
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 12, DECEMBER 2021 7913

On Sequential Decoding Metric Function of
Polarization-Adjusted Convolutional (PAC) Codes

Mohsen Moradi , Student Member, IEEE

Abstract— In this paper, we present a sequential decoding met-
ric function, which leads to significantly improved computational
complexity while maintaining the superiority of polarization-
adjusted convolutional (PAC) codes’ error-correction perfor-
mance. With the proposed metric function, the PAC codes’
decoding computational complexity is comparable to the com-
putational complexity of sequential decoding of conventional
convolutional codes (CCs). Moreover, simulation results show an
improvement in the error-correction performance of low rate
PAC codes when using the proposed metric function. Simulation
results also show that using the proposed metric, the upper
bound on the PAC codes’ computational complexity has a
Pareto distribution. To reduce the worst-case latency of PAC
sequential decoder, we limit the number of searches performed
by sequential decoder. The results show that for PAC codes
of length 128, search-limited sequential decoding can achieve
an error-correction performance close to the error-correction
performance of polar codes with successive cancellation list
decoding with list size 64 and CRC length 11 with considerably
less computational complexity.

Index Terms— PAC codes, sequential decoding, metric func-
tion, threshold spacing, bias value.

I. INTRODUCTION

SHORT block-length codes with low complexity and
probability of error are of interest from a practical

perspective. Over binary-input additive white Gaussian noise
(BI-AWGN) channels, polarization-adjusted convolu-
tional (PAC) codes with sequential decoding [1] are shown to
have an error-correction performance close to the dispersion
approximation [2] (best achievable performance of any given
finite block-length code) for certain code rates [1], [3].

It is beneficial to consider a PAC code as a convolutional
code (CC) with sequential decoding, which sees a polarized
channel. In this way, the encoding process of PAC codes can
be presented as an irregular binary tree code (tree codes only
bifurcate for data bits), and sequential decoding of PAC codes
can be considered as a walk through the tree. The decoder’s
task is to find the correct path in the tree guided by a metric
function.

Sequential decoding was introduced by Wozencraft [4],
and two well-known sequential decoding algorithms are the

Manuscript received December 30, 2020; revised May 5, 2021 and July 15,
2021; accepted August 28, 2021. Date of publication September 7, 2021; date
of current version December 16, 2021. The associate editor coordinating the
review of this article and approving it for publication was L. Chen.

The author is with the Department of Electrical Electronics Engineering,
Bilkent University, 06800 Ankara, Turkey (e-mail: moradi@ee.bilkent.edu.tr).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCOMM.2021.3111018.

Digital Object Identifier 10.1109/TCOMM.2021.3111018

Fano [5] and stack [6], [7] algorithms. Due to its low memory
requirements, Fano decoding is more favorable for practical
hardware implementations [8]. For this reason, in this paper
we use the Fano algorithm in our simulations.

The Fano metric is the most common metric function used
in the sequential decoding of CCs, and the code rate is
mostly used as a fixed bias term in the metric function [5].
In [9], Massey gives analytical justification of the optimality
of the Fano metric. Also, Gallager [10] proves that by using
a fixed bias value less than or equal to the cutoff rate R0

of a binary-input discrete memoryless channel (B-DMC),
the computational complexity of the Fano algorithm has a
finite average.

Since each output bit of the CC in a PAC code sees a
synthesized channel created by the polar transform, using a
different metric function for sequential decoding of PAC codes
is required. In [3], fixed bias values for different code rates
were used in the metric function. In [11], because the CC
in a PAC code is a one-to-one transform, a fixed bias value
equal to the CC rate was used, and an heuristic metric function
was introduced. Similar to the heuristic path metric function
of [11], an heuristic path metric function for decoding polar
codes was introduced in [12] with a different initial value.
In [13], a metric function for stack decoding of polar codes
was introduced that only updates the path metric function
if the extended branch is an information bit; this update is
obtained by adding the logarithm of the probability of the
bit-channel output for a given bit-channel input. In [14], a path
metric function for sequential decoding of polar codes was
introduced, which maximizes the most probable continuation
of a partially explored path. For this metric, the expected value
of the logarithm of the probability of the partially decoded
correct path (obtained based on the cumulative function of the
evolving log-likelihood ratios (LLRs)) is subtracted from the
metric function, which makes the expectation of the metric
(expectation over the partially explored correct path) equal to
zero.

In PAC codes, because of the channel polarization effect,
the bit-channel cutoff rates E0(1, W

(i)
N) are boosted close to

the bit-channel capacities I(W (i)
N). We review the Gaussian

approximation for calculating E0(1, W
(i)
N) and I(W (i)

N) values
in the next section. We then propose a suboptimal metric
function, which, by using E0(1, W

(i)
N) or I(W (i)

N) as bias
values, maintains the superior error-correction performance of
PAC codes while requiring lower computational complexity
compared to the fixed bias values used in [1], [3], [11].

0090-6778 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on January 28,2022 at 07:18:01 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7026-0682

7914 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 12, DECEMBER 2021

Moreover, using our proposed metric function, the computa-
tional complexity of PAC sequential decoding is comparable to
the computational complexity of sequential decoding of CCs.
Compared to the previously used fixed bias values for low
code rate PAC codes of [1], [3], using either of the proposed
bias values improves the error-correction performance while
maintaining low computational complexity.

Using metric bias values less than or equal to the bit-channel
cutoff rates, we then empirically obtain an upper bound with
Pareto distribution for the computational complexity of the
PAC sequential decoder. Since the computational complexity
has a Pareto distribution, the PAC sequential decoder requires
a high computational complexity to decode a small fraction
of the codewords. Search-limited PAC sequential decoding
can be employed [3] to address this drawback. Moreover,
results show that a search-limited PAC(128, 64) code with
an average number of decoded bit visits less than 10 has
almost the same error correction performance as a polar
code with successive cancellation list (SCL) decoding [15]
with list size 64 and CRC length 11. Through simulations,
we also obtain the best choice of Δ for PAC sequential
decoder.

Simulation results show that using a fixed bias value in the
PAC codes’ sequential decoding metric function results in sat-
isfactory error-correction performance. Nevertheless, the com-
putational complexity is much higher than the computational
complexity of sequential decoding of CCs [3], and we offer
an explanation for why using a fixed bias value can result in
exponential growth in computational complexity.

The rest of this paper is organized as follows. In Section II,
the calculation of bit-channel mutual information and cutoff
rate is explained, and the idea of PAC codes is briefly
reviewed. In Section III, the optimality of the metric used
in the PAC sequential decoder is proved. In Section IV,
the behavior of the partial path (accumulated) metric function
is analyzed using different bias values. In Section V, it is
demonstrated that both frozen bits and information bits can
be used in the decoding process. Moreover, it is shown
that by using the bit-channel capacity or cutoff rate as the
metric bias, PAC codes can have excellent error-correction
performance while requiring low computational complexity.
Section VI shows that the PAC codes’ computation has a
Pareto distribution upper bound. In Sections VII, techniques
for finding the best threshold spacing values for sequential
decoding are proposed. Finally, Section VIII concludes this
paper with a brief summary.

II. PRELIMINARIES

This section reviews the Gaussian approximation method
of calculating the bit-channel mutual information and the
bit-channel cutoff rate, which we frequently use in this paper.

A. Bit-Channel Mutual Information

Consider a BI-AWGN channel with binary phase-shift key-
ing (BPSK) modulation. If the channel input is a uniform
random variable X ∈ {−1, +1} and the channel output is

a random variable Y ∈ R, the mutual information between
the input and the output is defined as

I(W) = I(X ; Y)

:=
∑

x=±1

∫ +∞

−∞

1
2
PY |X(y|x) log2

PY |X(y|x)
PY (y)

dy

=
1√

8πρ2

∫ +∞

−∞
a

(
1 − log2

(
b

a
+ 1

))

+b
(
1 − log2

(a

b
+ 1

))
dy, (1)

where

a := e
−(y−1)2

2σ2 and b := e
−(y+1)2

2σ2 , (2)

and ρ2 is the noise variance of the BI-AWGN channel. Since
y = x + n has a Gaussian distribution, where n is Gaussian
with zero mean and variance ρ2

n, according to [16] the mutual
information is given by

I(X ; Y) = J

(
2
ρ2

n

)
, (3)

where

J(t) = 1 − 1√
2πt2

∫ +∞

−∞
e

−(u− t2
2)2

2t2 log2(1 + e−u)du. (4)

The monotonically increasing function I(X ; Y) = J(t) has
a unique inverse function t = J−1(I(X ; Y)). An approxi-
mation for the function J(t) and its inverse is given in [17]
as

J(t) =
[
1 − 2−0.3073t2×0.8935

]1.1064

, J−1(I(X ; Y))

=
[
− 1

0.3073
log2

(
1 − I(X ; Y)

1
1.1064

)] 1
2×0.8935

. (5)

In every step of the polarization process, independent copies
of the channel W are transformed into polarized binary input
channels W+ and W−. If we represent this operation by a tree
with its root being initialized by (1), at each node the mutual
information is polarized using the left-branch operation (parity
operation) fc and the right-branch operation (node operation)
fv, which are defined as

fc(t) = 1 − J
[√

2J−1(1 − t)
]
,

fv(t) = J
[√

2J−1(t)
]
, (6)

and the leaf nodes provide approximations of the bit-channel
mutual information I(W (i)

N) for i ∈ {1, . . . , N}. Fig. 1 plots
the bit-channel mutual information for length N = 128 and
rate R = 1/2 at a signal-to-noise ratio (SNR) of 2.5 dB.
Information bit locations are chosen according to Reed-Muller
rate profile as explained in [1].

Another important parameter of the channel W is the
Bhattacharyya parameter which is defined as

Z(W) :=
∑
y∈Y

√
W (y|0)W (y|1). (7)

For a BI-AWGN channel W , Z(W) is

Z(W) = e
−1
2σ2 , (8)

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on January 28,2022 at 07:18:01 UTC from IEEE Xplore. Restrictions apply.

MORADI: ON SEQUENTIAL DECODING METRIC FUNCTION OF PAC CODES 7915

Fig. 1. Bit-channel capacity for information bits (solid circles) and frozen
bits (hollow circles) at an SNR of 2.5 dB.

where ρ2 is the noise variance. The log-likelihood ratio of
the output of the channel W has a Gaussian distribution with
mean m

(1)
0 = 2/ρ2 and variance 2m

(1)
0 . With m

(1)
0 at the root

of the tree, the bit-channel means m
(i)
N at the leaf level of the

tree can be approximated using the check-operation fc and
bit-operation fv as [18]

fc(t) = φ−1
(
1 − (1 − φ(t))2

)
,

fv(t) = 2φ(t), (9)

where

φ(t) =

⎧⎨
⎩ 1 − 1√

4πt

∫
R

tanh(
z

2
)e−

(z−t)2

4t dz, t > 0,

1, t < 0,
(10)

and φ−1(t) can be calculated numerically. Finally, the
bit-channel Bhattacharya parameters can be approximated as

Z(W (i)
N) = e

−1

2(σ(i)
N

)2 , (11)

where m
(i)
N = 2/(ρ(i)

N)2.
For a given B-DMC W and any ρ ≥ 0, the error exponent

of the channel W with probability distribution q(x) on the
inputs is defined as [10]

E0(ρ, W) = − log2

∑
y∈Y

[∑
x∈X

q(x)W (y|x)
1

1+ρ

]1+ρ

. (12)

By substituting ρ = 1 in (12), we can obtain the channel
cutoff rate as

R0(W, q) := E0(1, W). (13)

If the input distribution is uniform, the error exponent
becomes

E0(1, W) = log2

2
1 + Z(W)

, (14)

which is a lower bound on I(W). According to (14), the polar-
ization of Z(W) results in the polarization of E0(1, W).
We refer to E0(1, W

(i)
N) as the bit-channel cutoff rate. Fig. 2

compares the bit-channel cutoff rate to the bit-channel mutual
information.

Fig. 2. (Solid circles) bit-channel cutoff rate and (hollow circles) bit-channel
mutual information at an SNR of 2.5 dB.

B. Sequential Decoding

The stack and Fano algorithms are two commonly used
sequential decoding algorithms for CCs. The stack decoding
algorithm requires a larger memory than the Fano algorithm,
and it maintains the sequence with the best metric on top of the
stack. Because both the Fano and stack algorithms eventually
traverse the same paths, the set of nodes visited by both algo-
rithms is identical [19]. While the stack decoding algorithm
can visit each node at most once, the Fano algorithm can visit
a node multiple times. For low memory requirements, the Fano
algorithm is more desirable for hardware implementation.

In this paper, we use the Fano decoding algorithm as
explained in [10] to decode a PAC code. The Fano algorithm
begins from the root of the code tree and moves forward to the
child node with a higher branch metric. To continue, the Fano
algorithm can make a forward move to a node if its path metric
is greater than a running threshold T , which is an integer
multiple of a constant threshold spacing parameter Δ. In a
forward move, the threshold T is increased in steps of size Δ,
with an upper limit of the path metric. If the path metric values
of both children are less than T , the Fano decoder checks the
preceding node path metric. If the preceding node has a path
metric value greater than T , the decoder makes a backward
move; otherwise, it lowers T by Δ and tries to make a forward
move again.

The computational complexity of a sequential decoder is a
random variable. This paper represents this random variable
by counting the total number of nodes visited after a forward
move during a single decoding session. For a sufficiently large
number of simulation trials, we use the notion of the average
number of visits (ANV), which corresponds to the empirical
average of the number of nodes visited after a forward move.
We also use the maximum number of visits (MNV) to denote
the maximum number of nodes that the decoder is allowed to
visit during a single decoding session.

Throughout the paper, we only consider PAC codes with a
codeword of length 128. All codes are over the binary Galois
field F2 = {0, 1}. We use boldface notation for vectors and for
a vector u = (u1, u2, . . . , uN) ∈ FN

2 , ui denotes the subvector
(u1, u2, . . . , ui) and uj

i denotes the subvector (ui, . . . , uj) for

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on January 28,2022 at 07:18:01 UTC from IEEE Xplore. Restrictions apply.

7916 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 12, DECEMBER 2021

Fig. 3. Flowchart of the PAC coding scheme.

i ≤ j. For any subset of indices A ⊂ {1, 2, . . . , N}, Ac

denotes the complement of A and uA represents the subvector
(ui : i ∈ A).

C. PAC Coding Scheme

Fig. 3 shows a block diagram of the PAC coding scheme.
d = (d1, . . . , dK) is the data generated uniformly at random
over all possible source words of length K in a binary field.
The rate profile module maps these K bits into a data carrier
vector v in accordance with the data index set A, thus inducing
a code rate of R = K/N . The data index set has size
|A| = K and is a subset of {1, 2, · · · , N}. In this paper,
the polar and RM score functions are employed to determine
the set A. The polar score function chooses the indices of the
bit-channels with the highest reliability (the K indices with
higher bit-channel cutoff rates), and the RM score function
chooses an index i if the binary representation of i − 1 has
a majority of 1s. After v is obtained by setting vA = d and
vAc = 0, it is sent to a rate 1 convolutional encoder and
encoded as u = vT, where T is an upper-triangular Toeplitz
matrix constructed with a connection polynomial c(x). In all
of our simulations, we use the connection polynomial c(x) =
x10 + x9 + x7 + x3 + 1 (c = 3211 in octal form) [3]. Then
u is transformed to x using the standard polar transformation
F⊗n, where F⊗n is the Kronecker power of the kernel matrix

F =
[
1 0
1 1

]
with n = log2 N . After the polar transformation,

x is sent through a BI-AWGN channel. The polar demapper
receives the channel output y and the previously decoded bits
and calculates the likelihood ratio value of the current bit zi.
Finally, the sequential decoder outputs an estimate v̂ of the
data carrier vector, from which the K data bits can be extracted
according to A.

A PAC decoder consists of polar demapper and sequential
decoder blocks. Assume that the sequential decoder is in a
forward move to the ith node. Similar to successive cancel-
lation (SC) decoding, the polar demapper receives channel
output y and generates

zi =
P (y, ûi−1|ui = 0)
P (y, ûi−1|ui = 1)

, (15)

where, unlike the SC decoder, the ûi−1 vector is provided
by the sequential decoder, and the polar demapper does not
estimate ui, but instead passes the soft value zi to the sequen-
tial decoder. By using zi in the metric function explained in
Section III, sequential decoding generates v̂i. Also, by using an

encoder replica, the sequential decoder obtains ûi from v̂i and
passes ûi back to the polar demapper. Then using ûi, the polar
demapper similarly obtains zi+1 and decoding continues in
this way until v̂N is determined or a predefined stopping rule
finishes the decoding process.

As explained in Section II-B, if the path metrics of both
children fall below the running threshold T and the path
metric of the preceding node is above T , the Fano decoder
makes a backward move. Now assume that the sequential
decoder is at the ith node, makes a backward move to the
(i−1)th node, and decoder passes ûi−1 to the polar demapper.
When calculating zi−1, to prevent the polar demapper from
starting the demapping process from scratch, storing all the
intermediate LLR values is required. By doing so, to obtain
zi−1, the polar demapper can begin its operation from the
common ancestor of (i − 1)th and ith nodes. For this reason,
the polar demapper that we use in this paper stores all the
intermediate LLRs and uses a memory of N log2 N .

The channel that the sequential decoder of PAC codes sees
is a polarized channel with memory. For this reason, the metric
used by the sequential decoder must be compatible with the
channel. In the following sections, we investigate the metric
function. To implement the sequential decoder, we use the
Fano algorithm, which is modified to be compatible with the
PAC codes. Two important parameters of the Fano algorithm
are the bias and the threshold spacing. In the rest of this
paper, we investigate the effects of the bias and threshold
spacing on the error-correction performance and computational
complexity of PAC codes under search-limited and search-
unlimited sequential decoding.

III. METRIC

The most commonly used metric for sequential decoding in
a B-DMC is the Fano metric [5], defined as

γ(xi; yi) = log2

P (yi|xi)
P (yi)

− b, (16)

where P (yi|xi) is the channel transition probability, P (yi)
is the channel output probability, and b is a constant bias.
Massey [9] showed that, for a B-DMC, the Fano metric
is a locally optimum metric for comparing paths of differ-
ent lengths. However, the polarized channel in PAC codes
is a channel with memory since, for a polarized channel,
the demapping of any bit requires the values of all the
previously decoded bits. Hence the Fano metric must be
modified to be suitable for decoding an irregular tree code sent
over a channel with memory. By adopting the notation used
in [1], [3] and recalling that the rate one convolution operation
and polar transform are one-to-one transforms, the partial path
metric for the first i branches is given by

Γ(ui;y) = log2

(
P (y|ui)
P (y)

)
− Bi, (17)

where y is the channel output, ui is the path vector from the
root of the tree to node i, Bi =

∑i
j=1 bj is the partial path

bias value up to the ith bit, and bj is a design parameter.
Every time a new branch in the tree is examined, it is

more convenient to calculate the branch metric rather than

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on January 28,2022 at 07:18:01 UTC from IEEE Xplore. Restrictions apply.

MORADI: ON SEQUENTIAL DECODING METRIC FUNCTION OF PAC CODES 7917

calculating the partial path metric of (17). For decoding uj ,
the decoder knows the channel output y and the previous
bits u1 to uj−1. By defining γ(uj;y,uj−1) as the jth branch
metric, (17) can be written as

Γ(ui;y) =
i∑

j=1

γ(uj;y,uj−1), (18)

and we have

γ(uj;y,uj−1) = Γ(uj ;y) − Γ(uj−1;y)

=
[
log2

(
P (y|uj)

P (y)

)
− Bj

]

−
[
log2

(
P (y|uj−1)

P (y)

)
− Bj−1

]

= log2

(
P (y|uj)

P (y|uj−1)

)
− (Bj − Bj−1)

= log2

(
P (y|uj)

P (y|uj−1)

)
− bj

= log2

(
P (y,uj−1|uj)
P (y,uj−1)

)
− bj. (19)

For a binary input channel with a uniform input distribution,
uj can be either 0 or 1. For uj = 0, (19) becomes

γ(uj = 0;y,uj−1) = log2

(
P (y,uj−1|uj = 0)

P (y,uj−1)

)
− bj

= log2

(
P (y,uj−1|uj = 0)

1
2 [P (y,uj−1|uj = 0) + P (y,uj−1|uj = 1)]

)
−bj. (20)

Dividing the numerator and denominator of the argument
by P (y,uj−1|uj = 0) and defining

zj :=
P (y,uj−1|uj = 0)
P (y,uj−1|uj = 1)

(21)

as the likelihood ratio of bit uj , we can rewrite (20) as

γ(uj = 0;y,uj−1) = 1 − log2

(
1 +

1
zj

)
− bj. (22)

Similarly, we can obtain the jth branch metric for uj = 1
as

γ(uj = 1;y,uj−1) = 1 − log2 (1 + zj) − bj . (23)

In conclusion, the jth branch metric for an irregular tree
code transmitted over a polarized channel is calculated using

γ(uj ;y,uj−1)=

⎧⎨
⎩ 1 − log2

(
1+

1
zj

)
− bj , if uj = 0;

1 − log2(1 + zj) − bj , if uj = 1.

(24)

In sequential decoding, the metric function determines
which path should be traversed in the decoding tree. Intu-
itively, to find the correct path in a tree (the path corresponding
to u), the branch metric function value should increment for
every branch uj on the correct path. For this reason, the branch
metric value on a correct branch should be higher than the
branch metric value on an incorrect branch ũj at level j
of the tree. Quantifying this intuition for a specific code is

complicated. Alternatively, we consider an ensemble of PAC
codes for the given channel and code length, which casts this
problem in a more tractable setting. The expectation of (19)
over the ensemble of input bit uj and the bit-channel joint
ensemble P (y,uj−1|uj) is

Euj ,(y,uj−1)

[
γ(uj;y,uj−1)

]
=

∑
uj

q(uj)
∑

(y,uj−1)

P (y,uj−1|uj)γ(uj;y,uj−1)

=
∑
uj

∑
(y,uj−1)

q(uj)P (y,uj−1|uj)

×
[
log2

(
P (y,uj−1|uj)
P (y,uj−1)

)
−bj

]
=I(W (j)

N)−bj, (25)

where I(W (j)
N) is the symmetric capacity of the bit-channel.

If the expectation in (25) is positive, the average branch metric
increment on a correct path is always positive. Choosing
the bit-channel bias less than the symmetric capacity of the
bit-channels guarantees that the expectation in (25) is positive.

Now, assume that ũj is an incorrect branch at level j with a
metric of γ(ũj ;y,uj−1). By averaging this quantity over the
correct path and incorrect branch, we obtain

Euj ,ũj ,(y,uj−1)

[
γ(ũj ;y,uj−1)

]
=

∑
ũj

q(ũj)
∑
uj

q(uj)
∑

(y,uj−1)

P (y,uj−1|uj)γ(ũj;y,uj−1)

=
∑
ũj

q(ũj)
∑

(y,uj−1)

P (y,uj−1)γ(ũj ;y,uj−1)

=
∑
ũj

∑
(y,uj−1)

q(ũj)P (y,uj−1)

×
[
log2

(
P (y,uj−1|ũj)
P (y,uj−1)

)
− bj

]

≤
∑
ũj

∑
(y,uj−1)

q(ũj)P (y,uj−1)
[
P (y,uj−1|ũj)
P (y,uj−1)

− 1
]
− bj

= −bj. (26)

Note that in deriving (26), we used the property
log2(x) ≤ x − 1. Since the information bit bias value is
positive, the above expectation shows that the branch metric
decreases by a constant value for an incorrect branch on
average.

A. Optimality of the Proposed Metric

In the ith step of decoding, given the channel output y,
the optimal metric (in the sense of error probability) is the
one that chooses ûi as the sequence ui for which p(ui|y) is
maximized. Using Bayes’ rule, this probability is given by

p(ui|y) =
p(y|ui)
p(y)

p(ui). (27)

Since any monotonically increasing function preserves max-
imality, an optimal metric also maximizes

log2 p(ui|y) = log2

p(y|ui)
p(y)

− log2

1
p(ui)

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on January 28,2022 at 07:18:01 UTC from IEEE Xplore. Restrictions apply.

7918 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 12, DECEMBER 2021

= log2

p(y|ui)
p(y)

−
i∑

j=1

log2

1
p(uj)

, (28)

where the last equality is obtained using the fact that con-
volution is a one-to-one and deterministic operation. Since
log2

1
p(uj) is the self-information provided about the bit uj ,

which equals I(W (j)
N) on average, the path metric defined by

Γ(ui;y) = log2

p(y|ui)
p(y)

−
i∑

j=1

I(W (j)
N) (29)

maximizes the error-correction probability, and the jth branch
metric becomes

γ(uj;y,uj−1) = Γ(uj ;y) − Γ(uj−1;y)

= log2

P (y,uj−1|uj)
P (y,uj−1)

− I(W (j)
N). (30)

For any bias value bj and a given output (y,uj−1) of a
bit-channel W

(j)
N , we have γ(uj;y,uj−1) ≥ γ(ũj;y,uj−1) if

and only if P (y,uj−1|uj) ≥ P (y,uj−1|ũj). This happens if
and only if hj(y,uj−1) = uj , where

hj(y,uj−1) =

{
0, P (y,uj−1|0) ≥ P (y,uj−1|1),
1, otherwise,

(31)

which implies that, for a bit channel W
(j)
N , the branch met-

ric with any bias value follows the bit-channel maximum-
likelihood (ML) rule. This proves that extending the path
with a larger branch metric maximizes the probability that
the extended path is part of the optimal path in the PAC code.
Moreover, for a uniform input distribution, the branch metric
is upper bounded as

γ(uj;y,uj−1) = log2

P (y,uj−1|uj)
P (y,uj−1)

− bj

= log2

P (y,uj−1, uj)
P (uj)P (y,uj−1)

− bj

= log2 P (uj|y,uj−1)

+ log2

1
P (uj)

− bj ≤ 1 − bj. (32)

From this, we can conclude that choosing the bias value
less than 1 results in a locally optimum (ML) decision rule
with a positive branch metric. Choosing the bias value less
than or equal to I(W (j)

N) also results in a positive branch
metric on average. This paper aims to benefit from the channel
polarization effect by designing a proper design rule for bj .

IV. DESIGN RULES FOR BIAS

This section studies the effect of different possible bias
values for use in sequential decoding of PAC codes. Various
choices of bias values can result in different error-correction
performance and computational complexity.

We use the notation b
(F)
i and b

(I)
i to represent the bias values

for the frozen and information bits, respectively. We use bi

to indicate the bit-channel bias values whenever we do not
specify whether a bit is frozen or information.

For a sequential decoder to have better error-correction per-
formance and lower computational complexity, the codewords
must have a good distance profile [20]. As discussed in the
last section, by averaging over the correct and incorrect paths,
we have:

Correct path: bi ≤ I(W (i)
N),

Wrong path: − bi ≤ 0. (33)

In the following subsections, we discuss two different design
rules for the bit-channel bias values. Both rules maintain the
PAC codes’ superior error-correction performance, but their
computational complexity for rates above R0 is different in
the two cases.

A. Design Rule 1

Design rule 1 uses a metric with the bias values b
(F)
i = 0

and fixed b
(I)
i s.t. b

(I)
i > I(W (i)

N). More specifically, [3] uses
b
(I)
i = 1.4, 1.35, and 1.14 for K = 29, 64, 99, respectively.

Smaller b
(I)
i values sacrifice the PAC code’s error-correction

performance. On the other hand, larger b
(I)
i values increase the

computational complexity. Note that for i ∈ Ac, b
(F)
i = 0 <

I(W (i)
N) and hence both inequalities of (33) are satisfied. As a

result, the decoder can decode the frozen bits faster, and the
partial path metric is positive for the frozen bits. On the other
hand, by assigning a large value to the information-bit bias
values (say b

(I)
i = 1.35 for K = 64), since b

(I)
i � I(W (i)

N),
the decoder will have some difficulty to find the correct path,
and the partial path metric for the information bits becomes
negative on average.

One drawback of choosing b
(I)
i > I(W (i)

N) is that if the code
has long stretches of consecutive information bits, the informa-
tion bits’ partial path metric will decrease. In [3], the reason
for choosing smaller b

(I)
i values for longer messages is to

reduce the effect of negative partial path metrics; otherwise,
decoding would require an exponentially larger computational
complexity.

Fig. 4 shows the partial path metric averaged over 104

decoding trials for these three values of K along with their
corresponding bias values. The figure demonstrates that the
partial path metric increases for the frozen bits and decreases
for the information bits on average by choosing a fixed b

(I)
i >

I(W (i)
N) and b

(F)
i = 0 < I(W (i)

N), where the larger values
reached for K = 29 reflect the fact that lower rates code
contain more frozen bits.

The advantages of choosing b
(F)
i = 0 in this case is that

both inequalities of (33) are satisfied for the frozen bits, and
consequently the decoder can decode the frozen bits with
less computational complexity. As long as I(W (i)

N) > b
(F)
i ,

the partial path metric is positive on average.

B. Design Rule 2

Design rule 2, on the other hand, is motivated by the fact
that sequential decoding is a greedy tree-search algorithm
similar to the shortest path graph-search Dijkstra algorithm.
The (locally optimum) Dijkstra algorithm always finds the
shortest path on a graph when the edges have positive weights

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on January 28,2022 at 07:18:01 UTC from IEEE Xplore. Restrictions apply.

MORADI: ON SEQUENTIAL DECODING METRIC FUNCTION OF PAC CODES 7919

Fig. 4. Partial path metrics v. bit indices.

and may or may not succeed in finding the shortest path
when some edges have negative weights. Design rule 1 yields
excellent error correction performance for the PAC codes
tested but typically requires large computational complexity.

Design rule 2 uses bit-channel capacities or cutoff rates
as the bit-channel bias values. By choosing b

(I)
i and b

(F)
i

both equal to the bit-channel mutual information I(W (i)
N),

both inequalities of (33) are satisfied and the partial path
metric of each branch becomes zero on average. For all
the bits, since −bi = −I(W (i)

N) < 0, rule 2 prevents the
decoder from following an incorrect path most of the time.
Fig. 4 demonstrates that, using design rule 2 (for K = 64),
the average partial path metric at each level is 0. Hence,
by employing design rule 2, the decoder can decode every bit
with a lower computational complexity than for design rule 1.

Alternatively, using bi = E0(1, W
(i)
N) for the bit-channel

bias values satisfies both inequalities of (33) strictly. Hence,
for these bias values, the partial path metrics should trend
positive on average. Fig. 4 supports the latter statement (for
K = 64). As a result, the computational complexity with
bias bi = E0(1, W

(i)
N) should be lower than the one with

bias bi = I(W (i)
N), with negligible loss in error performance.

This computational complexity improvement is due to the
polarization effect on both E0(1, W

(i)
N) and I(W (i)

N), where
the difference in the two cases depends on the difference in
polarization between the channel cutoff rate and the channel
capacity shown in Fig. 2. The bit-channel capacities or cutoff
rates used in sequential decoding of PAC codes must be pre-
computed. A hardware implementation of sequential decoding
of PAC codes can use a one-bit quantization of these bias
values [8]. Note that, for the conventional CCs, choosing the
bias value greater than the cutoff rate and close to the capacity
results in the exponential growth of computational complexity.

V. COMPUTATIONAL COMPLEXITY AND

ERROR-CORRECTION PERFORMANCE RESULTS

Considering (33), only design rule 2 of the previous section
satisfies both inequalities. To understand the effect of the
information and frozen bits on error-correction performance

Fig. 5. FER and ANV performance comparison of PAC codes with different
bias values.

and computational complexity of PAC codes, we first investi-
gate the effect of the information bits on the error-correction
performance and computational complexity of design rule 2,
followed by an investigation of the effect of the frozen bits.

A. Effect of Information Bits

As the discussion of design rule 2 suggests, choosing the
bit-channel bias values according to E0(1, W

(i)
N) or I(W (i)

N)
can result in lower decoding computational complexity. In this
subsection, we choose the bit-channel bias values of the
information bits to be E0(1, W

(i)
N) and we fix the bit-channel

bias values of the frozen bits to zero. Fig. 5 compares this
choice with using bI

i = 1.35 and bF
i = 0 bias values. As we

can observe from the figure, there is a significant improvement
in the computational complexity when using bI

i = E0(1, W
(i)
N)

and bF
i = 0 bias values. Note that the decrease in com-

putational complexity comes at some cost in frame error
rate (FER). The FER of the dispersion approximation is also
provided in this figure.

Fig. 6 compares a PAC(128, 59) code using bI
i =

E0(1, W
(i)
N) and bF

i = 0 bias values with a CC(140, 64).
As the figure shows, there is a significant improvement in
the FER performance of the PAC code, and the empirical
average of the number of visits (ANV) of PAC sequential
decoding is almost the same as for CC sequential decoding,
where the improvement of the PAC code’s FER performance
is due to the polarization effect on the channel. We also
note that the computational complexity suffers from the cutoff
rate phenomenon (the ANV value for both increases for SNR
values less than 2 dB, which corresponds to rates above the
channel cutoff rate). Note that to calculate the ANV for both
codes, we count the number of forward visits per codeword
and divide it by 128.

B. Effect of Frozen Bits

In sequential decoding of conventional CCs, because of
the gap between the cutoff rate and the channel capacity,
choosing the metric function bias value close to the channel

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on January 28,2022 at 07:18:01 UTC from IEEE Xplore. Restrictions apply.

7920 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 12, DECEMBER 2021

Fig. 6. FER and ANV performance comparison of PAC and CC codes with
sequential decoding.

Fig. 7. Comparing the FER and ANV performance of PAC codes with
K = 64.

capacity results in exponential growth of the computational
complexity. However, for PAC codes, because of the small
gap between the bit-channel cutoff rates E0(1, W

(i)
N) and the

bit-channel capacities I(W (i)
N), there is a negligible difference

in the decoding computational complexity and error-correction
performance in using either as bias values.

Fig. 7 plots the FER and ANV of a PAC(128, 64) code using
bias values bi = I(W (i)

N) versus using bias values bI
i = 1.35

and bF
i = 0. From this figure, we see that both choices result

in the same FER performance, with bias bi = I(W (i)
N) having

much smaller computational complexity.
Fig. 8 plots the FER and ANV of a PAC(128, 29) code using

bit-channel bias values bi = I(W (i)
N) and bi = E0(1, W

(i)
N)

versus using fixed bias values bI
i = 1.4 and bF

i = 0.
From this figure, we see that choosing bi = I(W (i)

N) or
bi = E0(1, W

(i)
N) results in better FER performance and a

comparable computational complexity to choosing bI
i = 1.4

and bF
i = 0. The random-coding union bound and dispersion

approximation are also provided in this figure [2].
Fig. 9 compares the FER and ANV of a PAC(128, 64) code

using the bias values bi = I(W (i)
N) and bi = E0(1, W

(i)
N).

Fig. 8. FER and ANV performance comparison of PAC codes with K = 29.

Fig. 9. FER and ANV performance of PAC codes with bias I(W
(i)
N) and

E0(1, W
(i)
N).

This figure supports our previous claim that, since E0(1, W
(i)
N)

is slightly lower than I(W (i)
N), the computational complexity

when using bi = I(W (i)
N) is higher, and the (marginal) FER

performance improvement occurs only at very low SNR values
(very noisy channels). Also note that the computational com-
plexity advantage of using E0(1, W

(i)
N) rather than I(W (i)

N) or
fixed bias values is mainly for rates below the channel cutoff
rate. For rates above the cutoff rate, as for conventional CCs,
fixed bias values also tend to result in constant ANV values.

Fig. 10 compares the FER performance and computational
complexity of Fano decoding of the PAC(128, 64) code using
the metric function with bias values bi = E0(1, W

(i)
N) to the

search constrained and unconstrained Fano decoders of [11],
which uses an heuristic metric function and stores N − 1
intermediate LLR values. For a fair comparison, the com-
putational complexity is expressed in terms of the average
number of time steps. Each time step corresponds to the time
required to execute the check/bit node operation in one stage

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on January 28,2022 at 07:18:01 UTC from IEEE Xplore. Restrictions apply.

MORADI: ON SEQUENTIAL DECODING METRIC FUNCTION OF PAC CODES 7921

Fig. 10. Performance comparison of Fano decoder using the metric function
with bias values bi = E0(1, W

(i)
N) and heuristic metric function of [11].

of the successive cancellation factor graph. To perform a fair
comparison with [11], we also provide the FER performance
and computational complexity of a Fano decoder that uses our
metric function but the polar demapper of [11] which requires
N−1 memory. In [11], the authors use tree search constraining
methods to reduce the computational complexity of the Fano
decoder at some cost in FER performance. As Fig. 10 shows,
using the proposed metric function, the Fano decoder has an
FER performance very close to the FER performance of the
unconstrained decoder of [11]. By storing N − 1 intermediate
LLRs, the Fano decoder using the proposed metric function
exhibits a computational complexity less than the computa-
tional complexity of the unconstrained decoder of [11]. There
is a trade-off between the latency and memory usage of
polar demapper, and by storing N log2 N intermediate LLRs,
Fig. 10 shows a significant amount of latency reduction.

VI. DISTRIBUTION OF COMPUTATIONAL COMPLEXITY

In this section, we study the distribution of the number
of forward visits during the decoding of PAC codes. For
sequential decoding of CCs, it was shown in [21] that, for
rates below the cutoff rate, the distribution of computation
required to advance any level in the tree is upper bounded as

P (Ci > L) < AL−β, (34)

where A > 0 and β > 0 are constants and Ci is the average
number of forward visits per decoded bit. This implies that
the complementary cumulative distribution function (CCDF)
of the computational complexity of sequential decoding of
CCs has a Pareto distributed upper bound. Smaller values of
β corresponds to larger tails of the Pareto distribution, and it
has a finite mean for β > 1 and a finite variance for β > 2.

For PAC(128, 64) decoding with bias values bi =
E0(1, W

(i)
N), the CCDF of the number of nodes visited for

all decoded codewords is plotted in Fig. 11 for 106 decoding
trials at different SNR values. The results demonstrate that:
1) P (Ci > L) < L−1 for SNR values greater than 2 dB,
and consequently the mean of the upper bound distribution
is finite; 2) For SNR values 3.5 dB and 4 dB, we have

Fig. 11. CCDF of the number of node visits for PAC decoding with bias
values bi = E0(1, W

(i)
N).

β > 2, which gives a finite variance. Fig. 11 also illustrates
the trade-off between outage probability (the probability that
Ci exceeds some limit L) and computational complexity of
sequential decoding. For example, there is a 1% probability
that a decoded codeword requires more than ten visits per
branch at an SNR of 3.0 dB, and the probability that the
number of visits for a decoded codeword exceeds L goes to
zero as L increases.

Moreover, for SNR values less than 2 dB, Fig. 11 shows
that the outage probability drops rapidly as L increases.
Whereas, for SNR values higher than 2 dB, the drop in outage
probability is smoother. In contrast, for fixed bias values,
PAC codes at low SNR values experience extremely high
computational complexity.

VII. THRESHOLD SPACING

For sequential decoding of CCs, the threshold spacing
value is normally chosen between 2 and 8 [20, p. 625].
In this section, we study the impact of the threshold spacing
parameter Δ on the error-correction performance and com-
putational complexity of PAC codes. Different values of Δ
result in trade-off between FER and ANV values for sequential
decoding, so deciding on the most suitable value of Δ is an
important design consideration.

Fig. 12 shows the effect of Δ on the FER performance and
ANV value of a PAC(128, 64) code at an SNR of 2.5 dB,
where the bit-channel bias values are set to E0(1, W

(i)
N).

As we see, the FER performance degrades as Δ increases;
with a Δ value between 0.5 and 2 resulting in the best FER
performance. We also see that, the ANV value decreases with
increasing Δ, and we can conclude that choosing Δ = 2
provides a good trade-off between the FER performance and
computational complexity. Notice that in sequential decoding
of conventional CCs, choosing Δ = 2 also minimizes the
computational complexity upper bound [21, p. 475].

Finally, based on the sequential decoding parameters
selected above, in Fig. 13 we compare the FER performance
of the search-limited PAC(128, 64) code with MNV = 214,

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on January 28,2022 at 07:18:01 UTC from IEEE Xplore. Restrictions apply.

7922 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 12, DECEMBER 2021

Fig. 12. FER and ANV v. threshold spacing Δ parameter for a search-
unlimited PAC(128, 64) code.

Fig. 13. Search-limited PAC code with MNV = 214 v. polar code with SCL
decoding with list size 64 and CRC length of 11.

bi = E0(1, W
(i)
N), and Δ = 2 to successive cancellation

list (SCL) decoding of the 5G polar code [15] with list size
64 and CRC length 11. From this figure, we see that the FER
performance of the PAC codes is comparable to that of polar
codes, and the PAC code ANV values are much less than the
fixed polar code list size of 64 for all SNR values.

VIII. CONCLUSION

In this paper, we proposed a metric function that uses
the bit-channel mutual information and cutoff rate values
as the bias and results in a favorable trade-off between
error-correction performance and computational complexity
for sequential decoding of PAC codes. Moreover, we investi-
gated the selection of proper value of the threshold spacing
parameter that improves the error-correction and computa-
tional complexity trade-off for sequential decoding of PAC
codes. We also showed that, by using bias values less than
the bit-channel cutoff rates, sequential decoding of PAC codes
exhibits a Pareto distribution upper bound on its compu-
tational complexity. From this, the probability of having a
computational complexity greater than L goes to zero with
increasing L. Using the bit-channel capacities and cutoff rates
as bias values, simulation results demonstrated that the PAC

codes’ superior error-correction performance is maintained
while their computational complexity is reduced.

ACKNOWLEDGMENT

The author is grateful to all anonymous reviewers for their
constructive comments.

REFERENCES

[1] E. Arikan, “From sequential decoding to channel polarization and back
again,” 2019, arXiv:1908.09594. [Online]. Available: http://arxiv.org/
abs/1908.09594

[2] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding rate in the
finite blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5,
pp. 2307–2359, May 2010.

[3] M. Moradi, A. Mozammel, K. Qin, and E. Arikan, “Performance
and complexity of sequential decoding of PAC codes,” 2020,
arXiv:2012.04990. [Online]. Available: http://arxiv.org/abs/2012.04990

[4] J. M. Wozencraft, “Sequential decoding for reliable communication,”
Res. Lab. Elect., MIT, Cambridge, MA, USA, Tech. Rep. 325, 1957.

[5] R. Fano, “A heuristic discussion of probabilistic decoding,” IEEE Trans.
Inf. Theory, vol. IT-9, no. 4, pp. 64–74, Apr. 1963.

[6] K. Zigangirov, “Some sequential decoding procedures,” Problem
Peredachi Inf., vol. 2, no. 4, pp. 13–25, 1966.

[7] F. Jelinek, “Fast sequential decoding algorithm using a stack,” IBM
J. Res. Develop., vol. 13, no. 6, pp. 675–685, Nov. 1969.

[8] A. Mozammel, “Hardware implementation of Fano decoder
for polarization-adjusted convolutional (PAC) codes,” 2020,
arXiv:2011.09819. [Online]. Available: http://arxiv.org/abs/2011.09819

[9] J. Massey, “Variable-length codes and the Fano metric,” IEEE Trans.
Inf. Theory, vol. IT-18, no. 1, pp. 196–198, Jan. 1972.

[10] R. G. Gallager, Information Theory and Reliable Communication.
New York, NY, USA: Wiley, 1968.

[11] M. Rowshan, A. Burg, and E. Viterbo, “Polarization-adjusted convolu-
tional (PAC) codes: Sequential decoding vs list decoding,” IEEE Trans.
Veh. Technol., vol. 70, no. 2, pp. 1434–1447, Feb. 2021.

[12] M.-O. Jeong and S.-N. Hong, “SC-Fano decoding of polar codes,” IEEE
Access, vol. 7, pp. 81682–81690, 2019.

[13] K. Niu and K. Chen, “Stack decoding of polar codes,” Electron. Lett.,
vol. 48, no. 12, pp. 695–697, Jun. 2012.

[14] P. Trifonov, “A score function for sequential decoding of polar codes,”
in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2018, pp. 1470–1474.

[15] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Trans. Inf.
Theory, vol. 61, no. 5, pp. 2213–2226, May 2015.

[16] F. Brannstrom, L. K. Rasmussen, and A. J. Grant, “Convergence analysis
and optimal scheduling for multiple concatenated codes,” IEEE Trans.
Inf. Theory, vol. 51, no. 9, pp. 3354–3364, Sep. 2005.

[17] F. Brannstrom, “Convergence analysis and design of multiple concate-
nated codes,” Ph.D. dissertation, Dept. Comput. Eng., Chalmers Univ.,
Gothenburg, Sweden, 2004.

[18] H. Li and J. Yuan, “A practical construction method for polar codes in
AWGN channels,” in Proc. Tencon-Spring, Apr. 2013, pp. 223–226.

[19] J. M. Geist, “Algorithmic aspects of sequential decoding,” Dept. Elect.
Eng., Univ. Notre Dame, Notre Dame, IN, USA, Tech. Rep. EE-702,
Aug. 1970.

[20] S. Lin and D. J. Costello, Error Control Coding, vol. 2, no. 4.
Upper Saddle River, NJ, USA: Prentice-Hall, 2001.

[21] J. Wozencraft and I. Jacobs, Principles of Communication Engineering.
New York, NY, USA: Wiley, 1965.

Mohsen Moradi (Student Member, IEEE) was born
in Ghorveh, Iran, in 1989. He received the B.S.
degree in pure mathematics from the University
of Isfahan, Isfahan, Iran, in 2011, and the M.S.
degree in pure mathematics from Tehran Polytech-
nic, Tehran, Iran, in 2013. He is currently pursuing
the Ph.D. degree with the Department of Electri-
cal and Electronics Engineering, Bilkent Univer-
sity, Ankara, Turkey. His main research interests
include information theory, error correction coding,
and analysis of algorithms.

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on January 28,2022 at 07:18:01 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

