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ABSTRACT

SIMULATION METAMODELING WITH NEURAL
NETWORKS

Souheyl Toiihami 
M.S. in Industrial Engineering 

Supervisor: Assoc. Prof. Ihsan Scibuncuogiu 
.June, 1997

Modern manufacturing environments increasingly call for more sophisticated 
cind fast decision aiding systems for their management. Artificial neural 
networks have been proposed as an alternative cipproach for formalizing 
various quantitative and qualitative aspects of manufacturing systems. This 
research attempts to lay down the motivation behind using neural networks 
as a simulation metamodeling approach. This research can be classified 
under the major headings of simulation metamodeling for the purpose of 
estimating system performance. Steiidy state perfornuince of non-terminating 
type systems and transient state performance of terminating tyj^e systems are 
examined under job shop environments by applying Back Propagation neural 
networks. We attempt to study the peribrrnance of neural metamodels with 
respect to estimating two performance measures (mean machine utilization 
and mean job tardiness), with respect to system complexity, with different 
types of system configurations (deterministic cuid stochastic), with respect 
to multiple metamodel accuracy assessment criteria and various metamodel 
design settings. The objective of this analysis is to investigate the potential 
application of neural metamodeling.

Key words: Simulation, Metamodeling and Neural Networks.
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ÖZET

YAPAY SİNİR AĞLARI İLE BENZETİM META 
MODELLERİNİN OLUŞTURULMASI

Souheyl Touhami
Endüstri Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Dr. Ihsan Sabuncuoğlu 
Haziran, 1997

Günümüzde modern imalat sistemleri daha karışık ve hızlı karar veren 
yöntemlere ihtiyaç duymaktadır. Bu amaca yönelik olarak, yapay sinir ağları 
cdternatif yöntem olarak önerilmektedir. Bu çalışmada, yapay sinir ağlarının 
bu tür yöntemlerde kulicinılmalarmı sağlayacak temeller oluşturulmaktadır. 
Gerek uzun dönemli ve gerekse kısa vadeli sistem performansını ölçecek 
modeller oluşturulmaktadır. Geri yaymalı (back propagation) yöntemine 
dayalı olarak geliştirilen yapay sinir ağları sistemin ortalama kullanım oranı 
ve artı gecikme zamanı performans ölçütlerini tahmin etmekte kullanılacaktır. 
Önerilen yakalaşım ve geliştirilen modellerin başarısı çeşitli sistem koşullarında 
farklı değerlendirme kriterine göre ölçülecektir.

Anahtar sözcükler: Benzetim, Meta modellemesi, Yapay Sinir Ağları
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Chapter 1

Introduction

Simulcition has been widely accepted by the OR community ¿uid the business 
sector as a valuable tool in solving large problem instances that are unsolvable 
(or expensively solvable) with other quantitative approaches. However, due to 
the time requirements and lack of optimization capabilities, simulation may 
not be appropriate lor real time cipplications, which are more and more calling 
for faster techniques. The use of simulation metamodels may help solve such 
problems. Research in metamodeling is maturing. Since 1987, a resurgence of 
interest mostly appears as case studies. This is the case also for use of neural 
networks as a metamodeling approcich, which cire quite recent. The case studies 
reported in the literature are not elaborated enough to allow assessing their 
potential applications in real life.

The aim of this work is to investigate the boundaries of simulation 
metamodeling with Artificial Neural Networks for the purpose of estimating 

system performance measures in job shop environments. This study is based 
on neural networks that operate with the Bcick Propagation algorithm. This 
reseiirch htvs two major parts. In the first part, we evaluate the performance of 
the neural networks in estimating long term or steady stcite performance of non- 

termiiiciting type simulations. We attempt to determine the effect of system 
performance measures (mean job tardiness vs. mean machine utilization), 
system configuration (deterministic vs. stochastic), system complexity (simple

1



CHAPTER 1. INTRODUCTION

vs. complex), error assessment criteria and network design settings on the 
predictive capabilities of the designed neural metamodels. In the second part, 
we evaluate the neural networks in estimating short term or transient state 
system performance with terminating type simulation. In this latter part, the 
initial system status plays an important role. For this we investigate the effect 
of the initial system status, demand on system, error assessment criteria and 
network design settings on the predictive capabilities of the designed neural 
metamodels. A simulation investigation of a pcirticular system might be either 
terminating or non-terminating, depending on the objectives of the study. The 
terminating tyjDe simulation is one for which there is a “natural” event that 
specifies the length of the simulation run and the nonterminating type is the 
one for which there is no such event. In our experiments, we assume that the 
objective of the study is to the evaluate the long term cuid short term impact 
of the selected operiitional policies cind hence we assume that the ending event 
for the terminating simulation is imposed by the management and is specified 
in terms of time. For the non-terminating simulation, simulation run lengths 
are set as to reveal steady state system behavior.

It has not been of primary emphasis for us to find the best (most precise) 
neural network metamodel for each of the systems that are studied. Therefore, 
all the results achieved could be improved through further fine tuning of the 
experiments. However, we believe that these improvements will not alter the 
conclusions inferred from this work. The results achieved in the experiments 
show that neural networks are very promising tools for estimating steady 
state system performance. For estimating short term system performance, 
the experiments show that it is a more difficult task and we stiite some of the 
factors that influence the performance of neural networks. The experiments 

indicate that, although neural networks are promising, application to real life 
may not be straight forward as the existing literature may lead us to expect.

This manuscript consists of 6 chapters. The next chapter lays down the 
background of our research. The next two chapters are under the major 

heading of simulation metamodeling with neural networks of non-terminating 
type systems. The third chapter is related to predicting mean machine
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utilization. The fourth chapter is related to predicting mean job tardiness. 
The fifth chapter reports the work done on simulation metamodeling with 
neural networks of terminating type systems. In the last chcipter we give our 
conclusions and future research directions. All the related tables, figures and 
graphs related to this work are provided in the Appendices.



Chapter 2

Research Background

2.1 Simulation

Considering the inherent complexities in modern manufacturing, it is of prime 
importance for modern management to quickly evaluate the impact of their 
oj^erational policies on the overall short term and longer term performance of 
the system before actual implementation takes place, in order to keep up with 
the dynamic nature of modern business. Thus, the ancilysis tool used must be 

fast cind with an acceptable degree of precision [12]. When analytical methods 
can be employed, they can generate the best model of a system. However, 
due to the strict assumptions required on system states and the complex and 
lengthy mathematical derivations involved, many analytical models cannot be 
applied to large or complex systems. Computer simulation is frequently used in 
these circumstances as an alternative solution approach to solve such problems.

Simulation is a key decision making tool in an advanced manufacturing 
environment. It reduces the cost, time and risks compared to experimenting 
decision alternatives with real systems in real time. Simulation allows 
evaluating short term and long term effect of decision made cit all the levels 
of the manufacturing system. Either used at the system design phase or 
when operating the system, simulation is a flexible system analysis tool that

4
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allows modeling relatively large systems without requiring many restrictive 
assumptions. It is used where other approaches find it difficult in terms of 
modeling and computational recpiirements [31]. Thus, it is a complementary 
tool and not in competition with other approaches. Simulation is applicable at 
all the levels of the hierarchical decision making process, allowing to perform 
sensitivity analysis and to evaluate different policies at different degrees of 
aggregation under selected experimental conditions.

On the other hand, the use of simulation has its driiwbacks too. Despite 
all what has been and is being done now, cind despite the attention paid to 
experimental design techniques in order to enhance the value of simulation, 
practitioners still face some major problems in using it. Simulation is still time 
and computer memory consuming both when constructing the models or when 
using them. Moreover, simulation is by its nature a trial and error process. 
Hence, simulation is mainly used to answer kFfiai-f/ciuestions and so it is useful 
as an aid to the controller and not as a controller by itself since it is unable to 
provide best solution directly. As a result, it requires time, skill and experience 
for a projDer analysis and interpretation of simulation results.

From the current practice, simulation aiDplications can be classified into 
a) stcuid alone applications and b) hybrid applications [16]. In the first case, 
simulation models are used to evaluate different design alternatives and/or 
operational policies without disturbing the actual system. The aim of such 
appliccitions is in general related to get the overall picture about the system 
and hence they are more related to the long term impact of decisions. For the 
hybrid applications, simulation is combined with other tools such as expert 
systems [28]/artificial intelligence and analytical tools [16][34]. Such hybrid 

applications are often applied for real time decision milking and control of 

manufacturing systems. Real time scheduling has been approached by other 
methods. Harmonosky and Robohn [11] present a review of some of these 
applications, among which simulation and simulation combined with artificial 
intelligence are reported to play a major role in decision support systems for 

real time control and scheduling.



When it comes to real time control, the choice of the tool to be used is 
constrained -among others- by time requirements and precision. Harmonosky 
and Robohn [12] present an initial investigation of the application potential of 
simulation to real time control decisions in terms of CPU requirements. Their 
work shows that CPU requirements is very much dependent on the system 
being modeled and on the objectives of the application. Thus, time requirement 
are a major issue that may reduce the application potential of simulation for 
the control of the manufacturing environment. This fact is more highlighted 
if we consider the limitations of simulation in terms of direct optimization. 
Even when it comes to the use of simulation in off-line manner, and even 
though time constraints on the decision makers are less tight, time is still 
an important matter due the fact that the dynamic and competitive nature of 
modern business imposes on the manufacturing system managers more frequent 
evaluation of their performance as well as a necessity of maximum control over 
the manufacturing environments. In other words, modern manufacturers must 
be able, at any time, to assess their short and long term performance and to 
react quickly to the raj îd, frequent and considerable changes that take place 
in their environment.

CHAPTER 2. RESEARCH BACKGROUND 6

To conclude, we say that simulation offers some interesting possibilities 
of foreseeing the future at reasonable costs when other exact approaches fail. 
However, due to its inherent nature (being a trial and error process) and due to 

the outside constraints imposed by modern business, there is a need to make 
use of this potential but at a reduced computational requirements. In fact, 
there is a need for tools that would give some good estimate of the simulation 
output at reasonable accuracy that would serve at least to reduce the range of 
decision alternatives (if not to make the decisions directly) and to allow the 

use of limited number of simulations that would serve as a validation to the 

estimations made. The work done in this thesis, comes within the framework 

of making use of the high potential of simulation to capture various aspects of 
manufacturing systems and of trying to reduce time requirements through the 
use of neural networks as simulation metamodels. The next section introduces 
the concept of metamodeling.



2.2 Simulation Metamodels

Simulation has become a widely used and established tool, not only because of 
its ability to estimate the performance of proposed decisions, but also because 
of its suitability for sensitivity analysis. Certain analytical techniques, such 
as linear programming, offer such capabilities at low costs but unfortuiiately 
cannot handle all the complexity that exists in modern manufacturing. On 
the other hand, simulation is able to handle such complexities, but due to its 
nature, it does not allow itself to perform sensitivity analysis and optimization 
at low costs. The use of simulation metaniodels has been proposed to reduce 
the computer costs (memory and time) of simulation while making use of its 
potential of predicting performance of complex systems.

Blanning [3] was among the first to propose the use of metamodels to 
alleviate the problems related with simulation. The application of metamodels 
on manufacturing systems is increasing. Yu and Popplewell [35] surveyed 49 
papers in this field between 1975 and 1993. Following an early interest in the 
late 1970, activity fell until 1987. Thereafter, they noted a rapid increase in 
published work. Yu and Popplewell [35] conclude that the increasing incidence 
of reported metamodeling in manufacturing-related publications leads to the 
conclusion that the technique is of value in manufacturing systems design 
and analysis. However, the review of Yu and Popplewell is based mainly on 
the regression type metamodels and does not consider the other approaches. 
Hence, taking the other approaches in consideration, their conclusion is further 
confirmed.

CHAPTER 2. RESEARCH BACKGROUND 7

The simulation model is an abstraction of the real system, in which we 
consider only a selected subset of inputs. The effect of the excluded inputs is 

represented in the model in the form of the randomness to which the system is 

subject to. A metamodel is a further abstraction of the simulation model. It 
is a model of a model. The selected set of inputs to the metamodel is itself a 
subset of the inputs considered in the simulation models. Figure 2.1 illustrates 
this concept. In the abstraction process (i.e. when moving from one level to 
another), some of the inputs can be either omitted or Ccin be aggregated. Hence,
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cl metamodel is another approximation of an approximation. It is two steps 
away from the real system. This means thcit we cannot expect the metamodel 
to perform better than the simulation models.

Whenever one is dealing with modeling, the issue of model validity raises. 
In the case of metamodels, two types of validity should be examined: the first 
validity is related to the simulation model and the second is related to the real 
system. According to Blanning [3], the inaccuracy of the metamodel is not 
very critical and in general will not lead to poor decisions. The inaccuracy 
will decrease the efficiency of the search for an appropriate decision. The 
reason for this is that the decision reached by the inaccurate metamodel can be 
checked by the simulation models and hence an inaccurate metamodel results 
in increasing the computational efforts caused by the required validation . This 
reasoning assumes that the validity of the simulation model is guaranteed. This 
assumption is quite practical, since if the simulation model is not valid then 
all the analysis will be misleading and there is no need to rely on it. Friedman 
and Pressman [9] raised the issue related to the validity of the results of the 
metcimodel given the validity of the simulation model on which it was built. 
Their experiments with regression metamodels have shown that two steps 
removed from reality, metamodels compared favorably with the true measures 
of system performance (computed with analytical methods) and with respect 
to simulation models. Sargent [33] reports some research issues related to 
regression metamodels which are also valid for other metcimodeling approaches 
such as neural networks. Among the issues raised, cire the metamodel validity 
assessment and experimental design. In our work, we are not concerned with 
the validity of the metamodel with respect to the real system (as this requires 
having some real system) but we are concerned only with the validity of the 
metamodel with respect to the simulation model, assuming that our simulation 
models are valid models of some hypothetical real systems.

Metamodels have several uses in simulation. It can be used to identify the 
system parameters that most affect system performance (i.e. factor screening). 
Since it uses fewer computer resources, the metcimodel can be run iteratively 
many times for repeated what-if evaluation for multi-objective systems or
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Figure 2.1: Metamocleling Concept.

for design optimization. Another point would be the substitution of the 
original simulation model by its metamodel when the original model is just 
one component of a complex decision support system, hence increasing the 
efhciency of this complex system. This is especially true when the simulation 
model is incorporated in real time decision support tool where time efficiency 
is a critical issue. Simulation metarnodels provide cin approach to summarize 
the simulation results and allow some extrapolation from the simulated range 
of system conditions and therefore potentially offering some cissistance in 
optimization. The advantages of metamodeling cire explored by Friedman 
and Pressman [9] based on the regression metamodels. Among these are the 
model simplification, enhanced exploration and interpretation of the model, 
generalization to other models of the same type, sensitivity cinalysis, answering 
inverse questions and better understanding of the studied system and the inter­
relationships of system variables.

Barton [2] reviews the genei'cil purpose mathematical approximations to 

simulation input-output functions. As pointed out by Barton, one of the 
major issues in the design of the mathematical approximation is the choice 

of a functional form for the output function. Candidate approaches include: 
Taguchi models. Generalized linear models, radial basis functions. Kernel 
methods, spatial correlation models, frequency domain approximations and 
robust regression methods. Barton concludes that while some approaches are
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unable to provide a global fit to smooth response functions of arbitrary shape, 
the others are computationally intensive and in some cases estimation problems 
are numerically ill-conditioned. Pierreval has proposed another metamodeling 
approach based on a rule based expert system [28]. The use of neural networks 
is another approcich for metimiodeling which has recently emerged. To our 
knowledge, a little work has been done to compare the different approaches 
available and this remains a research direction that has to be investigated. 
In the work done by Philopoom, Rees cuid Wiegmann [26], a comparison of 
regression based due date assignment rules are compared to the use of neural 
networks for the same task. Their e.xperiments have revealed that neural 
networks outperformed the regression based rules on two criteria. On the 
other side, the work reported by Fishwick [8] concludes that neural networks 
negatively compared with a linear regression model and a Surface Response 
Model applied on a basic ballistics model (to measure the horizontal distance 
covered by a projectile). Further investigation regarding the ranking of the 
metcimodeling approaches is required. It is out of the scope of this work 
to get into the details of these approaches, nor to compcire the proposed 
approach based on neural networks with the previous approciches. This work 
aims at investigating the cipproach based on neural networks as it has low 
computational requirements and does not require some predetermined response 
function and as it has been reported to provide some good fit in the reported 
literature.

2.3 Neural Networks

Introduction to Neural Networks

Artificial neural networks take their name from the networks of nerve cells 
in the brain. The human brain is made of a huge mimber of simple 
processing units that individually have weak com 2:)uting iDower, but are 
massively interacting together. This network allows the brain to perform 

tasks such as image processing and speech recognition that are difficult for
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the serial computers. These fecitures allow the brain to accumulate knowledge 
and respond to stimuli (input) in short times and with relatively high accuracy. 
Thus, it would be useful to develop an understanding of the mechanisms that 
govern the functioning of the brain. Artificial neural networks attempt to 
mimic the parallel and distributed processing that takes place in the brain, 
although a great deal of the biological details of the brain are eliminated. This 
sirnplificcition is necessary as to allow the analytical tractcibility of what is 
happening in the networks.
Dayhoff [7], Masson and Wang [20], and Zahedi [36] provide good introduction 
materifds to the field of neural networks. Bcisically, an artificial neural network 
-commonly called neural network- consists of a number of small and simple 
processing units linked together via weighted and directed connections. Each 
processing unit receives input signals through weighted incoming connections. 
The sigiicils are processed by that unit and sent to all the units it has outgoing 
connections to. Figure 2.2 illustrates a simple example of a three layer 
back-propagation neural network. Each node in Figure 2.2 corresponds to 
a processing unit comparable to a nerve cell in the brain. The first layer is the 

input layer. The second layer is called hidden layer. There can be more than 
one hidden layer. The third layer is the output layer. The number of units 
in each layer is a decision parameter. The connections between the processing 
units are directed arcs. Each of these arcs has an associated weight. Figure
2.3 represents a detailed unit. This figure illustrates the computation that 
takes place within each unit. Each unit receives inputs ;r,’s, along the arcs 
with weight Wj''s, calculates the weighted sum /  of these inputs and applies a 
transfer function F{ I )  (activation level). The output of this function, Xi,  will 
be the output of the processing unit. This output is then passed along the arcs 
connected to this processing unit.

Neural networks are classified based on their learning methods [36] [20] 
into three categories: supervised learning, unsupervised learning and real time 
learning. Under the real time learning  ̂ networks continue learning while the 
network is being used (such as adaptive resoncince theory). For unsupervised 
learning, there are no target answers to be achieved by the network. Rather, the
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network is trained by learning a pattern through repecitecl exposure to it and 
is able to recall the learnt pattern when it solves a categorization or pattern 
matching problem. For supervised learning, a training data set (containing 
inputs and their corresponding target output) is used to help the network 
in arriving at the approjDriate weights. Back Propagation is the best-known 
supervised learning method with three or more layers. For this algorithm, 
input is presented to the network and is propagated forward until it reaches 
the output layer. At the output Iciyer, the output obtciined is compared to the 
target output corresponding to the given inputs. The error is than propagated 

backwards along the arcs as to adjust the weights of these circs. The adjustment 
takes place according to the Delta rule. The experiments carried out in this 
work cire based on the back propagation algorithm. We consider this algorithm 
as a black box and we apply it using the NeuralWorks Professional II software

[23].
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Inputs Processing Outputs

x. = F(I)

Figure 2.3: Single processing unit in neural network. 

Characteristics of Neural Network

Neural networks hcive been proposed to model systems where the input/output 
relationship is unknown or too complex; that is to model classes of problems 
where traditional approaches find it difficult. Therefore, neural networks are 
not to be used where the already existing approaches perform well since this 
may result in loss of precision which could be avoided. What distinguishes 
neural networks from other modeling approaches is their computational speed 
and learning capabilities as well as their generalization capabilities.

The major distinguishing feature of neural networks is learning the 
underlying mappings between the input and output variables. Traditionally, 
when modeling systems, the analyst has to provide some input/output 
relationship and has to test its validity. Neural networks mark a radically 
different approach to computing compared to traditional methods. For the 
case of the Back-propagation neural networks, learning is achieved through 

adjustment of the weights associated with the interconnections of the networks. 
In a traditional computer program, every step is specified in advance by the 
programmer. The network, in contrast, would by itself build the mapping 
describing the input/output relationship and no programming is required. This 
is achieved by the learning process. Hence, the neural networks can be used 

to model highly complex systems. In fact, practitioners welcomed Artificial
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intelligence (AI), including expert systems, since it allowed consideration of 
qualitative factors and provided a new approach to incorporate intelligence. 
Neural networks went a step further with respect to AI. Unlike traditional 
expert systems where knowledge and intelligence is made explicit in the 
form of rules, neural networks generate their own rules by learning from 
examples and extending their knowledge. Although the response function is not 
explicitly formulated as for analytical metarnodels, it is implicitly formulated 
for the neural network through the architecture applied. These features are 
likely to give wa}̂  to including neui’cil networks in expert systems (ES) and 
thus enhancing the application of ES in manufacturing or in other decision 
support systems [36] [28]. Moreover, neural networks can be tested at any 
time during training. Hence, it is possible to measure a learning curve of 
the network. In addition, the network Ccui continue learning even after its 
actual implementation takes place and the training session has finished. As 
new input/output examples get civailable from the real system, they can be 
presented to the network to irniDrove its accuracy. Also, if some of the system 
characteristics (that are not given as input to the network) are changing with 
time (such as improvement in quality), the network can adjust its weights to 
these changes thanks to its learning Ccxpabilities.

Another important feature of neural networks is generalization. Although 
lecirning is based only on limited set of examples, when it comes to applying 
the neural network model, the network should be able to extend its knowledge 
to outside this set of examples. The neural network, if properly trained, can 
provide correct answers when presented with new inputs thcit are different 
from the inputs in the training set. In order to take full advantage of the 
above mentioned features of neurcil networks, they must be carefully designed 
and adjusted to serve the purpose of the study.

Applications of Neural networks in manufacturing environment

Neural networks have a wide range of appliccitions in the manufacturing 
environments. Zhang and Huang [37] provide a state of the art review of
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the applications of neural networks in general. These applications include:

- group technology[21][14][15],

- engineering design,

- monitoring and diagnosis,

- process modeling and control,

- quality assurance,

- scheduling, and process planning.

Burke and Ignozio review the application of neural networks in OR [4]. Udo 
and Gupta [10] review the applications of neural networks in manufacturing 
management systems. The applications reported include (in addition to the 
one mentioned previously):

- resource allocation and constraint satisfaction,

- maintenance and repair,

- datcibase management,

- simulation [30] [2 ], and

- robotics control.

In the survey paper by Udo and Gupta, it appears that the interest in 
neural networks started mainly since 1987. This corresponds to the same time 

for which a resurgence of interest was noticed for the use of metamodeling 
in the manufacturing environments. They also report a list of advantages of 
neural networks over the conventional computing, such as:

- It has the tolerance to noisy or random inputs.



CHAPTER 2. RESEARCH BACKGRO UND 16

- It is trained by example and have the ability to adjust dynamically to 
changes in the environments.

- It has the ability to generalize from specific examples.

- It has a slow degradation in problems outside the range of the experience.

- It has the ability to discover complex rehitionships among inputs 
variables, and

- It has speed of response.

Constructing Neural Networks for Simulation Metamodeling

Many design issues are involved in developing a neural network metamodel. 
Care must be given to these issues as they are essential in developing a reliable 
and robust neural network metamodel. This is especially important as the 
metamodels are models of simulations model [.3] [33] [35] [24]. Hence, the error 
of the network with respect to the real system will be amplified if the network 
is not ¡properly designed. Whether it is apj^ropriate to use a metamodel or not, 
is a matter that depends on the application and how much approximation is 
acceptable. However, it appears that increasingly more people are making use 
of metamodels [9]. Figure 2 . 1  illustrates two main issues involved. In addition 
to selecting the appropriiite variables for the application under consideration 
and to constructing a valid simulation model, the metamodel itself is a major 
issue. We have to decide on the internal parameters of the metamodel. Khaw, 
Lim and Liin [17] report an optimcil design of neural network models based on 
the Taguchi method in terms of setting the internal parameters of the model for 

the back propagation-type networks. They claim that their approach improves 

network reliability and convergence speed. Other authors have selected other 
approaches. For our experiments, we did not put much emphasis on this part 
as our aim was not building very precise networks but I'cither examining their 
behavior.

As mentioned previously, the way the metamodel is constructed has a
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significant impact on its performance. The following is a general design 
procedure for metamodeling with neural networks. As can be seen, this 
procedure does not differ in much from other metamodeling approaches.

• Step 1 : Define the system: inputs, outputs, pai'cirneters, performance 
measures and mechanisms governing the relationship between inputs and 
outputs.

• Step 2: Develop a valid simulation model to examine the performance of 
the system under some experimentcil conditions.

• Step 3: Select the set of variables that will be considered by the network 
as inputs. These usually include the decision variables and system 
parameters that are expected to be varying during the period of study. 
Decide on how the performance (or the validity) of the metarnodel will 
be evaluated.

• Step 4: Decide on how these inputs are to be presented to the network 
since the input data may need some preprocessing [17].

• Step 5: Decide on the internal design of the neural network. This includes 
deciding on the number of layers, the number of processing units per 

layer and the interconnections (full connection, partial connections), etc. 
[171129].

• Step 6 : Select the network paradigm that would control the processing 
that takes place in the processing units and the training procedure. There 
are a number of paradigms available such as back-propagation (widely 
used in manufacturing applications). Each of these paradigms has several 

parameters that need to be fine tuned to ensure the appropriate learning 

and performance of the network.

• Step 7: Once the cvbove issues have been decided upon, training can 
start. Develop a trciining set using the simulation models and perform 
the training. Several iterations may be required between steps 5, 6  and 
7  in order to find the best neural network with the least errors.
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• Step 8 : Vciliclate the designed neural network using a test set that contains 
examples not included in the training set.

Training can continue even after the network has been validated. As new 
examples from the real system become available, the network can be trained 
on them; thus further reducing the error with respect to the real system.

In evaluating the precision of the built metamodel, several candidate error 
measurement methods can be available. It is essential to select an appropriate 
one. As our experiments have shown, the constructed metamodels may have 
a different ranking based on the evaluation criterion applied. Therefore, we 
recommend that a great care should be given to this issue. The importance of 
this issue is discussed in detail later in the text.

The most widely used implementations of neural networks are software 
simulators. These simulate the operations of the network on serial computers 
as these are very much available at low prices. However, the time requirements 
for developing and implementing the neural networks could be further reduced 
if hardware with parallel processors are used. Thus, the full potential of neural 
networks can be further enhanced with developments in hardware.

Drawbacks of Neural Networks

Several shortcomings related to the current applications of neural networks as 
a metamodeling technique have been reported in the literature [19]. First, 
constructing a neural network is time consuming as this process requires 
generating a training set, empirically selecting an appropricite architecture and 
learning algorithms. Secondly, the accuracy of the network outputs depends on 
the regularity of the behavior of the system under study (by regularity we mean 

that the system is subject to the same set of exogenous and uncontrollable 

factors). This implies that the time horizon of the study must be carefully 
selected. Thirdly, the validity of the results depends also on the degree of 
aggregation selected for the input datci. Aggregation ol data is needed in order
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to reduce the size of the neural network imd the effort required to generate the 
examples. This would have a negative impact on the precision of the neural 
network results. The disadvantages mentioned so far are common to most 
metamodeling techniques.
Another more specific problem related to metamodeling with neural networks 
is the difficulty to make interpretations and analysis of the input/output 
relationship. As mentioned previously, the neural network generates its own 
rules but does not provide them explicitly to the user. In order to get an 
insight into the input/output relationship, one needs to amrlyze the weights 
of the connections between the processing unit. This is not an easy task, and 
it is time consuming. Thus, providing a formal method to analyze the neural 
network may strengthen its value as a metamodeling approach. Furthermore, 
the selection procedure for the network architecture, learning algorithm and 
parameters is in most of the reported cases a trial (empiriccil) process. Some 
attemi^ts have been made to provide a formal approach to do this task. Khaw, 
Lim and Lim [17] propose a method based on a Tciguchi approach. Murray
[22] used genetic algorithms to perform this tcisk. Further dehciencies in the 
literature are concerned with the lack of development of learning algorithms. 
Research in this direction may allow more exploration of the full potential of 
neural networks.

2.4 Neural networks as a simulation meta­

modeling approach

Our research is focused on simulation metarnodeling with neural networks for 
the purpose of estimating system performance measures. Zhang and Huang 
[37] have reported cin increasing interest of the use of neural networks in the 
manufacturing environment since 1987. Starting the same period, Yu and 
Poplewell [35] report an increasing interest in simulation metamodeling. This 

illustrates that these two different techniques have an increasing potential of 
contribution to improving the management of manufacturing systems. Despite
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this interest, efforts to combine metamodeling and neural networks through the 
use of neural networks as a simulation metamodeling approach has not been 
much. In fact, for this type of applications of neural networks, the related 
literature is not abundant. Seven papers applying the back propagation neural 
networks as a simulation metamodel for the management of manufacturing 
systems are surveyed.

Chryssolouris et ah [6 ] used a neiu'cil network metamodel to reduce the 
computational efforts required in the long trial process that is associated 
with using simulation alone for the design of a manufacturing system. The 
simulation model is used to generate the performances (4 performances 
measures are recorded) of the system under different designs. The neural 
networks is then used in an inverse manner. The input of the neural network 
is the desired levels of the performances of the system cind the output would 
be the design that would achieve those levels of performance. Although this 
cipplication was successful, some questions were raised regarding the complexity 
of the system and regarding the complexity of the application itself. In fact, 
because of the small size of the system considered, the number of design 
alternatives is not large. However this application, indiccites a potential use of 
neural networks as system design has an important impact on its performance 
and often the design phase is time consuming because of the large number of 
alternatives.

Simulation metamodeling with neural networks mostly is applied as a tool 
for determining operational policies since it is in this type of applications 
that time is more crucial. Chryssolouris has developed a task assignment 
procedure that is based on multi-criteria, called MADEMA (MAnufacturing 
DEcision MAking). This approach combines the system performance criteria 
according to some given weights. Chryssolouris et ah [5] used a neural network 
metamodel to determine the weights required to achieve some given levels 
of the multiple criteria. Although the application showed some good results 
and a good ability of neural networks to handle complex rehitions, one may 

question the effect of the small range of the inputs and the effect of system 
complexity. Hurrion [13] used a neural network to estimate confidence intervals
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for the performance of an inventory depot. This application revealed that 
neural networks were equally successful to estimate mean performcince as well 
as their corresponding confidence intervals. Moreover, this work highlighted 
the capabilities of neural networks to model problems with large range of inputs 
and complex input/output relation but still does not provide an insight on the 
effect of system complexity nor on the effect of stochasticity. Another case 
was examined by Pierreval [27] to investigate the ability of neural networks 
to estimate mean machine utilization of a deterministic small sized problem. 
The results were encouraging as in this problem input range was wide and also 
the neural networks showed its ability to learn and generalize properly. The 
questions that raises here may be regarding the effect the performance measure, 
stochasticity and system complexity. Pierreval [29] later proposed a neural 
network architecture to be used for ranking the performance of dispatching 
rules on a stochastic flow shop type system. Neural networks have performed 
well and highlight the modeling flexibility that modeling with neural networks 
can offer. Here one may question the effect of system configuration (flow shop 
vs. job shop). The work reiDorted by Philipoom et al. [26] gives some other type 
of application of neural networks as a simulation metamodel. Neural networks 
are applied to assign due dates for jobs bcised on system characteristics and 
system status when jobs enter system. The use of neural network for individual 
jobs contrasts with the use of neural networks to get aggregcite system measures 
(such as mean flow time in the ¡previously rneirtioned publications). The 
performance of neural metamodels compared favorably with regression based 
metamodels and showed another interesting type of application. Kilmer et 
al. [18] report a possible use of neural metamodel for a service activity, an 
emergency department. They tested the validity of metamodel, with respect 
to the real system, and it appears that the validity is high.

In the seven publications reported in the last 2 paragraphs, the constructed 
neural network metamodels achieved reasonably good results. The authors 

showed that neural networks are a very promising tool for predicting 
system measures. However, these case studies deal with systems of reduced 
complexities or of deterministic nature and do not allow us to generalize on
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the estimating capabilities of neural networks. The following set of questions 
summarizes some of the future research issues that still need to be investigated:

- How to assess neural metamodel performance?

- What is the effect of system size on the performcince of the neural 
network?

- To what extent can the neural network handle system stochasticity?

- Do stochastic factors effect differently network performance?

- Is the metamodel performance affected by the fact that the system is in 
transient state or in steady state?

- Is the performance of the rnetamodel affected by the level of cictivity of 
the system?

- What is the effect of the performance measure being predicted?

- What is the effect of the network configuration (size, number of layers, 
learning ixite ...) on the performance of the network?

- Does system configuration (flow shop-job shop) have an effect on the 
performance the developed neural networks?

- How robust is the neural metamodel to noisy data, to delta outside the 
training range?

- How adaptive is it to gradual snicill changes in the system over time (such 
as gradual improvements in quality)?

- What are the conqDutational requirements in terms of computer time?

- How to select the size of training and test data?

- How to choose simulation run length?
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This small set of questions is representative of the current vacancies in 
the literature. In this work, we don’t attempt to answer all these questions. 
Rather we concentrate only on the first eight questions. We don’t intend to 
give extensive and final answers to these questions. We aim at constructing 
experiments that would allow us to get an insight on these issues. As a 
matter of fact, our work investigates two types of application of neural network 
metamodels: estimating long term system performance and short term system 
performance.

For the first application, we will investigate the effect of:

* Performance measure: Mean machine utilization and mean job tardiness.

* System complexity: Simple vs. complex system.

* Stochasticity: deterministic, stochastic interarrival times only, stochastic 
processing times only or both stochcistic.

* Demand on system: low, medium and high.

* Metamodel error assessment criteria.

In all the reports we described previously, neural metamodels cire examined 
in terms of estiniciting long term performance, and the civailable literature is 
not abundant yet. For estimating short term performance, we could not find 
any reports on the use of neural metcimodels for such applications. For this we 
also examine such an application in order to gain insight on the effect of this 
issue and so we can get an idea about the possible use of neural metamodels 
for real time decision support. With the second application, we will consider 
the mean job tardiness as a system performance measure and we allow the 
system to be deterministic or to be subject to stochastic processing times and 
interarrival times. That is, we investigate the effect of:

* Initial system status.

* Demand on system: low, medium and high.



CHAPTER 2. RESEARCH BACKGROUND 24

* Metamoclel error assessment criteria.

For both aj^plications, we preview the effect of clue date tightness factor 
and of the effect of the size of training set. In order to preserve a basis of 
comparison, we use the same system structure, neural network architecture 
and same error assessment criteria. The neurcil network learning algorithm 
is considered as a black box and we don’t attempt to improve it. We also 
do not C cirry  out extensive fine tuning of the parameters because it is time 
demanding and because our emphasis is more on developing an understanding 
of the behavior of neural metaniodels with respect to the factors previously 
mentioned. The next 2 chapters investigate long term mean machine utilization 
and mean job tardiness respectively. The fifth chapter examines the situation 
for the short term mean job tardiness. Finally, we give our conclusions and 
future research directions in the last chapters.



Chapter 3

Estimating Long Term Machine 
Utilization

In this chapter, we investigate the capabilities of neural metamoclel in 
estimating mean machine utilization as a system performance measure. We 
consider two job shop systems, which we would refer to as case one cind case 
two. The first job shop system is a simple one with four machines and three 
distinct product types. The second system is a comple.x one. This system can 
be considered as an extension of the first system, to include more machines 
and more product types. This extension is made in such a Wciy as to keep 
a basis of comparison between the two cases. This is achieved by adding 
three more machines and three more job types to the first system. While 

the job types common to both systems keep the same parameters in terms of 
processing and routing requirements, the new product types have processing 
requirement on both the old and the new machines. Hence, the first system is 
a subset of the second one. This allows us to investigate the effect of increased 
system complexity by studying the second system and comparing it to the first 

one. Therefore, the term “system complexity” in this study would refer to 
increased system size (increased number of machines and increased number of 
job types) as well as increcised interactions between the different components 
of the system. For each of the two cases, we describe the experimental settings
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through describing the system, the simulation models, the neural network 
metamodels cind the error assessment approaches. The next section lays down 
the results and discussions. The last section of the chapter compares the two 
Ccises.

3.1 Case 1: Simple System

In this first case, we consider the work reported by Pierreval [27] as the 
starting point. His work tries to estimate mean machine utilization for a 
deterministic system. In the first step, we .simply repeat this work. In our 
experiments, however, the back propagation learning algorithm is improved by 
adding a momentum term. The second step is to investigate the stochastic 
configurcitions of the same system (stochastic arrived times only, stochastic 
processing times only or both) and to test the robustness of the metamodels 
designed for the deterministic configuration to inputs that lie outside the 
training range.

3.1.1 Experimental settings

System description
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This study is based on the work done by Pierreval [27]. His experiment consists 
of running a simulation model for a deterministic job shop system. Based on 
this model, a neural network metamodel to estimate machine utilization is 
constructed. This job shop system, he used, is deterministic. It is composed 
of four machines and three free transporters. Three job types are entering the 
system. Jobs arrive independently to the .system at constant rates: Ai, A2 and 
A3 . Jobs await for the availability of machines in queues according to a waiting 
discipline (f). The waiting discipline, could be either Shortest Processing 

Time (SPT) or First Come First Served (FCFS).



In this first case, we consider four possible configurcitions of this job 
shop system; a deterministic configuration, a configuration with stochastic 
interarrival times only, a configuration with stochastic processing time only 
and fiiicilly a configuration with stochastic interarrival times and processing 
times. Our work is based on the same system. All the relevant data can 
be obtained from the sample codes provided in Appendix C. For the case 
of stochastic arrivcil times, those same values of the constant interarrival 
times Ai, A2 and A3  are used as the means of the corresponding exponential 
distributions. Similarly, the constant values of the processing times, used in the 
deterministic configuration, are used as means of the corresponding exponential 
distributions in the stochastic processing times configuration. The choice of the 
exponential distribution for both factors (cirrival and processing times) appears 
reasonable since a large number of the reported simulation experiments use this 
distribution which seems to match real life as well [1 ] [32].

Simulation Models
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The simulation models of the system described above are developed and used 
to run the job shop system for various configurations. The production is 
performed in two shifts. For the deterministic configuration, the model is 
run during one week of work (5 days), plus one day of transient phase. For the 
stochcistic case, a transient period of 2  work days is used, and the system is 
run for 15 days, to form 5 batches of three days each (Batch means approach 
is used through out this study). We are interested in finding the average 
machine utilizations ¡.ii, H2 , ¡.iz and /¿ 4  of the four machines in order to detect 
bottleneck machines as well cis under-utilized machines. Therefore, given cin 
input combination of Ai, A2 , A3  and <̂ , we run the corresponding simulation 
model to record the output combination //2 , / ¿ 3  and /¿ 4  {pi G [0, Ij). These 
outputs are the true values of these variables that the neural metamodel has 
to estimate. The combinations of these inputs and outputs would compose 

one example in the data set that is presented to the neural networks either 
in a training set or as a test set. The simulation models are developed in 
SIM AN language [25]. Sample model and experimental frames are provided
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in ApjDendix C. Four simulation models are used; each corresponding to one 
of the configurations mentioned above. Table .3.1.1 in Appendix B shows the 
list of the models built. Figure 3.1.1 illustrates the relationship between those 
models. For each model the corresponding training iind test sets are generated. 

In terms of machine utilization, the characteristics of the data sets generated 
from these models are quite identical for all the models examined in the first 
case, and are as follows:

- minimum utilization: 14..5%

- mean utilization: 45.2%

- standard deviation of utilization: 17.7%

- maximum utilization: 1 0 0 %

Model 2

Model 1 4 ----------- Model 3

Model 4

Figure 3.1: Mean Utilization: Simple System: Relationship between models.

This means that independently of any factor being stochastic or determin­
istic, the resulting sets are similar. This may lead us to think that similar 
results can be obtained from all the models.

For model 1 , we also develop test Set #5  which consists of 50 examples 
and is similar to test Set # 1 , where interarrival times are deterministic, but 
this time are randomly selected from [85,100] instead of [10,85]. We also



generate Set ^ 6  which consists of 50 examples and is similar to test Set 
where interarrival times are deterministic, but this time are rcindomly selected 
from [100,120]. Test sets ^5 and # 6  are used to test the robustness of the 
metamodel with respect to inputs thcit lie outside the range of the training data 
and hence allow evaluating generalization capabilities of neural metcimodels. 
Two sets are used in order to see how the performance of the neural metamodel 
evolves as we move far from the range of the inputs of the training set.

As each data set (training or test sets) require a set of examples, we need 
to create the set of inputs to be given to the simulation model in order to 
generate the true values of the variables of interest (mean machine utilizations), 
and to be presented to the neural network in order to generate estimates of 
the variables of interest. A SIMAN code wcis used to randomly generate the 
values of the inputs in the desired range from a uniform distribution. Another 
ap2Droach would have been to generate these inputs using experimental design 
techniques. However, the first api^roach was used because it corresponds to 
real life more where examples would follow a random scheme. Appendix C 
shows the model and experimental frames for this input data generator model.

Neural Network Metamodels
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Several Back-propcigation neural networks are designed with various architec­
tures (number of iDrocessing units and layers) and various combinations of 
network parameters (learning rate, momentum term). No bias is introduced, 
nor dynamic adjustment of the learning parameters are used. The sigmoid 
function is used as the transfer function in the processing units. Inputs are 
scaled in the interval [0,1]. Table 3 .1 . 2  in Appendix B .shows the characteristics 
of the networks constructed for each model. In this Table, the name assigned 
to each neural network are as follows; Expl_A_B. This coding should be read 

as the name of the neural network number B developed as a metamodel for 

model A of this first .set of experiments. An example would be; Expl_2_3. 
This describes the network number 3 designed for model 2 of this first set of 
experiments. Refer to the generic circhitecture given in Figure 2.1.



The following generic architecture is used;

- Input layer; 4 processing units;

- Interarrival time for job type 1, Ai.

- Interarrival time for job type 2 , A2 .

- Interarrival time for job type 3, A3 .

- Dispatching rule, </> ; 1 or 2  (SPT,FCFS).

(for the stochastic case, the mean of the distribution is presented as input)

- Hidden layers; Various combinations of networks with different number 
of hidden layers, with different number of processing units are used.

- Output layer ; 4 processing units;

- Machine 1 average utilization; fXi.

- Machine 2  average utilization; ¡.i2

- Machine 3 average utilization; /,¿3 .

- Machine 3 average utilization; ¿̂4 .

The neural network model was developed using a network simulator 
NeuralWorks Professional II developed by Neural Ware, Inc [23]. It is necessary 
to mention also that further fine tuning of the parameters of the neural 
networks built, may lead to better results but it is believed that this 
improvement would not alter the conclusions obtained.

Error Assessment
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One essential aspect of metamodeling is how to evaluate the error of the neural 
network metamodel with respect to the desired performance. For this purpose.



four different evaluation methods are used. Which assessment approach to use 
when it comes to real life application of neural metamodels, would depend on 
the objectives of such an application. However, by the use of multiple criteria, 
we intend to investigate the robustness of the neural metamodel performance 
to multiple criteria. Moreover, consistency through out the criteria would add 
to the reliability of the conclusions made.

Let

i: be the index to represent the example number in the training or test 
sets.

j :  be the index to describe machine number, j  =  1 , 2 , 3,4.

Sij: be the avei'cige utilization obtained for machine j  at example i 
obtained from the simulation model (true value of the variables of 
interest).

Niji be the average utilization obtained for machine j  at example i 
obtained from the neural network metamodel (estimate of Sij).

T: be the total number of examples in the training or test set.

a: Tolerance level, a  € [0 ..1 ].

We also define:

Dij =  — Nij\: absolute deviation for machine j  cind per example i.

Di =  m a x{D ij,j =  1 , 2 ,3 ,4 }: maximum absolute deviation across all 
machine for example i.
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• Method 1: (Tolerance approach)

This method has been used by Pierrevcil in [27]. The performance of 
the neural networks is evaluated according to the percentage of examples 
not recognized . An example is said to be recognized if the rnciximum



absolute deviation among the four output variables is less than a given 
tolerance level, a, that is:

let;
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/.(a )  =
1 if Di > a 
0  otherwise.

From the dci.ta set under consideration, we calculate the average error, 
E(a),  where:

E  / . ( « )
E(a) =

a is allowed to take values in{5%, 6.5%, 8 %}.

• Method 2: (MAD approach)

This method measures the mean absolute deviation, MAD, across all the 
examples in the data set under consideration cind across all the variables 
being estimated (machine utilization in this case) and the corresponding 
standard deviation, where:

MAD

A r
E  E
/ = 1¿=1

• Method 3: (M M AD approach)

Another method is to measure the error of the network in terms of the 
mean maximum absolute deviation, MMAD, across alt the examples 
in the data set under consideration and across all the variables being 
estimated (machine utilization in this Ccise) and the corresponding 
standard deviation, where:

r
E A·

MMAD =
T

This method is simihir to the second method, except that it is more severe 
and penalizes the neural metamodel for the highest deviation through 
each example in the data set.



• Method 4: (Percentage error approach)

This method is the classical one. It is based on evaluating the relative 
error for each example and for each variable in the data set and taking 
the average, Ej,  and the corresponding standard deviation.
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Evaluating the metamodels based on the first three measures is a subjective 
matter since we are dealing with absolute measures. The interpretation of these 
methods requires a prior knowledge about the system parameters. The fourth 
method is used to assess the real life cipplicability and the acceptcibility of the 
results, where as the three first are used to highlight the differences between 
the models constructed. The fourth approach is a relative cipproach and hence 
it is objective. We try to use the combination of those methods to come out 
with satisfactory metarnodels.

3.1.2 Results and Discussions

Table 3.1.3 in Appendix B presents the results achieved by each neural network 
metamodel for each of the models investigated across the four error assessment 
methods discussed above. For each model, we select the best rnetamodels 
among the set that was built (shown in gray background). Given these “best” 
neural metamodels, we graph their performances relative to the four evaluation 
criteria previously defined. These graphs are provided in Figure 3.1.2 in 

Appendix A, both for the training sets and the test sets. The term “best” 
network refers to the one that outperforms the others on the majority of the 
error assessment methods, with the highest weight given to the fourth criteria 
(the percentage error approach).

Model 1 (Deterministic interarrival and processing times) is a replicate of 

the work reported by Pierreval[27] except that we include a momentum term



in the back-propagation algorithm. The results achieved by Pierreval are given 
in Table 3.1.4 in Appendix B (based on the first evaluation method). The 
results corresponding to this case are given in Table 3.1.3 in Appendix B for 
network expl_l_2. We can see that there is an improvement in those results 

which can be explained by the improvement in the learning algorithm. For the 
purpose of illustration, we include Figure 3.1.3 in Ap2)endix A which shows the 
learning curve of this neural metamodel (expl_l_2 ) based on the first evaluation 
method.
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We also test the ability of the neural network used for Model 1 (exiDl_l_2) to 
extend its fitting of the response function (mean machine utilization) to outside 
the riinge of the injiut values used while training. Table 3.1.5 in Appendix B, 
shows the results of two of exiDeriments (robustness experiments). In the first 
exiieriment, the inj^ut data are generated from an interval outside the range 
of trciining but not far from it. In the second experiment, iniDut data are 
generated from an interval far from the rixnge of study. Here, we evaluate the 
performance of the network based on the first evaluation method. In both 
experiments, when considering a tolercince level, a, set at 1 0 % the network 
error is 0%. However, for cv at 5% the error sharply increases. That is to 
say thcit in most of the tested examples, the error was confined to some small 
interval [5%, 10%]. Further investigation regarding metamodeling robustness, 
as defined above, is required. Such an investigation of the data sets may lead 
to define the appropriate size of the range of the inputs without major loss of 
accuracy.

For the stochastic configurations (Models 2 , 3 and 4), it appears that 
the precision of the neural metamodels decreases as we introduce sources of 
stochcisticity, as can readily be seen from the graphs in Figure 3 . 1 . 2  in Appendix 
A. This behavior can be exi:)ected since including stochastic factors in the 
system means introducing sources of irregularity in the patterns of behavior 
of the system. Since neural networks operate by trying to classify patterns of 
behavior, irregularities cause some difficulties for the network to classify inputs.

Another observation which was not expected, is that, independently of



the error assessment criteria being used, the network precision does not vary 
significantly if we move from Model 2  to Model 3 (see flat middle portion on 
the graphs). Thus, introducing stochasticity on the interarrival time factor 
or on the processing time factor, would produce a comparable effect on the 
patterns of behavior of the system and hence a similar effect on the accuracy 
of the metamodel. Therefore, it seems that the number of stochastic factors 
is more important than the nature of the factors themselves. Despite the 
fact that stochasticity in the system causes the accuracy of the metamodel to 
estimate mean machine utilization to deteriorate, this accuracy remains within 
acceptable limits. We use multiple evaluation criteria and we find that these 
conclusions are valid across all those criteria.
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For error assessment criteria 2 , 3 and 4, the experiments have shown that 
in moving to more complex system configurations (through the addition of 
stochastic factors), the performance of the metamodel does not deteriorate 
further as we move from the training set to the test set. This implies that 
generalization capabilities are not affected by stochasticity. However, for the 
first evaluation criteria (the tolerance approach), this is not the case for the 
tight tolerance level case (a =  5%). The reason for this is that we selected 
the values of the tolerance levels, a, based on the training sets in such a way 
as to highlight the effect of this tolerance level. Thus, as we move to the 
generalization on the test set, the slightest deterioration will be revealed mostly 
by the tight tolerance level (a =  5%). As can be observed, the generalization 
capability is not affected when it comes to the other levels of tolerance (a =  
6.5% and 8 %). This indicates that the deterioration in rnetamodel precision, 
as we move to the test set, is limited and can be considered as acceptable.

The experiments ha.ve also shown that metamodel performance is consistent 
through out the four criteria. That is to say that metamodels have the same 
ranking on the four criteria. On the other hand, no architecture is best for 
all models. Thus, in order to find the best metamodel, unfortunately, a large 
number of networks have to be constructed and tested. This would result in a 

long metamodel development phase.
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There are a few observations that are worth mentioning regarding our 
experiments. First, from the different neural networks developed, it appears 
that the way in which the input is presented to the network (random or 
sequential) did not have a considerable effect on the precision of the results, 
although sequential access seemed to produce slightly better results. Second, 
from the various experiments carried out, it appears that the initialization 
range of the weights on the arcs of the network did not effect the precision 
of the results, if we allow sufficiently enough long training period. Third, the 
relationshii? between the learning rate (and also the momentum rate) and the 
network precision is not linear. Fourth, in some cases the network performed 
better on the test set than on the training set itself. Although this may be 
unexpected, it may be due to the randomness of the test sets. Experimenting 
with neural networks has indicated that they can hcindle noisy training inputs. 
In fact, training the network with some data set which contained a portion of 
wrong examples, resulted in a network able to achieve 2  to 3% error on Method 
1.

3.2 Case 2: Complex System

The system investigated in this case is similar to the system examined in 
the previous case, except for the complexity introduced as explained at the 
beginning of this chapter. The way in which we increased system size (in 
terms of more job types and more machines) ensures us that this second system 
is more complex and hence tends more to real life systems. Because of this 
increased complexity, the study will be more involved as the performance of the 

neural metamodel is evaluated at different levels of demand on system. The 
term levels of demand on system refers to the ranges from which interarrival 
times are generated.
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3.2.1 Experimental settings

System description

In fact, the system considered in the previous case is a subset of the system 
considered here. The job types and the machines simulated in the first case 
are also present here with the same parameters. That is to say, the old job 
types keep the same processing times and routings and the old machines keep 
the same capacity and are still loccited at the same distances from each other. 
Three new job types are added, to form a total of six, cind three new machines 
were included. The new job types would have ci routing on both old and new 
machines. However, in order to keep the system balanced, these new job types 
have smaller processing times on the old machines than on the new machines. 
This system is allowed to operate under three job waiting disciplines, (j): SPT, 
EDD and Modified operation Due Date (MOD). This increa.se in the number of 
possible dispatching rules that can be used in the system is another dimension 
of complexity that’s added to this study. The method used to assign due dates 
is the Total WorK content method (TW K) and it involves a due date tightness 
factor, which is generated from the range [2,9]. This range covers the tight 
and loose due date situations. The TWK has been supported as among the 
best due date assignment rule in job shop environments [1 ] [32]. Like the 
previous case, this system also operates with three free transporters. Each job 
type arrives to the system with a constant intercirrival time A,· (i — 1 , 2 , ..6 ) for 
the deterministic arrival configurations. For the stochastic interarrival cases, 
the same vcilues of Xi are used as the means of an exponential distribution. 
Similarly the values of processing times used in the deterministic models, are 
used in the stochastic models as the means of the corresponding exponential 

distributions (as in the previous simple system case).



Simulations models of the system described above are run under various 
configurations (deterministic and stochastic) and under different values of 
interarrival times and under different dispatching rules. Production is 
performed in two shifts. For the deterministic models, the system is run for
2 days as of a transient period and statistics are collected for 8  days. Бог 
the stochastic models, the batch means approach is used with 5 batches. The 
transient period has a length of 4 days and each of the 5 batches has a length of
3 days. Note that the lengths of the transient periods, in this complex system 
ca.se, are doubled rehitive to the first case (simple system) in order to allow 
the system to reach its steady state. Ыеге also, for a given input combination 
of Xi,k and (/>, we run the simulation models to record the mean machine 
utilization, /.ij, of the 7 machines. Input data (A;,A: and ф) are generated with 
a similar input data generator to the one used in the first case. Table 3.2.1 
in Appendix В shows the list of the models built. Table 3.2 in Appendix В 
shows the characteristics of the data sets generated from each model in terms 
of their machine utilization and in terms of the fraction of tardy jobs. Figure 
3 .2 . 1  illustrates the relationship between these models.
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Simulation Models

Figure 3 .2 : Mean Utilization and Mean Tardiness: Complex System: 
Relationship between models.



For each model, we run three neural network rnetamodels. Only the network 
architecture (number of hidden layers and number of processing units per layer) 
is chcinged. The network learning rate and momentum term are not chcinged 
as it would require a very long time to cover all the spcice of these parameters. 
These neural networks are very similar to the ones detailed in Section 3.1.1. 
Table 3.2.3 in Appendix B shows the list of the neural networks built for each 
model.

The following generic architecture is used:

- Input layer: 8  processing units:

- Interarrival time for job type 1 , Aj.

- Interarrival time for job type 2, A2 .

- Interarrival time for job type 3, A3 ,.

- Interarrival time for job type 4, A4 .

- Interarrival time for job type 5, A5 .

- Interarrival time for job type 6 , A ,̂.

- Dispatching rule, <j).

- Due date tightness factor, k.

(for the stochastic Ccise, the mean of the distribution is presented as input)

- Hidden layers: three combinations of networks with different number of 
hidden layers, with different number of processing units are used.

- Output layer : 7 processing units:
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Neural Network Metamodels

- Machine 1 average utilization: /lîi.

- Machine 2 average utilization: ^ 2



- Machine 3 average utilization: ¡.is.

- Machine 4 average utilization; /¿4 .

- Machine 5 average utilization: f.15

- Machine 6  average utilization: ¡.iq.

- Machine 7 average utilization: /.ir·

Error Assessment

In order to evaluate the performance of the neurcil rnetamodels, the same error 
assessment approaches applied in the simple case is used (refer to Section 3.1.1).

3.2.2 Results and Discussions
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The results of this second case are given in Table 3.2.4 in Appendix B. This 
Table shows the performcince of all the neural metamodels relative to the four 
error assessment methods selected. Here also, the perfornicuice of the best 
neural network metamodel corresponding to each of the 8  models investigated, 
are graphed in Figure 3 .2 . 2  in Appendix A. The term “best” network refers 
to the one that performs better than the others on the majority of the error 
assessment methods, with the highest weight given to the fourth criteria (the 
percentage error approach). The fourth criteria is the only objective criteria 
and does not require any prior knowledge of the characteristics of the system 
and hence allows direct and objective interpretation of the performance of the 
metamodels.

Recall that in the simple system case we had only investigated one 
deterministic model (Model 1 ). Here, Models 1 through 5 are deterministic 
models. For these five models, the neural networks performed well on all the 
error assessment approaches. Models 2, 3 and 4 are subset of the first one. The 
aim is to view the effect of reducing the size of the range from which interarrival 

times are generated as well as the effect of the demand on system. The term
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demand on system refers to the frequency with which jobs arrive to the system, 
which is determined,by the interarrival times. It appears that the predictive 
capability depends on the ranges themselves. As we decrease the demand on 
system, that is going from Model 2, to Model 3 and to Model 4, network 

precision increases. This means that neural networks perform better for 
systems with low demand than with higher demand. This could be explained 
by the fact that increased demand cidds more interactions in the systems, 
and hence makes it more difficult to classify system behavior into patterns. 
Since neural networks o2?erate via pattern classification, network j^recision 
deteriorates, at least slightly when the demand on the system increases under 
consideration.

Model 5 is identical to Model 1 , except that all the examjDles in the data 
sets, for which the average machine utilization is above 98%, are removed. 
For such examples, the system may be out of its stecidy state. Hence, this 
experiment would show if including examples which corresi:)ond to the system 
being out of its steady state in the data set, has an effect on the neural network 
performance. A slight imi:)rovement has been noticed for Model 5 over Model 1 . 
In fact, the results achieved by Model 5 are comparable to the ones achieved in 
Model 2 . Although the data for these two models is generated from different 
ranges (interarrival times for Model 5 are generated from [20..100] and for 
Model 2 from [20..40]), the models iDerforrned comi^arably and so we can say 
the length of the ranges did not affect the network performances, but rather it 
is those exami^les that correspond to extremely loaded system that deteriorate 
most the metamodel accuracy.

For the stochastic configurations (Models 6 , 7 and 8 ), it api^ears that the 
precision of the neural metamodels significantly decrecises as we introduce 
sources of stochasticity, as can readily be seen from the graphs in Figure 3.2.2 
in ApjDendix A. Moreover, it appears that network i^recision is more affected 

by the processing time as a stochastic factor than by the interarrival time as a 
stochastic factor. However, the difference between these two factors is not very 
large if we comi^are it to when both factors are stochastic. Although the three 
stochastic configurations irerform significantly worse than the deterministic



Ccises, they still can be considered to be acceptable for all the error assessment 
criteria except for the tolerance approach (Method 1). Nevertheless, this 
tolerance approcich imposes very tight tolerance levels and so we cannot rely 
on it to judge on the performance of the networks, because if we slightly relax 
the tolerance levels, the performance will significantly improve.

Concerning the generalization capability of the neurcil networks, they 
appear to be acceptable, except for the first error assessment approach because 
of the tight tolerance levels imposed. The experiments have shown that 
metarnodel performance was consistent through out the lour criteria. In other 
words, metamodels have the same ranking on the four criteria. On the other 
hand, no architecture is best for all models. Thus, in order to find the best 
metamodel, unfortuiicitely, a large number of networks hcive to be constructed 
cuid tested. This would result in long rnetcimodel development phase.

3.3 Comparison of Simple vs. Complex 
systems
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Although in both cases, the neural network metamodels proved to perform 
well in estimating mean iricichine utilization, there are several remarks worth 
mentioning regarding the effect of system complexity. First, the increased 
complexity ¿icts more negatively on metamodel performance as we move from 
the deterministic to the stochastic configurations. The first graph on Figure
3.3 highlights this fact. This could be explained by the hict that stochasticity 
is itself another dimension of complexit}^, and if it is combined with system 
complexity then the system would undergo more interactions that are difficult 
to classify. The second point concerns the stochastic fectors. It appears 
that introducing system complexity leads to the factor of stochastic processing 

times to have a slightly more negative effect on neural network performance 

than the fcictor of stochcistic interarrival times. Concerning the generalization 
capabilities, they slightly decrease with increased system complexity. However, 
the magnitude of this deterioration is nearly constant cis we move to stochastic
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configurations. This can be seen from the second graph on Figure 3.3. Also, 
demand on system appears to be an important factor to rnetamodel accuracy, 
the higher the demand the lower the accuracy.

The error assessment methods produced consistent results in both cases. 
In other words, the different models would rank similarly on all the methods. 
This consistency is a good point as it confirms the conclusions made so far. 
On the other hand, if we consider the tolerance approach (Method 1 ), the 
performance of neural network metamodel for the stochastic configuration may 
not be considered as acceptable. This can be explained by the tight tolerance 
levels applied. However, this requires some subjective judgments that depend 
on the applications of this type of rnetamodeling and the objectives of the 
application.

To conclude, we can say that complexity, whether it is due to stochasticity 
or to the system, results in deteriorating neural network lecirning and 
genei'cilization capabilities. Despite this, the results achieved are good enough 
to show that neural metamodels are promising tools to estimate machine 
utilization, especially if we consider the large potential of improvements that 
can be introduced on the neural networks that we built.



Chapter 4

Estimating Long Term Job 
Tardiness

The first part of this research dealt with designing neural network simulation 
metamodels to estimate long term mean machine utilizations given the job 
arrival rates and the dispatching rule applied in ci job shop environment at two 
levels of cornplexitjc In this second part of the research, the neural networks 
metcimodels are api^lied to estimate long term mean job tardiness. The aim 
is to determine how well can we predict tardiness with neural networks and 
to determine which factors influence their predictive capabilities. This would 
allow investigating the effect of the performance measure being estimated.

As for mean machine utilization, we investigate two levels of system 
complexity which we will refer to cis simple system case and complex system 
C cise. The experimental procedure that is followed in this section starts by 
designing metamodels from inputs genercited from a wide range. If the neural 
network can predict performance (mean job tardiness) then complexity is added 
through the introduction of stochasticity. Otherwise, we split this wide range 

of the inputs to smaller subranges. Each resulting subrange would be analyzed 
similarly until the predicting performance improves or no improvement can be 
expected. This procedure allows us to examine the prediction performance of

44
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neural networks with respect to the different system configurations and also 
allow us to assess the boundaries of the applicability of metamodeling with 
neural networks.

4.1 Case 1: Simple System

The system modeled in this first case is identical to the one used for the 
utilization measure in the previous chapter, simple system case (refer to 
Section .3.1.1). The only difference is due to the additional due date based 
job dispatching rules included for the tardiness measure.

4.1.1 Experimental settings

System Description

The changes made in this set of experiments, are related to the dispatching 
rules and to the introduction of a due date assignment method. For details 
regarding the original system, refer to Section 3.1.1. This system is allowed 
to opei’cite with 3 dispatching rules: (SPT), EDD cind MOD. The SPT rule, 
which is used also in the previous chapter, is introduced for the purpose of 
relating the two cases and the two due date based rules are used as they aim 
at minimizing tardiness, where one is a job based rule and the other is an 
operation based rule.

Because we want to measure tardiness, jobs need to be assigned due dates. 
The method used to assign due dates is the Total WorK content method (TWK) 

and it involves a due date tightness factor, k, which is generated initially from 
the I'cinge [2,9]. This range is selected according to pilot runs with different 
values of arrival rates and with different dispatching rules. These pilot runs 
indicate that the cibove rcinge covers both the tight and the loose due dates. 
Hence, the due date tightness factor, k, is also presented to the neural network
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as an input. In order to cinalyze the effect due date tightness factor, we further 
split this range into smaller ranges in our experiments.

As for mecin machine utilizcition, in switching from deterministic to 
stochastic configui'citions, we apply the deterministic values cis the mean of 
the corresponding exponential distribution both for the interarrival times and 
the processing times. Refer to Section 3.1.1 for further details.

Simulation Models

Different simulation models are developed in order to produce different 
sets of training and test examples. The models mainly describe the same 
system, however the range from which the input vcvricibles (in the data sets 
corresponding to each model) are generated, is varied from model to model. 
The ranges start from wide ranges to smaller ones in order to aimlyze the cases 
where the neural metamodel estimation is not acceptable. In the Ccises where 
neural metamodel perform well, these rcinges are not split but they are used 
to generate the means of distributions for stochastic models. We investigate 
models with deterministic nature as well as models with stochastic interarrival 
times or with stochastic processing times or with both. Table 4.1.1 in Appendix 
B shows the list of the models. This tcible reports the nature and ranges of 
the inputs that are used in the training set and test set corresponding to each 
model. Figure 4.1.1 describes the relationship between the models. Table 4.1.2 
in Appendix B shows the chciracteristics of the data sets generated from these 
models in terms the machine utilization as well as the proportion of tardy jobs 
(minimum, average, standard deviation and maximum).

Neural Networks Metaniodels

The proposed neural networks are based on the Back propagation algorithm 
with two learning coefficients (the learning rate and the momentum coefficient). 
The size of the data sets (training and test sets) generated depends on the width
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Figure 4.1: Mean Tardiness; Simple System: Relationsliij) between models.

of the range of the corresponding inputs as well as on time constraints related to 
running the corresponding simulation programs and training the metamodels.

The generic network architecture that we use is as follows:

- IniDut layer; 5 processing units:

- Interarrival time for job type 1, Ai.

- Interarrivcil time for job type 2, A2 .

- Inter arrival time for job type 3, A3 .

- Dispatching rule, 4> :1,2 or 3 (SPT, EDD, MOD).

- Due date tightness factor, k.

(For the stochastic case, Aj stand for the mean of the exponential 
distribution modeling the interarrival time of jobs type i.)

Hidden layers: Various combinations of networks with different number 
of hidden layers, with different number of processing units are used.
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- Output layer : 3 processing units:

- Mean job tardiness for jobs type 1 ,

- Mean job tardiness for jobs type 2,

- Mean job tardiness for jobs type 3.

Table 4.1.3 in Appendix B shows the list of the neural networks that were 
developed and their corresponding characteristics. In this table, the name 
assigned to each neural network are as follows: Exp3_A_B. This coding should 
be read as the name of the neural network number B developed as a metamodel 
for model A of this second experiment. An example would be: Exp3_4_3 . This 
describes the network number 3 designed for model 4 of experiment set number 
3.

Error Assessment

Again, four measures are used to evaluate the performimce of the neural 
networks. The first three are identiccil to the first three used in estimating 
mean machine utilization (Refer to Section 3.1.1). It is done so for the sake of 
consistency and to allow performing comparisons.

Бог the first measure (the tolerance approach), we use a tolerance level, 
a, that is allowed to take three possible values: 10, 20, 30 Min. Setting a at 
higher values will results in more precise networks but this will misleadingly 
improve the results. On the other hand, decreasing the value of a would result 
in more severe assessment. As a matter of fact setting an appropriate level 

of cv for all the delta set is difficult. Therefore, whatever way you look at 
it, this approach is subjective and so you Ccinnot rely on it alone to assess the 
performance of neural networks. The MAD and MMAD approaches need some 
prior knowledge about the system and hence, require subjective interpretations. 

Thus, the first three methods will not be used to assess the acceptability 

of the performance of the metamodels but rather to compare the different 
networks constructed for each simulation model and to assess the relative effect
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of the different factors considei’ed. Method 4 (measuring percentage deviation 
from true value, simulation output) as described in Section 3.1.1, is no more 
applicable in this case because the true value (simulation output) may take 
zero values and hence cannot be used as a denominator. Instead, we propose 

a fifth error measurement approach for this experiment, as explained below.

We first define the following:

i: be the index that represents the example number in the training or 
test sets.

j :  be the index to describe job type, j  =  1,2,3.

Si f. be the average tardiness obtained for job type j  at example i obtained 
from the simulation model (true result).

Nij\ be the civerage tardiness obtained for job type j  at example i 
obtained from the neural network metamodel (prediction of -S'p).

kf. be the due date tightness factor used in example i.

TWCj : be the total work content of jobs type j .

T : be the total number of examples in the training or test set.

We cilso dehne:

Dij =  \Sij — Nij\: absolute deviation per job type j  and per example

Di — 7Tiax{Dij,j -  1 ,2 ,3 }: maximum deviation across jobs for example 

'L

Eij =  {ki * TW C j)  -b Sij: maximum of flow allowance and flow time for 

jobs type j  at example i.

The fifth error assessment approach is described below.
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» Method 5: (deviation-to-flow time approach)

The first three methods produced absolute measures of the error and 
hence are very subjective. The tolerance approach requires fixing some 
tolerance levels and these in turn requires an understanding and a 
subjective judgmental evaluation to set them. The MAD and MM AD 

approaches are measures related to the deviations in the estimate and 
hence, in the interpretation of the results, a prior knowledge of the 
system is needed. These methods will be then used just to discriminate 
between the different networks built. This fifth method provides a 
relative measure and consequently can be used to assess whether the 
networks achieved good results or not in terms of real life application. 
For each example in the data set, it provides a measure of the relative 
importcince of the deviation between the simulation true results cind the 
metamodel estimates with respect to the flow time of each job type. The 
interpretation of this measure is as follows:

Suppose that the neural metamodel is actually in use in a real system 
and that it is used to select an ojDerational policy which is determined by 
a due date factor, k, and a dispatching rule, (p, as to meet management 
objectives in terms of job tardiness for a given combination of arrival 
times. The neural network then would be run several times to obtain the 
best operationcd policy, given the current job cirrival rates. Now supj^ose 
that the selection process is over and that k and (j) cire decided upon. This 
rnecins that management believes that the flow time that results from 

their decisions is acceptable. This value of the flow time would be equal 
to the sum of the flow allowance and the expected tardiness as estimated 
by the neural network. If the jobs appear to be more tardy than what 
was expected by the neurcil network, then it means that customers would 
have to wait more and so the metamodel must penalized for this. If the 

job is tardy but less than estimated by the neural network, any plans 

such ¿IS ti'cinsport of jobs would be disturbed. Thus, if the jobs are tardy, 

any devicition from the expected flow time as given by the metamodel 

should be penalized and thus, me measure the relative importance of the 
error in the estimate with respect to the actiuil flow time. If the job is not
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tardy, then it means that the flow allowance given to each job is too large 
and so inventory costs would be incurred. Then we would like to know 
how important is the deviation from the flow allowance. Therefore, we 
measure the relative importance of the deviation from the true relative to 
the flow time, when the job is tardy, and relative to the flow allowance, 
when the job is ecirly.

This approcich takes the ratio of the deviation from the true to the 
flow allowance/flow time. If this ratio is low, then the performance is 
acceptable. Moreover, this approach has the advantage of evaluating the 
error associated with each example separately, hence it is objective as in 
the traditional percentage deviation approach (Method 4 ).

For each job type and for each example in the sets, the ratio of the 
deviation to the flow allowance is taken and then the average and the 
standard deviation of these ratios are considered across all the examples 
in the data set. Hence, the average error in each data set and for each 
job type, would be:

Ei

T
E
¿=1
.E (f )

We calculate the mean error and the corresponding standard deviation 
for each job type in order to see if the individual job characteristics can 
influence the performance of neural networks.

4.1.2 Results and Discussions

The detailed of the results of the metamodels for the four evaluation measures 
previously defined are provided in Table 4.1.4 in Appendix B. For each 

simulation model, we select the “best” neural metamodel (gray background) 
and we graph their relative performance in the graphs given in Figure 4.1.2 in 

Appendix A. By the term “best” we refer to the metamodel that outperforms 
the others for most of the error evaluation criteria (mainly on Method 5 as it 
is a more objective criterion). Except for Model 1 , all the remaining 17 models
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achieved good results with Method 5 (deviation-to-flow time method). Since 
we believe that this method is the most objective one and gives indications 
for the potential application in real life, we consider that -except for the 
very general case of Model 1 - neural metamodels are able to predict mean 
job tardiness successfully (a mean deviation less than 6 % of the flow time). 
Further fine tuning and experimentation with the neural network parameters 
as well as improvement in the learning algorithm will surely further improve 
the results. The next paragraphs will discuss the results in terms of error 
assessment methods 1 , 2  and 3.

Model 1 is the general deterministic model. The results for this model are 
not acceptable by any of the error assessment methods. Models 2, 15 and 3 
are special cases of Model 1 since we reduce the width of the interval from 
which job interarrival times are generated. They respectively correspond to 

the high, medium and low demand on system cases. Models 15 and 3 (medium 
and low demand on system) perform well in terms of all the error assessment 
methods. Thus, we develop three stochastic configurations from each of them; 
Models 16, 17, 18 from Model 15, and Models 1 1 , 1 2 , 13 from Model 3. These 
configurations are: stochastic interarrival times only, stochiistic processing 
times only or both factors stochastic. For these stochastic configurations, 
the neural metamodels produced good results. Also, the deterioration in 
the performance of the metamodel relative to the deterministic cases is not 

significant. Comparing the stochastic configurations, it appears that there is no 
considerable difference between when the only stochastic factor is interarrival 
times or when the only stochastic factor is the processing times. However, 
when both stochastic varicibles exist, the results are slightly worse.

In Model 2, which corresponds to high demand on system, the neural 

networks performed poorly. From this, we develop Model 14 which is identical 

to Model 2 except that we remove all the examples in the data sets where the 

system is saturated (i.e. mean machine utilization is bigger or equal to 99%). 
This corresponds to removing the examples which have very low values of 

interarrival times. Model 14 achieved a considerable improvement over Model 
2 for evaluation criteria 1, 2 and 3, although the results are not as good as the
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ones achieved for the low and medium demand on system cases (Models 15 and 
3). The results stated cibove indicate the demand on system (determined by the 
intei’cirrival time) is an important factor with respect to the neural metamodel 
precision.

In order to see if any of the other factors (due date factor, A.·, or dispatching 
rule, 4>) has an effect on neural network accuracy, we derive from Model 2, 
Models 4 through 8  in which we fix one of these two factor and we let the other 
to be variable. We also develop Models 9 and 10 where both the scheduling 
rule is fixed at MOD and the due date factor is set at 9 and 6 , respectively. 
The improvement over Model 2 is not considerable. The reason for this may 
be that these two factors, when varied, do not result in a variation in the level 
of interactions that take place in the system. That is to say that, they act as 
to rearrange the flow of products in the system, but they do not change the 
volume of this flow. However, there appear to be a variation in the metamodel 
precision depending on which factor is fixed and at which level. This variation 
is also dependent on the error assessment method. This inconsistency between 
the evaluation criteria does not allow us to make any conclusion regarding the 
exact effect of these two factors.

If we consider error assessment Method 5, the neural metamodel performed 
better on job type 3 than on job type 2 and job type 2  better than on job type 1 . 
This ordering according to the job types indicates that the job characteristics 
play some role in the accuracy of the metamodel. This ordering corresponds 
to the number of operations of each job type.

The error measurement method is an essential issue to be decided upon for 
two main reasons: the first reason is that the ranking of the performance of 

neural networks may vary according to these methods for some cases. In that 

case, no absolute conclusion can be made with respect to which metamodel is 

better than the others as the order of models changes from error assessment 
method to another. The second reason is that in cases like this experiment 
-where the usual relative measure cannot be used- evaluating the performance 
of our networks is a subjective procedure. This evaluation depends on the
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real users of the metamodel. Therefore, both metamodel developers and users 
have to agree upon an evaluation procedure before starting the metamodeling 
process.

Demand on system is an essential factor. If system is heavily loaded, the 
predictive capabilities decrease. This is the same as to say that high load 

results in more complex interactions within the system and so more difficulties 
in classifying those interactions.

Due date tightness factor is not as considerable as the demand on system 
fcictor. However, reducing the range of those two factors does contribute to 
improving slightly the precision of our estimations.

The scheduling rule being used at tight due dates may have an important 
effect. Further analysis and experimentation is required to investigate this 
point.

Allowing the system to handle stochastic configurations when the demand 
on system is not high, does not seem to deteriorate the results considerably. 
This may be due to the fact that we are assessing the ¡performances in terms 
of civerages. In these stochastic models, the standard deviations related to the 
errors of the networks slightly increased with respect to the deterministic case. 
However, these standard deviations are still small enough to allow us to say 

thcit the network results are reliable (i.e. we can be quite confident that the 

result is not too far from the true performance).

For this simple system case, the metamodel generalization capabilities were 
good and this enhances the applicability in real life.
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4.2 Case 2: Complex System

4.2.1 Experimental settings

System description

The system examined in this second case for estimating job mean tardiness, 
is identical to the one used for the second case of estimating mean machine 
utilization (refer to Section 3 .2 . 1 . for more details)

Simulation Models

For this experiment, 8  simulation models are built. Table 4.2.1 in Appendix 
B shows the list of the models. This table also reports the nature and ranges 
of the inputs that are used in the training and test sets corresponding to each 
model. Figure 4.2.1 describes the relationship between the models. Table 4.2.2 
in Appendix B shows the characteristics of the data sets generated from these 
models in terms the mcichine utilization as well as the proportion of tardy 
jobs (minimum, average, standard deviation and maximum). This study is 
different from the one made in the previous case: we have pi'eviously shown 

that the most considerable factor on neural network metamodel’s predictive 
capabilities is the factor of demand on system. Hence, in this study we only 
focus on this factor. For the simulation run lengths and transient period, they 
are identical to the corresponding case in estimating mean machine utilization 
(refer to Section 3 .2 . 1  for further details).

Neural Network Metamodels

For each model described in the previous section, three neural metamodels 
are built. The network learning rate and momentum term are set fixed and 
the circhitecture is varied in terms of number of hidden layers and number of
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processing units per hidden layer. The number of processing units in the input 
layer and the output layer as well as the in the hidden layers are increased 
to adapt to the increase in the system size and to the number of job types, 
relative to the simple system case. Through the cases examined so far, we tried 
to keep the same type of neural network circhitectures with the same values 
of network learning rates and momentum terms. This is necessary in order to 
be consistent in the comparisons between the different cases. The number of 
training cycles is set to a large value to total to 500000 examjDles presented 
to the neural network in the training phase. This allows to all the network to 
converge.

The generic network architecture that we use, is as follov/s:

- Input hiyer: 8  processing units:

- Interarrival time for job type 1, Ai.

- Interarrival time for job type 2, A2 .

- Interarrival time for job type 3, A3.

- Interarrival time for job type 4, A4 .

- Interarrival time for job type 5, A5 .

- Interarrival time for job type 6 , \q.

- Dispatching rule, (j) : 1 , 2  or 3 (SPT, EDD, MOD).

- Due date tightness factor, k.

(For the stochastic case, Aj stands for the mean of the exponential 

distribution modeling the interarrival time of jobs type i.)

- Hidden layers: For each model three network architectures are applied 

with different number of hidden layers and with different number 

processing.

- Output layer : 6 processing units:
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- Mean job tardiness for jobs type 1,

- Mean job tardiness for jobs type 2,

- Mean job tardiness for jobs type 3.

- Mean job tardiness for jobs type 4,

- Mean job tardiness for jobs type 5,

- Mean job tardiness for jobs type 6 .

Table 4.2.3 in Appendix B in shows the list of the neural networks that 
were developed and their corresponding characteristics.

Error Assessment

For the sake of consistency, the same four error assessment approaches that are 
used in the previous simple system case, are used in the complex system case 
also. Refer to Section 4.1.1 and to Section 3.1.1 for more details.

4.2.2 Results and Discussions

Now, we investigate the use of neural networks for predicting mean job 
tardiness in a more complex job shop system. The detailed performances of all 
the designed rnetamodels across the four evaluation method previously defined 
are provided in Table 4.2.4 in Appendix B. For each simulation model, we select 
the “best” neural metamodel (gray background) and we graph their relative 
performance in the graphs given in Figures 4.2.1 in Appendix A. By the term 
best we refer to the metamodel that out performs the other on most of the 
evaluation criteria (mainly the fourth as it is a more objective criterion).

Model 1 is the general case. The performance of this model is not 

satisfactory for all the error assessment criteria. In the simple system case, 

we observe that the metamodel precision is mostly determined by the demand 

(or load) on system, and hence we check if this factor still has the same effect
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when the system complexity is increased. Thus, we develop Models 2 , 3 and 
4 which correspond to high, medium and low demand on system respectively. 
Model 2 (high demand on system) poorly performs on all the criteria where 
as Models 3 and 4 perform well. This confirms our previous observation. We 
also develop Model 5 which is identical to Model 1 , except that we remove all 
the excimples in the data set lor which the system is saturated (i.e., where the 
mean machine utilization is larger than or equcil to 98%). This model achieved 
much better results than Models 1 and 2 , further confirming our previous 
observations. Specifically, this model shows that as we increase the demand on 
system, estimation of job tardiness becomes more difficult due to the increase 
in the interactions in the system. According to error assessment Method 5 , 
Model 5 achieves acceptable results. The models discussed so far, indicate 
that the neurcd metamodel accuracy does not deteriorate linearly with the 
increased demand on system: This means that when moving from low demand 
to medium, the deterioration is insignificant; and when moving from medium to 
high demand (but the .system is still not saturated), the deterioration is slightly 
more irni^ortant. However when moving from high demand (with system 
not saturated) to high demand (with system allowed to be saturated) the 
deterioration is very important. This exponential pattern in the deterioration 
of the accuracy of the metamodel, where most of the deterioration takes place 
at the extreme case only, indicates that the potential of applicability of neural 

metamodels in real life is high.

Since Models 3 and 4 (medium and low demand on system), achieved 
acceptable results, we investigate the corresponding stochastic configurations 
for the combination of these two models. This results in Models 6 , 7 and 8 . 

The results achieved by these models are very much comparable to the results 

achieved by Model 3 (deterministic, medium demand), indicating that the 
introduced stochasticity does not significantly affect neural network predictive 
capabilities. It also appears that neither the nature of the stochastic factors, 

nor the number of stochcistic factors have an important effect on the predictive 

performance of neural networks.

Another observation is that if we look at the fifth error assessment approach.
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the neural metamoclel perform better on job type 6  than on job type 5, than 
on job 4, and so on, until job type 1 . This ordering according to the job 
tyjies indicates that the job characteristics play some role in the accuracy of 
the metamodel. In fact, this ordering is inversely proportioiicil to the number 
of operations of each job type. This is a strange behavior as we would have 
expected the inverse to take place.

Regarding the generalization capabilities of neural networks, we cannot 
conclude as it depends on the error assessment criteria. The generalization 
capability is better when we consider the MAD or the MMAD approaches than 
when we consider the tolerance approach or the flow time approach. Despite 
this, the difference between the performance of the training sets and the test 
sets on the latter criteria, is not large enough to threaten the applicability in 
real life.

Some pilot experiments were done on using neural metamodels to predict 
mean job flow time. These experiments gave some indications thcit estimating 
mean job flow times is very similar to estimating mean job tardiness. However, 
detciiled analysis is required in order to confirm this observation.

4.3 Comparison of Simple L · Complex sys­

tems

Unlike the mean machine utilization case, where in both simple system and 
complex system case, the neural networks metamodels perform well at all the 

models investigated, in the mean job tardiness case, there appears to be some 

important changes as we move from a simple to a complex ciise.

In both the simple system and complex system, demand on system 
(determined by the interarrival times) is a considerable factor in affecting 

neural metamodel accuracy. Experiments have also shown that neural 

metamodel produce good results at low and medium demand levels, for the
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deterministic and stochastic configurations, and both for simple and complex 
systems. However, when the system is highly loaded (with system allowed to 
be saturated), neural metamodels performed acceptably (according to error 
assessment Method 5) for the simjDle system case and performed poorly in the 
complex system case. If we consider the high demand models, where the system 
is not allowed to be saturated, then performance is acceptable for both simple 
and complex systems.

The experiments have also shown that there is an exponential behavior to 
the deterioration of the accuracy, with most of the deterioration occurring in 
the very high demand case. This fact is highlighted by the first graph on Figure 
4..3. Figure 4.3 is in terms of the third method of error assessment (MAD). 
This result indicates that metarnodels are able to predict mean job tardiness 
for systems in steady state successfully, although the users should expect some 

deterioration in the performance as we move to more complex systems and as 
we move to more loaded systems.

In terms of the effect of stochasticity, we observe that increased system 
complexity has a negative affect on metamodel performance. However, this 
negative effect is not important enough to reduce the potential of applicability 
of neural metamodels in real life. Also, this negative effect does not depend 
on the nature of the factors being stochastic but much more on the number of 
stochastic factors for both simple and complex systems (within the stochastic 
factors tested) as shown by the second graph on Figure 4.3.

In both simple and complex s}'^stems, we observe that according to the 
fifth error assessment approach, there is an ordering of the performance of the 

metamodels according to the job type and this ordering is consistent through 

the different models. In the simple system case, metamodel ciccuracy is better 
more jobs with more operations (Figure 4.1.2). For the complex system case, 

jobs with more operations achieved better estimates (Figure 4.2.1). While the 
ordering in the simple system is expected, it is not the case for the complex 
system. In fact, when a job has more operations, it means that it would interact 

with more other jobs and hence, its behavior is more difficult to estimate.
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The error assessment methods did not produce very consistent results in 
both cases in the sense that we would consider the metamodel performance 
acceptable on some method, but not on another. This highlights the fact that 
the first three error assessment criteria are subjective and hence we cannot rely 

on them to make judgments. But rather, we base our assessment on Method 

5 .

The third graph and fourth graph on Figure 4.3 show that system 
complexity, demand on system and stochasticity have a negative effect on 
generalization capabilities. In fact, generalization capability deteriorates more 
cis we move from low demand to higher demand with most of the deterioration 
taking place at the extreme. In the third graph of Figure 4.3, the network 
seems to perform better at very high demand than at high demand (complex 
system). This is not the case because the point shown on the graph corresponds 
to a network trained on much larger range of inputs which explains that 
abnormality. In addition, it appears that generalization capability is not 
affected by the nature of the factor being stochastic but more by the number of 
stochastic factors, where this observation is valid at both levels of complexity.



Chapter 5

Estimating Short Term Job 
Tardiness

In the previous two chapters, we measured the performcince of neural networks 
as a simulation metamodeling tool for estimating long term or steady state 
system performance. In this chapter we investigate the use of neural network 
simulation metamodels to estimate short term system performance. We only 
focus on job tardiness as it is representative of the performance measures 
considered by iTiodern management in selecting the appropriate operational 
policies. Here we didn’t consider machine utilization as another measure, 
because machine utilization is more relevant in long term decision making such 
as capacity planning than in short term decision making. Since we deal with 

short term system performance, the initial system status becomes a relevant 
factor in this analysis, in addition to the factors considered for the long term 
system performance. In this part of the research, mainly the simple system 
case is investigated. We try one complex model which indicated that the error 

is too high as expected. Thus, we did not continue investigating this part as 
that would be a replication of what takes place for the simple system. We 

focus the analysis on the effect of starting system condition as well as on the 

effect of demand (or load) on system (determined by the arrivcil rates).

62
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5.1 Experimental settings

System Description

For this set of experiments, we consider the same simple system which was 

used in the last two previous chapters. This system consists of 4  machines, 

3 product types and 3 transporters. It o}Derates under 3 job dispatching 
rules: (SPT), (FDD) and (MOD). Due dates are assigned according to the 
Total WorK content method (TW K). In the experiments, we consider the 
system configuration where both processing times and interarrival rates are 
stochastic. Our pilot runs have indicate that stochasticity has an important 
effect on system iDerformance when the simulation run is short. As a result, we 
consider the most difficult configuration (relative to the previous two chapters). 
Moreover, the ¡previous experiments have revealed that stochasticity reduces 
the precision of metamodels but does not alter the impact of the factors 
investigated. In order to keep a basis for comparisons, we use exactly the 
same system characteristics and parameters as previously explained in Section 
4.1.1.

Simulation Models

For this set of experiments, 26 different models are built in order to investigate 
the effects of initial system status and the effect of system load. Model 1  
corresponds to a deterministic configuration. The next 24 models correspond 
to the stochastic interarrivals and stochastic processing time configuration. 

The hist model correspond to the deterministic complex system.

We define the initial system status in terms of the number of each job type 

waiting in the input queue of each machine. Another approach would have been 
to just specify the number of each job type present in the system as a whole and 

not specifying at which level of processing they are or to consider only jobs at 

the start of their routings (omitting any work in progress inventories). By that 

way, we think that we fully and realistically describe the initial status of the
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system. Since we allow the system to initially have work-in-progress inventory, 
the clue date assigned to these jobs is proportional to their remaining total 
processing time (similar to newly arriving jobs whose due dates are proportional 
to their total processing time which is ecjual, at their release time, to the 
remaining total processing time).

Another important issue when dealing with short term performance is 
the simulation run length. Very short runs usually result in low number of 
observations. On the other hand, long runs imply that the system can reach 
the steady state and hence, the effect of the initicd status cannot be seen. In 
our previous experiments on the long term system performance, we consider a 
transient period of 2 work days during which statistics are cleared. This period 
is selected based on some pilot runs. In this set of experiments on short term 
performance, we consider a simulation run length of 2  work days, that is the 
same transicent period. Table 5.1 in Appendix B shows the list of the models 
built. This table also reports the ranges from which the interarrival times, due 
dates tightness factor and initial number of jobs at eiich machine are selected. 
Figure 5.1 describes the relationship between the models investigated. Table 
5 . 2  in Appendix B lists the characteristics of the data sets generated from each 
model in terms of machine utilization, proportion of tardy jobs and tardiness.

Neural Network Metaiiiodels

As in the previous experiments, the proposed neural networks are based on 

the Back propagation algorithm. Regarding the size of the data sets, we 
are able to use large sets, since the simulation run lengths are short. The 

training sets contain 600 examples where as the test sets contain 350 examples. 
For each model described in the previous paragraph, we built two neural 

network metamodels: one with a single hidden layer and one with multiple 
hidden layers, with number of processing units: 15-20-25-20-3 and 15-45-3, 
respectively. The learning parameters is set at 0.9 and the momentum term 
at 0.6. Moreover, we increase the size of the input layer in order to include 

the information regarding the initial status of the system. In addition, we
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Figure 5.1: Mean Tardiness: Simple System: Short term performance 
estimation: Relationship between Metamodels.

build larger networks (in terms of the number of processing units per layer) as 
compared to the previous chapters. This is because we expect that transient 

state behavior is more difficult to estimate than steady state behavior.

The following generic architecture is used:

- Input layer: 15 processing units:

- Interarrival time for job type 1, Ai.

- Interarrival time for job type 2, A2 .

- Interarrival time for job type .3, A3 .

- Dispatching rule, ^ : 1 or 2  (SPT,FCFS).

- Due date tightness factor: k.

- Number of jobs of each type at machine j (10 nodes).
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- Hidden layers: single layer and multiple layer.

- Output layer : 3 processing units:

- Mean job tardiness for jobs type 1 ,

- Mean job tardiness for jobs type 3,

- Mean job tardiness for jobs type 3,

Error Assessment

To be consistent with the last chapter on estimating long term job tardiness, the 
same four error assessment methods that are ai^plied for this set of experiments. 
Namely, these are the tolerance approach, MAD, MMAD and the flow time 
approcich. The reiider can refer to Section 4.1.1 for further details.

5.2 Results and Discussions

The results are presented in Table 5.3 in Appendix B. The graphs of these 
experiments are depicted in Figure 5 . 2  in Appendix A. The results are 

less consistent than in the previous two experiments on long term system 
performance.

Let us first consider the error assessment Method 5 (flow time approach). 
The performance of the neural networks on the test sets is consistent with its 
performance on the training set. Model 1 is the only deterministic model, the 

remaining models correspond to the stochastic configuration of the system. 

Model 1  is comparable (general deterministic model) with Model 2  (general 

stochastic model), we observe that stochastic!ty has a negative effect on 
metamodel performance. This corresponds to the conclusion made in the 

previous chapter. The iDerformance of the metamodel constructed for Model 1 
is about 7 % on the training set and about 13 % on the test set. For Model 2 , 

the metarnodel achieved about 8  % on the training set and about 23 % on the
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test set. This shows that in terms of generalization capability (which is the 
bottom line), stochasticity has an important negative effect. This observation 
is in line with our previous finding in the last chapter.

Models 2 through 25 correspond to the stochastic configuration. If we 
compare Model 2 (tight due dates) to Model 8  (loose due dates) we observe that 
there is no important difference. Hence, due date tightness factor has no effect. 

Models 9 through 14 have a fixed initial number of jobs at each machine for 
each job type. For these models, we observe that increasing the initial number 
of jobs results in improving the results until some point then no improvement 
is observed. Even if this initial number exceeds the average number of jobs in 
each queue (at steady state), rnetamodel performance does not change. The 
initial improvement could be explained by the fact that the starting system 
state tends more towards it steady state. The lack of improvement that takes 
place after some point could be explained as follows; In line with our previous 
finding in the last chaj^ters, we noted that when the system is highly loaded, 
the network performance deteriorates. Thus, the improvements achieved by the 
fact that the system tends towards the steady state is canceled out when the 
system goes beyond its steady state (and becomes highly loaded). The pattern 
of behavior just mentioned is also repeated when we split the range of the 
interarrival times to form models 18 to 2 1  and models 2 2  to 25 corresponding 
to low denuind and to high demand, respectively and hence confirming our 

observation.

Another observation is concerned with the effect of demand (or load) on 
system. Comparing Model 3 to Model 4 (high to medium demand) and Models 
18 through 21 to models 22 through 25 (medium to high demand), we observe 

that the demand on system has an opposite effect than what was observed in 

the previous chapters. In the previous chapter we noted that the increasing 

load on system results in decreasing the metamodel accuracy in estimating long 
term job tardiness. In this case, we observe the opposite, that is the higher the 
demand, the better is the metamodel accuracy. The reason for this is that the 

higher the demand, the quicker the system will reach its steady state and the 

more stable it will be, and hence, the more regular the system behavior will
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be.

Regarding the generalization capability, the results show that the size of the 
range from which the data is generated plays an important role (while keeping 
the same number of examples generated from that range). Whenever this size is 
reduced, the better is the generalization capability (i.e. the performance on the 
test set is nearer to the pei’formance on the training set). The generalization 
capability is not considerably affected by the load in system as was the case 
in the iDrevious chapters. The reason for this may be due to the introduced 
stochasticity (stochastic intercirrival times and stochastic processing times). In 
short term, system behavior is very sensitive to stochasticity and thus a very 
large variety of behaviors exists. Hence, by reducing the range from which 
training examples are generated and keeping the same number of examples, we 
are providing a better coverage of the system behavior that takes place in that 
range and consequently the network accuracy improves. This observation did 
not come out when we estimated long term job tcirdiness since the system was 
in steady state and it’s behavior was regular.

In addition, we note that in the models where the initial system status is 
selected from an intervcil (models 15, 16 and 17) and in the models where the 
initial system status is fixed at the middle point of this interval (models 5 , 6  
and 7), the networks performed comparably. This observation indicates that 
reducing the range does not contribute to improving the metamodel accuracy 
considerably but does affect the generalized ion capabilities as previously 
mentioned. These two observation indicate that there is some trade off to 
be taken; Either the user builds multiple metamodels to gain in generalization 
capabilities (one rnetamodel corresponding to one subset of the interval from 
which the inputs are generated) and looses in metamodel development time, 

or the opposite. We believe that the second alternative is better if we consider 

that the metamodel accuracy can still be improved and that the results will 

still be validated with the simulation model.

Concerning the results themselves, which is the bottom line, the experi­
ments show that the higher the demand on system and the more loaded is the
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initial system status, the better the results. The accuracy of the metamodel at 
low demand and empty initial status is not acceptable (error more than 1 0 %). 
However, given the lack of emphasis on fine tuning the network architecture 
much better results could be achieved.

When we consider the second and the third error assessment methods (MAD 
and MMAD), we see that the average deviation in the estimate is always 
proportional to the average tardiness (deviation in the range of 5  % to 30 
% of the average tardiness). We cannot interpret these results in terms of their 
acceptability or not as this depends on the application. In terms of comparing 
the different models, the observations made previously, regarding the effect of 
initial system conditions and system load, for the fifth error assessment method 
also hold here.

When using the first error assessment method (tolerance method), the 
results are mixed and somehow confusing. In fact, we can observe some 
inconsistencies between the I'cinking of the models relative to the training sets 
and tests sets. This behcivior is difficult to explain. However, the trends 
previously mentioned do also hold here. That is to say: higher load on system 
improves the accuracy of the metamodels and also higher initial queue sizes 

improves the results until some point than no improvement is observed.

The graphs on Figure 5.3 in Appendix A, show the effect of introducing 
stochasticity or system complexity relative the initial deterministic configura­
tion, with respect to the training set, test set and to generalization (defined 
as the difference between them). The complex system used is the same as the 
one used in the previous chapter. The three graphs shown correspond to error 
assessment Methods 2 , 3 and 5. We don’t include Method 1  because it does not 
highlight well the difference between these cases. The three graphs on Figure
5.3 of Appendix A are consistent in showing that the effect of system complexity 

is far more significant than that of stochasticity in deteriorating the metamodel 
performance. Moreover, these graphs indicate that generalization Ccipability 
suffers from stochasticity and system complexity. Another observiition is that 
according the Method 5, stochasticity has an insignificant effect compared to
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the effect of complexity, yet, the effect of stochasticity is importcint. This 
observation is in line with our previous expectations and in line with our 
findings in chapter 4 (estimating long term job tardiness). This may lead 
us to intuitively expect that the patterns of behavior we have observed for the 
stochastic system (as described before) will still be valid if we also analyze the 
complex system case in detail. However, this cannot be done until we construct 
metamodels for the stochastic case that would produce highly acceptable 
results.

In conclusion, we can say that in estimating short term system performance 
both system initial condition and demand on system considerably influence 
the performances of the metamodels. Decreasing the size of the range of 
the inputs does not improve the accuracy on the training set but improves 
the generalization cajDabilities. Moreover, stochasticity and system complexity 

have a negative effect on network accuracy and on its generalization capability, 
where the effect of system complexity is by far more significant. A last remark 
is that the results are not very good for some of the models but they are 
not bad enough in order to assert that neural networks are not appropriate 
for estimating short term system performance. On the contrary, we believe 
that with further fine tuning of the network architecture and parameters, the 
network could achieve much better results.

The purpose of using neural metarnodels to estimate short term tardiness, 
was to investigate their potential application in real time decision support. For 
this purpose, we include one last test. We would like to know if by using the 
neural metamodel, we are able to make the best decision. In other words, 
we would like to know if, based on the metamodel, we would select the same 
dispatching rule as we would do if base the decision on the simulation model. 
This test is cipplied on three general models, corresponding to deterministic 
simple system, stochastic simple system and deterministic complex system. 
In selecting the dispatching rule (based on the simulation models or on the 
neural metamodel), several alternatives maybe available. If the job types have 

different weights, then we may select the rule that minimizes the tardiness 

of the tardiness of the job type with highest weight. This may be the case
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when one job type is very profitable or very strategic to the business. Another 
alternative would be to select the rule that produces the minimum overall 
average tardiness (across all the job types). The following table show the 
results of this final test, where the columns correspond to different decision 
basis (based on each of the existing job types or on the overall average).

Job type 1 Job type 2 Job type 3 Job type 4 Job type 5 Job type 6 Average
NA I NA I NA I 7 9 ^

System
Simple, Deterministic 81% 100% 79%

Simple, Stochastic 96% 84% 49% NA NA NA 91%
Complex, Deterministic 100% 100% 71% 97% 98% 100% 100%

NA: Not ap pl icable

Testing capability to select operational policies.

The results of this test are unexpected. Recall that from Figure 5.3, we 
observed that stochasticity and system complexity have a negative effect on 
the accuracy of the metamodel. The above table gives opposite indications. 
If the selection is based on the overall average tardiness, the metamodel on 
the complex deterministic system ranks better than on the simple stochastic 
system, which in turn ranks better than on the simple deterministic system. 
This is exactly the inver.se of what Figure 5.3 indicated. The reason for 
this contradiction may be that complexity (whether due to stochasticity or 
to system) acts as to increase the difference between the performance of the 

different dispatching rules. Thus, it is easier for the metamodel to reflect this. 
In fact, this test implies that using neural metamodel is likely to produce good 
decisions as the system gets more complex and hence, neural metamodels are 
likely to be included in real time decision support systems. In ciddition, the test 
shows that making the decisions based on different job types leads to different 

metamodel performance. This is in line with our previous observation, related 

to the use of error assessment Method 5 (deviation to flow time approach). This 
method has indicated that metamodel performance is related to the job type 
characteristics. This test also supports our previous argumentation regarding 

assessing the validity of the metamodel. This test illustrates that different 

criteria lead to opposite interpretations or different decisions. Hence, the choice 

of the criteria should depend on the objective of the study.
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Computational requirements

At this point, it is also important to mention the computational burden 
associated with this type of experimental investigation. In this research, the 
results of 64 simulation models and 193 neural networks are reported. The 
time required to develop the training and test sets depends on the number of 

examples, in the data set, the size of the system being modeled, the simulation 
run length and the frequency of events taking place in each example of the set 
(the number of events is a function of the arrival rates and of the processing 
times). For example, consider the Ccise of the general simple deterministic 
system built to estimate long term system performance. In order to generate 
100 examples from this model, it would take about 60 minutes of CPU time 
on a SUN SPARC 2 station. This figure could be much less if the examples 
correspond to a low loaded system and much higher for a highly loaded system. 
In the experiments carried out, a minimum of 600 and a maximum of 1000 
examjDles are generated from each simulation model. Thus, on the average the 
computer usage per model is 9 to 10 hours of CPU time. As for the simulation 
models, the length of the neural network session is variable. In the networks 
built, we fix this length to 500000 examples presented to the network. This is a 
large number but we did so in order to ensure convergence. The time required 
by the network to train on these examples, depends on the network architecture 
used; the more processing units and/or hidden layers there are, the longer 
is the training session. Larger networks are employed when metamodeling 
complex systems and when metaniodeling short term estimation. Serial PCs 
are used to simulate the parallel processing that takes place in the network. An 
average training session would take on 486 IBM compatible PC, 50 MHz about 

3 hour. The recall session of the neural metamodel (requiring the network to 
generate outputs for examples not included in the training set for the purpose 
of testing its performance) is a very fast process cind it would need about five 
seconds to recall all the examples in the largest set. In fact, this was one of 
the advantages of neural networks once trained. Given that about three neural 

networks are built for each simulation metamodel, then a total of about 18 

hours were required for each of the 64 models examined. Thus, the total volume
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of computer usage of all this experimental investigation would be about 1152 
hours of CPU time. These figures do not include the time recpiired to develop 
and validate the simulation models, nor the post-data processing that takes 
place to assess rnetarnodel accuracy. The reason these number tire provided 
to the reader, is to show that the development of neural network metamodel 
is a long process and is consuming in terms of time and computer resources. 
The burden of this off-line work can be recovered by the savings achieved in 
the on-line application of the metamodel. One last word is that the continuous 
innovations in the hcirdware (even the serial one) are reducing the development 
time significantly.



Chapter 6

Concluding Remarks & Future 
Research Directions

In the first chapter we lay down the bcickgrouncl of this research. It appears 
that research in approximate techniques such as simulation metcimoclels in 
maturing, reflecting a need by modern business for fast approaches to help solve 
opercitional problems. Research on the use of neural networks as a simulation 
metamodeling technique is not abundant in for estimating long term system 
performance and rare for estimating short term system performance. This work 
aims at enriching this literature.

This research also has investigated the effect of several factors on the 
predictive capabilities of back propagation neural networks applied on job shop 

system. These factors are:

* Study horizon: Short term vs. Long term

* Performance measure to be estimated: Mean machine utilization vs. 
Mean job tardiness.

* System complexity: Simple system vs. Complex system.

* System configuration: Deterministic vs. Stochcistic ( 3 Ccises).

74
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* Error assessment methods: Relative vs. absolute measure.

* Metamoclel design: Single general metamodel vs. multiple specific 
metamodels (through reducing the range from which the of variables 
in data sets are generated).

* Neural Network architecture: Single hidden layer vs. multiple hidden 
layers.

The experiments carried out in this reseiirch have shown that neural 
networks are very a promising tool as ci simuhition rnetamodeling approach. 
Despite the fact that our emphasis was not on developing the most accurate 
metamodels, but rather our emphasis was to compare the effect of the factors 
mentioned above, the neural metamodels have achieved an acceptable level of 
accuracy. Given that the neural network design parameter ranges were only 
partially covered and the learning algorithm could be much further improved, 
we believe that neural metamodels are able to achieve better results thcin the 
ones reported in this research.

With regard to our experiments on estimating long term system perfor­
mance, we come with some interesting observations as follows:

1. Our experiments have shown that neural network metamodels accuracy is 
affected by the performance measure in use (mean machine utilization or 
mean job tardiness). First, the metamodels investigated performed better 
for estimating machine utilization than job tardiness. The reason for this 
is that machine utilization is mostly determined by the arrival frequency 

to the system and processing times. On the other hand, job tardiness is 

determined by the arrival rates, by the due date assignment procedure, 
by the dispatching rule and by the processing times. Hence, tardiness 
is a more involved function to estimate. Some pilot runs indicate that 
by using neural metamodels to estimate mean job flow time, the results 

obtained are very similar to estimating mean job tardiness, however, 

thorough analysis is required to confirm this.
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2. In our experiments, we define system complexity in terms of increased 
system size and in terms of increased number of job types flowing through 
the system. System complexity was shown to affect negatively the 
IDerformance of neural metamodels, where this negative effect appears 
more significant on the mean job tardiness than on the mean machine 
utilization. Despite this, the deterioration is not considerable enough 
to completely threaten the application of neural metamodels in real life. 
The threat takes place when the system is subject to extremely high 
demand on system (in ca,ses where the system is not in steady state).

.3. Stochasticity is another dimension of complexity which was investigated 
for the cases of medium and low demand on system. In these cases, the 
experiments have shown that stochasticity reduces slightly metamodel 
accuracy, but still within very acceptable limits. In addition, it appears 
that the nature of the factors investigated (interarrival times or processing 
times) is not important, but rather it is the number of factors that are 
stochastic thcit is important, for both performance measures. Moreover, 
this negative effect is not exaggerated by the effect of system complexity. 
Hence, at medium or low demand on system, and at simple or complex 
systems, and at mean utilization or mean tardiness, stochasticity can be 

handled successfully by neural metamodels.

4. The error assessment approach is a. very critical issue. First, we 
distinguish two different uses of the error assessment: The error 
assessment approach, when used to study the significance of the effect 
of different factors can be allowed to be subjective. This is because the 
values produced by each method on one factor is interpreted in terms of 

the other values on the other factors. However, when it comes to assessing 

the acceptability of the results, subjective error assessment methods can 

no more be relied on. We base this type of assessment on objective 
methods, which may be subject to discussion as this depends on the 
final application of the metamodel. The second point related to the error 
assessment approach, is that on the overall they were quite consistent (i.e. 

rnetamodels ranked similarly on the different methods). This consistency
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is a confirmation of the conclusions made. However, the significance of 
the effects that each factor investigated on the metamodel performance 
changes as we move from subjective to objective approach (in the case 
of mean job tardiness). In summary we say thcit in the analysis of 

the literature on neural metamodels, one should always motivate the 
error assessment approach applied relative to the final cipplication of the 
metamodel, otherwise the validity of the results achieved can always be 
questioned.

•5. Both for mean machine utilization and for mean job tardiness, the 
demand on system (determined by the arrival riites) appears to be a 
very considerable factor relative to metamodel accuracy. As a matter 
of fact, the higher the demand the lower the accuracy. We observe 
that deterioration of accuracy relative to demand on system follows an 
exponential pattern with most of the deterioration taking place at the 
extreme case (the case where the system is out of steady state or nearly). 
This pattern of behavior indicates that if we slightly move away from the 
saturation case, say with a maximum utilization of 90%, we are able to 
model reasonably loaded systems with a well acceptable level of accuracy. 
Also because of this dependence on the demand on system, it is wise to 
construct neural metamodels for every range of demand on system as we 
did in the ex2Deriments as this way would distinguish between extremely 
reliable metcimodels and others less reliable.

6. The experiments with mean job tardiness with simple systems indicate 
that the due date tightness and dispatching rules have some influence 
on the accuracy of the metamodel. However, the error assessment 

approach results are not consistent enough on this point to allow us to 
make conclusions regarding which factor is more important. The only 
observation that can be made is that they are much less considerable 

than the demand on system.

7. It appears that in estimating mean tardiness, neural metamodels perform 

differently for each job type. The results show that the accuracy is 
proportional to the number of operations of the corresponding job type:
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the less operations a job has, the less accurate is the estimate of the 
job tardiness and vise versa. This observation is unexpected and the 
experiments done so far do not allow us to give a reasonable explanation.

8. Generalization capabilities are quite good for neural network metarnodels, 
although these capabilities are negatively affected by (in order of 
importance) increased system complexity, by increased demand on 
system as well as by introduced stochcisticity. This is very important 
point since the bottom line is that in real life applications, we would 
rely on the generalization capabilities of the metamodels to make the 
estimations and they must be cis trustful as on the training sets.

9. Regarding the neural network design, unfortunately, no architecture is 
always better and no values of the network parameters (learning rate 
and momentum term) are good for all the models. In addition to this, 
we do not have an indication about the size of the data sets that should 
be used nor on the length of the training period. This led us to try and 
take the safe way, within the available time constraints and to increase 
the size of the data sets and the length of the training sessions. This 
resulted in long metamodel development phases. Some work has still to 
be done on these issues.

With regard to our experiments on estimating short term system 
performance, we can make the following observations:

10. Stochasticity has an important impact on metamodel accuracy but, this 

impact is far less important than that of system complexity.

11. independently of whether we are estimating short term or long term job 
tardiness, stochasticity and system complexity keep the same effect on 
the accuracy of the metamodels.

12. Generalization capabilities suffer also from introducing stochasticity or 

system complexity
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13. In estimating short term system performance, the demand on system still 
plays an important role in determining the accuracy of the rnetamodel. 
On the contrary of estimating long term performance, increasing demand 
on system results in improvement of the metamodel accuracy which can 
be explained by the fact that increasing system performance results in 

the system tending quicker to its steady state and hence tending more to 
have regular pattern of behavior.

14. Initial system status appears to have a considerable impcict on metamodel 
accuracy until some point and from that point on, this impact vanishes.

I.'d. Decrecising the size of the range of the inputs does not improve the 
accuracy on the training set but improves the generalization capabilities. 
Also the generalization capability is not considerably affected by the 
demand in system as was the case in the previous chapters.

In the second chapter of this manuscript dealing with laying the research 
background, we ¡^resent a set of issues that needed to be clarified and 
investigated in order to assess the potential of applicability of neural networks 
as a simulation metamodeling tool. In this thesis, we tried to get into 
some of these issues cuid we came up with some interesting observations. 
We tried to highlight some of the factor that influence neural metamodel 
accuracy and we showed that neural network is a promising approach for 
simulation metamodeling in estimating long term system performance. We 
also investigated the possible use of neural networks to estimate short term 
system performance. Our results show that such an application may be possible 
which implies that neural networks have the possibility to be used for real time 
decision supjDort. Given the computational requirements of such a study, we 
did not give much empimsis on fine tuning the metamodels, thus the results 
achieved could be further improved. Our results also indicate that system 
regularity is a key issue for the accuracy of the metamodel. Whether we are 
estimating long or short term performance, it is better to model a system in 

steady state and which has a regular behavior. Moreover, the experiments 

show that the use of neural metamodels in real life is not straight forward as
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the reported successful case studies may lead us to think. In fact, stochasticity 
cvnd especially system complexity have an important impact on metamodel 
performance.

In order to further investigate the potential of neural networks as a 
simulation metamodeling technique and possibly enhance its applicability, we 
suggest the following research directions:

- Investigating the effect of system conhguration: Flow shop to job shop

- Investigating the effect of system disturbances such as mcichine break 
down

- Investigating of applying different distributions in studying stochasticity

- Investigating the effect of the size of data sets.

- Investigating the effect of estimating other measures such as estimating 
standard deviation of the performance measure.

- Developing rules or guidelines as of how to select the best network 
architectures

- Investigating the validity of neural metamodels with respect to real 
systems
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Training sets: Training sets:

Test set:

Training sets:

Training sets:

Test sets:

Test sets:

Figure 3.1.2: M ean Utilization: Simple System: M etam odel perform ance through assessement criteria.
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Figure 3.1.3: Learning curve for selected best neural network.
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TRAINING SET: 
Tolerance appraoch
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Figure 3.2.2: M ean Utilization: C om plex System: M etam odel perform ance through assessement criteria.
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Mean Utilization: Effect of stochasticity & complexity on MAD

Mean Utilization: Effect of Stochasticity & Complexity on Generalization
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Figure 3.3: Mean Utilization: Comparisons.
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TRAINING SET: 
Tolerance approach

TEST SET: 
Tolerance approach
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TRAINING SET:
MAD & MEAN TARDINESS

TEST SET:
MAD & MEAN TARDINESS

TRAINING SET: 
MMAD & MAX TARDINESS
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Figure 4.1.2 (C on t’ d ): M ean Tardiness: simple Syste: M etam odel perform ance through assessement
criteria.



APPENDIX A 92

TRAINING SET:
MAD and Mean Tardiness

TEST SET:
MAD and Mean Tardiness

TRAINING SET:

4 Model # 5

TEST SET:
MMAD and Mean Max Tardiness

Figure 4.2.1: M ean Tardiness: Com plex System: M etam odel perform ance through assessement criteria.



APPENDIX A 93

TRAINING SET: 
Tolerance Approach
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Figure 4.2.1 (C on t’ d ): M ean Tardiness: Com plex System: M etam odel perform ance through assessement
criteria.
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Mean Tardiness: Deterministic system:
Effect of complexity and Demand on system on MAD

Mean Tardiness: Effect of stochasticity, Demand and

Interarivd s times Both

Mean Tardiness: Deterministic system: Effect of Demand on 
system on Generalization capabilities

Mean Tardiness: Effect of Stochasticity, Demand on system 
and Complexity on Generalization capabilities

Stochcstic factors

Figure 4.3: Mean Tardiness: Comparisons.
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TRAINING SET:
Deviation-to-flow time approach
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Figure 5.2: Mean Tardiness: Simple System: Short term performance estimation: Metamodel
performance through assessement criteria.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

MODE L #

Figure 5.2 (C on t’ d ): M ean Tardiness: Simple System: Short term perform ance estimation: M etam odel
perform ance through assessement criteria.
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sim pledeter minis tic 
system

sIm plestochcBtic
system

ocm pl0( deterministic 
system

Method 3: effect of stochasticity and complexity

system system system

sim ple deterministic 
system

sim p le sto ch a tic
system

ccmpl0< deterministic  
system

Figure 5.3: Mean Tardiness: Short term performance estimation: Cmparing effect of stochasticity and
system complexity.
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M ODEL

#

T ra in in g

se t

T e s t

se t

In te ra rriva l tim e P roce ss in g

tim e

S ch e d u lin g  ru le

# # N ature Range N ature

1 1 1, 5 and 6 determ in istic [14..85] determ inistic SPT or FCFS

2 2 2 stochastic

(exponential)

mean in 

[14..85]

determ in istic SPT or FCFS

3 3 3 determ in istic [60.,85] stochastic

(exponential)

SPT or FCFS

4 4 4 stochastic

(exponential)

mean in 

[14..85]

stochastic

(exponential)

SPT or FCFS

Table 3.1.1: Mean Utilization: Simple System: List of models.

M o d e l

# # N N et S ize

T ra in in g  

set # (size)

T est 

set # (s ize )

lea rn in g

rate

m o m e n tu m

rate

exam ples  

tra in ed  on

1 e x p l _ l _ l 4 _ 6 _ 7 _ 6 _ 4 #1 700 #1 400 0.9 0.6 280000

2 e x p l _ l _ 2 4 _ 6 _ 7 _ 6 _ 4 #1 700 #1 400 0.9 0.6 500000

3 e x p l_ l _ 3 4 _ 6 _ 7 _ 6 _ 4 #1 700 #1 400 0.9 0.6 280000

4 e x p l _ l _ 4 4 _ 6 _ 7 _ 6 _ 4 #1 700 #1 400 0.9 0 280000

5 e x p l _ l _ 5 4 _ 6 _ 7 _ 6 _ 4 #1 700 #1 400 0.9 0 500000

M o d e l 1 6 < ix p l_ l_ 6 4 _ 6 _ 7 _ 6 _ 4 #1 700 #1 400 1.5 0 280000

7 ^ x p l_ l_ 7 4 _ 6 _ 7 _ 6 _ 4 #1 700 #1 400 1.5 0 500000

8 e x p l _ l _ 8 4 _ 6 _ 7 _ 6 _ 4 #1 700 #1 400 0.3 0 500000

9 e x p l _ l _ 9 4 _ 6 _ 7 _ 6 _ 4 #1 700 #1 400 1.2 0.6 500000

10 e x p l _ l _ l l 4 _ 6 _ 7 _ 6 _ 4 #1 700 400 0.3 0.3 500000

11 e x p l_ 2 _ l 4 _ 6 _ 7 _ 6 _ 4 #2 400 #2 200 0.9 0.6 500000

M o d e l 2 12 exp  1_ 2 _ 2 4 _ 5 5 _ 4 n 400 #2 200 0.9 0.6 500000

13 exp  1_ 2 _ 3 4 _ 8 _ 9 _ 8 _ 4 n 400 #2 200 0.9 0.6 500000

14 e x p l_ 3 _ l 4 _ 6 _ 7 _ 6 _ 4 #3 400 #3 200 0.9 0.6 500000

M o d e l 3 15 e x p l_ 3 _ 2 4 _ 5 5 _ 4 #3 400 #3 200 0.9 0.6 500000

16 e x p l_ 3 _ 3 4 _ 8 _ 9 _ 8 _ 4 #3 400 #3 200 0.9 0.6 500000

17 e x p l_ 4 _ l 4 _ 6 _ 7 _ 6 _ 4 #4 400 m 200 0.9 0.6 500000

M o d e l 4 18 e x p l_ 4 _ 2 4 _ 5 5 _ 4 #4 400 #4 200 0.9 0.6 500000

19 e x p l_ 4 _ 3 4 _ 8 _ 9 _ 8 _ 4 #4 400 #4 200 0.9 0.6 500000

Table 3.1.2: Mean Utilization: Simple System: List of neural metamodels.
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NNet Data se t

METHOD 1: TOLERANCE
ap p roa ch

METHOD 2 : MAD

A lpha = 5% A lpha  = 6.5% A lpha  = 8% m in MAD (S td) m ax

1 exp1_1_1 Training set 700

Test set 400

2 exp1_1_2 Training set 700

Test set 400

3 exp1_1_3 Train ing set 700

Test set 400

4 exp1_1_4 Train ing set 700

Test set 400

7 exp1_1_7

8 e x p1_ 1_8

9 exp1_1_9

5 exp1_1_5 Training set 700

400

700

400

Test set 

exp1_1_6 Train ing set 700 

Test set

Train ing set 700 

Test set 400 

Train ing set 700 

Test set 400 

Train ing set 700 

Test set 400

10 e x p1_ 1_10 Tra in ing set 700

Test set 400

1.1% 0.4% 0 .1% 0.000 0.007 0.007 0.092

2 .0% 1.0% 0.5% 0.000 0.008 0.010 0.149

0 .7 % .......... 0.3% 0 .1% 0 000 0.006 0.006 0.084

1.8% 1.0% 0 6% 0.000 0.006 0.008 0.133

2.3% 1.0% 0 .6% 0.000 0.010 0.009 0.128

4.3% 1.8% 0.5% 0.000 0.011 0.010 0.107

5.0% 2 .1% 0.9% 0.000 0.014 0.011 0.140

9.3% 4.3% 1.8% 0.000 0.015 0.013 0.106

2.4% 0.9% 0.7% 0.000 0.010 0.010 0.161

5.3% 2.3% 0.5% 0.000 0.011 0.012 0.105

3.1% 1.1% 0.7% 0.000 0.011 0.011 0.162

6.5% 2 .0% 0.3% 0.000 0.012 0.013 0.083

2 .1% 0.7% 0 .6% 0.000 0.012 0.010 0.153

4.5% 1.5% 0 .8% 0.000 0.013 0.011 0.091

6.9% 2.4% 1.6% 0.000 0.015 0.013 0.142

9.5% 5.8% 3.3% 0.000 0.016 0.015 0.121
1.3% 0.7% 0 .1% 0.000 0.008 0.008 0.102
1.8% 0 .8% 0.5% 0.000 0.009 0.009 0.106

2.7% 1.3% 0.7% 0.000 0.010 0.010 0.130

6.3% 2.3% 0 .8% 0.000 0.011 0.011 0.103

11 e x p1_2_1 Training set 400 7.5% 2 .8% 0.3% 0.000 0.018 0.014 0.085

Test set 200 9.0% 3.0% 1.0% 0.000 0.018 0.015 0.128

12 e x p l^ 2^2 Tra in ing set 3.3% 0 .0% 0 0% 0.000 0.013 0.011 0.064

Test set 200 2 ,6% 0 .6% 0.5% 0.000 0.016 0.012 0.147

13 exp1_2_3 Training set 400 5.5% i'.'0% ........... 0.3% b.boo b.oi7 0.013 0.091

Test set 200 10.5% 3.5% 1.0% 0.000 0.018 0.015 0.108

14 exp1_3_1 Training set 400 6.3% 1.3% 0.3% 0.000 0.015 0.012 0.097

Test set 200 10.5% 4.0% 1.0% 0.000 0.016 0.014 0.100
15 exp 1_3 „2 Training set 400 7.8% 2 .0% 0.3% 0.000 0.017 0.013 0.085

Test set 200 12.0% 3.0% 0.5% 0.000 0.018 0.014 0.086

16 exp 1^3^3 Training set 400 0 .0% :;v 0 ,0%:>: ;■ 0.000 0.014 0.011 0.064

Test set 200 6 .0% 2 .0% 0.5% 0.000 0.016 0.012 0.096

17 exp1_4_1 Tra in ing set 400 14.8% 4.3% 1.0% 0.000 0.018 0.015 0.099

Test set 200 21 .0% 3.5% 1.5% 0.000 0.020 0.016 0.086

13 exp1„..4..,2 Training set 400 13.0% 4.3% ' i.0%' 0.000 0 0 1 8 0.016 0.096

Test set 200 18.0% 4.5%

................................

0 .0% 0.000 0.019 0.016 0.076

19 exp1_4_3 Training set 400 .... ...... i'5'%'’''.. b.bob 0.017 0.014 0.094

Test set 200 15.5% 4.5% 1.5% 0.000 0.019 0.016 0.140

Table 3.1.3: M ean Utilization: Simple System: Results o f  metamodels.
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METHOD 3:3: MADD METHOD 4: % E rro r

MM AD (S td) m ax m in Average (S td) m ax

0.013 0.0096 0.092 0 .0% 1.7% 1.7% 18.1%

0.014 0.0135 0.149 0 .0% 1.8% 1.9% 18.5%

0 010 0.0083 0 084 0 .0% 1 3 % 1 4% 14.0%

0.012 0.0123 0.133 0 ,0% 1.4% 1,6% 13,3%

0.019 0.0115 0.128 0 .0% 2.5% 2 ^ % 25.1%

0.020 0.0131 0.107 0 .0% 2.7% 2.5% 21 .2%

0.024 0.0139 0.140 0 .0% 3.5% 3.1% 26.2%

0.026 0.0158 0.106 0 .0% 3.6% 3.2% 23.3%

0.018 0.0139 0.161 0 .0% 2.3% 2.7% 22.7%

0.020 0.0154 0.105 0 .0% 2 .6% 2 .8% 19.7%

0.021 0.0151 0.162 0 .0% 2 .6% 2.7% 23.0%

0.023 0.0152 0.083 0 .0% 2.9% 2.9% 18.7%

0.020 0.0122 0.153 0 .0% 3.0% 2.4% 21 .6%

0.022 0.0129 0.091 0 .0% 3.2% 2.5% 15.9%

0.026 0.0163 0.142 0 .0% 3.7% 3.7% 27.7%

0.028 0.0186 0.121 0 .0% 3.8% 3.8% 24.8%

0.015 0.0104 0.102 0 .0% 2 .1% 2 .2% 19.4%

0.016 0.0120 0.106 0 .0% 2 .2% 2.4% 20.3%

0.019 0.0132 0.130 0 .0% 2.5% 2.7% 21 .0%

0.020 0.0147 0.103 0 .0% 2 .6% 2 .8% 18.4%

NNet Data se t

e xp1_ 1_1

exp1_1̂ 2

exp1_1_3

exp1_1_4

exp1_1_5

6 e xp1_ 1_6

exp1_1_7

8 e xp1_ 1_8

9 exp1_1_9

Training set 

Test set 

T ra in ing set 

Test set 

T rain ing set 

Test set 

T rain ing set 

Test set 

Train ing set 

Test set 

T rain ing set 

Test set 

T rain ing set 

Test set 

T rain ing set 

Test set 

Train ing set 

Test set

10 e x p 1_1_10 Train ing set 

Test set

0.001

0.002

0.001

0.002
0.003

0.002

0.002

0.003

0.001

0.003

0.002

0.003

0.004

0.004

0.004

0.003

0.001

0.002

0.002

0.002

11 e xp1_2_1 Training set 0.003 0.028 0.0144 0.085 0 .0% 4.2% 3.1% 21 .1%

Test set 0.005 0.029 0.0160 0.128 0 .0% 4.3% 3.3% 34.8%

12 e x p t j2 J 2 Tra in ing set 0.004 0.022 0.0117 0.064 0 .0% 3.2% 2 .8% 19.7%

Test set 0.004 0.025 0.0144 0.147 0 ,0% 3.5% 2 .8% 24.4%  :

13 exp1_2_3 Training set 0.002 0.027 0.0128 0.091 0 .0% 4.1% 3.0% 16.0%

Test set 0.004 0.029 0.0163 0.108 0 .0% 4.1% 3.1% 26.2%

14 exp1_3_1 Tra in ing set 0.005 0.028 0.0127 0.097 0 .0% 3.6% 3.2% 28.7%

Test set 0.008 0.030 0.0150 0.100 0 .0% 3.9% 3.6% 27.8%

15 exp1_3_2 Training set 0.006 0.030 0.0130 0.085 0 .0% 3.9% 2.9% 18.0%

Test set 0.007 0.032 0.0145 0.086 0 .0% 4.1% 3.1% 16.9%

16 exp1_3_3 Tra in ing set 0.004 0.026 0.0111 0.064 0 .0% 3.4% 2.7% 17,5%

Test set 0.007 0.028 0,0130 0.096 0 .0% 3.6% 2 .8% 16.8%

17 exp1_4_1 Training set 0.009 0.034 0.0155 0.099 0 .0% 4.3% 3.6% 23.2%

Test set 0.008 0.035 0.0160 0.086 0 .0% 4.7% 3.6% 22 .1%

18 0 X p 1 .A  2 Training set 0.004 0.033.. 6.6155 6.096 0.0% ' 4.4% 3.6% ...23.3%

Test set 0.004 0.034 0.0153 0.076 0.0% 4.6% 3.6% 25.8%

19 exp1_4_3 Training set 0.003 0.032 0.0148 0.094 0 .0% 4.3% 3.6% " 25.0%

Test set 0.006 0.035 0.0177 0.140 0 .0% 4.6% 3.8% 32.9%

Table 3.1.3 (con t’ d ): M ean Utilization: Simple System: Results o f  metamodels.
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Error at a=5% Error at a=10%
Training set (setl) 3% 0%

Test set (set2) 3% 0%

Table 3.1.4: Error report of Pierreval’s network

Error at 
a=5%

Error at 
a=10%

MAD (Std) MMAD (Std) Mean % error (Std)

SET #5 68% 0% 0.04 0.012 0.051 0.005 3.8% 5.5%
SET # 6 100% 0% 0.06 0.016 0.081 0.005 5.3% 10.4%

Table 3.1.5: Robustness test
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MOD

#
T ra in in g

se t

T e s t

se t

# o f

jo b

typ e s

# o f

m ach

In te ra rriva l tim e P roce ss in g

tim e

range

Due date 

t ig h tn e s s  

fa c to r

S ch e d u lin g  ru le

N ature Range

1 #1 #1 6 7 determ inistic [20 .. 100] determ in istic [2..9] SPT, MODD or EDD

2 #2 #2 6 7 determ inistic [20..40] determ inistic [2..9] SPT, MODD or EDD

3 #3 #3 6 7 determ in istic [40..70] determ in istic [2..9] SPT, MODD or EDD

4 #4 #4 6 7 determ in istic [70.. 100] determ in istic [2..9] SPT, MODD or EDD

5 #5 #5 6 7 determ inistic

"machine utilizati 
98%

[20 .. 100] 

ion <

determ inistic [2..9] SPT, MODD or EDD

6 #6 #6 6 7 stochastic

(exponential)

mean in 

[20 ..100]

determ inistic [2..9] SPT, MODD or EDD

7 #7 #7 6 7 determ in istic [20 .. 100] stochastic

(exponential)

[2..9] SPT, MODD or EDD

8 #8 #8 6 7 stochastic

(exponential)

mean in 

[20 .. 100]

stochastic

(exponential)

[2..9] SPT, MODD or EDD

Table 3.2.1: Mean Utilization: Complex System: List of models.

MODEL

# m in .

P ercen tage  o f 

m ean

ta rd y  ]< 

(s td )

obs

m ax. m in .

M ach ine  util 

m ean

liza tion

(s td ) m ax.

1 0 .0% 34.1% 37.1% 100.0% 30.0% 68.5% 17.5% 100.0%

2 0 .0% 83.3% 29.7% 100.0% 69.5% 94.7% 6 .8% 100.0%

3 0 .0% 22 .1% 30.0% 100.0% 41.5% 65.8% 11.0% 100.0%

4 0 .0% 12.9% 19.9% 90.1% 30.0% 41.8% 7.3% 60.0%

5 0 .0% 22.4% 29.9% 100.0% 29.6% 62.5% 14.6% 97.9%

6 0 .0% 41.6% 37.2% 100.0% 30.2% 68 .1% 17.2% 100.0%

7 0 .6% 52.7% 33.8% 100.0% 30.3% 68 .1% 17.2% 100.0%

8 0 .6% 58.3% 32.0% 100.0% 29.9% 68 .1% 17.3% 100.0%

Table 3.2.2: Mean Utilization: Complex System: Generated set characteristics.
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N N et S ize

Train ing

s e t# (s ize )

Test

s e t # (s ize )

learning

c o e f

m om entum

c o e f

exam ples

learned

1 c2_l_I 8 _ 1 2 _ 1 4 _ 1 2 _ 7 600 4 0 0 0.9 0 .6 5 0 0 0 0 0

M o d e l 1 2 c2_l_2 8 _ 1 5 _ 1 9 _ 1 5 _ 7 /// 600 40 0 0.9 0.6 50 0 0 0 0

3 c2_l_3 8 _ 4 5 _ 7 600 4 0 0 0.9 0.6 5 0 0 0 0 0

4 c2_2_l 8 _ 1 2 _ 1 4 _ 1 2 _ 7 ^2 600 ^2 40 0 0.9 0.6 5 0 0 0 0 0

M o d e l 2 5 c2_2_2 8 _ .1 5 _ 1 9 _ 1 5 _ 7 600 4 0 0 0.9 0.6 5 0 0 0 0 0

6 c2_2_3 8 _ 4 5 _ 7 ^2 600 ^2 4 00 0.9 0.6 50 0 0 0 0

7 c2_3_l 8 _ 1 2 _ 1 4 _ 1 2 _ 7 3̂ 600 4 0 0 0.9 0.6 5 0 0 0 0 0

M o d e l s 8 c2_3_2 8 _ 1 5 _ 1 9 _ 1 5 _ 7 3̂ 600 3̂ 4 0 0 0.9 0.6 50 0 0 0 0

9 c2_3_3 8 _ 4 5 _ 7 600 3̂ 4 0 0 0.9 0.6 5 0 0 0 0 0

10 c2_4_l 8 _ 1 2 _ 1 4 _ 1 2 _ 7 m 600 4 0 0 0.9 0.6 5 0 0 000

M o d e l 4 11 c2_4_2 SJ5J9J5J M 600 4̂ 40 0 0.9 0.6 50 0 0 0 0

12 c2_4_3 8 _ 4 5 _ 7 600 40 0 0.9 0.6 5 0 0 0 0 0

13 c2_5_l 8 „ 1 2 _ 1 4 _ 1 2 _ 7 5̂ 4 00 5̂ 240 0.9 0.6 50 0 0 0 0

M o d e l s 14 c2_5_2 8 .J 5 _ 1 9 _ 1 5 _ 7 //5 40 0 5̂ 240 0.9 0.6 50 0 0 0 0

15 c2_5_3 8 _ 4 5 _ 7 5̂ 4 0 0 ^5 240 0.9 0.6 50 0 0 0 0

16 c2_6_l 8 _ 1 2 _ 1 4 _ 1 2 _ 7 4 0 0 ^6 200 0.9 0.6 50 0 0 0 0

M o d e ló 17 c2_6_2 8 _ 1 5 _ 1 9 _ 1 5 _ 7 ^6 4 0 0 200 0.9 0.6 5 0 0 0 0 0

I T c2_6_3 8 _ 4 5 _ 7 4 00 200 0.9 0.6 50 0 0 0 0

19 c2_7_l 8 _ 1 2 _ 1 4 _ 1 2 _ 7 //7 40 0 //7 200 0.9 0.6 50 0 0 0 0

M o d e l ? 20 c2_7_2 8 _ 1 5 _ 1 9 _ 1 5 _ 7 / /7 40 0 ^7 200 0.9 0.6 5 0 0 0 0 0

21 c2_7_3 8 _ 4 5 _ 7 ^7 4 0 0 if7 200 0.9 0.6 5 0 0 0 0 0

22 c2_8_l 8 _ 1 2 „1 4 _ 1 2 _ 7 40 0 n 200 0.9 0.6 5 0 0 0 0 0

M o d e l 8 23 c2_8_2 8 _ 1 5 _ 1 9 _ 1 5 _ 7 m 4 0 0 m 200 0.9 0.6 50 0 0 0 0

24 c2_8_3 8 _ 4 5 _ 7 n 4 0 0 ^8 200 0.9 0 .6 5 0 0 0 0 0

Table 3.2.3: Mean Utilization: Complex System: List of neural metamodels.
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METHOD 1: TOLERANCE
ap p roa ch

METHOD 2: METHOD 3:

A lpha  = 5% A lpha  = 6.5% A lpha  = 8% MAD (M _S td) MM AD (M M _Std)NNet Data se t

e2_1_1 TRAINING SET 600

TEST SET 400

0 2 J  J  TRAINING SET 600

TE S T SET 400

3 e2_1_3 TRAINING SET 600

TEST SET 400

0.67%

4.75%

0 .33%

3 7 5 %

0.67%

2.25%

0.00%

1.25%

0 ,06%
1.00%

6 .06%

0.75%

0.00%  0.0082 0.0074 0.0185 0.0088

0.25% 0.0097 0.0094 0.0215 0.0123

0.00%  0,0074 0,0065 ' 0,0164' 0.0079

0.60%  0.0089 0,0091 0.0198 0.0127

0.00% 0.0094 0.0078 0.0204 0.0087

0.00% 0.0104 0.0090 0.0225 0.0103

4 e2_2_1 TRAINING SET

TEST SET

e2_2_2 TRAINING SET 

TE S T SET

6 e2^.2„„3 TRAINING SET

:'TEST sir

600

400

600

400

600

400

0.17% 

1.50% 

0.17% 

2.50% 

0.17% 

0 75%

0.00%

0.50%

0.00%

0.50%

0.00%

0 .50%

0.00%

0.25%

0.00%

0.25%

0.00%

0.00%

0.0053 0.0065

0.0060 0.0079

0.0051 0.0066

0.0059 0.0084

0.0036 0.0047

0,0044 0.0063

0.0162 

0.0186 

0.0158 

0.0195 

0.0111 
0.0142

0.0069

0.0096

0.0077

0.0113

0.0068

0.0090

7 e2_3_1 TRAINING SET

TEST SET

8 e2^3JI TRAINING SET 

■TEST SET ■■■

9 e2_3_3 TRAINING SET

TEST SET

600

400

600

400

'eoo
400

0.00%

0.00%
6.00%
0.00%
6 6̂0%

0.00%

0.00%

0.00%

ao6%
0.00%

0 .06%^

0.00%

0.00%
0.00%

6.66%
0.00%

0.00%
0 .00%

0.0033

0.0034

6 .0027 "

0.0029

O^OOSI

0.0053

0.0031

0.0032

o"o6a5
0.0028

0.0042

0.0043

0.0080

0.0080

o.ooea
0.0069

0.6110
0.0114

0.0040

0.0041

6 .6 6 32
0.0038

o'ooia
0.0046

10 e2_4_1 TRAINING SET 600 0 .00% 0 .00% 0 .00% 0.0022 0.0017 0.0047 0.0017

TE S T SET 400 0 .00% 0 .00% 0 .00% 0.0023 0.0019 0.0050 0.0019

11 TRAINING S ET 600 ' 0 .66% - 0 .00% 6 .00% 0.0618 0.0016 “ 0 .6039 · 6.0015  ̂ ■

TEST SET 400 0.00% 0 ,00% 0 .00% 0 0019 0,0016 0.0042 0.0019 :

12 e2_4_3 TRAINING SET 600 ... ^ ’'a 66 ’% ........... ........... 6 .66 % ........... ........... 6?6o% ...... 6.6621 6.6618 6.6645 6.6621
TE S T SET 400 0 .00% 0 .00% 0 .00% 0.0021 0.0018 0.0047 0.0021

13 e2_5_1 TRAINING SET 400 0.25% 0 .00% 0 .00% 0.0077 0.0068 0.0168 0.0083

TE S T SET 240 1.25% 1.25%

...

0.42% 0.0081 0.0077 0.0184 0.0104

14 TRAINING SET 4 00 6 .00% 6 .60% 0.0061 0.0045 6 .0113 0.0068

‘ TE S T  SET 240 1.67% 1.26% 0 .00% 0.0062 0.0066 0.0139 0.0107

15 e2_5_3 TRAINING SET 400 0.25% 0 .00% 6 !o6% 0.0076 0.0064 6.0161 0.0077

TE S T SET 240 0.83% 0.83% 0.83% 0.0086 0.0073 0.0181 0.0098

16 e2_6_1 TRAINING SET 400 11.75% 2.25% 0.50% 0.0167 0.0131 0.0350 0.0131

TE S T SET 200 38.00% 20.50% 9.50% 0.0232 0.0192 0.0480 0.0215

I T TRAINING 466"'"'"""' ■9.25% 2 .5 0 % "  ^ '6'.75%".... .....6.6165 ' " 6 ‘. 6 i ‘2 6 .... 6.6333 '' • "o S ia T  '''1
TE S T SET 200 42 .0 0 % 18.00% 7.50% 0.0225 0.0196 0.0487 0.0232

18 e2_6_3 TRAINING SET 400 12.00% 2 .66% o !75% o !6 i 69 6.6135 6.6^45 6 !6 l3 3

TEST SET 200 42.50% 22.50% 11.00% 0.0255 0.0208 0.0510 0.0233

Table 3.2.4 : Mean Utilization: Complex System: Results of metamodels
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METHOD 4: u tilz a tio  n m a x im um  u tiliz a tio n

NNet Data se t % erro r (% _Std) m ean (U _Std) m ax av m ax u til (M U _std)

e2_1_1

e2_1_3

TRAINING SET 1.266% 1.174% 29.600% 68.113% 17.120% 100.000% 86.063% 13.894%

TEST SET 1.432% 1.356% 32.200% 68.963% 17.258% 100.000% 86.988% 13.694%

TRAINING SET lV l27% i !008% 29.600% 68.113% 17.120% 100.000% 86.063% 13.894%

TE S T SET 1.304% 1.253% 32.200% 68.963% 17.258% 100.000% 86.988% 13.694%

TRAINING SET 1.467% 1.340% 29.600% 68.113% 17.120% 100.000% 86.063% 13.894%

TEST SET 1.550% 1.328% 32.200% 68.963% 17.258% 100.000% 86.988% 13.694%

4

e2_2_2

6 e2_2_3

TRAINING SET 0.684% 0.720% 69.600% 94.688% 6 874% 100.000% 100.000% 0.000%

TE S T SET 0 660% 0.880% 70 300% 94,872% 6.669% 100.000% 100.000% 0.000%

TRAINING SET 0.561% 05 31% 69.500% 94.588% 6^874% 100.000% 100.000% o.obb%

TEST SET 0.642% 0.925% 70.300% 94.872% 6.669% 100.000% 100.000% 0.000%

TRAINING SET 0.393% 0.526% 69.500% 94.588% 6.874% 100.000% 100.000% 0.000%

TEST SET 0.479% 0.700% 70.300% 94.872% 6.669% 100.000% 100.000% 0.000%

e2_3_1

9 e2_3_3

TRAINING SET 0.511% 0.475% 41.500% 65.611% 10.994% 100.000% 83.334% 7.455%

TE S T SET 0.517% 0.472% 42.800% 65.962% 11.047% 99.700% 83.956% 7.556%

TRAINING SET 0.406% 0.360% 41.500% 66.611% 10.994% 100.000% 83.334% 7.455%

TE S T SET 0.440% 0.395% 42.800% 65.962% 11.047% 99.700% 83.956% 7.556%

TRAIN iNG SET 0.768% 0.613% 41.500% 65.611% 10.994% 100.000% 83!334% ' 7^

TE S T SET 0.793% 0.608% 42.800% 65.962% 11.047% 99.700% 83.956% 7.556%

10 e2_4_1 TRAINING SET 0.516% 0.404% 28.500% 41.891% 6.467% 63.300% 53.325% 3.188%

TE S T SET 0.549% 0.435% 29.300% 42.030% 6.499% 61.800% 53.565% 3.251%

11 e 2 .X .2 TRAINING SET 0.414% 0.326% 28.500% 41.891% 6.467% 63.300% 53.325% 3.188%

11 TEST SET 0 445% 0.361% 29.300% 42,030% 6.499% 61.800% 53.665% 3.251%

12 e2_4_3 TRAINING SET b'49T% ... b!43b% 28.500% 41.891% 6.467% 63.300% 53.325% 3.188%

TEST SET 0.507% 0.422% 29.300% 42.030% 6.499% 61.800% 53.565% 3.251%

13 e2_5_1 TRAINING SET 1.277% 1.214% 29.600% 62.330% 14.526% 97.900% 79.159% 12.125%

TE S T SET 1.321% 1.255% 32.200% 62.714% 14.593% 97.800% 79.295% 12.089%

14 TRAINING SET 0.860% 0.808% 29.600% 62.330% 14.526% 97,900% 79.159% 12.125%

TE S T S ET 0.977% 0.963% 32,200% 62.714% 14.593% 97.800% 79.295% 12.089%

15 e2_5_3 TRAINING SET 1.280% 1.162% 29.600% 62.330% 14.526% 97.900% 79.159% 12.125%

TE S T SET 1.400% 1.134% 32.200% 62.714% 14.593% 97.800% 79.295% 12.089%

16 e2_6_1 TRAINING SET 2.641% 2.187% 30.160% 67.605% 17.254% 100.000% 85.693% 14.358%

TEST SET 3.576% 3.109% 32.030% 69.157®/o 16.986% 100.000% 87.315% 13.145%

17 TRAINING SET 2.472% 2.'133% 30.160% 67.606% 17.264% 100.000% 85.693% 14.358%

s TEST S ET 3,433% 3.017% 32.030% 69,157% 16.986% 100.0 0 0% 87.316% 13.145%

18 e2_6_3 TRAINING SET 2 7 05% 30.160% 67.605% V7.254% 100.000% 85.693% 14.358%

TEST SET 3.925% 3.322% 32.030% 69.157% 16.986% 100.000% 87.315% 13.145%

Table 3.2.4 (con t’d ): M ean Utilization: Com plex System: Results o f  metamodels
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METHOD 1: TOLERANCE
app roa ch

METHOD 2: METHOD 3:

# I NNet " y Data se t A lpha  = 5% A lpha  = 6.5% A lpha  = 8% MAD (M _S td) M M AD (M M _Std)

19 e2_7_1 TRAINING SET

TEST SET

20 (&2JJ2 TRAINING SET

21 e2_7_3 TRAINING SET

TEST SET

400

200

400

200
400

200

25.25%

47.50%

21.75%

60.00%

24.00%

50.50%

9.00%

18.50%

6 7 5 %

27.00%

6.50%

26.50%

3.00% 0.0186 0.0155 0.0422 0.0165

10.00% 0.0228 0.0189 0.0510 0.0195

2.00% 0.0178 0.0149 0.0410 0.0161

10.50% 0.0237 0.0199 0.0536 0.0210

2.25% 0.0183 0.0148 q q

13.00% 0.0242 0.0208 0.0551 0.0226

22 TRAINING SET 400 41.60% 18.50% 6.26% 0.0220 0.0182 0,0492 0.0180

TE S T  SET 200 60.00% 38.50% 21 .00% 0.0286 0.0246 0 0621 0.0261

23 e2_8_2 TRAINING SET 400 35.75% 1075% 2 .00% 0.0202 0.0168 0.0449 0.0161

TEST SET 200 65.50% 43.00% 24.00% 0.0303 0.0281 0.0674 0.0332

24 e2_8_3 TRAINING SET 400 33.75% 12.00% 2 .00% 0.0206 0.0166 0.0447 0.0156

TE S T SET 200 66.50% 44.50% 29.50% 0.0305 0.0259 0.0669 0.0296

Table 3.2.4 (con t’ d ): M ean Utilization: Com plex System: Results o f  metamodels
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METHOD 4: u tilz a tio  n m a x im um  u tiliz a tio n

# 1 NNet 1 D a ta s e t % erro r (% _Std) m in  m ean (U _S td) m ax av m ax u til (M U _std)

19 e2_7_1 TRAINING SET 2.934% 2.568% 30.280% 67.581% 17.208% 100.000% 85.518% 14.118%

TEST SET 3.499% 2.984% 32.670%  69.236% 

67381%
; 4 S f o %

17.064%

i:̂ .26a%

100.000%

100.909%

87.174% 13.315%

86.618%
ito ^ % 1 0 0 .0 0 0% 87.174%

21 e2_7_3 TRAINING SET 2.927% 2.555% 30.280% 67.581% 17.208% 100.000% 85.518% *14.118%

TEST SET 3.719% 3.288% 32.670% 69.236% 17.064% 100.000% 87.174% 13.315%

T . ,
' 3 ET* ,67336% 17.364%,

njok%

1 0 0 .90 9% 8?.441%:.

87,184% .̂'

23 e2_8_2 TRAINING SET " 3.269% 3 .i0 8 % 29.940% 67.535% 17.354% 100.000% 85.441% 1*4.285%

TEST SET 4.666% 4.467% 32.820% 69.042% 17.053% 100.000% 87.184% 13.228%

24 e2_8_3 TRAINING SET 3.323% 3.032% 29.940% 67.535% 17.354% 100.000% 85.441% 14.285%

TEST SET 4.665% 4.076% 32.820% 69.042% 17.053% 100.000% 87.184% 13.228%

Table 3.2.4 (con t’d ): M ean Utilization: Com plex System: Results o f  metamodels
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M od

#

T ra in in g

se t

Test

se t

In te ra rriva l tim e P roce ss in g

tim e

Due date 

tig h tn e s s  

fa c to r

S ch e d u lin g  ru le

N ature Range range

1 #1 #1 determ inistic [10..85] determ in istic [2..9] SPT, MOD or EDD

2 #2 #2 determ in istic [15..30] determ in istic [6..9] SPT, MOD or EDD

3 #3 #3 determ inistic [60..85] determ inistic [2..5] SPT, MOD or EDD

4 #4 #4 determ inistic [15..30] determ inistic 9 SPT, MOD or EDD

5 #5 #5 determ inistic [15..30] determ inistic 6 SPT, MOD or EDD

6 #6 #6 determ in istic [15..30] determ inistic [6..9] SPT

7 #7 #7 determ inistic [15..30] determ inistic [6..9] EDD

8 #8 #8 determ inistic [15..30] determ inistic [6..9] MOD

9 #9 #9 determ in istic [15..30] determ inistic 9 MOD

10 #10 #10 determ inistic [15..30] determ inistic 6 MOD

11 #11 #11 stochastic

(exponential)

mean in 

[60..85]

determ inistic [2..5] SPT, MOD or EDD

12 #12 #12 determ in istic [60..85] stochastic

(exponential)

[2..5] SPT, MOD or EDD

13 #13 #13 stochastic

(exponential)

mean in 

[60..85]

stochastic

(exponential)

[2..5] SPT, MOD or EDD

14 #14 #14 determ in istic 

‘ machine utilize

[15..30] 

tion < 99%

determ inistic [6..9] SPT, MOD or EDD

15 #15 #15 determ inistic [30..60] determ inistic [2..5] SPT, MOD or EDD

16 #16 #16 stochastic

(exponential)

mean in 

[30..60]

determ inistic [2..5] SPT, MOD or EDD

17 #17 #17 determ inistic [30..60] stochastic

(exponential)

[2..5] SPT, MOD or EDD

18 #18 #18 stochastic

(exponential)

mean in 

[30..60]

stochastic

(exponential)

[2..5] SPT, MOD or EDD

Table 4.1.1: Mean Tardiness: Simple System: List of models.

P ercen tage  o f T a rdy  jo b s M ach ine  u tiliz a tio n Tard iness

MOD

# m in m ean (s td ) m ax. m in m ean (s td ) m ax. m in m ean (s td ) max.

1 0 .0% 24.6% 31.6% 100.0% 16.0% 50.9% 21 .6% 100.0% 0.00 37.76 130.09 1174.41

2 0 .0% 27.7% 34.3% 100.0% 46.0% 81.3% 14.8% 100.0% 0.00 65.43 125.94 767.57

3 0 .0% 23.0% 13.2% 81.7% 16.0% 24.9% 4.5% 34.0% 0.00 9.83 7.88 64.87

4 0 .0% 22.9% 31.8% 100.0% 45.0% 82.4% 14.4% 100.0% 0.00 53.59 111.30 680.33

5 0 .0% 37.1% 35.7% 100.0% 45.0% 82.3% 14.3% 100.0% 0.00 77.38 140.58 803.37

6 0 .0% 12.6% 18.8% 74.4% 45.0% 82.0% 15.0% 100.0% 0.00 39.33 80.71 562.19

7 0 .0% 36.6% 38.5% 100.0% 46.0% 80.9% 14.7% 100.0% 0.00 80.57 146.84 805.20

8 0 .0% 35.3% 37.4% 100.0% 44.0% 80.4% 14.8% 100.0% 0.00 81.39 148.63 855.86

9 0 .0% 35.5% 39.0% 100.0% 44.0% 81.9% 15.0% 100.0% 0.00 67.51 140.04 801.91

10 0 .0% 44.4% 39.2% 100.0% 44.0% 80.8% 14.9% 100.0% 0.00 105.88 171.73 925.95

11 0 .0% 22.5% 12.2% 63.8% 12.0% 24.8% 4.9% 39.0% 0.60 11.62 7.06 35.00

12 1.6% 29.0% 13.2% 89.9% 13.0% 25.1% 5.0% 39.0% 1.70 14.34 7.76 48.80

13 11.4% 34.6% 11.6% 65.8% 10.0% 26.0% 5.3% 40.0% 5.20 21.33 9.69 61.10

14 0 .0% 12.8% 20.4% 92.5% 44.0% 77.4% 13.5% 98.0% 0.00 14.67 35.60 296.84

15 0 .0% 27.8% 21 .1% 84.8% 22 .0% 41.8% 8 .8% 69.0% 0.00 8.25 7.77 33.41

16 2 .6% 33.1% 20.7% 82.9% 20 .0% 41.7% 9.4% 70.0% 0.60 13.08 9.53 51.20

17 9.6% 41.7% 17.6% 87.8% 20 .0% 41.8% 9.5% 70.0% 3.05 18.56 10.96 61.10

18 17.3% 49.9% 16.4% 89.6% 20 .0% 41.8% 9.4% 70.0% 5.75 29.26 14.78 88.10

Table 4.1.2: M ean Tardiness: Simple System: Generated set characteristics.
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Train ing Test learning m om entuEn #  exam ples

N N et S ize s e t # (s ize ) set # (s ize ) c o e f c o e f learned

1 c3_l_l 5 _ 9 _ 1 0 _ 8 _ 3 #1 700 #1 4 0 0 0.9 0.6 5 0 0 0 0 0

2 c3_l_2 5 _ 9 _ 1 0 _ 8 _ 3 m 1 0 0 #1 4 0 0 1.2 0.6 3 9 3 7 0 4

3 c3_l_3 5 _ 1 0 _ 1 1 _ 9 _ 3 m 700 #1 4 0 0 0.9 0.6 3 0 0 9 0 9

4 c3_I_4 5 _ 1 0 _ 1 1 _ 9 _ 3 #1 700 #1 4 0 0 0.9 0.2 5 2 5 9 1 3

5 c3_l_5 5 _ 1 0 ..1 1 _ 9 _ 3 #1 700 #1 4 0 0 0.9 0.2 4 8 1 2 8 2

6 c3_l_6 5 _ 1 0 _ 1 5 _ 1 0 _ 3 * #1 700 #1 4 0 0 0.9 0.6 137732

M o d e l 1 7 c3_l_7 5 _ 2 5 _ 3 * #1 700 #1 4 0 0 0.9 0 .6 3 6 6 1 8 7

8 e3_l_8 5 _ 2 5 _ 3 #1 700 #1 4 0 0 0.9 0.6 4 0 3 6 5 7

9 c3_l_9 5 _ 4 0 _ 3 #1 700 //1 4 0 0 0.9 0.6 2 6 3 4 5 6

10 c3_ /  _ 10 5_9_ 10 8 3 //1 700 //1 4 0 0 1.2 0.6 .so o o o o

11 c3_l_ll 5 _ 9 ..1 0 _ 8 _ 3 #1 700 #1 4 0 0 1.2 0.0 5 0 0 0 0 0

12 c3_l_12 5 „ 6 _ 7 _ 6 _ 3 #1 700 #1 4 0 0 1.2 0.6 5 0 0 0 0 0

13 c3_l_13 5 _ 4 0 _ 3 #1 700 //1 4 0 0 0.9 0.6 5 0 0 0 0 0

14 c3_2_l 5 _ 4 0 _ 3 #2 500 #2 300 0.9 0.6 5 0 0 0 0 0

M o d e l 2 15 c3_2_2 5 _ 4 0 _ 3 #2 500 n 300 1.2 0.6 5 0 0 0 0 0

16 c3_2_3 5 _ 6 _ 7 _ 6 _ 3 #2 500 n 300 1.2 0.6 5 0 0 0 0 0

17 c3_2_4 5_55...3 #2 500 H2 300 0.9 0.5 5 3 0 6 2 7

18 c3_3_l 5 _ 6 _ 7 _ 6 _ 3 #3 500 #3 300 0.9 0.6 542911

19 c3_3_2 5 _ 6 _ 7 _ 6 _ 3 #3 500 #3 300 1.2 0.2 5 0 0 0 0 0

M o d e l 3 20 c3_3_3 5 _ 8 _ 9 _ 8 _ 3 #3 500 #3 300 0.9 0.6 5 0 0 0 0 0

21 c3_3_4 5 _ 4 2 _ 3 #3 500 #3 300 0.9 0.6 5 7 4 1 5 8

22 c3_3_5 5 _ 5 5 _ 3 #3 500 #3 300 0.9 0.6 5 0 0 0 0 0

23 c3_3_6 5 _ 1 1 _ 1 4 _ 1 1 _ 3 //3 500 #3 300 0.9 0.6 5 2 4 1 9 9

24 c3_4_l 5 _ 5 5 _ 3 #4 500 #4 300 0.9 0 .6 5 0 0 0 0 0

M o d e l 4 25 c3_4_2 5 _ 6 _ 7 _ 6 _ 3 #4 500 #4 300 0.9 0.6 5 0 0 0 0 0

26 c3_4_3 5 _ 8 _ 9 _ 8 _ 3 //4 500 #4 300 0.9 0.6 5 0 0 0 0 0

27 c3_5_l 5 _ 5 5 _ 3 #5 500 #5 300 0.9 0.6 5 0 0 0 0 0

28 c3_5_2 5 _ 6 _ 7 _ 6 _ 3 #5 500 //5 300 0.9 0 .6 5 0 0 0 0 0

M o d e l 5 29 c3_5_3 5 _ 8 _ 9 _ 8 _ 3 U5 500 #5 300 0.9 0.6 5 0 0 0 0 0

30 c3_5_4 5_.55_3 U5 500 //5 300 0.2 0.1 6 2 0 0 9 4

31 c3_5_5 5 _ 5 5 _ 3 #5 500 #5 300 1.0 0 .0 563251

32 c3_5_6 4 _ 8 _ 9 _ 8 _ 3 #5 500 #5 300 0.9 0.6 7 1 0 1 1 0

33 c3_6_l 5 _ 6 _ 7 _ 6 _ 3 U6 500 U6 300 0.9 0 .6 5 0 0 0 0 0

M o d e l 6 34 c3_6_2 5 _ 5 5 _ 3 U6 500 #6 30 0 2 1 5 0 0 0 0 0

35 c3_6_3 5 _ 8 _ 9 _ 8 _ 3 U6 500 //6 300 0.9 0 .6 5 0 0 0 0 0

36 '3_6_4 5 _ 8 _ 9 _ 8 _ 3 #6 500 #6 300 0.6 0.2 5 0 0 0 0 0

37 <t3_7_1 5 _ 6 _ 7 _ 6 J ^ 7 500 # 7 300 0.9 0.6 5 0 0 0 0 0

M o d e l 7 38 i'3_7_2 5 J 5 _ 3 ^ 7 500 # 7 300 0.2 0.1 5 0 0 0 0 0

39 c'3_7_3 5 _ 8 _ 9 _ 8 _ 3 ^ 7 500 ^ 7 300 0.9 0 .6 550001

40 c'3.7_4 5 _ 5 5 _ 3 ^ 7 500 ^ 7 300 0.9 0.6 5 0 0 0 0 0

Table 4,1.3: M ean Tardiness: Sim ple System: List o f  neural metam odels.
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Train ing T est learning m om entun1 exam ples

N N et S ize set # (s ize ) set U (s ize ) c o e f c o e f learned

41 e3_8_l 5 _ 6 _ 7 _ 6 _ 3 //8 500 US 300 0.9 0.6 5 0 0 0 0 0

M o d e l s 42 c3_8_2 5 _ 5 5 _ 3 n 500 US 300 0.9 0.2 5 0 0 0 0 0

43 c3_8_3 5 _ 8 _ 9 _ 8 _ 3 US 500 US 300 0.9 0.6 5 0 0 0 0 0

4 4 c3_8_4 5 _ 5 5 _ 3 US 500 US 300 0.9 0.6 5 0 0 0 0 0

45 c3_9_l 5 _ 6 _ 7 _ 6 _ 3 ^9 500 //9 300 0.9 0.6 5 0 0 0 0 0

M o d e l 9 46 e3_9_2 5 _ 5 5 _ 3 ^9 500 //9 300 0.9 0 .6 5 0 0 0 0 0

47 c3_9_3 5 _ 8 _ 9 _ 8 _ 3 ^9 500 //9 300 0.9 0.6 5 0 0 0 0 0

48 c3_l0_l 5 _ 6 _ 7 _ 6 _ 3 ^10 500 //10 300 0.9 0 .6 5 0 0 0 0 0

M o d e l 10 49 c3_l0_2 5 _ 5 5 _ 3 /̂ 10 500 //10 300 0.9 0.6 5 0 0 0 0 0

50 c3_l0_3 5 _ 8 _ 9 _ 8 _ 3 ^10 500 //10 300 0.9 0.6 5 0 0 0 0 0

51 c3_ll_l 5 _ 6 _ 7 _ 6 J 1̂1 4 0 0 f/11 200 0.9 0.6 5 0 0 0 0 0

M o d e l 11 52 c3_ll_2 5_.55_3 1̂1 4 0 0 //11 200 0.9 0.6 5 0 0 0 0 0

53 e3_ll_3 5 _ 8 _ 9 _ 8 _ 3 1̂1 4 0 0 //11 200 0.9 0 .6 5 0 0 0 0 0

54 c3_l2_l 5_6_1_6J ^ 2 4 0 0 //12 200 0.9 0.6 5 0 0 0 0 0

M o d e l 12 55 c3_12_2 5 _ 5 5 _ 3 ^12 40 0 //12 200 0.9 0.6 5 0 0 0 0 0

56 c3_12_3 5 _ 8 _ 9 _ 8 _ 3 m2 4 0 0 //12 200 0.9 0.6 5 0 0 0 0 0

57 c3_13_l 5 _ 6 _ 7 _ 6 _ 3 //13 4 0 0 //13 200 0.9 0.6 5 0 0 0 0 0

M o d e l 13 58 c3_13_2 5 _ 5 5 J //13 4 0 0 //13 200 0.9 0.6 5 0 0 0 0 0

59 c3_13_3 5 _ 8 _ 9 _ 8 _ 3 m3 4 0 0 //13 200 0.9 0.6 5 0 0 0 0 0

60 c3_13_l 5 _ 6 _ 7 _ 6 _ 3 //14 332 //14 300 0.9 0.6 5 0 0 0 0 0

M o d e l 14 61 c3_13_2 5 _ 5 5 _ 3 //14 332 //14 300 0.9 0.6 5 0 0 0 0 0

62 c3_l3_3 5 _ 8 _ 9 _ 8 _ 3 //14 332 //14 300 0.9 0.6 5 0 0 0 0 0

63 c3_13_l 5 _ 6 _ 7 _ 6 _ 3 //15 40 0 //15 300 0.9 0.6 5 0 0 0 0 0

M o d e l 15 64 c3_l3_2 5 _ 5 5 _ 3 m s 4 0 0 m s 300 0.9 0.6 5 0 0 0 0 0

65 c3_l3_3 5 _ 8 _ 9 _ 8 _ 3 //15 4 0 0 //15 300 0.9 0.6 5 0 0 0 0 0

66 c3_13_l 5 _ 6 _ 7 _ 6 _ 3 //16 4 0 0 //16 300 0.9 0.6 5 0 0 0 0 0

M o d e l 16 67 c3_l3_2 5 _ 5 5 _ 3 //16 4 0 0 //16 300 0.9 0 .6 5 0 0 0 0 0

68 c3_13_3 5 _ 8 _ 9 _ 8 _ 3 //16 4 0 0 //16 300 0.9 0.6 5 0 0 0 0 0

69 c3_l3_l 5 _ 6 _ 7 _ 6 _ 3 //17 4 0 0 //17 300 0.9 0.6 5 0 0 0 0 0

M o d e l 17 70 c3_l3_2 5 _ 5 5 _ 3 //17 4 0 0 //17 300 0.9 0.6 5 0 0 0 0 0

71 c3_13_3 5 _ 8 _ 9 _ 8 _ 3 //17 4 0 0 //17 300 0.9 0 .6 5 0 0 0 0 0

72 c3_13_l 5 _ 6 _ 7 _ 6 _ 3 //18 4 0 0 //18 300 0.9 0.6 5 0 0 0 0 0

M o d e l 18 73 t3_J3_2 5 _ 5 5 _ 3 m s 4 0 0 m s 300 0.9 0.6 5 0 0 0 0 0

74 ('3J3_3 5 _ 8 _ 9 _ 8 _ 3 m s 4 0 0 //IS 300 0.9 0 .6 5 0 0 0 0 0

* =  B ias

Table 4.1.3 (C on t’ d ): M ean Tardiness: Simple System: List o f  neural metam odels.
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j N N e t  I

METHOD T o le rance  
1 : ap p ro a ch

METHOD MAD
2:

M ETHOD M M AD
3:

ALPHA(10) ALPHA(20) ALPHA(30) m ean (S td ) m ean (S td )Data set

1 c3_l_ l Training set 700 

Test set 400

2 c3_l_2 Training set 700

3 c3_l_3 Training set 700

4 c3_l_4 Training set 700

5 c3__l_5 Training set 700

6 c3_l_6 Training set 700

7 c3 1_7 Training set 700

8 c3_l_8 Training set 700

9 c3_l_9 Training set 700

10 o 3 _ l _ i0  Training «el 700  

Test set 4 0 0

11 c 3 _ l_ ll Training set 700 

Test set 400

12 c3_l_12 Training set 700 

Test set 400

13 c3_l_13 Training set 700 

Test set 400

35.7% 18.9% 12.4% 10.3 19.5 15.9 25.7

38.3% 23.0% 17.3% 20.0 52.4 32.0 69.2

31.0% 19.0% 11.0% 8.6 17.7

39.0% 20.0% 14.0% 9.6 19.7

35.0% 21.0% 13.0% 8.8 18.6

35.0% 21.0% 11.0% 7.2 15.1

37.0% 25.0% 16.0% 14.4 33.0

40.0% 26.0% 16.0% 9.3 20.4

40.0% 24.0% 14.0% 9.3 20.3

45.0% 24.0% 14.0% 10.2 22.0

16.0% 9.3% .... 9.4 18.0 16.4 24.8

34.0% 20.0% 16.6% 21 4 67,0 33 1 72.5

35.3% 19.6% 11.0% 9.3 17.9 14.8 24.6

36.0% 22.5% 17.3% 19.9 54.3 31.2 71.6

35.7% 22.1% 14.4% 12.6 29.9 20.2 41.9

36.0% 23.5% 17.3% 20.9 55.5 32.8 72.2

43.1% 27.1% 16.4% 12.8 26.9 20.7 35.8

41.8% 27.0% 19.8% 20.4 52.4 32.4 68.3

14 c3_2_l Training set 500 57.2% 37.2% 23.2% 11.2 17.9 21.8 24.2

Test set 300 60.7% 42.3% 31.0% 16.0 26.8 29.9 35.5

15 c3_2_2 Training set 500 71.4% 50.4% 34.0% 15.5 21.7 28.7 27.4

Test set 300 75.7% 58.7% 40.3% 19.3 29.0 35.7 37.8

16 c3_2_3 Training set 500 59.2% 39.6% 29.6% 13.6 20.7 24.3 26.4

Test set 300 65.0% 47.3% 34.3% 17.0 28.8 30.5 37.3

17 Training set 500 67.6% 33,6% 21.8% 10.4 16.3 19.2 19,3

Test set 300 63,7%, 43.0% 31.3% 15,0 24.0 27.4 30,7

18 c3_3_l Training set 500 6.2% 2.0% 0.6% 2.5 3.1 4.5 4.4

Test set 300 8.7% 3.7% 1.3% 2.8 4.0 5.3 5.8

19 c3J_2 Training set 500 6.0% 2.0% 0.6% 2.5 3.1 4.5 4.4

Test set 300 9.7% 3.0% 1.3% 2.8 3.8 5.1 5.6

20 c3 _.3_3 Training set 500 5.8% 1.8% 0.4% 2.4 3.0 4.3 4.3

Test set 300 10.0% 3.7% 1.3% 2.9 4.0 5.3 5.8

21 e3_3_4 Training set 500 5.6% 1.2% 0.4% 2.4 2.9 4.3 3.9

Test set 300 10.0% 3.3% 1.0% 2.9 4.1

... ..............

5.4 5.9

22 Training set 500 ' 4.8% 1,4% ' 0.4% 2 A 4.4 4,0

Test set 300 11.0% 3,0% 1.0% 3.0 3.9 5.4 6.6

23 c3_3_6 Training set 500 5.2% 1.2% .. "̂"'o;'4o/o............ 2.4 .... 2.8 ...*.... 4.4 3.8

Test set 300 11.3% 3.3% 1.3% 2.9 4.0 5.4 5.8

Table 4.1.4: M ean Tardiness: Simple System: Results o f  metam odels
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METHOD
4:

Devi ation -to- flow tim e TARDINESS

I # 1 N N e t 1 Data set E 4 - 1 (Std) E 4 - 2 (Std) E 4 - 3 (S td )lm in mean (Std) max

1 e3_l_ l Training set 8% 9% 6% 8% 4% 6% 0.0 30.8 112.9 1073.7

Test set 9% 13% 8% 13% 6% 11% 0.0 44.7 147.3 1275.1

10 o3_l_10 Training set 7% 8% 6% 8% 4% 6% 0.0 30.8 112.9 1073.7

Test set 9% 13% 8% 13% 6% 10% 0.0 44.7 147.3 1275.1

11 e 3 J _ l l Training set 7% 9% 7% ....9% ....5% 6% 0.0 3 0 İ 112.9 1Ö73.7

Test set 9% 17% 9% 20% 7% 14% 0.0 44.7 147.3 1275.1

12 c3_l_12 Training set 9% 17% 7% 9% 5% 7% 0.0 30.8 112.9 1073.7

Test set 10% 18% 8% 12% 6% 10% 0.0 44.7 147.3 1275.1

13 c3_l_13 Training set 9% 13% 8% 11% 6% 8% 0.0 30.8 112.9 1073.7

Test set 10% 15% 8% 13% 6% 10% 0.0 44.7 147.3 1275.1

IT4 c3_2_l Training set 4% 4% 2% 3% 1% 2% 0.0 59.2 115.0 711.1

Test set 4% 5% 2% 5% 2% 4% 0.0 71.7 136.9 824.1

15 c3_2_2 Training set 6% 6% 2% 3% 1% 2% 0.0 59.2 115.0 711.1

Test set 6% 7% 2% 5% 2% 4% 0.0 71.7 136.9 824.1

16 c3_2_3 Training set 6% 5% 2% 4% 1% 3% 0.0 59.2 115.0 711.1

Test set 6% 6% 2% 4% 2% 4% 0.0 71.7 136.9 824.1

n  03_2_4 Training set 6% 8% 3% 2% ' 5% 0.0 59.2 115.0 711.1

Test set 4% 5% 2% 5% 2% 4% 0.0 71.7 136.9 824.1

18 e3_3_l Training set 4% 4% 4% 5% 2% 3% 0.0 10.0 7.9 68.3

Test set 4% 5% 4% 7% 3% 5% 0.0 9.6 7.9 61.4

19 c3_3_2 Training set 4% 4% 4% 5% 3% 3% 0.0 10.0 7.9 68.3

Test set 4% 5% 4% 7% 3% 5% 0.0 9.6 7.9 61.4

20 c3 J _ 3 Training set 4% 4% 4% 4% 2% 3% 0.0 10.0 7.9 68.3

Test set 4% 5% 5% 7% 3% 5% 0.0 9.6 7.9 61.4

21 c3_3_4 Training set 3% 4% 4% 4% 3% 3% 0.0 10.0 7.9 68.3

Test set 4% 5% 5% 7% 3% 5% 0.0 9.6 7.9 61.4

22 e3_3„5 Trainingset 4% 4% 4% ' 4% 2% 3% 0.0 10.0 7.9 68.3

Test set 4% 5% 5% 7% 3% 6% 0.0 9.6 7.9 61.4

23 c3__3_6 Training set '^4%...........4%.... 4%.... 4%"' '̂ 2% 3% 0.0 '^ io .o ..7.'9...... 68.3

Test set 4% 5% 5% 8% 3% 5% 0.0 9.6 7.9 61.4

Table 4.1.4 (con t’ d ): M ean Tardiness: Simple System: Results o f  m etam odels
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I N N et I D ataset j s ize

M ETHOD
1:

To le rance
app roa ch

METHOD MAD
2: M ETHOD M M AD

3:
ALPHA(IO) ALPHA(20) ALPHA(30) (Std) (Std)

24 e3_4_l Training set 500 60.4%

Test set 300 60.7%

25 c3_4_2 Training set 500 47.4%

Test set 300 49.3%

26 c3_4_3 Training Get 500 46.6%

Test set 300 50.7%

31 6% 

34.7% 

31.2% 

34.3% 

33.2% 

36.7%

16.6%

22.0%

І9.2%

27.3%

21.8%

25.3%

8.6

10.9 

8.6 

11.8 

9.1

11.9

14.0

20.5

15.0 

22.8

15.5 

21.8

16.5

20.1

17.2 

21.7

17.5

21.3

18.6

27,8

20.6

31.0

20.6

28.4

27 c3_5_l Training set 500 

Test set 300

28 c3_5_2 Training set 500 

Test set 300

29 c3_5_3 Training set 500 

Test set 300

30 c3_5_4 Training set 500 

Test set 300

.31 c3J5J  Training set 500 

Test set 300

32 c3_5_6 Training set 500 

Test set 300

64.4%

60.0%

72.2%

66.3%

64.4%

59.3%

67.2%

62.3%

62.8%

54.0%

62.2%

57.0%

42.4%

42.3%

52.2%

46.0%

43.2%

46.0%

44.0%

41.7%

39.4%

39.7%

39.8%

40.7%

30.0%

29.7%

38.4%

37.3%

28.2%

32.7%

30.2%

28.3%

23.2%

28.0%

2б”2%
29.7%

12.4

13.1 

16.9

18.2 

12.0

13.0 

13.8

13.1

12.0
12.3 

124

13.3

17.2

20.5 

21.1

24.1

17.4

19.6

18.9

17.6

18.9

19.5

18.7

21.1

23.0

24.2

28.8

29.4

22.8

24.8

24.5

22.4

22.6

21.8

22.5

23.6

21.8
27.5 

25.3 

28.7 

22.0

25.6

24.9 

22.2
24.9

24.9 

2a2 
26.1

33 c3_6_l Training set 500 67.0% 44.4% 33.4% 9.8 23.2 29.0 32.5

Test set 500 65.2% 46.0% 34.8% 9.8 22.8 29.2 31.5

34 c3_6_2 Training set 500 72.4% 52.2% 35.8% 9.8 21.0 29.1 27.6

Test set 300 77.7% 52.7% 35.0% 9.6 19.7 28.5 25.2

35 Training set 500 60.6% 42,4% 28.8% 8 3 19.0 24.6 26.1

Test set 300 63 3% 49.0% 35.3% 9.0 19.6 2Ѳ.7 26.1

36 c3_6_4 Training set 500 61.2% 43.0% 31.0% 8.8 20.9 26.1 29.3

Test set 300 62.7% 48.3% 34.3% 9.2 20.8 27.4 28.4

37 Training set 600 49.0% 29,8% 16.4% 10.3 13.0 16.2 16,1

Test set 300 46.0% 31.0% 18.7% 113 15.6 16.2 18.8

38 c3_7_2 Training set 500 59.8% 35.2% ... "̂22.2%....... 12.7 .... 15.1..... 18.8 17.8

Test set 300 57.0% 36.3% 24.3% 13.3 16.8 19.3 19.5

39 c3_7_3 Training set 500 46.8% 30.2% 16.4% 10.2 13.2 15.6 16.2

Test set 300 47.3% 33.7% 20.7% 12.6 18.4 18.5 22.0

40 c3_7_4 Training set 500 53.2% 31.4% 19.4% 11.1 13.9 16.4 16.5

Test set 300 48.7% 32.7% 19.7% 11.4 16.0 16.9 19.2

Table 4.1.4 (con t’d ): M ean Tardiness: Sim ple System: Results o f  m etam odels
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M ETHOD devi ation -to- flow  time 
4:

TARDINESS

# 1  N N e t  Dataset E 4 - 1  (Std) E 4 - 2  (Std) E 4 - 3  (S td )lm ln  m ean (Std) max

24 c3_4_l Training set 

Test set

25 c3_4_2 Training set 

Test set

26 c3_4_3 Training set 

Test set

3% 4% 1% 3% 1% 2% 0.0 49.5 103.3 662.4

3% 4% 1% 3% 1% 3% 0.0 57.7 119.3 698.3

2% 4% 1% 3% 1% 2% 0.0 49.5 103.3 662.4

3% 5% 1% 3% 1% 3% 0.0 57.7 119.3 698.3

3% 4% 1% 3% 1% 2% 0.0 49.5 103.3 662.4

3% 5% 2% 4% 1% 3% 0.0 57.7 119.3 698.3

F
c3_5_l Training set 5% 5% 2% 3% 2% 2% 0.0 76.5 136.5 785.9

Test set 4% 5% 2% 3% 2% 3% 0.0 78.3 144.6 820.9

28 c3_5_2 Training set 7% 8% 4% 4% 3% 3% 0.0 76.5 136.5 785.9

Test set 8% 9% 4% 4% 3% 3% 0.0 78.3 144.6 820.9

29 c3_5_3 Training set 4% 5% 2% 3% 2% 3% 0.0 76.5 136.5 785.9

Test set 4% 5% 2% 3% 2% 2% 0.0 78.3 144.6 820.9

30 c3_5_4 Training set 6% 6% 3% 4% 2% 3% 0.0 76.5 136.5 785.9

Test set 5% 5% 3% 4% 2% 3% 0.0 78.3 144.6 820.9

training set ....4% ... 6%"" ' 2% ' ' 3% 2% ' 2% 0.0 76.6 ' 136.5 786.9

Test set 4% 5 % 2% 3% 1% 2% 0.0 76.3 144.6 820.9

32 c3_5_6 Training set .. "5%.... 5% 2% 4% 2% 3% 0.Ö 76'5 136.5 785.9

Test set 4% 5% 2% 3% 2% 3% 0.0 78.3 144.6 820.9

F
c3_6_l Training set 0% 0% 0% 0% 0% 0% 0.0 38.9 80.7 562.2

Test set 0% 0% 0% 0% 0% 0% 0.0 39.7 80.7 562.2

34 c3_6_2 Training set 0% 0% 0% 0% 0% 0% 0.0 38.9 80.7 562.2

Test set 0% 0% 0% 0% 0% 0% 0.0 39.5 79.0 489.2

35 e 3 _ 6 j Training set 0% 0% 0% .0% 0% ' 0% 0.0 38.9 80.7 562.2

Test set 0% 0% 0% 0% 0% 0% 0.0 39.6 79.0 489.2

36 c3_6_4 Training set 0% 0%... 0% 0% ' 0% 0% Ö 5 38.9 8Ö.7 562.2

Test set 0% 0% 0% 0% 0% 0% 0.0 39.5 79.0 489.2

37 ^ J J Training set 4% 4% 3% 4% 2 % 3% 0.0 78.9 139.9 783.0

Test set 4% 4% 3% 4% 2 % 3 % 0.0 82,2 153.8 827.4

38 c3_7_2 Training set 5% 6% 3% 4% 2% 3% 0.0 78.9 139.9 783.0

Test set 6% 6% 3% 4% 2% 3% 0.0 82.2 153.8 827.4

39 c3_7_3 Training set 4% 4% 2% 4% 2% 3% 0.0 78.9 139.9 783.0

Test set 4% 5% 3% 5% 2% 4% 0.0 82.2 153.8 827.4

40 c3_7_4 Training set 4% 5% 2% 4% 2% 3% 0.0 78.9 139.9 783.0

Test set 4% 5% 3% 4% 2% 3% 0.0 82.2 153.8 827.4

Table 4.1.4 (con t’ d ): M ean Tardiness: Simple System: Results o f  m etam odels
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METHOD
1:

Tolerance
approach

METHOD MAD
2: METHOD MMAD

3:
N N et I D ataset Isize ALPHA(IO) ALPHA(20) ALPHA(30) (Std) (Std)

41 c3_8_l Training set 500 

Test set 300

42 c3_8_2 Training set 500 

Test set 300

43 t3J  ̂ 3 Training set 500

Test set 300

44 c3_8_4 Training set 500 

Test set 300

49.0% 32.2% 19.4% 10.2 12.9 15.7 15.6

46.7% 33.7% 20 .0% 11.6 15.7 17.4 19.1

55.2% 34.2% 18.6% 11.2 13.8 16.7 16.5

55.3% 35.7% 22 .0% 13.0 17.3 19.2 20.3

48.8% 30,2% 14'e% 9.4 12,7 15.0 1 5 8

47.7% 31,0% 22 .0% 10.7 15.8 16.7 19.1

51.4% 30.8% 15.0% 9.7 12.7 14.8 15.0

52.0% 30.3% 18.0% 11.1 16.1 16.7 18.8

Test set 300

Test set 300

40.2% 25.0% 14.4% 8.2 12.3 12.9 15.5

39.0% 24.7% 14.3% 8.8 14.6 13.6 17.8

45.4% 25.2% 14.6% 8.8 13.7 13.9 17.0

45.7% 28.3% 15.0% 9.5 15.3 14.6 18.7

36.4% 23.2% 13.8% 8.0 1 3 3 12.6 16,7

36.3% 22 ,0% 12 7% 7.8 1 3 7 122 17.1

48 o3_10_l Training set 500 

Test set 300

49 c3_10_2 Training set 500 

Test set 300

50 c3_10_3 Training set 500 

Test set 300

47,8% 3 0 ,6 % 19,8% 11,6 14 3 16,6 17,0

62.6% 37,0% 26.6% 13.6 17.3 20.1 20 8
50.8% 32.0% 21.4% 11.2 15.7 16.6 18.6

55.0% 34.3% 25.3% 12.3 16.7 18.2 19.3

47.0% 33.2% 19.4% 11.6 16.8 17.3 20.2
51.8% 36.3% 24.5% 13.2 18.6 19.6 22.0

51 c3._11._1 Training set 400 0.5% 0 .0% 0 .0% 1.8 1.5 3.0 1.7

Test set 200 0 .0% 0 .0% 0 .0% 1.9 1.6 3.1 1.7

52 training set 400 "" "0.3% ''..... 0 ,0% b.0% 1,7 " i ,6 2,9 1,6
Test set 200 0 ,0% 0 0% 0 ,0% 1,9 1.7 3.3 1,8

53 c3..11._3 Training set 400 " a 3 % a"o% ...0 .6% ....... " i '.8...... 1.5 3.0 1.7

Test set 200 0 .0% 0 .0% 0 .0% 1.8 1.6 3.1 1.8

51 e3_12_l Training set 400 1.5% 0.5% 0.0% 1.9 1.9 3.2 2.4

Test set 200 5.0% 1.0% 0.0% 2.2 2.5 3.9 3.3

M  e i j i J : training set 400 1.3% ' 0.6%
...

1,8 31 2.3

Test set 200 5.0% 1,0% 0,0% 2.3 2.6 3.9 3.2 :

53 c3_12_3 Training set 400 1.5% 0.5% 0.0% 1.8 1.8 3.1 2..3

Test set 200 5.5% 1.0% 0.0% 2.2 2.5 3.8 3.2

57 c3_13_l Training set 400 3.5% 0.5% 0.0% 2.9 2.5 4.9 2.8

Test set 200 5.0% 0.0% 0.0% 3.3 2.6 5.3 2.7

58 c3_13_2 Training set 400 3.5% 0.0% 0.0% 2.8 2.4 4.7 2.5

Test set 200 6.0% 0.5% 0.0% 3.4 2.6 5.4 2.8

58 4 t3 j3 ^ 3  Training set 400 ' 3,3% ........ 0.0%  ' 0,0% 2.8 ‘ 4 .7 ;·"  · 2,6

Test set 200 6,0% 0,0% 0.0% 3,1 2.5 5,1 2,7

Table 4.1.4 (con t’ d ): M ean Tardiness: Simple System: Results o f  metamodels
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M ETHOD
4:

D evi a tio n -to - f lo w tim e TARDINESS

# NNet Data set E 4 -1 (S td ) E 4 - 2 (S td) E 4 -3 (S td) m in m ean (S td ) m ax

41 c3_8_l Training set 4% 4% 2% 3% 2% 2% 0.0 86.2 153.1 831.7

Test set 4% 5% 3% 4% 2% 3% 0.0 76.6 144.2 880.0

42 c3_8_2 Training set 4% 5% 3% 3% 2% 3% 0.0 86.2 153.1 831.7

Test set 5% 5% 3% 4% 2% 3% 0.0 76.6 144.2 880.0

43 Training set 4% ' 4%... 2% 's % " 2% 3% 0.0 86.2 153.1 831.7

Test set 4% 6% 3% 4% 2% 3% 0 0 76 6 144 2 $80.0

44 c3_8_4 Training set 4% 4% 2% 3% 2% 3% 0.0 86.2 İ53A 831.7

Test set 4% 5% 2% 4% 2% 3% 0.0 76.6 144.2 880.0

3% 3% 2% 3% 1% 2% 0.0 71.0 139.6 759.2

3% 3% 2% 3% 1% 2% 0.0 64.0 140.5 844.7

3% 4% 2% 3% 1% 2% 0.0 71.0 139.6 759.2

3% 4% 2% 3% 1% 2% 0.0 64.0 140.5 844.7

3% ' 3% 2% 3% 1% 3% 0.0 71.0 139.6 759.2

2% 3% 2% 3% 1% 2% 0.0 .64.0 140.5 844.7

45 c3_9_l Training set 

Test set

46 c3_9__2 Training set 

Test set

47 e3_9_3 Training set 

Töst set

48 e 3 J0 _ l Training set 5% 6% 3% 3% 3% 3% 0.0 104.6 173.1 918.4

Test set 5% 6% 4% 6% 3% 4% 0.0 107.2 170.4 933.6

49 c3__10_2 Training set 4% 5% 3% 4% 2% 3% 0.0 104.6 173^1 918.4

Test set 5% 6% 3% 4% 2% 3% 0.0 107.2 170.4 933.5

50 c3_10_3 Training set 4% 5% 3% 4% 2% 3% 0.0 104.6 173.1 918.4

Test set 5% 6% 3% 5% 2% 4% 0.0 107.2 170.4 933.5

51 e 3 _ ll_ l Training set 2% 2% 2% 2% 2% 1% 0.5 11.3 7.1 37.5

Test set 2% 2% 2% 2% 2% 1% 0.7 11.9 7.0 32.5

52 «3^11^2 Training set 2% 1 % 0.6 7.1 37.5

Test set 2% 2% 3% 2% 2% 2% 0.7 11.9 7.0 32.6

53 c3_ ll_3 Training set 2% 2% 2% 2% 2% 1% 0.5 11.3 7.1 37.5

Test set 2% 2% 2% 2% 2% 2% 0.7 11.9 7.0 32.5

54 e3_12_l Training set 2% 2% 2% 3% 2% 2% 1.6 14.6 8.0 55.9

Test set 3% 4% 3% 4% 2% 3% 1.8 14.1 7.5 41.7

55 t3 J 2 J l  Training set 2% 2% 2% ’  ̂ 3% ' 2% 2% 14,6 8.0 55 9

Test set 3% 4% 3% 4% 2% 3% 1.8 14.1 7.5 41.7

56 e3_12_3 Training set 2% 2% 2% 3% 2% 2% 1.6 14.6 8.0 55.9

Test set 3% 3% 3% 4% 2% 3% 1.8 14.1 7.5 41.7

57 e3_13_l Training set 3% 3% 3% 2% 2% 2% 4.9 21.6 10.0 64.3

Test set 4% 3% 3% 3% 2% 2% 5.5 21.1 9.4 57.9

58 c3__13__2 Training set 3% 3% 3% 2% 2% 2% 4.9 21.6 10.0 64.3

Test set 4% 3% 3% 3% 3% 2% 5.5 21.1 9.4 57.9

59 Training set 3% 3% 3% 2% 2% ' 2% 21.6 10.0 64.3

Test set 3% 3% 3% 3% 2% 2% BS 21.1 9.4 57,9

Table 4.1.4 (con t’ d ): M ean Tardiness: Simple System: Results o f  metam odels
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H
M ETHOD
1:

To le rance
ap p roa ch

METHOD MAD
2 :

METHOD
3:

ALPHA(20) ALPHA(30) m ean (S td ) m eanN N et I D ataset I s iz e (Std)

3$.a% 21,4% 11v1% 5.9 11.0 11.4 14.9

39.3% 26,3% 19.0% 8.0 16.6 16.4 23.8

35.5% 17.2% 9.0% 4.7 8.4 10.3 11.3

43.0% 28.3% 20.3% 8.0 17.0 18.2 24.3

35.8% 22.6% 15.4% 7.6 13.7 13.4 17.8

39.7% 28.3% 18.7% 9.0 18.1 17.6 25.6

Test set 300

Test set 300

Test set 300

63 TreinifiQset 400

Test set 300

64 c3_15_2 Training set 400 

Test set 300

65 c3_15_3 Training set 400 

Test set 300

0 .8% 0  6% 0 .0% 1.4 1.6 2.3 2.2

1 .3% 0 .0% 0 .0% 1.6 1.8 2.7 2.3
0 .5% o!3% 0 .0% ..... i ’4 ..... 1.6 .....2 A ......

2 1

2 .0% 0 .0% 0 .0% 1.7 1.9 2.9 2.4

0 .5% 0 .5% 0 .0% 1.4 1.6 2.4 2.1

1.3% 0 .0% 0 .0% 1.8 1.8 2.9 2.3

66 J 6 _ l Training set 400 0.5% 0.0% 0.0% 1.4 1.3 2.4 1.6

Test set 300 0.3% 0.0% 0.0% 1.6 1.5 2.8 1.7

67 c3^ Tralningset 400 0.0% ' 0.0% 0.0% 1.4 1.2 2.3 1.4

Test set 300 0.3% 0.0% 0.0% 1.6 1.5 2.7 1.8

68 c3_,16_3 Training set 400 0.0% 0.0% 0.0% 1.4 1.3 2.4 1.5

Test set 300 0.7% 0.0% 0.0% 1.6 1.5 2.8 1.8

69 c3 -17._1 Training set 400 0.8% 0.0% 0.0% 1.9 1.8 3.1 2.0

Test set 300 1.7% 0.0% 0.0% 2.0 1.8 3.3 2.1

70 c3_.17._2 Training set 400 0.5% 0.0% 0.0% 1.9 1.7 3.1 1.9

Test set 300 0.3% 0.0% 0.0% 2.1 1.8 3.4 2.0

71 .17 .3 Training set 400 0.8% 0,0% 0.0% 1.8 1.7 3.0 1.9

Test set 300 1 0% 0.0% 0 0% 1.9 1.7 3.1 1.9

72 c3_18_l Training set 400 6.5% 0.0% 0.0% 3.0 2.6 5.0 2.9

Test set 300 8.7% 1.3% 0.0% 3.4 3.2 5.6 3.5

73 c 3 J 8 j  Training set 400 4.5% 0.0% 0.0% 2.4 4.7 2.6

Test set 300 9.7% 0.7% 0.0% 3.5 3.1 5.5 3.4

74 c3_18_3 Training set 400 3.8% 0.0% 0.0% 2.9 2.5 4.8 2.7

Test set 300 9.7% 0.7% 0.0% 3.6 3.2 5.8 3.5

Table 4.1.4 (con t’d ): M ean Tardiness: Sim ple System: Results o f  m etam odels
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M ETHOD Devi ation -to- flow  tim e TARDINESS  
4:

# NNet 1 Data set E 4 - 1 (Std) E 4 - 2 (Std) E 4 - 3 (Std) min mean iS td ) max

60 t3 J 4 J Tramlnii set 3% 4% 2% 4% ' ' W 3% 0.0 13.3 33.0 341,8

Test set 3% 6% 2% 5% 1% 3% 0.0 16.6 37.3 251.9

61 c3_14_2 Training set ....2% ..... 3% 2% 3% i% 2% 0.0 13.8 33.9 341 !8

Test set 3% 7% 2% 4% 1% 3% 0.0 15.6 37.3 251.9

62 c3_14_3 Training set 3% 5% 3% 5% 2% 4% 0.0 13.8 33.9 341.8

Test set 3% 6% 2% 5% 2% 4% 0.0 15.6 37.3 251.9

63 <>3^15^1 Training set 2% 2% 2% 3% 1% 2% 0 0 7 9 7.8 36.2

Test set 2% 2% 3% 3% 2% 2% 0.0 8.6 7 7 31.6

64 c3_15_2 Training set ....2%..... .....2% ' 2% 3% ..2% 2% Ö.Ö ...7̂ ........7.8.. 35”2

Test set 2% 3% 3% 3% 2% 2% 0.0 8.6 7.7 31.6

65 c3_15_3 Training set 2% 2% 2% 3% 2% 2% 0.0 7.9 7.8 35.2

Test set 2% 2% 3% 3% 2% 2% 0.0 8.6 7.7 31.6

66 c3_16_l Training set 2% 1% 2% 1% 1% 1% 0.6 12.7 9.5 60.1

Test set 2% 2% 2% 1% 1% 1% 0.6 13.5 9.6 42.3

6T t3 J6 J 'T ra in in g  set 1% 1% 1% ' 1% 1% 0.6 12.7 ' 9.5 60.1

Test set 2% 2% 2% 1% 1% 1% 0.6 13 6 9.6 42,3

68 c3_16_3 Training set 2% 1% 1% 1% 1% 1% 0.6 12.7 9.5 60.1

Test set 2% 2% 2% 1% 1% 1% 0.6 13.5 9.6 42.3

69 c3_17_l Training set 2% 2% 2% 2% 1% 1% 2.3 18.2 11.0 60.6

Test set 3% 2% 2% 1% 1% 1% 3.8 18.9 10.9 61.6

70 c3_17_2 Training set 2% 2% 2% 2% 1% 1% 2.3 18.2 11.0 60.6

Test set 3% 2% 2% 2% 1% 1% 3.8 18.9 10.9 61.6

71 «3J7^3  Training set 2% " '  "' 2% ■■ '2% ■ 2% 'i%.. 1% 2.3 18.2 11,0 60 6

Test set 2% 2% 2% 1% 1% 1% 3.8 18.0 10.9 61.6

72 c3_18_l Training set 3% 3% 2% 2% 2% 1% 5.1 28.8 14.8 81.1

Test set 3% 3% 3% 2% 2% 2% 6.4 29.7 14.7 95.1

73 e3_18_2 Training set 3% 2% 2% 2% 2% 1% 5.1 28.8 14.8 81.1

Test set 3% 3% 3% 2% 2% 2% 6.4 29.7 14.7 95.1

74 c3_18_3 Training set 3% 2% 2% 2% 2% 1% 5.1... 28.8 14.8 81.1

Test set 3% 3% 3% 2% 2% 2% 6.4 29.7 14.7 95.1

Table 4.1.4 (con t’d ): M ean Tardiness: Simple System: Results o f  metamodels
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MOD

#

T ra in in g

se t

T e s t

se t

# o f

jo b

# o f

m ach

In te ra rriva l tim e P ro ce ss in g

tim e

Due da te  

tig h tn e s s

S c h e d u lin g ru le

typ e s N ature Range range fa c to r

1 #1 #1 6 7 determ inistic [20 .. 100] determ in istic [2..9] SPT, MODD orE D D

2 #2 #2 6 7 determ in istic [20..40] determ in istic [2..9] SPT, MODD orE D D

3 #3 #3 6 7 determ inistic [40..70] determ in istic [2..9] SPT. MODD orE D D

4 #4 #4 6 7 determ inistic [70.. 100] determ in istic [2..9] SPT, MODD orE D D

5 #5 #5 6 7 determ inistic 

•machine utilizatior

[20 .. 100] 

1 < 98%

determ in istic [2..9] SPT, MODD orE D D

6 #6 #6 6 7 stochastic

(exponential)

mean in 

[40.. 100]

determ in istic [2..9] SPT, MODD orE D D

7 #7 #7 6 7 determ in istic [40.. 100] stochastic

(exponential)

[2..9] SPT, MODD or EDD

8 #8 #8 6 7 stochastic

(exponential)

mean in 

[40.. 100]

stochastic

(exponential)

[2..9] SPT, MODD or EDD

Table 4.2.1: Mean Tardiness: Complex System: List of models.

MOD

P ercen tage  o f ta rd y  jo b s M ach ine  u tiliz a tio n T a rd ine ss Max. T a rd ine ss

# m in . I m ean I (S td ) 1 m ax. 1 m in . 1 m ean 1 (S td) 1 m ax. mean 1 (Std) mean 1 (Std)

1 0 .0% 34.1% 37.1% 100.0% 30.0% 68.5% 17.5% 100.0% 116.2 295.7 246.9 409.5

2 0 .0% 83.3% 29.7% 100.0% 69.5% 94.7% 6 .8% 100.0% 1032.8 780.1 1458.7 785.0

3 0 .0% 22 .1% 30.0% 100.0% 41.5% 65.8% 11.0% 100.0% 16.6 37.1 42.2 63.5

4 0 .0% 12.9% 19.9% 90.1% 30.0% 41.8% 7.3% 60.0% 5.5 10.5 9.2 15.1

5 0 .0% 22.4% 29.9% 100.0% 29.6% 62.5% 14.6% 97.9% 19.3 45.7 44.4 75.6

6 0 .0% 21.7% 27.5% 98.2% 29.2% 53.8% 11.2% 99.9% 17.9 42.5 41.4 76.5

7 0 .0% 32.9% 27.7% 100.0% 28.7% 53.9% 11.3% 100.0% 28.0 47.6 49.1 67.5

8 0 .0% 38.8% 28.3% 100.0% 29.8% 53.9% 11.4% 100.0% 42.3 66.6 75.4 94.0

Table 4.2.2: Mean Tardiness: Complex System: Generated set characteristics.
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Train ing Test learning m om entum exam ples

N N et S ize set U (s ize ) s e t # (s ize ) c o e f c o e f learned

1 c4_l_l 8 _ 1 2 _ 1 4 _ 1 2 _ 6 600 4 0 0 0.9 0.6 5 0 0 0 0 0

M cx lc l 1 2 c4_l_2 8 _ 1 5 _ 1 9 _ 1 5 _ 6 1̂ 600 4 0 0 0.9 0.6 5 0 0 0 0 0

3 c4_l_3 8 _ 4 5 _ 6 600 4 00 0.9 0.6 5 0 0 0 0 0

4 c4_2_I 8 1 2 _ 1 4 _ 1 2 _ 6 ^2 600 n 40 0 0.9 0.6 5 0 0 0 0 0

M o d e l 2 5 c4_2_2 8 _ 1 5 _ 1 9 _ 1 5 _ 6 ^2 600 //.2 40 0 0 .9 0 .6 5 0 0 0 0 0

6 o4_2_3 8 _ 4 5 _ 6 ^2 600 //2 4 0 0 0.9 0.6 5 0 0 0 0 0

7 c4_3_l 8 _ 1 2 _ 1 4 _ 1 2 _ .6 //J 600 ^3 4 0 0 0.9 0.6 5 0 0 0 0 0

M o d e l 3 8 c4_3_2 8 _ 1 5 _ 1 9 _ 1 5 _ 6 ^3 600 ^3 40 0 0.9 0 .6 5 0 0 0 0 0

9 c4_3_3 8 _ 4 5 _ 6 ^3 600 ^3 4 0 0 0.9 0 .6 5 0 0 0 0 0

10 e4_4_l 8 _ 1 2 _ 1 4 _ 1 2 _ 6 600 ^4 4 00 0.9 0.6 5 0 0 0 0 0

M o d e l4 11 c4_4_2 8 _ 1 5 _ 1 9 ._ 1 5 _ 6 m 600 ^4 4 0 0 0.9 0.6 5 0 0 0 0 0

12 c4_4_3 8 _ 4 5 _ 6 600 4 0 0 0.9 0.6 5 0 0 0 0 0

13 c4_5_l 8 _ 1 2 _ 1 4 _ 1 2 _ 6 ^ 5 4 0 0 ^ 5 240 0.9 0.6 5 0 0 0 0 0

M o d e l 5 14 e4_5_2 8 _ 1 5 _ 1 9 _ 1 5 _ 6 ^ 5 40 0 ^ 5 240 0.9 0.6 5 0 0 0 0 0

15 e4_5_3 8 _ 4 5 _ 6 ^ 5 4 0 0 240 0.9 0.6 5 0 0 0 0 0

16 c4_6_l 8 _ 1 2 _ 1 4 _ 1 2 _ 6 ^ 6 500 ^ 6 300 0.9 0.6 5 0 0 0 0 0

M o d e l 6 17 c4_6_2 S J 5 J 9 J 5 _ 6 ^ 6 500 ^ 6 300 0.9 0.6 5 0 0 0 0 0

18 c4_6_3 8 _ 4 5 _ 6 ^ 6 500 300 0.9 0.6 5 0 0 0 0 0

19 o4_7_l 8 _ 1 2 _ 1 4 _ 1 2 _ 6 ^ 7 500 ^ 7 300 0.9 0.6 5 0 0 0 0 0

M o d e l 7 20 c4_7_2 8 _ 1 5 _ 1 9 _ 1 5 _ 6 ^ 7 500 //7 300 0.9 0.6 5 0 0 0 0 0

21 c4_7_3 8 _ 4 5 _ 6 ^ 7 500 ^ 7 300 0.9 0.6 5 0 0 0 0 0

22 e4_8_l 8 ..1 2 _ 1 4 _ 1 2 _ 6 ^ 8 500 300 0.9 0.6 5 0 0 0 0 0

M o d e l 8 23 c4_8_2 8 _ 1 5 _ 1 9 _ 1 5 _ 6 500 m 300 0.9 0.6 50 0 0 0 0

24 c4_8_3 8_.45_6 m 500 300 0.9 0.6 5 0 0 0 0 0

Table 4.2.3: Mean Tardiness: Complex System: List of neural metamodels.
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METHOD 1: TOLERANCE
ap p roa ch

METHOD 2: METHOD 3:

# NNet Data se t # obs A lpha  = 5% A lpha  = 6.5% A lpha  = 8% MAD (M _S td) MM AD (M M .S td )

1 e4_1_1 TRAINING SET

TE S T SET

TRAIN ING  SET 

1 TE S T S ET

e4_1_3 TRAINING SET 

TE S T SET

600 

400 

600 
400 

600 ' 

400

76.8%

80.5%

'■■74 .6% ’'

75.0%

63.3%

66.0%

60.2%

64.5%

77.5%

81.5%

66.2%

68.5%

57 .3% 31.2 57.0 73.7 92.9

60.0% 59.0 122.0 127.2 171.8

54.0% 22.2 ...3^·····;"··^"; 64.0 ........57.3^'

57.0% 47.4 108.0 99.4 146.4

57.7% .........22!'8........ 3 6 7 5 7 6 ..........57.5 "

62.8% 46.6 95.6 108.0 145.6

4 e4_2_1 TRAINING SET 600 100.0% 99.7% 97.5% 48.8 51.6 112.7 75.4

TE S T SET 400 100.0% 100.0% 99.0% 55.2 56.5 125.9 77.3

5 e4.^2^2 T R A I N I N G »  600 100,0% ' 99.8%  99.3%  46.1 50.8 ' 1 1 0 .9 ..............76,2

“ “ TE S T SET 400 100.0% 99.5%  97.8% 61.8 54.8 121.3 76.6

6 e4_2_3 TRAINING SET 600 l66 .6%  100.6% 98.5% 48^6 49.5 io 9 ”9

TE S T SET 400 100.0% 100.0% 99.0% 54.9 55.8 126.8 77.0

r
e4_3_1 TRAINING SET 600 34.5% 15.5% 6.2% 3.4 6.9 10.0 12.4

TE S T SET 400 41.3% 25.0% 18.0% 5.5 14.8 18.1 29.4

8 TRAINING SET 600 2 9 7 % ' 11.0% 3.5% 2 9 6.7......... " "  " i a o ' ' ' ' 1

TE S T SET 400 41.3% 24,3% 17.3% 6.4 16.4 18.2 31,1 ;

9 e4_3_3 TRAINING SET ...6 0 0 ^ 38.5% 14.0% 5.2% 3.3 6.1 io .b   ̂ ' 10.4
TE S T SET 400 45.8% 27.8% 17.8% 6.0 15.9 19.4 30.4

10 e4_4_1 TRAINING SET 600 11.0% 3.7% 0.3% 1.6 3.4 3.5 5.8

TE S T SET 400 12.3% 4.0% 0.5% 1.6 3.5 3.8 6.0

11 e4_4_2 TRAINING SET 600 11.2% 3.7% 0.3% 1.6 3.4 3.5 5.8

TE S T SET 400 11.5% 4.0% 0.5% 1.6 3.5 3.7 6.0

12 TRAIN ING S ET 600 0.7% ' 0.0% 0.0% 1.0 1.5 2.2 2.4

TE S T SET 400 8.0% 0.8% 0 0% 1.4 2.4 3.2 4.0

13 e4_5_1 TRAINING SET 400 47.5% 28.3% 20.5% 6.5 13.0 18.3 22.9

TE S T SET 240 52.1% 35.8% 30.0% 15.3 42.8 40.7 74.2

14 e4_5_2 TRAINING SET 400 44.5% 24.8% 13.0% 5.3 9.9 14.2 16.6

TE S T SET 240 49.2% 32.9% 26.7% 12.6 34.5 32.9 56.8

15 TRAINING SET 41.0% 15.8%' 4 8% 3.9 10.4 10.0

TE S T S ET 240 52,9% 39.2% 29.2% 12.3 32.6 32.9 66.1

Table 4.2.4: Mean Tardiness: Complex System: Results of metamodels
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Q
METHOD 4: d e v ia tio n -to -flo w  

tim e  approach
NNet Data se t E 4 - 1  (S td1) E 4 - 2  (S td2) E 4 - 3  (S td3) E 4 - 4  (S td4) E4 - 5 (S td5) E 4 - 6  (S td6)

1 e4_1_1 TRAINING SET 17% 39% 17% 48% 21% 48%

TE S T SET 33%  99% 34% 131% 46%  117%

TRAIN ING  SET 13% 27%  12% 24% 17% 33%

TE S T SET 32%  100% 33% 136% 39%  99%

e4_1_3 190/^ 140/^ 25%

TE S T SET 30%  90% 30% 120% 36% 93%

31%

55%

23%

43%

24%

44%

48%

86%

33%

75%

33%

75%

26%

46%

16%
37%

19%

42%

42%

73%

26%

67%

26%

77%

23%

40%

14%
32%

14%
31%

47%

66%

20%

64%

20%

57%

4 e4_2_1 TRAINING SET 41%

TE S T SET 53% 

e4^2^2  TRAIN ING  S ET 37%

TE S T S ET 48%

44%

57%

46%

63%

53%

60%

44%

66%

6 e4_2_3 TRAINING SET

TE S T SET

44%

54%

45%

53%

50%

58%

62%

72%

61%

66%
58%

68%

68%

80%

66%
79%

Q2o^

95%

81%

107%

83%

105%

84%

106%

31%

36%

33%

36%

31%

36%

31%

34%

M%
4 0 %

3?%
38%

35%

40%

33%

3 6 %

30%

35%

46%

40%

42%

36%

40%

36%

22%

25%

20%

23%

18%

21%

22%

27%

21%

27%

..18%

22%

7 e4_3_1 TRAINING SET 1% 2% 1% 2% 2% 3% 5% 8% 2% 4% 2% 4%

TE S T SET 2% 3% 2% 3% 3% 5% 9% 19% 4% 9% 3% 7%
8  ̂ 'e4jS|2·/:· TRAINING SET 1% 2% 1% 2% 2% 3% 4% 7% 2% 4%^' 2%"'"̂ '̂ ' “4% ' j

T EST  SET 1% 3% 2% 3% 3% 7% 10% 20% 4% 9% 3% 6% *
e4_3_3 TRAINING SET 1% 1% 1% 2% 2% 3% 5% 7% 2% 3% 2% 3%

TE S T SET 2% 3% 2% 3% 3% 5% 10% 19% 4% 8% 3% 7%

n o e4_4_1 TRAINING SET 2% 3% 2% 4% 1% 2% 1% 3% 1% 2% 1% 3%

TE S T SET 2% 3% 2% 3% 1% 1% 1% 3% 1% 3% 1% 3%

11 e4_4_2 TRAINING SET 2% 3% 2% 4% 1% 2% 1% 3% 1% 2% 1% 3%

TE S T SET 2% 3% 2% 3% 1% 1% 1% 3% 1% 3% 1% 3%

12 e4^4„..3 TRAIN IN G  SET 1% 2% f% 2% 1% 1% ■t%··· ■■ "'ri% 7 ':” 1% 1% 1%

TE S T SET 2% 2% 2% 3% 1% 2% 1% 2% 1% 2% t% 2% .

F
e4_5_1 TRAINING SET 2% 2% 2% 2% 7% 16% 8% 14% 5% 7% 4% 7%

TEST SET 6% 14% 5% 13% 10% 30% 19% 44% 13% 32% 11% 31%

14 e4_5_2 TRAINING SET 1% 2% 2% 2% 5% 9% 6% 10% 4% 7% 4% 8%

TE S T SET 6% 17% 5% 14% 11% 30% 15% 36% 10% 27% 9% 28%

IS e 4 „5 _ 3 TRAIN ING  SET 1% 2%  ' 1% 2% 4% 7% ' 4% m 3% 4% 3% ' 4%  '

TE S T S ET 6%  . 16% 4% 13% 11% 33% 15% 32% 10% 25% 9% 26%

Table 4.2.4 (con t’ d ): M ean Tardiness: Com plex System: Results o f  m etam odels
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METHOD 1: TOLERANCE 
a p p roa ch

METHOD 2: METHOD 3:

# I NNet I D a ta s e t | # obs A lpha  = 5% A lpha  = 6.5% A lpha  = 8% MAD (M _S td) M M AD (M M _Std)

16 e4_6_1 TRAINING SET

TEST SET

17 e4_6_2

18 04^6_3

TRAINING SET 

TE S T SET 

TRAINING SET 

TE S T SET

500

300

500

300

500

300

42.4% 

45.0% 

38.0% 

44.3% 

33 4% 

44.3%

15.6%

25.3%

15.0%

25.3%

12.8%

26.3%

6 .8%

16.0%

6.4%

16.7%

5.4%

16.3%

3.9

7.1

3.7

7.7 

3 2

6.7

8.2

26.0

7.7 

30.4

6.8

22.7

12.4

22.5 

11.9 

25.7 

9.6 

20.1

16.3

54.5

15.1

64.9 

10 5

38.9

19 e4_7_1 TRAINING SET 500 32.4% 12.6% 5.2% 4.2 7.5 10.1 11.5

TE S T SET 300 38.0% 19.7% 13.0% 7.7 20.9 17.2 31.0

20 e4_7_2 TRAINING SET 500 30.8% 11.2% 5.0% 4.1 6.8 9.7 10.2

TE S T SET 300 37.0% 18.7% 13.7% 7.8 20.6 17.4 30.5

21 e4^7„.3 TRAIN ING SET 500 32.6% 10.0% 4.0% 4.0 6.7 9.4 9.9

TE S T S ET 300 34.3% 20.0% 13,7% 7.5 20.2 16.6 29.8

22 e4_8_1 TRAINING SET 500 54.6% 29.0% 15.0% 7.5 13.7 17.6 21.3

TE S T SET 300 63.3% 37.7% 24.3% 14.4 39.2 32.1 58.7

28 ' e O _2 TR A IN IN G  SET 500 '· 7;52.6%: 22,6%  ' 8 ,8% v,;. ;5,9··· 8.4 12,3

TE S T SET 300 57.7% 32.7% 22.3% 13,2 37.3 30.0 57.2

24 e4_8_3 TRAINING SET 500 73.6% 46.2% 35.4% 12.8 19.4 28.0 ^̂” 25.3 ^

TE S T SET 300 80.7% 51.0% 34.3% 16.8 31.1 36.6 42.8

Table 4.2.4 (con t’ d ): M ean Tardiness: C om plex System: Results o f  metam odels
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METHOD 4: d e v ia tio n - to -flo w
tim e  approach

# 1 NNet 1 D a ta s e t E 4 - 1  (S td l)  E 4 - 2  (S td2) E 4 - 3  (S td3) E4 - 4 (S td4) E 4 - 5  (S td5) E 4 - 6  (S td6)

16 e4_6_1 TRAINING SET 1% 2% 1% 2% 2% 4% 7% 10% 3% 4% 2% 3%

TEST SET 2% 3% 2% 3% 3% 4% 11% 28% 5% 11% 4% 8%

17 e4_6_2 TRAINING SET 1% 2% 1% 1% 2% 4% 6% 9% 3% 4%  2% 3%

TE S T SET 2% 3% 2% 3% 3% 4% 12% 30% 5% 10% 4% 9%

18 e 4 ^6 „3  TRAIN ING  SET 1% 1% 1% 1% 2% 3%  6% 7% 3%  3%  2% 2%

J E S T  S ET 2%  2% 2% 2% 3%  4%  9% 20%  5% 11% 4% 10%

19 e4_7_1 TRAINING SET 2% 3% 2% 3% 2% 2% 4% 6% 3% 5% 4% 6%

TE S T SET 3% 4% 3% 4% 2% 3% 8% 16% 6% 14% 7% 15%

20 e4_7_2 TRAINING SET 2% 3% 2% 3% 2% 2% 4% 6% 3% 5% 4% 5%

TE S T SET 3% 4% 3% 4% 2% 4% 8% 17% 7% 15% 7% 15%

21 e4..7^3 TRAIN ING SET 2% 3% 2% 3% 2% 2% 4% 6% 3% 6% 3% 5%

t iS T 'S i f  , ' 3% 4% 3% 4% 2% 3% 7% 16% 6% 14% 7% 14%

22 e4_8_1 TRAINING SET 4% 5% 4% 4% 3% 4% 7% 11% 6% 10% 6% 10%

TEST SET 5% 7% 5% 7% 4% 6% 14% 34% 13% 32% 13% 31%

23 TRAINING SET 4% 5% 4% 4% 3% 3% 6% 7% 5% 6% 5% 6%

TE S T SET 6% 7% 5% 7% 4% 6% 12% 31% 11% 28% 12% 27%

24 e4_8_3 TRAINING SET 4% 4% 4% 4% 4% 4% 15% 16% 12% 14% 11% 12%

TE S T SET 5% 6% 5% 6% 5% 6% 18% 26% 15% 22% 14% 21%

Table 4.2.4 (con t’ d ): M ean Tardiness: C om plex System: Results o f  m etam odels
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M od

#
T ra in in g

se t

T e s t

se t

In te ra rriva l

tim e

Range

In itia l # o f 

pa rts  pe r 

typ e

Due date 

tig h tn e s s  

fa c to r

S c h e d u lin g  ru ie

1 #1 #1 [15..60]

determ inistic

[1..15] (2..51 SPT, MODD or EDD

2 #2 #2 [15..60] [1 -15 ] [2..5] SPT, MODD or EDD

3 #3 #3 [15..35] [1 -15 ] [2..5] SPT, MODD or EDD

4 #4 #4 [35..60] [1..15] [2..5] SPT, MODD or EDD

5 #5 #5 [15..60] [1 -5 ] [2..51 SPT, MODD or EDD

6 #6 #6 [15..60] [6.. 10] [2..5] SPT, MODD or EDD

7 #7 #7 [15..60] [11.. 15] [2..5] SPT, MODD or EDD

8 #8 #8 [15..60] [1 -15 ] [6..9] SPT, MODD or EDD

9 #9 #9 [15..60] 5 [2..5] SPT, MODD or EDD

10 #10 #10 [15..60] 10 [2..5] SPT, MODD or EDD

11 #11 #11 [15..60] 15 [2..5] SPT, MODD or EDD

12 #12 #12 [15..60] 20 [2..5] SPT, MODD or EDD

13 #13 #13 [15..60] 25 [2..5] SPT, MODD or EDD

14 #14 #14 [15..60] 30 [2..5] SPT, MODD or EDD

15 #15 #15 [15..60] [3..7] [2..5] SPT, MODD or EDD

16 #16 #16 [15..60] [8.. 12] [2..5] SPT, MODD or EDD

17 #17 #17 [15..60] [13..17] [2..5] SPT, MODD or EDD

18 #18 #18 [35..60] 5 [2..51 SPT, MODD or EDD

19 #19 #19 [35..60] 10 [2..5] SPT, MODD or EDD

20 #20 #20 [35..60] 15 [2..5] SPT, MODD or EDD

21 #21 #21 [35..60] 20 [2..5] SPT, MODD or EDD

22 #22 #22 [15..35] 10 [2 -5 ] SPT, MODD or EDD

23 #23 #23 [15..35] 15 [2 -5 ] SPT, MODD or EDD

24 #24 #24 [15..35] 20 [2..5] SPT, MODD or EDD

25 #25 #25 [15..35] 25 [2..5] SPT, MODD or EDD

Table 5.1: Mean Tardiness: short term estimation: List of models.



APPENDIX B 127

MOD

P ercen tage  o f T a rdy  
jo b s

M ach ine  u tiiiz a tio n T a rd in e ss

# m in m ean (s td ) m ax. m in m ean (s td ) max. m in m ean (s td ) m ax.

1 10.1% 78.9% 18.7% 100.0% 33.0% 74.7% 15.4% 100.0% 3.90 240.00 132.65 681.30

2 41.4% 88.5% 11.0% 100.0% 27.0% 73.7% 15.8% 100.0% 27.90 276.73 134.02 785.80

3 57.1% 93.9% 8.3% 100.0% 42.0% 85.8% 11.8% 100.0% 41.80 332.79 151.19 766.70

4 39.2% 83.0% 11.1% 100.0% 25.0% 62.1% 12.7% 99.0% 18.30 242.32 123.94 756.20

5 21.9% 74.3% 17.3% 100.0% 20.0% 61.9% 17.6% 100.0% 8.50 86.18 54.14 420.10

6 52.9% 89.3% 10.1% 100.0% 29.0% 73.9% 15.4% 100.0% 49.70 278.73 117.95 687.40

7 64.2% 94.1% 6.5% 100.0% 29.0% 80.8% 13.4% 100.0% 122.00 476.59 157.74 853.90

8 25.0% 74.6% 16.5% 100.0% 30.0% 73.6% 15.7% 100.0% 19.00 220.85 122.12 706.20

9 43.5% 82.0% 13.8% 100.0% 26.0% 67.1% 17.0% 100.0% 24.50 151.96 77.28 529.90

10 59.2% 91.9% 8.3% 100.0% 37.0% 77.6% 14.5% 100.0% 32.60 313.46 160.06 761.70

11 62.8% 94.6% 6.1% 100.0% 41.0% 82.3% 13.1% 100.0% 166.60 524.96 160.80 864.60

12 71.6% 95.9% 1.9% 100.0% 42.0% 84.7% 12.3% 100.0% 213.50 602.87 158.66 914.30

13 70.0% 96.6% 0.6% 100.0% 40.0% 86.3% 11.8% 100.0% 252.40 641.11 150.23 941.70

14 75.0% 97.2% 1.0% 100.0% 46.0% 87.9% 10.9% 100.0% 315.90 668.75 141.73 941.80

15 35.4% 81.9% 7.3% 100.0% 24.0% 67.1% 17.0% 100.0% 25.20 149.58 79.13 503.90

16 56.4% 92.0% 1.3% 100.0% 34.0% 77.5% 14.6% 100.0% 83.90 370.46 139.83 765.00

17 68.6% 94.9% 2.5% 100.0% 39.0% 82.5% 13.0% 100.0% 169.00 525.89 161.51 865.50

18 37.0% 73.7% 9.0% 100.0% 22.0% 53.6% 11.1% 96.0% 22.10 114.70 51.88 381.00

19 55.7% 88.3% 2.7% 100.0% 33.0% 67.3% 12.3% 98.0% 76.80 344.16 127.39 788.00

20 68.6% 93.0% 1.3% 100.0% 37.0% 74.5% 12.8% 99.0% 190.10 514.61 135.00 837.00

21 70.8% 94.5% 0.6% 100.0% 37.0% 78.0% 12.6% 100.0% 251.70 601.41 123.61 895.50

22 66.3% 95.3% 0.7% 100.0% 45.0% 87.9% 10.3% 100.0% 77.00 414.32 158.84 777.70

23 70.2% 96.5% 1.0% 100.0% 51.0% 89.9% 9.1% 100.0% 163.20 547.55 187.41 874.80

24 73.4% 97.0% 0.6% 100.0% 52.0% 91.1% 8.4% 100.0% 184.80 610.08 189.21 937.50

25 74.6% 97.5% 3.9% 100.0% 55.0% 92.0% 7.9% 100.0% 248.80 644.67 177.48 948.10

Table 5.2: Mean Tardiness: short term estimation: Generated set characteristics.
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M ETHOD 1: Tolerance approach METHOD
2:

MAD METHOD
3:

MMAD

# 1 NNet 1 Data set |s ize ALPHA(10) ALPHA(20) ALPHA(30) I ALPHA(70) | a LPHA(100) mean (Std) mean (Std)

 ̂ ^ J J training set 600 96.2% 78 5% $7.3% 6,2% 0.3% 21.8 17.6 36.9 18.7

Test set 360 99.4% 94.9% 88.3% 39.7% 16.3% 40.6 36.9 67.7 39.2

2 E 5_l_2 Training set 600 95.2% 77.3% 54.5% 6.0% 1.3% 2o !5 18.5 35.7 20.9

Test set 350 99.4% 95.4% 88.9% 44.3% 16.9% 40.4 35.5 69.7 38.3

Training set 600 99.0% 89.2% 72.0% 15.7% 6.5% 28,3 24.0 46.7 26.0

Test set 360 99.4% 97.7% 94.9% 71.1% 64.6% 78.8 70.8 124.2 76.6

4 E5_2_2 Training set 600 98.2% 92.5% 82.0% 27.8% 8.3% 34̂ 6 2 8 7 .....5 6 7 ..... 30.9

Test set 350 99.7% 98.9% 96.3% 76.9% 52.9% 77.9 64.1 122.2 69.2

1$ training sot 600 97.2% 88.0% 69.8% 14,3% 2.6% 26.4 ' 2 t.6:' 44.3 23.6

Test set 350 100.0% 97.1% 9 3 7 % 64.3% 49.1% 70.9 61.4 108.4 66.7

6 E5_3_2 Training set 600 99.0% 93.3% 77.8% 21.5% 4.2% 31.2 24.9 51.5 26.2

Test set 350 99.4% 99.1% 95.4% 71.7% 49.1% 70.3 57.2 109.4 59.8

B 5^4^ l Training set 600 98.0% 88.8% 70.3% 18.5% 2.8% 27.0 22.6 44.6 23.8

Test set 350 100.0% 98 9% 96.0% 75.4% $4.9% 80.8 70.0 1 2 5 7 75.6

8 E5_4_2 Training set 600 99.7% 96.8% 88.3% 35.3% 12.2% 39.1 31.0 63.6 3 T 9

Test set 350 100.0% 99.1% 96.6% 76.6% 60.0% 85.5 72.2 134.1 76.3

p  E5_5_l Training set 600 92.7% 62.2% 35.2% 1.8% 0.2% 17.0 14.5 27.5 15.9

Test set 350 94.9% 79.1% 62.6% 26.3% 15.4% 38.1 40.9 54.9 45.6

10 m j j , Training set 600  ̂ 86.2% 47.5% ' 0.0% 0.0% 10.4 21.1 10.9

Test set 350 95.7% 80.0% 63.1% 23.7% 11.4% 34.8 34.6 50.7 38.7

a Training set 600 98.3% 90.3% 76.0% 17 0% 3.5% 29.0 23.6 47.1 24.4

Test set 350 99.4% 98.6% 93 7% 69.4% 61.7% 73.6 64.6 116.4 72.4

12 E5_6_2 Training set 600 99.2% 93.3% 80.0% 23.3% 8.0% 32.5 27.4 54.7 29.2

Test set 350 99.4% 98.9% 96.9% 77.1% 59.4% 78.3 67.1 127.0 71.8

U  B S J J Training set 600 99.7%  . 93.0% .....81.6% ..... 20.7% 6.3% 32.1 26.2 53.4 27.2

Test set 360 100.0% 99.1% 96.0% 69,1% 46.3% 67.6 62.9 113,4 73.6

14 E5_7_2 Training set 600 98.8% 95.0% 84.5% 29.5% 10.0% 35.0 28.4 .....5 8 J ....... 29.3

Test set 350 100.0% 98.9% 97.4% 75.7% 56.0% 73.6 66.4 127.1 74.7

p 5  E5_8_:E5^8_l Training set 600 97.8% 88.3% 71.8% 13.0% 2.2% 26.5 22.0 44.0 22.8

Test set 350 99.7% 95.7% 91.7% 67.4% 45.1% 67.9 60.2 105.0 64.9

W J 3 Training set 600 99.5% 89.8% 76.7% 17.3% 4.2% 29.9 24.5 49.7 '" '2 $ .4 '

Test set 350 99.7% 98.6% 95.4% 70.9% 51.4% 71.7 59.7 112.6 61.4

Table 5.3: M ean Tardiness: short term estim ation: Results o f  metamodels
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# 1  N N e t  j

M ETHOD 4: deviat Ion -to- flow TARDINESS

Data set (Std) E 4 - 2 (Std) E 4 - 3 (Std) min mean (Std)

i  ^ J J Training set 6% 5% 0% 8% 6% 3.9 237.6 134.6 622.4

Test set 13% 13% 15% 13% 11% 12% 5.9 244.1 129.2 681.3

2 E5_l_2 Training set 6% 6% 8% 7% 5% 5% 3.9 237.6 134.6 622.4

Test set 15% 14% 16% 19% 11% 12% 5.9 244.1 129.2 681.3

3 Training set 8% 6% 9% 7% 7% 6% 27 9 276.2 132.5 722.6

Test set 20% 18% 26% 21% 22% 21% 29 7 279.3 136.6 785.8

4 E5_2_2 Training set 9% 8% 12% 10% 10% 9% 27.9 275.2 132.5 722.5
Test set 20% 17% 27% 21% 23% 19% 29.7 279.3 136.6 785.8

5 E5 J J Training set 6% 6% i0 % ' 9% 7% 6% 41.8 330.6 160.2 766.7

Test set 17% 15% 20% 16% 16% 17% 46.9 336.6 153.0 748.2

6 E5_3_2 Training set 7% 6% 12% 10% 9% 7% 41.8 330.6 150.2 766.7

Test set 16% 14% 20% 17% 16% 14% 46.9 336.6 153.0 748.2

r
Train}i .̂g set 8% 6% 10% 8% 8% 7% 18.3 239.3 120.8 766,2

Test set 22% 17% 27% 26% 27% 27% 22.8 247.5 129.0 657.4

8 E5_4_2 Training set i i % 9% 15% 13% 13% Î2% 18.3 239!3 Î2 o !8 756"2

Test set 23% 20% 31% 27% 28% 27% 22.8 247.5 129.0 657.4

^  E5_5_l Training set 12% 9% 11% 9% 7% 6% 8.5 87.0 55.4 420.1

Test set 25% 25% 23% 22% 16% 16% 11.8 84.8 52.0 298.2

Training set 7% 6% 8% 6% 5% 4% 8.6 87.0 55.4 420.1

Test set 21% 21% 21% 19% 14% 14% 11.8 84.8 52.0 298.2

U E5JJ Training set 8% 7% 10% 8% 8% 7% 4 9 J 278 6 11 8 5 687.4

Test set 17% 14% 24% 24% 21% 21% 57.0 279.0 117.1 678.4

12 E5_6_2 Training set 9% 8% i i % Ï0 % 9% 9% 49.7 278.6 118.5 687.4

Test set 19% 17% 22% 21% 19% 18% 57.0 279.0 117.1 678.4

13 Training set 5% 6% 6% 6% 6% 5% 122.0 478.6 157.3 853.9

Test set 10% 9% 12% 11% 11% 9% 129,6 473.1 158.6 843.5

14 E5„7_2 Training set 6% 5% 7% 6% 7% 6% 122.0 478.6 157.3 853.9

Test set 11% 10% 12% 13% 11% 11% 129.6 473.1 158.6 843.5

15 E5_8_l Training set 7% 6% 8% 7% 6% 6% 19.0 219.2 123.7 655.1

Test set 17% 15% 19% 17% 15% 14% 24.2 223.7 119.3 706.2

16 Training set 8% 6% 9% 8%' '">% 6% 19.0 219.2 123.7 656.1

Test set 18% 16% 23% 19% 17% 15% 24.2 223.7 119.3 706,2

Table 5.3 (C on t’ d ): M ean Tardiness: short term estimation: Results o f  metamodels
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M ETHOD 1: Tolerance approach METHOD MAD
2:

METHOD MMAD
3:

# 1  N N e t Data set size ALPHA(10) ALPHA(20) ALPHA(30) ALPHA(70) ALPHA(IOO) mean (Std) mean (Std)

17 ^ J J Training set 600 97 8% 87,2% 70,8% 23.0% 7 7% 26.6 $1.3 30,9

Test set 350 98 3% 89.4% 76.3% 26.0% 11.4% 36.6 33.2 55.7 36.9

18 E5_9_2 Training set 600 98.5% 88.5% 75!2% 22.5% 7.8% 33.9 28.6 51.9 31.0

Test set 350 98.0% 88.3% 77.4% 27.7% 10.9% 35.6 32.6 55.9 36.3

19 B 5 J 0 J  Training set 600 99.8% 97.2% 91.6% 51,0% 28.3% 60.0 41.3 80.3 44.4

Test set 350 99.1% 97,4% 92 9% 55,7% 32 3% 51.3 41,4 84.5 43.2

20 E5_10_2 Training set 600 99.7% .....9 a 3 % 94.3% 58.8% 31.3% 53.3 42.0 85.5 43.2

Test set 350 99.1% 97.4% 93.7% 60.9% 32.6% 53.7 41.4 87.7 42.4

21 Tralninisaet 600 99,8% 95.8% 88,3% 47.3% 24.8% 38.3 75.0 42,5

Test set 350 1000% 96.3% 90.0% 47,7% 24.3% 46.4 41.1 78.4 47.0

22 E 5 _ ll_ 2  Training set 600 99.5% 97.2% 89.8% 49.5% 27.2% 45.6 39.9 78.0 44.6

Test set 350 99.4% 96.0% 89.7% 52.0% 26.6% 47.9 42.3 81.9 47.9

23 B 5 J 2 _ 1  Training set 600 99.6% 96 2% 8Se3% 4 0 .3 % 16.6% 4 0 .7 33.4 67.6 3 4 ,8

Test set 350 100.0% 98,3% 93 1% 44.3%' 19.1% 4 2 ,0 33.1 69.7 32.2

24 E5_12_2 Training set 600 99!7% 96.2% 87.6% 4 0 7 % 17.2% 41.0 33.7 6 7 i .....35 .3 '

Test set 350 100.0% 97.4% 90.9% 46.0% 19.4% 41.8 33.4 69.8 33.1

25 E5_13_l Training set 600 99.5% 98.3% 95.0% 62.7% 43.8% 73.4 66.4 112.3 70.8

Test set 350 100,0% 99.4% 95.7% 66.3% 45.4% 74.5 64.3 113.8 68.8

26 E5_13_2 Training set 600 99.7% 96.8% 91 0% .....4 1 7 % ’ 14.8% 41.0 i32.1 68.6 33.1

Test set 350 100.0% 90.9% 9 3 7 % 46.6% 17.4% 42,8 33.8 71.3 35,3

99s3% 97,3% 91.8% 4 2 ,5 % 16.5% 41.1 32.7 6 9 ,4 33,8

99.1% 97.1% 91.4% 43.4% 17 7% 41.9 32.5 70.6 32.7

99.2% 98.2% 9 i !o% 42.7% i7 '5 % ...... 4 i .2 .... 32.7 69.6 33.9

99.1% 96.9% 91.1% 44.0% 18.6% 42.4 32.8 71.2 33.0

Test set 350 

28 E5_14_2 Training set 600 

Test set 350

29^ B5^ Training set 600 92.7% 64,5% 37.8% 1.7% 0.0% 16.9 14.0 28.1 16.3

Test set 350 99.7% 96.7% 88.0% 44.0% 24.0% 49.7 45.1 76.2 49.3

30 E5_ Training set 600 95.5% 77.5% 56.2% 8.7% i.5 % 22.4 19.8 ....37’.1...... 22.0

Test set 350 98.9% 95.1% 87.4% 53.1% 34.0% 61.5 56.3 89.3 60.8

31 E 5 „ ie _ l  tra in in g  set 60 0 99.2% 96,2% 86 .7% 34.3% 12,8% 36.7 30.1 62.4 30 .7

Test set 360 100 .0% 98,9% 96.0% 78.3% 58,9% 78,6 64.4 126.7 68,9

32 E5_16_2 Training set 600 99.3% 94.5% 87.5% 37.2% 13.2®/i> 39.0 31.7 64.7 33.0

Test set 350 99.7% 98.9% 98.3% 78.6% 62.6% 83.8 71.0 134.3 75.1

Table 5.3 (C on t’ d ): M ean Tardiness: short term estimation: Results o f  metamodels
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M ETHOD 4: deviat ion -to- flow  TARDINESS  
tim e appro ach

# j  NNet 1 Dataset E4-1 (S td) E4-2 (Std) E4-3 (S td) I min mean (Std) max

17 Training set 13% 11% 15% 13% 11% 10% 28 3 151.7 78.3 518.9

Test set 14% 11% 16% 14% 12% 11% 24.5 162.3 75.5 529.9

18 E5_9_2 Training set 13% 11% 16% 12% 12% 10% 28.3 151J 78.3 518.9

Test set 14% 11% 17% 14% 12% 11% 24.5 152.3 75.5 529.9

19 B5_10_l TraWrtsset 10% 9% 12% 11% 11% 10% 100.0 371.2 139.6 761.7

Test set 11% 9% 13% 11% 11% 9% 85.8 374 7 142.8 707.6

20 E5_10_2 Training set 12% 10% 14% 12% 12% 10% 100.0 371.2 139.6 7 6 1 7

Test set 12% 11% 14% 12% 12% 9% 85.8 374.7 142.8 707.5

21 M5JIJ Training set 6% 5% 7% 7% 7% 6% 175.4 524.5 161.1 864.6

Test set 6% 6% 8% 7% 7% 5% 166.6 525.8 160.3 864.1

22 E5_ll__2 Training set 6% 5% 7% 7% 7% 6% 175.4 524.5 161.1 864.6

Test set 7% 6% 8% 7% 7% 5% 166.6 525.8 160.3 864.1

23 B5_12_l Trainingset 5% 4% 7% 6% 6% 5% 219.6 604.2 158.4 914.3

Test set 5% 4% 7% 6% 6% 5% 213.5 600.6 159.1 9 0 5 7

24 E5_12_2 Trainingset 5% 4% 7% 6% 6% 5% 219.6 604.2 158.4 914.3

Test set 5% 4% 7% 6% 6% 5% 213.5 600.6 159.1 905.7

25 E5_13_l Training set 11% 15% 17% 18% 13% 13% 273.0 641.0 150.6 925.5

Test set 11% 13% 17% 19% 13% 13% 252.4 641.4 149.7 9 4 1 7

26 B 5 J 3 _ 2  Trainingset 5% 4% 7% 6% 6% 5% 273.0 641.0 150.6 925.6

Test set 6% 4% 8% 7% 7% 5% 262.4 641.4 149.7 9 4 1 7

27 E 5 ^1 4 J  Trainingset 5% 4% 7% 6% 6% 5% 315.9 668.2 142.6 941.8 ;

Test set 6% 4% 7% 5% 6% 5% $18.8 669.7 140.4 938.4

28 E5_14_2 Trainingset 5% ...4% ... 7% 6% 6% 5% 315.9 668.2 142'6 941.8

Test set 5% 4% 7% 5% 6% 5% 318.8 669.7 140.4 938.4

29 training set 7% 6% 9% 7% 6% 5% 27.3 149.1 79.7 474.9

Test set 20% 17% 24% 23% 17% 16% 28.6 153.6 79.2 503.9

30 E5_ \5_2 Training set 9% 7% i i % 10% 7% 7% 27.3 Î49.1 7 9 7 474.9

Test set 27% 25% 31% 32% 22% 20% 28.2 153.6 80.8 503.9

31 B5_16.1 Training set 8% 7% 9% 8% 8% 7% 83.9 368.9 140.3 765.0

Test set 15% 16% 21% 18% 19% 17% 97.5 373,a 139.1 749.0

32 E5_16_2 Training set io % ...8% ... io % 9% .̂..9% .... 7% s a o 368.9 140.3 765.0

Test set 18% 19% 21% 19% 18% 16% 97.5 373.2 139.1 749.0

Table 5.3 (C on t’d ): M ean Tardiness: short term estimation: Results o f  metamodels
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METHOD 1: To le rance  ap p roa ch METHOD MAD
2:

METHOD MM AD
3:

# 1 NNet 1 Data set js iz e ALPHA(10) ALPHA(20) ALPHA(30) ALPHA(70) ALPHA(IOO) m ean (S td ) m ean (S td)

33 B5. Training ̂ et 600 09.6% 93.6% a p 7 % 20 7% 6.7% 321 25.5 53.1 26 0

Test set 360 99.7% 98.3% 96.1% 69.7% 43.7% 64.8 59.6 110.9 70.9

34 E5__17_2 Training set 600 99.3% 96.2% 86.2% 28.3% 6.8% 34'6 26.6 58.1 26.7

Test set 350 99.7% 99.4% 96.3% 76.9% 60.6% 73.3 62.7 125.2 68.2

35 Training set 600 98.3% 86.2% 64 7% 14.0% 6.7% 28.2 25.4 44.9 29.0

Test set 350 96.9% 85.1% 66 1% 14 9% 5.4% 28.3 26.9 45.1 30.0

36 E5_18_2 Training set 600 98.2% 86.8% 65^3% 16.8% 5.5% 28.6 26.2 46.5 29.7

Test set 350 97.4% 84.0% 66.9% 15.7% 6.6% 28.9 26.8 46.7 31.4

37 E5_ Training set 600 100.0% 98.8% 96.5% 66.5% 40.7% 59.4 44.8 94.6 43.7

Test set 350 99.1% 98.0% 96.0% 70.9% 43.7% 60.4 46.3 97.6 46.2

38 E5^M 3 Training set 600 99.8% 99.0% 95.7% 68.7% 42 3% 60.2 46.0 96.5 45,1

Test set 350 100.0% 99.1% 96.0% 72.6% 45.1% 61.7 46.6 100.3 45.3

39 B$^20_l Tralningset 600 100.0% 98.7% 94.8% 58.2% 30.7% 51,5 41.4 86.2 43.8

Test set 360 99.7% 97.4% 94.6% 62,0% 32.3% 54.3 48,8 91.3 $3.0

40 E5_20_2 Training set 600 99.8% 98.6% 93.7% 59.6% 31.0% ...... '51’!5..... 41.4 ....'e a i ...... 43.8

Test set 350 99.7% 99.4% 95.1% 61.7% 33.7% 54.9 48.3 91 .1 52.1

42 E5_21_2 Training set 600 

Test set 350

99.7% 99.2% 93.3% 48,0% 22.0% 44.8 35.9 75,2 35.8

100.0% 98.9% 94.9% 51.1% 23.4% 47.8 38,9 79,1 39.8

99B % 97.8% 94.0% 50.3% 22”7% 45.3 36.0 75.8 35.8

100.0% 98.6% 95.1% 55.4% 27.4% 48.6 38.6 80.6 38.8

43 E5_22_l Training set 600 99.8% 98.2% 93.3% 65.5% 53.3% 82.3 69.1 120.4 73.1

Test set 350 99.7% 97.1% 91.4% 64.6% 52.6% 82.3 66.3 116.2 70.4

44 B5_22_2 Training set 600 99.7% 97,2% 90.7% 46,8% ' 19.5% 43.9 35,4 72.1 36.1

Test set 350 99 7% 96,0% 90.0% 44.0% 20,0% 45,3 36.7 71.7 39.2

45 E5JBJ Training set 600 99.7% 96.8% 87,5% 31,7% 11.3% 3 6 7 29,3 61.7 3 0 4

Test set 350 99.4% 96.3% 90.3% 33.1% 10.3% 37.5 28.8 62.5 28.4

46 E5_23_2 Training set 600 99.7% 96.8% 8 8 7 % 33.8% 11.3% 37.0 29.5 62.5 30.3

Test set 350 99.4% 96.0% 90.0% 36.0% 9.7% 37.5 29.1 62.8 29.1

47 E5_24_l Training set 600 99.5% 98.0% 93.5% 60.3% 42.0% 95.5 87.9 128.7 92.4

Test set 350 99.7% 98.9% 94.0% 61.1% 45.7% 96.7

..

87.7 130.3 92.8

48 Training set 350 100.0% 97.7% 9 i. ‘i% 3 7 7 % 11.7% 30.0 64.8 29.4

Test set 360 98.9% 96.6% 90,9% 40,9% 15.4% 39.6 32.6 66.8 32.9

49 E5_25_l Training set 600 99.8% 97.5% 91.7% 59.0% 43.2% 85.3 77.3 117.4 81.6

Test set 350 99.4% 96.6% 90.0% 62.6% 45.1% 85.9 75.1 116.9 77.8

50 ESJ5J training set 600 ' 99.7% 9 6 ,3 % “ ” 88,5%  ' 37.7% 14.3% 3 8 7 30.3 64"3 30.6

Test set 350 98.0% 94.9% 88.3% 41.7% 14 0% 39.8 32.1 6 6 7 33.6

Table 5.3 (C on t’d ): M ean Tardiness: short term estimation: Results o f  m etam odels
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M ETHOD 4: d e v ia t io n  -to - f lo w  TARDINESS 
tim e  ap p ro  ach

j# | NNet 1 Dataset E 4 - 1 (S td ) E 4 - 2 (S td) E 4 - 3 (S td) I m in m ean (S td ) m ax

33 B5_17_î Training set 6% 4% 7% 6% 6f/o 5% 169,0 525.9 162.9 865.6

Test set 8% 6% 11% 12% 10% 9% 185,3 626.9 169.2 866 3

34 E5_17_2 Training set 4% 4% 7% 6% 6% 5% 169.0 525.9 162.9 865.5

Test set 9% 9% 11% 10% 10% 9% 185.3 525.9 159.2 855.3

35 B 5_ I8_ I Training set 13% 11% 17% 13% 13% 12% 24 1 114.0 61.8 381.0

Test set 13% 10% 16% 13% 13% 14% 221 115.8 52.1 342.3

36 E5_18_2 Training set 14% 11% 16% 12% Ï3 % 12% 24.1 114.0 5 Î.8 381.0

Test set 14% 11% 16% 12% 13% 15% 22.1 115.8 52.1 342.3

37 E5_19_l Training set 13% 10% 16% 14% 14% 12% 76.8 342.5 127.8 788.0

Test set 13% 9% 17% 14% 15% 13% 92.3 347.0 126.7 701.3

38 Training set 13% 11% 17% 15% 15% 12% 76.8 342.5 127.8 788.0

Test set 13% 10% 18% 16% 15% 13% 92.3 347.0 126.7 701.3

p i Training set 7% 6% 9% 8% 8% 6% 191.7 614,9 135;1 837:0

Test set 8% 6% 12% 62% 10% 32% Q.0 “ 513.4 136.4 832.4

Training set 7% 7% 9% 8% 8% ’ 6% 1 9 Ï7 514.9 135.1 837.0

Test set 8% 7% 12% 51% 10% 32% 0.0 513.4 136.4 832.4

41 B 5 j i . ^1 Training set 5% 4% 8% 6% 7% 5% 251.7 601.4 123,2 890.5

Test set 6% 5% 8% 7% 7% 5% 266.6 601.4 124.5 896.5

42 E5_21._2 Training set 6% 4% 8% 6% 7% 5% 251.7 601.4 123.2 890.5

Test set 6% 5% 8% 7% 7% 5% 255.6 601.4 124.5 895.5

43 E5_22_l Training set 16% 10% 17% 11% 16% 12% 77.0 413.7 159.4 777.7

Test set 16% 9% 17% 10% 15% 11% 109.0 415.4 158.0 767.3

44 E5_22_2 Training set 7% 7% 12% 11% 9% 7% 77.0 413.7 159.4 777.7

Test set 8% 7% 12% 11% 9% 8% 109,0 416,4 158.0 767,3

45 ESJ^J Training set 6% 4% 7% 6% 6% 4% 163.2 645.8 186.7 874.8

Test set 5% 4% 7% 6% 6% 4% 186.5 550.5 188.7 856.7

46 E5__23_2 Training set 5% 4% 7% 6% 6% 4% 163.2 545.8
186 7

874.8

Test set 5% 4% 7% 5% 6% 5% 185.5 550.5 188.7 856.7

47 E5_24_l Training set 18% 22% 24% 29% 20% 21% 206.0 608.3 187.9 937.5

Test set 18% 21% 25% 30% 20% 22% 184.8 613.1 191.5 925.2

48 B5_24_2 Training set 6% 4% 7% 6% 6% 4% 234.0 606.2 188.3 937.6

Test set 5% 5% 7% 7% 6% 5% 184.8 613.1 191.6 925,2

49 E5_25_l Training set 15% 18% 19% 20% 15% 16% 248.8 643.2 176.6 932.1

Test set 14% 16% 19% 20% 16% 16%
. ...

271.8 647.2 179.0 948.1

'50 "BSJtSJ Training set 4%  “ 4 % " 7% ... 'm'·''' 248,8 643.2 176.6 " "m ^ ....^

Test set 4% 4% 7% 5% 6% 5% 271,8 647.2 179.0 948.1

Table 5.3 (C on t’ d ): M ean Tardiness: short term estimation: Results o f  metamodels
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Sheet 1:
System Simula!ion S I  VI \  Model Frame

B E G IN ;
crcalc;

r l

r3

reac l ,IN ,,l :I .A r.lI )A  1 1 \  V11 л л 2 ,L A M D A 3 ,L A M D A 4 ,L A M D A 5 ,L A M D A 6 ,R U L E ,k ;
assign:p()p tinK--0;

cliiplicalc: 1 , i '2 :1 ' .Г Г і .і‘5; I ,г6;

i lc la y :L A M I) / \ ;
(luplicalc: 1 r 1;

assigii:TYFL:;:::!:N:, .1 V nT R A N C E ;
О Р Т ім і- : і

Ü P T 1 M F 2  -  2 ;
O P T IM B 2  = s ;
O P T IM E  1 -  9 :

OPTIMlv.-S
OI^TIMEr. -  (j
O P T I M E / -  ('

i()piimc= n p  11 . : ' !>Т1МЕ2 + О Р Т ІМ Е З  +  О Р Т ІМ Е 4  +  О Р Т ІМ Е 5  +  О Р Т ІМ Е 6  +
O P T I M ir /  inail р·

ass ign ;D D ^lnow -h il  ’ :^ ' і  і!іі ■);
coLini: 1,1 ;ncxl( Iran :)

d c Ia y : l .A M D A ! ;
dup lica lc :  1 ,г2.
a s s ig n :T Y P E -  !:N9 ·.! ! \ T R A N C E :

O F r i M E I
О іП 'ІМ ;
О Р 'П М :, : ^
О Р І 'ІМ і : () ■

ор'гім: - ( ;
О ІП 'ІМ ! ' (і ;
О Р Т ІМ !. f I ;

loplimv ір Гі ѵіі:і + О Р Т ІМ Е 2  +  О Р Т ІМ Е З  + О Р Т ІМ Е 4  + О Р Т ІМ Е 5  +  О Р Т ІМ Е 6  +
; 'Г !. .1Г 7;іт іагк(А РР Т);

a ss ig n :D D = lir  і\ѵ-Г' 1 ' ■ 'р! 11! іе );
C()unl:2 ,1 :псхм іі'аі! і

delay; lamda.
dııplicalc; 1 ,і'
a s s i g m T Y l d , =2;! 2) ѴМ 1 ENTRANCE:

ОР'ГІМ i ' . (1

О Г Т ІМ !. 1 ’ ;

О іЧ 'ІМ і ,
ОР'ГІМ ' -  (,)

О П 'ІМ ^  ̂ Î'
О Р 'Г Е .Р ^ , ( )

ОР'ГІМ! М

Іорііпі'· і Р ! і 1ЕI + О Р Т ІМ Е 2 +  О Р Т ІМ Е З +  О Р Т ІМ Е 4 + О Р Т ІМ Е 5 +  О Р Т ІМ Е 6 +
ОР'ГІМ і : maii.i А R RT);
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Sheet l:(Cont’ci)

ass ig n :D D = ln  »w'-f-« j : >j)!ii:ic); 
C()unl:3 ,1 :ncxi' ii iin .

r4 dc lay;LA M I.)  \ - l ; 
d iip licale: 1 :
assign:TYFH:::4 ;N 'i 

OPT\M\i\ 
0 P T i ; . l F 2  
OPI'IMFa 
OFriMi; I 
OFri.ii:" 
OPd'lvIl·/. 
OP1'! vll·'/
lo p l i i i ic -  ( >. 

OP'riMi 
ass ign :D D = ln(  »'.\-f-i i; 
C0Liiil:4,1 :ncxi' li ;in

i:NTRANCE:

: i O P T IM E 2 +  O P T IM E 3 +  O P T IM E 4 + O P T IM E 5 +  O P T IM E 6 +
K A R R T ) ;

r5 delay: LA M  I)/ v. 
dup lica lc :  I .rf
assign:TYPL: VfN i NTRANCE:

OFri:.lLI 
OPTIi . lL2 : i : :
0 P T i M i : 3  3 
O P T IM li  l I I 
O P T l vlL:^
O P 'n v l I ' f ,  
oi^d’i vii··;
lopi I n H '  ̂ ' I I! I OI^TIM E2+ O P T IM E 3 +  O P T IM E 4 + O P T IM E 5 +  O P T IM E 6 +

OPTIM :i. :i:.(ARRT); 
assign:I)D =lii ')W  i ! I ■ { p imic); 
c()Linl:5,1 :ncxii Iran , >;

r6 d e la y :L A M l) . \6 ;  
dup lica te :  I .r('.

assign:TYPL-a;N:: 3: .|: ! ::\'rRANCE 
OFI'liMLI ;S 
OFriML2 I 
OPTI,.li; .̂ 7 
OPTlML-l |.
OP33ML3 I 
OFriML6 3
opriMi·:/ 6
lopliiiiC ·:  ̂ ' dl

O i n i M T /  i in n . iA R R T ) ;  
assign:DD=(i, )\v-; i ;<·■·' '|mimic); 
coLini:6.1 :nc ■.i( ira.Ms);

O P T IM E 2 +  O P T IM E 3 +  O P T IM E 4 + O P T IM E 5 +  O P T IM E 6 +

trans  queue .A ( i ' ^2: 
reques ' :AG V ( .. OS i. 
Iransporl. AC SIS '
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Sheet 1 :(Conr(! )

slali()n.2-<S:

iT C C .A G V ;

assign:()(l-0:
a s s i g n . ' p o p i i m c - f - o p t i m e ;  
assigniocl-  an ( : i ' (cl< I a m  )/lopliine)*poptim e); 
ass ign :M ( ’1)1): iiix( ><laiiovv+oplime); 

b ranch . 1 :ir. lanc ■ - ' p i  
if. ru lc=  2 p 
\{\ riilc= .2n

pi as.sign;pri( 'li! v ’ )|)ti ! ’1 .■ ii'.-xifci);
p2 as.sign;pri(ai!y: io | );
p3 as.sign:pri( 'ii(y: 2101)1 2Mcxt(q);
13 assign:MOI)l )-in .(ocl III'. ' i-optime):templ

ciucLic,M -H / ; 
vvaitilcinj) 1:

q c]LicLic,M;
sci/c;M-1;
dclay:OPTlMla.

assign:lcnip"n' ,' 111) ’ 1 :irxt04);
12 remove: 1 .m.I.O.
14 as.sign:temp-aA'ii 

branch, 1:
!ip-i

il ('.ail! 
cl .c 12

1

11 .signal :m:
clclay:0.(KjO()l:

release:M- 1 ;il··\ l· i ms)

station.SO’ATl- )2n’1 2 
It cc ; A G V ;

: n

tally:lype.inl(/2l\l\T 
count;lype+6.!; 
tally;type+6.nr\( t).m ')vv I)|;11:

branch, 1 ;ii. iim <44. i l :
if. mow · <1'1 i2; 

tl c()unl:lypc+l .a 1 :'l· |)os ·, 
t2 C ( ) L in l: ly p c + 1 1 .d; .p(^·’

create. 1.9200;

;write to oLilpoLil lil··;
; averge lv[)c 1,2.3, !.a.o ¡oh iaidincss 
; averge type 1,2.3. l.aO) ¡oh \ \ n \ · .  umc 
; machine util Ml ( ) M
; coLinlci· lor luimhc: oi ' ,  pc ' .2 24 .5,6  jo b s  tardy 
; coun te r  lor total nuinb' io l  p. j · 1,2 ,3 ,4 ,5 ,6 Jobs processed

writc,Oin 0 1-21 1.1 d. I J'8.1 ,f8.1 ,f8.1 ,f8.1 ,f8.1,
1>;.I I8.1,r8 l.r8.1,f8.3,f8.3,f8.3,f8.3, 
r;;..2 18.3 IS 218.1,r8.1,f8.1,f8.1,f8.1,
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l>,.! ;S.I
Sheet 1 :(Con(’( )

r8.U’8.1,r8.1,f8.1)M:

1
\ ■ 

b \ 
l·
II'a  
11· ( 
il· ^ i; 
II· i ii 
II· ' f'

n ' :·

.n'liii'.· 

• irdiil·.·
!,0V\'
' OV,
: 0\
.i M; 
MiVI
■' MV 
! lyp'.·
' (yp'
i [ypc
, lyp··

'yP'
WP'·

I I

. )i job l) , tavg(tard iness  o f  jo b  2),

. , '  )i Job 3) ,tavg(tard iness  o f  j o b  4),

.. o f  job 5),tavg(tard iness  o f  jo b  6),
11 MB O F  JO B  1 ) , tav g (F L O W  T IM E  O F  JO B  2),
11 IF O F  JO B  3 ) , tav g (F L O W  T IM E  O F  JO B  4),
11V1IV O F  JO B  5 ) , lav g (F L O W  T IM E  O F  JO B  6),

I I IP U 1 ) ,D A V G (M 2  U T IL  U 2 ) ,D A V G (M 3  U T IL  U3), 
I IP  U 4 ) ,D A V G ( M 5  U T IL  U 5 ) ,D A V G (M 6  U T IL  U6), 
I IF U7),
)' )bs lardy),nc(#  o f  type 2 jo b s  tardy),
)')bs lardy ) ,nc(#  o f  type 4 jo b s  tardy), 
jobs lardy) ,nc(#  o f  type 6 jo b s  tardy), 
i' 'bs p rocessed) ,nc(#  o f  type 2 jo b s  processed),
!' >hs processed) ,nc(#  o f  type 4 jo b s  processed),
I hs p rocessed) ,nc(#  o f  type 6 jo b s  processed),. 'd ispose;



APPENDIX C 139

Sheet 2:
System Simula! i on  SIM \  N Experimental Frame

begin;
p ro jec t ,exp  f#4 L a r r c  i; .icni i. a .  ■. .SOUHEYL T O U H A M I;

a ttr ib u les io p l im c  I :( 'p !:nio2:ojiiim c3:opiim e4:
()p!inie5:opMii!· 6:()piini ■ /:
■ΓYI>l■;:ARl·';ı4>T1M i T ( )P T IM E ;P O P T IM E :D D : 
t)l ) :MOI ) l i  i : ,Tnp I
I ,A M DA I I . I DA ': I , \ M D A 3 ;L A M D A 4 ;L A M D A 5 :L A M D A 6 :p r io r i ty :ru Ie ;  

v a r iab le saem p ;

s ta t io n s ;E N T R A N (  I :s2:s.!; .4:s5 
:s6 :s7:.ST/ ' r ! '  - 4 E X IT

queues: I At iVQ:
2, QI.1,VI'(PRI' )l'l i Y)
3, Q 2 ,I .V F iP R l '  ) l ; n 'Y )
4 .0 3 .1 .  V F ( P R | t ) |> H Y )

5.04.1.  VFTPRI' )l:r!'Y) 
6,Q5,I.VI'YPR|i )l:ITY)
7 .06 ,  [,VFYPRF)l;l I Y)
8 .07 ,  FV1'YPRI’ )l l 1 Y)
9,Q2l,l ,VRI>Rlf 4 ’; IT) 
l(),Q22.FVl■(l4·.l·' 4
11, Q23.LVI·■(l>l··,l' )i’.n 'Yi
12, Q24.LVF(l>l<l·̂ )!■ITY)
13, Q2.-S,ITFtl>R|Oi>ITY) 
14,026.ITI ' (  PRIDR.ITY) 
1 5 . 0 2 7 , t i ' ITY)

re so u rccs :M A C I lir  
MAC'HI.N)·

lACI ii: :F2 :IV IA C H IN E3:M A C H IN E4:
4 i \ iA C H I.  .1 t , :M A C H IN E 7;

sequences:  I ,,s I , ( )P  I IM F  = o p i im c l  &  

s3 , OPTIMI·; :: ip lim e,’ A 
s2 , O P T I M F  = i p l im e  '■ A 
,s4 . O P T I M F  iplime I A 
.S'l 'ATIONI X ' i :

2 , .s i  , O P 'r iM I :  op iim  
s2 . OPTliVn : 
s 3 , t)PTi,vi!·;
.STATION!

3 „s3  , O P T IM I:  
s4 . O P T I M I : - 
s2 . O P T IM !:
S ' r A T I O N I X l ·

pilime

opiim
plime
iplime

A

■ I (Si
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Sheet 2:(Cont’(l)

4.,s6 . ΟΡΊΊ./)! opliıııol &
s2 . ΟΡΊΊΜΙ·; mJMİÎIK·.' X
s4 . OPTIiVlI . - opiiniL· ;
s7 . OPTIMl. - '>pliınc 1 X
si . OPTIMIt  ̂ •)plimc;"̂
si7\TiONi::\ İT:

5..so . O F V U v W oplini'· 1 &
s5 . OPTIlVli ; •pli 1110 ’ N
si . ΟΙΊΊΜ1 J)lİll)L· ■ (N
s7 . OPTIiVi! •plime 1
s2 . OPT! Ml. - ıpliıiK· ' (V:
s() . OPTIMl. ■ )j)limê . X

STATION 1;XIT;
6,.s2 . OPT!Ml - oplini'.·! &
s5 . oiTiMi; ■ ' •plime.’
si . OPTIMl·; •j)lime '
s7 . ΟΡΊΊΜΙ . •plime 1 X
s() . OPTIMl· ■ Чİlinle ■ '7
s; .̂ OPTIMl; ■ •pliıııee A
s î. OPTIMl·; г> )|)lime / A
S4V\TIONi;X!' Г;

)rlcrs: 1 ,A(iV..7 1.10;
;cs; 1.1-9.20.10.1 '■ 10.20.19J5,

10.6.1 s, 1 14,10.1 ' /

ıs,ı:2'
i ifS.ıo10.R. ί

Ί .  : ! 7.1 :-v
10. -ol 5/

.9/
10;

.fi.ovv 'u .mf: ( OAIOP 1:
2.1-LOW TIM I·. OF.IMi; 2: 
.Tl'TOW TIMI ΟΙΜΠΙ1 3; 
-l.l'LOW Ί IMi : OF.IOli 4; 
.XI'LOW TIMI . OITIOI! 5: 
(),ILOW TIMI. OIMOI! 6; 
7. TARDINI::;.. ΟΙΤΙΠΙ! I: 
(S/TARDINI·: Τ', OF ,ΙΟΙί 2; 
7;TARDiiM:.T'; o fm o i! .i: 
lO.TARDINI OIMOB4: 
I FTARDINI .SS OF'.1015 5; 
l2,TARI)IN’i:.s:.; of job  6;

counlers: I./; OI·'TVTI JOB:; . .RRIVED;
2, # OF 'TYFF: .: T )i!S Al'IMVED:
3, # OF'TYFF: i JOBS a r r iv e d ;
4, #OF'TYFI·: I JOBS AFI'.IVED;
5, #OF'TYFF .3 JOBS ARRIVED:
6, # OF'TYFFR .If )BS ARRIVED;
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Sheet 2:(Coni’d)

7, #OI· 'ΊΎ1>1·: I iOi Ŝ PROCBSSED
8, #01·· ΤΥΡΙ·; .? ,P )!PS VR()CESSEO
9,  # ΟΙ' ΊΎΡΡ inns VR()(:ESSED 
1(),?Η)Ρ’ΊΎΡ1· I inns PknCESSED 
1 p^.oi'TYPi·; inns r r o c e s s e d
12. # OF ΤΥΡΙ·;  ̂ .ini3S Pin)CESSED
13. # ΟΙ'ΊΎΡΙ· I inns onmne:
14. # OP'ΤΥΡΙ·, 3 inns oiHiinc:
15. # OP'ΊΎΡΙ·: .inns omiine:
16. # ΟΡΊΎΡΡ; I ,ini3S niiume:
17. # ( )FTYPP;  .inns oimme:
18. # O F T Y P P n , . i n n S  nniime:
19. # OP'TYPP. 1 i n n s  CirHy
20.  # 01< ΊΎΡΡ .! i n n s  Uiiily
21.  // ΟΙ'ΊΎΡΡ .■ .P 4FS iiii lv
22 .  // ηΡ'ΊΛ’ΡΡ; : I )I.5S i;!i
23.  # ηρ-'ΡΥΙΊ· P )I]S i;ii
24.  # ΟΡ'ΊΎΡΡ. P inns Ui.- Jv;

dstats:NQ)P-^0jVO) VVIP Γοι· /\( '¡Vs:
NTi Λ ( i V )/3. U Ί ΊΙ. 1 /.Λ Ί I n : < of  AG Vs : 
NQ(0I).VV1P loi P;i;
NQiOPi.WIP loi·
NQin.Pi.VVlP iMi n- 
NQ(P)-I).W1P Pm n i ;
NQ(P):').W1P I' M n  P·
NQ(06) . \VIP lur  ̂ Pm·
NQ(07j , \VlP Γ<Μ· < ) / :
NR(MACH1NP:I I.MI irvil. Ul: 
NRfMACPllNP:2;..M2 UP'IP U2 
NRfMACPIlNPF' .M.  ̂ UTH U3 
NRiMACniNP; I ,̂.n-l VTW. U4
NR(MACMPNPS
NRiMAC’MINPP
NRiMAC'PlINP/

.M5 F'PII. U5

..\IP PTil  
,M7 ΙΊΊΙ

U6
U7;

files: 1 ,IN."i4_. I ii).iin;i"..'.p;C.).PP P;E: 
2,OU3’."l4_J oil ι.ιιμμ'. SI ·;η. 11‘ce;

replicate. lOtlO.O.PPnn .. i P4iy;
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Sheet 3:

Input (icm ; !oi SI MAN Model Frame

begin;

create , 1000;

a s s ig n :L A M l)A  1 I ' i! ■ 2 0 . 1 0 -  1):
L A M A A 2 = : l  :^:!| ').IO(i. ' i;
LAMAA;):-·! - АЦ ") I0() . ;
L A X I A A - l - l  A l l  - :) lOii. i i:
L A M A A S - A M i · . ' '·). lOfj. ■ i;
L A M A A O ^ I  Nli ' 1 . 1 0 0 . '

R L İ A A  : l ) I S A f  A'· 2 / 2 . 2 . : . k 7):
k=l)lS<^4 1AS..A / 7 4 ,  1 i/8 ,5 ,5 /8 ,6 ,6 /8 ,7 ,7 /8 ,8 ,I ,9 ,8 ) ;

w rite , lN J 'A A A .:A .\ . . ! i . I  . 'O A 2 ,L A M D A 3 ,L A M D A 4 ,L A M D A 5 ,L A M D A 6 ,R U L E ,k :d isp o se ;

Input Data (iei]i<-r;0()r Si xiAN Experimental Frame

begin;

p ro jec l .IN T U T  D A ' I ' l Ai ATl ' ) N,  S O U H E Y L  T O U H A M I;

attribiKcs: I Ai'. 11 ) .  \ : 
1. A XIA A 
LA XIA A 
A A XIA A i 
LAXIDA·̂  
I.AMAAO

seeds: I AoV;2. I V| X 
5,74SvX.X0S:i: , : s .7A, ;9,4476 :1 0 ,3 7 6 ;

Е1е8:1,1АА14_91п^!11;А.:4-:0.1'1!ЕЕ;
replica te ;


