

∗
0e

−jθ) + (ᾱ2s
∗
0e

−jθ + ᾱ3)p(s
∗
0e

−jθ) = 0

where s∗0 is the complex conjugate of s0. Since s∗0 and s0 have the same real part,

it follows that (ᾱ1, ᾱ2, ᾱ3) is stabilizing triplet for the stability region S−θ if and

only if it is stabilizing triplet for the stability region Sθ.

Example 4.4 Consider a first-order controller to stabilize the plant g(s) = p(s)
q(s)

where

q(s) = s5 + 3s4 + 29s3 + 15s2 − 3s+ 60,
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Figure 4.20: Stability region S.

p(s) = s3 − 6s2 + 2s− 1,

and the stability region S is given in Figure 4.20. This region is the intersection

of S π
18

and S− π
18

as described at the beginning of the section. Let s = s1e
j π

18 ,then

q̃(s1) = (0.6428 + 0.7660j)s5
1 + (2.2981 + 1.9284j)s4

1 + (25.1147 + 14.5000j)s3
1

+(14.0954 + 5.1303j)s2
1 − (2.9544 + 0.5209j)s1 + 60,

p̃(s1) = (0.8660 + 0.5000j)s3
1 − (5.6382 + 2.0521j)s2

1 + (1.9696 + 0.3473j)s1 − 1.

Using the method developed in Section 4.3 together with Theorem 2.3 and Lemma

2.4, the stabilizing values of (α1, α2, α3) are obtained as shown in Figure 4.21.

From the results obtained, for α1 = 0.2 and α2 = −4.1982, roots of φ(s, α1, α2, α3)

are in the stability region S for values of α3 ∈ (−15.9491,−11.7427). The root-

locus for the values of α3 in this interval is shown in Figure 4.22. For Hurwitz

stability, with α1 = 0.2 and α2 = −4.1982, we find α3 ∈ (−22.5956,−9.548). The

root-locus for the values of α3 in this interval is shown in Figure 4.23. •

Remark 4.7 The method of this section can be applied to PI and PID controllers.

Let

c(s) =
α1s

2 + α2s+ α3

s
,
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Figure 4.21: Stabilizing values (α1, α2, α3).

Root Locus

Real Axis

Im
a

g
 A

x
is

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−5

−4

−3

−2

−1

0

1

2

3

4

5

5

4

3

2

1

5

4

3

2

1

0.9

0.74

0.56

0.42 0.32 0.22 0.14 0.07

0.9

0.74

0.56

0.42 0.32 0.22 0.14 0.07

α
1
=0.2

α
2
=−4.1982

Figure 4.22: Attainable roots with respect to region S.

then we obtain

ψγ(s1, α1, α2, α3) = φγ(s1, α1, α2, α3)p̄(−s1)

= s2
1G(s2

1) − γH(s2
1) + α1s

2F (s2
1) + α1γ

2F (s2
1) − α2γF (s2

1)

+α3F (s2
1) + s1[H(s2

1) − γG(s2
1) − α12γF (s2

1) + α2F (s2
1)].

and

ψθ(jω, α1, α2, α3) = φθ(jω, α1, α2, α3)p̃
∗(jω)

= [ − ω(bH̃(ω) + aG̃(ω)) − α1ω
2(a2 − b2)F̃ (ω) − α2ωbF̃ (ω)

+α3F̃ (ω)] + j[ω(aH̃(ω) − bG̃(ω)) − α1ω
22abF̃ (ω)
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Figure 4.23: Attainable roots with respect to C−.

+α2ωaF̃ (ω)].

Since two parameters (α1, α2) appear in the odd part of ψγ(s1, α1, α2, α3), imag-

inary part of ψθ(s1, α1, α2, α3), we can directly apply the method developed for

first-order controllers. 4

Example 4.5 Consider a PI controller c(s) = α1s+α2

s
to stabilize the plant g(s) =

p(s)
q(s)

where

q(s) = s3 + 3s2 + 4s,

p(s) = s2 + 2s− 2.

The stability region S is given in Figure 4.19 and specified by the parameters

γ = 0.5 and θ = π
6
. For the rotated Hurwitz stability regions Sθ and S−θ, let

s = s1e
j π

6 , then

q̃1(s1) = js3
1 + (1.5 + 2.5981j)s2

1 + (3.4641 + 2j)s1,

p̃1(s1) = (0.5 + 0.866j)s2
1 + (1.7321 + j)s1 − 2.

For the shifted Hurwitz stability regions S−γ, let s = s1 − 0.5, then

q̃2(s1) = s3
1 + 1.5s2

1 + 1.75s1 − 1.375,

p̃2(s1) = s2
1 + s1 − 2.75.
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Using the new polynomials q̃1(s1), p̃1(s1), q̃2(s1), and p̃2(s1) and the method de-

scribed in this section, we obtain the stabilizing values of (α1, α2) as shown in Fig-

ure 4.24. For α1 = −0.7599, if we consider the rotated Hurwitz stability regions
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Figure 4.24: Stabilizing values (α1, α2).

Sθ and S−θ only, then we obtain (−0.1738,−0.0598) as the stabilizing interval

for α2. The root-locus for the values of α2 in this interval is shown in Figure

4.25. With α1 = −0.7599 and stability region S, we obtain (−0.1489,−0.13) as
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Figure 4.25: Attainable roots with respect to regions Sθ and S−θ.

the stabilizing interval for α2. The root-locus for the values of α2 in this interval

is shown in Figure 4.26. •
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4.6 Uncertain Systems

The method described in the previous sections can be applied to plants with

interval type uncertainty [96]. Let g(s) be the transfer function of an uncertain

system

g(s) =
p(s)

q(s)
=

∑m

i=0 xis
i

∑n

j=0 yjs
j

(4.10)

where n > m, xm 6= 0, yn 6= 0, and xi ∈ [xi−, xi+] i = 1, . . . , m and yi ∈
[yi−, yi+] j = 1, . . . , n. Let pk(s) and ql(s), k, l = 1, 2, 3, 4 be the four Kharitonov

polynomials corresponding to p(s) and q(s), respectively. Let pλk(s), k = 1, 2, 3, 4

be the four Kharitonov segments of p(s), i.e.,

pλ1(s) = (1 − λ)p1(s) + λp2(s)

pλ2(s) = (1 − λ)p1(s) + λp3(s)

pλ3(s) = (1 − λ)p2(s) + λp4(s)

pλ4(s) = (1 − λ)p3(s) + λp4(s)

where λ ∈ [0, 1]. The four Kharitonov segments qλl (s), l = 1, 2, 3, 4 of q(s) can be

defined similarly. Let gseg(s) denote the family of 32 segment plants

gseg(s) = {gkl(s, λ) | gkl(s, λ) =
pλk(s)

ql(s)
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or gkl(s, λ) =
pk(s)

qλl (s)
, k, l = 1, 2, 3, 4, and λ ∈ [0, 1]}.

It is well known [48] that the family g(s) is stabilized by a particular controller, if

and only if the 32 segment plants gseg are stabilized by the same controller. Let

g̃seg(s) denote the family of 16 segment plants

g̃seg(s) = {gkl(s, λ) | gkl(s, λ) =
pλk(s)

ql(s)
, k, l = 1, 2, 3, 4, and λ ∈ [0, 1]}.

It is shown in [97] ([98]) that “the entire family g(s) is stabilized by a particular

PID controller, if and only if each segment plant gkl(s) ∈ g̃seg(s) is stabilized

by that same PID controller”. In reaching this result the structure of the PID

controller was used to reduce the 32 segment plants to only 16. Since we are

considering first-order controllers, the numerator and denominator of the con-

troller are convex directions [48]. It is shown in [48] that stabilizing an interval

plant g(s) by a first-order controller is equivalent to stabilizing 16 vertex plants;

namely,

gv(s) = {gkl(s) | gkl(s) =
pk(s)

ql(s)
, k, l = 1, 2, 3, 4}.

The stabilizing controller, if any, can be determined by first calculating α1 which

is the intersection of α1’s found for the 16 plants mentioned above. We can then

apply the algorithm of the previous section for the 16 vertex plants to find α2

and α3.

Example 4.6 Consider a proper first-order controller to stabilize the interval

plant g(s) = p(s)
q(s)

where

q(s) = s5 + y4s
4 + y3s

3 + y2s
2 + y1s+ y0,

p(s) = s3 + x2s
2 + x1s+ x0,

and

x0 ∈ [−1,−2] x1 ∈ [2, 2], x2 ∈ [−6,−5],

y0 ∈ [60, 65], y1 ∈ [−5,−3], y2 ∈ [14, 15],

y3 ∈ [29, 29], y4 ∈ [3, 4].
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We get the following Kharitonov polynomials

q1(s) = s5 + 3s4 + 29s3 + 15s− 5s+ 60,

q2(s) = s5 + 3s4 + 29s3 + 15s− 3s+ 60,

q3(s) = s5 + 4s4 + 29s3 + 14s− 3s+ 65,

q4(s) = s5 + 4s4 + 29s3 + 14s− 5s+ 65,

p1(s) = p3(s) = s3 − 6s2 + 2s− 1,

p2(s) = p4(s) = s3 − 5s2 + 2s− 2,

a suitable range of α1 was determined to be α1 ∈ (−1.54, 0.97). This is the

intersection of suitable ranges of α1 for the 16 vertex plants. Using Algorithm

4.2 for the 16 vertex plants, the set of stabilizing (α1, α2, α3) values are shown in

Figure 4.27. •
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Figure 4.27: Stabilizing set of (α1, α2, α3) values.
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4.7 Second-Order Controllers

In this section, we show that Algorithm 4.2 can be extended to compute all

stabilizing parameters of a high-order controller. We give a detailed derivation

of the second-order controller case and show how to find the j-th parameter in a

l-th-order controller. Now, we describe an algorithm that determines the set of all

stabilizing second-order controllers for a given plant. A second-order controller

c(s) =
α3s

2 + α4s+ α5

s2 + α1s+ α2
,

applied to g(s) = p(s)
q(s)

gives the closed loop characteristic polynomial

φ0(s, α1, α2, α3, α4, α5) = (s2 + α1s+ α2)q(s) + (α3s
2 + α4s+ α5)p(s)

= q0(s) + (α3s
2 + α5)p0(s), (4.11)

where

q0(s) = (s2 + α1s+ α2)q(s) + α4sp(s),

p0(s) = p(s).
(4.12)

Multiplying φ0(s, α1, α2, α3, α4, α5) by p̄0(−s) we obtain

ψ1(s, α1, α2, α3, α4, α5) = φ0(s, α1, α2, α3, α4, α5)p̄0(−s)
= s2H(s2) + α1s

2G(s2) + α2H(s2) + α3s
2F (s2)

+α5F (s2) + s[s2G(s2) + α1H(s2) + α2G(s2)

+α4F (s2)].

(4.13)

The reasoning behind the algorithm which determines the set of parameters

α1, α2, α3, α4, and α5 of a stabilizing second-order controller can be explained

as follows. Suppose φ0(s) is Hurwitz stable for some α1, α2, α3, α4, α5 ∈ R.

By Remark 3.3, it follows that the odd part uG(u) +α1H(u) +α2G(u) +α4F (u)

of ψ1(s) has at least r1 = bn+1−σ(p0)
2

c real negative roots with odd multiplicities.
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Suppose uG(u)+α1H(u)+α2G(u)+α3F (u) has r1 real negative roots with odd

multiplicities. By Lemma 4.1, σ[φ1(s)] = 2r1, where

φ1(s, α1, α2, α4) = Gu
1(s) + α1H1(s) + α2G1(s) + α4F1(s)

= q1(s) + α4p1(s)

and

H1(s) = H(s2) + sH ′(s2),

G1(s) = G(s2) + sG′(s2),

F1(s) = F (s2) + sF ′(s2),

Gu
1(s) = s2G(s2) + s[G′(s2) + s2G(s2)],

q1(s) = Gu
1(s) + α1H1(s) + α2G1(s),

p1(s) = F1(s).

(4.14)

In order to find the suitable ranges of α1, α2 and α4, we modify φ1(s) as follows.

Let B := gcd{F, F ′} so that F = BF̄ , F ′ = BF̃ ′ for coprime polynomials

F̄ , F̃ ′ ∈ R[u]. Let p̄1(s) := F̄ (s2) + sF̃ ′(s2). By a simple computation, it follows

that

ψ2(s, α1, α2, α4) = φ1(s, α1, α2, α4)p̄1(−s)

= Gu
2e(s

2) + α1H2e(s
2) + α2G2e(s

2) + α4F2e(s
2)

+s[Gu
2o(s

2) + α1H2o(s
2) + α2G2o(s

2)],

where

Gu
2e(u) = uG(u)F̄ (u) − u[G(u) + uG′(u)]F̃ ′(u),

Gu
2o(u) = [G(u) + uG′(u)]F̄ (u) − uG(u)F̃ ′(u),

H2e(u) = H(u)F̄ (u) − uH ′(u)F̃ ′(u),

H2o(u) = H ′(u)F̄ (u) −H(u)F̃ ′(u),

G2e(u) = G(u)F̄ (u) − uG′(u)F̃ ′(u),

G2o(u) = G′(u)F̄ (u) −G(u)F̃ ′(u),

F2e(u) = F (u)F̄ (u) − uF ′(u)F̃ ′(u).

(4.15)

Again by Remark 3.3, it follows that the odd part Gu
2o(s

2)+α1H2o(s
2)+α2G2o(s

2)

has at least r2 = b |2r1−σ(p1)|−1
2

c real negative roots with odd multiplicities. Repeat-

ing the same procedure once more, suppose that Gu
2o(s

2)+α1H2o(s
2)+α2G2o(s

2)
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has r2 real negative roots with odd multiplicities. By Lemma 4.1, σ[φ2(s)] = 2r2,

where

φ2(s, α1, α2) = Gu
2(s) + α1H2(s) + α2G2(s)

= q2(s) + α2p2(s)

and

Gu
2(s) = Gu

2o(s
2) + sGu′

2o(s
2)

H2(s) = H2o(s
2) + sH ′

2o(s
2)

G2(s) = G2o(s
2) + sG′

2o(s
2)

q2(s) = Gu
2(s) + α1H2(s),

p2(s) = G2(s).

(4.16)

The same steps above are repeated for φ2(s). Let C := gcd{G2o, G
′
2o} so that

G2o = CḠ2o, G
′
2o = CG̃′

2o for coprime polynomials Ḡ2o, G̃
′
2o ∈ R[u]. Let p̄2(s) :=

Ḡ2o(s
2) + sG̃′

2o(s
2). Multiplying φ2(s) by p2(−s), we get

ψ3(s, α1, α2) = φ2(s, α1, α2)p̄2(−s)

= Gu
3e(s

2) + α1H3e(s
2) + α2G3e(s

2)

+s[Gu
3o(s

2) + α1H3o(s
2)],

where

Gu
3e(u) = Gu

2o(u)Ḡ2o(u) − uGu′

2o(u)G̃
′
2o(u),

Gu
3o(u) = Gu′

2o(u)Ḡ2o(u) −Gu
2o(u)G̃

′
2o(u),

H3e(u) = H2o(u)Ḡ2o(u) − uH ′
2o(u)G̃

′
2o(u),

H3o(u) = H ′
2o(u)Ḡ2o(u) −H2o(u)G̃

′
2o(u),

G3e(u) = G2o(u)Ḡ2o(u) − uG′
2o(u)G̃

′
2o(u).

(4.17)

Once more by Remark 3.3, the odd part of ψ3(s) has at least r3 = b |2r2−σ(p2)|−1
2

c
real negative roots with odd multiplicities . Now the set of α1 ∈ R which achieves

r3 real negative roots with odd multiplicities in Gu
3o(u) + α1H3o(u) can be deter-

mined by applying Algorithm 3.2 to

q3(s) = Gu
3(s) = Gu

3o(s
2) + sGu′

3o(s
2),

p3(s) = H3(s) = H3o(s
2) + sH ′

3o(s
2).
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The algorithm below traces the above steps backwards by repetition of the steps

(i)-(iv) below:

(i) Pick a value of α1 such that the number of real negative roots with odd multi-

plicities of Gu
3o(u) + α1H3o(u) is r3 or greater.

(ii) Determine using Algorithm 3.2 all α2 ∈ R such that σ[φ2(s)] = 2r2. By

Lemma 4.1 and Remark 3.3, this is equivalent to determining values of α2 such

that Gu
2o(u) + α1H2o(u) + α2G2o(u) has r2 real negative roots with odd multiplici-

ties.

(iii) For every α2 found, determine using Algorithm 3.2 all α4 ∈ R such that

σ[φ1(s)] = 2r1. By Lemma 4.1 and Remark 3.3, this is equivalent to determining

values of α4 such that uG(u) + α1H(u) + α2G(u) + α4F (u) has r1 real negative

roots with odd multiplicities.

(iv) For every α4 determined, find using extension of Algorithm 3.2, all α3, α5

such that φ0(s) is Hurwitz stable.

The following algorithm determines all α1, α2, α3, α4, α5 such that

φ(s, α1, α2, α3, α4, α5) ∈ H:

Algorithm 4.3 • Partition the real axis into intervals (or union of intervals)

such that the number of real negative roots with odd multiplicities of Gu
3o(u)+

α1H3o(u) is constant in each interval.

• Fix r1 = bn+1−σ(p0)
2

c.

1. Fix r2 = b2r1−σ(p1)
2

c.

2. Find admissible range of α1 from the intervals found in the first step.

(a) Fix an α1 in the admissible range.

(b) Apply Algorithm 3.2 to q2(s) and p2(s) given by (4.16). (This

calculates admissible values of α2 such that Gu
2o(u) + α1H2o(u) +

α2G2o(u) has r2 real negative roots with odd multiplicities.)
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i. Fix an α2 from the range determined in 2.b.

ii. Apply Algorithm 3.2 to q1(s) and p1(s) given by (4.14). (This

calculates all admissible values of α4 such that uG(u) +

α1H(u)+α2G(u)+α4F (u) has r1 real negative roots with odd

multiplicities.)

A. Fix an α4 from the range determined in 2.b.ii.

B. Apply modified Algorithm 3.2 to q0(s) and p0(s) given by

(4.12). (This calculates all admissible values of α3 and α5

such that φ0 of (4.11) is in H.)

C. Increment α4 and go to step 2.b.ii.A.

iii. Increment α2 and go to step 2.b.i.

(c) Increment α1 and go to step 2.a.

3. If r2 < deg(Gu
2o), then increment r2 by one and go to step 2.

• If r1 < deg(uG) then increment r1 by one and go to step 1.

Algorithm 3.2 is repeatedly used on four auxiliary plants:

g0(s) =
p0(s)

q0(s)
=

p(s)

(s2 + α1s+ α2)q(s) + α4sp(s)
,

g1(s) =
p1(s)

q1(s)
=

F1(s)

Gu
1(s) + α1H1(s) + α2G1(s)

,

g2(s) =
p2(s)

q2(s)
=

G2(s)

Gu
2(s) + α1H2(s)

,

g3(s) =
p3(s)

q3(s)
=

H3(s)

Gu
3(s)

,

to give the admissible values of (α1, α2, α3, α4, α5).

Remark 4.8 The method can also be applied to discrete time plants using a

bilinear transformation of the complex plane. Let the controller transfer function

be

c(z) =
α3z

2 + α4z + α5

α1z2 + α2z + 1
.
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By the bilinear transformation z = w+1
w−1

, we get

c(w) =
(α3 + α4 + α5)w

2 + (2α3 − 2α5)w + α3 − α4 + α5

(α1 + α2 + 1)w2 + (2α1 − 2)w + α1 − α2 + 1
.

For a c(w) in this form, α1, α2, α3, and α5 appear both in the even and odd parts of

ψ1(w, α1, α2, α3, α4, α5) = φ0(w, α1, α2, α3, α4, α5)p̄0(−w). Let ᾱ3 = α3 +α4 +α5,

ᾱ4 = α3 − α5 and ᾱ5 = α3 − α4 + α5. Then, by a simple computation it follows

that

ψ1(w) = w2H(w2) +H(w2) − 2w2G(w2) + α1[w
2H(w2) +H(w2) + 2w2G(w2)]

+α2[w
2H(w2) −H(w2)] + ᾱ3w

2F (w2) + ᾱ5F (w2) + w[w2G(w2) − 2H(w2)

+G(w2) + α1(w
2G(w2) + 2H(w2) +G(w2)) + α2(w

2G(w2) −G(w2) + ᾱ4F (w2)].

Stabilizing controller parameters α1, α2, ᾱ3, ᾱ4, and ᾱ5 can be calculated using

Algorithm 4.3. Since










ᾱ3

ᾱ4

ᾱ5











=











1 1 1

1 0 −1

1 −1 1











.











α3

α4

α5











and the linear transformation is invertible, we can calculate the values of α3, α4

and α5 as follows:










α3

α4

α5











=











1
4

1
2

1
4

1
2

0 −1
2

1
4

−1
2

1
4











.











ᾱ3

ᾱ4

ᾱ5











.

The method hence applies to discrete time plants of arbitrary order. 4

Example 4.7 Consider determining a strictly proper second-order controllers

c(s) =
α3s+ α4

s2 + α1s+ α2

to stabilize the plant g(s) = p(s)
q(s)

, where

q(s) = s5 + 4s4 + 29s3 + 15s2 − 3s+ 60,

p(s) = s3 − 6s2 + 2s+ 1.
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The roots of q0(s) are {−1.2576 ± j5.1476, − 1.5574, 0.5363 ± j1.0414} and

those of p0(s) are {−0.2705, 0.6587, 5.6119} so that this is an unstable and non-

minimum phase plant. Using (3.9), we have

H(u) = −u4 − 49u3 − 142u2 − 339u+ 60,

G(u) = −9u3 − 194u2 − 43u− 123,

F (u) = −u3 + 32u2 − 16u+ 1.

A necessary condition for the existence of a stabilizing second-order controller is

that uG(u) + α1H(u) + α2G(u) + α3F (u) has at least r1 = bn+1−σ(po)
2

c = 3 real

negative roots with odd multiplicities. As gcd(F, F ′) = 1, we multiply φ1(s) by

p1(−s) = F (s2) − sF ′(s2). For r1 = 3, σ(φ1) − σ(p1) = 6 and the odd part of

φ1(s)p1(−s) must have at least r2 = b |2r1−σ(p1)|−1
2

c = 2 real negative roots with

odd multiplicities. In a similar way we can determine r3 = b |2r2−σ(p2)|−1
2

c = 1.

For r1 = 4 we obtain r2 = 3 and r3 = 2. Now let us follow the steps of Algorithm

4.3 for a fixed value of α1. For α1 = 1, using step 2.b in Algorithm 4.3, the range

of admissible values of α2 for which Gu
2o(u) + α1H2o(u) + α2G2o(u) has at least 2

negative real roots is (−14.3402, 1.5032). With α2 = 0.5, we obtain

q1(s) = −10s8 − 40s7 − 247.5s6 − 742.5s5 − 282s4 − 564s3 − 483.5s2

−483.58s− 1.5,

p1(s) = −s6 − 3s5 + 32s4 + 64s3 − 16s2 − 16s+ 1.

Step 2.b.ii in Algorithm 4.3 gives the following solution α3 ∈ (−15.8926,−8.5154)

for α1 = 1 and α2 = 0.5 . With α3 = −10, we obtain

q0(s) = s7 + 4s6 + 32.5s5 + 35.5s4 + 86.5s3 + 44.5s2 + 48.5s+ 30,

p0(s) = s3 − 6s2 + 2s+ 1.

Step 2.b.ii.A in Algorithm 4.3 gives the following solution α4 ∈ (−4.0566,−2.8786)

for α1 = 1, α2 = 0.5 and α3 = −10 . The solution set for α1 = 1 is shown in Fig-

ure 4.28. Figure 4.29 and Figure 4.30 shows the results for α1 = 5 and α1 = 15,

respectively. •
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Figure 4.28: Stabilizing set of (α2, α3, α4) values for α1 = 1.

Remark 4.9 In this section, we gave a complete derivation of an algorithm that

determines all stabilizing second-order controllers for a given plant. Algorithm

3.2 is repeatedly applied to a number of auxiliary plants (g0(s) = p0(s)
q0(s)

, g1(s) =

p1(s)
q1(s)

, g2(s) = p2(s)
q2(s)

, and g3(s) = p3(s)
q3(s)

). The above algorithm can be extended to

high-order controllers. As the number of parameters of the controller increases,

the number of auxiliary plants increases accordingly. For an l-th order controller

(we assume here that l is even and let k = 3l
2
)

c(s) =
s[αl+1s

l−2 + αl+2s
l−4 + . . .+ αk] + αk+1s

l + αk+2s
l−2 + . . .+ α2l+1

sl + α1sl−1 + α2sl−2 + . . .+ αl
,

we can determine recursively φi’s and ψi’s as follows:

φ0(s) = (sl + α1s
l−1 + α2s

l−2 + . . .+ αl)q(s) + s[αl+1s
l−2 + αl+2s

l−4 + . . .+ αk]p(s)

+[αk+1s
l + αk+2s

l−2 + . . .+ α2l+1]p(s)

= q0(s) + [αk+1s
l + αk+2s

l−2 + . . .+ α2l+1]p0(s)

ψ1(s) = φ0(s)p̄0(s)

= ψ1e(s
2) + sψ1o(s

2)
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Figure 4.29: Stabilizing set of (α2, α3, α4) values for α1 = 5.

φ1(s) = ψ1o(s
2) + sψ′

1o(s
2)

= q1(s) + α1p1(s)

...

ψi(s) = φi−1(s)p̄i−1(s)

= ψie(s
2) + sψio(s

2)

φi(s) = ψio(s
2) + sψ′

io(s
2)

= qi(s) + αipi(s)

...

φk(s) = qk(s) + αkpk(s)

Hence, at each step we can determine pi(s) and qi(s) for i = 0, 1, . . . , k. It

is also possible to determine ri’s recursively, i.e., r0 = bn+l−σ(p0)
2

c and ri =

b |2ri−1−σ(pi−1)|−1
2

c for i = 1, 2, 3, . . . , k. At the j-th step of the algorithm as qj(s),

pj(s), and rj are all known, we can determine αj using Algorithm 3.2. 4
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Figure 4.30: Stabilizing set of (α2, α3, α4) values for α1 = 15.



Chapter 5

Local Convex Directions

In Chapters 3 and 4, we saw that the concept of convex directions plays an im-

portant role in studying stability of uncertain parameter systems. For plants

with interval type parameter uncertainty, extreme point results can be obtained

whenever Ranzter’s growth condition is satisfied. In [67], a new version of the

Hermite-Biehler theorem was derived and used to construct new convex direc-

tions. In this chapter, we use this new version to study local convex directions

[58]. A new condition for a polynomial p(s) to be a local convex direction for a

Hurwitz stable polynomial q(s) is derived. The condition is in terms of polyno-

mials associated with the even and odd parts of p(s) and q(s) and constitutes a

generalization of Rantzer’s phase growth condition for global convex directions.

It is used to determine convex directions for certain subsets of Hurwitz stable

polynomials.

111
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5.1 Local Convex Directions

A polynomial p(s) is called a global convex direction (for all Hurwitz stable

polynomials of degree n) if for any Hurwitz stable polynomial q(s) the implication

q(s) + p(s) is Hurwitz stable and deg q + λp = n ∀λ ∈ [0, 1]

⇒ q(s) + λp(s) is Hurwitz stable ∀λ ∈ (0, 1)

holds. Rantzer in [47] has shown that a polynomial p(s) is a convex direction if

and only if it satisfies the phase growth condition ([47], [48])

θ
′

p(w) ≤ |sin(2θp(w))

2w
| ∀w > 0, (5.1)

whenever θp(w) := arg p(jw) 6= 0. The condition (5.1) is in a sense a complement

of the phase increasing property of Hurwitz stable polynomials. For a Hurwitz

stable polynomial q(s) the rate of change of the argument satisfies

θ
′

q(w) ≥ |sin(2θq(w))

2w
| ∀w > 0,

where the inequality is strict if deg q ≥ 2. This property also given in [47] seems

to be known in network theory as pointed out by [60] (see also [99] for a proof

based on Hermite-Biehler Theorem and [66] for related conditions).

Our main result in this section yields a characterization of polynomials

p(s), q(s) which satisfy the local convexity condition

(LCC) q, q+p ∈ H and deg q+λp = deg q ∀λ ∈ [0, 1] ⇒ q+λp ∈ H ∀λ ∈ (0, 1).

Let (h, g) and (f, e) be the even-odd parts of q(s) and p(s), respectively. Recall

that

Vp(u) := f ′(u)e(u) − f(u)e′(u),

Vsp(u) := f(u)e(u) − u[f ′(u)e(u) − f(u)e′(u)],
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and

Sp(u) := f(u)e(u)
Vp(u)

,

Ssp(u) := uf(u)e(u)
Vsp(u)

.

The following theorem gives a test for LCC in terms of polynomials associated

with the even-odd parts of p(s) and the vertex polynomials q(s), q(s)+p(s). This

result is suitable for obtaining convex directions for certain subsets of Hurwitz

stable polynomials. It also gives Rantzer’s condition in a rather straightforward

manner when it is satisfied by every Hurwitz stable polynomial. It is thus one

natural local version of the global condition of Rantzer.

Theorem 5.1 Let p(s), q(s) be polynomials with n := deg q > 1. Then, LCC

holds if and only if

Vp(u) < (
√

Vp+q(u) +
√

Vq(u))2 ∀ u ∈ {u < 0 : f(u)e(u) ≥ 0},
Vsp(u) < (

√

Vs(p+q)(u) +
√

Vsq(u))2 ∀ u ∈ {u < 0 : f(u)e(u) < 0}.
(5.2)

Proof. [Only if] If q+λp ∈ H for all λ ∈ [0, 1], then (h+λf, g+λe) is a positive

pair for all λ ∈ [0, 1]. By lemma 2.1, Vq+λp(u) > 0 and Vs(q+λp)(u) > 0 ∀u < 0

and ∀λ ∈ [0, 1]. The following identities are obtained by an easy computation.

Vq+λp(u) = (1 − λ)Vq(u) + λ(λ− 1)Vp(u) + λVq+p(u), (5.3)

Vs(q+λp)(u) = (1 − λ)Vsq(u) + λ(λ− 1)Vsp(u) + λVs(q+p)(u). (5.4)

Suppose for some u < 0, the first condition in (5.2) fails. For this value of u,

λ :=

√

Vq(u)
√

Vq+p(u) +
√

Vq(u)
∈ (0, 1),

achieves the value

Vq+λp(u) =
[(
√

Vp+q(u) +
√

Vq(u))
2 − Vp(u)]

√

Vp+q(u)Vq(u)

[
√

Vp+q(u) +
√

Vq(u)]2
.

By our hypothesis, the right hand side is nonpositive which contradicts the fact

that Vq+λp(u) > 0. Thus the first condition in (5.2) must hold. Similarly, using

(5.4), the second condition in (5.2) is obtained.
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[If] Consider the identities

Vq+λp(u) = (1 − λ)2Vq(u) + λ(1 − λ)A(u) + λ2Vq+p(u), (5.5)

Vs(q+λp)(u) = (1 − λ)2Vsq(u) + λ(1 − λ)B(u) + λ2Vs(q+p)(u), (5.6)

where

A(u) := Vq+p(u) + Vq(u) − Vp(u),

B(u) := Vs(q+p)(u) + Vsq(u) − Vsp(u).

If u < 0 is such that A(u) ≥ 0, then as Vq(u) > 0, Vq+p(u) > 0, the right hand

side of (5.5) is positive for all λ ∈ [0, 1]. If u < 0 satisfies A(u) < 0, then

A(u) − 2
√

Vp+q(u)Vq(u) = (
√

Vq+p(u) −
√

Vq(u))
2 − Vp(u) < 0

and by (5.2)

[(
√

Vq+p(u) +
√

Vq(u))
2 − Vp(u)][(

√

Vq+p(u) −
√

Vq(u))
2 − Vp(u)]

= [A(u)]2 − 4Vp+q(u)Vq(u) < 0

for all u ∈ {u < 0 : f(u)e(u) ≥ 0} for which A(u) < 0. But then for such u, the

right hand side of (5.5) is nonzero for all λ ∈ (0, 1) so that it is positive for all

λ ∈ [0, 1]. This implies that

Vq+λp(u) > 0 ∀u ∈ {u < 0 : f(u)e(u) ≥ 0}, ∀λ ∈ [0, 1]. (5.7)

By similar arguments, the identity (5.6) and the condition (5.2) imply that

Vs(q+λp)(u) > 0 ∀u ∈ {u < 0 : f(u)e(u) < 0}, ∀λ ∈ [0, 1]. (5.8)

We now show that (5.7) and (5.8) imply q + λp ∈ H for all λ ∈ (0, 1). Suppose

for some λ0 ∈ (0, 1), q + λ0p is not in H. Then, as q, q + p ∈ H and deg q + λp

is constant for λ ∈ [0, 1], by the continuity of the roots of q + λp with respect to

λ, there exists 0 < λ1 ≤ λ2 < 1 such that q + λp ∈ H, ∀λ ∈ [0, λ1) ∪ (λ2, 1] and

one of the following two cases happen

(i) q0 + λ1p0 = 0 and q0 + λ2p0 = 0

(ii) (q + λ1p)(jw0) = 0, or (q + λ2p)(jw1) = 0 where w0 6= 0 or w1 6= 0,
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with q0 := q(0), p0 := p(0).

(i) Note that if λ1 6= λ2, then q0 = 0 contradicting the fact that q ∈ H.

Hence with λ0 := λ1 = λ2, we have λ0(q0 + p0) + (1 − λ0)q0 = 0 implying

that q0 and q0 + p0 have different signs. say q0 > 0 and q0 + p0 < 0. Since

q + λp ∈ H ∀λ ∈ [0, λ0) ∪ (λ0, 1], it follows that q0 + λp0 > 0, ∀λ ∈ [0, λ0) and

q0+λp0 < 0, ∀λ ∈ (λ0, 1]. Since all coefficients of a Hurwitz stable polynomial are

of the like sign, it follows that all coefficients of q+λp for λ ∈ [0, λ0) are positive

and that all coefficients of q + λp for λ ∈ (λ0, 1] are negative. This implies that

q + λ0p ≡ 0 contradicting the hypothesis that deg q + λp = n.

(ii) Suppose without loss of generality that u0 := −w2
0 < 0. Then, we have

h(u0) + λ1f(u0) = 0 and g(u0) + λ1e(u0) = 0 which contradicts either (5.7) or

(5.8) depending on whether f(u0)e(u0) ≥ 0 or f(u0)e(u0) < 0.

Remark 5.1 The following alternative statement eliminates the square roots in

(5.2): Under the assumptions of Theorem 5.1, q + λp ∈ H for all λ ∈ (0, 1) if

and only if

u < 0 : f(u)e(u) ≥ 0, A(u) < 0 ⇒ A(u)2 < 4Vp+q(u)Vq(u), (5.9)

u < 0 : f(u)e(u) < 0, B(u) < 0 ⇒ B(u)2 < 4Vs(p+q)(u)Vsq(u). (5.10)

4

It is easy to see that given a polynomial p(s) = f(s2) + se(s2), it is a local

convex direction for any Hurwitz stable polynomial q(s) = h(s2)+sg(s2) whenever

(h, e) and (f, g) form positive pairs. This follows by A(u) ≥ 0, B(u) ≥ 0 ∀u < 0

and by Remark 5.1. In what follows, we identify other sets of Hurwitz stable

polynomials for which p(s) is a local convex direction. Consider the control

system in Figure 5.1. Given a family of plants

G = {g(s, λ) =
g(s2) + λ

h(s2) + λ
: λ ∈ [0, 1]},
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G(s,   λ)(s2 )
(s2 ) (s2 )

(s2 )C(s)= =se
f

+
+

λ
λ

+
−

g
h

Figure 5.1: A robust stabilization problem for plants of even transfer functions.

it is easy to see that if a controller c(s) = se(s2)
f(s2)

stabilizes g(s, 0) then it stabilizes

the whole family if and only if p(s) = f(s2)+se(s2) is a local convex direction for

q(s) = h(s2)f(s2) + se(s2)g(s2). In order to get more concrete conditions using

Theorem 5.1, we restrict h(s2) and g(s2) to be of first order. We thus consider

certain subsets of polynomials obtained by adding zeros to even and/or odd part

of a candidate convex direction p(s) = f(s2) + se(s2). Consider

Qp = {q(s) = (ks2 + 1)f(s2) + s(ls2 + 1)e(s2) : k > l ≥ 0}, (5.11)

we assume here that p(s) ∈ H so that Qp ⊂ H for a majority of values of k and

l. The case of l > k ≥ 0 follows similar arguments and therefore it is omitted.

In what follows, we use Theorem 5.1 to find conditions in terms of sensitivity

functions Sp(u) and Ssp(u) such that p(s) is a local convex direction for Qp.

Corollary 5.1 Let p(s) be a Hurwitz stable polynomial and Qp as defined in

(5.11). The polynomial p(s) is a local convex direction for Qp if and only if k and

l satisfy the following conditions:

u < 0 : f(u)e(u) ≥ 0, Sp(u) <
2klu2+3(k+l)u+4

3(l−k)

⇒ (l−k)u
2
√
kl+k+l

< Sp(u) <
(k−l)u

2
√
kl−(k+l)

(5.12)

u < 0 : f(u)e(u) < 0 ⇒ Ssp(u) ≤ 2klu2+3(k+l)u+4
3(k−l) (5.13)

Proof. For

q(s) = (ks2 + 1)f(s2) + s(ls2 + 1)e(s2),
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we have

A(u) = (2klu+ 3(k + l)u+ 4)Vp(u) + 3(k − l)f(u)e(u),

B(u) = (2klu+ 3(k + l)u+ 4)Vsp(u) − 3(k − l)uf(u)e(u).

It is lengthy but straightforward to verify that (5.12) is equivalent to (5.9). If

∀u < 0 : f(u)e(u) < 0, B(u) < 0

then
(k − l)u

2
√
kl + k + l

< Ssp(u) <
(k − l)u

(k + l) − 2
√
kl

≤ 0

must be satisfied for LCC to hold. This is impossible as

Ssp(u) > 0 ∀u < 0, f(u)e(u) < 0.

Condition (5.13) is hence equivalent to the following condition

∀u < 0 : f(u)e(u) < 0 ⇒ B(u) ≥ 0.

The result follows by Remark 5.1.

Remark 5.2 Setting l = 0 in Corollary 5.1, we get

Qp = {q(s) = (ks2 + 1)f(s2) + se(s2)}.

A(u) ≥ 0 and B(u) ≥ 0 reduce to

Sp(u) ≥ −3ku−4
3k

,

Ssp ≤ 2ku+4
3k

,

which can be shown to hold for every q(s) ∈ H. Hence p(s) is a local convex

direction for all q(s) = (ks2 + 1)f(s2) + se(s2) such that q(s) ∈ H. This simple

result is equivalent to the following robust stabilization result. Consider the family

of Hurwitz stable plants

P = {g(s, γ) =
f(s2)s2

γ(f(s2) + se(s2))
: γ ∈ [1, 2]}.

Any constant feedback gain which stabilizes the vertex plant g(s, 1) = f(s2)s2

f(s2)+se(s2)

also stabilizes the whole family. 4
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5.2 Convex Directions for all Hurwitz Stable

Polynomials

In this section, we investigate the relation between the local condition of Theorem

5.1 and the phase growth condition of Rantzer [47] which characterizes those

polynomials p(s) which satisfy LCC for all q(s) ∈ H. In Theorem 5.2 below,

we give an alternative proof of Rantzer’s result. One part of this proof (the “if”

part) is particularly straightforward and makes the connection between the local

condition and the phase growth condition very clear.

The other direction of the proof requires a construction and hence it is not

straightforward. We first prove a lemma used in this part of the proof of Theorem

5.2. The claim is that given any point jω0 on the imaginary axis and any numer-

ator polynomial p(s) such that p(jω0) 6= 0, one can design a stable denominator

polynomial r̄(s) such that the root-locus (or the complementary root-locus) of

p(s)
r̄(s)

passes through jω0.

Lemma 5.1 Given a polynomial p(s) with deg p > 1 and a real positive number

ω0 such that p(jω0) 6= 0, there exists a Hurwitz stable polynomial r̄(s) with deg r̄ ≥
deg p and a real number α for which (r̄ + αp)(jω0) = 0.

Proof. Let u0 := −ω2
0 . Since p(jω0) 6= 0, the polynomials p(s), s − jω0 are

coprime so that given any r0 ∈ C[s], there exists c ∈ C and n ∈ C[s] such that

(s− jω0)n(s) + p(s)c = r0(s) (5.14)

by Euclidean algorithm in C[s]. We can in particular choose a Hurwitz stable

polynomial r0(s) with real coefficients such that deg r0 ≥ deg p and such that
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the even-odd components (h0, g0) of r0(s) satisfy

g0(u0)
h0(u0)

> f(u0)
u0e(u0)

> e(u0)
f(u0)

if f(u0)e(u0) < 0 or f(u0) = 0,

h0(u0)
g0(u0)

< u0e(u0)
f(u0)

< f(u0)
e(u0)

if f(u0)e(u0) > 0 or e(u0) = 0.
(5.15)

Let c = cr + jci for cr, ci ∈ R and let

n(s) = nr(s) + jni(s)

for nr, ni ∈ R[s]. Note that c 6= 0 in (5.14), since otherwise r0(s) would not be

Hurwitz stable. If ci = 0, then r0 − cp ∈ R[s] and r̄(s) := r0(s) is the desired

polynomial. If ci 6= 0, we proceed as follows. Multiplying both sides of (5.14) by

(s+ jω0)(cr − jci) and equating the real and imaginary parts, we have

(s2 − u0)m(s) − αp(s) = (cis− crω0)r0(s) =: r̄(s)

where

m(s) := cinr(s) − crni(s),

α := ω0(c
2
r + c2i ),

and where we used the fact that p, r0 ∈ R[s]. To complete the proof, we show

that r̄(s) is Hurwitz stable. This requires showing that S(crci) = −1. Evaluating

(5.14) at s = jω0, we have

cr + jci =
r0(jω0)

p(jω0)
=
H(u0)

F (u0)
+ jω0

G(u0)

F (u0)
,

where

H(u) := h0(u)f(u)− ug0(u)e(u),

G(u) := g0(u)f(u) − h0(u)e(u),

F (u) := f(u)2 − ue(u)2.

Since p(jω0) 6= 0 by assumption, f(u) and e(u) can not be simultaneously zero

at u0. In all four possible cases
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1. f(u0) = 0, e(u0) 6= 0,

2. f(u0) 6= 0, e(u0) = 0,

3. S[f(u0)e(u0)] = +1,

4. S[f(u0)e(u0)] = −1,

it is straightforward to show using (5.15) that S[H(u0)G(u0)] = −1. Since

F (u0) > 0, this yields that S(crci) = −1 and the proof is complete.

In [100], Rantzer’s phase growth condition is translated into conditions on

Vp(u) and Vsp(u). This new form of Rantzer’s condition was then used to construct

new convex directions for Hurwitz stable polynomials. In what follows we state

the phase growth condition in this form: p(s) is a global convex direction if and

only if

Vp(u) ≤ 0 ∀u < 0 such that f(u)e(u) ≥ 0,

Vsp(u) ≤ 0 ∀u < 0 such that f(u)e(u) < 0.

If a given p(s) need not be a convex direction for the set of all Hurwitz stable

polynomials, then it is natural that the upper bounds on Vp(u) and Vsp(u) are

relaxed. In the extreme case of a single polynomial q(s), these bounds turn out

to be the ones given by (5.2).

Theorem 5.2 Given a polynomial p(s), the local convexity condition (LCC)

holds for all q(s) ∈ H if and only if

Vp(u) ≤ 0 ∀ u ∈ {u < 0 : f(u)e(u) ≥ 0},
Vsp(u) ≤ 0 ∀ u ∈ {u < 0 : f(u)e(u) < 0}.

(5.16)

Proof. [If] If deg p ≤ 1, then for q(s) such that deg q ≤ 1, LCC is easily seen

to hold. For q(s) such that deg q > 1, if (5.16) holds then the conditions in (5.2)

hold for all q ∈ H such that q+p ∈ H. By Theorem 5.1, LCC holds for all q ∈ H.
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If deg p > 1, then deg q > 1 in order for deg q + λp = deg q for all λ ∈ [0, 1]. For

such q(s), if (5.16) holds, then again by Theorem 5.1 LCC is satisfied.

[Only if] If deg p ≤ 1, then by direct computation it easy to see that (5.16)

holds. We can therefore assume deg p > 1. Suppose for some u0 < 0, one of the

conditions in (5.16) fails. We construct q ∈ H for which LCC fails. Suppose that

Vp(u0) > 0 and f(u0)e(u0) ≥ 0. Note that f(u0) and e(u0) can not simultaneously

be zero since otherwise Vp(u0) = 0. Hence, with ω0 =
√−u0, we have

p(jω0) = f(u0) + jω0e(u0) 6= 0.

By Lemma 5.1, there exists r̄ ∈ H, deg r̄ ≥ deg p such that (r̄+αp)(jω0) = 0 for

some α ∈ R. Since r̄(s) is Hurwitz stable , α 6= 0. If we let (k̄(u), l̄(u)) be the

even-odd components of r̄(s), then by (r̄ + αp)(jω0) = 0 and α 6= 0, we have

(k̄e− l̄f)(u0) = 0. (5.17)

Let

r(s) := −λ0p(s) + (s2 + ω2
0)r̄(s) (5.18)

for some arbitrary but fixed λ0 ∈ (0, 1). If we let (k(u), l(u)) be the even-odd

components of r(s), we have (k + λ0f)(u0) = 0 and (l + λ0e)(u0) = 0 so that

Vr+λ0p(u0) = 0, Vs(r+λ0p)(u0) = 0. (5.19)

We now show that, there exists ε > 0 such that

Vr+λp(u) > 0, Vs(r+λp)(u) > 0 ∀λ ∈ [λ0 − ε, λ0) ∪ (λ0, λ0 + ε], ∀u < 0.

Note that

Vr+λp(u) = (k + λf)
′

(u)(l + λe)(u) − (k + λf)(u)(l + λe)
′

(u),

Vs(r+λp)(u) = (k + λf)(u)(l + λe)(u) − uVr+λp(u).

By (5.18),

(k + λf)(u) = (u− u0)k̄(u),

(l + λe)(u) = (u− u0)l̄(u),
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so that

Vr+λp(u) = Vr+λ0p(u) + (λ− λ0)(k̄e− l̄f)(u) + (λ− λ0)(k̄
′

e

−k̄e′ − l̄
′

f + l̄f
′

)(u− u0) + (λ− λ0)
2Vp(u).

Hence using (5.17) and (5.19), we have

Vr+λp(u0) = (λ− λ0)
2Vp(u0),

Vr+λ0p(u) = (u− u0)
2Vr̄(u).

Similarly,

Vs(r+λp)(u0) = (λ− λ0)
2Vsp(u0),

Vs(r+λ0p)(u) = (u− u0)
2Vsr̄(u).

Since r̄ ∈ H and deg(r̄) ≥ 2, we can apply Lemma 2.1 to obtain

Vr̄(u) > 0,

Vsr̄(u) > 0,

for all u < 0. Hence,

Vr+λ0p(u) > 0,

Vs(r+λ0p)(u) > 0,

for all u such that 0 > u 6= u0. By our assumption,

Vp(u0) > 0, and f(u0)e(u0) ≥ 0.

Hence,

Vsp(u0) = f(u0)e(u0) − u0Vp(u0) > 0.

Consequently,

Vr+λp(u0) > 0,

Vs(r+λp)(u0) > 0,

for all λ ∈ [0, 1] such that λ 6= λ0. It follows that, for some sufficiently small

ε1 > 0, we have

Vr+λp(u) > 0 ∀u < 0 ∀λ ∈ [λ0 − ε1, λ0) ∪ (λ0, λ0 + ε1],

Vs(r+λp)(u) > 0 ∀u < 0 ∀λ ∈ [λ0 − ε1, λ0) ∪ (λ0, λ0 + ε1].
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We now note, by

(k + λ0f)(u) = (u− u0)k̄(u),

(l + λ0e)(u) = (u− u0)l̄(u),

and the fact that (k̄, l̄) is a positive pair, that all the roots of k + λf and l + λe

are real and negative for all λ ∈ [λ0 − ε2, λ0 + ε2] for some sufficiently small ε2.

Therefore, for all λ ∈ [λ0 − ε, λ0)∪ (λ0, λ0 + ε] with ε := min{ε1, ε2}, we have that

(k+λf, l+λe) is a positive pair by Lemma 2.1 so that r+(λ0+ε)p, r+(λ0−ε)p ∈ H.

If we now define

q(s) :=
1

2ε
[r(s) + (λ0 − ε)p(s)],

then q, q + p ∈ H, deg(q + λp) = deg(q) ∀λ ∈ [0, 1], but

(q + 0.5p)(jω0) = (
1

2ε
)(r + λ0p)(jω0) = 0

and LCC fails for this q(s). If u0 < 0 is such that Vsp(u0) > 0 and f(u0)e(u0) < 0,

then

u0Vp(u0) = f(u0)e(u0) − Vsp(u0) < 0

so that Vp(u0) > 0. The construction of q(s) for which LCC fails is exactly the

same as above.

Example 5.1 Consider

p(s) = 2s5 + 9s3 + 4s2 + 6s+ 3,

q(s) = 0.4s5 + 2.1s4 + 1.9s3 + 4.2s2 + 1.6s+ 1.6.

We can easily check that q(s) and p(s) + q(s) are Hurwitz stable. For u < −2,

Vp(u) < 0 and Vsp(u) < 0. From Figure 5. 2 we can see that the first and second

condition of Theorem 5.2 fail in the intervals [−1.183,−0.8139]∪ [−0.75,−0.317]

and [−0.8139,−0.75], respectively. Hence p(s) is not a global convex direction.

On the other hand, from Figure 5.3, we can see that the conditions of Theorem

5.1 are satisfied in the whole interval [−2, 0]. Hence LCC holds for the pair (p, q).

•
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Figure 5.2: Checking conditions of Theorem 5.2.
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Figure 5.3: Checking conditions of Theorem 5.1.



Chapter 6

Conclusions

In this work, we studied the problem of determining all stabilizing controllers

with fixed-order and fixed-structure, for a given single-input single-output, linear,

time-invariant plant. Most synthesis problem can be posed as follows: given a

plant, design a controller such that the feedback system is stable and an additional

desired property hold, for example, the output tracks a step input. This problem

can be solved using YJBK parameterization method. The importance of YJBK

parameterization comes from the fact that this problem is decoupled and a two

steps solution is given. First the set of all stabilizing controllers are computed,

then a controller in this set is sought such that the desired second property holds.

Although the problem of determining the set of all rational, proper, stabilizing

controllers can be solved using YJBK parameterization method, it is important

to note that this method can not accommodate fixing the order or the structure of

the controller. This disadvantage leads to the synthesis of high-order controllers

generally comparable to the order of the plant. Hence, there is a need to develop

alternative methods which incorporate fixing the order and the structure of the

controller.

125
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The results obtained in this thesis are based on an extension of the well

known Hermite-Biehler theorem. A generalization of this theorem enables us to

compute the signature of a given polynomial. It was used in [34] to obtain a new

method for the determination of stabilizing feedback gains for a given plant. We

modified this result to determine the gains for which the closed loop system has

a fixed signature. We also simplified the algorithm and the need for a search

in an exponentially growing set is avoided. As an application of this algorithm,

we studied the problem of characterizing local convex directions which arises in

robust control. In Chapter 6, this problem is considered in more depth. Using

a modified version of the Hermite-Biehler theorem, a necessary and sufficient

condition is given for a polynomial to be a local convex direction of another

polynomial. The relation between this result and the global convex direction

concept of Rantzer is given. The new condition is also useful in determining

subsets of polynomials for which local convexity condition holds.

In Chapter 4, a solution is given to the problem of determining all stabilizing

first-order controllers for a given linear, time-invariant, scalar plant. The algo-

rithm given consists of applying the stabilizing proportional controller result to

a number of auxiliary plants. Once all stabilizing “gains” of the first-order con-

troller are determined, several performance criteria such us maximum overshoot,

settling time, and rise time can be evaluated . Although this method is compu-

tationally demanding as we have to calculate the performance indices for all the

stabilizing controllers, in view of the recent results given in [41], first-order con-

trollers for which the closed loop system is stable and the H∞-norm of a related

transfer function is less than a prescribed level, can be determine efficiently. We

believe that further research is needed to develop similar results for other per-

formance indices. The algorithm is then used to determine stabilizing first-order

controllers for interval plants. It is also applicable to discrete-time systems by

using a bilinear transformation of the complex plane. Using an extension of the
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Hermite-Biehler theorem applicable to complex polynomials, the problem of sta-

bilization with first-order controllers while achieving a desired degree of damping

was solved.

Extension of these results to high-order controllers is outlined and the case

of second-order controllers is studied in detail. A line for future research are

systems with time delay. Since there is generalization of the Hermite-Biehler

theorem applicable to time delay systems, we anticipate that similar results can

be developed.
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[96] K. Saadaoui and A. B. Özgüler, “Computation of stabilizing first-order

controllers for interval plants,” in Proc. IEEE international conference on

signals, systems, decision & information technology, Tunisia, 2003.

[97] M. T. Ho, A. Datta, and S. P. Bhattacharyya, “Design of P, PI and PID

controllers for interval plants,” in Proc. American Control Conference, 1998.
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[100] A. B. Özgüler, “Constructing convex directions for stable polynomials,”

IEEE Transactions on Automatic Control, vol. 45, no. 8, pp. 1569–1574,

2000.


