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ABSTRACT 
 

MOLECULAR KARYOTYPING OF HUMAN HEPATOCELLULAR CARCINOMA 

CELL LINES USING SINGLE-NUCLEOTIDE POLYMORPHISM ARRAYS 

 

KUBİLAY DEMİR 

M.Sc. in Molecular Biology and Genetics 

Thesis Supervisor: Assist. Prof. Cengiz Yakıcıer 

August 2007, 110 Pages 

 

Hepatocellular carcinoma (HCC) etiology is genetically heterogeneous; multiple different 

mechanisms have been shown to promote hepatocarcinogenesis.  However, chromosomal 

aberrations (CAs) and signaling pathways that they alter are still poorly understood.  

Changes in chromosome number (aneuploidies) or structural chromosomal aberrations, 

such as; amplifications, deletions, loss of heterozygosity and recessive mutations are 

important mechanisms for tumor evolution.  

 

Recently developed single nucleotide polymorphism (SNP) microarrays provide high-

throughput quantitative and qualitative screening of genomic DNA with higher resolution 

compared to conventional methods such as fluorescent in situ hybridization (FISH) and 

comparative genomic hybridization (CGH). In cancer research, SNP arrays ease the 

screening of structural changes as well as aneuploidies with exact physical position. 

 

In the framework of this study, we aimed to detect DNA copy number alterations in a 

panel of 14 HCC cell lines.  We screened all the autosomal chromosomes and the X-

chromosome and found previously undescribed novel regions that harbor homozygous 

and hemizygous deletions at 13q12 and Xq21; amplifications at 8p23, 8q13, 8q24, 9p22-

21, 12p1, 14q12, 15q21, 16q23, 17p12-p11, 17q11, 22q11 and Xp22.  In our knowledge, 

our results are the first comprehensive high-throughput screen of commonly used HCC 

cell lines. 
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ÖZET 
 

İNSAN HEPATOSELÜLER KARSİNOM HÜCRE HATLARININ TEK NÜKLEOTID 

POLİMORFİZM YONGALARI KULLANILARAK KARYOTİPLENDİRİLMESİ 

 

KUBİLAY DEMİR 

Moleküler Biyoloji ve Genetik Bölümü Yüksek Lisansı 

Tez Yöneticisi: Yard. Doç. Cengiz Yakıcıer 

Ağustos 2007, 110 Sayfa 

 

Hepatoselüler karsinom (HSK) etiyolojisi çeşitli genetik özellikler göstermektedir ve 

HSK oluşumuna sebebiyet veren birçok değişik işleyiş şekli daha önce gösterilmiştir.  

Ancak, kromozomsal bozukluklar ve düzensizliğe sebebiyet verdikleri sinyal yolakları 

halen tamamiyle açıklığa kavuşmamıştır.  Koromozom sayısındaki değişimler 

(aneuploidik) veya yapısal kromozom bozuklukları, örneğin; amplifikasyonlar, 

delesyonlar, tek kopya kaybı ve resesif mutasyonlar tümör evrimi için önemli 

mekanizmalardandır. 

 

Yakın bir zaman önce kullanılmaya başlanan tekli nükleotid polimorfizm (SNP) 

mikroarraylari yüksek çıktılı nitelik ve nicelikte genomik DNA taranmasında 

kullanılmakta ve geleneksel yöntemlere göre, örneğin florasan in sitü hibridizasyon 

(FISH) ve karşılaştırmalı genomik hibridizasyon (CGH), daha yüksek çözününürlük 

sağlamaktadır.  Kanser araştırmalarında SNP mikroarraylari yapısal kromozom 

değişimlerini ve aneuploidileri tam fiziksel genomik pozisyonları ile birlikte vermektedir. 

 

Bu çalışma çerçevesinde, 14 HSK hücre hattı panelinde DNA kopya sayısı değişimlerini 

ortaya çıkarmayı hedefledik. Tüm otozomal kromozomları ve X-kromozomunu taradık 

ve daha önce tanımlanmamış olan 13q12 ve Xq21 homozigot ve hemizgot kayıplarını ve 

8p23, 8q13, 8q24, 9p22-21, 12p1, 14q12, 15q21, 16q23, 17p12-p11, 17q11, 22q11 ve 

Xp22 amplifikasyonlarını bulduk.  Sonuçlarımız bilgilerimiz dahilinde, yaygın HSK 

hücre hatlarının en kapsamlı, yüksek çıktılı tarama çalışmasıdır. 
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1. INTRODUCTION 
 

1.1 Epidemiology and Etiology of Hepatocellular Carcinoma 

 

1.1.1 Epidemiology of Hepatocellular Carcinoma 

 

Hepatocellular carcinoma (HCC) is the most common primary epithelial malignancy of the 

liver and is one of the most common malignancies in the world.  It is the fifth most 

prevalent carcinoma worldwide and the third cause of mortality among deaths from 

cancer with an annual number of 600 thousand (Parkin et al. 2001). 

 

It is well described that HCC shows a characteristic geographic distribution.  High-incidence 

areas (defined as those with more than 20 cases per year per 100,000 populations) include 

Sub-Saharan Africa, Southeast Asia, China, Taiwan, Japan, and Hong Kong. Low-incidence 

areas (less than 5 cases per year per 100,000 populations) include most of the Western 

Europe, the United Kingdom, the United States, and Canada.  However, the incidence of 

HCC has substantially increased in the United States and Western Europe over the past 25 

years.  In the United States, the incidence of HCC increased from 1.4 to 2.4 cases per 

100,000 populations between 1976 and 1995 (El-Serag and Mason 1999).  The incidence 

and mortality rates of HCC are expected to double over the next 10–20 years (El Serag 

and Mason, 1999; Davila et al. 2004; El Serag, 2004). 

 

Like many other cancers, the incidence of HCC increases progressively with age.  This 

probably reflects the time for accumulation of genetic alterations required for HCC 

development.  Younger age of onset is observed in countries endemic for viral hepatitis, and 

this may be due to increased risk of generating genome alterations during rapid liver 

regeneration (Stroffolini et al. 1998).  Another interesting future of HCC is that it has a male 

predominance, regardless of geographical differences (Ng et al. 1995; Chen et al. 1997).  In 

HCC-prevalent regions, such as Africa, China, and Hong Kong, the male: female ratio is 

even higher. In Hong Kong, the male to female ratio for HCC is about 6 to1 (Ng et al. 1995; 

Chen et al. 1997). 
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1.1.2 Etiology of Hepatocellular Carcinoma 

 

HCC is one of the few human cancers with clearly established causal etiologies in most 

of the cases.  The etiology of HCC is multi-factorial and consists of chronic viral hepatitis 

(caused by hepatitis B and C viruses), cirrhosis, aflatoxin B1 intake, alcohol abuse, and 

inherited metabolic disorders.  

 

 
1.1.2.1 Hepatitis B Virus (HBV) 

 

The etiologic association between HBV infection and HCC was first demonstrated by 

epidemiological studies.  The incidence of HCC worldwide parallels the incidence of 

HBV infection.  Variations in HCC incidence within a region generally relate to 

differences in HBV carrier rates.  For chronic hepatitis B (hepatitis B surface antigen 

[HBsAg] carriers), the life-long risk of developing HCC has been estimated to be up to 

40-50% (Beasley 1988).  Animal studies have provided additional evidence to support 

the role of HBV infection in HCC development.  Persistent infection of woodchucks with 

woodchuck hepatitis virus (WHV), which is a HBV-like hepadnavirus, resulted in HCC 

in almost all animals (Snyder et al. 1982).  However, the molecular mechanisms 

underlying HBV-induced HCC remained obscure. 

 

HBV infection has been shown to promote carcinogenesis by at lest three different 

mechanisms.  First, integration of the viral DNA in the host genome can induce 

chromosomal instability (Aoki et al. 1996).  Persistent HBV infection may provide a 

cellular environment for hepatocarcinogenesis through non-specific mechanisms such as 

increase of mutation rate and genome instability associated with rapid cell turnover 

caused by liver injury and subsequent regeneration.  Second, insertional mutations at 

HBV integration sites may disrupt cellular genes and result in activation of endogenous 

genes such as retinoic acid β-receptor (Dejean et al. 1986), cyclin A (Wang et al. 1990) 

and mevalonate kinase (Graef et al. 1994).  Recently, more than 10 genes have been 

found to be altered by HBV integration in tumors.  These genes are involved in 
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controlling cell proliferation, viability and differentiation suggesting that HBV 

integration at particular sites are mechanisms frequently involved in HBV 

hepatocarcinogenesis (Ferber et al. 2003; Horikawa and Barrett. 2003; Paterlini-Brechot 

et al. 2003).  But, unlike WHV-induced HCC, HBV-DNA integration is not specific and is 

not frequently associated with activation of any cellular proto-oncogenes (Brechot et al. 

2000).  Third, expression of viral protein HBX has been shown to modulate cell 

proliferation and viability (Andrisani and Barnabas, 1999; Diao et al. 2001).  HBX binds 

to p53 which results in abnormal p53-dependent activities such as p53-mediated 

apoptosis (Feitelson et al. 1993).  There are also additional studies  suggesting HBX can 

activate NF-κB signaling pathway, as well as other growth regulatory genes such as c-

fos, c-jun, c-myc, and EGF (Feitelson 1999; Brechot et al. 2000; Yeh 2000).  In addition, 

HBV ‘X’ gene transgenic mice frequently develop HCC (Di Bisceglie et al. 1998; Yu et 

al. 1999).  Sequencing of HBV DNA from HCC and adjacent nontumorous liver tissues 

has shown a high rate of mutations (Di Bisceglie et al. 1998).  Recent evidence has 

shown that mutations in the HBV ‘X’ gene in HCC can abolish both HBX-induced 

growth arrest and apoptosis.  These naturally occurring mutations might therefore render 

the hepatocytes susceptible to uncontrolled growth and contribute to multi-step 

hepatocarcinogenesis associated with HBV-infection (Sirma et al. 1999). 

 

There are increasing bodies of evidence supporting that HBV itself may also play a direct 

oncogenic role in hepatocarcinogenesis.  HBV-DNA has been shown to be integrated into the 

genomes of HCC cell lines and of liver cells of long-term asymptomatic HBsAg carriers.  In 

woodchuck model, WHV genome was found to be frequently integrated into the cellular N-

myc gene (Wei et al. 1992).  Insertional activation of this proto-oncogene was believed to be 

responsible for the transformation phenotype.  However, HBV-mediated HCC does not 

follow a similar pattern.  Unlike WHV-induced HCC, HBV-DNA integration is usually not 

specific and not associated with activation of any cellular proto-oncogenes (Brechot et al. 

2000). 

 

Previous studies have shown that HBX (a viral protein encoded by the ‘X’ gene in HBV 

genome) physically binds to and inactivates the wild-type p53 tumor suppressor protein 

(Wang et al. 1994; Ueda et al. 1995; Greenblatt et al. 1997).  There are also additional 
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studies  suggesting that HBX can activate NF-κB signaling pathway, as well as other 

growth regulatory genes such as c-fos, c-jun, c-myc, and EGF (Feitelson 1999; Brechot et 

al. 2000; Yeh 2000).  In addition, HBV ‘X’ gene transgenic mice frequently develop 

HCC (Di Bisceglie et al. 1998; Yu et al. 1999).  On the other hand, some reports have 

indicated that HBX expression can induce G1 cell cycle arrest and apoptosis through a 

p53-independent pathway (Terradillos et al. 1998; Sirma et al. 1999). 

 

 

1.1.2.2 Hepatitis C Virus (HCV) 

 

In a series of HCV epidemiology studies, HCV has been detected in 6-75% of patients 

with HCC, and chronic HCV infection was found to be the major etiological factor for 

HCC in Japan, Europe, and the United States (Colombo et al. 1989; Chen et al. 1990; 

Hasan et al. 1990; Saito et al. 1990; Vargas et al. 1990; Yu et al. 1990; Kaklamani et al. 

1991; Nishioka et al. 1991).  A prospective follow-up study indicated that the incidence 

of HCC in patients with chronic hepatitis C was 2.7 times higher than patients with 

chronic hepatitis B (Takano et al. 1995). 

 

The molecular mechanism of HCV-related hepatocarcinogenesis is still obscure.  

Genome instability and mutations, occurring in regenerating hepatocytes associated with 

immune-mediated turnover during chronic inflammation and cirrhosis remains a leading 

hypothesis for HCV-related hepatocarcinogenesis. 

 

Some recent experimental data suggest that HCV may be directly involved in 

hepatocarcinogenesis.  The core protein of HCV is a likely oncogenic candidate.  HCV 

core protein was found to cooperate with Ras in cellular transformation.  Primary rat 

embryo fibroblast cells co-transfected with HCV core gene and H-ras exhibited rapid 

proliferation, anchor-independent growth, and tumor formation in athymic nude mice 

(Ray et al. 1996).  Other data suggest that amino acid residue 80-122 of HCV core 

protein may repress the transcriptional activity of the p53 promoter (Ray et al. 1997).  

The oncogenic role of HCV core protein was further supported by transgenic mouse 
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model.  The incidence rate of HCC in transgenic mice harboring HCV core gene was 

significantly higher than that in non-transgenic mice (Moriya et al. 1998).  Interestingly, 

HCC developed in these transgenic mice followed a stepwise transformation and closely 

resembled the histopathological characteristics of the early stages of HCC in patients with 

chronic hepatitis C.  The neoplastic lesions first appeared as adenomas, and then HCC 

developed from the adenomas, presenting a 'nodule-in-nodule' manner (Moriya et al. 

1998). 

 

 

1.1.2.3 Aflatoxin B1 

 

Aflatoxins are mycotoxins produced by the common fungus Aspergillus flavus.  Aflatoxins 

are powerful carcinogens for animals.  Field studies have shown a close association between 

aflatoxin intake and high incidence of HCC in poor countries, where fungal contamination in 

food is common.  In geographies where AFB1 exposure level is high, such as Qidong-

China and Mozambique, G-T transversion at codon 249 has been reported in more than 

50% of the cases (Hsu et al. 1991; Bressac et al. 1991).  This mutation at codon 249 of 

TP53, leading to the amino-acid substitution R249S, is exceptionally found in HCC from 

geographical regions without AFB1 exposure supporting the hypothesis that this mutagen 

has a causative role in hepatocarcinogenesis.  Molecular mechanisms of AFB1–DNA 

binding and mutagenesis have been elucidated in human tumors, animal models and in 

vitro (Smela et al. 2001).  These results contrast with p53 mutations reported in other 

regions of China and Japan where aflatoxin is not the risk factor of HCC (Hayashi et al. 

1993; Li et al. 1993a; Fujimoto et al. 1994).  Thus, this mutation specificity can be 

considered as a finger print of aflatoxin B1 exposure. 
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Figure 1.1: Mechanisms of Hepatocarcinogenesis for different risk factors.  Commonalities are shown in the same color 

(Farazi and DePinho, 2006) 

 

 

1.2 Genetic and Epigenetic Changes in Hepatocellular Carcinoma 

 

Cancer is a DNA disease which emerges through accumulation of genetic alterations in 

the genes controlling cell cycle, proliferation, differentiation and apoptosis; 

hepatocellular carcinoma is no exception. 

 

HCC has been extensively studied in terms of genetic alterations in the past ten years 

which resulted in an increase in our knowledge of altered pathways in 

hepatocarcinogenesis.  Likewise in other solid tumors, a large number of genetic 

alterations accumulate during the hepatocarcinogenesis process.  Genetic and epigenetic 

alterations have been observed in cirrhotic nodules and half of them have been found to 

have a monoclonal origin by examining the X-chromosome methylation pattern (Piao et 

al. 1997; Paradis et al. 1998; Yeh et al. 2001).  Chromosome aberrations with loss of 

alleles are found in half of cirrhotic nodules and more frequently in nodules with small 
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cell dysplasia (Yeh et al. 2001).  Various genetic alterations have been described in 

primary liver tumors including activating mutations of oncogenes and inactivating 

mutations of tumor suppressor genes have been only found in HCC and liver adenomas 

but not in cirrhosis. 

 

 

1.2.1 Chromosomal Abnormalities 

 

Human cancers are characterized by the presence and accumulation of genetic alterations 

which target genes or genomic loci.  Chromosomal aberrations (CA) are changes in 

chromosome structure and morphology which are indicators of genetic damage in cancer.  

CAs are involved in tumor genesis and progression by altering the functions of genes that 

positively or negatively regulate several aspects of cell proliferation, apoptosis, genome 

stability, angiogenesis, invasion and metastasis.  Their pattern varies between 

malignancies, ranging from simple balanced rearrangements to complex abnormalities 

affecting both chromosome structure and euploidy.  Subchromosomic abnormalities are 

often related with genetic alterations, including formation of fusion gene products and 

swapping of promoter elements which consequently lead to dysregulated gene expression 

(Aman et al. 1999). The majority of malignant solid tumors, however, exhibit a complex 

pattern of chromosomal abnormalities, rarely showing any direct association with 

specific morphological or prognostic subgroups. Many common aggressive epithelial 

tumors, such as high-grade pancreatic, ovarian, and lung cancer, fall within this category 

(Pejovic et al. 1992; Johansson et al. 1995; Gorunova et al. 1998), so do many sarcomas, 

such as osteosarcoma, leiomysorcoma, and malignant peripheral nerve sheath tumor 

(Mandahl 1996). The molecular genetic alterations corresponding to these complex 

cytogenetic anomalies are not well characterized, although abnormal activation of 

oncogenes and losses of tumor suppressor genes are common. These changes are rarely 

subtype specific. However, the total number of chromosomal aberrations is roughly 

proportional to the risk of metastasis (Mitelman et al. 1997). 
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Figure 1.2: Chromosomal evolution in human solid tumor progression: Cells may begin to proliferate excessively 

owing to loss of tissue architecture, abrogation of checkpoints and other factors.  Relatively few aberrations occur 

before development of in situ cancer and the incidence of genomic aberrations increases during the development of in 

situ disease (Albertson et al. 2003) 

 

CAs can be studied with an increasing number of large-scale genomic and molecular 

genetic technologies such as chromosome banding (Mitelman Database of Chromosome 

Aberrations in Cancer), high-throughput analysis of loss of heterozygosity (LOH) 

analysis (Hampton et al. 1996), comparative genomic hybridization (CGH) (Pinkel et al. 

1998), fluorescence in situ hybridization (FISH) (Schrock et al. 1996), restriction 

landmark genome scanning (RLGS) (Imoto et al. 1994), representational difference 

analysis (RDA) (Lisitsyn et al. 1993) and recently introduced SNP microarrays.  These 

techniques differ in which they detect whether balanced or unbalanced aberrations.  

RLGS, analysis of LOH, RDA and SNP arrays detect allelic imbalances that occur by 

somatic recombination or copy number change.  FISH and CGH are sensitive to 

unbalanced physical structure of the genome or copy number such as altered ploidy, gain 
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or loss of chromosomes and chromosome portions and structural rearrangements.  SNP 

arrays differ from FISH and CGH in detecting unbalanced rearrangements only.  

Structural changes involve equal exchange of material between two chromosome regions 

(balanced) or non-reciprocal, such as portions of the genomes are gained or lost.  These 

methods analyze genome-wide DNA content and provide clear information about 

sporadic and recurrent chromosomal aberrations.  The most frequently deleted 

chromosome arms are 17p, 8p, 16q, 16p, 4q, 9p, 13q, 1p and 6q; and the most frequent 

gains are observed at 1q, 7q, 8q and 17q (Fujimoto et al. 1994; Boige et al. 1997; 

Marchio et al. 1997; Nagai et al. 1997; Piao et al. 1998; Guan et al. 2000; Wong et al. 

2000; Balsara et al. 2001; Laurent-Puig et al. 2001; Nishimura et al. 2002).  Today, 

Mitelman Database of Chromosome Aberrations in Cancer and University of Helsinki’s 

Laboratory of Cytomolecular Genetics harbor extensive catalog chromosomal 

abnormalities in a wide range of tumors. 

 

 
 

Figure 1.3: Mechanisms by which chromosomal aberrations result in aneuploidy and common techniques used in 

detection (Albertson et al. 2003) 

 

Amplification is likely to be initiated by a DNA double-strand break. It can occur only in 

cells that are able to progress inappropriately through the cell cycle with this damaged 

DNA whereas normal cells would arrest due to activation of cell-cycle checkpoints.  A 

segment of the chromosomes are copied many times and result in extra copies of genetic 

material.  If extra copies are fused head-to-tail in long tandem arrays within a 
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chromosomal segment, it is called homogeneously staining regions (HSRs).  A segment 

may also be detached from a chromosome and replicate as an autonomous 

extrachromosomal entity.  Such formations result in subchromosomal fragments termed 

“double minutes” (DMs).  HSRs and DMs increase the copy number of genes they carry 

and resulting in gene amplifications and are unbalanced.  In cancer, amplified regions are 

likely to carry genes with oncogenic character that bypass cellular control barriers and 

favor proliferation.  Gene amplifications can result in copy number increases from 

duplications to high level amplifications (700 copies) (Schwab et al. 1999).  Today, there 

is a wide agreement that only less than half of the amplifications result in overexpression 

of the genes that they harbor.  In a recent study with a panel of breast cancer cell lines, 

40% of the amplified genes were overexpressed (Hyman et al. 2002). 

 

Interstitial deletions occur when a segment in the middle of a chromosome arm is 

discarded and the flanking chromosomal regions are rejoined.  Interstitial deletions may 

be rare but they dramatically affect cellular behavior.  Such deletions may originate by 

chromosome breakage and subsequent loss of acentric segment or unequal crossover 

between misaligned homologous chromosomes or sister chromatids.  Chromosome losses 

are frequent mechanisms of inactivation of one allele of a tumor suppressor gene in solid 

tumors, recurrent losses at precise loci may point the presence of tumor suppressor genes.  

In HCC, LOH events have been reported targeting loci in 17p, 13q, 16p, 9p and 6q and 

inactivating tumor suppressor genes TP53, RB1 (retinoblastoma 1), AXIN1 (axis 

inhibition protein 1), CDKN2A (cyclin-dependent kinase inhibitor 2A) and IGF2R 

(insulin-like growth factor 2 receptor), respectively.  On the other hand, no tumor 

suppressor genes have been identified on 1p, 4q, 8p and 16q although high-resolution 

methods have been used to define consensus boundaries of deletions in these regions 

(Koyama et al. 1999; Piao et al. 1999; Pineau et al. 1999; Balsara et al. 2001; Yakicier et 

al. 2001; Bluteau et al. 2002a). 

 

Recurrent genomic aberrations are observed on several occasions in a series of 

independently arising human tumors.  They are likely to contain genes that are important 

for tumor development.  In many cases these regions contain with oncogenic or tumor 
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suppressive character whose expression levels are altered by genomic changes.  In solid 

tumors, amplification of ERBB2, MYC and CCND1 have been reported (Slamon et al. 

1989; Hinds et al. 1994).  Amplification also plays an important role in the development 

of drug resistance.  Cultured cells selected for resistance to N-(phosho-nacetyl)-L-

aspartate frequently amplify CAD (Wahl et al. 1979; Schimke et al. 1978) and DHFR is 

amplified in cultured cells with methotrexate resistance (Banerjee et al. 2002).  Similarly, 

BCR-ABL is amplified in individuals resistant to STI571 (Gorre et al. 2001).  Other 

aberrations include loss of specific regions of the genome.  Tumor suppressor genes such 

as PTEN, CDKN2A have been reported to be lost by homozygous deletions (Li et al. 

1997; Orlow et al. 1995).  Recessive mutations along with LOH have been shown in the 

elimination of the functions RB1, BRCA1, BRCA2, PTPRJ and TP53 (Nagai et al. 1994; 

Cavenee et al. 1983; Baker et al. 1990; Ruivenkamp et al. 2002). 

 

Cytogenetic studies have identified many chromosomal changes in tumors but relatively 

few of them are recurrent and are involved in tumorigenesis.  On the other hand, 

recurrent abnormalities are frequent transforming events in sarcomas, leukemias and 

lymphomas (Rowley et al. 1998).  Identification of driver genes in the disturbed regions 

is not easy because these regions often contain multiple genes and more than one gene 

may important in tumor formation.  For example, growth factors FDF19, FGF4, FGF3 

and actin-binding oncogene EMS1 are in close proximity to CCND1 and they are 

amplified together with CCND1 (Bekri et al. 1997).  Similarly, growth factor receptor-

bound protein GRB7 maps in close proximity to ERBB2 and amplified together.  

Additionally, cancer genomes may involve many disturbed regions with tens of genes 

resulting in a complex alteration of different signaling pathways.  In such cases, it is 

harder to establish the driver mechanisms in tumor formation.  Finally, the presences of 

extra copies of individual chromosomes have been reported to be associated with higher 

cancer risk (Willenbucher et al. 1999). 

 

Genomes of tumor hepatocytes in HCC accumulate a large number of chromosome 

rearrangements leading to highly abnormal karyotypes, like in other solid tumors.  

Cytometric analyses have been reported that most HCC cases acquire a global gain of 
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genetic material (Ezaki et al. 1988; Fujimoto et al. 1991; Chiu et al. 1992).  Hyperploidy 

is also seen in nearly half of the dysplastic lesions observed in cirrhotic disease (Thomas 

et al. 1992) and its incidence increases in higher grade dysplastic lesions suggesting that 

chromosome losses followed by endomitosis are early steps in hepatocarcinogenesis. 

 

As we already mentioned HCC is genetically heterogeneous and mostly these changes are 

related to etiological factors.  Even though there are several studies addressing 

chromosomal changes in HCC, new studies with techniques providing higher resolution 

will probably reveal unknown genetic alterations in HCCs. 

 

 

1.2.2 Mutations 

 

In human cancers, the most frequently altered gene is the TP53 located at 17p13.1 

(Hollstein et al. 1991, Isobe et al. 1986; Miller et al. 1986).  Li-Fraumeni syndrome was 

described as germline mutations of this gene which results in predisposition to cancer in 

some individuals (Malkin et al. 1990).  P53 is a multifunctional transcription factor 

involved in the control of the cell cycle, apoptosis, senescence, differentiation and 

development, transcription, DNA replication, DNA repair and maintenance of genome 

integrity.  In HCC, the specific TP53 mutation R249S is found in about 50% of tumors in 

populations exposed to AFB1 (Bressac et al. 1991; Hsu et al. 1991).  In contrast, patients 

who have not been exposed to this carcinogen have a lower prevalence of TP53 gene 

mutations (10–30%) and codon 249 is rarely altered.  Another frequent mutation in HCC 

is the hereditary hemochromatosis at codon 220 (Vautier et al. 1999). 
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Figure 1.4: Histopathological progression and molecular features of HCC: After hepatic injury incurred by any one of 

several factors (hepatitis B virus (HBV), hepatitis C virus (HCV), alcohol and aflatoxin B1), there is necrosis followed 

by hepatocyte proliferation. Continuous cycles of this destructive–regenerative process foster a chronic liver disease 

condition that culminates in liver cirrhosis. Cirrhosis is characterized by abnormal liver nodule formation surrounded 

by collagen deposition and scarring of the liver. Subsequently, hyperplastic nodules are observed, followed by 

dysplastic nodules and ultimately hepatocellular carcinoma (HCC), which can be further classified into well 

differentiated, moderately differentiated and poorly differentiated tumours — the last of which represents the most 

malignant form of primary HCC. Telomere shortening is a feature of chronic liver disease and cirrhosis. Telomerase 

reactivation has been associated with hepatocarcinogenesis (its activation in the early versus late stages of disease is 

still a point of debate, and is discussed in the text). Loss and/or mutation of p53 and genomic instability also 

characterize hepatocarcinogenesis. p53 loss and/or mutation is shown to occur during progression to HCC, however, 

there is some evidence that loss and mutation of p53 might also occur in the initial stages of hepatocarcinogenesis 

(Farazi and DePinho, 2006) 

 

β-catenin is the ortholog of armadillo in Drosophila melanogaster.  It is both involved in 

cell – cell adhesion and Wnt signaling.  β-catenin forms complexes with E-cadherin and 

catenins in adherent junctions.  In Wnt signaling, β-catenin may acquire oncogenic 

character by dominant gain of function mutations in its N-terminus (Morin et al. 1997).  

These mutations result in the loss of phosphorylation sites in its negative regulation by 

GSK3β/APC/axin complex.  The inhibition of its negative regulation results in higher 

levels of β-catenin in the cytoplasm and in nuclei leading to abnormal activation of Wnt 

target genes GLP1 and GRP49.  In HCC, β-catenin activating mutations have been 
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reported in human and mouse models (de La Coste et al. 1998; Miyoshi et al. 1998).  In 

hepatoblastomas and hepatocellular adenomas, β-catenin has also been reported to carry 

mutations (Koch et al. 1999; Wei et al. 2000; Chen et al. 2002). 

 

AXIN1 maps to 16p13 and this region is frequently (~30%) deleted in HCC (Laurent-

Puig et al. 2001).  This gene encodes a protein of the GSK3β/APC/axin complex and 

negatively regulates Wnt pathway.  In HCC, LOH events along with mutations and 

homozygous deletions have been reported in biallelic inactivation of AXIN1 (Satoh et al. 

2000; Laurent-Puig et al. 2001).  These mutations prevent phosphorylation of β-catenin 

leading to accumulation of hyperactivation of Wnt target genes. 

 

RB1 locus maps to 13q14 region which is frequently involved in LOH events (Boige et 

al. 1997; Nagai et al. 1997; Laurent-Puig et al. 2001).  RB1 plays major roles in cell 

division, differentiation and apoptosis.  Point mutations and epigenetic regulations along 

with LOH have been reported in RB1 inactivation (Zhang et al. 1994; Lin et al. 1996). 

P16INK4 codes for cyclin D-dependent kinase inhibitor 2(CDKN2) and ARF which are 

involved in p53 mediated apoptosis.  These gene products function as tumor suppressors 

in the RB pathway (Hickman et al. 2002).  P16INK4A maps to 9p21 which has been 

reported to show LOH in 20% of HCC cases (Boige et al. 1997; Nagai et al. 1997; 

Laurent-Puig et al. 2001).  Epigenetic silencing of the p16INK4A promoter has been 

reported in 30-70% of the tumors (Liew et al. 1999; Matsuda et al. 1999; Jin et al. 2000; 

Weihrauch et al. 2001).  Homozygous deletions of this gene have been reported in HCC, 

as well (Biden et al. 1997; Jin et al. 2000). 

 

TGF-β pathway is altered in 10-30 % of HCC cases.  In TGF-β signaling pathway, 

inactivating mutations of mannose 6-phosphate/insulin-like growth factor 2 receptor 

(M6P/IGF2R) have been reported in HCC (Motyka et al. 2000).  IGFR also have been 

shown to carry amino acid substations in two HCC screens (De Souza et al. 1995; Oka et 

al. 2002).   Amino acid substitutions have also been reported in MADH2/Smad2 and 

MADH4/Smad4 which are involved in TGF-β/BMP-2/4 signaling pathway (Yakicier et 

al. 1999).  Recently, activating mutations have been reported in PIK3CA 
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(phosphatidylinositol 3-kinase) in HCC which leads to activation of AKT pathway (Lee 

et al. 2005). 

 

Vinyl chloride (VC) exposure has been reported be involved in KRAS mutations in 

hepatocellular carcinoma.  VC is a carcinogen associated with the development of liver 

angiosarcomas and rarely with HCC.  Recently, the presence of KRAS2 mutations was 

observed in 33% of 18 vinyl chloride-associated HCCs and three mutations were found in 

adjacent non-neoplastic liver tissue (Weihrauch et al. 2001).  KRAS mutations are rarely 

observed in HCCs that are not associated with vinyl chloride exposure which suggest that 

KRAS2 mutations play an important role in the carcinogenetic pathway linked to vinyl 

chloride exposure. 

 

Recent reports showed that TCF1 gene (12q24.2) carry biallelic mutation in 60% of a 

sample of liver cell adenoma cases (Bluteau et al. 2002).  TCF1, transcription factor 1, 

encodes hepatocyte nuclear factor 1α (HNF1α) and function in hepatocyte differentiation 

and involved in liver specific expression of various genes including β-fibrinogen, 

albumin and α1-antitrypsin (Frain et al. 1989; Baumhueter et al. 1990; Cereghini et al. 

1990; Chouard et al. 1990).  In liver cell adenomas, inactivation of both TCF1/HNF1α 

alleles is usually observed; in 90% of the cases both mutations are of somatic origin. 

 

Most of the hepatoblastomas are of sporadic origin.  Hepatoblastomas have been reported 

in Beckwith–Wiedemann syndrome (BWS) and in the familial adenomatous polyposis 

(FAP).  In most hepatoblastomas, β-catenin N-terminal domain harbor interstitial 

deletions or missense mutations in the GSK3β phosphorylation motif (Koch et al. 1999; 

Wei et al. 2000; Buendia, 2002).  In other hepatoblastoma cases, hyperactivity of the 

Wnt/β-catenin pathway is related with AXIN2 mutations (Koch et al. 2004) 
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1.2.3 Epigenetic Alterations 

 

Aberrant DNA methylation patterns have been reported in HCC ( Thorgeirsson et al. 

2002; Kanai et al; 1996,1999 & 2000; Yu et al. 2003).  Methylation has been reported in 

the earliest stages of hepatocarcinogenesis and extensively in tumor progression.  

Molecular analysis of human HCC has shown many epigenetic alterations that result in 

the deregulation of several oncogenes and tumor suppressor genes including TP53, β – 

catenin, ErbB receptor family member, MET and its ligand hepatocyte growth factor 

(HGF), p16 (INK4A), E-cadherin and cyclooxygenase 2 (COX2), apoptosis – associated 

speck- like – kinase (ASC) and deleted in liver cancer 1 (DLC1) (Feitelson et al. 2002; 

Wong et al. 1999; Matsuda et al. 1999; Liew et al. 1999; Murata et al. 2004, Kubo et al. 

2004; Wong et al. 2003; Maeta et al. 2005).  Recently, secreted frizzled-related protein 1 

gene (SFRP1) has been reported to be epigenetically silenced in HCC cell lines and 

primary tumors along with LOH events (Shih et al. 2007).  Phosphatase and tensin 

homologue (PTEN) has been shown to be downregulated by promoter methylation and 

other epigenetic mechanism in HCC tissues (Wang et al. 2007).  Zinc fingers and 

homeoboxes protein 2 (ZHX2), glutathione S-transferase pi (GSTP1), Ras association 

domain family 1 (RASSF1), methylation-induced silencing 1 (TMS1), tissue factor 

pathway inhibitor-2 (TFPI-2), spleen tyrosine kinase (SYK) and LINE-1 type transposase 

domain containing 1 are other genes that have recently been shown to be downregulated 

in HCC by methylation (Lv et al. 2006; Wang et al. 2006; Di Gioia et al. 2006; Zhang et 

al. 2007; Wong et al. 2007; Yuan et al. 2007; Tangkijvanich et al. 2007).  Suppressor of 

cytokine signaling 1 (SOCS1), which is a negative regulator of the JAK/STAT pathway, 

has been shown to be silenced by methylation in HCC (Yoshikawa et al. 2001). 
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2. HYPOTHESIS 
 

Amplifications and deletions are common genetic alterations in epithelial cancers.  

Numerous oncogenes and tumor suppressor genes located in these regions have been 

identified in cancers.  New techniques which provide higher resolution may reveal 

unknown small chromosomal alterations where important genes for carcinogenesis may 

be located.  DNA copy number changes in HCC still have not been studied with recently 

available high – throughput molecular methods which provide higher resolution. 

 

In the framework of this study, we aimed to screen HCC cell lines for their DNA copy 

number changes.  We think cell lines are ideal models for this study because their 

genomic DNAs are available as homogenous and high – quality (intact) which are crucial 

requirements for SNP microarray analysis.  Unlike tissue samples, their genomic DNAs 

are pure, without any contamination of neighboring normal cells or infiltrating blood 

DNA which gives better estimates for low – copy number changes.  Moreover, screening 

a panel of commonly used   HCC cell lines may provide us independent abnormalities as 

well as recurrent ones.  Thus, our results may reveal new regions of abnormality in HCC 

genome, in which oncogenes or tumor suppressor genes may reside.  Analysis of these 

new candidates may contribute to our understanding of hepatocarcinogenesis by 

introducing new mechanisms and related pathways. 
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3. METHODOLOGY 
 

3.1 Materials 

 

3.1.1 Hepatocellular Carcinoma Cell Lines 

 

In the framework of this study, 14 Hepatocellular carcinoma (HCC) cell lines were used 

as shown in Table 3.1 

 

Cell Lines Origin Sex & Age HBV-DNA Tumorigenity Chromosome Ploidy
in Nude Mice

Focus US Female Positive Yes Hypotriploid
HepG2 Argentina Male, 15 Negative Yes Hyperdiploid
Hep3B US Male, 8 Positive Yes Hyperdiploid
Hep40 China Male, Positive No Data Hyperdiploid
Huh-7 Japan Male, Negative Yes Hypotetraploid
Mahlavu Female
PLC/PRF/5 South Africa Male Positive Yes Hyperdiploid
SK-Hep-1 US Male, 52 Negative Yes Hyperdiploid
SNU182 Korea Male, 24 Positive No Data Hypertriploid
SNU387 Korea Female, 41 Positive No Data Hypertriploid
SNU398 Korea Male, 42 Positive No Data Hypertriploid
SNU423 Korea Male, 40 Positive No Data Hypertriploid
SNU449 Korea Male, 52 Positive No Data Hypertriploid
SNU475 Korea Male, 43 Positive No Data Hypertriploid  
 

Table 3.1: Characteristics of the HCC cell lines. 

 

 

3.1.2 Reagents 

 

Ethidium Bromide (EtBr); 

10mg/ml in water (stock solution)  

30ng/ml (working solution) 
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10X TBE Buffer Solution; 

108g   Tris 

55g   Boric Acid 

8.3g   EDTA 

Dissolved in 1lt of deionized water. 

 

6X Loading Buffer Solution 

30%  Glycerol 

0.04%  Bromphenolblue 

0.04%  Xylene Cyanol 

∆dH2O 

 

10x Phosphate-Buffered Saline (PBS) 

80 g   NaCl    

2 g  KCl 

14.4 g   Na2HPO4   

2.4 g   KH2PO4   

Dissolved in 1 lt of water and pH is adjusted to 7.4. 

 

50x TAE Buffer (Tris-Acetate-4EDTA)  

242 g      Tris Base  

57.1 ml     Acetic Acid  

100ml       0.5M EDTA  

ddH2O was added  to 1 liter and adjust pH to 8.5 

 

Wash A: Non-Stringent Wash Buffer 

(6X SSPE, 0.01% Tween 20) 

For 1000 mL: 

300 mL of 20X SSPE 

1.0 mL of 10% Tween-20 

699 mL of water, filtered through a 0.2 μm filter. 
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Wash B: Stringent Wash Buffer 

(0.6X SSPE, 0.01% Tween 20) 

For 1000 mL: 

30 mL of 20X SSPE 

1.0 mL of 10% Tween-20 

969 mL of water, filtered through a 0.2 μm filter 

 

0.5 mg/mL Anti-Streptavdin Antibody 

Resuspend 0.5 mg in 1 mL of water 

 

12X MES Stock Buffer 

(1.22M MES, 0.89M [Na+]) 

For 1,000 mL: 

70.4g of MES hydrate 

193.3g of MES Sodium Salt 

800 mL of Molecular Biology Grade water 

Mix and adjust volume to 1,000 mL. 

The pH should be between 6.5 and 6.7. 

Filtered through a 0.2 μm filter 

 

1X Array Holding Buffer 

(Final 1X concentration is 100 mM MES, 1M [Na+], 0.01% Tween-20) 

For 100 mL: 

8.3 mL of 12X MES Stock Buffer 

18.5 mL of 5M NaCl 

0.1 mL of 10% Tween-20 

73.1 mL of water 
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Stain Buffer 

H2O 666.7 μL 

SSPE (20X) 300 μL 6X 

Tween-20 (3%) 3.3 0.01% 

Denhardt’s (50X) 20 1X 

Subtotal 990 μL 

Subtotal / 2 495 μL 

 

SAPE Solution Mix 

Stain Buffer 495 μL 1X 

1 mg/mL Streptavidin Phycoerythrin (SAPE) 5.0 μL 10 μg/mL 

Total 500 μL 

 

Antibody Solution Mix 

Stain Buffer 495 μL 1X 

0.5 mg/mL biotinylated antibody 5 μL 5 μg/mL 

Total 500 μL 

 

 

3.2 Methods 

 

3.2.1 Tissue Culture 

 

All cell lines were cultured in 75ml flasks (Greigner-Bio) as monolayers.  Cell lines were 

either grown in RPMI-1640 (Biological Industries) or Dulbecco’s Modified Eagle 

Medium (DMEM) (Biochrom AG) supplied with 10% FBS (Sigma), 50mg/ml penicillin / 

streptomycin and non-essential amino acids (Biochrom AG).  Cell lines were culture at 

37°C incubator with 5% CO2 (Heto-Holten, Surrey, UK).  Cells were handled in sterile 

laminar hoods (Heto-Holten, Surrey, UK).  Medias and solutions were kept at 4°C and 

preheated to 37°C before use. 
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3.2.1.1 Cyropreservation of Cell Lines 

 

Exponentially growing cells were harvested with trypsin and fresh medium was added to 

inactivate trypsin through neutralization.  The numbers of cells were counted with 

hemocytometer and precipitated at 250g for 5 minute at room temperature.  Following, cells 

were resuspended with freezing media at a concentration of 5 million / ml in one vial.  

Freezing medium was prepared as 90% FBS and 10%DMSO (Sigma).  Cryotubes were 

incubated at -20°C for 1 hour, following -80°C overnight and kept in liquid nitrogen tank 

for long term storage. 

 

 

3.2.1.2 Culturing of Cell Lines 

 

After removal from liquid nitrogen tanks, cells were thawed at 37°C and 5ml of growth 

medium was added.  Following centrifugation at 1500 rpm for 5 minutes, supernatant 

was discarded and fresh medium was added.  Cells were then grown in 25ml flasks in the 

incubator. 

 

 

3.2.1.3 Subculturing of Cell Lines 

 

Cells were grown at a confluency of app 80%.  Old medium was removed from the flasks 

with vacuum and the cells were washed with PBS twice.  Trypsin was added to flasks and 

cells were incubated for 2-3 minutes with trypsin/EDTA solution.  After detaching from 

the flask surface, fresh medium was added to inactivate the trypsin.  Collected cells were 

then transferred to new plates. 
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3.2.1.4 Preparation of Cell Pellets 

 

Cell pellets were prepared for gDNA and RNA isolation.  When the cells reached 80% 

confluency, medium was removed and cells were washed with PBS twice.  Cells were 

detached with trypsin and fresh medium was added.  After centrifugation for 5 minutes at 

1500 rpm, supernatant was discarded and the pellet was washed with PBS twice.  Pellets 

were immediately placed -80°C refrigerator. 

 

 

3.2.1.5 Genomic DNA Isolation 

 

Frozen cell pellets were thawed at room temperature and gDNAs were isolated by using 

Qiagen DNeasy Tissue Kit according to manufacturer’s recommendation. Isolated 

genomic DNAs (gDNA) were either dissolved in manufacturer’s buffer or in water.  

Quality of gDNA was checked on 0.75 % agarose gel and concentration was measured 

with Nanodrop Spectrophotometer (Nanodrop Technologies).  gDNAs were stored at-

20°C for long term. 

 

 

3.2.2 SNP Microarray Assay 

 

Probe preparation for SNP microarray hybridization experiments were done according to 

manufacturer’s manual (Affymetrix, 10K2.0 Assay).  The overall assay is shown in 

Figure 3.1 
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Figure 3.1: Outline of SNP microarray assay.  

 

Briefly, genomic DNAs were diluted to 50ng/µl in water.  250ng of each gDNA was 

subjected to restriction digestion with XbaI enzyme (New England Biolabs) for two hours 

at 37°C in thermal cycler (Tech e), in replicate.  One replicate was run on a 0.75% 

agarose gel to check if the digestion assay performed well; the other replica was 

continued with adaptor ligation.  T4 DNA ligase (New England Biolabs) was used to 

attach adaptor Xba (Affymetrix) to XbaI restriction sites.  The ligation assay was done at 

16°C for 2 hours.  Adaptor Xba contains a binding site for Xba Primer (Affymetrix).  

Later, ligated restriction fragments were diluted to 4 fold with H2O and used in whole 

genome PCR as template.  Hot Star Taq Plus polymerase (Qiagen) was used in the 

amplification process.  The thermo profile was as follows: 94°C for 2 minutes and 30 

seconds, denaturation at 94°C for 30 seconds, annealing temperature (varies) for 45 

seconds, extension at 72°C for 30 seconds, and final extension for 5 minutes and 30 
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seconds.  PCR amplicons were purified with Qiagen Qiaquick PCR purification kit.  

20µg of PCR was fragmented to a range between 35bp – 200bp using DNAseI 

(Affymetrix).  The fragment sizes were checked by electrophoresis on 4% agarose gel.  

Following, the fragmented PCR products were end labeled with Biotin-labeled reagent 

(Affymetrix) using Terminal Deoxynucleotidyl Transferase (Affymetrix).  Probe DNA 

was then denatured at 95°C in hybridization buffer containing TMACL (Sigma), DMSO 

(Sigma), Denhardt’s Solution (Sigma), MES (Sigma), Herring Sperm DNA (Promega), 

EDTA (Ambion), Tween-20 (Sigma), Human Cot-1 DNA (Invitrogen) and 

Oligonucletide control (Affymetrix).  Following, denatured probe was injected to the 

array (Affymetrix 10K2.0).  The hybridization was done at 48°C, 60 rpm for 16 hours in 

the hybridization oven (Affymetrix).  After hybridization, the probe mix was discarded 

and the array was washed with Wash A and B buffers (6X SSPE, 0.01% Tween 20, 0.6X 

SSPE, 0.01% Tween 20, respectively) in fluidics station (Affymetrix).  Then, the chips 

were stained with buffers containing Biotinylated Anti-Streptividin antibody (Vector), 

SAPE (Streptavidin, R-phycoerythrin conjugate), Acetylated Bovine Serum Albumin, 

20X SSPE, Denhardt’s Solution and Tween-20.  The stained chip was scanned at the 

scanner (Affymetrix) and pre-analyzed with GeneChip Operating Software (GCOS) and 

GeneChip DNA Analysis Software (GDAS) software bundle (Affymetrix).  All these 

steps above are briefly shown in figure 3.2. 

 
  
Figure 3.2: Preparation of target from genomic DNA. 
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3.2.3 Microarray Analysis 

 

3.2.3.1 Pre-Analysis 

 

Pre-analysis of the SNP microarrays were performed with GCOS and GDAS software 

bundle.  The bundle operates the scanner and builds the raw data captured by the sensor.  

It uses the specific library files containing the information about the probesets on the 

array using pre-defined settings and algorithms (Affymetrix 10K2.0 Manual).  The 

bundle then extracted probeset information from raw data and generates CEL files 

containing the signal intensity of each probeset along with a chip report file.  The chip 

report file provided information about the performance of the hybridization, such as; 

average signal intensity of probesets, background and oligonucleotide controls along with 

a pseudo-image of the chip.  Later, using the CEL files, genotype calls of the each 

probeset was calculated with their intensities. 

 

 

3.2.3.2 Advance-Analysis 

 

Advance analysis was performed with DNA-Chip Analyzer (dChip) (Harvard University) 

Software freely available for academic users at www.dchip.org.  dChip is a Windows 

software package for probe-level and high-level analysis of gene expression microarrays 

and SNP microarrays (Li and Wong 2001, Lin et al. 2004).  At the probe level, dChip can 

display and normalize the CEL files, and the model-based approach allows pooling 

information across multiple arrays and automatic probe selection to handle cross-

hybridization and image contamination.  High-level analysis in dChip includes 

comparing samples, hierarchical clustering, view expression and SNP data along 

chromosome, LOH and copy number analysis of SNP arrays, and linkage analysis. In 

these functions the gene information and sample information are correlated with the 

analysis results.  In the analysis, model-based expression was selected with perfect 

match-mismatch background correction.  Normalization was performed according to the 

median chip with median intensity using invariant set and smoothed with running median 
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method.  Hidden Markov Model and median smoothing were used in inferred copy 

number analysis. 

 

 

3.2.4 Genomic DNA PCR 

 

All PCR reactions were performed using Techne-512 equipment (Techne Inc).  Primers 

were first checked for their optimal conditions by altering magnesium levels in a thermo-

gradient PCR.  ). A reaction mixture of 2.5µl 10X reaction buffer, 2.5µl MgCl2 (25mM), 

1µl dNTP (10μM), 1µl of each primer (10pmol), and 0.5µl Taq DNA polymerase (5u/μL) 

was prepared per 250ng of gDNA.  The thermo profile was 94°C for 2 minutes and 30 

seconds; denaturation at 94°C for 30 seconds, annealing temperature (differs) for 45 

seconds, extension at 72°C for 30 seconds, and final extension for 5 minutes and 30 

seconds. 

 

 

3.2.4.1 Oligonucleotide Design 

 

All oligonucleotide primers were designed by using Primer3 algorithm available at 

http://frodo.wi.mit.edu/.  Oligonucletides were purchased from Iontek (Iontek) as 

lyophilized.  Primer sequences are listed in Table 3.2 

 

TPTE2_1F    ATGGACACATTTAGTTCGACTTC 

TPTE2_1R    CAGCCTTCTCATCAGCTTTT 

HSA_MIR_31_F   ATACACAGCAATACACGAAGGACT 

HSA_MIR_31_R   GGTGAAAGGAAAAATTTTGGAA 

GAPDH_070228_cDNA_F  GGCTGAGAACGGGAAGCTTGTCAT 

GAPDH_070228_cDNA_R  CAGCCTTCTCCATGGTGGTGAAGA 

Mir124a1-F    GTCGGTCGCTCCTTCCTT 

Mir124a1-R    TCTACCCACCCCTCTTCCTT 

SATL1_F    GGGGACAATCCCCTTTTCTAC 
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SATL1_R    AAAGTACCTTGCCAGTCCATGA 

NUBPL_gDNA_F   AGTTCCGATTTTGTTTCTTTCCA 

NUBPL_R    ACAATTGGCTGGCCTGTATCT 

 

Table 3.2: Primers used in the PCR assays. 

 

3.2.4.2 PCR Purification 

 

All PCR products were purified by using the Qiagen Qiaquick PCR purification system 

according to manufacturer’s recommendation except a few modifications.  After washing 

the membrane containing the PCR products with ethanol containing was buffer, an 

additional step of centrifugation was performed at 20,000g for 5 minutes with caps open.  

This allowed complete evaporation of PCR products and then H20 was used for 

reconstitution of the PCR products. 

 

 

3.2.8.3 Agarose Gel Electrophoresis 

 

2µl of 6X DNA loading dye was added to 10µl of each PCR product.  PCR products were 

then loaded in 30ng/µl ethidium bromide containing 1% (w/v) agarose gels and were run 

in horizontal gel electrophoresis equipment in 1X TAE buffer under 90V for 30 minutes.  

Gene Ruler DNA ladder (Fermentas) was used as DNA size marker.  Transilluminator 

equipment (Bio – Rad) was used for visualization at 340nm wavelength UV along with 

MultiAnalyst software (Bio – Rad). 

 

 

3.2.4.4 Sequencing 

 

Selected amplified PCR products were purified by using the Qiagen Qiaquick PCR 

purification kit and quantified with Nanodrop spectrophotometer.  Required amounts of 

purified PCR products were sent to Iontek along with the PCR primers for sequencing.  

Received sequence data was analyzed with Mutation Explorer Software (Softgenetics). 
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4. RESULTS 
 

In the framework of this study, we have detected two deletions and 12 amplifications 

which are novel in hepatocellular carcinoma.  These disturbed regions harbor more 

approximately 570 transcripts.  Some these genes are well described in cell cycle and 

tumorigenesis, other’s role are still poorly understood.  Among the described ones, a high 

percentage of these genes code for enzymes, transcription regulators, cytokines, 

transporters and kinases.  Concordantly, most of the gene products of these trascipts are 

found in cytoplasm, nucleus and extracellular spaces.  Below are the figures that show 

overall results along with protein functions and cellular distribution. 
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Table 4.a: Overall disturbances in HCC cell lines; red and green represent amplifications and deletions, respectively. 
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Table 4.b: Types of gene products mapping to disturbed regions. 
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Table 4.c: Localization patterns of proteins in disturbed regions. 
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4.1 Homozygous and Hemizygous Deletions 

 

We have observed three homozygous and one hemizygous deletions.  Homozygous 

deletions are located at 9p23 in Mahlavu, PLC, SkHep1, Snu182, Snu387 and Snu423; 

9p22.1-p21.2 in SkHep1, Snu387 and Snu449; 13q12.11 in Huh7 and SkHep1; 

hemizygous deletion maps to Xq21.1-21.33 in Huh7 (male origin).  All the deletions are 

in concordance with the microarray expression data (not shown) and they have also been 

confirmed by PCR. 
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Figure 4.1.1: Homozygous deletion at 9p23 in Mahlavu, PLC, SkHep1, Snu182, Snu387 and Snu423. 
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Figure 4.1.2: Homozygous deletion at 9p22.1-p21.2 in SkHep1, Snu387 and Snu449. 
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Figure 4.1.3: Homozygous deletion at 13q12.11 in Huh7 and SkHep1. 
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Figure 4.1.4: Hemizygous deletion at Xq21.1-21.33 in Huh7. 
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Table 4.1.1: Hom. del. at 9p23 and 9p22.1-p21.2 in Mahlavu, PLC, SkHep1, Snu182, Snu387, Snu423 and Snu449. 
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 Table 4.1.2: Homozygous deletion at 13q12.11 in Huh7 and SkHep1. 
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Table 4.1.3: Hemizygous deletion at Xq21.1-21.33 in Huh7. 
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4.2 Amplifications 

 

We have observed 11 amplifications at 8p23.1 in Hep40; 8q13.3-q21.11 in Hep40; 

8q24.13 in Hep40; 9p22.1-p21.2 in Snu398; 12p11.21-p.11 in Snu475; 14q12-q13.1 in 

Huh7, 15q21.3 in Hep40; 16q21.3 in Hep40; 17p13.1-q11.1 in Snu182 and Snu475; 

17q21.2 in Snu475; 19q13.31-q13.32 in Focus and Mahlavu; 22q11.21-q11.22 in Snu182 

and Xp22.11 in Huh7.  Expression analysis results mostly did not reflect any signs of 

amplifications in this amplicons.  We confirmed selected regions by PCR methods. 
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Figure 4.2.1: Amplification at 8p23.1 in Hep40. 
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Figure 4.2.2: Amplification at 8q13.3-q21.11 in Hep40. 
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Figure 4.2.3: Amplification at 8q24.13 in Hep40. 
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Figure 4.2.4: Amplification at 9p22.1-p21.2 in Snu398. 
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Figure 4.2.5: Amplification at 12p11.21-p11 in Snu475 
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Figure 4.2.6: Amplification at 14q12-q13.1 in Huh7. 

 47



 
 
Figure 4.2.7: Amplification at 15q21.3 in Hep40. 
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Figure 4.2.8: Amplification at 16q21.3 in Hep40. 
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Figure 4.2.9: Amplification at 17p13.1-q11.1 in Snu182 and Snu475. 

 

 50



 
 
Figure 4.2.10: Amplification at 17q21.2 in Snu475. 
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Figure 4.2.11: Amplification at 19q13.31-q13.32 in Focus and Mahlavu. 
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Figure 4.2.12: Amplification at 22q11.21-q11.22 in Snu182. 
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Figure 4.2.13: Amplification at Xp22.11 in Snu182. 
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Table 4.2.1: Amplifications at 8p23.1 and 8q13.3-q21.11 in Hep40. 
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Table 4.2.2: Amplification at 8q24.13 in Hep40. 
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Table 4.2.3: Amplification at 9p22.1-p21.2 in Snu398. 
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Table 4.2.4: Amplifications at 12p11.21-p11 in Snu475, 14q12-q13.1 in Huh7, 15q21.3 in Hep40 
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Table 4.2.5: Amplification at 16q21.3 in Hep40. 
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Table 4.2.6: Amplification at 17p13.1-q11.1 in Snu182 and Snu475. 
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Table 4.2.7: Amplification at 17p13.1-q11.1 in Snu182 and Snu475 (cont.). 
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Table 4.2.8: Amplification at 17q21.2 in Snu475. 
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Table 4.2.9: Amplification at 19q13.31-q13.32 in Focus and Mahlavu. 
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Table 4.2.10: Amplification at 19q13.31-q13.32 in Focus and Mahlavu (cont.). 
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Table 4.2.11: Amplification at 22q11.21-q11.22 and Xp22.11 in Snu182. 
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5. DISCUSSION 
 

In the framework of this study, we searched for DNA copy number changes in the 

genomic DNAs of 14 HCC cell lines.   We used commercially available SNP microarrays 

consist of approximately 10 thousand SNP markers representing the whole genome with 

a mean physical inter-marker distance of 210KB and 0.32 cM of genetic distance.  These 

SNP markers spanned all the autosomal chromosomes and the X-chromosome.  We 

performed two biological replicates for each cell line except Focus (three) and Snu387 

(one). 

 

SNP markers, in principle, provide two types of information which can be classified as 

qualitative and quantitative.  Qualitative information refers to genotyping of the DNA to 

be investigated.  Each SNP marker is chosen from a pool of highly heterozygous SNPs 

(0.37 on average) representing Caucasian, Asian and Afro-American populations.  High 

heterozygosity values of these bi-allelic markers enable genotyping of genomic DNA.  

Briefly, each allele of the SNP markers are spotted as different probesets on the array and 

genotyping is performed based on the hybridization efficiencies of each allele’s 

probesets.  Genotyping calls can be used in two ways; first, “no calls” which theoretically 

refer to non or mis-hybridization, may point homozygous deletions; second, homozygous 

calls of a number of consecutive SNPs may suggest loss of heterozygosity regions.  The 

former can be used as a deletion marker if they include at least three consecutive SNPs.  

In such deleted regions, inter-SNP marker distances should also be checked.  In the latter, 

the unlikely probability of homozygous calls for consecutive SNPs is calculated as the 

possibility of LOH events.  Moreover, in the analysis of SNP array data, the source of 

specimen to be investigated (such as cell lines or peripheral blood DNA etc.) and copy 

number neutral events should also be concerned while drawing conclusions.    

 

Quantitative information is described as the percentage of saturation of each probeset by 

the interrogated DNA during hybridization.  Briefly, amplified regions saturate probesets 

more than normal (diploid) regions; likewise, LOH regions saturate less and 

homozygously deleted regions are expected to have signal values close to background 
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and mismatch probesets.  Similar to the genotype values, in the quantitative analysis of 

SNP data, a number of consecutive SNP markers are expected to behave similarly to 

conclude as copy number gains or losses.  Finally, qualitative and quantitative values for 

each SNP are expected to be in accordance to obtain significant results. 

 

In the present study, we benefited from both genotype and copy number values of the 

probesets to achieve significant results with minimal regions and maximum 

confidentiality.  For genotype calls, we expected to have at least three consecutive SNP 

markers to be present as no calls in order to represent homozygous deletions; therefore 

our resolution is expected to be around 600-KB.  We also considered the possibility of 

failure in the restriction enzyme digestion and subsequent whole genomic DNA PCR 

amplification.  This may cause under-representation of target and result in false-positive 

deletions.  This type of false-positive errors can be batch specific, observed as common 

no calls at particular SNP markers in most of the samples and they usually behave unlike 

adjacent SNPs.  Some SNPs with no call values may have normal copy number values in 

contrast to deletions, therefore we checked raw copy number values each no call SNPs 

and excluded the ones with values higher than 0.5. 

 

For quantitative measurement, we used dChip Software to analyze saturation values (Li 

and Wong 2001, Lin et al. 2004).  We first tried peripheral blood genomic DNA results 

of four healthy individuals as reference controls to obtain copy number values since we 

had no chance to use match-controls for our cell lines.  We noticed that these individuals 

have characteristic copy number polymorphisms in their genome and behaved differently 

than the nature of the cell lines’ gDNA.  Therefore, we excluded these controls in the 

analysis and performed no-reference analysis by introducing all the cell lines as normal to 

the software.  This approach significantly reduced the noise and disturbance.  Moreover, 

we also considered the concordance of genotype data with copy number data whether 

they are in accordance with homozygous deletion and LOH regions.  Noteworthy, we 

also checked inter-marker distances and saturation signatures at the raw copy number 

values for an additional level of evaluation of the significance and to set the physical 

margins.  We mapped the physical positions of disturbances using UCSC Genome 
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Browser Build March 2006.  In some chromosomal regions, SNP markers can be very 

few and the distance between SNP markers in an imbalanced region and the neighboring 

normal region SNP marker can be as large as a few MB.  On such occasions, the 

disturbed regions might exceed the imbalance region defined by the borderline SNP 

markers.  To be on the confident side, we preferred to use the last SNPs as the margins of 

imbalance and neglect if there are any genes neighboring, but we checked if these regions 

contain interesting genes. 

 

In this study, we preferred to report only homozygous deletions and amplifications with 

copy number values equal to or greater than four.  We excluded LOH profiles based on 

genotype calls due to cell line’s nature.  The cell lines used in this study are hyperploid; 

therefore using genotyping calls as a qualitative marker would be erroneous.  Although 

qualitative use of genotype calls from SNP chips are invaluable information in linkage 

and association studies in which the target DNA is usually from blood or tissue (Ozturk 

et al. 2006).  When we analyzed our cell lines for their LOH profile, we observed LOH in 

less than half of the whole genomes of the cell lines; therefore we preferred not to report 

them.  On the other hand, we also did not include copy number changes smaller than 4 in 

our report although we observed quite few hemizygous duplications which can be as 

large as whole chromosomes. 

 

Furthermore, we compared our copy number data with the available microarray 

expression data of the cell lines and primary tumors.  We accessed the raw expression 

data (Affymetrix U133 Plus 2.0 Platform) of primary tumors (GSE6764, Wurmbach et al. 

2007), HepG2 (GSE6368, Wang et al. 2006) through Gene Omnibus (GEO).  Huh7, 

SkHep1 and Hep40 cell lines’ expression data were obtained through personal 

communications.  Although the aims of these experiments were quite different than ours, 

we used them only with purpose of comparing the expression signatures in regions of our 

interest.  One advantage of these expression data is that it has higher resolution compared 

to our SNP array.  The expression arrays we analyzed have more probesets and cover all 

most all the genes in human genome.  Therefore, in regions where SNP markers are not 

available, we used expression signatures to define and check imbalance margins.  
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Basically, we expected no expression of consecutively mapped genes in the deleted 

regions.  For copy number gains, we did not expect abnormally high expression of 

consecutive genes in all of amplified regions, because not all the amplifications result in 

overexpression of the genes they contain.  Therefore, the expression data of the available 

cell lines and the primary tumors allowed us to check and confirm our findings in gDNA 

at transcript level and gave us a chance to correlate it with primary tumors. 

 

 

5.1 Homozygous Deletions 

 

Our results showed three homozygous deletions on chromosomes 9, 13 and X.  In 9p23, 

Mahlavu, Plc, Skhep1, Snu182, Snu387 and Snu423 contain a homozygous deletion site 

within Mahlavu and Snu182 the largest.  This region spans 1-MB and maps to a part of 

protein tyrosine phosphatase, receptor type, D gene (PTPRD) which is a large gene and 

spans a region of 2.3-MB.  This gene has partially been shown to be deleted in other 

cancers and no data is available for HCC (Sato et al. 2005).  At present, the pathogenic 

significance of PTPRD deletion is unclear, but, frequent deletions at this locus indicates 

that the inactivation of this gene may have a major role in tumorigenesis.  Expression 

array results also support our findings that this gene is downregulated in cell lines, 

cirrhotic and HCC tumor tissue compared to normal liver. 

 

Another homozygous deletion maps to 9p21.3-p21.2 region in SkHep1, Snu387 and 

Snu449 and it spans 6-MB.  Genomic DNA PCR targeting hsa-mir-31 region in this 

deletion confirmed our SNP array results.  This region harbors important tumor 

suppressor locus of cyclin-dependent kinase inhibitors 2 (CDKN2A/p14ARF/CDKN2B) 

which encode negative regulators of cell growth.  The region has been shown to be 

frequently inactivated by homozygous deletions in HCC, lung and other cancers (Liew et 

al. 1999; Liggett and Sidransky, 1998).  In addition to deletions, this locus is also 

inactivated by epigenetic regulation, LOH and mutations (Lukas et al. 1995).  Among the 

three cell lines, SkHep1 has the narrowest deletion targeting this locus with a span of 1.4-

MB, while the span of deleted regions in Snu387 and Snu449 are 3.5 and 5-MB, 
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respectively.  SkHep1 also shows no transcriptional activity for this locus in the 

expression array supporting our findings.  In addition to CDKN2A/p14ARF/CDKN2B 

locus, other interesting genes such as Ras-related GTP binding A (RRAGA) and tumor 

suppressor candidate 1 (TUSC1) also map to these disturbed regions.  It is suggested that 

since LOH ratio over detected mutations ratio is different, this region may contain other 

tumor suppressor genes. 

 

In Skhep1 and smaller in Huh7, we detected another homozygous deletion mapping to 

13q12.11 region which has a length of 1.5 MB.  We also confirmed this deletion by PCR 

methods with genomic DNA and cDNA targeting TPTE2 locus.  This region spans 2-MB 

in length and harbors genes TPTE and PTEN homologous inositol lipid (TPTE2) and 

large tumor suppressor homolog 2 (LATS2).  TPTE2 is a member of a large class of 

membrane-associated phosphatases with substrate specificity for the 3-position phosphate 

of inositol phospholipids and LATS2 is an essential mitotic regulator required for the 

coordination of cell division (Yabuta et al. 2007).  TPTE2 and LATS2 can be candidate 

tumor suppressor genes in hepatocarcinogenesis.  A close region has previously shown to 

be deleted in HCC cell lines and tissues using micro-satellite markers but no genes were 

reported to be significant for HCC (Chen et al. 2005).  Moreover, microarray expression 

data supports our findings for SkHep1 and Huh7, but we could not observe and 

abnormality in tumor samples. 

 

Interestingly, Huh7 harbors a large hemizygous deletion of 16-MB at Xq21.1-21.33 

region.  We confirmed this deletion with PCR targeting spermidine/spermine N1-acetyl 

transferase-like 1 (SATL1) gene in this region at the genomic DNA and transcript level.  

This region contains more than 20 genes.  Considering the lower incidence of HCC in 

females, this region may contain genes with tumor suppressor character in 

hepatocarcinogenesis.  There is no study showing a deletion in HCC cell lines and 

tissues.  Expression platform supports our findings for Huh7 and it also suggest 

nucleosomal binding protein 1(NSBP1) as an interesting candidate in this region since it 

is downregulated in tumors and cell lines with respect to normal liver.  This gene is 
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overexpressed in cervical cancer cell lines (Shirakawa et al. 2000) but may have different 

roles in HCC. 

 

Recently, miRNA genes were found to play a critical role in cell growth, death, and 

differentiation (Tsuchiya et al. 2006). In our study, three microRNA genes, hsa-mir-491 

and hsa-mir-31 at 9p22.1-p21.2 region and hsa-mir-361 at Xq21.1-21.33 region are lost.  

These miRNAs has previously shown to be involved in colorectal carcinoma (Bandres et 

al. 2006), pancreatic ductal adenocarcinoma and in HCC (Szafranska et al. 2007; Bandres 

et al. 2006).  The inactivation of these microRNAs through deletion may play a role in 

hepatocarcinogenesis. 

 

Our scanning at a 600-KB resolution led to the identification of three deleted regions.  

Our results are in complete concordance with the expression data; the transcripts in these 

regions had signal intensities close to background level.  These regions contained 

approximately 90 genes, including well-known tumor suppressor genes and three miRNA 

genes.  The authenticity of most of these genes as HCC tumor suppressors is unknown at 

present; however, some of them have been indicated as being involved in cell signaling, 

polarity, motility and adhesion. Inactivation of these genes by deletion might have given 

more malignant phenotypes to cancer cells by changing their ability to proliferate, 

survive and metastasize.  We also observed small deletions involving no genes.  The 

significance of such deletions is unknown.  In cancer cells, not all the deleted regions 

contain genes (Cox et al. 2005), instead, they may contain regulatory sequences.  Further 

analysis of these regions may lead to identification of new tumor suppressors. 

 

Working with cancer cell lines has the advantage of re-expressing the genes which are 

found to be deleted to study phenotypic effects.  If such a deleted gene is important in 

carcinogenesis, an effect should be observed in the deleted cell line but not in the cell line 

still expressing the endogenous gene.  On the contrary, loss of expression can be achieved 

in cell line models through shRNA knockdowns (Sato et al. 2006) 
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Lastly, it should be noted that we bypassed several possible deletions due to our stringent 

analysis parameters.  Since SNP markers are not equally distributed over the genome, 

some of the true-positive deletions may be represented by only one or two markers.  

Moreover, in some deletions sites, there may exist no SNPs, therefore we might have 

overlooked several deletions which might have previously shown by other methods.  We 

also caution that all the deletions in the present study were detected in cultured HCC cells 

Primary HCC tumors often show intra-tumoral heterogeneity, and it is possible that some 

of the deletions detected in the present study were present only in small subsets of cancer 

cells.  Tissue cultivation during the establishment of cell lines might have selected cancer 

cells with deletions giving cells advantages in in-vitro growth, and this fact might have 

led to over-representation of certain deletions in our set of HCC cell lines. Therefore, it is 

possible that the incidence of homozygous deletions in the cell lines does not necessarily 

represent that in HCC tumors. Thus, further studies should also focus on the 

identification of homozygous deletions in HCC tissues to further elucidate their 

prevalence and significance. 

 

 

5.2 Amplifications 

 

In our results, copy number gains were more frequent than losses.  We have observed 

copy number gains on chromosomes 8, 9, 12, 14, 15, 16, 17, 19, 22 and X.  Although raw 

copy numbers of the SNP markers mapping the peak of the amplicons reach over 10 

copies, the inferred copy numbers of the regions were mostly rounded around five and six 

by Hidden Markov Model. 

 

Chromosome 8 harbors three amplicons.  First, in segment 8p23.1, we observed 

amplification in Hep40 with an inferred copy number of six and confirmed this 

amplification with semi-quantitative genomic DNA PCR.  This region spans 2.5-MB and 

its peak value is over 11.  There are 10 genes mapping this region.  One of the remarkable 

genes is malignant fibrous histiocytoma amplified (MFHAS1) which is a potential 

oncogene.  Its expression is enhanced in malignant fibrous histiocytomas (Sakabe et al. 
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1999).  PIN2-interacting protein 1 (PINX1) and tankyrase, TRF1-interacting ankyrin-

related ADP-ribose polymerase (TNKS) are also interesting.  PINX1 is a liver-related 

putative tumor suppressor and its overexpression results in the inhibition of telomerase 

activity (Liao et al. 2000).  In addition, contradictory studies have also been reported in 

its tumor suppressive activity in HCC suggesting it is not related with HCC but instead, 

regulates telomere length (Oh et al. 2004).  TNKS may regulate vesicle trafficking and 

modify telomere repeat binding factor 1 (TERF1) and negatively regulates the telomere 

length.  A recent report showed that TNKS can positively regulate telomere length and it 

is upregulated in some human cancers (Gelmini et al. 2007).  To conclude, these 

candidates have not been studied in detail and contradictory results exist.  When we 

looked at the expression microarray data, we observed no significant abnormal signatures 

in Hep40 and tumor samples due to amplification; only histone mRNA 3' end-specific 

exonuclease (THEX1) and PINX1 has higher transcription values in Hep40 compared to 

other cell lines. 

 

We have also observed a second amplification in Hep40 at 8q13.3-q21.11.  This region 

has an amplification value of six.  It spans approximately 3.75-MB, has a peak value of 

seven and homes 17 genes.  This region has also been shown to be amplified in a similar 

screen in HCC tissue but no candidates were reported (Midorikawa et al. 2004).  One of 

these genes mapping this region is the telomeric repeat binding factor 1 isoform 1 

(TERF1), which negatively regulates telomere length.  Microarray expression results 

show that this gene has increased transcription in Hep40 (and in advanced HCC tissues) 

compared to other cell lines and normal tissue which can be due to amplification.  It is 

noteworthy that, co-amplification of 8p23.1 and 8q13.1-p21.11 which harbor three not 

extensively characterized genes related with telomere maintenance can point a 

mechanism for Hep40 cells to overcome replicative senescence through telomere 

regulation.  Staufen homolog 2 (STAU2) and ganglioside-induced differentiation-

associated (GDAP1) are other interesting genes mapping this amplicon which are double-

stranded RNA-binding protein (Buchner et al. 1999) and ganglioside-induced 

differentiation-associated protein (Cuesta et al. 2002), respectively.  Expression array 
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results show that both these genes are upregulated in Hep40 and to an extent, in advanced 

HCC tumors. 

 

A third amplicon on chromosome 8 maps to q24.13 region.  This segment spans 3.5-MB 

and is duplication.  8q23-q24 region has been shown to be frequently amplified in HCC; 

PTK2 and EIF3S3 have been reported as driver genes in these amplicons (Okamoto et al. 

2003).  Amongst several genes in this amplicon, two AAA domain containing protein 

(ATAD2) and zinc fingers and homeoboxes 1 (ZHX1) are other interesting genes to be 

further studied.  ATAD2 has been shown to be upregulated in breast, uterus, colon, 

ovary, and stomach tumors and amplified in other cancers (Van Duin et al. 2005, Cheng 

et al. 2006).  ZHX1 is a transcriptional repressor and has been shown to be amplified and 

upregulated in multiple myeloma cell lines (Largo et al. 2006).  Expression array results 

show that ATAD2 transcript is highly abundant in Hep40 and this gene shows increased 

expression value in tumor tissue. 

 

Interestingly, in 9p22.1-p21.2 region, in contrast to SkHep1, Snu387 and Snu449 which 

show homozygous deletions, Snu398 show a copy number increase of six.  Our semi-

quantitative gPCR targeting hsa-mir-31 confirmed amplification of this region.  This 

amplicon spans a region of 7-MB, has a peak of eight and approximately coincides with 

Snu449’s deleted region.   This region is a well characterized tumor suppressor loci and 

deleted in many human cancers.  Copy number gains have not been reported for this 

region before and this amplicon supports the notion that there are other genes involved in 

tumorigenesis besides loss of function mechanisms in 9p22.  In this amplicon 5'-

methylthioadenosine phosphorylase (MTAP) and myeloid/lymphoid or mixed-lineage 

leukemia (MLLT3) are interesting.  MTAP is involved in the growth of breast cancer cell 

lines and its expression has been observed in many epithelial cancers (Tang et al. 2000).  

Overexpression of this gene due to amplification and other possible mutations may play a 

role in hepatocarcinogenesis, as well.  MLLT3 is involved in growth, apoptosis, 

differentiation, cell death, cell cycle progression and expansion.  In U-2 OS and TK6 

cells, MLLT3 protein is involved in the decrease of acetylation of p53 to acetylated p53 

that is mediated by p300 protein and damage of DNA (Wiederschain et al. 2005).  
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MLLT3 is also involved in histone methylation.  Abnormal expression of this gene 

because of amplification may infer proliferative advcantage to cancerous cells. 

In Snu475, 12p11.21-p11.1 region harbors an amplicon of six in value.  This region spans 

a region of 2.5-MB, has a maxima of nine and contains over 10 genes.  This segment has 

previously shown to be to amplified in HCC and lung carcinomas (Marchio et al. 1997; 

Zhao et al. 2005). Antagonist of mitotic exit network 1 homolog (AMN1) maps this 

amplicon.  It acts as a switch that helps cells exit from mitotic exit and reset the cell cycle 

in yeast (Wang et al. 2003).  AMN1 exerts its affects through inhibition of G protein 

signaling and results in inhibition of Cdc14.  This in turn leads to helping the cells be 

competent for S-phase entry.  Overexpression of this gene because of amplification may 

cause bypassing G1 to S phase controls and may result in genomic mutations.  Another 

gene in this amplicon is DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 gene 

(DDX11) that functions as both ATPase and DNA helicase activities in cellular growth 

and division.  Loss of DDX11 helicase in mouse has been shown to cause lethality due to 

the accumulation of aneuploid cells which may suggest it plays a role in genome stability 

(Inoue et al. 2007).  Another interesting gene in this region is FYVE, RhoGEF and PH 

domain containing 4 (FGD4) which activates cell division cycle 42 (CDC42).  

Expression array results showed no differentially regulated genes in this region for the 

tumor samples. 

 

Huh7 cell line has an amplicon at 14q12-q13.1 spanning a region of 2.3 MB.  This region 

displays a 7 fold-increase with a peak of 14 and harbors 10 genes.  Microarray expression 

data for Huh7 cell line shows that most of these genes in this region are constitutively and 

consecutively overexpressed.  This expression signature is clearly in accordance with 

amplification.  Although this region is not touched in the literature, there exist two 

discordant reports; one study shows in HCC tissues, amplifications are related with HCV 

infection (Sakakura et al. 1999) other shows in HCC cell lines that 14q12-q13 region is 

subject to LOH (Zimonjic et al. 1999).  Both studies used low resolution methods 

therefore might have skipped our findings.  Amongst the genes in the amplicon, 

nucleotide-binding protein-like (NUBPL) and protein kinase D1 (PRKD1) are interesting.  

NUBPL has been shown to be involved in translocations and upregulated in acute 
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myeloid leukemia by SAGE analysis (Lee et al. 2005).  Another interesting study on 

massive amplification of rolling-circle transposons in the lineage of the bat Myotis 

lucifugus shows that a subfamily of these nonautonomous transposons, HeliBatN3, 

display high homology with NUBPL (Pritham et al. 2006).  The product of PRKD1 is a 

calcium-independent, phospholipid-dependent, serine- and threonine-specific enzyme.  

Missense mutations have been described in colorectal and breast cancers (Sjoblom et al. 

2006).  PRKD1 has been shown to be involved in LOH events but with high expression 

values in hepatoblastomas (Adesina et al. 2007).  Another study shows PRKD1 is highly 

expressed in pancreatic ductal adenocarcinoma cell lines that are highly resistant to 

chemotherapeutic drugs (Ammerpohl et al. 2007).  Our semi-quantitative PCR targeting 

NUBPL gene confirms the amplification in Huh7 and to an extent in Snu398.  On the 

contrary, we have not observed any significant differentially expressed genes in tumor 

samples in the expression analysis. 

 

In Hep40, we detected amplification at 15q21.3 with five in copy number.  This region is 

2-MB in length and contains only two genes, WD repeat domain 72 (WDR72) and unc-

13 homolog C (UNC13C) map here.  WDR72 has also shown to be amplified in 

melanoma with a similar approach to ours (Stark et al. 2007).  Since functions of these 

genes’ products are not well characterized, we can not conclude the significance of this 

amplicon.  The only interesting information, dog ortholog of WDR72 has been found to 

be similar to TGF-β resistance-associated protein.  Therefore, amplification of this gene 

may result in high expression and overcome inhibitory affects of TGF-β signaling in cell 

cycle.  Moreover, expression data provides no significant differentially expression for 

these genes. 

 

We have also seen another amplicon in Hep40 which maps 16q23.1 region.  This region 

is 3-MB in size and six in copy number with a peak of nine.  In the literature, no 

amplifications have been reported for this region.  Among the genes mapping here, cell 

recognition protein CASPR4 isoform 1 (CNTAP4) and WW domain-containing 

oxidoreductase isoform 1 (WWOX) are the most interesting ones.  CNTAP4 gene 

belongs to the neurexin family, members of which function in the vertebrate nervous 
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system as cell adhesion molecules and receptors. This protein, like other neurexin 

proteins, contains epidermal growth factor repeats and laminin G domains.  

Contradictorily, this gene has been shown to be deleted in prostate tumors in a similar 

study (Liu et al. 2006).  WWOX plays an important role in the regulation of a wide 

variety of cellular functions such as protein degradation, transcription, and RNA splicing.  

Tumor suppressive role of this gene has been reported; WVOX is frequently involved in 

LOH and its function is lost in various cancers and tumor cell lines (Qin et al. 2006; 

Iliopoulos et al. 2005).  Expression analyses showed that amplification of this region is 

not in concordance with the expression signatures of Hep40 and other tumor samples; we 

failed to observe any amplification trend in this region. 

 

A large amplicon, 11.5-MB in size, maps to 17p13.1-q11.1 region in Snu182 region.  Its 

copy number is six in number and harbors more than 20 genes.  This region has also 

shown to be amplified in sarcomas (Kaur et al. 2007).  The expression analysis showed 

no aberrant amplification signature in this region.  Therefore we looked at the most 

amplified sub-region using raw copy number values.  Myocardin (MYOCD) maps to the 

center of one of the amplification peaks in this regions.  MYOCD is a transcription factor 

that uses the canonical single or multiple CArG boxes DNA sequence.  Inactivation of 

myocardin and p16 during malignant transformation has been shown to contribute to a 

differentiation defect (Milyavsky et al. 2007), but its overexpression has not been studied 

and it may also play a role in carcinogenesis.  Phosphatidylethanolamine N-

methyltransferase (PEMT) maps to the second peak in the region.  This gene encodes an 

enzyme which converts phosphatidylethanolamine to phosphatidylcholine by sequential 

methylation in the liver.  Contradictorily, PEMT expression has been found to be reduced 

in HCC (Tessitore et al. 2003).  RAS, dexamethasone-induced 1 (RASD1) is another 

gene mapping close to the center of the second peak.  This gene encodes a Ras-related 

protein that is stimulated by dexamethasone with exact function unknown.  Although 

RASD1 is a member of the Ras superfamily of small G-proteins that often promotes cell 

growth and tumor expansion, plays an active role in preventing aberrant cell growth, anti-

growth function has been reported (Vaidyanathan et al, 2004).  To sum up all, this region 
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is quite large and further analysis required for finding out the driver gene or genes in this 

amplicon. 

 

In chromosome 17, we have also observed another amplicon at p11.2-q11.1.  This region 

spans a 1.75-MB and is six in copy number with a peak value of eight.  This region can 

be larger than we expect since the neighboring SNPs with normal copy numbers are 

further than one MB.  Analysis of expression data of primary tumor did not reveal any 

significant upregulation of consecutive genes.  There are 13 genes mapping this region 

and among them, mitogen-activated protein kinase kinase 3 (MAP2K3) and kinase 

suppressor of ras (KSR1) are the most interesting candidates to be the driver genes of the 

amplicon.  MAP2K3 encodes a dual specificity protein kinase that belongs to the MAP 

kinase family and activates MAPK14/p38-MAPK (Derijard et al. 1995).  Expression of 

RAS oncogene is found to result in the accumulation of the active form of this kinase.  

Therefore amplification of this region may result in abnormal activity of MAP2K3 

resulting in oncogenic character.  KSR1 functions downstream of Ras and is required for 

MAP kinase activation (Kornfeld et al. 1995; Ohmachi et al. 2002).  Although KSR1 is 

not well characterized and its metastasis suppressive roles have been reported (Hartsough 

et al. 2002), abnormal expression of this gene may result in disturbances in MAPK and 

other pathways since positive and negative signaling pathways regulate tumor metastasis, 

including multiple metastasis suppressor  genes (Steeg , 2003) 

 

We also detected another amplicon on chromosome 17 mapping to q21.2 region.  It spans 

a region of 0.7-MB and is five in copy number with a maximum value of eight.  This 

amplicon is likely larger than we can detect because of the absence of SNP markers in the 

region.  This amplicon contains members of keratin family which encode intermediate 

filament proteins responsible for the structural integrity of epithelial cells.  ErbB-2 

isoform a (ERBB2) has not escaped from our eyes that it maps very close to this region 

and it is may be involved in this amplification.   ERBB2 encodes a member of the 

epidermal growth factor (EGF) receptor family of receptor tyrosine kinases.  

Amplification and overexpression of this gene has been reported in numerous cancers, as 

well as in HCC (Zimonjic et al. 1999).  Thyroid hormone receptor, alpha isoform 1 
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(THRA) is another interesting gene in this region.  This gene is a proto-oncogene and it 

has been reported be involved in human cancers including breast and thyroid papillary 

tumors (Silva et al. 2002; Puzianowska-Kuznicka et al. 2002).  RARA protein (RARA), 

C-terminal tensin-like (TNS4), chemokine (C-C motif) receptor 7 precursor (CCR7) and 

breast cancer 1, early onset isoform 1 (BRCA1) are other interesting genes in this region 

that have been shown to be related with human cancers.  Expression analysis showed that 

only keratin 23 (KRT23) is significantly highly expressed in tumor tissue.  

 

19q13.2-13.32 is a very gene rich region with more than 20 genes and is amplified in 

Mahlavu and Focus.  This region spans 3.25-MB, has an amplification value of six and it 

is also amplified in other cancers (Dekken et al. 1999).  Amongst several genes, 

reticuloendotheliosis viral oncogene homolog B (RELB), B-cell CLL/lymphoma 3 

(BCL3) and malignancy-associated protein (MAG) are quite interesting.  Analysis of 

expression data gave no clues about highly expressed genes in advanced tumors 

compared to normal.  RELB is a member of Rel/NF-κB transcription factor family and 

stimulates promoter activity in the presence of p49- and p50-NF-kappa-B (Suhasini et al. 

1997) and minor sporadic amplifications has been reported (Rayet et al. 1999).  NF-κB 

signaling is important in HCC (Pikarsky et al. 2004); therefore amplification of this gene 

may result in abnormal activity.  BCL3 is a proto-oncogene candidate; act as transcription 

factor and is involved in NF-κB signaling (Karin et al. 2002).  BCL3 locus has been 

shown to be involved in recurrent translocations in Hodgkin and peripheral T-cell 

lymphoma (Michaoux et al. 2004).  MAG is expressed in various malignant tumors 

including glioblastomas and HCC and in tumor preexisting conditions such as hepatitis C 

virus- and hepatitis B virus-induced liver cirrhosis (Ljubimova et al. 1998).  Although our 

expression analysis results do not support this evidence, this gene may play a role in 

progression of premalignant conditions and in the development of HCC and other 

cancers. 

 

Another amplification maps to 22q11.21-22 region.  This region contains over 20 genes 

and spans 3.5-MB.  This amplicon is present only in Snu182 and has a value of six.  In 

expression analysis, we could not detect any amplification expression signature in 
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primary tumors.  This region contains interesting genes such as v-crk sarcoma virus CT10 

oncogene homolog (CRKL), phosphatidylinositol 4-kinase, catalytic, alpha (PIK4CA), 

hypermethylated in cancer 2 (HIC2) and mitogen-activated protein kinase 1 (MAPK1).  

CRKL maps to the center of the amplicon and can be the driver gene.  CRKL has been 

shown to activate the RAS and JUN kinase signaling pathways and transform fibroblasts 

in a RAS-dependent fashion. It is a substrate of the BCR-ABL tyrosine kinase and plays a 

role in fibroblast transformation by BCR-ABL. In addition, CRKL has oncogenic 

potential (Ten Hoeve et al. 1993; Senechal et al. 1996, 2002).  PIK4CA encodes a 

phosphatidylinositol (PI) 4-kinase which catalyzes the first committed step in the 

biosynthesis of phosphatidylinositol 4,5-bisphosphate (Wong et al. 1994).  Although 

HIC2 has reported to be a putative tumor suppressor (Deltour et al. 2002), overexpression 

of this gene may have other unexpected roles.  The protein encoded by MAPK1 gene is a 

member of the MAP kinase family and is involved in both the initiation and regulation of 

meiosis, mitosis, and postmitotic functions in differentiated cells by phosphorylating a 

number of transcription factors such as ELK1 (Meloche and Pouyssegur 2007). 

 

Last, on X-chromosome, we found amplification in Snu182 cell line. This cell line has 

male origin and shows a copy number of four.  This region maps p22.12-p22.11 and 

spans more than 1 MB.  Since there are not so many SNP markers in this region, we can 

not map the center of the amplicon and the size of the disturbed regions can be larger 

than we detected.  With the SNP markers available, connector enhancer of kinase 

suppressor of Ras (CNKSR2) maps close to the amplicon.  This gene is a necessary 

element in receptor tyrosine kinase pathways, possibly as a tyrosine phosphorylation 

target. It is involved in regulation of RAF in the MAPK pathway and may also play a role 

in a MAPK-independent pathway (Lanigan et al. 2003).  It is highly expressed cervical 

cancer cell lines, embryonic cell lines, epithelial cell lines; kidney cell lines (Jaffe et al. 

2004).  Cyclin-dependent kinase-like 5 (CDKL5) is another gene which may reside in the 

amplicon.  CDKL5 is a member of Ser/Thr protein kinase family and encodes a 

phosphorylated protein with protein kinase activity.  It interacts with MECP2 and it is 

expressed in breast carcinoma and prostate cancer cell lines (Mari et al. 2005; Bertucci et 
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al. 2004; Lin et al. 2005).  In expression analysis, we observed no abnormal expression 

attributable to amplification. 

 

Besides genes encoding proteins, we also have showed 13 microRNAs mapping the 

amplified regions above.  These include hsa-mir-597 and hsa-mir-124a-1 at 8p23.1; hsa-

mir-548d-1 at 8q24.13; hsa-mir-491 and hsa-mir-31 at 9p22.1-p21.2; hsa-mir-624 at 

14q12-q13.1; hsa-mir-33b at 17p13.1-q11.1; hsa-mir-330, hsa-mir-642 and hsa-mir-769 

at 19q13.31-q13.32; hsa-mir-185, hsa-mir-649 and hsa-mir-130b at 22q11.21-q11.22 

regions.  Among these miRNAs, experimental studies showed that upregulation of hsa-

mir-31 and hsa-mir-330 are associated with colorectal and breast cancer, respectively 

(Bandres et al. 2006; Mattie et al. 2006).  Expression of hsa-mir-130b has also been 

detected in pancreatic cancer cells (Mattie et al. 2006) 

 

Our screen led to the identification of more than ten amplified regions.  These regions 

contained over 400 genes, including 13 miRNA genes.  Our results are mostly not in 

concordance with the expression data since usually less than 40% of amplicons result in 

overexpression.  Some of these genes have been indicated as being involved in cell 

signaling, polarity, motility and adhesion.  Overexpression of these genes due to 

amplification might have given more malignant phenotypes to cancer cells by changing 

their ability to proliferate, survive and metastasize.  Further analysis of these regions may 

lead to identification of new oncogenes.  Working with cancer cell lines has the 

advantage of silencing the genes with RNAi methods which are found to be amplified 

and overexpressed to study phenotypic effects.  If such an amplified gene is important in 

carcinogenesis, an effect should be observed in the amplified cell line.  Noteworthy, we 

skipped several possible focal amplificons due to our stringent analysis parameters.  

Since SNP markers are not equally distributed over the genome, some of the true-positive 

amplicons may be represented by only one or two markers.  Moreover, in some 

amplicons, there may exist no SNPs, therefore we might have overlooked several copy 

number gains which might have previously shown by other methods.  We also caution 

that all the amplifications in the present study were detected in cultured HCC cells.  It is 

possible that the incidence of amplifications in the cell lines does not necessarily 
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represent that in HCC tumors. Thus, further studies should also focus on the 

identification of amplifications in HCC tissues to further elucidate their prevalence and 

significance. 

In this study, we screened copy number changes in a panel of 14 HCC lines at a 

resolution of 0.6-MB.  In addition, we tried to correlate the copy number changes with 

the available microarray expression data of the cell lines and primary tumors to compare 

and correlate losses and gains.  We also confirmed selected disturbed regions using 

conventional methods.  Consequently, we prepared a list of candidate genes which can be 

directly or indirectly related to tumorigenesis.  Further study of these genes through 

genetic, epigenetic and functional analysis may provide new insights in our 

understanding of HCC biology. 
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