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ABSTRACT

SIMULATION METAMODELING WITH NEURAL
NETWORKS

Souheyl Touhami
M.S. in Industrial Engineering
Supervisor: Assoc. Prof. Thsan Sabuncuoglu
June, 1997

Modern manufacturing environments increasingly call for more sophisticated
and fast decision aiding systems for their management. Artificial neural
networks have been proposed as an alternative approach for formalizing
various quantitative and qualitative aspects of manufacturing systems. This
research attempts to lay down the motivation behind using neural networks
as a simulation metamodeling approach. This research can be classified
under the major headings of simulation metamodeling for the purpose of
estimating system performance. Steady state performance of non-terminating
type systems and transient state performance of terminating type systems are
examined under job shop environments by applying Back Propagation neural
networks. We attempt to study the performance of neural metamodels with
respect to estimating two performance measures (mean machine utilization
and mean job tardiness), with respect to system complexity, with different
types of system configurations (deterministic and stochastic), with respect
to multiple metamodel accuracy assessment criteria and various metamodel
design settings. The objective of this analysis is to investigate the potential
application of neural metamodeling.

Key words: Simulation, Metamodeling and Neural Networks.
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OZET

YAPAY SINIR AGLARI ILE BENZETIM META
MODELLERININ OLUSTURULMASI

Souheyl Touhami
Endustri Muhendisligi Bolumi Yiksek Lisans
Tez Yoneticisi: Dr. Ihsan Sabuncuoglu
Haziran, 1997

Glniimizde modern imalat sistemleri daha karisik ve hizli karar veren
yontemlere ihtiyac duymaktadir. Bu amaca yonelik olarak, yapay sinir aglar
alternatif yontem olarak onerilmektedir. Bu ¢aligmada, yapay sinir aglarinin
bu tir yontemlerde kullanilmalarini saglayacak temeller olusturulmaktadir.
Gerek uzun donemli ve gerekse kisa vadeli sistermn performansini 6lgecek
modeller olugturulmaktadir. Geri yaymali (back propagation) ydntemine
dayali olarak geligtirilen yapay sinir aglar sistemin ortalama kullanim oram
ve art1 gecikme zamani performans 6l¢ltlerini tahmin etmekte kullanilacaktir.
Onerilen yakalagim ve geligtirilen modellerin bagarisi ¢esitli sistem kogullarinda

farkli degerlendirme kriterine gore olgilecektir.

Anahtar sozcikler: Benzetim, Meta modellemesi, Yapay Sinir Aglar:
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Chapter 1

Introduction

Simulation has heen widely accepted by the OR community and the business
sector as a valuable tool in solving large problem instances that are unsolvable
(or expensively solvable) with other quantitative approaches. However, due to
the time requirements and lack of optimization capabilities, simulation may
not be appropriate for real time applications, which are more and more calling
for faster techniques. The use of simulation metamodels may help solve such
problems. Research in metamodeling is maturing. Since 1987, a resurgence of
interest mostly appears as case studies. This is the case also for use of neural
networks as a metamodeling approach, which are quite recent. The case studies
reported in the literature are not elaborated enough to allow assessing their

potential applications in real life.

The aim of this work is to investigate the boundaries of simulation
metamodeling with Artificial Neural Networks for the purpose of estimating
system performance measures in job shop environments. This study is based
on neural networks that operate with the Back Propagation algorithm. This
research has two major parts. In the first part, we evaluate the performance of
the neural networks in estimating long term or steady state performance of non-
terminating type simulations. We attempt to determine the effect of system
performance measures (mean job tardiness vs. mean machine utilization),

system configuration (deterministic vs. stochastic), system complexity (simple
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vs. complex), error assessment criteria and network design settings on the
predictive capabilities of the designed neural metamodels. In the second part,
we evaluate the neural networks in estimating short term or transient state
system performance with terminating type simulation. In this latter part, the
initial system status plays an important role. For this we investigate the effect
of the initial system status, demand on system, error assessment criteria and
network design settings on the predictive capabilities of the designed neural
metamodels. A simulation investigation of a particular system might be either
terminating or non-terminating, depending on the objectives of the study. The
terminating type simulation is one for which there is a “natural” event that
specifies the length of the simulation run and the nonterminating type is the
one for which there is no such event. In our experiments, we assume that the
objective of the study is to the evaluate the long term and short term impact
of the selected operational policies and hence we assume that the ending event
for the terminating simulation is imposed by the management and is specified
in terms of time. For the non-terminating simulation, simulation run lengths

are set as to reveal steady state system behavior.

It has not been of primary emphasis for us to find the best (most precise)
neural network metamodel for each of the systems that are studied. Therefore,
all the results achieved could be improved through further fine tuning of the
experiments. However, we believe that these improvements will not alter the
conclusions inferred from this work. The results achieved in the experiments
show that neural networks are very promising tools for estimating steady
state system performance. For estimating short term system performance,
the experiments show that it is a more difficult task and we state some of the
factors that influence the performance of neural networks. The experiments
indicate that, although neural networks are promising, application to real life

may not be straight forward as the existing literature may lead us to expect.

This manuscript consists of 6 chapters. The next chapter lays down the
background of our research. The next two chapters are under the major
heading of simulation metamodeling with neural networks of non-terminating

type systems. The third chapter is related to predicting mean machine
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utilization. The fourth chapter is related to predicting mean job tardiness.
The fifth chapter reports the work done on simulation metamodeling with
neural networks of terminating type systems. In the last chapter we give our
conclusions and future research directions. All the related tables, figures and

graphs related to this work are provided in the Appendices.



Chapter 2

Research Background

2.1 Simulation

Considering the inherent complexities in modern manufacturing, it is of prime
importance for modern management to quickly evaluate the impact of their
operational policies on the overall short term and longer term performance of
the system before actual implementation takes place, in order to keep up with
the dynamic nature of modern business. Thus, the analysis tool used must be
fast and with an acceptable degree of precision [12]. When analytical methods
can be employed, they can generate the best model of a system. However,
due to the strict assumptions required on system states and the complex and
lengthy mathematical derivations involved, many analytical models cannot be
applied to large or complex systems. Computer simulation is frequently used in

these circumstances as an alternative solution approach to solve such problems.

Simulation is a key decision making tool in an advanced manufacturing
environment. It reduces the cost, time and risks compared to experimenting
decision alternatives with real systems in real time. Simulation allows
evaluating short term and long term effect of decision made at all the levels
of the manufacturing system. Either used at the system design phase or

when operating the system, simulation is a flexible system analysis tool that
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allows modeling relatively large systems without requiring many restrictive
assumptions. It is used where other approaches find it difficult in terms of
modeling and computational requirements [31]. Thus, it is a complementary
tool and not in competition with other approaches. Simulation is applicable at
all the levels of the hierarchical decision making process, allowing to perform
sensitivity analysis and to evaluate different policies at different degrees of

aggregation under selected experimental conditions.

On the other hand, the use of simulation has its drawbacks too. Despite
all what has been and is being done now, and despite the attention paid to
experimental design techniques in order to enhance the value of simulation,
practitioners still face some major problems in using it. Simulation is still time
and computer memory consuming both when constructing the models or when
using them. Moreover, simulation is by its nature a trial and error process.
Hence, simulation is mainly used to answer What-if questions and so it is useful
as an aid to the controller and not as a controller by itself since it is unable to
provide best solution directly. As a result, it requires time, skill and experience

for a proper analysis and interpretation of simulation results.

From the current practice, simulation applications can be classified into
a) stand alone applications and b) hybrid applications [16]. In the first case,
simulation models are used to evaluate different design alternatives and/or
operational policies without disturbing the actual system. The aim of such
applications i1s in general related to get the overall picture about the system
and hence they are more related to the long term impact of decisions. For the
hybrid applications, simulation is combined with other tools such as expert
systems {28]/artificial intelligence and analytical tools [16][34]. Such hybrid
applications are often applied for real time decision making and control of
manufacturing systems. Real time scheduling has been approached by other
methods. Harmonosky and Robohn [11] present a review of some of these
applications, among which simulation and simulation combined with artificial
intelligence are reported to play a major role in decision support systems for

real time control and scheduling.
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When it comes to real time control, the choice of the tool to be used is
constrained -among others- by time requirements and precision. Harmonosky
and Robohn [12] present an initial investigation of the application potential of
simulation to real time control decisions in terms of CPU requirements. Their
work shows that CPU requirements is very much dependent on the system
being modeled and on the objectives of the application. Thus, time requirement
are a major issue that may reduce the application potential of simulation for
the control of the manufacturing environment. This fact is more highlighted
if we consider the limitations of simulation in terms of direct optimization.
Even when it comes to the use of simulation in off-line manner, and even
though time constraints on the decision makers are less tight, time is still
an important matter due the fact that the dynamic and competitive nature of
modern business imposes on the manufacturing system managers more frequent
evaluation of their performance as well as a necessity of maximum control over
the manufacturing environments. In other words, modern manufacturers must
be able, at any time, to assess their short and long term performance and to
react quickly to the rapid, frequent and considerable changes that take place

in their environment.

To conclude, we say that simulation offers some interesting possibilities
of foreseeing the future at reasonable costs when other exact approaches fail.
However, due to its inherent nature (being a trial and error process) and due to
the outside constraints imposed by modern business, there is a need to make
use of this potential but at a reduced computational requirements. In fact,
there is a need for tools that would give some good estimate of the simulation
output at reasonable accuracy that would serve at least to reduce the range of
decision alternatives (if not to make the decisions directly) and to allow the
use of limited number of simulations that would serve as a validation to the
estimations made. The work done in this thesis, comes within the framework
of making use of the high potential of simulation to capture various aspects of
manufacturing systems and of trying to reduce time requirements through the
use of neural networks as simulation metamodels. The next section introduces

the concept of metamodeling.
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2.2 Simulation Metamodels

Simulation has become a widely used and established tool, not only because of
its ability to estimate the performance of proposed decisions, but also because
of its suitability for sensitivity analysis. Certain analytical techniques, such
as linear programming, offer such capabilities at low costs but unfortunately
cannot handle all the complexity that exists in modern manufacturing. On
the other hand, simulation is able to handle such complexities, but due to its
nature, it does not allow itself to perform sensitivity analysis and optimization
at low costs. The use of simulation metamodels has been proposed to reduce
the computer costs (memory and time) of simulation while making use of its

potential of predicting performance of complex systems.

Blanning [3] was among the first to propose the use of metamodels to
alleviate the problems related with simulation. The application of metamodels
on manufacturing systems is increasing. Yu and Popplewell [35] surveyed 49
papers in this field between 1975 and 1993. Following an early interest in the
late 1970, activity fell until 1987. Thereafter, they noted a rapid increase in
published work. Yu and Popplewell [35] conclude that the increasing incidence
of reported metamodeling in manufacturing-related publications leads to the
conclusion that the technique is of value in manufacturing systems design
and analysis. However, the review of Yu and Popplewell is based mainly on
the regression type metamodels and does not consider the other approaches.
Hence, taking the other approaches in consideration, their conclusion is further

confirmed.

The simulation model is an abstraction of the real system, in which we
consider only a selected subset of inputs. The effect of the excluded inputs is
represented in the model in the form of the randomness to which the system is
subject to. A metamodel is a further abstraction of the simulation model. It
is a model of a model. The selected set of inputs to the metamodel is itself a
subset of the inputs considered in the simulation models. Figure 2.1 illustrates
this concept. In the abstraction process (i.e. when moving from one level to

another), some of the inputs can be either omitted or can be aggregated. Hence,
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a metamodel is another approximation of an approximation. It is two steps
away from the real system. This means that we cannot expect the metamodel

to perform better than the simulation models.

Whenever one is dealing with modeling, the issue of model validity raises.
In the case of metamodels, two types of validity should be examined: the first
validity is related to the simulation model and the second is related to the real
system. According to Blanning [3], the inaccuracy of the metamodel is not
very critical and in general will not lead to poor decisions. The inaccuracy
will decrease the efficiency of the search for an appropriate decision. The
reason for this is that the decision reached by the inaccurate metamodel can be
checked by the simulation models and hence an inaccurate metamodel results
in increasing the computational efforts caused by the required validation . This
reasoning assumes that the validity of the simulation model is guaranteed. This
assumption is quite practical, since if the simulation model is not valid then
all the analysis will be misleading and there is no need to rely on it. Friedman
and Pressman [9] raised the issue related to the validity of the results of the
metamodel given the validity of the simulation model on which it was built.
Their experiments with regression metamodels have shown that two steps
removed from reality, metamodels compared favorably with the true measures
of system performance (computed with analytical methods) and with respect
to simulation models. Sargent [33] reports some research issues related to
regression metamodels which are also valid for other metamodeling approaches
such as neural networks. Among the issues raised, are the metamodel validity
assessment and experimental design. In our work, we are not concerned with
the validity of the metamodel with respect to the real system (as this requires
having some real system) but we are concerned only with the validity of the
metamodel with respect to the simulation model, assuming that our simulation

models are valid models of some hypothetical real systems.

Metamodels have several uses in simulation. It can be used to identify the
system parameters that most affect system performance (i.e. factor screening).
Since it uses fewer computer resources, the metamodel can be run iteratively

many times for repeated what-if evaluation for multi-objective systems or
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Figure 2.1: Metamodeling Concept.

for design optimization. Another point would be the substitution of the
original simulation model by its metamodel when the original model is just
one component of a complex decision support system, hence increasing the
efficiency of this complex system. This is especially true when the simulation
model is incorporated in real time decision support tool where time efficiency
1s a critical issue. Simulation metamodels provide an approach to summarize
the simulation results and allow some extrapolation from the simulated range
of system conditions and therefore potentially offering some assistance in
optimization. The advantages of metamodeling are explored by Iriedman
and Pressman [9] based on the regression metamodels. Among these are the
model simplification, enhanced exploration and interpretation of the model,
generalization to other models of the same type, sensitivity analysis, answering
inverse questions and better understanding of the studied system and the inter-

relationships of system variables.

Barton [2] reviews the general purpose mathematical approximations to
simulation input-output functions. As pointed out by Barton, one of the
major issues in the design of the mathematical approximation is the choice
of a functional form for the output function. Candidate approaches include:
Taguchi models, Generalized linear models, radial basis functions, Kernel
methods, spatial correlation models, frequency domain approximations and

robust regression methods. Barton concludes that while some approaches are
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unable to provide a global fit to smooth response functions of arbitrary shape,
the others are computationally intensive and in some cases estimation problems
are numerically ill-conditioned. Pierreval has proposed another metamodeling
approach based on a rule based expert system [28]. The use of neural networks
is another approach for metamodeling which has recently emerged. To our
knowledge, a little work has been done to compare the different approaches
available and this remains a research direction that has to be investigated.
In the work done by Philopoom, Rees and Wiegmann [26], a comparison of
regression based due date assignment rules are compared to the use of neural
networks for the same task. Their experiments have revealed that neural
networks outperformed the regression based rules on two criteria. On the
other side, the work reported by Fishwick [8] concludes that neural networks
negatively compared with a linear regression model and a Surface Response
Model applied on a basic ballistics model (to measure the horizontal distance
covered by a projectile). Further investigation regarding the ranking of the
metamodeling approaches is required. It is out ol the scope of this work
to get into the details of these approaches, nor to compare the proposed
approach based on neural networks with the previous approaches. This work
alms at investigating the approach based on neural networks as it has low
computational requirements and does not require some predetermined response
function and as it has been reported to provide some good fit in the reported

literature.

2.3 Neural Networks

Introduction to Neural Networks

Artificial neural networks take their name from the networks of nerve cells
in the brain. The human brain is made of a huge number of simple
processing units that individually have weak computing power, but are
massively interacting together. This network allows the brain to perform

tasks such as image processing and speech recognition that are difficult for
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the serial computers. These features allow the brain to accumulate knowledge
and respond to stimuli (input) in short times and with relatively high accuracy.
Thus, it would be useful to develop an understanding of the mechanisms that
govern the functioning of the brain. Artificial neural networks attempt to
mimic the parallel and distributed processing that takes place in the brain,
although a great deal of the biological details of the brain are eliminated. This
simplification is necessary as to allow the analytical tractability of what is
happening in the networks.

Dayhoff [7], Masson and Wang [20], and Zahedi [36] provide good introduction
materials to the field of neural networks. Basically, an artificial neural network
-commonly called neural network- consists of a number of small and simple
processing units linked together via weighted and directed connections. Each
processing unit receives input signals through weighted incoming connections.
The signals are processed by that unit and sent to all the units it has outgoing
connections to. Figure 2.2 illustrates a simple example of a three layer
back-propagation neural network. Each node in Figure 2.2 corresponds to
a processing unit comparable to a nerve cell in the brain. The first layer is the
input layer. The second layer is called hidden layer. There can be more than
one hidden layer. The third layer is the output layer. The number of units
in each layer is a decision parameter. The connections between the processing
units are directed arcs. Each of these arcs has an associated weight. Figure
2.3 represents a detailed unit. This figure illustrates the computation that
takes place within each unit. Each unit receives inputs z;’s, along the arcs
with weight w;’s, calculates the weighted sum [ of these inputs and applies a
transfer function F'(I) (activation level). The output of this function, X;, will
be the output of the processing unit. This output is then passed along the arcs

connected to this processing unit.

Neural networks are classified based on their learning methods [36][20]
into three categories: supervised learning, unsupervised learning and real time
learning. Under the real time learning, networks continue learning while the
network is being used (such as adaptive resonance theory). For unsupervised

learning, there are no target answers to be achieved by the network. Rather, the
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Output layer

Hidden layers

Input layer

Figure 2.2: The generic network architecture used.

network is trained by learning a pattern through repeated exposure to it and
is able to recall the learnt pattern when it solves a categorization or pattern
matching problem. For supervised learning, a training data set (containing
inputs and their corresponding target output) is used to help the network
in arriving at the appropriate weights. Back Propagation is the best-known
supervised learning method with three or more layers. For this algorithm,
input is presented to the network and is propagated forward until it reaches
the output layer. At the output layer, the output obtained is compared to the
target output corresponding to the given inputs. The error is than propagated
backwards along the arcs as to adjust the weights of these arcs. The adjustment
takes place according to the Delta rule. The experiments carried out in this
work are based on the back propagation algorithm. We consider this algorithm
as a black box and we apply it using the NeuralWorks Professional II software

[23).
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Inputs Processing Outputs
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Figure 2.3: Single processing unit in neural network.
Characteristics of Neural Network

Neural networks have been proposed to model systems where the input/output
relationship is unknown or too complex; that is to model classes of problems
where traditional approaches find it difficult. Therefore, neural networks are
not to be used where the already existing approaches perform well since this
may result in loss of precision which could be avoided. What distinguishes
neural networks from other modeling approaches is their computational speed

and learning capabilities as well as their generalization capabilities.

The major distinguishing feature of neural networks is learning the
underlying mappings between the input and output variables. Traditionally,
when modeling systems, the analyst has to provide some input/output
relationship and has to test its validity. Neural networks mark a radically
different approach to computing compared to traditional methods. For the
case of the Back-propagation neural networks, learning is achieved through
adjustment of the weights associated with the interconnections of the networks.
In a traditional computer program, every step is specified in advance by the
programmer. The network, in contrast, would by itself build the mapping
describing the input/output relationship and no programming is required. This
is achieved by the learning process. Hence, the neural networks can be used

to model highly complex systems. In fact, practitioners welcomed Artificial
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intelligence (Al), including expert systems, since it allowed consideration of
qualitative factors and provided a new approach to incorporate intelligence.
Neural networks went a step further with respect to Al. Unlike traditional
expert systems where knowledge and intelligence is made explicit in the
form of rules, neural networks generate their own rules by learning from
examples and extending their knowledge. Although the response function is not
explicitly formulated as for analytical metamodels, it is implicitly formulated
for the neural network through the architecture applied. These features are
likely to give way to including neural networks in expert systems (ES) and
thus enhancing the application of ES in manufacturing or in other decision
support systems [36][28]. Moreover, neural networks can be tested at any
time during training. Hence, it is possible to measure a learning curve of
the network. In addition, the network can continue learning even after its
actual implementation takes place and the training session has finished. As
new input/output examples get available from the real system, they can be
presented to the network to improve its accuracy. Also, if some of the system
characteristics (that are not given as input to the network) are changing with
time (such as improvement in quality), the network can adjust its weights to

these changes thanks to its learning capabilities.

Another important feature of neural networks is generalization. Although
learning is based only on limited set ol examples, when it comes to applying
the neural network model, the network should be able to extend its knowledge
to outside this set of examples. The neural network, if properly trained, can
provide correct answers when presented with new inputs that are different
from the inputs in the training set. In order to take full advantage of the
above mentioned features of neural networks, they must be carefully designed

and adjusted to serve the purpose of the study.

Applications of Neural networks in manufacturing environment

Neural networks have a wide range of applications in the manufacturing

environments. Zhang and Huang [37] provide a state of the art review of
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the applications of neural networks in general. These applications include:

- group technology[21][14][15],

- engineering design,

- monitoring and diagnosis,

- process modeling and control,
- quality assurance,

- scheduling, and process planning.

Burke and Ignozio review the application of neural networks in OR [4]. Udo
and Gupta [10] review the applications of neural networks in manufacturing
management systems. The applications reported include (in addition to the

one mentioned previously):

- resource allocation and constraint satisfaction,
- maintenance and repair,

- database management,

- simulation [30][2], and

- robotics control.

In the survey paper by Udo and Gupta, it appears that the interest in
neural networks started mainly since 1987. This corresponds to the same time
for which a resurgence of interest was noticed for the use of metamodeling
in the manufacturing environments. They also report a list of advantages of

neural networks over the conventional computing, such as:

- It has the tolerance to noisy or random inputs.
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- It is trained by example and have the ability to adjust dynamically to

changes in the environments.
- It has the ability to generalize from specific examples.
- It has a slow degradation in problems outside the range of the experience.

- It has the ability to discover complex relationships among inputs

variables, and

- It has speed of response.

Constructing Neural Networks for Simulation Metamodeling

Many design issues are involved in developing a neural network metamodel.
Care must be given to these issues as they are essential in developing a reliable
and robust neural network metamodel. This is especially important as the
metamodels are models of simulations model [3][33][35][24]. Hence, the error
of the network with respect to the real system will be amplified if the network
1s not properly designed. Whether it is appropriate to use a metamodel or not,
1s a matter that depends on the application and how much approximation is
acceptable. However, it appears that increasingly more people are making use
of metamodels [9]. Figure 2.1 illustrates two main issues involved. In addition
to selecting the appropriate variables for the application under consideration
and to constructing a valid simulation model, the metamodel itself is a major
issue. We have to decide on the internal parameters of the metamodel. Khaw,
Lim and Lim [17] report an optimal design of neural network models based on
the Taguchi method in terms of setting the internal parameters of the model for
the back propagation-type networks. They claim that their approach improves
network reliability and convergence speed. Other authors have selected other
approaches. For our experiments, we did not put much emphasis on this part
as our aim was not building very precise networks but rather examining their

behavior.

As mentioned previously, the way the metamodel is constructed has a
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significant impact on its performance. The following is a general design
procedure for metamodeling with neural networks. As can be seen, this

procedure does not differ in much from other metamodeling approaches.

e Step 1: Define the system: inputs, outputs, parameters, performance
measures and mechanisms governing the relationship between inputs and

outputs.

e Step 2: Develop a valid simulation model to examine the performance of

the system under some experimental conditions.

e Step 3: Select the set of variables that will be considered by the network
as inputs. These usually include the decision variables and system
parameters that are expected to be varying during the period of study.
Decide on how the performance (or the validity) of the metamodel will

be evaluated.

e Step 4: Decide on how these inputs are to be presented to the network

since the input data may need some preprocessing [17].

e Step 5: Decide on the internal design of the neural network. This includes
deciding on the number of layers, the number of processing units per
layer and the interconnections (full connection, partial connections), etc.

17]29].

o Step 6: Select the network paradigm that would control the processing
that takes place in the processing units and the training procedure. There
are a number of paradigms available such as back-propagation (widely
used in manufacturing applications). Each of these paradigms has several
parameters that need to be fine tuned to ensure the appropriate learning

and performance of the network.

e Step 7: Once the above issues have been decided upon, training can
start. Develop a training set using the simulation models and perform
the training. Several iterations may be required between steps 5, 6 and

7 in order to find the best neural network with the least errors.
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e Step 8: Validate the designed neural network using a test set that contains

examples not included in the training set.

Training can continue even after the network has been validated. As new
examples from the real system become available, the network can be trained

on them; thus further reducing the error with respect to the real system.

In evaluating the precision of the built metamodel, several candidate error
measurement methods can be available. It is essential to select an appropriate
one. As our experiments have shown, the constructed metamodels may have
a different ranking based on the evaluation criterion applied. Therefore, we
recommend that a great care should be given to this issue. The importance of

this issue is discussed in detail later in the text.

The most widely used implementations of neural networks are software
simulators. These simulate the operations of the network on serial computers
as these are very much available at low prices. However, the time requirements
for developing and implementing the neural networks could be further reduced
if hardware with parallel processors are used. Thus, the full potential of neural

networks can be further enhanced with developments in hardware.

Drawbacks of Neural Networks

Several shortcomings related to the current applications of neural networks as
a metamodeling technique have been reported in the literature [19]. First,
constructing a neural network is time consuming as this process requires
generating a training set, empirically selecting an appropriate architecture and
learning algorithms. Secondly, the accuracy of the network outputs depends on
the regularity of the behavior of the system under study (by regularity we mean
that the system is subject to the same set of exogenous and uncontrollable
factors). This implies that the time horizon of the study must be carefully
selected. Thirdly, the validity of the results depends also on the degree of

aggregation selected for the input data. Aggregation of data is needed in order
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to reduce the size of the neural network and the effort required to generate the
examples. This would have a negative impact on the precision of the neural
network results. The disadvantages mentioned so far are common to most
metamodeling techniques.

Another more specific problem related to metamodeling with neural networks
is the difficulty to make interpretations and analysis of the input/output
relationship. As mentioned previously, the neural network generates its own
rules but does not provide them explicitly to the user. In order to get an
insight into the input/output relationship, one needs to analyze the weights
of the connections between the processing unit. This is not an easy task, and
it is time consuming. Thus, providing a formal method to analyze the neural
network may strengthen its value as a metamodeling approach. Furthermore,
the selection procedure for the network architecture, learning algorithm and
parameters is in most of the reported cases a trial (empirical) process. Some
attempts have been made to provide a formal approach to do this task. Khaw,
Lim and Lim [17] propose a method based on a Taguchi approach. Murray
[22] used genetic algorithms to perform this task. Further deficiencies in the
literature are concerned with the lack of development of learning algorithms.
Research in this direction may allow more exploration of the full potential of

neural networks.

2.4 Neural networks as a simulation meta-

modeling approach

Our research is focused on simulation metamodeling with neural networks for
the purpose of estimating system performance measures. Zhang and Huang
[37] have reported an increasing interest of the use of neural networks in the
manufacturing environment since 1987. Starting the same period, Yu and
Poplewell [35] report an increasing interest in simulation metamodeling. This
illustrates that these two different techniques have an increasing potential of

contribution to improving the management of manufacturing systems. Despite



CHAPTER 2. RESEARCH BACKGROUND 20

this interest, efforts to combine metamodeling and neural networks through the
use of neural networks as a simulation metamodeling approach has not been
much. In fact, for this type of applications of neural networks, the related
literature is not abundant. Seven papers applying the back propagation neural
networks as a simulation metamodel for the management of manufacturing

systems are surveyed.

Chryssolouris et al. [6] used a neural network metamodel to reduce the
computational efforts required in the long trial process that is associated
with using simulation alone for the design of a manufacturing system. The
simulation model is used to generate the performances (4 performances
measures are recorded) of the system under different designs. The neural
networks is then used in an inverse manner. The input of the neural network
is the desired levels of the performances of the system and the output would
be the design that would achieve those levels of performance. Although this
application was successful, some questions were raised regarding the complexity
of the system and regarding the complexity of the application itself. In fact,
because of the small size of the system considered, the number of design
alternatives is not large. However this application, indicates a potential use of
neural networks as system design has an important impact on its performance
and often the design phase is time consuming because of the large number of

alternatives.

Simulation metamodeling with neural networks mostly is applied as a tool
for determining operational policies since it is in this type of applications
that time is more crucial. Chryssolouris has developed a task assignment
procedure that is based on multi-criteria, called MADEMA (MAnufacturing
DEcision MAking). This approach combines the system performance criteria
according to some given weights. Chryssolouris et al. [5] used a neural network
metamode] to determine the weights required to achieve some given levels
of the multiple criteria. Although the application showed some good results
and a good ability of neural networks to handle complex relations, one may
question the effect of the small range of the inputs and the effect of system

complexity. Hurrion [13] used a neural network to estimate confidence intervals
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for the performance of an inventory depot. This application revealed that
neural networks were equally successful to estimate mean performance as well
as their corresponding confidence intervals. Moreover, this work highlighted
the capabilities of neural networks to model problems with large range of inputs
and complex input/output relation but still does not provide an insight on the
effect of system complexity nor on the effect of stochasticity. Another case
was examined by Pierreval [27] to investigate the ability of neural networks
to estimate mean machine utilization of a deterministic small sized problem.
The results were encouraging as in this problem input range was wide and also
the neural networks showed its ability to learn and generalize properly. The
questions that raises here may be regarding the effect the performance measure,
stochasticity and system complexity. Pierveval [29] later proposed a neural
network architecture to be used for ranking the performance of dispatching
rules on a stochastic flow shop type system. Neural networks have performed
well and highlight the modeling flexibility that modeling with neural networks
can offer. Here one may question the effect of system configuration (flow shop
vs. job shop). The work reported by Philipoom et al. [26] gives some other type
of application of neural networks as a simulation metamodel. Neural networks
are applied to assign due dates for jobs based on system characteristics and
system status when jobs enter system. The use of neural network for individual
jobs contrasts with the use of neural networks to get aggregate system measures
(such as mean flow time in the previously mentioned publications). The
performance of neural metamodels compared favorably with regression based
metamodels and showed another interesting type of application. Kilmer et
al. [18] report a possible use of neural metamodel for a service activity, an
emergency department. They tested the validity of metamodel, with respect

to the real system, and it appears that the validity is high.

In the seven publications reported in the last 2 paragraphs, the constructed
neural network metamodels achieved reasonably good results. The authors
showed that neural networks are a very promising tool for predicting
system measures. However, these case studies deal with systems of reduced

complexities or of deterministic nature and do not allow us to generalize on
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the estimating capabilities of neural networks. The following set of questions

summarizes some of the future research issues that still need to be investigated:

- How to assess neural metamodel performance?

- What is the effect of system size on the performance of the neural

network?
- To what extent can the neural network handle system stochasticity?
- Do stochastic factors effect differently network performance?

- Is the metamodel performance affected by the fact that the system is in

transient state or in steady state?

- Is the performance of the metamodel affected by the level of activity of

the system?
- What is the effect of the performance measure heing predicted?

- What is the effect of the network configuration (size, number of layers,

learning rate ...) on the performance of the network?

- Does system configuration (flow shop-job shop) have an effect on the

performance the developed neural networks?

- How robust is the neural metamodel to noisy data, to data outside the

training range?

- How adaptive is it to gradual small changes in the system over time (such

as gradual improvements in quality)?
- What are the computational requirements in terms of computer time?
- How to select the size of training and test data?

- How to choose simulation run length?
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This small set of questions is representative of the current vacancies in
the literature. In this work, we don’t attempt to answer all these questions.
Rather we concentrate only on the first eight questions. We don’t intend to
give extensive and final answers to these questions. We aim at constructing
experiments that would allow us to get an insight on these issues. As a
matter of fact, our work investigates two types of application of neural network
metamodels: estimating long term system performance and short term system

performan(:e.

For the first application, we will investigate the effect of:

Performance measure: Mean machine utilization and mean job tardiness.
* System complexity: Simple vs. complex system.

* Stochasticity: deterministic, stochastic interarrival times only, stochastic

processing times only or both stochastic.
Demand on system: low, medium and high.

* Metamodel error assessment criteria.

In all the reports we described previously, neural metamodels are examined
in terms of estimating long term performance. and the available literature is
not abundant yet. For estimating short term performance, we could not find
any reports on the use of neural metamodels for such applications. For this we
also examine such an application in order to gain insight on the effect of this
issue and so we can get an idea about the possible use of neural metamodels
for real time decision support. With the second application, we will consider
the mean job tardiness as a system performance measure and we allow the
system to be deterministic or to be subject to stochastic processing times and

interarrival times. That is, we investigate the effect of:

* Initial system status.

* Demand on system: low, medium and high.
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* Metamodel error assessment criteria.

For both applications, we preview the effect of due date tightness factor
and of the effect of the size of training set. In order to preserve a basis of
comparison, we use the same system structure, neural network architecture
and same error assessment criteria. The neural network learning algorithm
is considered as a black box and we don’t attempt to improve it. We also
do not carry out extensive fine tuning of the parameters because it is time
demanding and because our emphasis is more on developing an understanding
of the behavior of neural metamodels with respect to the factors previously
mentioned. The next 2 chapters investigate long term mean machine utilization
and mean job tardiness respectively. The fifth chapter examines the situation
for the short term mean job tardiness. Finally, we give our conclusions and

future research directions in the last chapters.



Chapter 3

Estimating Long Term Machine

Utilization

In this chapter, we investigate the capabilities of neural metamodel in
estimating mean machine utilization as a system performance measure. We
consider two job shop systems, which we would refer to as case one and case
two. The first job shop system is a simple one with four machines and three
distinct product types. The second system is a complex one. This system can
be considered as an extension of the first system, to include more machines
and more product types. This extension is made in such a way as to keep
a basis of comparison between the two cases. This is achieved by adding
three more machines and three more job types to the first system. While
the job types common to both systems keep the same parameters in terms of
processing and routing requirements, the new product types have processing
requirement on both the old and the new machines. Hence, the first system is
a subset of the second one. This allows us to investigate the effect of increased
system complexity by studying the second system and comparing it to the first
one. Therefore, the term “system complexity” in this study would refer to
increased system size (increased number of machines and increased number of
job types) as well as increased interactions between the different components

of the system. For each of the two cases, we describe the experimental settings
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through describing the system, the simulation models, the neural network
metamodels and the error assessment approaches. The next section lays down
the results and discussions. The last section of the chapter compares the two

cases.

3.1 Case 1: Simple System

In this first case, we consider the work reported by Pierreval [27] as the
starting point. His work tries to estimate mean machine utilization for a
deterministic system. In the first step, we simply repeat this work. In our
experiments, however, the back propagation learning algorithm is improved by
adding a momentum term. The second step is to investigate the stochastic
configurations of the same system (stochastic arrival times only, stochastic
processing times only or both) and to test the robustness of the metamodels
designed for the deterministic configuration to inputs that lie outside the

training range.

3.1.1 Experimental settings
System description

This study is based on the work done by Pierreval [27]. His experiment consists
of running a simulation model for a deterministic job shop system. Based on
this model, a neural network metamodel to estimate machine utilization Is
constructed. This job shop system, he used, is deterministic. [t is composed
of four machines and three free transporters. Three job types are entering the
system. Jobs arrive independently to the system at constant rates: A;, Ay and
As. Jobs await for the availability of machines in queues according to a waiting
discipline ¢. The waiting discipline, ¢, could be either Shortest Processing

Time (SPT) or First Come First Served (FCFS).
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In this first case, we consider four possible configurations of this job
shop system: a deterministic configuration, a configuration with stochastic
interarrival times only, a configuration with stochastic processing time only
and finally a configuration with stochastic interarrival times and processing
times. Our work is based on the same system. All the relevant data can
be obtained from the sample codes provided in Appendix C. For the case
of stochastic arrival times, those same values of the constant interarrival
times Ay, Ay and A3 are used as the means of the corresponding exponential
distributions. Similarly, the constant values of the processing times, used in the
deterministic configuration, are used as means of the corresponding exponential
distributions in the stochastic processing times configuration. The choice of the
exponential distribution for both factors (arrival and processing times) appears
reasonable since a large number of the reported simulation experiments use this

distribution which seems to match real life as well [1] [32].

Simulation Models

The simulation models of the system described above are developed and used
to run the job shop system for various configurations. The production is
performed in two shifts. For the deterministic configuration, the model is
run during one week of work (5 days), plus one day of transient phase. For the
stochastic case, a transient period of 2 work days is used, and the system is
run for 15 days, to form 5 batches of three days each (Batch means approach
is used through out this study). We are interested in finding the average
machine utilizations pq, pe, g3 and py of the four machines in order to detect
bottleneck machines as well as under-utilized machines. Therefore, given an
input combination of A;, Ay, A3 and ¢, we run the corresponding simulation
model to record the output combination uj, po, #3 and wq (x; € [0,1]). These
outputs are the true values of these variables that the neural metamodel has
to estimate. The combinations of these inputs and outputs would compose
one example in the data set that is presented to the neural networks either
in a training set or as a test set. The simulation models are developed in

SIMAN language [25]. Sample model and experimental frames are provided
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in Appendix C. Four simulation models are used; each corresponding to one
of the configurations mentioned above. Table 3.1.1 in Appendix B shows the
list of the models built. Figure 3.1.1 illustrates the relationship between those
models. For each model the corresponding training and test sets are generated.
In terms of machine utilization, the characteristics of the data sets generated
from these models are quite identical for all the models examined in the first

case, and are as follows:
- minimum utilization: 14.5%
- mean utilization: 45.2%

- standard deviation of utilization: 17.7%

- maximum utilization: 100%

s Model 2
Model 1 | <Z------ ~ | Model 3
~ Model 4

Figure 3.1: Mean Utilization: Simple System: Relationship between models.

This means that independently of any factor being stochastic or determin-
istic, the resulting sets are similar. This may lead us to think that similar

results can be obtained from all the models.

For model 1, we also develop test Set #5 which consists of 50 examples
and is similar to test Set #1, where interarrival times are deterministic, but

this time are randomly selected from [85,100] instead of [10,85]. We also
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generate Set #6 which consists of 50 examples and is similar to test Set #1,
where interarrival times are deterministic, but this time are randomly selected
from [100,120]. Test sets #5 and #6 are used to test the robustness of the
metamodel with respect to inputs that lie outside the range of the training data
and hence allow evaluating generalization capabilities of neural metamodels.
Two sets are used in order to see how the performance of the neural metamodel

evolves as we move far from the range of the inputs of the training set.

As each data set (training or test sets) require a set of examples, we need
to create the set of inputs to be given to the simulation model in order to
generate the true values of the variables of interest (mean machine utilizations),
and to be presented to the neural network in order to generate estimates of
the variables of interest. A SIMAN code was used to randomly generate the
values of the inputs in the desired range from a uniform distribution. Another
approach would have been to generate these inputs using experimental design
techniques. However, the first approach was used because it corresponds to
real life more where examples would follow a random scheme. Appendix C

shows the model and experimental frames for this input data generator model.

Neural Network Metamodels

Several Back-propagation neural networks are designed with various architec-
tures (number of processing units and layers) and various combinations of
network parameters (learning rate, momentum term). No bias is introduced,
nor dynamic adjustment of the learning parameters are used. The sigmoid
function is used as the transfer function in the processing units. Inputs are
scaled in the interval [0, 1]. Table 3.1.2 in Appendix B shows the characteristics
of the networks constructed for each model. In this Table, the name assigned
to each neural network are as follows: Expl_A_B. This coding should be read
as the name of the neural network number B developed as a metamodel for
model A of this first set of experiments. An example would be: Expl_2_3.
This describes the network number 3 designed for model 2 of this first set of

experiments. Refer to the generic architecture given in Iigure 2.1.
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The following generic architecture is used:

- Input layer: 4 processing units:
- Interarrival time for job type 1, A;.
- Interarrival time for job type 2, A,.

- Interarrival time for job type 3, As3.

Dispatching rule, ¢ : 1 or 2 (SPT,FCFES).

(for the stochastic case, the mean of the distribution is presented as input)

- Hidden layers: Various combinations of networks with different number

of hidden layers, with different number of processing units are used.
- Output layer : 4 processing units:
- Machine 1 average utilization: ;.

- Machine 2 average utilization: p,

- Machine 3 average utilization: wus.

Machine 3 average utilization: p.

The neural network model was developed using a network simulator
NeuralWorks Professional II developed by NeuralWare, Inc [23]. It is necessary
to mention also that further fine tuning of the parameters of the neural
networks built, may lead to better results but it is believed that this

improvement would not alter the conclusions obtained.

Error Assessment

One essential aspect of metamodeling is how to evaluate the error of the neural

network metamodel with respect to the desired performance. For this purpose,
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four different evaluation methods are used. Which assessment approach to use
when it comes to real life application of neural metamodels, would depend on
the objectives of such an application. However, by the use of multiple criteria,
we intend to investigate the robustness of the neural metamodel performance
to multiple criteria. Moreover, consistency through out the criteria would add

to the reliability of the conclusions made.

Let
¢t be the index to represent the example number in the training or test
sets.
J: be the index to describe machine number. 57 = 1,2,3, 4.

Sij: be the average utilization obtained for machine j at example 2

obtained from the simulation model (true value of the variables of

interest).

N;;: be the average utilization obtained for machine j at example ¢

obtained from the neural network metamodel (estimate of S;;).
T: be the total number of examples in the training or test set.

a: Tolerance level, « € [0..1].

We also define:

Di]' =

Sij — Nij|: absolute deviation for machine j and per example 1.

D; = maz{D;;,j = 1,2,3,4}: maximum absolute deviation across all

machine for example .

e Method 1: (Tolerance approach)

This method has been used by Pierreval in [27]. The performance of
the neural networks is evaluated according to the percentage of examples

not recognized . An example is said to be recognized if the maximum
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absolute deviation among the four output variables is less than a given

tolerance level, ¢, that is:
let:

L-(a) =

0 otherwise.

{ 1 ifD;>a

From the data set under consideration, we calculate the average error,

E(w), where:

E(a) = =
« is allowed to take values in{5%,6.5%,8%}.

¢ Method 2: (MAD approach)

This method measures the mean absolute deviation, MAD, across all the
examples in the data set under consideration and across all the variables
being estimated (machine utilization in this case) and the corresponding

standard deviation, where:

~

4
> XDy
1:=1

MAD ==

e Method 3: (MMAD approach)

Another method is to measure the error of the network in terms of the
mean maximum absolute deviation, MMAD, across all the examples
in the data set under consideration and across all the variables being
estimated (machine utilization in this case) and the corresponding

standard deviation, where:

M=

D;

1

MMAD =*

=3

This method is similar to the second method, except that it is more severe
and penalizes the neural metamodel for the highest deviation through

each example in the data set.
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¢ Method 4: (Percentage error approach)

This method is the classical one. It is based on evaluating the relative
error for each example and for each variable in the data set and taking

the average, F;, and the corresponding standard deviation.

D;;
2 (55

e

T
=1

Evaluating the metamodels based on the first three measures is a subjective
matter since we are dealing with absolute measures. The interpretation of these
methods requires a prior knowledge about the system parameters. The fourth
method is used to assess the real life applicability and the acceptability of the
results, where as the three first are used to highlight the differences between
the models constructed. The fourth approach is a relative approach and hence
it is objective. We try to use the combination of those methods to come out

with satisfactory metamodels.

3.1.2 Results and Discussions

Table 3.1.3 in Appendix B presents the results achieved by each neural network
metamodel for each of the models investigated across the four error assessment
methods discussed above. For each model, we select the best metamodels
among the set that was built (shown in gray background). Given these “best”
neural metamodels, we graph their performances relative to the four evaluation
criteria previously defined. These graphs are provided in Figure 3.1.2 in
Appendix A, both for the training sets and the test sets. The term “best”
network refers to the one that outperforms the others on the majority of the
error assessment methods, with the highest weight given to the fourth criteria

(the percentage error approach).

Model 1 (Deterministic interarrival and processing times) is a replicate of

the work reported by Pierreval[27] except that we include a momentum term
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in the back-propagation algorithm. The results achieved by Pierreval are given

7,

in Table 3.1.4 in Appendix B (based on the first evaluation method). The
results corresponding to this case are given in Table 3.1.3 in Appendix B for
network expl_1_2. We can see that there is an improvement in those results
which can be explained by the improvement in the learning algorithm. For the
purpose of illustration, we include Figure 3.1.3 in Appendix A which shows the
learning curve of this neural metamodel (expl_1_2) based on the first evaluation

method.

We also test the ability of the neural network used for Model 1 (expl_1_2) to
extend its fitting of the response function (mean machine utilization) to outside
the range of the input values used while training. Table 3.1.5 in Appendix B,
shows the results of two of experiments (robustness experiments). In the first
experiment, the input data are generated from an interval outside the range
of training but not far from it. In the second experiment, input data are
generated from an interval far from the range of study. Here, we evaluate the
performance of the network based on the first evaluation method. In both
experiments, when considering a tolerance level, «, set at 10% the network
error is 0%. However, for « at 5% the error sharply increases. That is to
say that in most of the tested examples, the error was confined to some small
interval [5%, 10%]. Further investigation regarding metamodeling robustness,
as defined above, is required. Such an investigation of the data sets may lead
to define the appropriate size of the range of the inputs without major loss of

accuracy.

For the stochastic configurations (Models 2, 3 and 4), it appears that
the precision of the neural metamodels decreases as we introduce sources of
stochasticity, as can readily be seen from the graphs in Figure 3.1.2 in Appendix
A. This behavior can be expected since including stochastic factors in the
system means introducing sources of irregularity in the patterns of behavior
of the system. Since neural networks operate by trying to classify patterns of

behavior, irregularities cause some difficulties for the network to classify inputs.

Another observation which was not expected, is that, independently of
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the error assessment criteria being used, the network precision does not vary
significantly if we move from Model 2 to Model 3 (see flat middle portion on
the graphs). Thus, introducing stochasticity on the interarrival time factor
or on the processing time factor, would produce a comparable effect on the
patterns of behavior of the system and hence a similar effect on the accuracy
of the metamodel. Therefore, it seems that the number of stochastic factors
is more important than the nature of the factors themselves. Despite the
fact that stochasticity in the system causes the accuracy of the metamodel to
estimate mean machine utilization to deteriorate, this accuracy remains within
acceptable limits. We use multiple evaluation criteria and we find that these

conclusions are valid across all those criteria.

For error assessment criteria 2, 3 and 4, the experiments have shown that
in moving to more complex system configurations (through the addition of
stochastic factors), the performance of the metamodel does not deteriorate
further as we move from the training set to the test set. This implies that
generalization capabilities are not affected by stochasticity. However, for the
first evaluation criteria (the tolerance approach), this is not the case for the
tight tolerance level case (¢ = 5%). The reason for this is that we selected
the values of the tolerance levels, o, based on the training sets in such a way
as to highlight the effect of this tolerance level. Thus, as we move to the
generalization on the test set, the slightest deterioration will be revealed mostly
by the tight tolerance level (o« = 5%). As can be observed, the generalization
capability is not affected when it comes to the other levels of tolerance (o =
6.5% and 8%). This indicates that the deterioration in metamodel precision,

as we move to the test set, is limited and can be considered as acceptable.

The experiments have also shown that metamodel performance is consistent
through out the four criteria. That is to say that metamodels have the same
ranking on the four criteria. On the other hand, no architecture is best for
all models. Thus, in order to find the best metamodel, unfortunately, a large
number of networks have to be constructed and tested. This would result in a

long metamodel development phase.
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There are a few observations that are worth mentioning regarding our
experiments. First, from the different neural networks developed, it appears
that the way in which the input is presented to the network (random or
sequential) did not have a considerable effect on the precision of the results,
although sequential access seemed to produce slightly better results. Second,
from the various experiments carried out, it appears that the initialization
range of the weights on the arcs of the network did not effect the precision
of the results, if we allow sufficiently enough long training period. Third, the
relationship between the learning rate (and also the momentum rate) and the
network precision is not linear. Fourth, in some cases the network performed
better on the test set than on the training set itself. Although this may be
unexpected, it may be due to the randomness of the test sets. Experimenting
with neural networks has indicated that they can handle noisy training inputs.
In fact, training the network with some data set which contained a portion of
wrong examples, resulted in a network able to achieve 2 to 3% ervor on Method
1.

3.2 Case 2: Complex System

The system investigated in this case is similar to the system examined in
the previous case, except for the complexity introduced as explained at the
beginning of this chapter. The way in which we increased system size (in
terms of more job types and more machines) ensures us that this second system
1s more complex and hence tends more to real life systems. Because of this
increased complexity, the study will be more involved as the performance of the
neural metamodel is evaluated at different levels of demand on system. The
term levels of demand on system refers to the ranges from which interarrival

times are generated.
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3.2.1 Experimental settings
System description

In fact, the system considered in the previous case is a subset of the system
considered here. The job types and the machines simulated in the first case
are also present here with the same parameters. That is to say, the old job
types keep the same processing times and routings and the old machines keep
the same capacity and are still located at the same distances from each other.
Three new job types are added, to form a total of six, and three new machines
were included. The new job types would have a routing on both old and new
machines. However, in order to keep the system balanced, these new job types
have smaller processing times on the old machines than on the new machines.
This system is allowed to operate under three job waiting disciplines, ¢: SPT,
EDD and Modified operation Due Date (MOD). This increase in the number of
possible dispatching rules that can be used in the system is another dimension
of complexity that’s added to this study. The method used to assign due dates
is the Total WorK content method (TWK) and it involves a due date tightness
factor, k£, which is generated from the range [2,9]. This range covers the tight
and loose due date situations. The TWK has been supported as among the
best due date assignment rule in job shop environments [1] [32]. Like the
previous case, this system also operates with three free transporters. Each job
type arrives to the system with a constant interarrival time A; (z = 1,2,..6) for
the deterministic arrival configurations. [or the stochastic interarrival cases,
the same values of A; are used as the means of an exponential distribution.
Similarly the values of processing times used in the deterministic models, are
used in the stochastic models as the means of the corresponding exponential

distributions (as in the previous simple system case).
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Simulation Models

Simulations models of the system described above are run under various
configurations (deterministic and stochastic) and under different values of
interarrival times and under different dispatching rules.  Production is
performed in two shifts. For the deterministic models, the system is run for
2 days as of a transient period and statistics are collected for 8 days. For
the stochastic models, the batch means approach is used with 5 batches. The
transient period has a length of 4 days and each of the 5 batches has a length of
3 days. Note that the lengths of the transient periods, in this complex system
case, are doubled relative to the first case (simple system) in order to allow
the system to reach its steady state. Here also, for a given input combination
of A\i,k and ¢, we run the simulation models to record the mean machine
utilization, g;, of the 7 machines. Input data (A;,k and ¢) are generated with
a similar input data generator to the one used in the first case. Table 3.2.1
in Appendix B shows the list of the models built. Table 3.2 in Appendix B
shows the characteristics of the data sets generated from each model in terms
of their machine utilization and in terms of the fraction of tardy jobs. Figure

3.2.1 illustrates the relationship between these models.

Model 1
Model 5 Model 2 Model 3 Model 4
""”— ; \~\~\\-L
Model 6 Model 7 Model 8

Figure 3.2: Mean Utilization and Mean Tardiness: Complex System:
Relationship between models.
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Neural Network Metamodels

For each model, we run three neural network metamodels. Only the network
architecture (number of hidden layers and number of processing units per layer)
is changed. The network learning rate and momentum term are not changed
as it would require a very long time to cover all the space of these parameters.
These neural networks are very similar to the ones detailed in Section 3.1.1.
Table 3.2.3 in Appendix B shows the list of the neural networks built for each

model.

The following generic architecture is used:

- Input layer: 8 processing units:

- Interarrival time for job type 1, A;.
- Interarrival time for job type 2, A,.

Interarrival time for job type 3, As,.

Interarrival time for job type 4, A4.

- Interarrival time for job type 5, As.

- Interarrival time for job type 6, As,.

Dispatching rule, ¢.

Due date tightness factor, k.

(for the stochastic case, the mean of the distribution is presented as input)

- Hidden layers: three combinations of networks with different number of

hidden layers, with different number of processing units are used.

- Output layer : 7 processing units:

- Machine 1 average utilization: p.

- Machine 2 average utilization: p,
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Machine 3 average utilization: 3.

Machine 4 average utilization: .

Machine 5 average utilization: ps

Machine 6 average utilization: ug.

Machine 7 average utilization: 7.

Error Assessment

In order to evaluate the performance of the neural metamodels, the same error

assessment approaches applied in the simple case is used (refer to Section 3.1.1).

3.2.2 Results and Discussions

The results of this second case are given in Table 3.2.4 in Appendix B. This
Table shows the performance of all the neural metamodels relative to the four
error assessment methods selected. Here also, the performance of the best
neural network metamodel corresponding to each of the 8 models investigated,
are graphed in Figure 3.2.2 in Appendix A. The term “best” network refers
to the one that performs better than the others on the majority of the error
assessment methods, with the highest weight given to the [ourth criteria (the
percentage error approach). The fourth criteria is the only objective criteria
and does not require any prior knowledge of the characteristics of the system
and hence allows direct and objective interpretation of the performance of the

metamodels.

Recall that in the simple system case we had only investigated one
deterministic model (Model 1). Here, Models 1 through 5 are deterministic
models. For these five models, the neural networks performed well on all the
error assessment approaches. Models 2, 3 and 4 are subset of the first one. The
aim is to view the effect of reducing the size of the range from which interarrival

times are generated as well as the effect of the demand on system. The term
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demand on system refers to the frequency with which jobs arrive to the system,
which is determined by the interarrival times. It appears that the predictive
capability depends on the ranges themselves. As we decrease the demand on
system, that is going from Model 2, to Model 3 and to Model 4, network
precision increases. This means that neural networks perform better for
systems with low demand than with higher demand. This could be explained
by the fact that increased demand adds more interactions in the systems,
and hence makes it more difficult to classify system behavior into patterns.
Since neural networks operate via pattern classification, network precision
deteriorates, at least slightly when the demand on the system increases under

consideration.

Model 5 is identical to Model I, except that all the examples in the data
sets, for which the average machine utilization is above 98%, are removed.
For such examples, the system may be out of its steady state. Hence, this
experiment would show if including examples which correspond to the system
being out of its steady state in the data set, has an effect on the neural network
performance. A slight improvement has been noticed for Model 5 over Model 1.
In fact, the results achieved by Model 5 are comparable to the ones achieved in
Model 2. Although the data for these two models is generated from different
ranges (interarrival times for Model 5 are generated from [20..100] and for
Model 2 from [20..40]), the models performed comparably and so we can say
the length of the ranges did not affect the network performances, but rather it
1s those examples that correspond to extremely loaded system that deteriorate

most the metamodel accuracy.

For the stochastic configurations (Models 6, 7 and 8), it appears that the
precision of the neural metamodels significantly decreases as we introduce
sources of stochasticity, as can readily be seen from the graphs in Figure 3.2.2
in Appendix A. Moreover, it appears that network precision is more affected
by the processing time as a stochastic factor than by the interarrival time as a
stochastic factor. However, the difference hetween these two factors is not very
large if we compare it to when both factors are stochastic. Although the three

stochastic configurations perform significantly worse than the deterministic
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cases, they still can be considered to be acceptable for all the error assessment
criteria except for the tolerance approach (Method 1). Nevertheless, this
tolerance approach imposes very tight tolerance levels and so we cannot rely
on it to judge on the performance of the networks, because if we slightly relax

the tolerance levels, the performance will significantly improve.

Concerning the generalization capability of the neural networks, they
appear to be acceptable, except for the first error assessment approach because
of the tight tolerance levels imposed. The experiments have shown that
metamodel performance was consistent through out the four criteria. In other
words, metamodels have the same ranking on the four criteria. On the other
hand, no architecture is best for all models. Thus, in order to find the best
metamodel], unfortunately, a large number of networks have to be constructed

and tested. This would result in long metamodel development phase.

3.3 Comparison of Simple vs. Complex

systems

Although in both cases, the neural network metamodels proved to perform
well in estimating mean machine utilization, there are several remarks worth
mentioning regarding the effect of system complexity. [irst, the increased
complexity acts more negatively on metamodel performance as we move from
the deterministic to the stochastic configurations. The first graph on Figure
3.3 highlights this fact. This could be explained by the fact that stochasticity
is itself another dimension of complexity, and if it is combined with system
complexity then the system would undergo more interactions that are difficult
to classify. The second point concerns the stochastic factors. It appears
that introducing system complexity leads to the factor of stochastic processing
times to have a slightly more negative effect on neural network performance
than the factor of stochastic interarrival times. Concerning the generalization
capabilities, they slightly decrease with increased system complexity. However,

the magnitude of this deterioration is nearly constant as we move to stochastic
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configurations. This can be seen from the second graph on Figure 3.3. Also,
demand on system appears to be an important factor to metamodel accuracy,

the higher the demand the lower the accuracy.

The error assessment methods produced consistent results in both cases.
In other words, the different models would rank similarly on all the methods.
This consistency is a good point as it confirms the conclusions made so far.
On the other hand, if we consider the tolerance approach (Method 1), the
performance of neural network metamodel for the stochastic configuration may
not be considered as acceptable. This can be explained by the tight tolerance
levels applied. However, this requires some subjective judgments that depend
on the applications of this type of metamodeling and the objectives of the

application.

To conclude, we can say that complexity, whether it is due to stochasticity
or to the system, results in deteriorating neural network learning and
generalization capabilities. Despite this, the results achieved are good enough
to show that neural metamodels are promising tools to estimate machine
utilization, especially if we consider the large potential of improvements that

can be introduced on the neural networks that we built.



Chapter 4

Estimating Long Term Job

Tardiness

The first part of this research dealt with designing neural network simulation
metamodels to estimate long term mean machine utilizations given the job
arrival rates and the dispatching rule applied in a job shop environment at two
levels of complexity. In this second part of the research, the neural networks
metamodels are applied to estimate long term mean job tardiness. The aim
is to determine how well can we predict tardiness with neural networks and
to determine which factors influence their predictive capabilities. This would

allow investigating the effect of the performance measure being estimated.

As for mean machine utilization, we investigate two levels of system
complexity which we will refer to as simple system case and complex system
case. The experimental procedure that is followed in this section starts by
designing metamodels from inputs generated from a wide range. If the neural
network can predict performance (mean job tardiness) then complexity is added
through the introduction of stochasticity. Otherwise, we split this wide range
of the inputs to smaller subranges. Each resulting subrange would be analyzed
similarly until the predicting performance improves or no improvement can be

expected. This procedure allows us to examine the prediction performance of
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neural networks with respect to the different system configurations and also
allow us to assess the bhoundaries of the applicability of metamodeling with

neural networks.

4.1 Case 1: Simple System

The system modeled in this first case is identical to the one used for the
utilization measure in the previous chapter, simple system case (refer to
Section 3.1.1). The only difference is due to the additional due date based

job dispatching rules included for the tardiness measure.

4.1.1 Experimental settings
System Description

The changes made in this set of experiments, are related to the dispatching
rules and to the introduction of a due date assignment method. For details
regarding the original system, refer to Section 3.1.1. This system is allowed
to operate with 3 dispatching rules: (SPT), EDD and MOD. The SPT rule,
which is used also in the previous chapter, is introduced for the purpose of
relating the two cases and the two due date based rules are used as they aim
at minimizing tardiness, where one is a job based rule and the other is an

operation based rule.

Because we want to measure tardiness, jobs need to be assigned due dates.
The method used to assign due dates is the Total WorK content method (TWK)
and it involves a due date tightness factor, k, which is generated initially from
the range [2,9]. This range is selected according to pilot runs with different
values of arrival rates and with different dispatching rules. These pilot runs
indicate that the above range covers both the tight and the loose due dates.

Hence, the due date tightness factor, &, is also presented to the neural network



CHAPTER 4. ESTIMATING LONG TERM JOB TARDINESS 46

as an input. In order to analyze the effect due date tightness factor, we further

split this range into smaller ranges in our experiments.

As for mean machine utilization, in switching from deterministic to
stochastic configurations, we apply the deterministic values as the mean of
the corresponding exponential distribution both for the interarrival times and

the processing times. Refer to Section 3.1.1 for further details.

Simulation Models

Different simulation models are developed in order to produce different
sets of training and test examples. The models mainly describe the same
system, however the range from which the input variables (in the data sets
corresponding to each model) are generated, is varied from model to model.
The ranges start from wide ranges to smaller ones in order to analyze the cases
where the neural metamodel estimation is not acceptable. In the cases where
neural metamodel perform well, these ranges are not split but they are used
to generate the means of distributions for stochastic models. We investigate
models with deterministic nature as well as models with stochastic interarrival
times or with stochastic processing times or with both. Table 4.1.1 in Appendix
B shows the list of the models. This table reports the nature and ranges of
the inputs that are used in the training set and test set corresponding to each
model. Figure 4.1.1 describes the relationship between the models. Table 4.1.2
in Appendix B shows the characteristics of the data sets generated from these
models in terms the machine utilization as well as the proportion of tardy jobs

(minimum, average, standard deviation and maximum).

Neural Networks Metamodels

The proposed neural networks are based on the Back propagation algorithm
with two learning coefficients (the learning rate and the momentum coeflicient).

The size of the data sets (training and test sets) generated depends on the width
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Figure 4.1: Mean Tardiness: Simple System: Relationship between models.

of the range of the corresponding inputs as well as on time constraints related to

running the corresponding simulation programs and training the metamodels.

The generic network architecture that we use is as follows:

- Input layer: 5 processing units:

- Interarrival time for job type 1, A;.

Interarrival time for job type 2, A,.

Interarrival time for job type 3, As.

Dispatching rule, ¢ :1,2 or 3 (SPT, EDD, MOD).

Due date tightness factor, k.

(For the stochastic case, A; stand for the mean of the exponential

distribution modeling the interarrival time of jobs type 2.)

- Hidden layers: Various combinations of networks with different number

of hidden layers, with different number of processing units are used.
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- Output layer : 3 processing units:

- Mean job tardiness for jobs type 1,
- Mean job tardiness for jobs type 2,

- Mean job tardiness for jobs type 3.

Table 4.1.3 in Appendix B shows the list of the neural networks that were
developed and their corresponding characteristics. In this table, the name
assigned to each ncural network are as follows: Exp3_A_B. This coding should
be read as the name of the neural network number B developed as a metamodel
for model A of this second experiment. An example would be: Exp3_4_3 . This

describes the network number 3 designed for model 4 of experiment set number

3.

Error Assessment

Again, four measures are used to evaluate the performance of the neural
networks. The first three are identical to the first three used in estimating
mean machine utilization (Refer to Section 3.1.1). It is done so for the sake of

consistency and to allow performing comparisons.

For the first measure (the tolerance approach), we use a tolerance level,
a, that is allowed to take three possible values: 10, 20, 30 Min. Setting « at
higher values will results in more precise networks but this will misleadingly
improve the results. On the other hand, decreasing the value of o would result
in more severe assessment. As a matter of fact setting an appropriate level
of « for all the data set is difficult. Therefore, whatever way you look at
it, this approach is subjective and so you cannot rely on it alone to assess the
performance of neural networks. The MAD and MMAD approaches need some
prior knowledge about the system and hence, require subjective interpretations.
Thus, the first three methods will not he used to assess the acceptability
of the performance of the metamodels but rather to compare the different

networks constructed for each simulation model and to assess the relative effect
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of the different factors considered. Method 4 (measuring percentage deviation
from true value, simulation output) as described in Section 3.1.1, is no more
applicable in this case because the true value (simulation output) may take
zero values and hence cannot be used as a denominator. Instead, we propose

a fifth error measurement approach for this experiment, as explained below.

We first define the following:

2: be the index that represents the example number in the training or

test sets.
J: be the index to describe job type. 7 =1,2,3.

53t be the average tardiness obtained for job type j at example ¢ obtained

from the simulation model (true result).

N;j: be the average tardiness obtained for job type j at example ¢

obtained from the neural network metamodel (prediction of S;;).
k;: be the due date tightness factor used in example .
TWC'; : be the total work content of jobs type ;.

T : be the total number of examples in the training or test set.
P
We also deﬁne:

D;; = |S;; — N;j|: absolute deviation per job type j and per example z,
D; = maxz{D;;,j = 1,2,3}: maximum deviation across jobs for example
N

Fij = (ki * TWC;) + Si;: maximum of flow allowance and flow time for

jobs type j at example 2.

The fifth error assessment approach is described below.
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e Method 5: (deviation-to-flow time approach)

The first three methods produced absolute measures of the error and
hence are very subjective. The tolerance approach requires fixing some
tolerance levels and these in turn requires an understanding and a
subjective judgmental evaluation to set them. The MAD and MMAD
approaches are measures related to the deviations in the estimate and
hence, in the interpretation of the results, a prior knowledge of the
system is needed. These methods will be then used just to discriminate
between the different networks built. This fifth method provides a
relative measure and consequently can be used to assess whether the
networks achieved good results or not in terms of real life application.
For each example in the data set, it provides a measure of the relative
importance of the deviation between the simulation true results and the
metamodel estimates with respect to the flow time of each job type. The

interpretation of this measure is as follows:

Suppose that the neural metamodel is actually in use in a real system
and that it is used to select an operational policy which is determined by
a due date factor, k, and a dispatching rule, ¢, as to meet management
objectives in terms of job tardiness for a given combination of arrival
times. The neural network then would be run several times to obtain the
best operational policy, given the current job arrival rates. Now suppose
that the selection process is over and that & and ¢ are decided upon. This
means that management believes that the flow time that results from
their decisions is acceptable. This value of the flow time would be equal
to the sum of the flow allowance and the expected tardiness as estimated
by the neural network. If the jobs appear to be more tardy than what
was expected by the neural network, then it means that customers would
have to wait more and so the metamodel must penalized for this. If the
job is tardy but less than estimated by the neural network, any plans
such as transport of jobs would be disturbed. Thus, if the jobs are tardy,
any deviation from the expected flow time as given by the metamodel
should be penalized and thus, me measure the relative importance of the

error in the estimate with respect to the actual flow time. If the job is not
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tardy, then it means that the flow allowance given to each job is too large
and so inventory costs would be incurred. Then we would like to know
how important is the deviation from the flow allowance. Therefore, we
measure the relative importance of the deviation from the true relative to
the flow time, when the job is tardy, and relative to the flow allowance,
when the job is early.

This approach takes the ratio of the deviation from the true to the
flow allowance/flow time. If this ratio is low, then the performance is
acceptable. Moreover, this approach has the advantage of evaluating the
error associated with each example separately, hence it is objective as in
the traditional percentage deviation approach (Method 4).

For each job type and for each example in the sets, the ratio of the
deviation to the flow allowance is taken and then the average and the
standard deviation of these ratios are considered across all the examples
in the data set. Hence, the average error in each data set and for each

job type, would be:

M

i

(34)
By ==

We calculate the mean error and the corresponding standard deviation
for each job type in order to see if the individual job characteristics can

influence the performance of neural networks.

4.1.2 Results and Discussions

The detailed of the results of the metamodels for the four evaluation measures
previously defined are provided in Table 4.1.4 in Appendix B. For each
simulation model, we select the “best” neural metamodel (gray background)
and we graph their relative performance in the graphs given in Figure 4.1.2 in
Appendix A. By the term “best” we refer to the metamodel that outperforms
the others for most of the error evaluation criteria (mainly on Method 5 as it

is a more objective criterion). Except for Model 1, all the remaining 17 models
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achieved good results with Method 5 (deviation-to-flow time method). Since
we believe that this method is the most objective one and gives indications
for the potential application in real life, we consider that -except for the
very general case of Model 1- neural metamodels are able to predict mean
job tardiness successfully (a mean deviation less than 6% of the flow time).
Further fine tuning and experimentation with the neural network parameters
as well as improvement in the learning algorithm will surely further improve
the results. The next paragraphs will discuss the results in terms of error

assessment methods 1, 2 and 3.

Model 1 is the general deterministic model. The results for this model are
not acceptable by any of the error assessment methods. Models 2, 15 and 3
are special cases of Model 1 since we reduce the width of the interval from
which job interarrival times are generated. They respectively correspond to
the high, medium and low demand on system cases. Models 15 and 3 (medium
and low demand on system) perform well in terms of all the error assessment
methods. Thus, we develop three stochastic configurations from each of them:
Models 16, 17, 18 from Model 15, and Models 11, 12, 13 from Model 3. These
configurations are: stochastic interarrival times only, stochastic processing
times only or both factors stochastic. For these stochastic configurations,
the neural metamodels produced good results. Also, the deterioration in
the performance of the metamodel relative to the deterministic cases is not
significant. Comparing the stochastic configurations, it appears that there is no
considerable difference between when the only stochastic factor is interarrival
times or when the only stochastic factor is the processing times. However,

when both stochastic variables exist, the results are slightly worse.

In Model 2, which corresponds to high demand on system, the neural
networks performed poorly. From this, we develop Model 14 which is identical
to Model 2 except that we remove all the examples in the data sets where the
system is saturated (i.e. mean machine utilization is bigger or equal to 99%).
This corresponds to removing the examples which have very low values of
interarrival times. Model 14 achieved a considerable improvement over Model

2 for evaluation criteria 1, 2 and 3, although the results are not as good as the
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ones achieved for the low and medium demand on system cases (Models 15 and
3). The results stated above indicate the demand on system (determined by the
interarrival time) is an important factor with respect to the neural metamodel

precision.

In order to see if any of the other factors (due date factor, k, or dispatching
rule, ¢) has an effect on neural network accuracy, we derive from Model 2,
Models 4 through 8 in which we fix one of these two factor and we let the other
to be variable. We also develop Models 9 and 10 where hoth the scheduling
rule is fixed at MOD and the due date factor is set at 9 and 6, respectively.
The improvement over Model 2 is not considerable. The reason for this may
be that these two factors, when varied, do not result in a variation in the level
of interactions that take place in the system. That is to say that, they act as
to rearrange the flow of products in the system, but they do not change the
volume of this flow. However, there appear to be a variation in the metamodel
precision depending on which factor is fixed and at which level. This variation
is also dependent on the error assessment method. This inconsistency between
the evaluation criteria does not allow us to make any conclusion regarding the

exact effect of these two factors.

If we consider error assessment Method 5, the neural metamodel performed
better on job type 3 than on job type 2 and job type 2 better than on job type 1.
This ordering according to the job types indicates that the job characteristics
play some role in the accuracy of the metamodel. This ordering corresponds

to the number of operations of each job type.

The error measurement method is an essential issue to be decided upon for
two main reasons: the first reason is that the ranking of the performance of
neural networks may vary according to these methods for some cases. In that
case, no absolute conclusion can be made with respect to which metamodel is
better than the others as the order of models changes from error assessment
method to another. The second reason is that in cases like this experiment
-where the usual relative measure cannot he used- evaluating the performance

of our networks is a subjective procedure. This evaluation depends on the
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real users of the metamodel. Therefore, both metamodel developers and users

have to agree upon an evaluation procedure before starting the metamodeling

process.

Demand on system is an essential factor. If system is heavily loaded, the
predictive capabilities decrease. This is the same as to say that high load
results in more complex interactions within the system and so more difficulties

in classifying those interactions.

Due date tightness factor is not as considerable as the demand on system
factor. However, reducing the range of those two factors does contribute to

improving slightly the precision of our estimations.

The scheduling rule being used at tight due dates may have an important
effect. Further analysis and experimentation is required to investigate this

point.

Allowing the system to handle stochastic configurations when the demand
on system is not high, does not seem to deteriorate the results considerably.
This may be due to the fact that we are assessing the performances in terms
of averages. In these stochastic models, the standard deviations related to the
errors of the networks slightly increased with respect to the deterministic case.
However, these standard deviations are still small enough to allow us to say
that the network results are reliable (i.e. we can be quite confident that the

result is not too far from the true performance).

For this simple system case, the metamodel generalization capabilities were

good and this enhances the applicability in real life.
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4.2 Case 2: Complex System

4.2.1 Experimental settings

System description

The system examined in this second case for estimating job mean tardiness,
is identical to the one used for the second case of estimating mean machine

utilization (refer to Section 3.2.1. for more details)

Simulation Models

For this experiment, 8 simulation models are built. Table 4.2.1 in Appendix
B shows the list of the models. This table also reports the nature and ranges
of the inputs that are used in the training and test sets corresponding to each
model. [Figure 4.2.1 describes the relationship between the models. Table 4.2.2
in Appendix B shows the characteristics of the data sets generated from these
models in terms the machine utilization as well as the proportion of tardy
jobs (minimum, average, standard deviation and maximum). This study is
different from the one made in the previous case: we have previously shown
that the most considerable factor on neural network metamodel’s predictive
capabilities is the factor of demand on system. Hence, in this study we only
focus on this factor. For the simulation run lengths and transient period, they
are identical to the corresponding case in estimating mean machine utilization

(refer to Section 3.2.1 for further details).

Neural Network Metamodels

For each model described in the previous section, three neural metamodels
are built. The network learning rate and momentum term are set fixed and

the architecture is varied in terms of number of hidden layers and number of
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processing units per hidden layer. The number of processing units in the input
layer and the output layer as well as the in the hidden layers are increased
to adapt to the increase in the system size and to the number of job types,
relative to the simple system case. Through the cases examined so far, we tried
to keep the same type of neural network architectures with the same values
of network learning rates and momentum terms. This is necessary in order to
be consistent in the comparisons between the different cases. The number of
training cycles is set to a large value to total to 500000 examples presented

to the neural network in the training phase. This allows to all the network to

converge.

The generic network architecture that we use, is as follows:

- Input layer: 8 processing units:

- Interarrival time for job type 1, A;.
- Interarrival time for job type 2, A,.
- Interarrival time for job type 3, As.

Interarrival time for job type 4, A4.

Interarrival time for job type 5, As.

Interarrival time for job type 6, Ag.

- Dispatching rule, ¢ :1, 2 or 3 (SPT, EDD, MOD).

Due date tightness factor, k.

(For the stochastic case, A; stands for the mean of the exponential

distribution modeling the interarrival time of jobs type i.)

- Hidden layers: For each model three network architectures are applied

with different number of hidden layers and with different number

processing.

- Output layer : 6 processing units:
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Mean job tardiness for jobs type 1,

- Mean job tardiness for jobs type 2,
- Mean job tardiness for jobs type 3.
- Mean job tardiness for jobs type 4,
- Mean job tardiness for jobs type 5,

Mean job tardiness for jobs type 6.

Table 4.2.3 in Appendix B in shows the list of the neural networks that

were developed and their corresponding characteristics.

Error Assessment

Ior the sake of consistency, the same four error assessment approaches that are
used in the previous simple system case, are used in the complex system case

also. Refer to Section 4.1.1 and to Section 3.1.1 for more details.

4.2.2 Results and Discussions

Now, we investigate the use of neural networks for predicting mean job
tardiness in a more complex job shop system. The detailed performances of all
the designed metamodels across the four evaluation method previously defined
are provided in Table 4.2.4 in Appendix B. For each simulation model, we select
the “best” neural metamodel (gray background) and we graph their relative
performance in the graphs given in Figures 4.2.1 in Appendix A. By the term
best we refer to the metamodel that out performs the other on most of the

evaluation criteria (mainly the fourth as it is a more objective criterion).

Model 1 is the general case. The performance of this model is not
satisfactory for all the error assessment criteria. In the simple system case,
we observe that the metamodel precision is mostly determined by the demand

(or load) on system, and hence we check if this factor still has the same effect
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when the system complexity is increased. Thus, we develop Models 2, 3 and
4 which correspond to high, medium and low demand on system respectively.
Model 2 (high demand on system) poorly performs on all the criteria where
as Models 3 and 4 perform well. This confirms our previous observation. We
also develop Model 5 which is identical to Model 1, except that we remove all
the examples in the data set for which the system is saturated (i.e., where the
mean machine utilization is larger than or equal to 98%). This model achieved
much better results than Models 1 and 2, further confirming our previous
observations. Specifically, this model shows that as we increase the demand on
system, estimation of job tardiness becomes more difficult due to the increase
in the interactions in the system. According to error assessment Method 5,
Model 5 achieves acceptable results. The models discussed so far, indicate
that the neural metamodel accuracy does not deteriorate linearly with the
increased demand on system: This means that when moving from low demand
to medium, the deterioration is insignificant; and when moving from medium to
high demand (but the system is still not saturated), the deterioration is slightly
more important. However when moving from high demand (with system
not saturated) to high demand (with system allowed to be saturated) the
deterioration is very important. This exponential pattern in the deterioration
of the accuracy of the metamodel, where most of the deterioration takes place

at the extreme case only, indicates that the potential of applicability of neural

metamodels in real life is high.

Since Models 3 and 4 (medium and low demand on system), achieved
acceptable results, we investigate the corresponding stochastic configurations
for the combination of these two models. This results in Models 6, 7 and 8.
The results achieved by these models are very much comparable to the results
achieved by Model 3 (deterministic, medium demand), indicating that the
introduced stochasticity does not significantly affect neural network predictive
capabilities. It also appears that neither the nature of the stochastic factors,

nor the number of stochastic factors have an important effect on the predictive

performance of neural networks.

Another observation is that if we look at the fifth error assessment approach,



CHAPTER 4. ESTIMATING LONG TERM JOB TARDINESS 59

the neural metamodel perform better on job type 6 than on job type 5, than
on job 4, and so on, until job type 1. This ordering according to the job
types indicates that the job characteristics play some role in the accuracy of
the metamodel. In fact, this ordering is inversely proportional to the number
of operations of each job type. This is a strange hbehavior as we would have

expected the inverse to take place.

Regarding the generalization capabilities of neural networks, we cannot
conclude as it depends on the error assessment criteria. The generalization
capability is better when we consider the MAD or the MMAD approaches than
when we consider the tolerance approach or the flow time approach. Despite
this, the difference between the performance of the training sets and the test
sets on the latter criteria, is not large enough to threaten the applicability in

real life.

Some pilot experiments were done on using neural metamodels to predict
mean job flow time. These experiments gave some indications that estimating
mean job flow times is very similar to estimating mean job tardiness. However,

detailed analysis is required in order to confirm this observation.

4.3 Comparison of Simple & Complex sys-

tems

Unlike the mean machine utilization case, where in both simple system and
complex system case, the neural networks metamodels perform well at all the
models investigated, in the mean job tardiness case, there appears to be some

important changes as we move from a simple to a complex case.

In both the simple system and complex system, demand on system
(determined by the interarrival times) is a considerable factor in affecting
neural metamodel accuracy. Experiments have also shown that neural

metamodel produce good results at low and medium demand levels, for the
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deterministic and stochastic configurations, and both for simple and complex
systems. However, when the system is highly loaded (with system allowed to
be saturated), neural metamodels performed acceptably (according to error
assessment Method 5) for the simple system case and performed poorly in the
complex system case. If we consider the high demand models, where the system

is not allowed to be saturated, then performance is acceptable for both simple

and complex systems.

The experiments have also shown that there is an exponential behavior to
the deterioration of the accuracy, with most of the deterioration occurring in
the very high demand case. This fact is highlighted by the first graph on Figure
4.3. Figure 4.3 is in terms of the third method of error assessment (MAD).
This result indicates that metamodels are able to predict mean job tardiness
for systems in steady state successfully, although the users should expect some
deterioration in the performance as we move to more complex systems and as

we move to more loaded systems.

In terms of the effect of stochasticity, we observe that increased system
complexity has a negative affect on metamodel performance. However, this
negative effect is not important enough to reduce the potential of applicability
of neural metamodels in real life. Also, this negative effect does not depend
on the nature of the factors being stochastic but much more on the number of
stochastic factors for both simple and complex systems (within the stochastic

factors tested) as shown by the second graph on Figure 4.3.

In both simple and complex systems, we observe that according to the
fifth error assessment approach, there is an ordering of the performance of the
metamodels according to the job type and this ordering is consistent through
the different models. In the simple system case, metamodel accuracy is better
more jobs with more operations (Figure 4.1.2). For the complex system case,
jobs with more operations achieved better estimates (Figure 4.2.1). While the
ordering in the simple system is expected, it is not the case for the complex
system. In fact, when a job has more operations, it means that it would interact

with more other jobs and hence, its hehavior is more difficult to estimate.
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The error assessment methods did not produce very consistent results in
both cases in the sense that we would consider the metamodel performance
acceptable on some method, but not on another. This highlights the fact that
the first three error assessment criteria are subjective and hence we cannot rely

on them to make judgments. But rather, we base our assessment on Method

5.

The third graph and fourth graph on Figure 4.3 show that system
complexity, demand on system and stochasticity have a negative effect on
generalization capabilities. In fact, generalization capability deteriorates more
as we move from low demand to higher demand with most of the deterioration
taking place at the extreme. In the third graph of Figure 4.3, the network
seems to perform better at very high demand than at high demand (complex
system). This is not the casc because the point shown on the graph corresponds
to a network trained on much larger range of inputs which explains that
abnormality. In addition, it appears that generalization capability is not
affected by the nature of the factor being stochastic but more by the number of

stochastic factors, where this observation is valid at both levels of complexity.



Chapter 5

Estimating Short Term Job

Tardiness

In the previous two chapters, we measured the performance of neural networks
as a simulation metamodeling tool for estimating long term or steady state
system performance. In this chapter we investigate the use of neural network
simulation metamodels to estimate short term system performance. We only
focus on job tardiness as it is representative of the performance measures
considered by modern management in selecting the appropriate operational
policies. Here we didn’t consider machine utilization as another measure,
because machine utilization is more relevant in long term decision making such
as capacity planning than in short term decision making. Since we deal with
short term system performance, the initial system status becomes a relevant
factor in this analysis, in addition to the factors considered for the long term
system performance. In this part of the research, mainly the simple system
case is investigated. We try one complex model which indicated that the error
is too high as expected. Thus, we did not continue investigating this part as
that would be a replication of what takes place for the simple system. We
focus the analysis on the effect of starting system condition as well as on the

effect of demand (or load) on system (determined by the arrival rates).

62
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5.1 Experimental settings

System Description

For this set of experiments, we consider the same simple system which was
used in the last two previous chapters. This system consists of 4 machines,
3 product types and 3 transporters. It operates under 3 job dispatching
rules: (SPT), (EDD) and (MOD). Due dates are assigned according to the
Total WorK content method (TWK). In the experiments, we consider the
system configuration where both processing times and interarrival rates are
stochastic. Our pilot runs have indicate that stochasticity has an important
effect on system performance when the simulation run is short. As a result, we
consider the most difficult configuration (relative to the previous two chapters).
Moreover, the previous experiments have revealed that stochasticity reduces
the precision of metamodels but does not alter the impact of the factors
investigated. In order to keep a basis for comparisons, we use exactly the

same system characteristics and parameters as previously explained in Section

4.1.1.

Simulation Models

For this set of experiments, 26 different models are built in order to investigate
the effects of initial system status and the effect of system load. Model 1
corresponds to a deterministic configuration. The next 24 models correspond
to the stochastic interarrivals and stochastic processing time configuration.

The last model correspond to the deterministic complex system.

We define the initial system status in terms of the number of each job type
waiting in the input queue of each machine. Another approach would have been
to just specify the number of each job type present in the system as a whole and
not specifying at which level of processing they are or to consider only jobs at
the start of their routings (omitting any work in progress inventories). By that

way, we think that we fully and realistically describe the initial status of the



CHAPTER 5. ESTIMATING SHORT TERM JOB TARDINESS 64

system. Since we allow the system to initially have work-in-progress inventory,
the due date assigned to these jobs is proportional to their remaining total
processing time (similar to newly arriving jobs whose due dates are proportional
to their total processing time which is equal, at their release time, to the

remaining total processing time).

Another important issue when dealing with short term performance is
the simulation run length. Very short runs usually result in low number of
observations. On the other hand, long runs imply that the system can reach
the steady state and hence, the effect of the initial status cannot be seen. In
our previous experiments on the long term system performance, we consider a
transient period of 2 work days during which statistics are cleared. This period
is selected based on some pilot runs. In this set of experiments on short term
performance, we consider a simulation run length of 2 work days, that is the
same transient period. Table 5.1 in Appendix B shows the list of the models
built. This table also reports the ranges from which the interarrival times, due
dates tightness factor and initial number of jobs at each machine are selected.
Figure 5.1 describes the relationship between the models investigated. Table
5.2 in Appendix B lists the characteristics of the data sets generated from each

model in terms of machine utilization, proportion of tardy jobs and tardiness.

Neural Network Metamodels

As in the previous experiments, the proposed neural networks are based on
the Back propagation algorithm. Regarding the size of the data sets, we
are able to use large sets, since the simulation run lengths are short. The
training sets contain 600 examples where as the test sets contain 350 examples.
For each model described in the previous paragraph, we built two neural
network metamodels: one with a single hidden layer and one with multiple
hidden layers, with number of processing units: 15-20-25-20-3 and 15-45-3,
respectively. The learning parameters is set at 0.9 and the momentum term
at 0.6. Moreover, we increase the size of the input layer in order to include

the information regarding the initial status of the system. In addition, we
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Figure 5.1: Mean Tardiness: Simple System: Short term performance
estimation: Relationship between Metamodels.

build larger networks (in terms of the number of processing units per layer) as
compared to the previous chapters. This is because we expect that transient

state behavior is more difficult to estimate than steady state behavior.

The following generic architecture is used:

- Input layer: 15 processing units:

Interarrival time for job type 1, ;.

- Interarrival time for job type 2, A,.

Interarrival time for job type 3, As;.

Dispatching rule, ¢ : 1 or 2 (SPT,FCFS).

Due date tightness factor: k.

Number of jobs of each type at machine j (10 nodes).
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- Hidden layers: single layer and multiple layer.
- Output layer : 3 processing units:

- Mean job tardiness for jobs type 1,
- Mean job tardiness for jobs type 3,

- Mean job tardiness for jobs type 3,

Error Assessment

To be consistent with the last chapter on estimating long term job tardiness, the
same four error assessment methods that are applied for this set of experiments.
Namely, these are the tolerance approach, MAD, MMAD and the flow time

approach. The reader can refer to Section 4.1.1 for further details.

5.2 Results and Discussions

The results are presented in Table 5.3 in Appendix B. The graphs of these
experiments are depicted in Figure 5.2 in Appendix A. The results are
less consistent than in the previous two experiments on long term system

performance.

Let us first consider the error assessment Method 5 (flow time approach).
The performance of the neural networks on the test sets is consistent with its
performance on the training set. Model 1 is the only deterministic model, the
remaining models correspond to the stochastic configuration of the system.
Model 1 is comparable (general deterministic model) with Model 2 (general
stochastic model), we observe that stochasticity has a negative effect on
metamodel performance. This corresponds to the conclusion made in the
previous chapter. The performance of the metamodel constructed for Model 1
is about 7 % on the training set and about 13 % on the test set. For Model 2,

the metamodel achieved about 8 % on the training set and about 23 % on the
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test set. This shows that in terms of generalization capability (which is the
bottom line), stochasticity has an important negative effect. This observation

is in line with our previous finding in the last chapter.

Models 2 through 25 correspond to the stochastic configuration. If we
compare Model 2 (tight due dates) to Model 8 (loose due dates) we observe that
there is no important difference. Hence, due date tightness factor has no effect.
Models 9 through 14 have a fixed initial number of jobs at each machine for
each job type. For these models, we observe that increasing the initial number
of jobs results in improving the results until some point then no improvement
is ohserved. Even if this initial number exceeds the average number of jobs in
each queue (at steady state), metamodel performance does not change. The
initial improvement could be explained by the fact that the starting system
state tends more towards it steady state. The lack of improvement that takes
place after some point could be explained as follows: In line with our previous
finding in the last chapters, we noted that when the system is highly loaded,
the network performance deteriorates. Thus, the improvements achieved by the
fact that the system tends towards the steady state is canceled out when the
system goes beyond its steady state (and becomes highly loaded). The pattern
of behavior just mentioned is also repeated when we split the range of the
interarrival times to form models 18 to 21 and models 22 to 25 corresponding

to low demand and to high demand, respectively and hence confirming our

observation.

Another observation is concerned with the effect of demand (or load) on
system. Comparing Model 3 to Model 4 (high to medium demand) and Models
18 through 21 to models 22 through 25 (medium to high demand), we observe
that the demand on system has an opposite effect than what was observed in
the previous chapters. In the previous chapter we noted that the increasing
load on system results in decreasing the metamodel accuracy in estimating long
term job tardiness. In this case, we observe the opposite, that is the higher the
demand, the better is the metamodel accuracy. The reason for this is that the
higher the demand, the quicker the system will reach its steady state and the

more stable it will be, and hence, the more regular the system behavior will
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be.

Regarding the generalization capability, the results show that the size of the
range from which the data is generated plays an important role (while keeping
the same number of examples generated from that range). Whenever this size is
reduced, the better is the generalization capability (i.e. the performance on the
test set is nearer to the performance on the training set). The generalization
capability is not considerably affected by the load in system as was the case
in the previous chapters. The reason for this may he due to the introduced
stochasticity (stochastic interarrival times and stochastic processing times). In
short term, system behavior is very sensitive to stochasticity and thus a very
large variety of behaviors exists. Hence, by reducing the range from which
training examples are generated and keeping the same number of examples, we
are providing a better coverage of the system behavior that takes place in that
range and consequently the network accuracy improves. This observation did
not come out when we estimated long term job tardiness since the system was

in steady state and it’s behavior was regular.

In addition, we note that in the models where the initial system status is
selected from an interval (models 15, 16 and 17) and in the models where the
initial system status is fixed at the middle point of this interval (models 5, 6
and 7), the networks performed comparably. This observation indicates that
reducing the range does not contribute to improving the metamodel accuracy
considerably but does affect the generalization capabilities as previously
mentioned. These two observation indicate that there is some trade off to
be taken: Either the user builds multiple metamodels to gain in generalization
capabilities (one metamodel corresponding to one subset of the interval from
which the inputs are generated) and looses in metamodel development time,
or the opposite. We believe that the second alternative is better if we consider

that the metamodel accuracy can still be improved and that the results will

still be validated with the simulation model.

Concerning the results themselves, which is the bottom line, the experi-

ments show that the higher the demand on system and the more loaded is the
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initial system status, the better the results. The accuracy of the metamodel at
low demand and empty initial status is not acceptable (error more than 10%).
However, given the lack of emphasis on fine tuning the network architecture

much better results could be achieved.

When we consider the second and the third error assessment methods (MAD
and MMAD), we see that the average deviation in the estimate is always
proportional to the average tardiness (deviation in the range of 5 % to 30
% of the average tardiness). We cannot interpret these results in terms of their
acceptability or not as this depends on the application. In terms of comparing
the different models, the observations made previously, regarding the effect of

initial system conditions and system load, for the fifth error assessment method

also hold here.

When using the first error assessment method (tolerance method), the
results are mixed and somehow confusing. In fact, we can observe some
inconsistencies between the ranking of the models relative to the training sets
and tests sets. This behavior is difficult to explain. However, the trends
previously mentioned do also hold here. That is to say: higher load on system
improves the accuracy of the metamodels and also higher initial queue sizes

improves the results until some point than no improvement is observed.

The graphs on Figure 5.3 in Appendix A, show the effect of introducing
stochasticity or system complexity relative the initial deterministic configura-
tion, with respect to the training set, test set and to generalization (defined
as the difference between them). The complex system used is the same as the
one used in the previous chapter. The three graphs shown correspond to error
assessment Methods 2, 3 and 5. We don’t include Method 1 because it does not
highlight well the difference between these cases. The three graphs on Figure
5.3 of Appendix A are consistent in showing that the effect of system complexity
is far more significant than that of stochasticity in deteriorating the metamodel
performance. Moreover, these graphs indicate that generalization capability
suffers from stochasticity and system complexity. Another observation is that

according the Method 5, stochasticity has an insignificant effect compared to
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the effect of complexity, yet, the effect of stochasticity is important. This
observation is in line with our previous expectations and in line with our
findings in chapter 4 (estimating long term job tardiness). This may lead
us to intuitively expect that the patterns of behavior we have observed for the
stochastic system (as described before) will still be valid if we also analyze the
complex system case in detail. However, this cannot be done until we construct
metamodels for the stochastic case that would produce highly acceptable

results.

In conclusion, we can say that in estimating short term system performance
both system initial condition and demand on system considerably influence
the performances of the metamodels. Decreasing the size of the range of
the inputs does not improve the accuracy on the training set but improves
the generalization capabilities. Moreover, stochasticity and system complexity
have a negative effect on network accuracy and on its generalization capability,
where the effect of system complexity is by far more significant. A last remark
is that the results are not very good for some of the models but they are
not bad enough in order to assert that neural networks are not appropriate
for estimating short term system performance. On the contrary, we believe
that with further fine tuning of the network architecture and parameters, the

network could achieve much better results.

The purpose of using neural metamodels to estimate short term tardiness,
was to investigate their potential application in real time decision support. For
this purpose, we include one last test. We would like to know if by using the
neural metamodel, we are able to make the best decision. In other words,
we would like to know if, based on the metamodel, we would select the same
dispatching rule as we would do if base the decision on the simulation model.
This test is applied on three general models, corresponding to deterministic
simple system, stochastic simple system and deterministic complex system.
In selecting the dispatching rule (based on the simulation models or on the
neural metamodel), several alternatives maybe available. If the job types have
different weights, then we may select the rule that minimizes the tardiness

of the tardiness of the job type with highest weight. This may be the case
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when one job type is very profitable or very strategic to the business. Another
alternative would be to select the rule that produces the minimum overall
average tardiness (across all the job types). The following table show the
results of this final test, where the columns correspond to different decision

basis (based on each of the existing job types or on the overall average).

[ System [[ Job type 1 | Job type 2 | Job type 3 | Job type 4 | Job type 5 | Job type 6 | Average |
Simple, Deterministic 81% 100% 79% NA NA NA 79%
Simple, Stochastic 96% 84% 49% NA NA NA 91%
Complex, Deterministic 100% 100% 71% 97% 98% 100% 100%

NA: Notv applicable
Testing capability to select operational policies.

The results of this test are unexpected. Recall that from Figure 5.3, we
observed that stochasticity and system complexity have a negative effect on
the accuracy of the metamodel. The above table gives opposite indications.
If the selection is based on the overall average tardiness, the metamodel on
the complex deterministic system ranks better than on the simple stochastic
system, which in turn ranks better than on the simple deterministic system.
This is exactly the inverse of what Figure 5.3 indicated. The reason for
this contradiction may be that complexity (whether due to stochasticity or
to system) acts as to increase the difference between the performance of the
different dispatching rules. Thus, it is easier for the metamodel to reflect this.
In fact, this test implies that using neural metamodel is likely to produce good
decisions as the system gets more complex and hence, neural metamodels are
likely to be included in real time decision support systems. In addition, the test
shows that making the decisions based on different job types leads to different
metamodel performance. This is in line with our previous observation, related
to the use of error assessment Method 5 (deviation to flow time approach). This
method has indicated that metamodel performance is related to the job type
characteristics. This test also supports our previous argumentation regarding
assessing the validity of the metamodel. This test illustrates that different

criteria lead to opposite interpretations or different decisions. Hence, the choice

of the criteria should depend on the objective of the study.
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Computational requirements

At this point, it is also important to mention the computational burden
associated with this type of experimental investigation. In this research, the
results of 64 simulation models and 193 neural networks are reported. The
time required to develop the training and test sets depends on the number of
examples, in the data set, the size of the system being modeled, the simulation
run length and the frequency of events taking place in each example of the set
(the number of events is a function of the arrival rates and of the processing
times). For example, consider the case of the general simple deterministic
system built to estimate long term system performance. In order to generate
100 examples from this model, it would take about 60 minutes of CPU time
on a SUN SPARC 2 station. This figure could be much less if the examples
correspond to a low loaded system and much higher for a highly loaded system.
In the experiments carried out, a minimum of 600 and a maximum of 1000
examples are generated from each simulation model. Thus, on the average the
computer usage per model is 9 to 10 hours of CPU time. As for the simulation
models, the length of the neural network session is variable. In the networks
built, we fix this length to 500000 examples presented to the network. This is a
large number but we did so in order to ensure convergence. The time required
by the network to train on these examples, depends on the network architecture
used: the more processing units and/or hidden layers there are, the longer
is the training session. Larger networks are employed when metamodeling
complex systems and when metamodeling short term estimation. Serial PCs
are used to simulate the parallel processing that takes place in the network. An
average training session would take on 486 IBM compatible PC, 50 MHz about
3 hour. The recall session of the neural metamodel (requiring the network to
generate outputs for examples not included in the training set for the purpose
of testing its performance) is a very fast process and it would need about five
seconds to recall all the examples in the largest set. In fact, this was one of
the advantages of neural networks once trained. Given that about three neural
networks are built for each simulation metamodel, then a total of about 18

hours were required for each of the 64 models examined. Thus, the total volume
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of computer usage of all this experimental investigation would be about 1152
hours of CPU time. These figures do not include the time required to develop
and validate the simulation models, nor the post-data processing that takes
place to assess metamodel accuracy. The reason these number are provided
to the reader, is to show that the development of neural network metamodel
is a long process and is consuming in terms of time and computer resources.
The burden of this off-line work can be recovered by the savings achieved in
the on-line application of the metamodel. One last word is that the continuous
innovations in the hardware (even the serial one) are reducing the development

time significantly.



Chapter 6

Concluding Remarks & Future

Research Directions

In the first chapter we lay down the background of this research. It appears
that research in approximate techniques such as simulation metamodels in
maturing, reflecting a need by modern business for fast approaches to help solve
operational problems. Research on the use of neural networks as a simulation
metamodeling technique is not abundant in for estimating long term system
performance and rare for estimating short term system performance. This work

alms at enriching this literature.

This research also has investigated the effect of several factors on the
predictive capabilities of back propagation neural networks applied on job shop

system. These factors are:

* Study horizon: Short term vs. Long term

* Performance measure to be estimated: Mean machine utilization vs.

Mean job tardiness.
* System complexity: Simple system vs. Complex system.
* System configuration: Deterministic vs. Stochastic ( 3 cases).
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* Error assessment methods: Relative vs. absolute measure.

* Metamodel design: Single general metamodel vs. multiple specific
metamodels (through reducing the range from which the of variables

in data sets are generated).

* Neural Network architecture: Single hidden layer vs. multiple hidden

layers.

The experiments carried out in this research have shown that neural
networks are very a promising tool as a simulation metamodeling approach.
Despite the fact that our emphasis was not on developing the most accurate
metamodels, but rather our emphasis was to compare the effect of the factors
mentioned above, the neural metamodels have achieved an acceptable level of
accuracy. Given that the neural network design parameter ranges were only
partially covered and the learning algorithm could be much further improved,
we believe that neural metamodels are able to achieve better results than the

ones reported in this research.

With regard to our experiments on estimating long term system perfor-

mance, we come with some interesting observations as follows:

1. Our experiments have shown that neural network metamodels accuracy is
affected by the performance measure in use (mean machine utilization or
mean job tardiness). First, the metamodelsinvestigated performed better
for estimating machine utilization than job tardiness. The reason for this
is that machine utilization is mostly determined by the arrival frequency
to the system and processing times. On the other hand, job tardiness is
determined by the arrival rates, by the due date assignment procedure,
by the dispatching rule and by the processing times. Hence, tardiness
is a more involved function to estimate. Some pilot runs indicate that
by using neural metamodels to estimate mean job flow time, the results

obtained are very similar to estimating mean job tardiness, however,

thorough analysis is required to confirm this.
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2. In our experiments, we define system complexity in terms of increased
system size and in terms of increased number of job types flowing through
the system. System complexity was shown to affect negatively the
performance of neural metamodels, where this negative effect appears
more significant on the mean job tardiness than on the mean machine
utilization. Despite this, the deterioration is not considerable enough
to completely threaten the application of neural metamodels in real life.
The threat takes place when the system is subject to extremely high

demand on system (in cases where the system is not in steady state).

3. Stochasticity is another dimension of complexity which was investigated
for the cases of medium and low demand on system. In these cases, the
experiments have shown that stochasticity reduces slightly metamodel
accuracy, but still within very acceptable limits. In addition, it appears
that the nature of the factors investigated (interarrival times or processing
times) is not important, but rather it is the number of factors that are
stochastic that is important, for both performance measures. Moreover,
this negative effect is not exaggerated by the effect of system complexity.
Hence, at medium or low demand on system, and at simple or complex
systems, and at mean utilization or mean tardiness, stochasticity can be

handled successfully by neural metamodels.

4. The error assessment approach is a very critical issue. First, we
distinguish two different uses of the error assessment: The error
assessment approach, when used to study the significance of the effect
of different factors can be allowed to be subjective. This is because the
values produced by each method on one factor is interpreted in terms of
the other values on the other factors. However, when it comes to assessing
the acceptability of the results, subjective error assessment methods can
no more be relied on. We base this type of assessment on objective
methods, which may be subject to discussion as this depends on the
final application of the metamodel. The second point related to the error
assessment approach, is that on the overall they were quite consistent (i.e.

metamodels ranked similarly on the different methods). This consistency
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[

is a confirmation of the conclusions made. However, the significance of
the effects that each factor investigated on the metamodel performance
changes as we move from subjective to objective approach (in the case
of mean job tardiness). In summary we say that in the analysis of
the literature on neural metamodels, one should always motivate the
error assessment approach applied relative to the final application of the

metamodel, otherwise the validity of the results achieved can always be

questioned.

Both for mean machine utilization and for mean job tardiness, the
demand on system (determined by the arrival rates) appears to be a
very considerable factor relative to metamodel accuracy. As a matter
of fact, the higher the demand the lower the accuracy. We observe
that deterioration of accuracy relative to demand on system follows an
exponential pattern with most of the deterioration taking place at the
extreme case (the case where the system is out of steady state or nearly).
This pattern of behavior indicates that if we slightly move away from the
saturation case, say with a maximum utilization of 90%, we are able to
model reasonably loaded systems with a well acceptable level of accuracy.
Also because of this dependence on the demand on system, it is wise to
construct neural metamodels for every range of demand on system as we
did in the experiments as this way would distinguish between extremely

reliable metamodels and others less reliable.

The experiments with mean job tardiness with simple systems indicate
that the due date tightness and dispatching rules have some influence
on the accuracy of the metamodel. However, the error assessment
approach results are not consistent enough on this point to allow us to
make conclusions regarding which factor is more important. The only
observation that can be made is that they are much less considerable

than the demand on system.

It appears that in estimating mean tardiness, neural metamodels perform
differently for each job type. The results show that the accuracy is

proportional to the number of operations of the corresponding job type:
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the less operations a job has, the less accurate is the estimate of the
job tardiness and vise versa. This observation is unexpected and the

experiments done so far do not allow us to give a reasonable explanation.

Generalization capabilities are quite good for neural network metarmodels,
although these capabilities are negatively affected by (in order of
importance) increased system complexity, by increased demand on
system as well as by introduced stochasticity. This is very important
point since the bottom line is that in real life applications, we would
rely on the generalization capabilities of the metamodels to make the

estimations and they must be as trustful as on the training sets.

Regarding the neural network design, unfortunately, no architecture is
always better and no values of the network parameters (learning rate
and momentum term) are good for all the models. In addition to this,
we do not have an indication about the size of the data sets that should
be used nor on the length of the training period. This led us to try and
take the safe way, within the available time constraints and to increase
the size of the data sets and the length of the training sessions. This
resulted in long metamodel development phases. Some work has still to

be done on these issues.

With regard to our experiments on estimating short term system

performance, we can make the following observations:

10.

1.

12.

Stochasticity has an important impact on metamodel accuracy but, this

impact is far less important than that of system complexity.

independently of whether we are estimating short term or long term job
tardiness, stochasticity and system complexity keep the same effect on

the accuracy of the metamodels.

Generalization capabilities suffer also from introducing stochasticity or

system complexity
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13. In estimating short term system performance, the demand on system still
plays an important role in determining the accuracy of the metamodel.
On the contrary of estimating long term performance, increasing demand
on system results in improvement of the metamodel accuracy which can
be explained by the fact that increasing system performance results in
the system tending quicker to its steady state and hence tending more to

have regular pattern ot behavior.

14. Initial system status appears to have a considerable impact on metamodel

accuracy until some point and from that point on, this impact vanishes.

15. Decreasing the size of the range of the inputs does not improve the
accuracy on the training set but improves the generalization capabilities.
Also the generalization capability is not considerably affected by the

demand in system as was the case in the previous chapters.

In the second chapter of this manuscript dealing with laying the research
background, we present a set of issues that needed to be clarified and
investigated in order to assess the potential of applicability of neural networks
as a simulation metamodeling tool. In this thesis, we tried to get into
some of these issues and we came up with some interesting observations.
We tried to highlight some of the factor that influence neural metamodel
accuracy and we showed that neural network is a promising approach for
simulation metamodeling in estimating long term system performance. We
also investigated the possible use of neural networks to estimate short term
system performance. Our results show that such an application may be possible
which implies that neural networks have the possibility to be used for real time
decision support. Given the computational requirements of such a study, we
did not give much emphasis on fine tuning the metamodels, thus the results
achieved could be further improved. Our results also indicate that system
regularity is a key issue for the accuracy of the metamodel. Whether we are
estimating long or short term performance, it is better to model a system in
steady state and which has a regular behavior. Moreover, the experiments

show that the use of neural metamodels in real life is not straight forward as
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the reported successful case studies may lead us to think. In fact, stochasticity

and especially system complexity have an important impact on metamodel

performance.

In order to further investigate the potential of neural networks as a
simulation metamodeling technique and possibly enhance its applicability, we

suggest the following research directions:

- Investigating the effect of system configuration: Flow shop to job shop

- Investigating the effect of system disturbances such as machine break

down
- Investigating of applying different distributions in studying stochasticity
- Investigating the effect of the size of data sets.

- Investigating the effect of estimating other measures such as estimating

standard deviation of the performance measure.

- Developing rules or guidelines as of how to select the best network

architectures

- Investigating the validity of neural metamodels with respect to real

systems
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Figure 5.2: Mean Tardiness: Simple System: Short term performance estimation: Metamodel
performance through assessement criteria.
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Figure 5.2 (Cont’d): Mean Tardiness: Simple System: Short term performance estimation: Metamodel

performance through assessement criteria.
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Method 2: effect of stochaticity and complexity
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Figure 5.3;: Mean Tardiness: Short term performance estimation: Cmparing effect of stochasticity and
system complexity.
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MODEL | Training Test Interarrival time Processing | Scheduling rule
# set set time
# # Nature Range Nature
1 1 1, 5and 6| deterministic | (14..85] | deterministic SPT or FCFS
2 2 2 stochastic | meanin | deterministic SPT or FCFS
(exponential) | [14..85]
3 3 3 deterministic | [60..85] stochastic SPT or FCFS
(exponential)
4 4 4 stochastic | meanin| stochastic SPT or FCFS
(exponential) | [14..85] | {exponential)
Table 3.1.1: Mean Utilization: Simple System: List of models.
Model Training Test learning momentum examples
# # NNet Size set # (size) set # (size) rate rate trained on
1 expl_1_1 4.6_7_6_4 #1 700 #1 400 09 0.6 280000
2] expl 12 ) 46764 #1 700 #1 400 09 0.6 500000
3] expl 1.3 |1 46764 #1 700 #1 400 0.9 0.6 280000
4 ] expl_1_4 | 4.6.7_6_4 #1 700 #1 400 09 0 280000
5] expl_ 1.5 ] 4.6.7.6_4 #1 700 #1 400 09 0 500000
Model 1 6] expl_1_6 { 4.6.7.6.4 #1 700 #1 400 1.5 0 280000
7] expl 1.7 | 46764 #1 700 #1 400 1.5 0 500000
8 | expl_1_8 | 4.6_7_6_4 #1 700 #1 400 0.3 0 500000
9 expl 19 | 46764 #1 700 #1 400 1.2 0.6 500000
10 ] expl_1_11 | 4.6_7_6_4 #1 700 #1 400 03 03 500000
11] expl2_1 | 4.6.7.6.4 #2 400 #2 200 09 0.6 500000
Model 2 12} expl_2_2 4_55_4 #2 400 #2 200 09 0.6 500000
13] expl 2.3 | 4.8.9.8 4 #2 400 #2 200 0.9 0.6 500000
141 expl_3_1 4.6_7_6_4 #3 400 #3 200 09 0.6 500000
Modet3 15} expl_3_2 4554 #3 400 #3 200 0.9 0.6 500000
16 ] expl_3_3 | 4.8.9_8_4 #3 400 #3 200 0.9 0.6 500000
17| expl_4_1 46764 #4 400 #4 200 09 0.6 500000
Model 4 |18 expl 4.2 455 4 #4 400 #4 200 09 0.6 500000
19F expl 4.3 | 48984 #4 400 #4 200 09 0.6 500000

Table 3.1.2: Mean Utilization: Simple System: List of neural metamodels.
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METHOD 3: MADD METHOD 4: % Error

NNet Data set MMAD (Std) max min Average (Std) max
expl_11 Training set 0001  0.013 00096 0092 (0% 1.7% 1.7%  18.1%

Test set 0.002  0.014 0.0135 0.149 0.0% 18% 1.9%  18.5%

QL 1?2 Trainingset 0001 0010 o0.0083 o0o08s (0% 13% 14%  14.0%
Testset 0002 0012 o0.0123 0133 00% 1.4% 16w  13.3%

expl_1_3  Training set 0003 0019 00115 0128  0.0% 2.5% 24%  25.1%
Testset 0002 0020 00131 0107  00% 2.7% 25%  212%

expl_1_4  Training set 0.002  0.024 0.0139 0.140 0.0% 3.5% 3.1%  26.2%

Test set 0.003 0.026  0.0158 0.106 0.0% 3.6% 3.2%  23.3%

expl_1_5  Training set 0.001 0.018  0.0139 0.161 0.0% 2.3% 27%  22.7%
Testset 0003 0020 o0.0154 0105 0.0% 26% 28%  19.7%

6 expl 16 Trainingset 0002 0021 00151 0162  0.0% 2.6% 2.7%  23.0%
Test set 0.003  0.023 0.0152 0.083 0.00% 2.9% 2.9%  18.7%

expl_1_7  Training set 0004 0020 00122 o153  0.0% 3.0% 2.4%  216%
Testset 0004 0022 o0.0129 0.001 0.00% 3.2% 25%  15.9%

8 expl 18 Training set 0.004 0026 0.0163 0.142 0.0% 3.7% 3.7%  27.7%
Testset  0.003  0.028 o0.0186 0121 0.0% 3.8% 3.8%  24.8%

9 expl_1.9  Training set 0.001 0.015 o0.0104 0.102 0.00% 2. 1% 22%  19.4%
Test set 0002 o0.016 00120 o.106 0.0% 2.2% 2.4%  20.3%

10 expl 110 Training set 0002  0.019 0.0132 0130  0.0% 2.5% 27%  210%
Test set 0002 0020 o0.0147 o0.103 0.0% 2.6% 28%  18.4%

11 expl 21 Training set 0003  0.028 00144 0085  0.0% 4.2% 31%  21.1%
Testset  0.005 0.029  0.0160 0.128 0.0% 4.3% 3.3%  34.8%

12 exptj2d2  Training set 0.004  0.022 0.0117 o0.064 00% 3.2% 28%  19.7%
Test set 0.004  0.025 0.0144 0.147 0,00% 3.5% 28%  24.4%

13 expl_2 3 Training set 0.002 0027 0.0128 0.091 0.0% 4.1% 3.0%  16.0%
Testset  0.004  0.029 0.0163 0.108 0.0% 4.1% 3.1%  26.2%

14  expl_3_1  Training set 0.005 0.028  0.0127 0.097 0.0% 3.6% 3.2%  28.7%
Testset 0008 0030 00150 0100 00% 3.9% 3.6%  27.8%

15  expl_3_2  Training set 0.006  0.030 0.0130 0.085 0.00 3.9% 2.9%  18.0%
Testset  0.007 0.032  0.0145 0.086 0.0% 4.1% 31%  16.9%

16  expl_3_3  Training set 0.004  0.026 00111 o0.0e4 0.0% 3.4% 27%  17,5%
Testset  0.007  0.028 0,0130 0.096 0.0% 3.6% 28%  16.8%

17 expl_4_1  Training set 0.009  0.034  0.0155 0.099 0.0% 4.3% 3.6%  23.2%
Test set 0.008 0.035 0.0160 0.086 0.0% 4.7% 3.6% 221w

18 oxp1.A2 Trainingset 0.004  0.033.. 6.6155 6.096  0.0% ' 4.4% 3.6% ..23.3%
Test set 0.004 0.034 0.0153 0.076 0.0% 4.6% 3.6% 25.8%

19 expl_4_3 Training set  0.003 0.032 0.0148 0.094 0.00% 4.3% 3.6% " 25.0%
Testset  0.006  0.035 0.0177 0.140 0.0% 4.6% 3.8%  32.9%

Table 3.1.3 (cont’d): Mean Utilization: Simple System: Results of metamodels.
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Error at a=5% Error at a=10%
Training set (setl) 3% 0%
Test set (set2) 3% 0%

Table 3.1.4: Error report of Pierreval’s network

Error at Errorat | MAD | (Std) | MMAD | (Std) | Mean % error (Std)
o=5% o=10%

SET#5 68% 0% 0.04 0.012 0.051 0.005 3.8% 5.5%
| SET#6 100% 0% 0.06 0.016 0.081 0.005 5.3% 10.4%

Table 3.1.5: Robustness test
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MOD | Training | Test | #of | #of Interarrival time Processing | Due date Scheduling rule
# set set job | mach time tightness
types Nature Range range factor
1 #1 #1 6 7 deterministic |{20..100]] deterministic [2..9] SPT, MODD or EDD
2 #2 #2 6 7 deterministic | [20..40] | deterministic [2.9] SPT, MODD or EDD
3 #3 #3 6 7 deterministic | [40..70] | deterministic [2..9] SPT, MODD or EDD
4 #4 #4 6 7 deterministic [[70..100]] deterministic [2..9] SPT, MODD or EDD
5 #5 #5 6 7 deterministic [[20..100]| deterministic [2..9] SPT, MODD or EDD
*machine utilization <
98%
6 #6 #6 6 7 stochastic mean in | deterministic [2..9] SPT, MODD or EDD
(exponential) [[20..100]
7 #7 #7 6 7 deterministic ][20..100]] stochastic [2.9] SPT, MODD or EDD
(exponential)
8 #8 #8 6 7 stochastic mean in | stochastic [2.9] SPT, MODD or EDD
(exponential) [{20..100]| {exponential)
Table 3.2.1: Mean Utilization: Complex System: List of models.
Percentage of tardy jobs Machine utilization
MODEL

# min. mean (std) max. min. mean (std) | max.

1 0.0% 34.1% 37.1%| 100.0% 30.0% 68.5% 17.5% }100.0%

2 0.0% 83.3% 29.7%| 100.0% | 69.5% 94.7% 6.8% |{100.0%

3 0.0% 22.1% 30.0%| 100.0% | 41.5% 65.8% 11.0% |100.0%

4 0.0% 12.9% 19.9%| 90.1% 30.0% 41.8% 7.3% | 60.0%

5 0.0% 22.4% 29.9%| 100.0% | 29.6% 62.5% 14.6% | 97.9%

6 0.0% 41.6% 37.2%| 100.0% | 30.2% 68.1% 17.2% |100.0%

7 0.6% 52.7% 33.8%| 100.0% } 30.3% 68.1% 17.2% |100.0%

8 0.6% 58.3% 32.0%| 100.0% | 29.9% 68.1% 17.3% {100.0%

Table 3.2.2: Mean Utilization: Complex System: Generated set characteristics.
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Training Test learning |momentum| examples
NNet Size set# (size) set# | (size) cocf coef learned
1le2 21 81214127 #1 600 #1 400 0.9 0.6 500000
Modell |2 [e212 [8.1519.157 #1 600 7] 400 0.9 0.6 500000
3 le2.13 8 45 7 #1 600 #1 400 0.9 0.6 500000
4 le221 |8.12.14.12.7 42 600 #2 | 400 0.9 0.6 500000
Model 2 5Jle222 8 1519157 #2 600 #2 400 09 0.6 500000
6le22 3 8 45_7 #2 600 #2 400 0.9 0.6 500000
7 le2 3 1 8_12_14_12_7 #3 600 #3 400 09 0.6 500000
Model 3 8 le2 32 8_15_19_15_7 #3 600 #3 400 0.9 0.6 500000
91e2.33 8 457 #3 600 #3 400 0.9 0.6 500000
10fe2 4.1 81214127 w4 600 #4 400 0.9 0.6 500000
Model 4 11]e2 42 8 1519157 w4 600 #d 400 09 0.6 500000
12]e2. 4 3 8 457 #4 600 #d 400 0.9 0.6 500000
13]e2 5 1 812 14 12 7 #3 400 #35 | 240 0.9 0.6 500000
Models [14[ez 52 [8.1519.15 7 73 200 #35 | 240 09 0.6 500000
15]e2 53 8 45 7 #5 400 H#5 240 0.9 0.6 500000
16)e2 6 1 81214 127 #6 400 #6 200 0.9 0.6 500000
Model 6 17)e2.6 2 8 1519157 #6 400 #6 200 09 0.6 500000
18Je2 6.3 8 45 7 #6 400 #6 200 0.9 0.6 500000
1912 7 1 8 12_14_12_7 47 400 #7 200 0.9 0.6 500000
Model 7 20Qe2.7 2 8_15_19_15_7 #7 400 #7 200 0.9 0.6 500000
210e2 7 3 8 45 7 #7 400 #7 200 0.9 0.6 500000
2202 8.1 |8.12.14 127 #8 200 #8 | 200 09 0.6 500000
Model 8 231e2 8 2 8_15_19_15_7 #8 400 #8 200 09 0.6 500000
24e2 8 3 8 457 #8 400 #8 200 0.9 0.6 500000

Table 3.2.3: Mean Utilization: Complex System: List of neural metamodels.
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METHOD 1: TOLERANCE METHOD 2: METHOD 3:
approach
NNet Data set Alpha = 5% Alpha = 6.5% Alpha = 8% MAD (M_Std) MMAD (MM_Std)
e2 1.1 TRAINING SET 600 0.67% 0.00% 0.00% 0.0082 0.0074  0.0185 0.0088
TEST SET 400 4.75% 1.25% 0.25% 0.0097  0.0094  0.0215 0.0123
02J7J TRAINING SET 600 0.33% 0,06% 0.00% 0,0074 0,0065 ' 0,0164' 0.0079
TEST SET 400 375% 1.00% 0.60% 0.0089  0,0091  0.0198 0.0127
3  e2.1.3 TRAINING SET 600 0.67% 6.069% 0.00% 0.0094  0.0078  0.0204 0.0087
TEST SET 400 2.25% 0.75% 0.00% 0.0104 0.0090  0.0225 0.0103
4 e2.2.1 TRAINING SET 600 0.17% 0.00% 0.00% 0.0053 0.0065  0.0162 0.0069
TEST SET 400 1.50% 0.50% 0.25% 0.0060  0.0079 0.0186 0.0096
e2_2 2 TRAINING SET 600 0.17% 0.009 0.00% 0.0051  0.0066 0.0158 0.0077
TEST SET 400 2.50% 0.50% 0.25% 0.0059 0.0084  0.0195 0.0113
6 e2r2,3 TRAINING SET 600 0.17% 0.00% 0.00% 0.0036 o0.0047  QQI1 0.0068
TBESTsir 400 0 75% 0.50% 0.00% 0,0044  0.0063  0.0142 0.0090
7 €231 TRAINING SET 600 0.00% 0.00% 000% 0.0033  0.0031 0.0080 0.0040
TEST SET 400 000% 0.000 0.00% 0.0034 0.0032  0.0080 0.0041
8 e273J1 TRAINING SET 600 600% a06% 6.66% 60027- d6eb  aooea  0.00%
WTESTSET = 400 010027) 0.00% 0.004 0.0029  0.0028  0.0069 0.0038
9 e2.3.3 TRAINING SET '&00 650% 0.069%~ 0.00% 0°00SI  0.0042 0.6110 oooia
TEST SET 400 0.00% 000% 0.00% 0.0053  0.0043  0.0114 0.0046
10 e2.4.1 TRAINING SET 600 0.00% 0.00% 0.00% 0.0022  o0.0017 0.0047 0.0017
TEST SET 400 0.009% 0.009% 0.00% 0.0023  0.0019 0.0050 0.0019
1 TRAINING SET 600 0.66% 0.00% 6.009% 0.0618 o0.0016 < 0.6039. 6.0015 ~
TEST SET 400 0.00% 0,00% 0.009% 00019 0,0016 0.0042 0.0019
12 e2.4.3 TRAINING SET 600 72 66% . e [T L — 6%60%...... 6.6621  6.6618 6.6645 6.6621
TEST SET 400 0.009% 0.00% 0.009% 0.0021  o.0018 0.0047 0.0021
13 e2. 51 TRAINING SET 400 0.25% 0.009% 0.00% 0.0077  0.0068 0.0168 0.0083
TEST SET 240 1.25% 1.25% 0.42% 0.0081  0.0077  0.0184 0.0104
14 TRAINING SET 400 6.00% 6.60% 0.0061  0.0045 6.0113 0.0068
© TEST SET 240 1.67% 1.26% 0.009% 0.0062  0.0066 0.0139 0.0107
15 e2_5_3 TRAINING SET 400 0.25% 0.00% 61069 0.0076  0.0064 6.0161 0.0077
TEST SET 240 0.83% 0.83% 0.83% 0.0086  0.0073  0.0181 0.0098
16 e2 61 TRAINING SET 400 11.75% 2.25% 0.50% 0.0167  0.0131 0.0350 0.0131
TEST SET 200 38.00% 20.50% 9.50% 0.0232  0.0192 0.0480 0.0215
T TRAINING 466 §.25% 2.50%" A "6'.75%" ... ... 6.6165 ' "6:6i26... 06.6333 ".rosiaT "1
TEST SET 200 42.00% 18.00% 7.50% 0.0225 0.0196 0.0487 0.0232
18 e2.6.3 TRAINING SET 400 12.00% 2.66% 0175% ot6ieo  6.6135  6.6745 616133
TEST SET 200 42.50% 22.50% 11.009% 0.0255  0.0208 0.0510 0.0233

Table 3.2.4: Mean Utilization: Complex System: Results of metamodels



APPENDIX B

METHOD 4:

NNet Data set %error (% _Std)

e2_1.1 TRAINING SET 1.266% 1.174%

TEST SET 1.432% 1.356%
TRAINING SET IVI27% i1008%
TEST SET 1.304% 1.253%

e2_1 3 TRAINING SET  1.467% 1.340%

TEST SET 1.550% 1.328%

4 TRAINING SET 0.684%  0.720%
TEST SET 0660%  0.880%

e2_2 2 TRAINING SET 0.561%  0531%
TEST SET 0.642%  0.925%

6 2.2 3 TRAINING SET 0.393%  0.526%

TEST SET 0.479% 0.700%

e2_3_1 TRAINING SET 0.511% 0.475%
TEST SET 0.517% 0.472%

TRAINING SET 0.406% 0.360%

TEST SET 0.440% 0.395%

9 e2_3_3 TRAINING SET 0.768% 0.613%

TEST SET 0.793% 0.608%

10 e2 4 1 TRAINING SET 0.516% 0.404%
TEST SET 0.549% 0.435%

11 e2.X.2 TRAINING SET 0.414% 0.326%
1 TEST SET 0 445% 0.361%

12 e2_4_3 TRAINING SET b'49T%... b!43b%

TEST SET 0.507% 0.422%

13 e2_5_1 TRAINING SET  1.277% 1.214%
TEST SET 1.321% 1.255%
14 TRAINING SET 0.860% 0.808%
TEST SET 0.977% 0.963%
15 e2_5_3 TRAINING SET 1.280% 1.162%

TEST SET 1.400% 1.134%

16 €261 TRAINING SET 2.641% 2.187%
TEST SET  3.576%  3.109%

17 TRAINING SET 2.472%  2.'133%
s TESTSET  3433% 3.017%

18 e2_6_3 TRAINING SET 2705%

TEST SET 3.925% 3.322%

29.600%
32.200%
29.600%
32.200%
29.600%

32.200%

69.600%
70 300%
69.500%
70.300%
69.500%

70.300%

41.500%
42.800%
41.500%
42.800%
41.500%

42.800%

28.500%
29.300%
28.500%
29.300%
28.500%

29.300%

29.600%
32.200%
29.600%
32,200%
29.600%

32.200%

30.160%
32.030%
30.160%
32.030%
30.160%

32.030%

utilzatio

mean

68.113%
68.963%
68.113%
68.963%
68.113%

68.963%

94.688%
94,872%
94.588%
94.872%
94.588%

94.872%

65.611%
65.962%
66.611%
65.962%
65.611%

65.962%

41.891%
42.030%
41.891%
42,030%
41.891%

42.030%

62.330%
62.714%
62.330%
62.714%
62.330%

62.714%

67.605%
69.157®/0
67.606%
69,157%
67.605%

69.157%

(U_std)

17.120%
17.258%
17.120%
17.258%
17.120%

17.258%

6 874%
6.669%
67874%
6.669%
6.874%

6.669%

10.994%
11.047%
10.994%
11.047%
10.994%

11.047%

6.467%
6.499%
6.467%
6.499%
6.467%

6.499%

14.526%
14.593%
14.526%
14.593%
14.526%

14.593%

17.254%
16.986%
17.264%
16.986%
V7.254%

16.986%

max

100.000%
100.000%
100.000%
100.000%
100.000%

100.000%

100.000%
100.000%
100.000%
100.000%
100.000%

100.000%

100.000%
99.700%
100.000%
99.700%
100.000%

99.700%

63.300%
61.800%
63.300%
61.800%
63.300%

61.800%

97.900%
97.800%
97,900%
97.800%
97.900%

97.800%

100.0009
100.0009%
100.0009
100.000%
100.0009%
100.0009%

maximum utilization

av max util

86.063%

86.988%

86.063%

86.988%

86.063%

86.988%

100.000%

100.000%

100.000%

100.000%

100.000%

100.000%

83.334%
83.956%
83.334%
83.956%
831334%

83.956%

53.325%

53.565%

53.325%

53.665%

53.325%

53.565%

79.159%

79.295%

79.159%

79.295%

79.159%

79.295%

85.693%

87.315%

85.693%

87.316%

85.693%

87.315%

(MU_std)

13.894%
13.694%
13.894%
13.694%
13.894%

13.694%

0.000%
0.000%
0.0bb%
0.000%
0.000%

0.000%

7.455%
7.556%
7.455%
7.556%
Ta

7.556%

3.188%
3.251%
3.188%
3.251%
3.188%

3.251%

12.125%
12.089%
12.125%
12.089%
12.125%

12.089%

14.358%
13.145%
14.358%
13.145%
14.358%

13.145%

Table 3.2.4 (cont’d): Mean Utilization: Complex System: Results of metamodels
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#

19

20

21

22

23

24

NNet

e2. 7.1

(82332

e2_7_3

282

e2_8_3

"y Data set

TRAINING SET

TEST SET

TRAINING SET

TRAINING SET

TEST SET

TRAINING SET

TEST SET

TRAINING SET

TEST SET

TRAINING SET

TEST SET

400
200
400
200
400

200

400
200
400
200
400

200

METHOD 1:

Alpha = 5%

25.25%
47.50%
21.75%
60.00%
24.00%

50.50%

41.60%
60.00%
35.75%
65.50%
33.75%

66.50%

Alpha = 6.5%

9.00%
18.50%
675%
27.00%
6.50%

26.50%

18.50%
38.50%
1075%
43.00%
12.00%

44.50%

TOLERANCE
approach
Alpha = 8%

3.00%
10.00%
2.00%
10.50%
2.25%

13.00%

6.26%

21.00%
2.000

24.00%
2.00%

29.50%

METHOD 2:
MAD  (M_Std)
0.0186  0.0155
0.0228  0.0189
0.0178  0.0149
0.0237  0.0199
0.0183  0.0148
0.0242  0.0208
0.0220 o.0182
0.0286  0.0246
0.0202  o.0168
0.0303  0.0281
0.0206  0.0166
0.0305  0.0259

METHOD 3:

MMAD

0.0422
0.0510
0.0410

0.0536

0.0551

0,0492
0 0621
0.0449
0.0674
0.0447

0.0669

Table 3.2.4 (cont’d): Mean Utilization: Complex System: Results of metamodels
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(MM_Std)

0.0165
0.0195
0.0161
0.0210
q

0.0226

0.0180
0.0261
0.0161
0.0332
0.0156

0.0296
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|METHOD 4: utilzatio n Jmaximum utilization

I#I NNet I Data set %error (%_Std) | min  mean (U_Std) max avmaxutii  (MU_std)

19 e2_7_1 TRAINING SET 2934% 2.568% 30.280% 67.581% 17.208% 100.000% 85.518% 14.118%
3.499% 2.984% 32.670% 17.064% 100.000% 87.174% 13.315%
§§§§' 30:980° AR 100 T )

e 7.0 a_\:‘fu
“TRAINING SET 2.927%  2.555%  30.280%

TEST SET

67.581% 17.208% 100.000%  85.518%
TESTSET  3719% 3.288% 32.670% 69.236% 17.064% 100.000%  87.174%

BT

TRAINING SET  3.269% 67.535% 17.354% 100.000%  85441%  14.285%
TESTSET  4.666% 4.467% 32.820% 69.042% 17.053% 100.000%  67.184%  13.228%
24 o283 TRAINING SET 3.323% 3.032% 29.940% 67.535% 17.354% 100.000%  85.441%  14.285%

TEST SET 4665% 4.076% 32.820% 69.042% 17.053% 100.000%  87.184% 13.228%

23 e28.2

Table 3.2.4 (cont’d): Mean Utilization: Complex System: Results of metamodels
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APPENDIX B
Mod Training Test Interarrival time Processing Due date Scheduling rule
# set set time tightness
Nature Range range factor
1 #1 #1 deterministic [10..85) deterministic [2..9] SPT, MOD or EDD
2 #2 #2 deterministic [15..30] deterministic [6..9] SPT, MOD or EDD
3 #3 #3 deterministic [60..85] deterministic [2..5] SPT, MOD or EDD
4 #4 #4 deterministic [15..30] deterministic 9 SPT, MOD or EDD
5 #5 #5 deterministic [15..30] deterministic 6 SPT, MOD or EDD
6 #6 #6 deterministic {15..30] deterministic {6..9] SPT
7 #7 #7 deterministic [15..30] deterministic [6..9] EDD
8 #8 #8 deterministic [15..30] deterministic [6..9] MOD
9 #9 #9 deterministic [15..30] deterministic MOD
10 #10 #10 deterministic [15..30] deterministic MOD
11 #11 #11 stochastic mean in deterministic [2..5]) SPT, MOD or EDD
{exponential) {60..85)
12 #12 #12 deterministic [60..85) stochastic [2.5) SPT, MOD or EDD
(exponential)
13 #13 #13 stochastic mean in stochastic [2..5) SPT, MOD or EDD
(exponential) [60..85) (exponential)
14 #14 #14 deterministic [15..30} deterministic [6..9] SPT, MOD or EDD
*machine utilization < 99%
15 #15 #15 deterministic [30..60] deterministic [2..5) SPT, MOD or EDD
16 #16 #16 stochastic mean in deterministic [2..5] SPT, MOD or EDD
(exponential) [30..60]
17 #17 #17 deterministic [30..60) stochastic {2..5) SPT, MOD or EDD
(exponential)
18 #18 #18 stochastic mean in stochastic [2..5]) SPT, MOD or EDD
(exponential) {30..60] (exponential)
Table 4.1.1: Mean Tardiness: Simple System: List of models.
Percentage of Tardy jobs Machine utilization Tardiness
MOD
# min mean (std) max. min mean (std) max. | min mean (std) | max.
1 0.0% 24.6% 31.6% 100.0% 16.0% 50.9% 21.6% 100.0% | 0.00 37.76 130.09 | 1174.41
2 0.0% 27.7% 34.3% 100.0% 46.0% 81.3% 14.8% 100.0% { 0.00 65.43 125.94 | 767.57
3 0.0% 23.0% 13.2% 81.7% 16.0% 24.9% 4.5% 34.0% ]0.00 9.83 7.88 | 64.87
4 0.0% 22.9% 31.8% 100.0% 45.0% 82.4% 14.4% 100.0% | 0.00 53.59 111.30 | 680.33
5 0.0% 37.1% 35.7% 100.0% 45.0% 82.3% 14.3% 100.0% § 0.00 77.38 140.58 | 803.37
6 0.0% 12.6% 18.8% 74.4% 45.0% 82.0% 15.0% 100.0% | 0.00 39.33 80.71 | 562.19
7 0.0% 36.6% 38.5% 100.0% 46.0% 80.9% 14.7% 100.0% | 0.00 80.57 146.84 | 805.20
8 0.0% 35.3% 37.4% 100.0% 44.0% 80.4% 14.8% 100.0% ¢ 0.00 81.39 148.63 | 855.86
9 0.0% 35.5% 39.0% 100.0% 44.0% 81.9% 15.0% 100.0% | 0.00 67.51 140.04 | 801.91
10 0.0% 44.4% 39.2% 100.0% 44.0% 80.8% 14.9% 100.0% | 0.00 105.88 171.73] 925.95
1 0.0% 22.5% 12.2% 63.8% 12.0% 24.8% 4.9% 39.0% | 0.60 11.62 7.06 | 35.00
12 1.6% 29.0% 13.2% 89.9% 13.0% 251% 5.0% 39.0% | 1.70 14.34 7.76 | 48.80
13 11.4% 34.6% 11.6% 65.8% 10.0% 26.0% 5.3% 40.0% | 5.20 21.33 9.69 | 61.10
14 0.0% 12.8% 20.4% 92.5% 44.0% 77.4% 13.5% 98.0% |0.00 14.67 35.60 | 296.84
15 0.0% 27.8% 21.1% 84.8% 22.0% 41.8% 8.8% 69.0% 10.00 8.25 7.77 | 33.41
16 2.6% 33.1% 20.7% 82.9% 20.0% 41.7% 9.4% 70.0% }0.60 13.08 9.53 | 51.20
17 9.6% 41.7% 17.6% 87.8% 20.0% 41.8% 9.5% 70.0% |} 3.05 18.56 10.96 | 61.10
18 17.3% 49.9% 16.4% 89.6% 20.0% 41.8% 9.4% 70.0% }5.75 29.26 14.78 | 88.10

Table 4.1.2: Mean Tardiness: Simple System: Generated set characteristics.




APPENDIX B
Training Test leamning |momentum| # examples
NNet Size set # (size) | set# | (size) coef coef learned
1 Je3 21 591083 #1 700 #1 400 0.9 0.6 500000
21312 591083 #1 700 #1 400 1.2 0.6 393704
3313 5.10_11.93 #1 700 #1 400 09 0.6 300909
4 [e3 1 4 5 101109 3 41 700 #1 400 0.9 0.2 525913
Bl WK 510 1193 71 700 7 200 0.9 0.2 281282
6 [e3.16 510 15 10 3% | #1 700 # 300 09 0.6 137732
Model 1 7 1e3 1.7 5_25_3* #1 700 #1 400 0.9 0.6 366187
8 1e3.1 8 5253 #1 700 ##1 400 0.9 0.6 403657
9 1e3 19 5403 #1 700 #1 400 0.9 0.6 263456
10 e3 1_10 S 910 8 3 I 700 n 300 1.2 0.6 500000
T Je3 117 595 1083 ] 700 7 300 ) 0.0 500000
120e3.1_ 12 56763 #1 700 #1 400 1.2 0.6 500000
13e3_1_13 5_40_3 #1 700 #1 400 0.9 0.6 500000
14]e3. 2 1 5403 #2 500 #2 300 0.9 0.6 500000
Model 2 150e3 2 2 5403 #2 500 #2 Joo 1.2 0.6 500000
16|e3 23 56763 72 500 ) 300 12 0.6 500000
1713 24 5553 "2 500 2 300 0.9 05 530627
18 |e3 3 1 56763 43 500 #3 300 0.9 0.6 542911
19)e3. 3.2 56763 #3 500 #3 300 1.2 02 500000
Model 3 20)e3.3 3 58983 #3 500 #3 300 0.9 0.6 500000
21e3 3 4 5423 #3 500 #3 300 0.9 0.6 574158
228e3 3 5 5553 #3 500 #3 300 09 0.6 500000
33 36 511 14113 3 500 3 300 09 0.6 524199
24 |e3 4 1 5553 #4 500 #4 300 0.9 0.6 500000
Modeta  [25[e3 4.2 56763 #a 500 | #4 | 300 0.9 06 500000
26|e3 4.3 58983 #4 500 i 300 0.9 0.6 500000
27 e3 .51 5553 #5 500 #5 300 0.9 0.6 500000
28 |67 5 2 56763 s S00 | #5 | 300 09 06 500000
Model 5 290e3. 53 58983 #5 500 #5 300 0.9 0.6 500000
3003 5 4 5553 I 500 #5 300 02 01 620094
J1fed 55 5553 #5 500 #5 300 1.0 0.0 563251
32|e3 5 6 %8083 5 500 45 300 09 0.6 710110
33)e3 6.1 56763 #6 500 #6 300 09 0.6 500000
Model 6 3d4le3 6.2 5553 #6 500 #6 300 2 | 500000
35)e3 6.3 58983 #6 500 1#6 300 0.9 0.6 500000
36[cd 6 4 580383 76 500 %6 300 0.6 02 500000
3713 71 56763 #7 500 #7 300 0.9 0.6 500000
Model 7 38le3 7.2 5553 #7 500 #7 300 0.2 0.1 500000
39|e3 73 589383 #7 S00 | #7 | 300 09 0.6 550001
401e3 7. 4 5553 #7 500 #7 300 0.9 0.6 500000

Table 4.1.3: Mean Tardiness: Simple System: List of neural metamodels.
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APPENDIX B
Training Test learning |momentum examples
NNet Size set# (size) set# (size)} coef coef learned
41fe3 8.1 56763 #8 500 #8 300 0.9 0.6 500000
Model 8 3|1 82 5 553 78 500 #8 300 0.9 02 500000
43e3 8 3 58983 #8 500 #8 300 0.9 0.6 500000
44le3 8 4 5553 78 500 78 300 0.9 0.6 500000
45 e3 9 1 56763 #9 500 #9 300 0.9 0.6 500000
Model 9 I P S 553 79 500 79 300 09 0.6 500000
a7[e3 93 5895383 #D 500 49 | 300 0.9 0.6 500000
481e3 10 1 56763 #10 500 #10 300 0.9 0.6 500000
Model 10 491e3 10 2 5553 #10 500 #10 300 0.9 0.6 500000
S0 [ed 10 3 58983 #10 500 | #10 | 300 0.9 06 500000
S1|e3. 14 1 56763 #11 400 #1] 200 0.9 0.6 500000
Model 11 52)e3 14 2 5553 #11 400 #11 200 09 0.6 500000
531e3.11_3 589283 #11 400 #l1 200 0.9 0.6 500000
54)e3 12 1 56763 #12 400 #12 200 0.9 0.6 500000
Model 12 55)e3 12 2 5553 #12 400 #12 200 09 0.6 500000
56e3 12 3 58983 #12 400 #12 200 09 0.6 500000
57)e3.13_1 56763 #13 400 #13 200 0.9 0.6 500000
Model 13 58)e3 13 2 5553 #13 400 #13 200 0.9 0.6 500000
591e3.13 3 58983 #13 400 #13 200 0.9 0.6 500000
60 e3 13 1 56763 I77] 332 | #I4 | 300 09 0.6 500000
Model 14 61 fed 13 2 5553 #ld 332 #id 300 0.9 0.6 500000
62[e3 133 8983 714 332 | #I14 | 300 09 0.6 500000
63 |e3 131 56763 #15 400 #15 300 0.9 0.6 500000
Model 15 64le3 13 2 5553 #15 400 #15 300 09 0.6 500000
65fe3 173 58983 75 200 | #15 | 300 0.9 0.6 500000
66 Je3 131 56763 #16 400 | #16 | 300 0.9 0.6 500000
Model 16 67 e3 13 2 5553 #16 400 #16 300 0.9 0.6 500000
68 [e3 13 3 580983 #16 200 | #16 | 300 0.9 0.6 500000
693 13 1 S 6763 #17 200 | #17 | 300 0.9 0.6 500000
Model 17 70)e3 13 2 5553 #17 400 #l7 300 0.9 0.6 500000
711e3 13 3 58983 #17 400 #17 300 0.9 0.6 500000
720e3 131 56763 #18 400 | #18 | 300 0.9 0.6 500000
Model 18 73)e3 13 2 5.553 #18 400 #18 300 0.9 0.6 500000
74[e3 13 3 589383 A8 200 | #I18 | 300 09 0.6 500000

* = Bias

Table 4.1.3 (Cont’d): Mean Tardiness: Simple System: List of neural metamodels.
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© N

10

12

14

15

16

17

18

19

20

21

22

23

j NNet
c3_I_I
c3_1_2
c3_I_3
c3_I_4
c3_ 15
c3_I_6
c3 17
c3_I_8
c3_1_9
03_1_i0
c3_I_1N
c3_1_12
c3_1 13
c3_2 1|
c3 22
c3 23
c3_3_|
c3J_2
c3_33
e3 3 4
c3.3 6

| Data set

Training set
Test set
Training set
Training set
Training set
Training set
Training set
Training set
Training set
Training set
Training «el
Test set
Training set
Test set
Training set
Test set
Training set

Test set

Training set
Test set
Training set
Test set
Training set
Test set
Training set

Test set

Training set
Test set
Training set
Test set
Training set
Test set
Training set
Test set
Training set
Test set
Training set

Test set

700
400

400

700

400

700

400

700
400

500

300

500

300

500

300

500

300

500

300

500

300

500

300

500

300

500

300

500

300

Table 4.1.4: Mean Tardiness: Simple System: Results of metamodels

METHOD

ALPHA(10)

35.7%
38.3%
31.0%
39.0%
35.0%
35.0%
37.0%
40.0%
40.0%

45.0%

34.0%
35.3%
36.0%
35.7%
36.0%
43.1%

41.8%

57.2%
60.7%
71.4%
75.7%
59.2%
65.0%
67.6%

63,7%,

6.2%
8.7%
6.0%
9.7%
5.8%
10.0%
5.6%
10.0%
' 4.8%
11.0%
5.2%

11.3%

ALPHA(20)

18.9%
23.0%
19.0%
20.0%
21.0%
21.0%
25.0%
26.0%
24.0%
24.0%
16.0%
20.0%
19.6%
22.5%
22.1%
23.5%
27.1%

27.0%

37.2%
42.3%
50.4%
58.7%
39.6%
47.3%
33,6%

43.0%

2.0%
3.7%
2.0%
3.0%
1.8%
3.7%
1.2%
3.3%
1,4%
3,0%
1.2%

3.3%

Tolerance
approach

ALPHA(3

12.4%
17.3%
11.0%
14.0%
13.0%
11.0%
16.0%
16.0%
14.0%
14.0%
9.3%
16.6%
11.0%
17.3%
14.4%
17.3%
16.4%

19.8%

23.2%
31.0%
34.0%
40.3%
29.6%
34.3%
21.8%

31.3%

0.6%
1.3%
0.6%
1.3%
0.4%
1.3%
0.4%

1.0%

0)

METHOD MAD

2:
mean

10.3
20.0
8.6
9.6
8.8
7.2
14.4
9.3
9.3
102
9.4
214

9.3

20.9
12.8
20.4

11.2
16.0
155
19.3
13.6
17.0
104

15,0

2.5
2.8
2.5
2.8
2.4
2.9
2.4
2.9
2A
3.0

2.4

(std)

195

52.4

31
4.0
31
3.8
3.0
4.0
2.9

4.1

METHOD MMAD

3:
mean

15.9
32.0
17.7
19.7
18.6
15.1
33.0
20.4
20.3
22.0

16.4

20.7
324

21.8

29.9

35.7
24.3
30.5
19.2

27.4

4.5
5.3
4.5
51
4.3
5.3
4.3
5.4
4.4
5.4
4.4

5.4

(Std)

25.7
69.2

24.8
72.5
24.6
71.6

41.9

4.4
5.8
4.4
5.6
4.3
5.8
3.9
5.9
4,0
6.6
3.8

5.8
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# 1 NNet 1 Dataset

1

10

12

13

IT4

16

18

19

20

22

23

e3_I_| Training set

Test set

03_I_10 Training set
Test set

e3J_ Il Training set
Test set

c3_l_12 Training set
Test set
c3_|_13 Training set

Test set

c3_2_| Training set
Test set
c3_2_2 Training set
Test set
c3 2 3 Training set
Test set
03_2_4 Training set

Test set

e3_3_| Training set
Test set
c3_3 2 Training set
Test set
c3J_3 Training set
Test set
c3_3_4 Training set
Test set
e3_3,5 Trainingset
Test set
c3 3 6 Training set

Test set

Table 4.1.4 (cont'd): Mean Tardiness:

METHOD
4:

E4-1

8%

9%

7%
9%
7%
9%
9%
10%
9%

10%

4%
4%
6%
6%
6%
6%
6%

4%

4%
4%
4%
4%
4%
4%
3%
4%
4%

4%

4%.....

4%

Devi ation -to-

flow

time

(Std) E4-2 (Std) E4-3 (Std)Imin

9%
13%

8%

13%

9%

17%

17%

18%

13%

15%

4%

5%

6%

7%

5%

6%

8%

5%

4%

5%

4%

5%

4%

5%

4%

5%

6% 8%
8% 13%
6% 8%
8% 13%
7% .. 9% ...
9%  20%
% 9%
8% 12%
8% 11%
8% 13%
2% 3%
2% 5%
2% 3%
2% 5%
2% 4%
2% 4%
3%

2% 5%
4% 5%
4% 7%
4% 5%
4% 7%
4% 4%
5% 7%
4% 4%
5% 7%
4% ' 4%
5% 7%

. 4%.... 4%"N
5% 8%

4%

6%

4%

6%

.5%

7%

5%

6%

6%

6%

1%

2%

1%

2%

1%

2%

2% '

2%

2%

3%

3%

3%

2%

3%

3%

3%

2%

3%

2%

3%

6%

11%

6%

10%

6%

14%

7%

10%

8%

10%

2%

4%

2%

4%

3%

4%

5%

4%

3%

5%

3%

5%

3%

5%

3%

5%

3%

6%

3%

5%

TARDINESS
mean  (Std)
0.0 30.8 112.9
0.0 44.7 147.3
0.0 30.8 112.9
0.0 44.7 147.3
0.0 30i 1129
0.0 447 1473
0.0 30.8 112.9
0.0 44.7 147.3
0.0 30.8 112.9
0.0 44.7 147.3
0.0 59.2 115.0
0.0 71.7 136.9
0.0 59.2 115.0
0.0 71.7 136.9
0.0 59.2 115.0
0.0 71.7 136.9
0.0 59.2 115.0
0.0 71.7 136.9
0.0 10.0 7.9
0.0 9.6 7.9
0.0 10.0 7.9
0.0 9.6 7.9
0.0 10.0 7.9
0.0 9.6 7.9
0.0 10.0 7.9
0.0 9.6 7.9
0.0 10.0 7.9
0.0 9.6 7.9
0.0 io.o .7.9....
0.0 9.6 7.9

Simple System: Results of metamodels

max

1073.7
1275.1

1073.7
1275.1
1673.7
1275.1
1073.7
1275.1
1073.7

1275.1

711.1
824.1
711.1
824.1
7111
824.1
711.1

824.1

68.3
61.4
68.3
61.4
68.3
61.4

68.3
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I NNet | Dataset jsize

24 e3_4_| Training set
Test set
25 ¢3_4_ 2 Training set
Test set
26 ¢34 3 Training Get

Test set

27 c¢3_5_| Training set
Test set
28 ¢3_5_2 Training set
Test set
29 ¢3_5_3 Training set
Test set
30 ¢3_5_4 Training set
Test set
3l ¢3J5J Training set
Test set
32 ¢3_5_6 Training set
Test set

33 ¢3_6_| Training set
Test set
34 ¢3_6_2 Training set
Test set
35 Training set
Test set
36 c3_6_4 Training set
Test set
37 Training set
Test set
38 ¢3_7_2 Training set
Test set

39 c¢3_7_3 Training set
Test set
40 ¢3_7_4 Training set

Test set

Table 4.1.4 (cont’'d): Mean Tardiness: Simple System: Results of metamodels

500
300
500
300
500

300

500
300
500
300
500
300
500
300
500
300
500

300

500
500
500
300
500
300
500
300

300
500
300
500
300
500

300

METHOD

ALPHA(IO)

60.4%
60.7%
47.4%
49.3%
46.6%

50.7%

64.4%
60.0%
72.2%
66.3%
64.4%
59.3%
67.2%
62.3%
62.8%
54.0%
62.2%

57.0%

67.0%
65.2%
72.4%
77.7%
60.6%
63 3%
61.2%

62.7%

49.0%
46.0%
59.8%
57.0%
46.8%
47.3%
53.2%

48.7%

ALPHA(20)

31 6%
34.7%
31.2%
34.3%
33.2%

36.7%

42.4%
42.3%
52.2%
46.0%
43.2%
46.0%
44.0%
41.7%
39.4%
39.7%
39.8%

40.7%

44.4%
46.0%
52.2%
52.7%
42,4%
49.0%
43.0%

48.3%

29,8%
31.0%
35.2%
36.3%
30.2%
33.7%
31.4%

32.7%

Tolerance
approach
ALPHA(30)

16.6%
22.0%
19.2%
27.3%

21.8%

25.3%

30.0%
29.7%
38.4%
37.3%
28.2%
32.7%
30.2%
28.3%
23.2%

28.0%
2626

29.7%

33.4%
34.8%
35.8%
35.0%
28.8%
35.3%
31.0%

34.3%

16.4%
18.7%

L "22.2%.......
24.3%
16.4%
20.7%
19.4%

19.7%

METHOD

8.6
10.9
8.6
118

9.1

16.9
18.2
12.0
13.0
13.8
131
120
123
124

133

9.8
9.8
9.8
9.6
83
9.0
8.8

9.2

12.6
111

114

MAD

(Std)

14.0
20.5
15.0
22.8

155

218

17.2
20.5
211
241
17.4
19.6
18.9
17.6
18.9
195
18.7

21.1

19.7
19.0
19.6
20.9

20.8

13.2
184
13.9

16.0

METHOD MMAD
3:

(Std)
165 18.6
201 27,8
17.2 20.6
21.7 31.0
17.5 206
213 284
23.0 218
24.2 275
28.8 253
29.4 28.7
22.8 22.0
24.8 25.6
245 24.9
22.4 22.2
226 24.9
21.8 24.9
225 282
23.6 26.1
29.0 325
292 315
29.1 276
285 252
24.6 26.1
20.7 26.1
26.1 293
274 284
16.2 161
16.2 18.8
18.8 17.8
19.3 195
15.6 16.2
185 22.0
16.4 165
16.9 192
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METHOD devi ation -to- flow time TARDINESS
4:

#1 NNet Dataset E4-1 (Std) E4-2 (Std) E4-3 (Std)ImIn mean (Std) max
24 ¢3_4_| Training set 3% 4% 1% 3% 1% 2% 0.0 49.5 103.3 662.4
Test set 3% 4% 1% 3% 1% 3% 0.0 577 119.3 698.3

25 ¢34 2 Training set 2% 4% 1% 3% 1% 2% 0.0 495 1033 662.4
Test set 3% 5% 1% 3% 1% 3% 0.0 57.7 119.3 698.3

26 c¢3_4_3 Training set 3% 4% 1% 3% 1% 2% 0.0 495 103.3 662.4
Test set 3% 5% 2% 4% 1% 3% 0.0 577 119.3 698.3

¢3_5_| Training set 5% 5% 2% 3% 2% 2% 0.0 765 1365 785.9
Test set 4% 5% 2% 3% 2% 3% 0.0 783 1446 820.9

28 ¢35 2 Training set 7% 8% 4% 4% 3% 3% 00 765 1365 785.9
Test set 8% 9% 4% 4% 3% 3% 0.0 783 1446 820.9

29 ¢3 5 3 Training set 4% 5% 2% 3% 2% 3% 00 765 1365 785.9
Test set 4% 5% 2% 3% 2% 2% 0.0 78.3 144.6 820.9

30 ¢35 4 Training set 6% 6% 3% 4% 2% 3% 0.0 765 1365 785.9
Test set 5% 5% 3% 4% 2% 3% 0.0 783 1446 820.9

trainingset  ...4%... 6%"™ 2% '*3% 2% ' 2% 0.0 76.6 ' 1365 786.9

Test set 4% 5% 2% 3% 1% 2% 00 76.3 1446 820.9

32 ¢3.5_6 Trainingset ."5%... 5% 2% 4% 2% 3% 00 765 1365 7859
Test set 4% 5% 2% 3% 2% 3% 00 783 1446 820.9

c3_6_| Training set 0% 0% 0% 0% 0% 0% 00 389 807 5622
Test set 0% 0% 0% 0% 0% 0% 00 397 807 5622

34 ¢3_6_2 Training set 0% 0% 0% 0% 0% 0% 00 389 807 562.2
Test set 0% 0% 0% 0% 0% 0% 00 395 79.0 489.2

35 e3_6j Training set 0% 0% 0% .0% 0%' 0% 00 389 807 5622
Test set 0% 0% 0% 0% 0% 0% 00 396 79.0 4892

36 c3 6 _4 Training set 0% 0%.. 0% 0% ' 0% 0% o5 389 807 5622
Test set 0% 0% 0% 0% 0% 0% 00 395 79.0 489.2

37 Ay g Training set 4% 4% 3% 4% 2% 3% 00 789 139.9 783.0
Test set 4% 4% 3% 4% 2% 3% 0.0 822 153.8 827.4

38 ¢3_7_2 Training set 5% 6% 3% 4% 2% 3% 0.0 789 1399 783.0
Test set 6% 6% 3% 4% 2% 3% 00 822 1538 827.4

39 ¢3_7_3 Training set 4% 4% 2% 4% 2% 3% 0.0 789 1399 783.0
Test set 4% 5% 3% 5% 2% 4% 00 822 1538 827.4

40 c¢3_7_4 Training set 4% 5% 2% 4% 2% 3% 00 789 139.9 783.0
Test set 4% 5% 3% 4% 2% 3% 0.0 822 1538 827.4

Table 4.1.4 (cont'd): Mean Tardiness: Simple System: Results of metamodels
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a1

42

43

44

48

49

50

51

52

53

51

53

57

58

58

NNet

c3_8_1

c3.8.2

33N 3

c3 8 4

03_10_|

€310 2

3.10_3

ca 111

c3.11.3

e3_12_|

eijid:

€312 3

c3_13_|

3132

413j3°3

| Dataset

Training set
Test set
Training set
Test set
Training set
Test set
Training set

Test set

Test set

Test set

Training set
Test set
Training set
Test set
Training set

Test set

Training set
Test set
training set
Test set
Training set

Test set

Training set
Test set
training set
Test set
Training set

Test set

Training set
Test set
Training set
Test set
Training set

Test set

Table 4.1.4 (cont'd): Mean Tardiness: Simple System: Results of metamodels

Isize

500

300

500

300

500

300

500

300

300

300

500

300
500
300
500

300

400

200

400

200

400

200

400

200

400

200

200

METHOD
I

ALPHA(IO)  ALPHA(20)

49.0%
46.7%
55.2%
55.3%
48.8%
47.7%
51.4%

52.0%

40.2%
39.0%
45.4%
45.7%
36.4%

36.3%

47,8%
62.6%
50.8%
55.0%
47.0%

51.8%

0.5%

0.0%

0.0%
a3%

0.0%

1.5%
5.0%
1.3%
5.0%
1.5%

5.5%

3.5%
5.0%
3.5%
6.0%
' 3,3%

6,0%

32.2%
33.7%
34.2%
35.7%
30,2%
31,0%
30.8%

30.3%

25.0%
24.7%
25.2%
28.3%
23.2%

220%

30,6%
37,0%
32.0%
34.3%
33.2%

36.3%

0.00%
0.00%

e 0,09

0 0o
dov
0.00%

0.5%

1.0%

1,0%
0.5%

1.0%

Tolerance  METHOD

approach
ALPHA(30)

19.4%
20.09%
18.6%
22.0%
14'e%
22 0%
15.0%

18.0%

14.4%
14.3%
14.6%
15.0%
13.8%

12 7%

19,8%
26.6%
21.4%
25.3%
19.4%

24.5%

0.0%
0.00
b.0%
0.0%
..0.6%
0.00%

0.0%
0.0%
' 0.6%
0,0%
0.0%

0.0%

0.0%
0.0%
0.0%
0.0%
0,0%

0.0%

102
116
112
13.0
9.4

10.7

9.7

111

8.2
8.8
8.8
9.5
8.0

7.8

116
136
112
123
116

13.2

1.9

2.2

2.3
18

2.2

2.9
3.3
2.8
3.4
2.8

3,1

MAD METHOD MMAD

(Std)

12.9
15.7
13.8
17.3
12,7
15.8
12.7

16.1

12.3
146
13.7

153

137

14 3
17.3
15.7
16.7
16.8

18.6

1.9
2.5
1,8
2.6
1.8

2.5

2.5
2.6
2.4

2.6

2.5

3:

15.7
17.4
16.7
19.2
15.0
16.7
14.8

16.7

12.9
13.6
13.9
14.6
12,6
122

16,6
201
16.6
18.2
17.3

19.6

3.0
3.1
2,9
3.3
3.0

3.1

3.2
3.9
31
3.9
31

3.8

4.9
5.3
4.7

5.4

47

51

(Std)

15.6
19.1
16.5
20.3
158
19.1
15.0

18.8

15.5
17.8

17.0

18.7
16,7

17.1

17,0
208
18.6

19.3
20.2
22.0

17
17
16
18
17

18

2.4
3.3
2.3
3.2
2.3

3.2

2.8
2.7
2.5
2.8
2,6

2,7

116
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METHOD  Devi ation -to- flow time TARDINESS
4:

# NNet Data set E4-1 (Std) E4-2 (Std) E4-3 (Std) min mean (Std) max
41 ¢3_8_| Training set 4% 4% 2% 3% 2% 2% 0.0 862 1531 831.7
Test set 4% 506 3% 4% 2% 3% 00 766 144.2 880.0

42 ¢3.8_2 Training set 4% 50 3% 3% 2% 3% 00 862 1531 8317
Test set 5% 506 3% 4% 2% 3% 0.0 766 1442 880.0

43 Training set 4% "4%.. 2% 's%" 2% 3% 00 862 153.1 8317
Test set 4% 6% 3% 4% 2% 3% 00 766 1442 $80.0

44 ¢3_8_4 Training set 4% 4% 2% 3% 2% 3% 00 862 (53A 8317
Test set 4% 50 2% 4% 2% 3% 00 766 1442 880.0

45 ¢3_9_| Training set 3% 3% 2% 3% 1% 2% 00 71.0 139.6 759.2
Test set 3% 3% 2% 3% 1% 2% 0.0 64.0 1405 844.7

46 ¢39 2 Training set 3% 4% 2% 3% 1% 2% 00 71.0 139.6 759.2
Test set 3% 4% 2% 3% 1% 2% 00 64.0 1405 844.7

47 e3_9_3 Training set 3%’ 3% 2% 3% 1% 3% 0.0 71.0 1396 759.2
Tt st 2% 3% 2% 3% 1% 2% 0.0 .64.0 1405 8447

48 €3J0_| Training set 5% 6% 3% 3% 3% 3% 00 1046 1731 9184
Test set 5% 6% 4% 6% 3% 4% 00 1072 1704 933.6

49 ¢3_10 2 Training set 4% 5% 3% 4% 2% 3% 0.0 1046 173" 918.4
Test set 5% 6% 3% 4% 2% 3% 00 1072 170.4 9335

50 ¢3_10_3 Training set 4% 5% 3% 4% 2% 3% 00 1046 1731 9184
Test set 5% 6% 3% 5% 2% 4% 0.0 1072 170.4 9335

51 e3_Il_| Training set 2% 2% 2% 2% 2% 1% 05 113 71 375
Test set 2% 2% 2% 2% 2% 1% 07 119 7.0 325

52 «371172 Training set 2% 1% 0.6 7.1 375
Test set 2% 2% 3% 2% 2% 2% 0.7 119 7.0 326

53 c3_II_3 Training set 2% 2% 2% 2% 2% 1% 05 113 71 375
Test set 2% 2% 2% 2% 2% 2% 07 119 7.0 325

54 e3_12_| Training set 2% 2% 2% 3% 2% 2% 16 146 80 559
Test set 3% 4% 3% 4% 2% 3% 18 141 75 417

55 t3J2J1 Training set 2% 2% 2% '"3%' 2% 2% 146 80 559
Test set 3% 4% 3% 4% 2% 3% 18 141 75 417

56 e3 12 3 Training set 2% 2% 2% 3% 2% 2% 16 14.6 8.0 55.9
Test set 3% 3% 3% 4% 2% 3% 18 141 75 417

57 e3_13_| Training set 3% 3% 3% 2% 2% 2% 49 216 100 64.3
Test set 4% 3% 3% 3% 2% 2% 55 211 9.4 579

58 ¢3 13 2 Training set 3% 3% 3% 2% 2% 2% 49 21.6 100 64.3
Test set 4% 3% 3% 3% 3% 2% 55 211 94 579

59 Training set 3% 3% 3% 2% 2% ' 2% 216 10.0 64.3
Test set 3% 3% 3% 3% 2% 2% BS 211 94 579

Table 4.1.4 (cont'd): Mean Tardiness: Simple System: Results of metamodels
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HNNet | Dataset

Test set
Test set
Test set

63 TreinifiQset
Test set

64 ¢3_15_2 Training set
Test set

65 ¢3_15_3 Training set

Test set
66 J6_I Training set

Test set
67 c3® Tralningset

Test set

68 c3 ,16_3 Training set

Test set

69 ¢3-17. 1 Training set
Test set

70 ¢3 17._2 Training set
Test set

71 .17 .3 Training set

Test set

72 ¢3_18_| Training set
Test set

73 ¢3J 8] Training set
Test set

74 ¢3_18_3 Training set

Test set

Table 4.1.4 (cont’'d): Mean Tardiness: Simple System: Results of metamodels

Isize

300

300

400
300
400
300
400

300

400
300
400
300
400

300

400
300
400
300
400

300

400
300
400
300
400

300

METHOD

3heo
39.3%
35.5%
43.0%
35.8%

39.7%

0.8%
13%
0.5%
20%
0.5%
1.3%

0.5%
0.3%
0.0%
0.3%
0.0%

0.7%

0.8%
1.7%
0.5%
0.3%
0.8%

10%

6.5%
8.7%
4.5%
9.7%
3.8%

9.7%

ALPHA(20)

21,4%
26,3%
17.2%
28.3%
22.6%

28.3%

06%
0.0%
03%
0.0%
05%
0.0%

0.0%
0.0%
0.0%
0.0%
0.0%

0.0%

0.0%
0.0%
0.0%
0.0%
0,0%

0.0%

0.0%
1.3%
0.0%
0.7%
0.0%

0.7%

Tolerance
approach

ALPHA(30)

11v1%
19.0%
9.0%
20.3%
15.4%

18.7%

0.0%
0.0%
0.0%
0.0%
0.0%
0.0%

0.0%
0.0%
0.0%
0.0%
0.0%

0.0%

0.0%
0.0%
0.0%
0.0%
0.0%

0 0%

0.0%
0.0%
0.0%
0.0%
0.0%

0.0%

METHOD MAD

mean

5.9
8.0
47
8.0
7.6

9.0

14
16

17
14
18

1.4
1.6
1.4
1.6
1.4

16

1.9
2.0
1.9
21
18

19

3.0

3.4

3.5
2.9

3.6

(Std)

11.0
16.6
8.4
17.0

13.7

16
18
16
19
16
18

13
15
1.2
15
13

15

18
18
1.7
18
17

1.7

2.6
3.2
2.4
31
25

3.2

METHOD
3:

mean

2.4

2.8

2.3

2.7

2.4

2.8

31

3.3

31

34

3.0

31

5.0

5.6

4.7

5.5

4.8

5.8

(Std)

14.9
23.8
11.3
24.3

17.8

2.4
21
2.3

1.6
17
1.4
18
15

1.8

2.0
21
1.9
2.0
1.9

1.9

2.9
3.5
2.6
3.4
2.7

3.5

118
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METHOD Devi ation -to- flow time TARDINESS
4:
# NNet 1 Dataset E4-1 (Std) E4-2 (Std) E4-3 (Std) min mean iStd) max
60 t3J4J Traminii set 3% 4% 2% 4% "W 3% 0.0 133 33.0 3418
Test set 3% 66 2% 5% 1% 3% 00 166 37.3 2519
61 c3_14 2 Traningset ..2%.... 3% 2% 3% i% 2% 00 138 339 34118
Test set 3% 7% 2% 4% 1% 3% 0.0 156 37.3 2519
62 c3_14_3 Training set 3% 50 3% 5% 2% 4% 00 138 33.9 3418
Test set 3% 6% 2% 5% 2% 4% 00 156 37.3 2519
63 <3"5M Training set 2% 2% 2% 3% 1% 2% 00 79 7.8 36.2
Test set 2% 2% 3% 3% 2% 2% 00 86 77 316
64 c3_15 2 Training set .. 20... .. 2%" 2% 3% 2% 2% QO TN...78. 3572
Test set 2% 3% 3% 3% 2% 2% 00 86 7.7 316
65 ¢3_15_3 Training set 2% 2% 2% 3% 2% 2% 00 7.9 7.8 352
Test set 2% 2% 3% 3% 2% 2% 00 86 77 316
66 c3_16_| Training set 2% 1% 2% 1% 1% 1% 0.6 127 95 60.1
Test set 2% 2% 2% 1% 1% 1% 06 135 9.6 423
6T t3J6J'Training set 1% 1% 1% ' 1% 1% 06 127 '95 601
Test set 2% 2% 2% 1% 1% 1% 0.6 136 9.6 423
68 c3_16_3 Training set 2% 1% 1% 1% 1% 1% 06 127 95 60.1
Test set 2% 2% 2% 1% 1% 1% 0.6 135 96 423
69 ¢3_17_| Training set 2% 2% 2% 2% 1% 1% 2.3 182 110 606
Test set 3% 2% 2% 1% 1% 1% 3.8 189 109 616
70 ¢3_17_2 Training set 2% 2% 2% 2% 1% 1% 2.3 18.2 11.0 60.6
Test set 3% 2% 2% 2% 1% 1% 3.8 189 109 616
71 «3J773 Training set 2% "'t 2% m2% w29 1%0. 1% 23 182 110 606
Test set 2% 2% 2% 1% 1% 1% 38 180 109 616
72 ¢3_18_| Training set 3% 3% 2% 2% 2% 1% 51 288 148 811
Test set 3% 3% 3% 2% 2% 2% 6.4 297 147 951
73 e3_18_2 Training set 3% 2% 2% 2% 2% 1% 51 288 148 811
Test set 3% 3% 3% 2% 2% 2% 6.4 297 147 951
74 c3_18_3 Training set 3% 2% 2% 2% 2% 1% b5.1.. 28.8 148 811
Test set 3% 3% 3% 2% 2% 2% 6.4 297 147 951

Table 4.1.4 (cont’'d): Mean Tardiness: Simple System: Results of metamodels
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MOD | Training | Test | #of # of Interarrival time Processing Due date Scheduling rule
# set set job | mach time tightness
types Nature Range range factor
1 # #1 6 7 deterministic | [20..100] | deterministic [2..9] SPT,MODD orEDD
2 #2 #2 6 7 deterministic [20..40] § deterministic [2..9] SPT, MODD or EDD
3 #3 #3 6 7 deterministic {40..70] | deterministic [2..9] SPT,MODD or EDD
4 #4 #4 6 7 deterministic [70..100] | deterministic [2..9] SPT, MODD orEDD
5 #5 #5 6 7 deterministic [20..100] | deterministic [2..9] SPT, MODD or EDD
*machine utilization < 98%
6 #6 #6 6 7 stochastic mean in | deterministic [2..9] SPT, MODD or EDD
(exponential) | [40..100)
7 #7 #7 6 7 deterministic | {40..100]] stochastic [2..9] SPT, MODD or EDD
(exponential)
8 #8 #8 6 7 stochastic mean in stochastic 2.9 SPT,MODD or EDD
(exponential) [40..100] | (exponential)
Table 4.2.1: Mean Tardiness: Complex System: List of models.
Percentage of tardy jobs Machine utilization Tardiness IMax. Tardiness
MOD
# min. mean I(Std)l max. mln.l mean |(Std)| max. | mean | (Std) | mean l (Std)
1 0.0% 34.1% 37.1% | 100.0% §30.0% | 68.5% | 17.5% [100.0%| 116.2 295.7 246.9 409.5
2 0.0% 83.3% 29.7% [ 100.0%69.5% | 94.7% | 6.8% |100.0%§ 1032.8 | 780.1 1458.7 785.0
3 0.0% 22.1% 30.0% { 100.0%|41.5% | 65.8% | 11.0% | 100.0% 16.6 37.1 42.2 63.5
4 0.0% 12.9% 19.9% | 90.1% |30.0% | 41.8% | 7.3% | 60.0% 5.5 10.5 9.2 15.1
5 0.0% 22.4% 29.9% | 100.0%(29.6% | 62.5% | 14.6% | 97.9% 19.3 457 444 756
6 0.0% 21.7% 27.5% ] 98.2% |29.2%{ 53.8% | 11.2% | 99.9% 17.9 42,5 41.4 76.5
7 0.0% 32.9% 27.7% | 100.0%{28.7% | 53.9% | 11.3% | 100.0% 28.0 47.6 491 67.5
8 0.0% 38.8% 28.3% | 100.0% |29.8% { 53.9% | 11.4% | 100.0% 423 66.6 75.4 94.0

Table 4.2.2: Mean Tardiness: Complex System: Generated set characteristics.
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APPENDIX B
Training Test learning |momentum| examples
NNet Size set# (size) set# | (size) coef coef learned
1 o4 i1 [8.12.14.12.6 #1 600 #1 400 0.9 0.6 500000
Modell [2 [e4 1 2 [8.15 19156 71 600 #1 200 0.9 06 500000
3Je4 1 3 8 .45 6 #1 600 #1 400 09 0.6 500000
4led 21 [8.12.14126 #2 600 #2 | 400 0.9 0.6 500000
Model2 [5 Jed 22 [815 191556 72 600 #2 | 400 09 0.6 500000
6 et 23 8 .45 6 #2 600 #2 400 0.9 0.6 500000
7431 8 12 14 12 6 #3 600 #3 400 0.9 0.6 500000
Model3 [ 8 [e4.3.2 81519 156 73 600 73| 400 09 0.6 500000
91ed 33 8_45_6 #3 600 #3 400 0.9 0.6 500000
10]cd 41 [8.12.14 126 4 600 74| 400 0.9 0.6 500000
Modeld [11|et 42 [8.1519 156 #4 600 74| 400 0.9 0.6 500000
12]e4 4.3 8 45 6 4 600 #d 400 0.9 0.6 500000
13|ed 57 [8.12.14 126 #5 400 45 | 240 0.9 0.6 500000
Model 5 [14|ed 52 |8 1519 156 #5 400 75 240 0.9 0.6 500000
15t 5.3 8 45 6 #5 400 #S5 240 09 0.6 500000
16|ed 6.7 |[8.12.14126 76 500 #6 | 300 09 0.6 500000
Model6 [17|ed 62 81519 156 76 500 #6 | 300 09 0.6 500000
18]e4. 6.3 8 .45 6 #6 500 #6 300 0.9 0.6 500000
194 7.1 8_12_14_12_6 #7 500 #7 300 0.9 0.6 500000
Model 7 20fed 7.2 8_15_19_15_6 #7 500 #7 300 0.9 0.6 500000
21 |4 7.3 8456 #7 500 #7 | 300 0.9 0.6 500000
2204 81 |8.12.14.12.6 #8 500 #8 | 300 0.9 0.6 500000
Model8 [23[ed 82 |8.1519.15.6 78 500 78 | 300 09 0.6 500000
2414 8 3 8 45 6 #8 500 #8 300 0.9 0.6 500000

Table 4.2.3: Mean Tardiness: Complex System: List of neural metamodels.
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#

10

1

12

15

NNet

e4_1 1

e4_1_3

e4 2.1

e4.12"r2

e4_2_3

e4_3_1

e4_3_3

ed_4 1

e4_4_2

e4_5_1

e4_5_2

Data set

TRAINING SET
TEST SET
TRAINING SET
TEST SET
TRAINING SET

TEST SET

TRAINING SET
TEST SET
TRAINING »
TEST SET
TRAINING SET

TEST SET

TRAINING SET
TEST SET
TRAINING SET
TEST SET
TRAINING SET

TEST SET

TRAINING SET
TEST SET
TRAINING SET
TEST SET
TRAINING SET

TEST SET

TRAINING SET
TEST SET
TRAINING SET
TEST SET
TRAINING SET

TEST SET

# obs

600

400

400

600 '

400

600

400

600

600

400

600

400

600

400

..600"

400

600
400
600
400

600

400

240

400

240

240

METHOD 1

Alpha = 5%

76.8%
80.5%
w4 .60 -
75.0%
77.5%

81.5%

100.0%

100.0%
100,0%
100.0%

166.6%

100.0%

34.5%
41.3%
297%
41.3%
38.5%

45.8%

11.0%
12.3%
11.2%
11.5%
0.7% '

8.0%

47.5%
52.1%
44.5%
49.2%
41.0%

52,9%

Alpha = 6.5%

63.3%
66.0%
60.2%
64.5%
66.2%

68.5%

99.7%
100.0%
99.8%
99.5%
100.6%

100.0%

15.5%
25.0%
11.0%
24,3%
14.0%

27.8%

3.7%
4.0%
3.7%
4.0%
0.0%

0.8%

28.3%
35.8%
24.8%
32.9%
15.8%’

39.2%

TOLERANCE METHOD 2:

approach
Alpha = 8%

57 3%
60.0%
54.0%
57.0%
57.7%

62.8%

97.5%

99.0%
99.3%
97.8%

98.5%

99.0%

6.2%
18.0%
3.5%
17.3%
5.2%

17.8%

0.3%
0.5%
0.3%
0.5%
0.0%

0 0%

20.5%
30.0%
13.0%
26.7%
4 8%

29.2%

MAD

31.2

59.0

22.2

47.4

221'8........

46.6

48.8

55.2

46.1

61.8

48”6

54.9

3.4

5.5

29

6.4

3.3

6.0

1.6

1.6

1.6

16

1.0

1.4

6.5

15.3

5.3

12.6

3.9

12.3

(M_Std)

51.6

56.5
50.8
54.8

49.5

55.8

6.9

14.8
6.7........
16.4

6.1

15.9

3.4
3.5
3.4
3.5
15

2.4

13.0
42.8
9.9

34.5

32.6

Table 4.2.4: Mean Tardiness: Complex System: Results of metamodels

12

METHOD 3:

MMAD (MM.Std)
73.7 92.9
127.2 171.8
64.0 . 57.3
99.4 146.4
576 575
108.0 145.6
112.7 75.4
125.9 77.3
110.9 e, 76,2
121.3 76.6
0979
126.8 77.0
10.0 12.4
18.1 29.4

" "jao 'l
18.2 31,1
io.b » 104
19.4 30.4
35 5.8
38 6.0
3.5 5.8
3.7 6.0
2.2 2.4
3.2 4.0
18.3 22.9
40.7 74.2
14.2 16.6
32.9 56.8
10.4 10.0
32.9 66.1
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Q NNet Data set

1  e4_ 1.1 TRAINING SET
TEST SET
TRAINING SET
TEST SET
e4_1_3

TEST SET

4 e4_2 1 TRAINING SET
TEST SET

e47272  TRAINING SET
TEST SET

6 e4.2.3 TRAINING SET

TEST SET

7 e4 31 TRAINING SET
TEST SET

8 Miesjs|2.;. TRAINING SET
TEST SET

ed 3.3 TRAINING SET

TEST SET

no e4 4.1 TRAINING SET
TEST SET

11 e4_4_2 TRAINING SET
TEST SET

12 e474,.3 TRAINING SET

TEST SET

e4_5_1 TRAINING SET
TEST SET

14 e4_5_2 TRAINING SET
TEST SET

IS e4,5_3 TRAINING SET

TEST SET

METHOD 4:
E4-1  (Stdl)
17%  39%
33%  99%
13%  27%
32%  100%
30%  90%
41% 44%
53% 57%
37% 46%
48% 63%
44% 45%
54% 53%
1% 2%
2% 3%
1% 2%
1% 3%
1% 1%
2% 3%
2% 3%
2% 3%
2% 3%
2% 3%
1% 2%
2% 2%
2% 2%
6% 14%
1% 2%
6% 17%
1% 2%
6% 16%

E4-2

17%
34%
12%

33%

30%

53%
60%
44%
66%
50%

58%

1%
2%
1%
2%
1%
2%

2%
2%
2%
2%
%

2%

2%
5%
2%
5%
1%

4%

(Std2)

48%
131%
24%
136%

190

120%

62%
72%
61%
66%
58%

68%

2%
3%
2%
3%
2%

3%

4%
3%
4%
3%
2%

3%

2%
13%
2%
14%
2%

13%

E4-3

21%
46%
17%
39%

140

36%

68%
80%
66%
79%

Q2 o

95%

2%
3%
2%
3%
2%

3%

1%
1%
1%
1%
1%

1%

7%
10%
5%
11%
4%

11%

(Std3)

48%
117%
33%
99%
25%

93%

81%
107%
83%
105%
84%

106%

3%
5%
3%
7%
3%

5%

2%
1%
2%
1%
1%

2%

16%

30%
9%

30%
7%

33%

E4-4

31%
55%
23%
43%
24%

44%

31%
36%
33%
36%
31%

36%

5%
9%
4%
10%
5%
10%

1%
1%
1%

1%

1%

8%
19%
6%

15%

b

15%

(Std4)

48%
86%
33%
75%
33%

75%

31%
34%
M\
40%
3%

38%

8%
19%
7%
20%
7%
19%

3%
3%
3%

3%

mt%---

2%

14%

44%

10%

36%

m

32%

E4 -5

26%
46%
16%
37%
19%

42%

35%
40%
33%
36%
30%

35%

2%
4%
2%
4%
2%

4%

1%
1%
1%

1%

-ri% 7"

1oe

5%
13%
4%
10%
3%

10%

(Std5)

42%
73%
26%
67%
26%

7%

46%
40%
42%
36%
40%

36%

4%
9%
4%
9%
3%
8%

2%
3%
2%
3%
1oe
2%

7%
32%

7%
27%

4%

25%

Table 4.2.4 (cont’d): Mean Tardiness: Complex System: Results of metamodels
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deviation-to-flow
time approach
E4-6  (Stdb)

23% 47%
40% 66%
D6 20%
32% 64%
W0 20%
31% 57%

22% 22%

25% 27%
20% 21%
23% 27%
18% .18%

2% 22%

2% 4%
3% 7%
z%ﬂlwl\ 1 H4% 1
3% 6%
%
2% 3
3% 7%
oo 3%
1% 3%
1oe 3%
oo 3%
% %
1 1
% 2%
4% 7%
11% 31%
4% 8%
9% 28%
3% 4%
9% 26%
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METHOD 1: TOLERANCE METHOD 2: METHOD 3:
approach
#1 NNet | Dataset | #obs Alpha=5%  Alpha=65%  Alpha = 8% MAD (M_Std) MMAD (MM_Std)
16 e4_6_1 TRAINING SET 500 42.4% 15.6% 6.8% 3.9 8.2 12.4 16.3
TEST SET 300 45.0% 25.3% 16.0% 71 26.0 225 54.5
17  e4_6_2 TRAINING SET 500 38.0% 15.0% 6.4% 3.7 7.7 11.9 15.1
TEST SET 300 44.3% 25.3% 16.7% 7.7 30.4 25.7 64.9
18 0476_3 TRAINING SET 500 33 4% 12.8% 5.4% 32 6.8 9.6 105
TEST SET 300 44.3% 26.3% 16.3% 6.7 22.7 201 38.9
19  e4_7.1 TRAINING SET 500 32.4% 12.6% 5.2% 42 7.5 10.1 11.5
TEST SET 300 38.0% 19.7% 13.0% 7.7 20.9 172 31.0
20 e4_7_2 TRAINING SET 500 30.8% 11.2% 5.0% 41 6.8 9.7 10.2
TEST SET 300 37.0% 18.7% 13.7% 7.8 20.6 17.4 305
21 e477,3 TRAINING SET 500 32.6% 10.0% 4.0% 4.0 6.7 9.4 9.9
TEST SET 300 34.3% 20.0% 13,7% 75 20.2 16.6 29.8
22 e4.81 TRAINING SET 500 54.6% 29.0% 15.0% 7.5 13.7 17.6 21.3
TEST SET 300 63.3% 37.7% 24.3% 14.4 39.2 32.1 58.7
28 'eO _2 TRAINING SET 500 " 752.6%: 22,6% 8.8% Vi 5,9 8.4 12,3
TEST SET 300 57.7% 32.7% 22.3% 13,2 37.3 30.0 57.2
24 e4.8.3 TRAINING SET 500 73.6% 46.2% 35.4% 12.8 19.4 28.0 w253
TEST SET 300 80.7% 51.0% 34.3% 16.8 311 36.6 428

Table 4.2.4 (cont’d): Mean Tardiness: Complex System: Results of metamodels
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METHOD 4: deviation-to-flow

time approach

# 1 NNet 1 Dataset E4-1  (Stdl) E4-2 (Std2) E4-3 (Std3) E4-4 (Stdd) E4-5 (Std5) E4-6  (Std6)
16 e4 6.1 TRAINING SET 1% 2% 1% 2% 2% 4% 7% 10% 3% 4% 2% 3%
TEST SET 2% 3% 2% 3% 3% 4% 11% 28% 5% 11% 4% 8%
17 e4.6.2 TRAINING SET 1% 2% 1% 1% 2% 4% 6% 9% 3% 4% 2% 3%
TEST SET 2% 3% 2% 3% 3% 4% 12% 30% 5% 10% 4% 9%
18  e476,3 TRAINING SET 1% 1% 1% 1% 2% 3% 6% % 3% 3% 2% 2%
JEST SET 2% 2% 2% 2% 3% 4% 9% 20% 5% 11% 4% 10%
19 e4 7.1 TRAINING SET % 3% 2% 3% 2 2% 4% 6 3% 5% 4% 6%
TEST SET 3% 4% 3% 4% 2% 3% 8% 16% 65 14% 7% 15%
D es 72 TRANING SET X% 3% 2% 3% 2% 2% 4% 6 3% 5% 4% 5%
TEST SET 3% 4% 3% 4% 2% 4% 8 17% 7% 15% 7% 15%
2l c4.773 TRAINING SET 2% 3% 2% 3% 2% 2% 4% 6% 3% 6 3% 5%
tisST'Sif, ' 3% 4% 3% 4% 2% 3% 7% 16% 6% 14% 7% 14%

2 es81 TRAINING SET 4% 5% 4% 4% 3% 4% 7% 16 6% 10 6% 10
TEST SET 5% 7% 5% 7% 4% 6 14%  34% 13%  32% 13% 31%
23 TRAINING SET 4% 5% 4% 4% 3% 3% 65 7% 5% 6 5% 6%
TEST SET 65 7% 5% 7% 4% 6% 12 31% 1os 28% 124 27%

24 e4 83 TRAINING SET 4% 4% 4% 4% 4% 4% 15% 16% 12 14% 1o 12
TEST SET 5% 6% 5% 6% 5% 6% 18% 26% 15% 2% 14% 2o

Table 4.2.4 (cont’d): Mean Tardiness: Complex System: Results of metamodels
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Mod Training Test Interarrival | Initial # of Due date Scheduling rule
# set set time parts per tightness
Range type factor
1 #1 #1 [15..60] [1..18} [2..5] SPT, MODD or EDD
deterministic
2 #2 #2 [15..60] [1..15) [2..5] SPT, MODD or EDD
3 #3 #3 [15..35] [1..15] [2..5) SPT, MODD or EDD
4 #4 #4 [35..60] [1..18] [2..5] SPT, MODD or EDD
5 #5 #5 [15..60] [1..5] [2.5) SPT, MODD or EDD
6 #6 #6 {15..60) [6..10] [2..5] SPT, MODD or EDD
7 #7 #7 [15..60) [11..15] [2..5] SPT, MODD or EDD
8 #8 #8 [15..60] [1..15) [6..9) SPT, MODD or EDD
9 #9 #9 [15..60) 5 [2..5] SPT, MODD or EDD
10 #10 #10 [15..60) 10 [2..5] SPT, MODD or EDD
11 #11 #11 [15..60] 15 [2.5] SPT, MODD or EDD
12 #12 #12 [15..60] 20 [2..5) SPT, MODD or EDD
13 #13 #13 [15..60] 25 [2.5] SPT, MODD or EDD
14 #14 #14 [15..60] 30 [2..5] SPT, MODD or EDD
15 #15 #15 [15..60] 3.7 [2.5] SPT, MODD or EDD
16 #16 #16 [15..60] [8..12] [2..5] SPT, MODD or EDD
17 #17 #17 [15..60] [13..17) [2..8] SPT, MODD or EDD
18 #18 #18 [35..60) 5 [2..5] SPT, MODD or EDD
19 #19 #19 [35..60] 10 [2..5] SPT, MODD or EDD
20 #20 #20 [35..60] 15 [2..5] SPT, MODD or EDD
21 #21 #21 [35..60) 20 [2..5]) SPT, MODD or EDD
22 #22 #22 [15..35] 10 [2..5] SPT, MODD or EDD
23 #23 #23 [15..35] 15 [2..5} SPT, MODD or EDD
24 #24 #24 [15..35) 20 [2..5] SPT, MODD or EDD
25 #25 #25 [15..35) 25 [2..5) SPT, MODD or EDD

Table 5.1: Mean Tardiness: short term estimation: List of models.
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Percentage of Tardy Machine utilization Tardiness
jobs
MOD
# min mean | (std) | max. min [ mean | (std) | max. min mean | (std) max.
1 10.1% | 78.9% |18.7%] 100.0% | 33.0% | 74.7% | 15.4% | 100.0%] 3.90 |240.00| 132.65 | 681.30
2 [41.4%{ 88.5% {11.0%] 100.0% | 27.0% | 73.7% | 15.8% | 100.0% | 27.90 |276.73| 134.02 | 785.80
3 |57.1% | 93.9% | 8.3% | 100.0% § 42.0% | 85.8% | 11.8% | 100.0% ] 41.80 |332.79| 151.19 | 766.70
4 |39.2% | 83.0% |11.1%] 100.0% | 25.0% | 62.1% | 12.7% | 99.0% | 18.30 |242.32| 123.94 | 756.20
5 121.9% | 74.3% |17.3%] 100.0% | 20.0% { 61.9% | 17.6% | 100.0% | 8.50 86.18 | 54.14 | 420.10
6 |52.9% | 89.3% [10.1%] 100.0% { 29.0% | 73.9% | 15.4% | 100.0% | 49.70 |278.73| 117.95 | 687.40
7 |64.2% | 94.1% | 6.5% | 100.0% | 29.0% | 80.8% | 13.4% | 100.0% | 122.00 |476.59| 157.74 | 853.90
8 [25.0% | 74.6% |16.5%| 100.0% | 30.0% | 73.6% | 15.7% | 100.0% ] 19.00 |220.85| 122.12 | 706.20
9 |43.5% | 82.0% |13.8%( 100.0% ] 26.0% | 67.1% [ 17.0% | 100.0% | 24.50 [151.96| 77.28 | 529.90
10 }59.2% | 91.9% | 8.3% | 100.0% | 37.0% | 77.6% | 14.5% | 100.0% | 32.60 |313.46| 160.06 | 761.70
11 | 62.8% | 94.6% | 6.1% | 100.0% § 41.0% | 82.3% | 13.1% | 100.0% § 166.60 | 524.96 | 160.80 | 864.60
12 | 71.6% | 95.9% | 1.9% | 100.0% | 42.0% | 84.7% | 12.3% | 100.0% | 213.50 | 602.87 | 158.66 | 914.30
13 [70.0% | 96.6% | 0.6% | 100.0% | 40.0% | 86.3% | 11.8% | 100.0% | 252.40 | 641.11| 150.23 | 941.70
14 | 75.0% | 97.2% | 1.0% | 100.0% | 46.0% | 87.9% | 10.9% | 100.0% | 315.90 {668.75| 141.73 | 941.80
15 }354% | 81.9% | 7.3% | 100.0% | 24.0% | 67.1% | 17.0% | 100.0% | 25.20 |149.58| 79.13 | 503.90
16 | 56.4% | 92.0% | 1.3% | 100.0% | 34.0% | 77.5% } 14.6% | 100.0% | 83.90 |370.46] 139.83 | 765.00
17 |1 68.6% | 94.9% | 2.5% | 100.0% | 39.0% | 82.5% | 13.0% | 100.0% | 169.00 | 525.89 | 161.51 | 865.50
18 | 37.0% | 73.7% | 9.0% | 100.0% | 22.0% | 53.6% | 11.1% | 96.0% | 22.10 | 114.70| 51.88 | 381.00
19 | 55.7% | 88.3% | 2.7% | 100.0% } 33.0% | 67.3% | 12.3% | 98.0% } 76.80 |344.16| 127.39 | 788.00
20 | 68.6% | 93.0% | 1.3% | 100.0% | 37.0% | 74.5% | 12.8% | 99.0% | 190.10 | 514.61 | 135.00 | 837.00
21 | 70.8% | 94.5% | 0.6% | 100.0% | 37.0% | 78.0% | 12.6% | 100.0% | 251.70 | 601.41| 123.61 | 895.50
22 | 66.3% | 95.3% | 0.7% | 100.0% | 45.0% | 87.9% | 10.3% [ 100.0% | 77.00 {414.32| 158.84 | 777.70
23 170.2% | 96.5% | 1.0% | 100.0% | 51.0% | 89.9% | 9.1% | 100.0% | 163.20 | 547.55]| 187.41 | 874.80
24 | 73.4% | 97.0% | 0.6% | 100.0% | 52.0% | 91.1% | 8.4% |100.0% | 184.80 |610.08 | 189.21 | 937.50
25 | 74.6% | 97.5% | 3.9% | 100.0% | 55.0% | 92.0% | 7.9% [100.0% | 248.80 | 644.67 { 177.48 | 948.10

Table 5.2: Mean Tardiness: short term estimation: Generated set characteristics.
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# 1 NNet 1Data set |size

A~ J J training set 600
Test set 360
2 ES5_|_2 Training set 600

Test set 350

Training set 600
Test set 360
4 ES5_2_2 Training set 600

Testset 350

1% training sot 600
Test set 350
6 E5_3_2 Trainingset 600

Test set 350

B5744| Training set 600
Test set 350
8 E5_4_2 Training set 600

Test set 350

p E5_5_| Training set 600
Test set 350
10 m jj, Trainingset 600

Test set 350

a Training set 600
Test set 350
Q E5_6_2 Training set 600

Test set 350

U BSJJ Training set 600
Test set 360
14 E5_7_2 Training set 600

Test set 350

p5 ES578_: Training set 600
Test set 350
W J 3 Training set 600

Test set 350

METHOD

ALPHA(10)

96.2%
99.4%
95.2%

99.4%

99.0%
99.4%
98.2%

99.7%

97.2%
100.0%
99.0%

99.4%

98.0%
100.0%
99.7%

100.0%

92.7%
94.9%
~86.2%

95.7%

98.3%
99.4%
99.2%

99.4%

99.7%
100.0%
98.8%

100.0%

97.8%
99.7%
99.5%

99.7%

1:

ALPHA(20)

78 5%
94.9%
77.3%

95.4%

89.2%
97.7%
92.5%

98.9%

88.0%
97.1%
93.3%

99.1%

88.8%
98 9%
96.8%

99.1%

62.2%
79.1%
47.5%

80.0%

90.3%
98.6%
93.3%

98.9%

93.0%
99.1%
95.0%

98.9%

88.3%
95.7%
89.8%

98.6%

Tolerance

2:

ALPHA(30) | ALPHA(70) |aLPHA(100)  mean

$7.3%
88.3%
54.5%

88.9%

72.0%
94.9%
82.0%

96.3%

69.8%
937%
77.8%

95.4%

70.3%

96.0%
88.3%

96.6%

35.2%

62.6%

63.1%

76.0%
93 7%
80.0%

96.9%

81.6%
96.0%
84.5%

97.4%

71.8%
91.7%
76.7%

95.4%

6,2%
39.7%
6.0%

44.3%

15.7%
71.1%
27.8%

76.9%

14,3%
64.3%
21.5%

71.7%

18.5%
75.4%
35.3%

76.6%

1.8%

26.3%

' 0.0%

23.7%

17 0%
69.4%
23.3%

77.1%

20.7%
69,1%
29.5%

75.7%

13.0%
67.4%
17.3%

70.9%

0.3%
16.3%
1.3%

16.9%

6.5%

64.6%

8.3%

52.9%

2.6%
49.1%
4.2%

49.1%

2.8%

$4.9%

12.2%

60.0%

0.2%

15.4%

0.0%

11.4%

3.5%

61.7%

8.0%

59.4%

6.3%

46.3%

10.0%

56.0%

2.2%

45.1%

4.2%

51.4%

Table 5.3: Mean Tardiness: short term estimation

21.8
40.6
20!5

40.4

28,3

78.8

77.9

26.4
70.9
31.2

70.3

27.0
80.8
39.1

85.5

17.0

38.1

34.8

29.0
73.6
325

78.3

32.1
67.6
35.0

73.6

67.9
29.9

717

(Std)

17.6
36.9
18.5

35.5

24.0

70.8

64.1

2t.6
61.4
24.9

57.2

22.6
70.0
31.0

72.2

14.5
40.9
10.4

34.6

23.6
64.6
27.4

67.1

26.2

62.9

66.4

22.0
60.2
24.5

59.7

3:
mean

36.9

67.7

35.7

69.7

108.4

51.5

109.4

44.6

1257

63.6

134.1

27.5

54.9

211

50.7

47.1

116.4

54.7

127.0

44.0

105.0

49.7

112.6

: Results of metamodels

approach  METHOD MAD METHOD MMAD

(Std)

18.7
39.2
20.9

38.3

26.0
76.6
30.9

69.2

23.6
66.7
26.2

59.8

23.8
75.6
3T9

76.3

15.9
45.6
10.9

38.7

24.4
72.4
29.2

71.8

27.2
73.6
29.3

747

22.8
64.9
wog 4

61.4
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METHOD 4:

#1 NNet j Dataset (Std)

i ~JJ Traningset 6% 5%
Test set 13% 13%
2 ES5_|_2 Training set 6% 6%

Test set 15% 14%

3 Training set 8% 6%
Test set 20% 18%
4 E5_2 2 Training set 9% 8%

Test set 20% 17%

5 E5J J Trainingset 6% 6%
Test set 17% 15%
6 E5_3_2 Training set 7% 6%

Test set 16% 14%

Trainli*t.gset 8% 6%
Test set 22% 17%
8 E5_4_2 Training set jj% 9%

Test set 23% 20%

A E5_5_| Training set  12% 9%
Test set 25%  25%
Training set 7% 6%

Test set 21% 21%

U E5JJ Trainingset 8% 7%
Test set 17% 14%
12 E5_6_2 Training set 9% 8%

Test set 19% 17%

13 Training set 5% 6%
Test set 10% 9%
14 ES5,7_2 Training set 6% 5%

Test set 11% 10%

15 E5_8_| Trainingset 7% 6%
Test set 17%  15%
16 Trainigset 8% 6%

Test set 18% 16%

Table 5.3 (Cont'd):

deviat lon
E4-2 (Std)
0% 8%
15% 13%
8% 7%
16% 19%
9% 7%
26% 21%
12% 10%
27% 21%
i0% ' 9%
20% 16%
12% 10%
20% 17%
10% 8%
27% 26%
15% 13%
31% 27%
11% 9%
23% 22%
8% 6%
21%  19%
10% 8%
24% 24%
ii% 0%
22% 21%
6% 6%
12% 11%
7% 6%
12% 13%
8% 7%
19% 17%
9% 8%’
23% 19%

Mean Tardiness: short term estimation:

-to- flow

E4-3 (Std)
6%

11% 12%
5% 5%
11% 12%
7% 6%
22% 21%
10% 9%
23% 19%
7% 6%
16% 17%
9% 7%
16% 14%
8% 7%
27% 27%
13% 2%
28% 27%
7% 6%
16% 16%
5% 4%
14% 14%
8% 7%
21% 21%
9% 9%
19% 18%
6% 5%
11% 9%
7% 6%
11% 11%
6% 6%
15% 14%
">% 6%
17% 15%

min

3.9
5.9
3.9

5.9

279
297
27.9

29.7

41.8
46.9
41.8

46.9

18.3
22.8
18.3

22.8

8.5
11.8
8.6

11.8

497
57.0
49.7

57.0

122.0
129,6

122.0

129.6

19.0

24.2

19.0

24.2

TARDINESS
mean  (Std)
237.6 1346
2441 129.2
237.6 134.6
2441  129.2
276.2 1325
279.3 136.6
2752 1325
279.3 136.6
330.6 160.2
336.6 153.0
330.6 150.2
336.6 153.0
239.3 1208
247.5 129.0
23913 120'8
2475 129.0
87.0 55.4
84.8 52.0
87.0 55.4
84.8 52.0
2786 1185
279.0 1171
278.6 1185
279.0 1171
478.6 157.3
4731 158.6
478.6  157.3
473.1 158.6
219.2 1237
223.7 1193
219.2 1237
223.7 1193

622.4
681.3
622.4

681.3

722.6
785.8
722.5

785.8

766.7
748.2
766.7

748.2

766,2
657.4
756"2

657.4

420.1
298.2
420.1

298.2

687.4
678.4
687.4

678.4

853.9
843.5
853.9

843.5

655.1
706.2
656.1

706,2

Results of metamodels
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#1 NNet Data set
17 ~ J J Training set
Test set
18 E5_9_2 Training set
Test set
19 B5J0J Training set
Test set
20 E5_10_2 Training set
Test set
21 Tralninisaet
Test set
22 E5_Il_2 Training set
Test set
23 B5J2_1 Training set
Test set
24 E5_12_2 Training set
Test set
25 E5_13_| Training set
Test set
26 E5_13_2 Training set
Test set
Test set
28 E5_14_2 Training set
Test set
29" B5* Training set
Test set
30 E5_ Training set
Test set
31 E5,ie_| training set
Test set
32 E5_16_2 Training set
Test set

size

600

350

600

350

600

350

600

350

600

350

600

350

600

350

600

350

600

350

350

600

350

600

600

350

360

600

350

METHOD

ALPHA(10)

97 8%
98 3%
98.5%

98.0%

99.8%
99.1%
99.7%

99.1%

99,8%
1000%
99.5%

99.4%

99.6%
100.0%
9917%

100.0%

99.5%
100,0%
99.7%

100.0%

99s3%
99.1%
99.2%

99.1%

92.7%
99.7%
95.5%

98.9%

99.2%
100.0%
99.3%

99.7%

1:

ALPHA(20)

87,2%
89.4%
88.5%

88.3%

97.2%
97,4%
9a3%

97.4%

95.8%
96.3%
97.2%

96.0%

96 2%
98,3%
96.2%

97.4%

98.3%
99.4%
96.8%

90.9%

97,3%
97.1%
98.2%

96.9%

64,5%
96.7%
77.5%

95.1%

96,2%
98,9%
94.5%

98.9%

ALPHA(30)

70,8%
76.3%
7512%

77.4%

91.6%
92 9%
94.3%

93.7%

88,3%
90.0%
89.8%

89.7%

85e3%
93 1%
87.6%

90.9%

95.0%
95.7%
91 0%

937%

91.8%
91.4%
9i lo%

91.1%

37.8%
88.0%
56.2%

87.4%

86.7%
96.0%
87.5%

98.3%

Tolerance

ALPHA(70) ALPHA(I0O)

23.0%
26.0%
22.5%

27.7%

51,0%
55,7%
58.8%

60.9%

47.3%
47,7%
49.5%

52.0%

40.3%
44.3%"
407%

46.0%

62.7%
66.3%
417%

46.6%

42,5%
43.4%
42.7%

44.0%

1.7%
44.0%
8.7%

53.1%

34.3%
78.3%
37.2%

78.6%

approach METHOD

7 7%
11.4%
7.8%

10.9%

28.3%
32 3%
31.3%

32.6%

24.8%
24.3%
27.2%

26.6%

16.6%
19.1%
17.2%

19.4%

43.8%
45.4%
14.8%

17.4%

16.5%
17 7%
i7'5%

18.6%

0.0%
24.0%
i.5%

34.0%

12,8%
58,9%
13.2@>

62.6%

2:

mean

36.6
33.9

35.6

60.0
51.3
53.3

53.7

46.4

47.9

40.7
42,0
41.0

41.8

73.4
745
41.0

42,8

16.9
49.7
22.4

61.5

36.7
78,6
39.0

83.8

MAD

(Std)

26.6
33.2
28.6

32.6

41.3
41,4
42.0

41.4

38.3
41.1
39.9

42.3

33.4
33.1
33.7

33.4

66.4
64.3
i32.1

33.8

32.7
32.5
32.7

32.8

14.0

45.1

56.3

30.1
64.4
31.7

71.0

METHOD MMAD

3:

mean

$1.3
55.7
51.9

55.9

80.3
84.5
85.5

87.7

75.0

78.4

81.9

67.6
69.7
67i

69.8

112.3
113.8
68.6

71.3

69,4
70.6
69.6

71.2

28.1
76.2
L3701

89.3

62.4
126.7
64.7

134.3

(Std)

30,9
36.9
31.0

36.3

44 .4
43.2
43.2

42.4

42,5
47.0
44.6

47.9

34,8
32.2
353"

33.1

70.8
68.8
33.1

35,3

33,8
32.7
33.9

33.0

16.3
49.3
22.0

60.8

30.7
68,9
33.0

75.1

Table 5.3 (Cont’d): Mean Tardiness: short term estimation: Results of metamodels
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METHOD 4: deviat ion -to- flow TARDINESS
time appro ach

#j NNet 1 Dataset E4-1 (Std) E4-2 (Std) E4-3 (Std) | min mean (Std) max

17 Trainingset  13%  11% 15% 13% 11% 10% 283  151.7 78.3 518.9
Test set  14%  11% 16% 14% 12% 11% 245 162.3 755 529.9
18 E5_9 2 Trainingset 13% 11% 16% 12% 12% 10%  28.3 1513 78.3 518.9

Test set 14% 11% 17% 14% 12% 11% 24.5 152.3 75.5 529.9

19 B5_10_| TraWrtsset 10% 9% 12%  11% 11% 10% 100.0 371.2 139.6 761.7
Test set 11% 9% 13% 11% 11% 9% 85.8 3747 1428 707.6
20 E5_10_2 Training set  12% 10% 14% 12% 12% 10%  100.0 371.2 1396 7617

Test set 12% 11% 14% 12% 12% 9% 85.8 374.7 1428 707.5

21 M5JIJ Training set 6% 5% 7% 7% 7% 6% 175.4 5245 161.1 864.6
Test set 6% 6% 8% % 1% 5%  166.6 525.8 160.3 864.1
22 E5_lI__2 Training set 6% 5% 7% 7% 7% 6% 175.4 5245 1611 864.6

Test set 7% 6% 8% 7% 7% 5% 166.6 525.8 160.3 864.1

23 B5_12_| Trainingset 5% 4% 7% 6% 6% 5% 219.6 604.2 158.4 9143
Test set 5% 4% 7% 6% 6% 5% 213.5 600.6 159.1 9057
24 E5_12_2 Trainingset 5% 4% 7% 6% 6% 5% 219.6 604.2 158.4 9143

Test set 5% 4% 7% 6% 6% 5% 213.5 600.6 159.1 905.7

25 E5_13_| Trainingset 11% 15% 17% 18% 13% 13% 273.0 641.0 150.6 9255
Test set 11% 13% 17% 19% 13% 13% 252.4 641.4 149.7 9417
26 B5J3_2 Trainingset 5% 4% 7% 6% 6% 5% 273.0 641.0 150.6 925.6

Test set 6% 4% 8% 7% 7% 5% 262.4 641.4 149.7 9417

27 E5714J Trainingset 5% 4% 7% 6% 6% 5% 315.9 668.2 142.6 941.8 ;
Test set 6% 4% 7% 5% 6% 5% $18.8 669.7 140.4 938.4
28 E5_14_2 Trainingset 5% ..4%.. 7% 6% 6% 5% 3159 668.2 1426 941.8

Test set 5% 4% 7% 5% 6% 5% 318.8 669.7 140.4 938.4

29 training set 7% 6% 9% 7% 6% 5% 27.3 1491 79.7 4749
Test set  20% 17% 24% 23% 17% 16% 28.6  153.6 79.2 503.9
30 E5_\5 2 Training set 9% 7% 1% 10% 7% 7% 27.3  149.1 797 4749

Test set 27% 25% 31% 32% 22% 20% 28.2 153.6 80.8 503.9

31 B5_16.1 Trainingset 8o 7% 9% 8% 8% 7% 83.9 368.9 140.3 765.0
Test set 15%  16% 21% 18% 19% 17% 97.5 373,a 1391 749.0
32 E5_16_2 Trainingset 0% ..8%.. 0% 9% ".9%... 7% sao  368.9 140.3 765.0

Test set 18% 19% 21% 19% 18% 16% 97.5 373.2 139.1 749.0

Table 5.3 (Cont’'d): Mean Tardiness: short term estimation: Results of metamodels
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# 1 NNet 1 Dataset jsize

33

34

35

36

37

38

39

40

42

43

44

45

46

47

48

B5.

E5_17 2

E5_18_2

E5_

E5"M 3

B$720_|

E5_20_2

E5_21_2

E5_22_|

B5_22 2

E5JBJ

E5_23_2

E5_24_|

E5_25_|

ESJ5J

Training “et
Test set
Training set

Test set

Training set
Test set
Training set

Test set

Training set
Test set
Training set

Test set

Tralningset
Test set
Training set

Test set

Training set

Test set

Training set
Test set
Training set

Test set

Training set
Test set
Training set

Test set

Training set
Test set
Training set

Test set

Training set
Test set
training set

Test set

Table 5.3 (Cont'd)

600

360

600

350

350

600

350

600

350

350

600

360

600

350

350

600

600

350

600

350

600

350

600

350

350

360

350

600

350

METHOD

ALPHA(10)

09.6%
99.7%
99.3%

99.7%

98.3%
96.9%
98.2%

97.4%

100.0%
99.1%
99.8%

100.0%

100.0%
99.7%
99.8%

99.7%

99.7%
100.0%
99B%

100.0%

99.8%
99.7%
99.7%

99 7%

99.7%
99.4%
99.7%

99.4%

99.5%
99.7%
100.0%

98.9%

99.8%
99.4%
' 99.7%

98.0%

1:

ALPHA(20)

93.6%
98.3%
96.2%

99.4%

86.2%
85.1%
86.8%

84.0%

98.8%
98.0%
99.0%

99.1%

98.7%
97.4%
98.6%

99.4%

99.2%
98.9%
97.8%

98.6%

98.2%
97.1%
97.,2%

96,0%

96.8%
96.3%
96.8%

96.0%

98.0%
98.9%
97.7%

96.6%

97.5%
96.6%
96,3%

94.9%

ALPHA(30)

ap7%
96.1%
86.2%

96.3%

64 7%
66 1%
65"3%

66.9%

96.5%
96.0%
95.7%

96.0%

94.8%
94.6%
93.7%

95.1%

93.3%
94.9%
94.0%

95.1%

93.3%
91.4%
90.7%

90.0%

87,5%
90.3%
887%

90.0%

93.5%
94.0%
9i.'1%

90,9%

91.7%
90.0%
"88,5%

88.3%

Tolerance

ALPHA(70)  ALPHA(IOO)

20 7%
69.7%
28.3%

76.9%

14.0%
14 9%
16.8%

15.7%

66.5%
70.9%
68.7%

72.6%

58.2%
62,0%
59.6%

61.7%

48,0%
51.1%
50.3%

55.4%

65.5%
64.6%
46,8%

44.0%

31, 7%
33.1%
33.8%

36.0%

60.3%
61.1%
377%

40,9%

59.0%
62.6%
37.7%

41.7%

6.7%
43.7%
6.8%

60.6%

6.7%
5.4%
5.5%

6.6%

40.7%
43.7%
42 3%

45.1%

30.7%
32.3%
31.0%

33.7%

22.0%
23.4%
22"7%

27.4%

53.3%
52.6%
19.5%

20,0%

11.3%
10.3%
11.3%

9.7%

42.0%
45.7%
11.7%

15.4%

43.2%
45.1%
14.3%

14 0%

approach METHOD

2:

mean

321

28.2

28.3

28.6

28.9

59.4

60.4

60.2

61.7

51,5

54.3

'5115.....

54.9

44.8

47.8

48.6

82.3

82.3

43.9

45,3

367

37.5

37.0

37.5

95.5

96.7

39.6

85.3

85.9

387

39.8

MAD

(Std)

59.6
26.6

62.7

25.4
26.9
26.2

26.8

44.8

46.0

46.6

41.4
48,8
41.4

48.3

35.9
38,9
36.0

38.6

69.1
66.3
35,4

36.7

29,3
28.8
29.5

29.1

87.9
87.7
30.0

32.6

77.3
75.1
30.3

32.1

METHOD MMAD

3:
mean

53.1
110.9
58.1

125.2

44.9
45.1
46.5

46.7

94.6
97.6
96.5

100.3

75,2

79,1

80.6

120.4
116.2
72.1

1.7

61.7
62.5
62.5

62.8

128.7
130.3
64.8

66.8

117.4
116.9
64"3

667

(Std)

70.9
26.7

68.2

29.0
30.0
29.7

31.4

43.7
46.2
45,1

45.3

43.8
$3.0
43.8

52.1

35.8
39.8
35.8

38.8

73.1
70.4
36.1

39.2

304
28.4
30.3

29.1

92.4
92.8
29.4

32.9

81.6
77.8
30.6

33.6

: Mean Tardiness: short term estimation: Results of metamodels
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METHOD 4: deviat ion -to- flow TARDINESS
time appro ach

J#| NNet 1lpataset E4-1 (Std) E4-2 (Std) E4-3 (Std) I min  mean (Std) max

-

33 B5_17_1 Trainingset 6% 4% 7% 6%  6flo 5%  169,0 5259 162.9 865.6
Test set 8% 6% 11% 12% 10% 9% 1853 626.9 169.2 8663
34 E5_17_2 Training set 4% 4% 7% 6% 6% 5%  169.0 525.9 162.9 865.5

Test set 9% 9% 11% 10% 10% 9% 1853 525.9 159.2 855.3

35 B5_I8_I Trainingset 13% 11% 17% 13% 13% 12% 24 1 114.0 61.8 381.0

Test set 13%  10% 16% 13% 13%  14% 221 1158 521 342.3
36 E5_18_2 Trainingset 14%  11% 16% 12% 3% 12% 241 114.0 51.8 381.0

Test set 14% 11% 16% 12% 13% 15% 22.1 115.8 52.1 342.3

37 E5_19_| Trainingset 13%  10% 16% 14% 14%  12%  76.8 342.5 127.8 788.0
Test set  13% 9%  17% 14% 15%  13%  92.3  347.0 126.7 701.3
38 Training set  13%  11% 17% 15% 15% 12% 76.8 3425 127.8 788.0

Test set 13% 10% 18% 16% 15% 13% 92.3 347.0 126.7 701.3

p1 Training set 7% 6% 9% 8% 8% 6%  191.7 614,9 1351  837:0
Test set 8% 6% 12% 62% 10% 32% QO “ 513.4 1364 832.4
Training set 7% 7% 9% 8% 8% ' 6% 19i7 5149 1351  837.0

Test set 8% 7% 12% 51% 10% 32% 0.0 513.4 136.4 832.4

41 B 5ji."l Trainingset 5% 4% 8% 6% 7% 5%  251.7 601.4 1232 8905
Test set 6% 5% 8% 1% 1% 5%  266.6 601.4 1245 896.5
42 E5_21._2 Training set 6% 4% 8% 6% 7% 5%  251.7 601.4 1232 890.5

Test set 6% 5% 8% 7% 7% 5% 255.6 601.4 1245 895.5

43 E5_22 | Training set  16% 10% 17% 11% 16% 12% 77.0 413.7 159.4 777.7
Test set 16% 9% 17% 10% 15% 11% 109.0 415.4 158.0 767.3
44 E5_22_2 Trainingset 7% 7% 12% 11% 9% 7% 77.0 413.7 159.4 777.7

Test set 8% 7% 12% 11% 9% 8% 109,0 416,4 158.0 767,3

45 ESJINJ Trainingset 6% 4% 7% 6% 6% 4%  163.2 6458 186.7 874.8

Test set 5% 4% 7% 6% 6% 4% 186.5 550.5 188.7 856.7
186 7

46 E5__23 2 Training set 5% 4% 7% 6% 6% 4% 163.2 5458 874.8

Test set 5% 4% 7% 5% 6% 5% 185.5 550.5 188.7 856.7

47 E5_24_| Training set  18% 22% 24% 29% 20% 21% 206.0 608.3 187.9 937.5
Test set 18% 21% 25% 30% 20% 22% 184.8 613.1 191.5 925.2

48 B5_24_2 Trainingset 6% 4% 7% 6% 6% 4% 234.0 606.2 188.3 937.6

Test set 5% 5% 7% 7% 6% 5% 184.8 613.1 191.6 925,2

49 E5_25_| Training set 15%  18% 19% 20% 15% 16% 248.8 6432 176.6 9321

Test set  14%  16% 19% 20% 16%  16% 271.8 647.2 179.0 948.1
'50 "BSISJ Trainingset 4% “ 4% " 7% .'mt 248,8 643.2 1766 ""m~ ..~

Test set 4% 4% 7% 5% 6% 5% 271,8 647.2 179.0 948.1

Table 5.3 (Cont’d): Mean Tardiness: short term estimation: Results of metamodels
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Sheet 1:
System Simulation i

i1

135

AN Model Frame

BEGIN:

create:

read AN, LALIDATT
assign:poptime =0:
duplicate: 1r2:1 !
delay: LAMDA
duplicate: I rl;
assign: TYPL= 1N
OPTIRIT: ]
OPTIML. =+ :
OPTIMLE: =5
OPTIME 1 =9
OPTIMES o
OPTIMLE®G = ()
OPTIME" = 0
toptime= O

rl

1l

»10A2LAMDA3 LAMDA4,LAMDAS LAMDAG6,RULEk;

rloiars:lLro;

i N'TRANCE:

i PTIME2 + OPTIME3 + OPTIME4 + OPTIMES + OPTIMESG +
OPTIME7 w0 12

assign:DD=mow -+ o

count: |, l:nexteran
r2 delay:l,AMDA
duplicate: 1.r2:
assign: TYPE= N
OPTINE ]
OTIRL
O
OPTINE -
OPTING
O TINT
OPTIN:
loptine: -
c
assign:DD=tnonv
count:2, lmexitran
3 delay:lamda.
duplicate: Lr =
assign:TY Pl =300
OPTIN:
O TINE.
OPFInE
OPTIng
OPi

R

OFFINE 6

OMTING
topline:
O VIN

She

1;|J'

Sl

! NTRANCE:

‘
T

i
HE

Iy -

A
RV
[

131151 + OPTIME2 + OPTIME3 + OPTIME4 + OPTIMES + OPTIMESG +
TE7:mark(ARRT);

REIISUENTRN N

.l INTRANCE:

-4

i 1131+ OPTIME2+ OPTIME3+ OPTIME4+OPTIMES5+ OPTIMEG+
il (ARRT);
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Sheet 1:(Cont’d)

assign:DD=tnoweked i,
count: 3, lmext:trati

4 delay:!LAMD. 0
duplicate:I.r4:
assign: TYPE:=ENS .1 'NTRANCE:
OPTILIE
OPTI 152
OPTILAHES
OPTI:I
orTi.n.s
OPrTrr.
OPTI 1
toptitne= ¢ 1t Ty OPTIME2+ OPTIME3+ OPTIME4+OPTIMES+ OPTIMEG+
O neci tARRT),
assign:DD=tnow+0r ¢ ptie
count:4, [:next: brur

r5 delay:LAMD: 5

duplicate: 1 o?

assign:TYPI: 5N ' I NTRANCE:
OPTI:1
OPTIL 152 = 04
OPTINI:S
OPTIMI 1]
OPTI:A
OPTINVIC
OPTIa:
toptitne= O "Lt OPTIME2+ OPTIME3+ OPTIME4+OPTIMES+ OPTIMEG+

OIS atARRT);,
assign:DD=tnonvw b #0pinne);
count:s, Lnexittran o

N

6 delay:LAMD.A0;
duplicate: I.rt
asstgn: TYPE= 2N 60 1L NTRANCE:

OorTILIb 5

OPTL: 112
OoPTL. I3 7
OPTIRIEL 1
OPTINMIDS |

OPTINIEN S
OPTIMIET 6
toptitne=: €111 1+ OPTIME2+ OPTIME3+ OPTIME4+OPTIMES+ OPTIMEG6+
OPTINET ot ARRT);
assign:DD=00 w8 pinine):
count:6. e -itrans).

trans gueuc AT O
requestAGVEDS
transporCAGY 510
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Sheet 1:(Cont’d)

station.2-8:

frec:AGV;
assign:od=14:
assign:poptime=:popline: +optime;
assign:od=arrt- ¢ (debarrn/toptime) *poptime);
assign:MODD: maxe el iow4optime);
branch .t ruies=1i pl
ifrule= "2 p
il rule= oo
pl assigniprioritss aptioe e xt(q);
p2 assignipricrity. diestig
p3 assign:pricrite: OO D mexu(q);
13 assign:MODD=m 1od tiess +optime):temp I =m;
queue, M+
wail:tempt:
q queue,M:
scize:M-1;
delay:OPTIMI
assignitenmip=ngom) - aext(l4);

12 remove: [l 3
14 assignitemp=terp-

branch, I
i ==l
clwe 12
11 signaln:
delay:0.0000T:
release:M-Tnesiit s,

station STATENT T
frec:AGV:
tally:type.intt, A RRT -
countitype+6.1:
tally:type+6.am=thiinow Dl
branch, il e < ddot]:
i, mow - el 12,
tl  count:type+!i 1ede pos
t2  counttype+li b por

creale, 1.9200:

swrite (o outpout il

;averge (vpe 1,2.3.0.5.0 b sndiness

;averge type 1,231,560 0b thov time

: machine util M1t MY

: counter for number of ©ope b +-1.5,6 jobs tardy

s counter Tor total number ol ey 1.2,3,4,5,6 jobs processed

write,OUT eS8 s 1 18.1,18.1,8.1,18.1,f8.1,
(%0 08108 1.18.1,£8.3,18.3,18.3,18.3,
CL 3 IR0 008U 1,08.1,18.1,8.1,18.1,
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oSO S8 LES D T
Sheet 1:(Cont’¢ )

i wtardine oot job 1), lavg(lardiness of job 2),

o ervndine- or job 3),tavg(tardiness of job 4),

tecertndine ooof job 5),tavg(tardiness of job 6),

tvedd LOW T OF JOB 1),tavg(FLOW TIME OF JOB 2),
ot OW T INIE OF JOB 3),tavg(FLOW TIME OF JOB 4),

e DOV TN OF JOB 5),tavg(FLOW TIME OF JOB 6),
ovyca My EHL UL DAVG(M2 UTIL U2),DAVG(M3 UTIL U3),
s CaM T U4),DAVG( MS UTIL US),DAVG(M6 UTIL U6),
oMy i, Uy,

nediotype bjobs tardy),ne(# of type 2 jobs tardy),

neciof type S obs tardy),ne(# of type 4 jobs tardy),

neri o type S jobs tardy),ne(# of type 6 jobs tardy),

noci oo type 1obs processed),ne(# of type 2 jobs processed),

oo aype by processed),nc(# of type 4 jobs processed),
noseype o bs processed),ne(# of type 6 jobs processed),:dispose;
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Sheet 2:
System Simulation SIN.\ N Experimental Frame

begin;
projecl.exp #4 Large 3 em e, SOUHEYL TOUHAMI,

attributes:optime L :e.ptin:e2:oprime 3:optimed:
optimeS:opainet:optine- 7
TYPLHARE T PTEAE TOPTIME:POPTIME: DD:
OD:MOD i omp
LAMDAT S IDA T AMDAJ3:LAMDA4:LAMDAS:LAMDAG:priority:rule;

variables:tcmp;

stations: ENTRANC T 1825300088
SOST:STATHONENT)

queuces: | .AGVQ:
2,QLLVE(PRIDIT YY)
3,Q2.LVE(PRIOITY):
4,Q3.LVE(PRINITIY):
5,Q4 1.VF(PRIOETTY):
6,Q5.1.VI(PRIOEITY):
7,Q0.LVE(PRIOITIY):
8, Q7. LVEPRINITIY):
9,Q21 LVIEPRICHITY
10.Q22. L VEPE Ty
1L.Q23 LVEPEIORITY)
12,Q2: LLVEPRIOEITY ),
13,Q25. LVIPRIONITY i
14,Q26. 1. VEPRIONITY )
15.Q27 LVIHP2IONITY v,

resources:MACHIN 1907 TACH! 1:2:MACHINE3:MACHINE4:
MACHINL S NMACHTL 1 6:MACHINE?7;

sequences: sl OPTIME = aprime] &
$3, OPTIMIE == ptime.? &
s2 . OPTIMIE = optimie ? &
s OPTIMIE optimie L &
STATIONI' X!

2,51 OPTIME - optime | &
SOOOPTINVE opline X
S3LCOPTEME ptime = &
STATIONI X

3,53 OPTIMI - optime ] &
s OPTIME = oplime A
$2 . OPTIM L = oplime = &
STATIONI NV
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Sheet 2:(Cont’d;

4.6 OPTIAL optine ! &
S2LOOPTIMIED aptime » &
s OPTIMI: = optime s &
§7 . OPTIMLE = optime | X
s1OOPTIMIL = optimies &
STATIONEXTT:

S5.83 . OPTIME optimie | &
SSOOPTIMIE. optime ™ &
SEOOPTIME plinges + &
S7.0OPTIN plime | &
2. 0PTIMIL - aplime s &
sO . OPTIMLE = optimen &

STATIONE LT

6,52 . OPTIMI = optimic] &
S5 OPTIMI - optimie * &
sSECOPTIME ptine @&
STOOPTIME ptime b &
SO COPTINIT cooplimie - &
S3COPTINE oplimiers &
s OPTIMI: = optime/ &
STATIONIEXIT:

transporters: LAGY 3.1 10;

distances: 1. 1-9200 1015 10.20.19.15,16/

106151 14104
Sl U sy
OO 1 18106

Dol TR
[y 1S/
=9/

1)

tallies: 1.I'L.OW T2 O JOL |

2ELOW TN OF 1O 2
SEFLOW TIN OFF )01 3:
SELOW TN OF O 4:
SELOW TINT OF JOLS:

O LOW TIN. OF JOB 6
7 TARDINESL OFF JOB 1
STARDINGS G OF OB 2:
OTARDINES S O JOB 3:
TOTARDEST S O 10 4.
P TARDINESS O 1OB S:
I2.TARDEST NS O 1013 6,

counters: 1. O P

103 ~RRIVED:

2# O TYDPE i3S APRIVED:
340 TYPE Y IOBS APRIVED:
4.# OITYPI A 1OBS AP PIVED:
S#OFTYPE 51088 ARPIVED:
6,# O TYPL 6. JOBS ARRIVED:
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74O °TYPE L IOBS PROCESSED:
SHOITYPL 2 10BS PROCESSED:
9# OFTYPE 3 10OBS PROWESSED:

104 O
11401
12,# OF
13.4 Ol
14.4# 0Ol
I5.# O
16.4 OF
17.# OF
18,# Ol
19,# OF
20.4 Ol
214601
224 O .
234 01TY P

TYPI:
TYPI:
TYPL:
TY I
TYPI. .
TY P
TYPE:
TYPI:
TYPE
TYPI:
TY P
P -
TP

(

H1OBS PiOCESSED:
S IOBS PEOCESSED:
JOBS PPOCESSED:

J

1OBS ontime:
IOBS onime:

SIOBS ontime:

244 O1FTYPL 6

10OBS ontime:
10BS onnme:
TOBS ontime:
IOBS totly:
TOBS tidy:
JOBS e
LEOBS e Ly

FOBS tdy:

IOBS tedy;

dstats:NQIAGV Q) WP for AGVs;
NTAGV /3T ZATION of AGVs:
NQ(OQ 1), WIDP (o (3]
NQOQ2).WIP for (2
NOQUOQILWIP f 0
NQEO- LW Lor 7 |

NQUOLWIP
NQQOLWIP [
NQQ7). WIP 1«
NR(MACHINI:
NR(MACHINI-
NR(MACHINI:
NR(MACHINI:
NR(MACHINT

NR(MACHINI

NR(MACHENT -

i

VA
Dy
W)l
Feallh uUTi Ul
2. N2 UL U2

Lo UTH U3
Pos U U4

SCAIS UL US:
Hox6 U U6

Ui Ut

files: 1INt Tinona SEQUIPEE:
2,0UT."14_tout.nu: .Sk .1ree;

replicate. 1000.0.9200 1540
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Input Data Gener:lor S'MAN Model Frame

begin;
create. 1000

assign: LARIDAT =17 [ 2001000 ]):

LAMDA2=U R 00100,
LAMDAG=U NI 100,
LAMD A= 1101100, 1)
LAMDAS=1NIT 1100,
LAMDAGSUNT 010000
RUILLDISCEL 2300 37):

k=DIScol/s20 0 YUK 1/8,5,5/8,6,6/8,7,7/8,8,1,9,8);

write N E ] o i1y 'DA2,LAMDA3LAMDA4,LAMDAS LAMDAG,RULE k:dispose

Input iala Generaior STVIAN Experimental Frame

begin;
project.INPUT AT - REATION, SOUHEYL TOUHAMI,

attributes: I ATy

AN A
AN
LAMDA T
FLLAMDAS:
LAMIDAG:
RULLY:

[
!

seeds: 1.307: 2005 s

5. 7485:0. 3050 G 05.750.:9,4476:10,376;

files: ILIN."(<b Tinnnn " S EQ PR,
replicatc:
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