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ABSTRACT

MOLECULAR KARYOTYPING OF HUMAN HEPATOCELLULAR CARCINOMA
CELL LINES USING SINGLE-NUCLEOTIDE POLYMORPHISM ARRAYS

KUBILAY DEMIR
M.Sc. in Molecular Biology and Genetics
Thesis Supervisor: Assist. Prof. Cengiz Yakicier

August 2007, 110 Pages

Hepatocellular carcinoma (HCC) etiology is genetically heterogeneous; multiple different
mechanisms have been shown to promote hepatocarcinogenesis. However, chromosomal
aberrations (CAs) and signaling pathways that they alter are still poorly understood.
Changes in chromosome number (aneuploidies) or structural chromosomal aberrations,
such as; amplifications, deletions, loss of heterozygosity and recessive mutations are

important mechanisms for tumor evolution.

Recently developed single nucleotide polymorphism (SNP) microarrays provide high-
throughput quantitative and qualitative screening of genomic DNA with higher resolution
compared to conventional methods such as fluorescent in situ hybridization (FISH) and
comparative genomic hybridization (CGH). In cancer research, SNP arrays ease the

screening of structural changes as well as aneuploidies with exact physical position.

In the framework of this study, we aimed to detect DNA copy number alterations in a
panel of 14 HCC cell lines. We screened all the autosomal chromosomes and the X-
chromosome and found previously undescribed novel regions that harbor homozygous
and hemizygous deletions at 13q12 and Xq21; amplifications at 8p23, 8q13, 8q24, 9p22-
21, 12pl, 14q12, 15921, 16923, 17p12-p11, 17ql1, 22q11 and Xp22. In our knowledge,
our results are the first comprehensive high-throughput screen of commonly used HCC

cell lines.
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OZET

INSAN HEPATOSELULER KARSINOM HUCRE HATLARININ TEK NUKLEOTID
POLIMORFIZM YONGALARI KULLANILARAK KARYOTIPLENDIRILMESI

KUBILAY DEMIR
Molekiiler Biyoloji ve Genetik Boliimii Yiiksek Lisansi
Tez Yoneticisi: Yard. Dog. Cengiz Yakicier
Agustos 2007, 110 Sayfa

Hepatoseliiler karsinom (HSK) etiyolojisi ¢esitli genetik ozellikler gostermektedir ve
HSK olusumuna sebebiyet veren bir¢ok degisik isleyis sekli daha once gosterilmistir.
Ancak, kromozomsal bozukluklar ve diizensizlige sebebiyet verdikleri sinyal yolaklari
halen tamamiyle acikliga kavusmamustir. Koromozom sayisindaki degisimler
(aneuploidik) veya yapisal kromozom bozukluklari, ornegin; amplifikasyonlar,
delesyonlar, tek kopya kaybi ve resesif mutasyonlar timor evrimi igin Onemli

mekanizmalardandir.

Yakin bir zaman Once kullanilmaya baslanan tekli niikleotid polimorfizm (SNP)
mikroarraylari yiiksek ¢iktili nitelik ve nicelikte genomik DNA taranmasinda
kullanilmakta ve geleneksel yontemlere gore, 6rnegin florasan in sitii hibridizasyon
(FISH) ve karsilastirmali genomik hibridizasyon (CGH), daha yiiksek c¢oziiniiniirliik
saglamaktadir. ~ Kanser aragtirmalarinda SNP mikroarraylari yapisal kromozom

degisimlerini ve aneuploidileri tam fiziksel genomik pozisyonlart ile birlikte vermektedir.

Bu calisma ¢ercevesinde, 14 HSK hiicre hatt1 panelinde DNA kopya sayis1 degisimlerini
ortaya ¢ikarmay1 hedefledik. Tiim otozomal kromozomlari ve X-kromozomunu taradik
ve daha 6nce tanimlanmamis olan 13q12 ve Xq21 homozigot ve hemizgot kayiplarini ve
8p23, 8ql3, 8q24, 9p22-21, 12pl, 14ql2, 15921, 16923, 17p12-pl1, 17ql1, 22ql1 ve
Xp22 amplifikasyonlari bulduk. Sonuglarimiz bilgilerimiz dahilinde, yaygin HSK

hiicre hatlarinin en kapsamli, yiiksek ¢iktili tarama caligsmasidir.
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1. INTRODUCTION

1.1 Epidemiology and Etiology of Hepatocellular Carcinoma

1.1.1 Epidemiology of Hepatocellular Carcinoma

Hepatocellular carcinoma (HCC) is the most common primary epithelial malignancy of the
liver and is one of the most common malignancies in the world. It is the fifth most
prevalent carcinoma worldwide and the third cause of mortality among deaths from

cancer with an annual number of 600 thousand (Parkin et al. 2001).

It is well described that HCC shows a characteristic geographic distribution. High-incidence
areas (defined as those with more than 20 cases per year per 100,000 populations) include
Sub-Saharan Africa, Southeast Asia, China, Taiwan, Japan, and Hong Kong. Low-incidence
areas (less than 5 cases per year per 100,000 populations) include most of the Western
Europe, the United Kingdom, the United States, and Canada. However, the incidence of
HCC has substantially increased in the United States and Western Europe over the past 25
years. In the United States, the incidence of HCC increased from 1.4 to 2.4 cases per
100,000 populations between 1976 and 1995 (El-Serag and Mason 1999). The incidence
and mortality rates of HCC are expected to double over the next 10-20 years (El Serag
and Mason, 1999; Davila et al. 2004; El Serag, 2004).

Like many other cancers, the incidence of HCC increases progressively with age. This
probably reflects the time for accumulation of genetic alterations required for HCC
development. Younger age of onset is observed in countries endemic for viral hepatitis, and
this may be due to increased risk of generating genome alterations during rapid liver
regeneration (Stroffolini et al. 1998). Another interesting future of HCC is that it has a male
predominance, regardless of geographical differences (Ng et al. 1995; Chen et al. 1997). In
HCC-prevalent regions, such as Africa, China, and Hong Kong, the male: female ratio is
even higher. In Hong Kong, the male to female ratio for HCC is about 6 tol (Ng et al. 1995;
Chen et al. 1997).



1.1.2 Etiology of Hepatocellular Carcinoma

HCC is one of the few human cancers with clearly established causal etiologies in most
of the cases. The etiology of HCC is multi-factorial and consists of chronic viral hepatitis
(caused by hepatitis B and C viruses), cirrhosis, aflatoxin B1 intake, alcohol abuse, and

inherited metabolic disorders.

1.1.2.1 Hepatitis B Virus (HBV)

The etiologic association between HBV infection and HCC was first demonstrated by
epidemiological studies. The incidence of HCC worldwide parallels the incidence of
HBYV infection. Variations in HCC incidence within a region generally relate to
differences in HBV carrier rates. For chronic hepatitis B (hepatitis B surface antigen
[HBsAg] carriers), the life-long risk of developing HCC has been estimated to be up to
40-50% (Beasley 1988). Animal studies have provided additional evidence to support
the role of HBV infection in HCC development. Persistent infection of woodchucks with
woodchuck hepatitis virus (WHV), which is a HBV-like hepadnavirus, resulted in HCC
in almost all animals (Snyder et al. 1982). However, the molecular mechanisms

underlying HBV-induced HCC remained obscure.

HBYV infection has been shown to promote carcinogenesis by at lest three different
mechanisms.  First, integration of the viral DNA in the host genome can induce
chromosomal instability (Aoki et al. 1996). Persistent HBV infection may provide a
cellular environment for hepatocarcinogenesis through non-specific mechanisms such as
increase of mutation rate and genome instability associated with rapid cell turnover
caused by liver injury and subsequent regeneration. Second, insertional mutations at
HBV integration sites may disrupt cellular genes and result in activation of endogenous
genes such as retinoic acid B-receptor (Dejean et al. 1986), cyclin A (Wang et al. 1990)
and mevalonate kinase (Graef et al. 1994). Recently, more than 10 genes have been

found to be altered by HBV integration in tumors. These genes are involved in



controlling cell proliferation, viability and differentiation suggesting that HBV
integration at particular sites are mechanisms frequently involved in HBV
hepatocarcinogenesis (Ferber et al. 2003; Horikawa and Barrett. 2003; Paterlini-Brechot
et al. 2003). But, unlike WHV-induced HCC, HBV-DNA integration is not specific and is
not frequently associated with activation of any cellular proto-oncogenes (Brechot et al.
2000). Third, expression of viral protein HBX has been shown to modulate cell
proliferation and viability (Andrisani and Barnabas, 1999; Diao et al. 2001). HBX binds
to p53 which results in abnormal p53-dependent activities such as p53-mediated
apoptosis (Feitelson et al. 1993). There are also additional studies suggesting HBX can
activate NF-xB signaling pathway, as well as other growth regulatory genes such as c-
fos, c-jun, c-myc, and EGF (Feitelson 1999; Brechot et al. 2000; Yeh 2000). In addition,
HBYV ‘X’ gene transgenic mice frequently develop HCC (Di Bisceglie et al. 1998; Yu et
al. 1999). Sequencing of HBV DNA from HCC and adjacent nontumorous liver tissues
has shown a high rate of mutations (Di Bisceglie et al. 1998). Recent evidence has
shown that mutations in the HBV ‘X’ gene in HCC can abolish both HBX-induced
growth arrest and apoptosis. These naturally occurring mutations might therefore render
the hepatocytes susceptible to uncontrolled growth and contribute to multi-step

hepatocarcinogenesis associated with HBV-infection (Sirma et al. 1999).

There are increasing bodies of evidence supporting that HBV itself may also play a direct
oncogenic role in hepatocarcinogenesis. HBV-DNA has been shown to be integrated into the
genomes of HCC cell lines and of liver cells of long-term asymptomatic HBsAg carriers. In
woodchuck model, WHV genome was found to be frequently integrated into the cellular N-
myc gene (Wei et al. 1992). Insertional activation of this proto-oncogene was believed to be
responsible for the transformation phenotype. However, HBV-mediated HCC does not
follow a similar pattern. Unlike WHV-induced HCC, HBV-DNA integration is usually not
specific and not associated with activation of any cellular proto-oncogenes (Brechot et al.

2000).

Previous studies have shown that HBX (a viral protein encoded by the ‘X’ gene in HBV
genome) physically binds to and inactivates the wild-type p53 tumor suppressor protein

(Wang et al. 1994; Ueda et al. 1995; Greenblatt et al. 1997). There are also additional



studies suggesting that HBX can activate NF-kB signaling pathway, as well as other
growth regulatory genes such as c-fos, c-jun, c-myc, and EGF (Feitelson 1999; Brechot et
al. 2000; Yeh 2000). In addition, HBV ‘X’ gene transgenic mice frequently develop
HCC (Di Bisceglie et al. 1998; Yu et al. 1999). On the other hand, some reports have
indicated that HBX expression can induce G1 cell cycle arrest and apoptosis through a

pS53-independent pathway (Terradillos et al. 1998; Sirma et al. 1999).

1.1.2.2 Hepatitis C Virus (HCV)

In a series of HCV epidemiology studies, HCV has been detected in 6-75% of patients
with HCC, and chronic HCV infection was found to be the major etiological factor for
HCC in Japan, Europe, and the United States (Colombo et al. 1989; Chen et al. 1990;
Hasan et al. 1990; Saito et al. 1990; Vargas et al. 1990; Yu et al. 1990; Kaklamani et al.
1991; Nishioka et al. 1991). A prospective follow-up study indicated that the incidence
of HCC in patients with chronic hepatitis C was 2.7 times higher than patients with
chronic hepatitis B (Takano et al. 1995).

The molecular mechanism of HCV-related hepatocarcinogenesis is still obscure.
Genome instability and mutations, occurring in regenerating hepatocytes associated with
immune-mediated turnover during chronic inflammation and cirrhosis remains a leading

hypothesis for HCV-related hepatocarcinogenesis.

Some recent experimental data suggest that HCV may be directly involved in
hepatocarcinogenesis. The core protein of HCV is a likely oncogenic candidate. HCV
core protein was found to cooperate with Ras in cellular transformation. Primary rat
embryo fibroblast cells co-transfected with HCV core gene and H-ras exhibited rapid
proliferation, anchor-independent growth, and tumor formation in athymic nude mice
(Ray et al. 1996). Other data suggest that amino acid residue 80-122 of HCV core
protein may repress the transcriptional activity of the p53 promoter (Ray et al. 1997).

The oncogenic role of HCV core protein was further supported by transgenic mouse



model. The incidence rate of HCC in transgenic mice harboring HCV core gene was
significantly higher than that in non-transgenic mice (Moriya et al. 1998). Interestingly,
HCC developed in these transgenic mice followed a stepwise transformation and closely
resembled the histopathological characteristics of the early stages of HCC in patients with
chronic hepatitis C. The neoplastic lesions first appeared as adenomas, and then HCC
developed from the adenomas, presenting a 'nodule-in-nodule' manner (Moriya et al.

1998).

1.1.2.3 Aflatoxin B1

Aflatoxins are mycotoxins produced by the common fungus Aspergillus flavus. Aflatoxins
are powerful carcinogens for animals. Field studies have shown a close association between
aflatoxin intake and high incidence of HCC in poor countries, where fungal contamination in
food is common. In geographies where AFB1 exposure level is high, such as Qidong-
China and Mozambique, G-T transversion at codon 249 has been reported in more than
50% of the cases (Hsu et al. 1991; Bressac et al. 1991). This mutation at codon 249 of
TP53, leading to the amino-acid substitution R249S, is exceptionally found in HCC from
geographical regions without AFB1 exposure supporting the hypothesis that this mutagen
has a causative role in hepatocarcinogenesis. Molecular mechanisms of AFBI-DNA
binding and mutagenesis have been elucidated in human tumors, animal models and in
vitro (Smela et al. 2001). These results contrast with p53 mutations reported in other
regions of China and Japan where aflatoxin is not the risk factor of HCC (Hayashi et al.
1993; Li et al. 1993a; Fujimoto et al. 1994). Thus, this mutation specificity can be

considered as a finger print of aflatoxin B1 exposure.
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Figure 1.1: Mechanisms of Hepatocarcinogenesis for different risk factors. Commonalities are shown in the same color

(Farazi and DePinho, 2006)

1.2 Genetic and Epigenetic Changes in Hepatocellular Carcinoma

Cancer is a DNA disease which emerges through accumulation of genetic alterations in

the genes controlling cell cycle, proliferation, differentiation and apoptosis;

hepatocellular carcinoma is no exception.

HCC has been extensively studied in terms of genetic alterations in the past ten years

which resulted in an increase in our knowledge of altered pathways in

hepatocarcinogenesis. Likewise in other solid tumors, a large number of genetic
alterations accumulate during the hepatocarcinogenesis process. Genetic and epigenetic
alterations have been observed in cirrhotic nodules and half of them have been found to
have a monoclonal origin by examining the X-chromosome methylation pattern (Piao et
al. 1997; Paradis et al. 1998; Yeh et al. 2001). Chromosome aberrations with loss of

alleles are found in half of cirrhotic nodules and more frequently in nodules with small



cell dysplasia (Yeh et al. 2001). Various genetic alterations have been described in
primary liver tumors including activating mutations of oncogenes and inactivating
mutations of tumor suppressor genes have been only found in HCC and liver adenomas

but not in cirrhosis.

1.2.1 Chromosomal Abnormalities

Human cancers are characterized by the presence and accumulation of genetic alterations
which target genes or genomic loci. Chromosomal aberrations (CA) are changes in
chromosome structure and morphology which are indicators of genetic damage in cancer.
CAs are involved in tumor genesis and progression by altering the functions of genes that
positively or negatively regulate several aspects of cell proliferation, apoptosis, genome
stability, angiogenesis, invasion and metastasis.  Their pattern varies between
malignancies, ranging from simple balanced rearrangements to complex abnormalities
affecting both chromosome structure and euploidy. Subchromosomic abnormalities are
often related with genetic alterations, including formation of fusion gene products and
swapping of promoter elements which consequently lead to dysregulated gene expression
(Aman et al. 1999). The majority of malignant solid tumors, however, exhibit a complex
pattern of chromosomal abnormalities, rarely showing any direct association with
specific morphological or prognostic subgroups. Many common aggressive epithelial
tumors, such as high-grade pancreatic, ovarian, and lung cancer, fall within this category
(Pejovic et al. 1992; Johansson et al. 1995; Gorunova et al. 1998), so do many sarcomas,
such as osteosarcoma, leiomysorcoma, and malignant peripheral nerve sheath tumor
(Mandahl 1996). The molecular genetic alterations corresponding to these complex
cytogenetic anomalies are not well characterized, although abnormal activation of
oncogenes and losses of tumor suppressor genes are common. These changes are rarely
subtype specific. However, the total number of chromosomal aberrations is roughly

proportional to the risk of metastasis (Mitelman et al. 1997).
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owing to loss of tissue architecture, abrogation of checkpoints and other factors. Relatively few aberrations occur
before development of in situ cancer and the incidence of genomic aberrations increases during the development of in

situ disease (Albertson et al. 2003)

CAs can be studied with an increasing number of large-scale genomic and molecular
genetic technologies such as chromosome banding (Mitelman Database of Chromosome
Aberrations in Cancer), high-throughput analysis of loss of heterozygosity (LOH)
analysis (Hampton et al. 1996), comparative genomic hybridization (CGH) (Pinkel et al.
1998), fluorescence in situ hybridization (FISH) (Schrock et al. 1996), restriction
landmark genome scanning (RLGS) (Imoto et al. 1994), representational difference
analysis (RDA) (Lisitsyn et al. 1993) and recently introduced SNP microarrays. These
techniques differ in which they detect whether balanced or unbalanced aberrations.
RLGS, analysis of LOH, RDA and SNP arrays detect allelic imbalances that occur by
somatic recombination or copy number change. FISH and CGH are sensitive to

unbalanced physical structure of the genome or copy number such as altered ploidy, gain



or loss of chromosomes and chromosome portions and structural rearrangements. SNP
arrays differ from FISH and CGH in detecting unbalanced rearrangements only.
Structural changes involve equal exchange of material between two chromosome regions
(balanced) or non-reciprocal, such as portions of the genomes are gained or lost. These
methods analyze genome-wide DNA content and provide clear information about
sporadic and recurrent chromosomal aberrations. The most frequently deleted
chromosome arms are 17p, 8p, 16q, 16p, 4q, 9p, 13q, 1p and 6q; and the most frequent
gains are observed at 1q, 7q, 8q and 17q (Fujimoto et al. 1994; Boige et al. 1997;
Marchio et al. 1997; Nagai et al. 1997; Piao et al. 1998; Guan et al. 2000; Wong et al.
2000; Balsara et al. 2001; Laurent-Puig et al. 2001; Nishimura et al. 2002). Today,
Mitelman Database of Chromosome Aberrations in Cancer and University of Helsinki’s
Laboratory of Cytomolecular Genetics harbor extensive catalog chromosomal

abnormalities in a wide range of tumors.
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Figure 1.3: Mechanisms by which chromosomal aberrations result in aneuploidy and common techniques used in

detection (Albertson et al. 2003)

Amplification is likely to be initiated by a DNA double-strand break. It can occur only in
cells that are able to progress inappropriately through the cell cycle with this damaged
DNA whereas normal cells would arrest due to activation of cell-cycle checkpoints. A
segment of the chromosomes are copied many times and result in extra copies of genetic

material. If extra copies are fused head-to-tail in long tandem arrays within a



chromosomal segment, it is called homogeneously staining regions (HSRs). A segment
may also be detached from a chromosome and replicate as an autonomous
extrachromosomal entity. Such formations result in subchromosomal fragments termed
“double minutes” (DMs). HSRs and DMs increase the copy number of genes they carry
and resulting in gene amplifications and are unbalanced. In cancer, amplified regions are
likely to carry genes with oncogenic character that bypass cellular control barriers and
favor proliferation. Gene amplifications can result in copy number increases from
duplications to high level amplifications (700 copies) (Schwab et al. 1999). Today, there
is a wide agreement that only less than half of the amplifications result in overexpression
of the genes that they harbor. In a recent study with a panel of breast cancer cell lines,

40% of the amplified genes were overexpressed (Hyman et al. 2002).

Interstitial deletions occur when a segment in the middle of a chromosome arm is
discarded and the flanking chromosomal regions are rejoined. Interstitial deletions may
be rare but they dramatically affect cellular behavior. Such deletions may originate by
chromosome breakage and subsequent loss of acentric segment or unequal crossover
between misaligned homologous chromosomes or sister chromatids. Chromosome losses
are frequent mechanisms of inactivation of one allele of a tumor suppressor gene in solid
tumors, recurrent losses at precise loci may point the presence of tumor suppressor genes.
In HCC, LOH events have been reported targeting loci in 17p, 13q, 16p, 9p and 6q and
inactivating tumor suppressor genes TP53, RBI (retinoblastoma 1), AXINI1 (axis
inhibition protein 1), CDKN2A (cyclin-dependent kinase inhibitor 2A) and IGF2R
(insulin-like growth factor 2 receptor), respectively. On the other hand, no tumor
suppressor genes have been identified on 1p, 4q, 8p and 16q although high-resolution
methods have been used to define consensus boundaries of deletions in these regions
(Koyama et al. 1999; Piao et al. 1999; Pineau et al. 1999; Balsara et al. 2001; Yakicier et
al. 2001; Bluteau et al. 2002a).

Recurrent genomic aberrations are observed on several occasions in a series of
independently arising human tumors. They are likely to contain genes that are important

for tumor development. In many cases these regions contain with oncogenic or tumor
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suppressive character whose expression levels are altered by genomic changes. In solid
tumors, amplification of ERBB2, MYC and CCND1 have been reported (Slamon et al.
1989; Hinds et al. 1994). Amplification also plays an important role in the development
of drug resistance. Cultured cells selected for resistance to N-(phosho-nacetyl)-L-
aspartate frequently amplify CAD (Wahl et al. 1979; Schimke et al. 1978) and DHFR is
amplified in cultured cells with methotrexate resistance (Banerjee et al. 2002). Similarly,
BCR-ABL is amplified in individuals resistant to STI5S71 (Gorre et al. 2001). Other
aberrations include loss of specific regions of the genome. Tumor suppressor genes such
as PTEN, CDKN2A have been reported to be lost by homozygous deletions (Li et al.
1997; Orlow et al. 1995). Recessive mutations along with LOH have been shown in the
elimination of the functions RB1, BRCA1, BRCA2, PTPRJ and TP53 (Nagai et al. 1994;
Cavenee et al. 1983; Baker et al. 1990; Ruivenkamp et al. 2002).

Cytogenetic studies have identified many chromosomal changes in tumors but relatively
few of them are recurrent and are involved in tumorigenesis. On the other hand,
recurrent abnormalities are frequent transforming events in sarcomas, leukemias and
lymphomas (Rowley et al. 1998). Identification of driver genes in the disturbed regions
is not easy because these regions often contain multiple genes and more than one gene
may important in tumor formation. For example, growth factors FDF19, FGF4, FGF3
and actin-binding oncogene EMSI1 are in close proximity to CCNDI and they are
amplified together with CCND1 (Bekri et al. 1997). Similarly, growth factor receptor-
bound protein GRB7 maps in close proximity to ERBB2 and amplified together.
Additionally, cancer genomes may involve many disturbed regions with tens of genes
resulting in a complex alteration of different signaling pathways. In such cases, it is
harder to establish the driver mechanisms in tumor formation. Finally, the presences of
extra copies of individual chromosomes have been reported to be associated with higher

cancer risk (Willenbucher et al. 1999).
Genomes of tumor hepatocytes in HCC accumulate a large number of chromosome

rearrangements leading to highly abnormal karyotypes, like in other solid tumors.

Cytometric analyses have been reported that most HCC cases acquire a global gain of
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genetic material (Ezaki et al. 1988; Fujimoto et al. 1991; Chiu et al. 1992). Hyperploidy
is also seen in nearly half of the dysplastic lesions observed in cirrhotic disease (Thomas
et al. 1992) and its incidence increases in higher grade dysplastic lesions suggesting that

chromosome losses followed by endomitosis are early steps in hepatocarcinogenesis.

As we already mentioned HCC is genetically heterogeneous and mostly these changes are
related to etiological factors. Even though there are several studies addressing
chromosomal changes in HCC, new studies with techniques providing higher resolution

will probably reveal unknown genetic alterations in HCCs.

1.2.2 Mutations

In human cancers, the most frequently altered gene is the TP53 located at 17p13.1
(Hollstein et al. 1991, Isobe et al. 1986; Miller et al. 1986). Li-Fraumeni syndrome was
described as germline mutations of this gene which results in predisposition to cancer in
some individuals (Malkin et al. 1990). P53 is a multifunctional transcription factor
involved in the control of the cell cycle, apoptosis, senescence, differentiation and
development, transcription, DNA replication, DNA repair and maintenance of genome
integrity. In HCC, the specific TP53 mutation R249S is found in about 50% of tumors in
populations exposed to AFBI1 (Bressac et al. 1991; Hsu et al. 1991). In contrast, patients
who have not been exposed to this carcinogen have a lower prevalence of TP53 gene
mutations (10-30%) and codon 249 is rarely altered. Another frequent mutation in HCC
is the hereditary hemochromatosis at codon 220 (Vautier et al. 1999).
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Figure 1.4: Histopathological progression and molecular features of HCC: After hepatic injury incurred by any one of
several factors (hepatitis B virus (HBV), hepatitis C virus (HCV), alcohol and aflatoxin B1), there is necrosis followed
by hepatocyte proliferation. Continuous cycles of this destructive-regenerative process foster a chronic liver disease
condition that culminates in liver cirrhosis. Cirrhosis is characterized by abnormal liver nodule formation surrounded
by collagen deposition and scarring of the liver. Subsequently, hyperplastic nodules are observed, followed by
dysplastic nodules and ultimately hepatocellular carcinoma (HCC), which can be further classified into well
differentiated, moderately differentiated and poorly differentiated tumours — the last of which represents the most
malignant form of primary HCC. Telomere shortening is a feature of chronic liver disease and cirrhosis. Telomerase
reactivation has been associated with hepatocarcinogenesis (its activation in the early versus late stages of disease is
still a point of debate, and is discussed in the text). Loss and/or mutation of p53 and genomic instability also
characterize hepatocarcinogenesis. p53 loss and/or mutation is shown to occur during progression to HCC, however,
there is some evidence that loss and mutation of p53 might also occur in the initial stages of hepatocarcinogenesis

(Farazi and DePinho, 2006)

B-catenin is the ortholog of armadillo in Drosophila melanogaster. It is both involved in
cell — cell adhesion and Wnt signaling. B-catenin forms complexes with E-cadherin and
catenins in adherent junctions. In Wnt signaling, B-catenin may acquire oncogenic
character by dominant gain of function mutations in its N-terminus (Morin et al. 1997).
These mutations result in the loss of phosphorylation sites in its negative regulation by
GSK3p/APC/axin complex. The inhibition of its negative regulation results in higher
levels of B-catenin in the cytoplasm and in nuclei leading to abnormal activation of Wnt

target genes GLP1 and GRP49. In HCC, B-catenin activating mutations have been
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reported in human and mouse models (de La Coste et al. 1998; Miyoshi et al. 1998). In
hepatoblastomas and hepatocellular adenomas, B-catenin has also been reported to carry

mutations (Koch et al. 1999; Wei et al. 2000; Chen et al. 2002).

AXIN1 maps to 16p13 and this region is frequently (~30%) deleted in HCC (Laurent-
Puig et al. 2001). This gene encodes a protein of the GSK3p/APC/axin complex and
negatively regulates Wnt pathway. In HCC, LOH events along with mutations and
homozygous deletions have been reported in biallelic inactivation of AXIN1 (Satoh et al.
2000; Laurent-Puig et al. 2001). These mutations prevent phosphorylation of -catenin

leading to accumulation of hyperactivation of Wnt target genes.

RB1 locus maps to 13q14 region which is frequently involved in LOH events (Boige et
al. 1997; Nagai et al. 1997; Laurent-Puig et al. 2001). RB1 plays major roles in cell
division, differentiation and apoptosis. Point mutations and epigenetic regulations along
with LOH have been reported in RB1 inactivation (Zhang et al. 1994; Lin et al. 1996).
P16INK4 codes for cyclin D-dependent kinase inhibitor 2(CDKN2) and ARF which are
involved in p53 mediated apoptosis. These gene products function as tumor suppressors
in the RB pathway (Hickman et al. 2002). P16INK4A maps to 9p21 which has been
reported to show LOH in 20% of HCC cases (Boige et al. 1997; Nagai et al. 1997;
Laurent-Puig et al. 2001). Epigenetic silencing of the pl6INK4A promoter has been
reported in 30-70% of the tumors (Liew et al. 1999; Matsuda et al. 1999; Jin et al. 2000;
Weihrauch et al. 2001). Homozygous deletions of this gene have been reported in HCC,
as well (Biden et al. 1997; Jin et al. 2000).

TGF-B pathway is altered in 10-30 % of HCC cases. In TGF-B signaling pathway,
inactivating mutations of mannose 6-phosphate/insulin-like growth factor 2 receptor
(M6P/IGF2R) have been reported in HCC (Motyka et al. 2000). IGFR also have been
shown to carry amino acid substations in two HCC screens (De Souza et al. 1995; Oka et
al. 2002). Amino acid substitutions have also been reported in MADH2/Smad2 and
MADH4/Smad4 which are involved in TGF-B/BMP-2/4 signaling pathway (Yakicier et
al.  1999). Recently, activating mutations have been reported in PIK3CA
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(phosphatidylinositol 3-kinase) in HCC which leads to activation of AKT pathway (Lee
et al. 2005).

Vinyl chloride (VC) exposure has been reported be involved in KRAS mutations in
hepatocellular carcinoma. VC is a carcinogen associated with the development of liver
angiosarcomas and rarely with HCC. Recently, the presence of KRAS2 mutations was
observed in 33% of 18 vinyl chloride-associated HCCs and three mutations were found in
adjacent non-neoplastic liver tissue (Weihrauch et al. 2001). KRAS mutations are rarely
observed in HCCs that are not associated with vinyl chloride exposure which suggest that
KRAS2 mutations play an important role in the carcinogenetic pathway linked to vinyl

chloride exposure.

Recent reports showed that TCF1 gene (12q24.2) carry biallelic mutation in 60% of a
sample of liver cell adenoma cases (Bluteau et al. 2002). TCF1, transcription factor 1,
encodes hepatocyte nuclear factor 1a (HNF1a) and function in hepatocyte differentiation
and involved in liver specific expression of various genes including B-fibrinogen,
albumin and ol-antitrypsin (Frain et al. 1989; Baumhueter et al. 1990; Cereghini et al.
1990; Chouard et al. 1990). In liver cell adenomas, inactivation of both TCF1/HNFla

alleles is usually observed; in 90% of the cases both mutations are of somatic origin.

Most of the hepatoblastomas are of sporadic origin. Hepatoblastomas have been reported
in Beckwith—Wiedemann syndrome (BWS) and in the familial adenomatous polyposis
(FAP). In most hepatoblastomas, B-catenin N-terminal domain harbor interstitial
deletions or missense mutations in the GSK3f phosphorylation motif (Koch et al. 1999;
Wei et al. 2000; Buendia, 2002). In other hepatoblastoma cases, hyperactivity of the
Wnt/B-catenin pathway is related with AXIN2 mutations (Koch et al. 2004)
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1.2.3 Epigenetic Alterations

Aberrant DNA methylation patterns have been reported in HCC ( Thorgeirsson et al.
2002; Kanai et al; 1996,1999 & 2000; Yu et al. 2003). Methylation has been reported in
the earliest stages of hepatocarcinogenesis and extensively in tumor progression.
Molecular analysis of human HCC has shown many epigenetic alterations that result in
the deregulation of several oncogenes and tumor suppressor genes including TP53,  —
catenin, ErbB receptor family member, MET and its ligand hepatocyte growth factor
(HGF), p16 (INK4A), E-cadherin and cyclooxygenase 2 (COX2), apoptosis — associated
speck- like — kinase (ASC) and deleted in liver cancer 1 (DLC1) (Feitelson et al. 2002;
Wong et al. 1999; Matsuda et al. 1999; Liew et al. 1999; Murata et al. 2004, Kubo et al.
2004; Wong et al. 2003; Maeta et al. 2005). Recently, secreted frizzled-related protein 1
gene (SFRP1) has been reported to be epigenetically silenced in HCC cell lines and
primary tumors along with LOH events (Shih et al. 2007). Phosphatase and tensin
homologue (PTEN) has been shown to be downregulated by promoter methylation and
other epigenetic mechanism in HCC tissues (Wang et al. 2007). Zinc fingers and
homeoboxes protein 2 (ZHX2), glutathione S-transferase pi (GSTP1), Ras association
domain family 1 (RASSF1), methylation-induced silencing 1 (TMS1), tissue factor
pathway inhibitor-2 (TFPI-2), spleen tyrosine kinase (SYK) and LINE-1 type transposase
domain containing 1 are other genes that have recently been shown to be downregulated
in HCC by methylation (Lv et al. 2006; Wang et al. 2006; Di Gioia et al. 2006; Zhang et
al. 2007; Wong et al. 2007; Yuan et al. 2007; Tangkijvanich et al. 2007). Suppressor of
cytokine signaling 1 (SOCS1), which is a negative regulator of the JAK/STAT pathway,
has been shown to be silenced by methylation in HCC (Yoshikawa et al. 2001).
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2. HYPOTHESIS

Amplifications and deletions are common genetic alterations in epithelial cancers.
Numerous oncogenes and tumor suppressor genes located in these regions have been
identified in cancers. New techniques which provide higher resolution may reveal
unknown small chromosomal alterations where important genes for carcinogenesis may
be located. DNA copy number changes in HCC still have not been studied with recently

available high — throughput molecular methods which provide higher resolution.

In the framework of this study, we aimed to screen HCC cell lines for their DNA copy
number changes. We think cell lines are ideal models for this study because their
genomic DNAs are available as homogenous and high — quality (intact) which are crucial
requirements for SNP microarray analysis. Unlike tissue samples, their genomic DNAs
are pure, without any contamination of neighboring normal cells or infiltrating blood
DNA which gives better estimates for low — copy number changes. Moreover, screening
a panel of commonly used HCC cell lines may provide us independent abnormalities as
well as recurrent ones. Thus, our results may reveal new regions of abnormality in HCC
genome, in which oncogenes or tumor suppressor genes may reside. Analysis of these
new candidates may contribute to our understanding of hepatocarcinogenesis by

introducing new mechanisms and related pathways.
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3. METHODOLOGY

3.1 Materials

3.1.1 Hepatocellular Carcinoma Cell Lines

In the framework of this study, 14 Hepatocellular carcinoma (HCC) cell lines were used

as shown in Table 3.1

Cell Lines Origin Sex & Age  HBV-DNA  Tumorigenity Chromosome Ploidy
in Nude Mice
Focus UsS Female Positive Yes Hypotriploid
HepG2 Argentina Male, 15 Negative Yes Hyperdiploid
Hep3B US Male, 8 Positive Yes Hyperdiploid
Hep40 China Male, Positive No Data Hyperdiploid
Huh-7 Japan Male, Negative Yes Hypotetraploid
Mahlavu Female
PLC/PRF/5 South Africa  Male Positive Yes Hyperdiploid
SK-Hep-1 us Male, 52 Negative Yes Hyperdiploid
SNU182 Korea Male, 24 Positive No Data Hypertriploid
SNU387 Korea Female, 41 Positive No Data Hypertriploid
SNU398 Korea Male, 42 Positive No Data Hypertriploid
SNU423 Korea Male, 40 Positive No Data Hypertriploid
SNU449 Korea Male, 52 Positive No Data Hypertriploid
SNU475 Korea Male, 43 Positive No Data Hypertriploid

Table 3.1: Characteristics of the HCC cell lines.

3.1.2 Reagents
Ethidium Bromide (EtBr);

10mg/ml in water (stock solution)

30ng/ml (working solution)
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10X TBE Buffer Solution;

108¢g Tris
55¢g Boric Acid
8.3g EDTA

Dissolved in 11t of deionized water.

6X Loading Buffer Solution

30% Glycerol

0.04% Bromphenolblue
0.04% Xylene Cyanol
AdH20

10x Phosphate-Buffered Saline (PBS)

80 g NaCl

2g KCl

144 ¢ Na2HPO4
24¢ KH2PO4

Dissolved in 1 It of water and pH is adjusted to 7.4.

50x TAE Buffer (Tris-Acetate-4EDTA)

242 g Tris Base

57.1ml  Acetic Acid

100ml  0.5M EDTA

ddH20 was added to 1 liter and adjust pH to 8.5

Wash A: Non-Stringent Wash Buffer

(6X SSPE, 0.01% Tween 20)

For 1000 mL:

300 mL of 20X SSPE

1.0 mL of 10% Tween-20

699 mL of water, filtered through a 0.2 pum filter.
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Wash B: Stringent Wash Buffer

(0.6X SSPE, 0.01% Tween 20)

For 1000 mL:

30 mL of 20X SSPE

1.0 mL of 10% Tween-20

969 mL of water, filtered through a 0.2 um filter

0.5 mg/mL Anti-Streptavdin Antibody

Resuspend 0.5 mg in 1 mL of water

12X MES Stock Buffer

(1.22M MES, 0.89M [Na+])

For 1,000 mL:

70.4g of MES hydrate

193.3g of MES Sodium Salt

800 mL of Molecular Biology Grade water
Mix and adjust volume to 1,000 mL.

The pH should be between 6.5 and 6.7.
Filtered through a 0.2 pm filter

1X Array Holding Buffer

(Final 1X concentration is 100 mM MES, 1M [Na+], 0.01% Tween-20)
For 100 mL:

8.3 mL of 12X MES Stock Buffer

18.5 mL of 5SM NaCl

0.1 mL of 10% Tween-20

73.1 mL of water
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Stain Buffer

H20 666.7 pL.

SSPE (20X) 300 pL 6X
Tween-20 (3%) 3.3 0.01%
Denhardt’s (50X) 20 1X
Subtotal 990 uL.

Subtotal / 2 495 puL

SAPE Solution Mix

Stain Buffer 495 puL 1X

1 mg/mL Streptavidin Phycoerythrin (SAPE) 5.0 uL 10 ug/mL
Total 500 pL

Antibody Solution Mix

Stain Buffer 495 uL 1X

0.5 mg/mL biotinylated antibody 5 pL 5 pg/mL
Total 500 pL

3.2 Methods

3.2.1 Tissue Culture

All cell lines were cultured in 75ml flasks (Greigner-Bio) as monolayers. Cell lines were
either grown in RPMI-1640 (Biological Industries) or Dulbecco’s Modified Eagle
Medium (DMEM) (Biochrom AG) supplied with 10% FBS (Sigma), 50mg/ml penicillin /
streptomycin and non-essential amino acids (Biochrom AG). Cell lines were culture at
37°C incubator with 5% CO2 (Heto-Holten, Surrey, UK). Cells were handled in sterile
laminar hoods (Heto-Holten, Surrey, UK). Medias and solutions were kept at 4°C and
preheated to 37°C before use.
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3.2.1.1 Cyropreservation of Cell Lines

Exponentially growing cells were harvested with trypsin and fresh medium was added to
inactivate trypsin through neutralization. The numbers of cells were counted with
hemocytometer and precipitated at 250g for 5 minute at room temperature. Following, cells
were resuspended with freezing media at a concentration of 5 million / ml in one vial.
Freezing medium was prepared as 90% FBS and 10%DMSO (Sigma). Cryotubes were
incubated at -20°C for 1 hour, following -80°C overnight and kept in liquid nitrogen tank

for long term storage.

3.2.1.2 Culturing of Cell Lines

After removal from liquid nitrogen tanks, cells were thawed at 37°C and 5ml of growth
medium was added. Following centrifugation at 1500 rpm for 5 minutes, supernatant
was discarded and fresh medium was added. Cells were then grown in 25ml flasks in the

incubator.

3.2.1.3 Subculturing of Cell Lines

Cells were grown at a confluency of app 80%. Old medium was removed from the flasks
with vacuum and the cells were washed with PBS twice. Trypsin was added to flasks and
cells were incubated for 2-3 minutes with trypsin/EDTA solution. After detaching from
the flask surface, fresh medium was added to inactivate the trypsin. Collected cells were

then transferred to new plates.
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3.2.1.4 Preparation of Cell Pellets

Cell pellets were prepared for gDNA and RNA isolation. When the cells reached 80%
confluency, medium was removed and cells were washed with PBS twice. Cells were
detached with trypsin and fresh medium was added. After centrifugation for 5 minutes at
1500 rpm, supernatant was discarded and the pellet was washed with PBS twice. Pellets

were immediately placed -80°C refrigerator.

3.2.1.5 Genomic DNA Isolation

Frozen cell pellets were thawed at room temperature and gDNAs were isolated by using
Qiagen DNeasy Tissue Kit according to manufacturer’s recommendation. Isolated
genomic DNAs (gDNA) were either dissolved in manufacturer’s buffer or in water.
Quality of gDNA was checked on 0.75 % agarose gel and concentration was measured
with Nanodrop Spectrophotometer (Nanodrop Technologies). gDNAs were stored at-
20°C for long term.

3.2.2 SNP Microarray Assay
Probe preparation for SNP microarray hybridization experiments were done according to

manufacturer’s manual (Affymetrix, 10K2.0 Assay). The overall assay is shown in

Figure 3.1
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Figure 3.1: Outline of SNP microarray assay.

Briefly, genomic DNAs were diluted to 50ng/ul in water. 250ng of each gDNA was
subjected to restriction digestion with Xbal enzyme (New England Biolabs) for two hours
at 37°C in thermal cycler (Tech e), in replicate. One replicate was run on a 0.75%
agarose gel to check if the digestion assay performed well; the other replica was
continued with adaptor ligation. T4 DNA ligase (New England Biolabs) was used to
attach adaptor Xba (Affymetrix) to Xbal restriction sites. The ligation assay was done at
16°C for 2 hours. Adaptor Xba contains a binding site for Xba Primer (Affymetrix).
Later, ligated restriction fragments were diluted to 4 fold with H20 and used in whole
genome PCR as template. Hot Star Taq Plus polymerase (Qiagen) was used in the
amplification process. The thermo profile was as follows: 94°C for 2 minutes and 30
seconds, denaturation at 94°C for 30 seconds, annealing temperature (varies) for 45

seconds, extension at 72°C for 30 seconds, and final extension for 5 minutes and 30
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seconds. PCR amplicons were purified with Qiagen Qiaquick PCR purification kit.
20pg of PCR was fragmented to a range between 35bp — 200bp using DNAsel
(Affymetrix). The fragment sizes were checked by electrophoresis on 4% agarose gel.
Following, the fragmented PCR products were end labeled with Biotin-labeled reagent
(Affymetrix) using Terminal Deoxynucleotidyl Transferase (Affymetrix). Probe DNA
was then denatured at 95°C in hybridization buffer containing TMACL (Sigma), DMSO
(Sigma), Denhardt’s Solution (Sigma), MES (Sigma), Herring Sperm DNA (Promega),
EDTA (Ambion), Tween-20 (Sigma), Human Cot-1 DNA (Invitrogen) and
Oligonucletide control (Affymetrix). Following, denatured probe was injected to the
array (Affymetrix 10K2.0). The hybridization was done at 48°C, 60 rpm for 16 hours in
the hybridization oven (Affymetrix). After hybridization, the probe mix was discarded
and the array was washed with Wash A and B buffers (6X SSPE, 0.01% Tween 20, 0.6X
SSPE, 0.01% Tween 20, respectively) in fluidics station (Affymetrix). Then, the chips
were stained with buffers containing Biotinylated Anti-Streptividin antibody (Vector),
SAPE (Streptavidin, R-phycoerythrin conjugate), Acetylated Bovine Serum Albumin,
20X SSPE, Denhardt’s Solution and Tween-20. The stained chip was scanned at the
scanner (Affymetrix) and pre-analyzed with GeneChip Operating Software (GCOS) and
GeneChip DNA Analysis Software (GDAS) software bundle (Affymetrix). All these

steps above are briefly shown in figure 3.2.
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Figure 3.2: Preparation of target from genomic DNA.
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3.2.3 Microarray Analysis

3.2.3.1 Pre-Analysis

Pre-analysis of the SNP microarrays were performed with GCOS and GDAS software
bundle. The bundle operates the scanner and builds the raw data captured by the sensor.
It uses the specific library files containing the information about the probesets on the
array using pre-defined settings and algorithms (Affymetrix 10K2.0 Manual). The
bundle then extracted probeset information from raw data and generates CEL files
containing the signal intensity of each probeset along with a chip report file. The chip
report file provided information about the performance of the hybridization, such as;
average signal intensity of probesets, background and oligonucleotide controls along with
a pseudo-image of the chip. Later, using the CEL files, genotype calls of the each

probeset was calculated with their intensities.

3.2.3.2 Advance-Analysis

Advance analysis was performed with DNA-Chip Analyzer (dChip) (Harvard University)
Software freely available for academic users at www.dchip.org. dChip is a Windows
software package for probe-level and high-level analysis of gene expression microarrays
and SNP microarrays (Li and Wong 2001, Lin et al. 2004). At the probe level, dChip can
display and normalize the CEL files, and the model-based approach allows pooling
information across multiple arrays and automatic probe selection to handle cross-
hybridization and image contamination. High-level analysis in dChip includes
comparing samples, hierarchical clustering, view expression and SNP data along
chromosome, LOH and copy number analysis of SNP arrays, and linkage analysis. In
these functions the gene information and sample information are correlated with the
analysis results. In the analysis, model-based expression was selected with perfect
match-mismatch background correction. Normalization was performed according to the

median chip with median intensity using invariant set and smoothed with running median
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method. Hidden Markov Model and median smoothing were used in inferred copy

number analysis.

3.2.4 Genomic DNA PCR

All PCR reactions were performed using Techne-512 equipment (Techne Inc). Primers
were first checked for their optimal conditions by altering magnesium levels in a thermo-
gradient PCR. ). A reaction mixture of 2.5ul 10X reaction buffer, 2.5ul MgCI2 (25mM),
1l ANTP (10uM), 1pul of each primer (10pmol), and 0.5ul Taq DNA polymerase (5u/ul)
was prepared per 250ng of gDNA. The thermo profile was 94°C for 2 minutes and 30
seconds; denaturation at 94°C for 30 seconds, annealing temperature (differs) for 45
seconds, extension at 72°C for 30 seconds, and final extension for 5 minutes and 30

seconds.

3.2.4.1 Oligonucleotide Design

All oligonucleotide primers were designed by using Primer3 algorithm available at

http://frodo.wi.mit.edu/.  Oligonucletides were purchased from Iontek (Iontek) as

lyophilized. Primer sequences are listed in Table 3.2

TPTE2 IF ATGGACACATTTAGTTCGACTTC
TPTE2 IR CAGCCTTCTCATCAGCTTTT

HSA MIR 31 F ATACACAGCAATACACGAAGGACT
HSA MIR 31 R GGTGAAAGGAAAAATTTTGGAA
GAPDH 070228 ¢cDNA F GGCTGAGAACGGGAAGCTTGTCAT
GAPDH_ 070228 ¢DNA R CAGCCTTCTCCATGGTGGTGAAGA
Mirl24al-F GTCGGTCGCTCCTTCCTT
Mirl24al-R TCTACCCACCCCTCTTCCTT

SATL1 F GGGGACAATCCCCTTTTCTAC
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SATL1 R AAAGTACCTTGCCAGTCCATGA
NUBPL gDNA F AGTTCCGATTTTGTTTCTTTCCA
NUBPL R ACAATTGGCTGGCCTGTATCT

Table 3.2: Primers used in the PCR assays.

3.2.4.2 PCR Purification

All PCR products were purified by using the Qiagen Qiaquick PCR purification system
according to manufacturer’s recommendation except a few modifications. After washing
the membrane containing the PCR products with ethanol containing was buffer, an
additional step of centrifugation was performed at 20,000g for 5 minutes with caps open.
This allowed complete evaporation of PCR products and then H20 was used for

reconstitution of the PCR products.

3.2.8.3 Agarose Gel Electrophoresis

2ul of 6X DNA loading dye was added to 10ul of each PCR product. PCR products were
then loaded in 30ng/pl ethidium bromide containing 1% (w/v) agarose gels and were run
in horizontal gel electrophoresis equipment in 1X TAE buffer under 90V for 30 minutes.
Gene Ruler DNA ladder (Fermentas) was used as DNA size marker. Transilluminator
equipment (Bio — Rad) was used for visualization at 340nm wavelength UV along with

MultiAnalyst software (Bio — Rad).

3.2.4.4 Sequencing

Selected amplified PCR products were purified by using the Qiagen Qiaquick PCR
purification kit and quantified with Nanodrop spectrophotometer. Required amounts of
purified PCR products were sent to lontek along with the PCR primers for sequencing.

Received sequence data was analyzed with Mutation Explorer Software (Softgenetics).

28



4. RESULTS

In the framework of this study, we have detected two deletions and 12 amplifications
which are novel in hepatocellular carcinoma. These disturbed regions harbor more
approximately 570 transcripts. Some these genes are well described in cell cycle and
tumorigenesis, other’s role are still poorly understood. Among the described ones, a high
percentage of these genes code for enzymes, transcription regulators, cytokines,
transporters and kinases. Concordantly, most of the gene products of these trascipts are
found in cytoplasm, nucleus and extracellular spaces. Below are the figures that show

overall results along with protein functions and cellular distribution.
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Table 4.a: Overall disturbances in HCC cell lines; red and green represent amplifications and deletions, respectively.
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4.1 Homozygous and Hemizygous Deletions

We have observed three homozygous and one hemizygous deletions. Homozygous
deletions are located at 9p23 in Mahlavu, PLC, SkHepl, Snul82, Snu387 and Snu423;
9p22.1-p21.2 in SkHepl, Snu387 and Snu449; 13ql12.11 in Huh7 and SkHepl;
hemizygous deletion maps to Xq21.1-21.33 in Huh7 (male origin). All the deletions are
in concordance with the microarray expression data (not shown) and they have also been

confirmed by PCR.
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Figure 4.1.2: Homozygous deletion at 9p22.1-p21.2 in SkHep1, Snu387 and Snu449.
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Table 4.1.1: Hom. del. at 9p23 and 9p22.1-p21.2 in Mahlavu, PLC, SkHep1, Snul82, Snu387, Snu423 and Snu449.
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Table 4.1.2: Homozygous deletion at 13q12.11 in Huh7 and SkHepl.
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Table 4.1.3: Hemizygous deletion at Xq21.1-21.33 in Huh?7.
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4.2 Amplifications

We have observed 11 amplifications at 8p23.1 in Hep40; 8ql13.3-q21.11 in Hep40;
8924.13 in Hep40; 9p22.1-p21.2 in Snu398; 12p11.21-p.11 in Snud75; 14q12-q13.1 in
Huh7, 15921.3 in Hep40; 16921.3 in Hep40; 17p13.1-q11.1 in Snul82 and Snu475;
17g21.2 in Snu475; 19q13.31-q13.32 in Focus and Mahlavu; 22q11.21-q11.22 in Snul82
and Xp22.11 in Huh7. Expression analysis results mostly did not reflect any signs of

amplifications in this amplicons. We confirmed selected regions by PCR methods.
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Figure 4.2.1: Amplification at 8p23.1 in Hep40.

42



T B R

MO sy

MO pauaga]

ELI:‘“US‘

srtnus ff B
scpnus @
sﬁsﬂusl

LBENUS &

HOT . UOH[Ip MOBAZOWCE _H_ Ldoa suo ‘HOT

SANS L1 £q pautedg
GCO'CRA'CL-TSE 61 '2L M uoEag
Opdal pa1agy
£don g ‘wonEogipdury Appeuiongy

projdip eI |

Sl
[L¥00
THdI
REAT
OONEINLL
1HIDL
MTEAN ESTLEERNE:
INVI1E SrildgTes
OIHTH Weeeme:
EOLECOOCT EFPOPRT 1SS
L4 [6EI96182
dEHdd TOLLLE]SS
AL EFCRENTes
EEHOA BElvLiDIer
V4l faakEcias
25N PIMPRLIES
VAT LIgwogias
—
Bt EINED NS
g==l z:vm
Wy e
2 & B omE 3
EE88 4
L2
2 S w 8

2 |

o 1y A
"TT

A 8

uoneayrdury
11 1zb-gc1bs

Figure 4.2.2: Amplification at 8q13.3-q21.11 in Hep40.
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Figure 4.2.3: Amplification at 8q24.13 in Hep40.
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Figure 4.2.4: Amplification at 9p22.1-p21.2 in Snu398.
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Figure 4.2.5: Amplification at 12p11.21-p11 in Snu475
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Figure 4.2.6: Amplification at 14q12-q13.1 in Huh7.
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Figure 4.2.7: Amplification at 15q21.3 in Hep40.
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Figure 4.2.8: Amplification at 16q21.3 in Hep40.
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Figure 4.2.9: Amplification at 17p13.1-q11.1 in Snul82 and Snu475.
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Figure 4.2.10: Amplification at 17g21.2 in Snu475.
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Figure 4.2.11: Amplification at 19q13.31-q13.32 in Focus and Mahlavu.
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Figure 4.2.12: Amplification at 22q11.21-q11.22 in Snul82.
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Figure 4.2.13: Amplification at Xp22.11 in Snul82.
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Table 4.2.2: Amplification at 8q24.13 in Hep40.
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Table 4.2.3: Amplification at 9p22.1-p21.2 in Snu398.
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Table 4.2.4: Amplifications at 12p11.21-p11 in Snu475, 14q12-q13.1 in Huh7, 15q21.3 in Hep40
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Table 4.2.5: Amplification at 16q21.3 in Hep40.
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Table 4.2.6: Amplification at 17p13.1-q11.1 in Snul82 and Snu475.
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Table 4.2.7: Amplification at 17p13.1-q11.1 in Snul82 and Snu475 (cont.).
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Table 4.2.8: Amplification at 17q21.2 in Snu475.
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Table 4.2.9: Amplification at 19q13.31-q13.32 in Focus and Mahlavu.
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Table 4.2.10: Amplification at 19q13.31-q13.32 in Focus and Mahlavu (cont.).
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Table 4.2.11: Amplification at 22q11.21-q11.22 and Xp22.11 in Snul82.
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5. DISCUSSION

In the framework of this study, we searched for DNA copy number changes in the
genomic DNAs of 14 HCC cell lines. We used commercially available SNP microarrays
consist of approximately 10 thousand SNP markers representing the whole genome with
a mean physical inter-marker distance of 210KB and 0.32 ¢cM of genetic distance. These
SNP markers spanned all the autosomal chromosomes and the X-chromosome. We
performed two biological replicates for each cell line except Focus (three) and Snu387

(one).

SNP markers, in principle, provide two types of information which can be classified as
qualitative and quantitative. Qualitative information refers to genotyping of the DNA to
be investigated. Each SNP marker is chosen from a pool of highly heterozygous SNPs
(0.37 on average) representing Caucasian, Asian and Afro-American populations. High
heterozygosity values of these bi-allelic markers enable genotyping of genomic DNA.
Briefly, each allele of the SNP markers are spotted as different probesets on the array and
genotyping is performed based on the hybridization efficiencies of each allele’s
probesets. Genotyping calls can be used in two ways; first, “no calls” which theoretically
refer to non or mis-hybridization, may point homozygous deletions; second, homozygous
calls of a number of consecutive SNPs may suggest loss of heterozygosity regions. The
former can be used as a deletion marker if they include at least three consecutive SNPs.
In such deleted regions, inter-SNP marker distances should also be checked. In the latter,
the unlikely probability of homozygous calls for consecutive SNPs is calculated as the
possibility of LOH events. Moreover, in the analysis of SNP array data, the source of
specimen to be investigated (such as cell lines or peripheral blood DNA etc.) and copy

number neutral events should also be concerned while drawing conclusions.

Quantitative information is described as the percentage of saturation of each probeset by
the interrogated DNA during hybridization. Briefly, amplified regions saturate probesets
more than normal (diploid) regions; likewise, LOH regions saturate less and

homozygously deleted regions are expected to have signal values close to background
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and mismatch probesets. Similar to the genotype values, in the quantitative analysis of
SNP data, a number of consecutive SNP markers are expected to behave similarly to
conclude as copy number gains or losses. Finally, qualitative and quantitative values for

each SNP are expected to be in accordance to obtain significant results.

In the present study, we benefited from both genotype and copy number values of the
probesets to achieve significant results with minimal regions and maximum
confidentiality. For genotype calls, we expected to have at least three consecutive SNP
markers to be present as no calls in order to represent homozygous deletions; therefore
our resolution is expected to be around 600-KB. We also considered the possibility of
failure in the restriction enzyme digestion and subsequent whole genomic DNA PCR
amplification. This may cause under-representation of target and result in false-positive
deletions. This type of false-positive errors can be batch specific, observed as common
no calls at particular SNP markers in most of the samples and they usually behave unlike
adjacent SNPs. Some SNPs with no call values may have normal copy number values in
contrast to deletions, therefore we checked raw copy number values each no call SNPs

and excluded the ones with values higher than 0.5.

For quantitative measurement, we used dChip Software to analyze saturation values (Li
and Wong 2001, Lin et al. 2004). We first tried peripheral blood genomic DNA results
of four healthy individuals as reference controls to obtain copy number values since we
had no chance to use match-controls for our cell lines. We noticed that these individuals
have characteristic copy number polymorphisms in their genome and behaved differently
than the nature of the cell lines’ gDNA. Therefore, we excluded these controls in the
analysis and performed no-reference analysis by introducing all the cell lines as normal to
the software. This approach significantly reduced the noise and disturbance. Moreover,
we also considered the concordance of genotype data with copy number data whether
they are in accordance with homozygous deletion and LOH regions. Noteworthy, we
also checked inter-marker distances and saturation signatures at the raw copy number
values for an additional level of evaluation of the significance and to set the physical

margins. We mapped the physical positions of disturbances using UCSC Genome
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Browser Build March 2006. In some chromosomal regions, SNP markers can be very
few and the distance between SNP markers in an imbalanced region and the neighboring
normal region SNP marker can be as large as a few MB. On such occasions, the
disturbed regions might exceed the imbalance region defined by the borderline SNP
markers. To be on the confident side, we preferred to use the last SNPs as the margins of
imbalance and neglect if there are any genes neighboring, but we checked if these regions

contain interesting genes.

In this study, we preferred to report only homozygous deletions and amplifications with
copy number values equal to or greater than four. We excluded LOH profiles based on
genotype calls due to cell line’s nature. The cell lines used in this study are hyperploid;
therefore using genotyping calls as a qualitative marker would be erroneous. Although
qualitative use of genotype calls from SNP chips are invaluable information in linkage
and association studies in which the target DNA is usually from blood or tissue (Ozturk
et al. 2006). When we analyzed our cell lines for their LOH profile, we observed LOH in
less than half of the whole genomes of the cell lines; therefore we preferred not to report
them. On the other hand, we also did not include copy number changes smaller than 4 in
our report although we observed quite few hemizygous duplications which can be as

large as whole chromosomes.

Furthermore, we compared our copy number data with the available microarray
expression data of the cell lines and primary tumors. We accessed the raw expression
data (Affymetrix U133 Plus 2.0 Platform) of primary tumors (GSE6764, Wurmbach et al.
2007), HepG2 (GSE6368, Wang et al. 2006) through Gene Omnibus (GEO). Huh7,
SkHepl and Hep40 cell lines’ expression data were obtained through personal
communications. Although the aims of these experiments were quite different than ours,
we used them only with purpose of comparing the expression signatures in regions of our
interest. One advantage of these expression data is that it has higher resolution compared
to our SNP array. The expression arrays we analyzed have more probesets and cover all
most all the genes in human genome. Therefore, in regions where SNP markers are not

available, we used expression signatures to define and check imbalance margins.

68



Basically, we expected no expression of consecutively mapped genes in the deleted
regions. For copy number gains, we did not expect abnormally high expression of
consecutive genes in all of amplified regions, because not all the amplifications result in
overexpression of the genes they contain. Therefore, the expression data of the available
cell lines and the primary tumors allowed us to check and confirm our findings in gDNA

at transcript level and gave us a chance to correlate it with primary tumors.

5.1 Homozygous Deletions

Our results showed three homozygous deletions on chromosomes 9, 13 and X. In 9p23,
Mahlavu, Plc, Skhepl, Snul82, Snu387 and Snu423 contain a homozygous deletion site
within Mahlavu and Snul82 the largest. This region spans 1-MB and maps to a part of
protein tyrosine phosphatase, receptor type, D gene (PTPRD) which is a large gene and
spans a region of 2.3-MB. This gene has partially been shown to be deleted in other
cancers and no data is available for HCC (Sato et al. 2005). At present, the pathogenic
significance of PTPRD deletion is unclear, but, frequent deletions at this locus indicates
that the inactivation of this gene may have a major role in tumorigenesis. Expression
array results also support our findings that this gene is downregulated in cell lines,

cirrhotic and HCC tumor tissue compared to normal liver.

Another homozygous deletion maps to 9p21.3-p21.2 region in SkHepl, Snu387 and
Snu449 and it spans 6-MB. Genomic DNA PCR targeting hsa-mir-31 region in this
deletion confirmed our SNP array results. This region harbors important tumor
suppressor locus of cyclin-dependent kinase inhibitors 2 (CDKN2A/p14ARF/CDKN2B)
which encode negative regulators of cell growth. The region has been shown to be
frequently inactivated by homozygous deletions in HCC, lung and other cancers (Liew et
al. 1999; Liggett and Sidransky, 1998). In addition to deletions, this locus is also
inactivated by epigenetic regulation, LOH and mutations (Lukas et al. 1995). Among the
three cell lines, SkHep1 has the narrowest deletion targeting this locus with a span of 1.4-

MB, while the span of deleted regions in Snu387 and Snu449 are 3.5 and 5-MB,
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respectively. SkHepl also shows no transcriptional activity for this locus in the
expression array supporting our findings. In addition to CDKN2A/p14ARF/CDKN2B
locus, other interesting genes such as Ras-related GTP binding A (RRAGA) and tumor
suppressor candidate 1 (TUSC1) also map to these disturbed regions. It is suggested that
since LOH ratio over detected mutations ratio is different, this region may contain other

tumor suppressor genes.

In Skhepl and smaller in Huh7, we detected another homozygous deletion mapping to
13q12.11 region which has a length of 1.5 MB. We also confirmed this deletion by PCR
methods with genomic DNA and cDNA targeting TPTE2 locus. This region spans 2-MB
in length and harbors genes TPTE and PTEN homologous inositol lipid (TPTE2) and
large tumor suppressor homolog 2 (LATS2). TPTE2 is a member of a large class of
membrane-associated phosphatases with substrate specificity for the 3-position phosphate
of inositol phospholipids and LATS2 is an essential mitotic regulator required for the
coordination of cell division (Yabuta et al. 2007). TPTE2 and LATS2 can be candidate
tumor suppressor genes in hepatocarcinogenesis. A close region has previously shown to
be deleted in HCC cell lines and tissues using micro-satellite markers but no genes were
reported to be significant for HCC (Chen et al. 2005). Moreover, microarray expression
data supports our findings for SkHepl and Huh7, but we could not observe and

abnormality in tumor samples.

Interestingly, Huh7 harbors a large hemizygous deletion of 16-MB at Xq21.1-21.33
region. We confirmed this deletion with PCR targeting spermidine/spermine N1-acetyl
transferase-like 1 (SATL1) gene in this region at the genomic DNA and transcript level.
This region contains more than 20 genes. Considering the lower incidence of HCC in
females, this region may contain genes with tumor suppressor character in
hepatocarcinogenesis. There is no study showing a deletion in HCC cell lines and
tissues. Expression platform supports our findings for Huh7 and it also suggest
nucleosomal binding protein 1(NSBP1) as an interesting candidate in this region since it

is downregulated in tumors and cell lines with respect to normal liver. This gene is
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overexpressed in cervical cancer cell lines (Shirakawa et al. 2000) but may have different

roles in HCC.

Recently, miRNA genes were found to play a critical role in cell growth, death, and
differentiation (Tsuchiya et al. 2006). In our study, three microRNA genes, hsa-mir-491
and hsa-mir-31 at 9p22.1-p21.2 region and hsa-mir-361 at Xq21.1-21.33 region are lost.
These miRNAs has previously shown to be involved in colorectal carcinoma (Bandres et
al. 2006), pancreatic ductal adenocarcinoma and in HCC (Szafranska et al. 2007; Bandres
et al. 2006). The inactivation of these microRNAs through deletion may play a role in

hepatocarcinogenesis.

Our scanning at a 600-KB resolution led to the identification of three deleted regions.
Our results are in complete concordance with the expression data; the transcripts in these
regions had signal intensities close to background level. These regions contained
approximately 90 genes, including well-known tumor suppressor genes and three miRNA
genes. The authenticity of most of these genes as HCC tumor suppressors is unknown at
present; however, some of them have been indicated as being involved in cell signaling,
polarity, motility and adhesion. Inactivation of these genes by deletion might have given
more malignant phenotypes to cancer cells by changing their ability to proliferate,
survive and metastasize. We also observed small deletions involving no genes. The
significance of such deletions is unknown. In cancer cells, not all the deleted regions
contain genes (Cox et al. 2005), instead, they may contain regulatory sequences. Further

analysis of these regions may lead to identification of new tumor suppressors.

Working with cancer cell lines has the advantage of re-expressing the genes which are
found to be deleted to study phenotypic effects. If such a deleted gene is important in
carcinogenesis, an effect should be observed in the deleted cell line but not in the cell line
still expressing the endogenous gene. On the contrary, loss of expression can be achieved

in cell line models through shRNA knockdowns (Sato et al. 2006)
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Lastly, it should be noted that we bypassed several possible deletions due to our stringent
analysis parameters. Since SNP markers are not equally distributed over the genome,
some of the true-positive deletions may be represented by only one or two markers.
Moreover, in some deletions sites, there may exist no SNPs, therefore we might have
overlooked several deletions which might have previously shown by other methods. We
also caution that all the deletions in the present study were detected in cultured HCC cells
Primary HCC tumors often show intra-tumoral heterogeneity, and it is possible that some
of the deletions detected in the present study were present only in small subsets of cancer
cells. Tissue cultivation during the establishment of cell lines might have selected cancer
cells with deletions giving cells advantages in in-vitro growth, and this fact might have
led to over-representation of certain deletions in our set of HCC cell lines. Therefore, it is
possible that the incidence of homozygous deletions in the cell lines does not necessarily
represent that in HCC tumors. Thus, further studies should also focus on the
identification of homozygous deletions in HCC tissues to further elucidate their

prevalence and significance.

5.2 Amplifications

In our results, copy number gains were more frequent than losses. We have observed
copy number gains on chromosomes 8§, 9, 12, 14, 15, 16, 17, 19, 22 and X. Although raw
copy numbers of the SNP markers mapping the peak of the amplicons reach over 10
copies, the inferred copy numbers of the regions were mostly rounded around five and six

by Hidden Markov Model.

Chromosome 8 harbors three amplicons. First, in segment 8p23.1, we observed
amplification in Hep40 with an inferred copy number of six and confirmed this
amplification with semi-quantitative genomic DNA PCR. This region spans 2.5-MB and
its peak value is over 11. There are 10 genes mapping this region. One of the remarkable
genes is malignant fibrous histiocytoma amplified (MFHAS1) which is a potential

oncogene. Its expression is enhanced in malignant fibrous histiocytomas (Sakabe et al.
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1999). PIN2-interacting protein 1 (PINX1) and tankyrase, TRF1-interacting ankyrin-
related ADP-ribose polymerase (TNKS) are also interesting. PINXI1 is a liver-related
putative tumor suppressor and its overexpression results in the inhibition of telomerase
activity (Liao et al. 2000). In addition, contradictory studies have also been reported in
its tumor suppressive activity in HCC suggesting it is not related with HCC but instead,
regulates telomere length (Oh et al. 2004). TNKS may regulate vesicle trafficking and
modify telomere repeat binding factor 1 (TERF1) and negatively regulates the telomere
length. A recent report showed that TNKS can positively regulate telomere length and it
is upregulated in some human cancers (Gelmini et al. 2007). To conclude, these
candidates have not been studied in detail and contradictory results exist. When we
looked at the expression microarray data, we observed no significant abnormal signatures
in Hep40 and tumor samples due to amplification; only histone mRNA 3' end-specific
exonuclease (THEX1) and PINXI1 has higher transcription values in Hep40 compared to

other cell lines.

We have also observed a second amplification in Hep40 at 8q13.3-q21.11. This region
has an amplification value of six. It spans approximately 3.75-MB, has a peak value of
seven and homes 17 genes. This region has also been shown to be amplified in a similar
screen in HCC tissue but no candidates were reported (Midorikawa et al. 2004). One of
these genes mapping this region is the telomeric repeat binding factor 1 isoform 1
(TERF1), which negatively regulates telomere length. Microarray expression results
show that this gene has increased transcription in Hep40 (and in advanced HCC tissues)
compared to other cell lines and normal tissue which can be due to amplification. It is
noteworthy that, co-amplification of 8p23.1 and 8q13.1-p21.11 which harbor three not
extensively characterized genes related with telomere maintenance can point a
mechanism for Hep40 cells to overcome replicative senescence through telomere
regulation.  Staufen homolog 2 (STAU2) and ganglioside-induced differentiation-
associated (GDAPI) are other interesting genes mapping this amplicon which are double-
stranded RNA-binding protein (Buchner et al. 1999) and ganglioside-induced

differentiation-associated protein (Cuesta et al. 2002), respectively. Expression array
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results show that both these genes are upregulated in Hep40 and to an extent, in advanced

HCC tumors.

A third amplicon on chromosome 8 maps to q24.13 region. This segment spans 3.5-MB
and is duplication. 8q23-q24 region has been shown to be frequently amplified in HCC;
PTK2 and EIF3S3 have been reported as driver genes in these amplicons (Okamoto et al.
2003). Amongst several genes in this amplicon, two AAA domain containing protein
(ATAD?2) and zinc fingers and homeoboxes 1 (ZHXT1) are other interesting genes to be
further studied. ATAD2 has been shown to be upregulated in breast, uterus, colon,
ovary, and stomach tumors and amplified in other cancers (Van Duin et al. 2005, Cheng
et al. 2006). ZHXI1 is a transcriptional repressor and has been shown to be amplified and
upregulated in multiple myeloma cell lines (Largo et al. 2006). Expression array results
show that ATAD2 transcript is highly abundant in Hep40 and this gene shows increased

expression value in tumor tissue.

Interestingly, in 9p22.1-p21.2 region, in contrast to SkHepl, Snu387 and Snu449 which
show homozygous deletions, Snu398 show a copy number increase of six. Our semi-
quantitative gPCR targeting hsa-mir-31 confirmed amplification of this region. This
amplicon spans a region of 7-MB, has a peak of eight and approximately coincides with
Snu449’s deleted region. This region is a well characterized tumor suppressor loci and
deleted in many human cancers. Copy number gains have not been reported for this
region before and this amplicon supports the notion that there are other genes involved in
tumorigenesis besides loss of function mechanisms in 9p22. In this amplicon 5'-
methylthioadenosine phosphorylase (MTAP) and myeloid/lymphoid or mixed-lineage
leukemia (MLLT?3) are interesting. MTAP is involved in the growth of breast cancer cell
lines and its expression has been observed in many epithelial cancers (Tang et al. 2000).
Overexpression of this gene due to amplification and other possible mutations may play a
role in hepatocarcinogenesis, as well. MLLT3 is involved in growth, apoptosis,
differentiation, cell death, cell cycle progression and expansion. In U-2 OS and TK6
cells, MLLT3 protein is involved in the decrease of acetylation of p53 to acetylated p53
that is mediated by p300 protein and damage of DNA (Wiederschain et al. 2005).
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MLLTS3 is also involved in histone methylation. Abnormal expression of this gene
because of amplification may infer proliferative advcantage to cancerous cells.

In Snu475, 12p11.21-p11.1 region harbors an amplicon of six in value. This region spans
a region of 2.5-MB, has a maxima of nine and contains over 10 genes. This segment has
previously shown to be to amplified in HCC and lung carcinomas (Marchio et al. 1997;
Zhao et al. 2005). Antagonist of mitotic exit network 1 homolog (AMNI1) maps this
amplicon. It acts as a switch that helps cells exit from mitotic exit and reset the cell cycle
in yeast (Wang et al. 2003). AMNI exerts its affects through inhibition of G protein
signaling and results in inhibition of Cdcl14. This in turn leads to helping the cells be
competent for S-phase entry. Overexpression of this gene because of amplification may
cause bypassing G1 to S phase controls and may result in genomic mutations. Another
gene in this amplicon is DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 gene
(DDX11) that functions as both ATPase and DNA helicase activities in cellular growth
and division. Loss of DDX11 helicase in mouse has been shown to cause lethality due to
the accumulation of aneuploid cells which may suggest it plays a role in genome stability
(Inoue et al. 2007). Another interesting gene in this region is FYVE, RhoGEF and PH
domain containing 4 (FGD4) which activates cell division cycle 42 (CDC42).
Expression array results showed no differentially regulated genes in this region for the

tumor samples.

Huh7 cell line has an amplicon at 14q12-q13.1 spanning a region of 2.3 MB. This region
displays a 7 fold-increase with a peak of 14 and harbors 10 genes. Microarray expression
data for Huh7 cell line shows that most of these genes in this region are constitutively and
consecutively overexpressed. This expression signature is clearly in accordance with
amplification. Although this region is not touched in the literature, there exist two
discordant reports; one study shows in HCC tissues, amplifications are related with HCV
infection (Sakakura et al. 1999) other shows in HCC cell lines that 14q12-q13 region is
subject to LOH (Zimonjic et al. 1999). Both studies used low resolution methods
therefore might have skipped our findings. Amongst the genes in the amplicon,
nucleotide-binding protein-like (NUBPL) and protein kinase D1 (PRKD1) are interesting.

NUBPL has been shown to be involved in translocations and upregulated in acute
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myeloid leukemia by SAGE analysis (Lee et al. 2005). Another interesting study on
massive amplification of rolling-circle transposons in the lineage of the bat Myotis
lucifugus shows that a subfamily of these nonautonomous transposons, HeliBatN3,
display high homology with NUBPL (Pritham et al. 2006). The product of PRKDI is a
calcium-independent, phospholipid-dependent, serine- and threonine-specific enzyme.
Missense mutations have been described in colorectal and breast cancers (Sjoblom et al.
2006). PRKDI1 has been shown to be involved in LOH events but with high expression
values in hepatoblastomas (Adesina et al. 2007). Another study shows PRKD]1 is highly
expressed in pancreatic ductal adenocarcinoma cell lines that are highly resistant to
chemotherapeutic drugs (Ammerpohl et al. 2007). Our semi-quantitative PCR targeting
NUBPL gene confirms the amplification in Huh7 and to an extent in Snu398. On the
contrary, we have not observed any significant differentially expressed genes in tumor

samples in the expression analysis.

In Hep40, we detected amplification at 15g21.3 with five in copy number. This region is
2-MB in length and contains only two genes, WD repeat domain 72 (WDR72) and unc-
13 homolog C (UNCI13C) map here. WDR72 has also shown to be amplified in
melanoma with a similar approach to ours (Stark et al. 2007). Since functions of these
genes’ products are not well characterized, we can not conclude the significance of this
amplicon. The only interesting information, dog ortholog of WDR72 has been found to
be similar to TGF-f resistance-associated protein. Therefore, amplification of this gene
may result in high expression and overcome inhibitory affects of TGF-f3 signaling in cell
cycle. Moreover, expression data provides no significant differentially expression for

these genes.

We have also seen another amplicon in Hep40 which maps 16q23.1 region. This region
is 3-MB in size and six in copy number with a peak of nine. In the literature, no
amplifications have been reported for this region. Among the genes mapping here, cell
recognition protein CASPR4 isoform 1 (CNTAP4) and WW domain-containing
oxidoreductase isoform 1 (WWOX) are the most interesting ones. CNTAP4 gene

belongs to the neurexin family, members of which function in the vertebrate nervous
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system as cell adhesion molecules and receptors. This protein, like other neurexin
proteins, contains epidermal growth factor repeats and laminin G domains.
Contradictorily, this gene has been shown to be deleted in prostate tumors in a similar
study (Liu et al. 2006). WWOX plays an important role in the regulation of a wide
variety of cellular functions such as protein degradation, transcription, and RNA splicing.
Tumor suppressive role of this gene has been reported; WVOX is frequently involved in
LOH and its function is lost in various cancers and tumor cell lines (Qin et al. 2006;
Iliopoulos et al. 2005). Expression analyses showed that amplification of this region is
not in concordance with the expression signatures of Hep40 and other tumor samples; we

failed to observe any amplification trend in this region.

A large amplicon, 11.5-MB in size, maps to 17p13.1-q11.1 region in Snul82 region. Its
copy number is six in number and harbors more than 20 genes. This region has also
shown to be amplified in sarcomas (Kaur et al. 2007). The expression analysis showed
no aberrant amplification signature in this region. Therefore we looked at the most
amplified sub-region using raw copy number values. Myocardin (MYOCD) maps to the
center of one of the amplification peaks in this regions. MYOCD is a transcription factor
that uses the canonical single or multiple CArG boxes DNA sequence. Inactivation of
myocardin and pl6 during malignant transformation has been shown to contribute to a
differentiation defect (Milyavsky et al. 2007), but its overexpression has not been studied
and it may also play a role in carcinogenesis.  Phosphatidylethanolamine N-
methyltransferase (PEMT) maps to the second peak in the region. This gene encodes an
enzyme which converts phosphatidylethanolamine to phosphatidylcholine by sequential
methylation in the liver. Contradictorily, PEMT expression has been found to be reduced
in HCC (Tessitore et al. 2003). RAS, dexamethasone-induced 1 (RASD1) is another
gene mapping close to the center of the second peak. This gene encodes a Ras-related
protein that is stimulated by dexamethasone with exact function unknown. Although
RASDI1 is a member of the Ras superfamily of small G-proteins that often promotes cell
growth and tumor expansion, plays an active role in preventing aberrant cell growth, anti-

growth function has been reported (Vaidyanathan et al, 2004). To sum up all, this region
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is quite large and further analysis required for finding out the driver gene or genes in this

amplicon.

In chromosome 17, we have also observed another amplicon at p11.2-q11.1. This region
spans a 1.75-MB and is six in copy number with a peak value of eight. This region can
be larger than we expect since the neighboring SNPs with normal copy numbers are
further than one MB. Analysis of expression data of primary tumor did not reveal any
significant upregulation of consecutive genes. There are 13 genes mapping this region
and among them, mitogen-activated protein kinase kinase 3 (MAP2K3) and kinase
suppressor of ras (KSR1) are the most interesting candidates to be the driver genes of the
amplicon. MAP2K3 encodes a dual specificity protein kinase that belongs to the MAP
kinase family and activates MAPK14/p38-MAPK (Derijard et al. 1995). Expression of
RAS oncogene is found to result in the accumulation of the active form of this kinase.
Therefore amplification of this region may result in abnormal activity of MAP2K3
resulting in oncogenic character. KSR1 functions downstream of Ras and is required for
MAP kinase activation (Kornfeld et al. 1995; Ohmachi et al. 2002). Although KSR1 is
not well characterized and its metastasis suppressive roles have been reported (Hartsough
et al. 2002), abnormal expression of this gene may result in disturbances in MAPK and
other pathways since positive and negative signaling pathways regulate tumor metastasis,

including multiple metastasis suppressor genes (Steeg , 2003)

We also detected another amplicon on chromosome 17 mapping to q21.2 region. It spans
a region of 0.7-MB and is five in copy number with a maximum value of eight. This
amplicon is likely larger than we can detect because of the absence of SNP markers in the
region. This amplicon contains members of keratin family which encode intermediate
filament proteins responsible for the structural integrity of epithelial cells. ErbB-2
isoform a (ERBB2) has not escaped from our eyes that it maps very close to this region
and it is may be involved in this amplification. =~ ERBB2 encodes a member of the
epidermal growth factor (EGF) receptor family of receptor tyrosine kinases.
Amplification and overexpression of this gene has been reported in numerous cancers, as

well as in HCC (Zimonjic et al. 1999). Thyroid hormone receptor, alpha isoform 1
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(THRA) is another interesting gene in this region. This gene is a proto-oncogene and it
has been reported be involved in human cancers including breast and thyroid papillary
tumors (Silva et al. 2002; Puzianowska-Kuznicka et al. 2002). RARA protein (RARA),
C-terminal tensin-like (TNS4), chemokine (C-C motif) receptor 7 precursor (CCR7) and
breast cancer 1, early onset isoform 1 (BRCA1) are other interesting genes in this region
that have been shown to be related with human cancers. Expression analysis showed that

only keratin 23 (KRT23) is significantly highly expressed in tumor tissue.

19q13.2-13.32 is a very gene rich region with more than 20 genes and is amplified in
Mahlavu and Focus. This region spans 3.25-MB, has an amplification value of six and it
is also amplified in other cancers (Dekken et al. 1999). Amongst several genes,
reticuloendotheliosis viral oncogene homolog B (RELB), B-cell CLL/lymphoma 3
(BCL3) and malignancy-associated protein (MAG) are quite interesting. Analysis of
expression data gave no clues about highly expressed genes in advanced tumors
compared to normal. RELB is a member of Rel/NF-kB transcription factor family and
stimulates promoter activity in the presence of p49- and p50-NF-kappa-B (Suhasini et al.
1997) and minor sporadic amplifications has been reported (Rayet et al. 1999). NF-kB
signaling is important in HCC (Pikarsky et al. 2004); therefore amplification of this gene
may result in abnormal activity. BCL3 is a proto-oncogene candidate; act as transcription
factor and is involved in NF-kB signaling (Karin et al. 2002). BCL3 locus has been
shown to be involved in recurrent translocations in Hodgkin and peripheral T-cell
lymphoma (Michaoux et al. 2004). MAG is expressed in various malignant tumors
including glioblastomas and HCC and in tumor preexisting conditions such as hepatitis C
virus- and hepatitis B virus-induced liver cirrhosis (Ljubimova et al. 1998). Although our
expression analysis results do not support this evidence, this gene may play a role in
progression of premalignant conditions and in the development of HCC and other

cancers.
Another amplification maps to 22q11.21-22 region. This region contains over 20 genes

and spans 3.5-MB. This amplicon is present only in Snul82 and has a value of six. In

expression analysis, we could not detect any amplification expression signature in
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primary tumors. This region contains interesting genes such as v-crk sarcoma virus CT10
oncogene homolog (CRKL), phosphatidylinositol 4-kinase, catalytic, alpha (PIK4CA),
hypermethylated in cancer 2 (HIC2) and mitogen-activated protein kinase 1 (MAPK1).
CRKL maps to the center of the amplicon and can be the driver gene. CRKL has been
shown to activate the RAS and JUN kinase signaling pathways and transform fibroblasts
in a RAS-dependent fashion. It is a substrate of the BCR-ABL tyrosine kinase and plays a
role in fibroblast transformation by BCR-ABL. In addition, CRKL has oncogenic
potential (Ten Hoeve et al. 1993; Senechal et al. 1996, 2002). PIK4CA encodes a
phosphatidylinositol (PI) 4-kinase which catalyzes the first committed step in the
biosynthesis of phosphatidylinositol 4,5-bisphosphate (Wong et al. 1994). Although
HIC2 has reported to be a putative tumor suppressor (Deltour et al. 2002), overexpression
of this gene may have other unexpected roles. The protein encoded by MAPKI1 gene is a
member of the MAP kinase family and is involved in both the initiation and regulation of
meiosis, mitosis, and postmitotic functions in differentiated cells by phosphorylating a

number of transcription factors such as ELK1 (Meloche and Pouyssegur 2007).

Last, on X-chromosome, we found amplification in Snul82 cell line. This cell line has
male origin and shows a copy number of four. This region maps p22.12-p22.11 and
spans more than 1 MB. Since there are not so many SNP markers in this region, we can
not map the center of the amplicon and the size of the disturbed regions can be larger
than we detected. With the SNP markers available, connector enhancer of kinase
suppressor of Ras (CNKSR2) maps close to the amplicon. This gene is a necessary
element in receptor tyrosine kinase pathways, possibly as a tyrosine phosphorylation
target. It is involved in regulation of RAF in the MAPK pathway and may also play a role
in a MAPK-independent pathway (Lanigan et al. 2003). It is highly expressed cervical
cancer cell lines, embryonic cell lines, epithelial cell lines; kidney cell lines (Jaffe et al.
2004). Cyclin-dependent kinase-like 5 (CDKLS5) is another gene which may reside in the
amplicon. CDKL5 is a member of Ser/Thr protein kinase family and encodes a
phosphorylated protein with protein kinase activity. It interacts with MECP2 and it is

expressed in breast carcinoma and prostate cancer cell lines (Mari et al. 2005; Bertucci et
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al. 2004; Lin et al. 2005). In expression analysis, we observed no abnormal expression

attributable to amplification.

Besides genes encoding proteins, we also have showed 13 microRNAs mapping the
amplified regions above. These include hsa-mir-597 and hsa-mir-124a-1 at 8p23.1; hsa-
mir-548d-1 at 8q24.13; hsa-mir-491 and hsa-mir-31 at 9p22.1-p21.2; hsa-mir-624 at
14q12-q13.1; hsa-mir-33b at 17p13.1-q11.1; hsa-mir-330, hsa-mir-642 and hsa-mir-769
at 19q13.31-q13.32; hsa-mir-185, hsa-mir-649 and hsa-mir-130b at 22q11.21-q11.22
regions. Among these miRNAs, experimental studies showed that upregulation of hsa-
mir-31 and hsa-mir-330 are associated with colorectal and breast cancer, respectively
(Bandres et al. 2006; Mattie et al. 2006). Expression of hsa-mir-130b has also been

detected in pancreatic cancer cells (Mattie et al. 2006)

Our screen led to the identification of more than ten amplified regions. These regions
contained over 400 genes, including 13 miRNA genes. Our results are mostly not in
concordance with the expression data since usually less than 40% of amplicons result in
overexpression. Some of these genes have been indicated as being involved in cell
signaling, polarity, motility and adhesion. Overexpression of these genes due to
amplification might have given more malignant phenotypes to cancer cells by changing
their ability to proliferate, survive and metastasize. Further analysis of these regions may
lead to identification of new oncogenes. Working with cancer cell lines has the
advantage of silencing the genes with RNAi methods which are found to be amplified
and overexpressed to study phenotypic effects. If such an amplified gene is important in
carcinogenesis, an effect should be observed in the amplified cell line. Noteworthy, we
skipped several possible focal amplificons due to our stringent analysis parameters.
Since SNP markers are not equally distributed over the genome, some of the true-positive
amplicons may be represented by only one or two markers. Moreover, in some
amplicons, there may exist no SNPs, therefore we might have overlooked several copy
number gains which might have previously shown by other methods. We also caution
that all the amplifications in the present study were detected in cultured HCC cells. It is

possible that the incidence of amplifications in the cell lines does not necessarily
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represent that in HCC tumors. Thus, further studies should also focus on the
identification of amplifications in HCC tissues to further elucidate their prevalence and
significance.

In this study, we screened copy number changes in a panel of 14 HCC lines at a
resolution of 0.6-MB. In addition, we tried to correlate the copy number changes with
the available microarray expression data of the cell lines and primary tumors to compare
and correlate losses and gains. We also confirmed selected disturbed regions using
conventional methods. Consequently, we prepared a list of candidate genes which can be
directly or indirectly related to tumorigenesis. Further study of these genes through
genetic, epigenetic and functional analysis may provide new insights in our

understanding of HCC biology.
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