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a b s t r a c t

Gaussian mixture models (GMM), commonly used in pattern recognition and machine learning, provide

a flexible probabilistic model for the data. The conventional expectation–maximization (EM) algorithm

for the maximum likelihood estimation of the parameters of GMMs is very sensitive to initialization

and easily gets trapped in local maxima. Stochastic search algorithms have been popular alternatives

for global optimization but their uses for GMM estimation have been limited to constrained models

using identity or diagonal covariance matrices. Our major contributions in this paper are twofold. First,

we present a novel parametrization for arbitrary covariance matrices that allow independent updating

of individual parameters while retaining validity of the resultant matrices. Second, we propose an

effective parameter matching technique to mitigate the issues related with the existence of multiple

candidate solutions that are equivalent under permutations of the GMM components. Experiments on

synthetic and real data sets show that the proposed framework has a robust performance and achieves

significantly higher likelihood values than the EM algorithm.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Gaussian mixture models (GMMs) have been one of the most
widely used probability density models in pattern recognition and
machine learning. In addition to the advantages of parametric
models that can represent a sample using a relatively small set of
parameters, they also offer the ability of approximating any con-
tinuous multi-modal distribution arbitrarily well like nonparametric
models by an appropriate choice of its components [1,2]. This
flexibility of a convenient semiparametric nature has made GMMs
a popular choice for both density models in supervised classification
and cluster models in unsupervised learning problems.

The conventional method for learning the parameters of a
GMM is maximum likelihood estimation using the expectation–
maximization (EM) algorithm. Starting from an initial set of
values, the EM algorithm iteratively updates the parameters by
maximizing the expected log-likelihood of the data. However, this
procedure has several issues in practice [1,2]. One of the most
important of these issues is that the EM algorithm easily gets
trapped in a local maximum as the objective being a non-concave
optimization problem. Moreover, there is also the associated
ll rights reserved.
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problem of initialization as it influences which local maximum
of the likelihood function is attained.

The common approach is to run the EM algorithm many times
from different initial configurations and to use the result corre-
sponding to the highest log-likelihood value. However, even with
some heuristics that have been proposed to guide the initializa-
tion, this approach is usually far from providing an acceptable
solution especially with increasing dimensions of the data space.
Furthermore, using the results of other algorithms such as
k-means for initialization is also often not satisfactory because there
is no mechanism that can measure how different these multiple
initializations are from each other. In addition, this is a very indirect
approach as multiple EM procedures that are initialized with
seemingly different values might still converge to similar local
maxima. Consequently, this approach may not explore the solution
space effectively using multiple independent runs.

Researchers dealing with similar problems have increasingly
started to use population-based stochastic search algorithms where
different potential solutions are allowed to interact with each other.
These approaches enable multiple candidate solutions to simulta-
neously converge to possibly different optima by making use of the
interactions. Genetic algorithm (GA) [3–7], differential evolution
(DE) [8], and particle swarm optimization (PSO) [9–12] have been
the most common population-based stochastic search algorithms
used for the estimation of some form of GMMs. Even though these
approaches have been shown to perform better than non-stochastic
alternatives such as k-means and fuzzy c-means, the interaction
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mechanism that forms the basis of the power of the stochastic
search algorithms has also limited the use of these methods due to
some inherent assumptions in the candidate solution parametriza-
tion. In particular, the interactions in the GA, DE, and PSO algorithms
are typically implemented using randomized selection, swapping,
addition, and perturbation of the individual parameters of the
candidate solutions. For example, the crossover operation in GA
and DE randomly selects some parts of two candidate solutions to
create a new candidate solution during the reproduction of the
population. Similarly, the mutation operation in GA and DE and the
update operation in PSO perturb an existing candidate solution
using a vector that is created using some combination of random
numbers and other candidate solutions. However, randomized
modification of individual elements of a covariance matrix indepen-
dently does not guarantee the result to be a valid (i.e., symmetric
and positive definite) covariance matrix. Likewise, partial exchanges
of parameters between two candidate solutions lead to similar
problems. Hence, these problems confined the related work to
either use no covariance structure (i.e., implicitly use identity
matrices centered around the respective means) [7–10,12] or con-
strain the covariances to be diagonal [3,11]. Consequently, most of
these approaches were limited to the use of only the mean vectors
in the candidate solutions and to the minimization of the sum of
squared errors as in the k-means setting instead of the maximization
of a full likelihood function. Full exploitation of the power of GMMs
involving arbitrary covariance matrices estimated using stochastic
search algorithms benefits from new parametrizations where the
individual parameters are independently modifiable so that the
resulting matrices remain valid covariance matrices after the
stochastic updates and have finite limits so that they can be
searched within a bounded solution space. In this paper, we present
a new parametrization scheme that satisfies these criteria and
allows the estimation of generic GMMs with arbitrary covariance
matrices.

Another important problem that has been largely ignored in the
application of stochastic search algorithms to GMM estimation
problems in the pattern recognition literature is identifiability. In
general, a parametric family of probability density functions is
identifiable if distinct values of the parameters determine distinct
members of the family [1,2]. For mixture models, the identifiability
problem exists when there is no prior information that allows
discrimination between its components. When the component
densities belong to the same parametric family (e.g., Gaussian),
the mixture density with K components is invariant under the K!
permutations of the component labels (indices). Consequently, the
likelihood function becomes invariant under the same permutation,
and this invariance leads to K! equivalent modes, corresponding to
equivalence classes on the set of mixture parameters. This lack of
uniqueness is not a cause for concern for the iterative computation of
the maximum likelihood estimates using the EM algorithm, but can
become a serious problem when the estimates are iteratively
computed using simulations when there is the possibility that the
labels (order) of the components may be switched during different
iterations [1,2]. Considering the fact that most of the search
algorithms depend on the designed interaction operations, perfor-
mances of the operations that assume continuity or try to achieve
diversity cannot work as intended, and the discontinuities in the
search space will make it harder for the search algorithms to find
directions of improvement. In an extreme case, the algorithms will
fluctuate among different solutions in the same equivalence class,
hence, among several equivalent modes of the likelihood function,
and will have significant convergence issues. In this paper, we
propose an optimization framework where the optimal correspon-
dences among the components in two candidate solutions are found
so that desirable interactions become possible between these
solutions.
It is clear that a formulation that involves unique, indepen-

dently modifiable, and bounded parameters is highly desired for
effective utilization of stochastic search algorithms for the max-
imum likelihood estimation of unrestricted Gaussian mixture
models. Our major contributions in this paper are twofold: we
present a novel parametrization for arbitrary covariance matrices
where the individual parameters can be independently modified
in a stochastic manner during the search process, and describe an
optimization formulation for resolving the identifiability problem
for the mixtures. Our first contribution, the parametrization, uses
eigenvalue decomposition, and models a covariance matrix in
terms of its eigenvalues and Givens rotation angles extracted
using QR factorization of the eigenvector matrices via a series of
Givens rotations. We show that the resulting parameters are
independently modifiable and are bounded so they can be
naturally used in different kinds of stochastic global search
algorithms. We also describe an algorithm for ordering the
eigenvectors so that the parameters of individual Gaussian
components are uniquely identifiable.

As our second major contribution, we propose an algorithm for
ordering of the Gaussian components within a candidate solution
for obtaining a unique correspondence between two candidate
solutions during their interactions for parameter updates
throughout the stochastic search. The correspondence identifica-
tion problem is formulated as a minimum cost network flow
optimization problem where the objective is to find the corre-
spondence relation that minimizes the sum of Kullback–Leibler
divergences between pairs of Gaussian components, one from
each of the two candidate solutions. We illustrate the proposed
parametrization and identifiability solutions using PSO for density
estimation. An early version of this paper [13] presented initial
experiments on clustering.

The rest of the paper is organized as follows. Section 2
discusses the related work. Section 3 establishes the notation
and defines the estimation problem. Section 4 summarizes the EM
approach for GMM estimation. Section 5 presents the details of
the proposed covariance parametrization and the solution for the
identifiability problem. Section 6 describes the PSO framework
and its adaptation as a stochastic search algorithm for GMM
estimation. Section 7 presents the experiments and discussion
using both synthetic and real data sets. Finally, Section 8 provides
the conclusions of the paper.
2. Related work

As discussed in the previous section, existing work on the use
of stochastic search algorithms for GMM estimation typically uses
only the means [7–10,12] or means and standard deviations alone
[3,11] in the candidate solutions. Exceptions where both mean
vectors and full covariance matrices were used include [4,5]
where EM was used for the actual local optimization by fitting
Gaussians to data in each iteration and GA was used only to guide
the global search by selecting individual Gaussian components
from existing candidate solutions in the reproduction steps.
However, treating each Gaussian component as a whole in the
search process and fitting it locally using the EM iterations may
not explore the whole solution space effectively especially in
higher dimensions. Another example is [6] where two GA alter-
natives for the estimation of multidimensional GMMs were
proposed. The first alternative encoded the covariance matrices
for d-dimensional data using dþd2 elements where d values
corresponded to the standard deviations and d2 values repre-
sented a correlation matrix. The second alternative used d runs of
a GA for estimating 1D GMMs followed by d runs of EM starting
from the results of the GAs. Experiments using 3D synthetic data
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showed that the former alternative was not successful and the
latter performed better. The parametrization proposed in this
paper allows the use of full covariance matrices in the GMM
estimation.

The second main problem, identifiability, that we investigate
in this paper is known as ‘‘label switching’’ in the statistics
literature for the Bayesian estimation of mixture models using
Markov chain Monte Carlo (MCMC) strategies. The label switching
corresponds to the interchanging of the parameters of some of the
mixture components and the invariance of the likelihood function
as well as the posterior distribution for a prior that is symmetric
in the components under such permutations [2]. Proposed solu-
tions to label switching include artificial identifiability constraints
that involve relabeling of the output of the MCMC sampler based
on some component parameters (e.g., sorting of the components
based on their means for 1D data) [2], deterministic relabeling
algorithms that select a relabeling at each iteration that mini-
mizes the posterior expectation of some loss function [14,15], and
probabilistic relabeling algorithms that take into consideration
the uncertainty in the relabeling that should be selected on each
iteration of the MCMC output [16].

Even though the label switching problem also applies to the
population-based stochastic search procedures, only a few pat-
tern recognition studies (e.g., only [6,7] among the ones discussed
above) mention its existence during GMM estimation. In parti-
cular, Tohka et al. [6] ensured that the components in a candidate
solution were ordered based on their means in each iteration. This
ordering was possible because 1D data were used in the experi-
ments but such artificial identifiability constraints are not easy to
establish for multivariate data. Since they have an influence on
the resulting estimates, these constraints are also known to lead
to over- or under-estimation [2] and create a bias [14]. Chang
et al. [7] proposed a greedy solution that sorted the components
of a candidate solution based on the distances of the mean vectors
of that solution to the mean vectors of a reference solution that
achieved the highest fitness value. However, such heuristic
orderings depend on the ordering of the components of the
reference solution that is also arbitrary and ambiguous. The
method proposed in this paper can be considered as a determi-
nistic relabeling algorithm according to the categorization of label
switching solutions as discussed above. It allows controlled
interaction of the candidate solutions by finding the optimal
correspondences among their components, and enables more
effective exploration of the solution space.

In addition to the population-based stochastic search techni-
ques, alternative approaches to the basic EM algorithm also
include methods for reducing the complexity of a GMM by trying
to estimate the number of components [17,18] or by forcing a
hierarchical structure [19,20]. This paper focuses on the conven-
tional problem with a fixed number of components in the
mixture. However, the above-mentioned techniques will also
benefit from the contributions of this paper as it is still important
to be able to find the best possible set of parameters for a
given complexity because of the existing multiple local maxima
problem. There are also other alternatives that use iterative
simulation techniques such as Monte Carlo EM, imputation-
posterior algorithm for data augmentation, and Markov chain
Monte Carlo EM that define priors for the unknown parameters
and replace the E and M steps by draws from conditional
distributions computed using these priors [21]. Since these
algorithms are not population-based methods and are generally
used for more complicated mixture models rather than the
standard GMMs, they are out of the scope of this paper. However,
our proposed parametrization can also be used in these
approaches by providing alternative choices for defining the
priors.
3. Problem definition: GMM estimation

The paper uses the following notation. R denotes the set of
real numbers, Rþ denotes the set of nonnegative real numbers,
Rþ þ denotes the set of positive real numbers, Rd denotes the set
of d-dimensional real vectors, and S

d
þ þ denotes the set of

symmetric positive definite d� d matrices. Vectors and matrices
are denoted by lowercase and uppercase bold letters, respectively.

We consider a family of mixtures of K multivariate Gaussian
distributions in Rd indexed by the set of parameters H¼
fa1, . . . ,aK ,h1, . . . ,hKg. Each hk ¼ flk,Rkg represents the parameters
of the kth Gaussian distribution pkðx9hkÞ such that lkARd and
RkAS

d
þ þ are the means and the covariance matrices, respec-

tively, for k¼1,y,K. Mixing probabilities akA ½0;1� are con-
strained to sum up to 1, i.e.,

PK
k ¼ 1 ak ¼ 1. Given a set of N data

points X ¼ fx1, . . . ,xNg where xjARd are independent and identi-
cally distributed (i.i.d.) according to the mixture probability
density function pðx9HÞ ¼

PK
k ¼ 1 akpkðx9hkÞ, the objective is to

obtain the maximum likelihood estimate Ĥ by finding the
parameters that maximize the log-likelihood function

log LðH9XÞ ¼ log pðX9HÞ ¼
XN

j ¼ 1

log
XK

k ¼ 1

akpkðxj9hkÞ

 !
: ð1Þ

Since the log-likelihood function typically has a complicated
structure with multiple local maxima, an analytical solution for Ĥ
that corresponds to the global maximum of (1) cannot be
obtained by simply setting the derivatives of log LðH9X Þ to zero.
The common practice for reaching a local maximum of the log-
likelihood function is to use the expectation–maximization (EM)
algorithm that iteratively updates the parameters of individual
Gaussian distributions in the mixture. For completeness and to
set up the notation for the rest of the paper, we briefly present the
EM algorithm in the next section. The proposed solution to the
maximum likelihood estimation problem is described in the
following section.
4. GMM estimation using expectation–maximization

In this section we present a review of the EM algorithm and its
application to GMM estimation. Details of this review can be
found in [1,2]. Since the log-likelihood in (1) is not a concave
function, gradient descent-based algorithms typically converge to
a local optimum. One of the commonly used techniques for
efficient search of a local optimum is provided by the EM
algorithm. In the EM approach to the GMM estimation problem,
the given data, X , is considered as incomplete data, and a set of N

latent variables Y ¼ fy1, . . . ,yNg are defined where each yj indi-
cates which Gaussian component generated the data vector xj.
In other words, yj ¼ k if the jth data vector was generated by the
kth mixture component. Instead of the log-likelihood function,
the EM algorithm maximizes an auxiliary function Q ðH,UÞ.
Q ðH,UÞ is a function of both the parameters H and the assign-
ments U¼ fwjkg of the data vectors to the Gaussian components
for j¼ 1, . . . ,N and k¼ 1, . . . ,K .

This auxiliary function

Q ðH,UÞ ¼
XN

j ¼ 1

XK

k ¼ 1

wjk logðakpkðxj9hkÞÞ�
XN

j ¼ 1

XK

k ¼ 1

wjklogðwjkÞ ð2Þ

is a lower bound to the log-likelihood function for any parameters
H and assignments U, i.e., log LðH9X ÞZQ ðH,UÞ. When Q ðH,UÞ is
maximized over assignments U that are set to be the posterior
probabilities ~U where wjk ¼ Pðyj ¼ k9xj,HÞ, it has the same
value as the log-likelihood function, i.e., log LðH9X Þ ¼Q ðH, ~UÞ.
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On the other hand, when Q ðH,UÞ is maximized over parameters
~H, we have Q ð ~H,UÞZQ ðH,UÞ.

The GMM-EM algorithm is based on these two properties of
the Q function. Starting from a set of initial parameters, the
algorithm finds a local maximum for the log-likelihood function
by alternatingly maximizing the Q function over the assignments
U and the parameters H. Maximization over the assignments is
called the expectation step as the assignments

wðtÞjk ¼ Pðyj ¼ k9xj,H
ðtÞ
Þ ¼

aðtÞk pkðxj9h
ðtÞ
k ÞPK

i ¼ 1 a
ðtÞ
i piðxj9h

ðtÞ
i Þ

ð3Þ

make the log-likelihood function, that is also referred to as the
incomplete likelihood, equal to the expected complete likelihood.
Maximization of the Q function over the parameters is referred to
as the maximization step, and results in the parameter estimates

âðtþ1Þ
k ¼

1

N

XN

j ¼ 1

wðtÞjk ð4Þ

l̂ðtþ1Þ
k ¼

PN
j ¼ 1 wðtÞjk xjPN

j ¼ 1 wðtÞjk

ð5Þ

R̂
ðtþ1Þ

k ¼

PN
j ¼ 1 wðtÞjk ðxj�l̂ðtþ1Þ

k Þðxj�l̂ðtþ1Þ
k Þ

TPN
j ¼ 1 wðtÞjk

ð6Þ

where t indicates the iteration number.
Table 1
Simulation of the construction of a covariance matrix from three existing

covariance matrices. Given the input matrices S1, S2, and S3, a new matrix is

constructed as Snew ¼S1þðS2�S3Þ in an arithmetic operation that is often found

in many stochastic search algorithms. This operation is repeated for 100,000 times

for different input matrices at each dimensionality reported in the first row. As

shown in the second row, the number of Snew that is positive definite, i.e., a valid

covariance matrix, decreases significantly at increasing dimensions. This shows

that the entries in the covariance matrix cannot be directly used as parameters in

stochastic search algorithms.

Dimension 3 5 10 15 20 30

# valid 44,652 27,443 2882 103 1 0
5. GMM estimation using stochastic search

Since the EM algorithm converges to a local optimum, in its
application to the GMM parameter estimation problem, the
common practice is to use multiple random initializations to find
different local maxima, and to use the result corresponding to the
highest log-likelihood value. As discussed in Section 1, an alter-
native is to use population-based stochastic search algorithms
where different candidate solutions are allowed to interact with
each other. However, the continuation of the iterations that
search for better candidate solutions assume that the parameters
remain valid both in terms of the requirements of the GMM and
with respect to the bounds enforced by the data. The validity and
boundedness of the mean vectors are relatively easy to imple-
ment but direct use of covariance matrices introduce problems.
For example, one might consider to use d(dþ1)/2 potentially
different entries of a real symmetric d� d covariance matrix as a
direct parametrization of the covariance matrix. Although this
ensures the symmetry property, it cannot guarantee the positive
definiteness where arbitrary modifications of these entries may
produce non-positive definite matrices. This is illustrated in
Table 1 where a new covariance matrix is constructed from three
valid covariance matrices in a simple arithmetic operation. Even
though the input matrices are positive definite, the output matrix
is often not positive definite for increasing dimensions. Another
possible parametrization is to use Cholesky factorization but the
resulting parameters are unbounded (real numbers in the
ð�1,1Þ range). Therefore, lack of a suitable parametrization for
arbitrary covariance matrices has limited the flexibility of the
existing approaches in modeling the covariance structure of the
components in the mixture.

In this section, first, we propose a novel parametrization where
the parameters of an arbitrary covariance matrix are indepen-
dently modifiable and can have upper and lower bounds. We also
describe an algorithm for unique identification of these para-
meters from a valid covariance matrix. Then, we describe a new
solution to the mixture identifiability problem where different
orderings of the Gaussian components in different candidate
solutions can significantly affect the convergence of the search
procedure. The proposed approach solves this issue by using a
two-stage interaction between the candidate solutions. In the first
stage, the optimal correspondences among the components of
two candidate solutions are identified. Once these correspon-
dences are identified, in the second stage, desirable interactions
such as selection, swapping, addition, and perturbation can be
performed. Both the proposed parametrization and the solutions
for the two identifiability problems allow effective use of popula-
tion-based stochastic search algorithms for the estimation
of GMMs.
5.1. Covariance parametrization

The proposed covariance parametrization is based on eigen-
value decomposition of the covariance matrix. For a given
d-dimensional covariance matrix RAS

d
þ þ , let fli,mig for i¼1,y,d

denote the eigenvalue–eigenvector pairs in a particular order
where liARþ þ for i¼1,y,d correspond to the eigenvalues and
miARd such that JmiJ2 ¼ 1 and mT

i mj ¼ 0 for ia j represent the
eigenvectors. A given d-dimensional covariance matrix R can be
written in terms of its eigenvalue–eigenvector pairs as
R¼

Pd
i ¼ 1 limim

T
i . Let the diagonal matrix K¼ diagðl1, . . . ,ldÞ

denote the eigenvalue matrix, and the unitary matrix V¼
ðm1, . . . ,mdÞ denote the corresponding eigenvector matrix where
the normalized eigenvectors are placed into the columns of V in the
order determined by the corresponding eigenvalues in K. Then, the
given covariance matrix can be written as R¼VKVT .

Due to its symmetric structure, an arbitrary d-dimensional
covariance matrix has d(dþ1)/2 degrees of freedom; thus, at most
d(dþ1)/2 parameters are needed to represent this matrix. The
proposed parametrization is based on the following theorem.
Theorem 1. An arbitrary covariance matrix with d(dþ1)/2 degrees of

freedom can be parametrized using d eigenvalues in a particular order

and dðd�1Þ=2 Givens rotation matrix angles fpqA ½�p=4;3p=4� for

1rpoqrd computed from the eigenvector matrix whose columns

store the eigenvectors in the same order as the corresponding

eigenvalues.

The proof is based on the following definition, proposition, and
lemma. An example parametrization for a 3�3 covariance matrix
is given in Fig. 1.
Definition 1. A Givens rotation matrix Gðp,q,fpq
Þ with three input

parameters corresponding to two indices p and q that satisfy poq,



Fig. 1. Example parametrization for a 3�3 covariance matrix. The example matrix can be parametrized using fl1 ,l2 ,l3 ,f12 ,f13 ,f23
g ¼ f4;1,0:25,p=3,p=6,p=4g. The ellipses

from right to left show the covariance structure resulting from each step of premultiplication of the result of the previous step, starting from the identity matrix.
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and an angle fpq has the form

Gðp,q,fpq
Þ ¼

1 � � � 0 � � � 0 � � � 0

^ & ^ ^ ^

0 � � � cosðfpq
Þ � � � sinðfpq

Þ � � � 0

^ ^ & ^ ^

0 �sinðfpq
Þ � � � cosðfpq

Þ � � � 0

^ ^ ^ & ^

0 � � � 0 � � � 0 � � � 1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
: ð7Þ

Premultiplication by Gðp,q,fpq
Þ
T corresponds to a counterclockwise

rotation of f radians in the plane spanned by two coordinate axes
indexed by p and q [22].

Proposition 1. A Givens rotation can be used to zero a particular

entry in a vector. Given scalars a and b, the c¼ cosðfÞ and s¼ sinðfÞ
values in (7) that can zero b can be computed as the solution of

c s

�s c

� �T a

b

� �
¼

h

0

� �
ð8Þ

using the following algorithm [22]
if b¼ 0 then
c¼1; s¼0

else

if 9b949a9 then

t¼�a=b; s¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þt2
p

; c¼ st
else

t¼�b=a; c¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þt2
p

; s¼ ct
end if

end if
where f can be computed as f¼ arctanðs=cÞ. The resulting Givens

rotation angle f is in the range ½�p=4;3p=4� by definition (because

of the absolute values in the algorithm).

Lemma 1. An eigenvector matrix V of size d� d can be written as a

product of dðd�1Þ=2 Givens rotation matrices whose angles lie in the

interval ½�p=4;3p=4� and a diagonal matrix whose entries are either

þ1 or �1.
Proof. Existence of such a decomposition can be shown by using
QR factorization via a series of Givens rotations. QR factorization
decomposes any real square matrix into a product of an ortho-
gonal matrix Q and an upper triangular matrix R, and can be
computed by using Givens rotations where each rotation zeros an
element below the diagonal of the input matrix. When the QR
algorithm is applied to V, the angle fpq for the given indices p and q

is calculated using the values Vðp,pÞ and Vðq,pÞ as the scalars a and
b, respectively, in Definition 1, and then, V is premultiplied with the
transpose of the Givens rotation matrix as Gðp,q,fpq

Þ
T V where G is

defined in Definition 1. This multiplication zeros the value Vðq,pÞ.
This process is continued for p¼ 1, . . . ,d�1 and q¼ pþ1, . . . ,d,
resulting in the orthogonal matrix

Q ¼
Yd�1

p ¼ 1

Yd

q ¼ pþ1

Gðp,q,fpq
Þ ð9Þ

and the triangular matrix

R¼Q T V: ð10Þ

Since the eigenvector matrix V is orthogonal, i.e., VT V¼ I,

RT Q T QR¼ I leads to RT R¼ I because Q is also orthogonal. Since

R should be both orthogonal and upper triangular, we conclude

that R is a diagonal matrix whose entries are either þ1 or

�1. &

Proof of Theorem 1. Following Lemma 1, an eigenvector matrix V
in which the eigenvectors are stored in a particular order can be
written using dðd�1Þ=2 angle parameters for the Q matrix and an
additional d parameters for the R matrix. However, since both mi and
�mi are valid eigenvectors (Rmi ¼ limi and Rð�miÞ ¼ lið�miÞ), we can
show that those additional d parameters for the diagonal of R are
not required for the parametrization of eigenvector matrices.

This follows from the invariance of the Givens rotation angles to

the rotation of the eigenvectors with p radians such that when

any column of the V matrix is multiplied by �1, only the R matrix

changes, while the Q matrix, hence the Givens rotation angles,

do not change. To prove this invariance, let P ¼ fP9PARd�d,Pði,jÞ ¼

0,8ia j, and Pði,iÞAfþ1,�1g for i¼ 1, . . . ,dg be a set of modification
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matrices. For a given PAP, define V̂ ¼VP. Since V¼QR, we have

V̂ ¼QRP. Then, defining R̂ ¼RP gives V̂ ¼Q R̂ . Since Q did not

change and R̂ ¼RP is still a diagonal matrix whose entries are either

þ1 or �1, it is a valid QR factorization. Therefore, we can conclude

that there exists a QR factorization V̂ ¼QR̂ with the same Q matrix

as the QR factorization V¼QR.

The discussion above shows that the dðd�1Þ=2 Givens rotation

angles are sufficient for the parametrization of the eigenvectors

because the multiplication of any eigenvector by �1 leads to the

same covariance matrix R, i.e.,

R¼
Xd

i ¼ 1, ia j

limim
T
i þljð�mjÞð�mjÞ

T

¼
Xd

i ¼ 1, ia j

limim
T
i þljðmjÞðmjÞ

T

¼
Xd

i ¼ 1

limim
T
i ð11Þ

Finally, together with the d eigenvalues, the covariance matrix

can be constructed as R¼ VKVT . &

5.2. Identifiability of individual Gaussians

Theorem 1 assumes that the eigenvalue–eigenvector pairs are
given in a particular order. However, since any d-dimensional
covariance matrix RAS

d
þ þ can be written as R¼

Pd
i ¼ 1 limim

T
i

Table 2
To demonstrate its non-uniqueness, all equivalent parametrizations of the

example covariance matrix given in Fig. 1 for different orderings of the eigenva-

lue–eigenvector pairs. The angles are given in degrees. The parameters in the first

row are used in Fig. 1.

l1 l2 l3 f12 f13 f23

4 1 0.25 60.00 30.00 45.00

4 0.25 1 60.00 30.00 �45.00

1 4 0.25 123.43 �37.76 39.23

1 0.25 4 123.43 �37.76 129.23

0.25 4 1 �3.43 �37.76 �39.23

0.25 1 4 �3.43 �37.76 50.77

Fig. 2. Parametrization of 3�3 covariance matrices by using different orderings of t

extracted from Vi as ff12
i ,f13

i ,f23
i g are given for three cases, i¼ 1;2,3. The eigenvecto

proposed in this paper, and the eigenvectors in V3 are ordered in descending order

ff12
1 ,f13

1 ,f23
1 g, reflecting the similarity of the principal directions in V1 and V2, and enab

angles ff12
3 ,f13

3 ,f23
3 g do not show any indication of this similarity, and interactions be

identical.
and there is no inherent ordering of the eigenvalue–eigenvector pairs,
it is possible to write this summation in terms of d! different
eigenvalue and eigenvector matrices as R¼VKVT simply by chan-
ging the order of the eigenvalues and their corresponding eigenvec-
tors in the eigendecomposition matrices K and V. For example, all
equivalent parametrizations of the example covariance matrix in
Fig. 1 are given in Table 2. Furthermore, multiplying any column of
the eigenvector matrix by �1 still gives a valid eigenvector matrix,
resulting in 2d possibilities. Since we showed that there exists a
unique Q matrix and a corresponding set of unique Givens rotation
angles can be extracted via QR factorization in the proof of
Theorem 1, the result is invariant to these 2d possibilities. However,
for an improved efficiency in the global search, it is one of our goals to
pair the parameters between alternate solution candidates before
performing any interactions among them. Therefore, the dependence
of the results on the d! orderings and the resulting equivalence classes
still need to be eliminated.

In order to have unique eigenvalue decomposition matrices,
we propose an ordering algorithm based on the eigenvectors so
that from a given covariance matrix we can obtain uniquely
ordered eigenvalue and eigenvector matrices, leading to a unique
set of eigenvalues and Givens rotation angles as the parameters.
The ordering algorithm uses only the eigenvectors and not the
eigenvalues because the eigenvectors correspond to the principal
directions of the data whereas the eigenvalues indicate the
amount of the extent of the data along these directions. The
dependency of the results on the d! orderings can be eliminated
by aligning the principal directions of the covariance matrices so
that a unique set of angle parameters with similar values for
similarly aligned matrices can be obtained. Fig. 2 illustrates two
different orderings based on eigenvectors and eigenvalues.

The proposed eigenvalue–eigenvector ordering algorithm uses
an orthogonal basis matrix as a reference. In this greedy selection
algorithm,the eigenvector among the unselected ones having the
maximum absolute inner product with the ith reference vector is
put into the ith column in the output matrix. Let
Sin
¼ fflin

1 ,min
1 g, . . . ,fl

in
d ,min

d gg denote the input eigenvalue–eigen-
vector pair set, Vref

¼ ðmref
1 , . . . ,mref

d Þ denote the reference orthogo-
nal basis matrix, Kout

¼ diagðlout
1 , . . . ,lout

d Þ and Vout
¼ ðmout

1 , . . . ,mout
d Þ

denote the final output eigenvalue and eigenvector matrices,and
I be the set of indices of the remaining eigenvalue–eigenvector
pairs that need to be ordered. The ordering algorithm is defined in
Algorithm 1.
he eigenvectors. Eigendecomposition matrices Ki and Vi , and the Givens angles

rs in V2 are ordered according to the eigenvectors of V1 by using the algorithm

of the eigenvalues in K3. The resulting angles ff12
2 ,f13

2 ,f23
2 g are very similar to

ling the interactions to be aware of the similarity between R1 and R2. However, the

tween R1 and R3 will be very different even though the matrices R2 and R3 are
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Fig. 3. Average error in log-likelihood and its standard deviation (shown as error bars at one standard deviation) in 1000 trials for different choices of reference matrices in

eigenvector ordering during the estimation of the covariance matrix of a single Gaussian using stochastic search. Choices for the reference matrix are I: identity matrix, GB:

the eigenvector matrix corresponding to the global best solution, and PB: the eigenvector matrix corresponding to the personal best solution. (a) GA, (b) DE and (c) PSO.
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Algorithm 1. Eigenvector ordering algorithm.
Input: Sin, Vref , I ¼ f1, . . . ,dg

Output: Kout, Vout
1:
 for i¼1 to d do

2:
 in ¼ arg maxjAI 9ðmin

j Þ
T
ðmref

i Þ9
3:
 lout
i ’lin

in
4:
 mout
i ’min

in
5:
 I’I�fing

6:
 end for
Any reference basis matrix Vref in Algorithm 1 will eliminate
the dependency on the d! orderings, and will result in a unique set
of parameters. However, the choice of Vref can affect the con-
vergence of the likelihood during estimation. We performed
simulations to determine the most effective reference matrix
Vref for eigenvector ordering. The maximum likelihood estimation
problem in Section 3 was set up to estimate the covariance matrix
of a single Gaussian as follows. Given a set of N data points
X ¼ fx1, . . . ,xNg where each xjARd is independent and identically
distributed according to a Gaussian with zero mean and covar-
iance matrix R, the log-likelihood function

log LðR9XÞ ¼ �Nd

2
logð2pÞ�N

2
logð9S9Þ�

1

2

XN

j ¼ 1

xT
i S
�1xi ð12Þ

can be rewritten as

log LðR9XÞ ¼ �Nd

2
logð2pÞ�N

2
logð9S9Þ�

N

2
trðS�1XÞ ð13Þ

where X¼ ð1=NÞ
PN

i ¼ 1 xix
T
i . Thus, the maximum likelihood esti-

mate of R can be found as the one that maximizes
logð9S�19Þ�trðS�1XÞ. We solved this maximization problem using
GA, DE, and PSO implemented as in [6,23,24], respectively. For GA
and DE, candidate reference matrices were the identity matrix
and the eigenvector matrix corresponding to the global best
solution. For PSO, candidate reference matrices were the identity
matrix, the eigenvector matrix corresponding to each particle’s
personal best, and the eigenvector matrix corresponding to the
global best particle. For each case, 100 different target Gaussians
(X in (13)) were randomly generated by sampling the eigenvalues
from the uniform distribution Uniform[0.1,1.0] and the Givens rota-
tion angles from the uniform distribution Uniform½�p=4;3p=4�.
This was repeated for dimensions dAf3;5,10;15,20;30g, and the
respective optimization algorithm was used to find the corresponding
covariance matrix (R in (13)) that maximized the log-likelihood using
10 different initializations. Fig. 3 shows the plots of estimation errors
resulting from the 1000 trials. The error was computed as the
difference between the target log-likelihood computed from the true
Gaussian parameters (R¼X) and the resulting log-likelihood com-
puted from the estimated Gaussian parameters. Based on these
results, we can conclude that the eigenvector matrix corresponding
to the personal best solution for PSO, and the eigenvector matrix
corresponding to the global best solution for GA and DE (no personal
best is available in GA and DE) can be used as the reference matrix in
the eigenvector ordering algorithm.

Summary: The discussion above demonstrated that a d-dimen-
sional covariance matrix RASd

þ þ can be parametrized using d

eigenvalues liARþ þ for i¼1,y,d and dðd�1Þ=2 angles
fpqA ½�p=4;3p=4� for 1rpoqrd. We showed that, for a given
covariance matrix, these parameters can be uniquely extracted
using eigenvalue decomposition, the proposed eigenvector order-
ing algorithm that aligns the principal axes of the covariance
ellipsoids among alternate candidate solutions, and QR factoriza-
tion using the Givens rotations method. We also showed
that, given these parameters, a covariance matrix can be gener-
ated from the eigenvalue matrix K¼ diagðl1, . . . ,ldÞ and the
eigenvector matrix V¼

Qd�1
p ¼ 1

Qd
q ¼ pþ1 Gðp,q,fpq

ÞR where R¼ I
as R¼VKVT .

5.3. Identifiability of Gaussian mixtures

Similar to the problem of ordering of the parameters within
individual Gaussian components to obtain a unique set of para-
meters as discussed in the previous section, ordering of the
Gaussian components within a candidate solution is important
for obtaining a unique correspondence between two candidate
solutions during their interactions for parameter updates
throughout the stochastic search. The correspondence identifia-
bility problem that arises from the equivalency of K! possible
orderings of individual components in a candidate solution for a
mixture of K Gaussians affects the convergence of the search
procedure. First of all, when the likelihood function has a mode
under a particular ordering of the components, there exists K!
symmetric modes corresponding to all parameter sets that are in
the same equivalence class formed by the permutation of these
components. When these equivalencies are not known, a search
algorithm may not cover the solution space effectively as equiva-
lent configurations of components may be repeatedly explored. In
a related problem, in the extreme case, a reproduction operation
applied to two candidate solutions that are essentially equal may
result in a new solution that is completely different from its



Fig. 4. Example correspondence relations for two GMMs with three components.

The ellipses represent the true components corresponding to the colored sample

points. The numbered blobs represent the locations of the components in the

candidate solutions. When the parameter updates are performed according to the

component pairs in the default order, some of the components may be updated

based on interactions with components in different parts of the data space.

However, using the reference matching procedure, a more desirable correspon-

dence relation can be found enabling faster convergence. (a) Default correspon-

dence relation and (b) Desired correspondence relation. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of

this article.)

Fig. 5. Optimization formulation for two GMMs with three components shown in

Fig. 4. The correspondences found are shown in red. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of

this article.)
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parents. Secondly, the knowledge of the correspondences helps
performing the update operations as intended. For example, even
for two candidate solutions that are not in the same equivalence
class, matching of their components enables effective use of both
direct interactions and cross interactions. For instance, cross
interactions may be useful to increase diversity; on the other
hand, direct interactions may be more helpful to find local
minima. Without such matching of the components, these inter-
actions cannot be controlled as desired, and the iterations proceed
with arbitrary exploration of the search space. Fig. 4 shows
examples for default and desired correspondence relations for
two GMMs with three components.

We propose a matching algorithm for finding the correct
correspondence relation between the components of two GMMs
to enable interactions between the corresponding components in
different solution candidates. In the following, the correspon-
dence identification problem is formulated as a minimum cost
network flow optimization problem. Although there are other
alternative distance measures that can be used for this purpose,
the objective is set to find the correspondence relation that
minimizes the sum of Kullback–Leibler (KL) divergences between
pairs of Gaussian components. For two Gaussians g1ðx9l1,R1Þ and
g2ðx9l2,R2Þ, the KL divergence has the closed form expression

Dðg1Jg2Þ ¼
1

2
log

9R29
9R19

þtrðR�1
2 R1Þ�dþðl1�l2Þ

TR�1
2 ðl1�l2Þ

 !
:

ð14Þ

Consequently, given a target GMM with parameters ffltar
1 ,Rtar

1 g,

. . . ,fltar
K ,Rtar

K gg and a reference GMM with parameters fflref
1 ,Rref

1 g,

. . . ,flref
K ,Rref

K gg, the cost of matching the ith component of the first

GMM to the jth component of the second GMM is computed as

cij ¼ log
9Rref

j 9

9Rtar
i 9
þtrððRref

j Þ
�1Rtar

i Þþðl
tar
i �lref

j Þ
T
ðRref

j Þ
�1
ðltar

i �lref
j Þ

ð15Þ

and the correspondences are found by solving the following
optimization problem:

minimize
I11 ,...,IKK

XK

i ¼ 1

XK

j ¼ 1

cijIij
subject to
XK

i ¼ 1

Iij ¼ 1, 8jAf1, . . . ,Kg

XK

j ¼ 1

Iij ¼ 1, 8iAf1, . . . ,Kg

Iij ¼

1 correspondence between ith and jth components

0 otherwise

8><
>:

ð16Þ

In this formulation, the first and third constraints force each
component of the first GMM to be matched with only one
component of the second GMM, and the second constraint makes
sure that only one component of the first GMM is matched to each
component of the second GMM. This optimization problem can be
solved very efficiently using the Edmonds–Karp algorithm [25].
Note that the solution of the optimization problem in (16) does not
change under any permutation of the component labels in the
target and reference GMMs. Fig. 5 illustrates the optimization
formulation for the example in Fig. 4. Once the correspondences
are established, the parameter updates can be performed as
intended.

We performed simulations to evaluate the effectiveness of
correspondence identification using the proposed matching algo-
rithm. We ran the stochastic search algorithms GA, DE, and PSO
for maximum likelihood estimation of GMMs that were synthe-
tically generated as follows. The mixture weights were sampled
from a uniform distribution such that the ratio of the largest
weight to the smallest weight was at most 1.3 and all weights
summed up to 1. The mean vectors were sampled from the
uniform distribution Uniform[0,1]d where d was the number of
dimensions. The covariance matrices were generated by sampling
the eigenvalues from the uniform distribution Uniform[1,1.6] and
the Givens rotation angles from the uniform distribution Uniform
½�p=4;3p=4�. The minimum separation between the components
in the mixture was controlled with a parameter called c.
Two Gaussians are defined to be c-separated if

Jl1�l2J2rc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d maxflmaxðR1Þ,lmaxðR2Þg

p
ð17Þ

where lmaxðRÞ is the largest eigenvalue of the given covariance
matrix [26]. The randomly generated Gaussian components
in a mixture were forced to satisfy the pairwise c-separation
constraint. Distributions other than the uniform can be used to
generate different types of synthetic data for different applica-
tions, but c-separation was the only criterion used to control the
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Fig. 6. Average error in log-likelihood and its standard deviation (shown as error bars at one standard deviation) in 1000 trials without and with the correspondence

identification step in the estimation of GMMs using stochastic search. (a) GA, (b) DE and (c) PSO.
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difficulty of the experiments in this paper. The mixtures in the
following simulations were generated for c¼4.0, K¼5, and
dimensions dAf3;5,10;20g. One hundred such mixtures were
generated, and 1000 points were sampled from each mixture.
The parameters in the candidate solutions in GA, DE, and PSO
were randomly initialized as follows. The mean vectors were
sampled from the uniform distribution Uniform[0,1]d, the eigen-
values of the covariance matrices were sampled from the uniform
distribution Uniform[0,10], and the Givens rotation angles were
sampled from the uniform distribution Uniform½�p=4;3p=4�.
Ten different initializations were used for each mixture, resulting
in 1000 trials. The true parameters were compared to the estimation
results obtained without and with correspondence identification.
Fig. 6 shows the plots of estimation errors resulting from the 1000
trials. The error was computed as the difference between the target
log-likelihood computed from the true GMM parameters and the
resulting log-likelihood computed from the estimated GMM para-
meters. Based on these results, we can conclude that using the
proposed correspondence identification algorithm leads to signifi-
cantly better results for all stochastic search algorithms used.
6. Particle swarm optimization

We illustrate the proposed solutions for the estimation of
GMMs using stochastic search in a particle swarm optimization
(PSO) framework. The following sections briefly describe the
general PSO formulation by setting up the notation, and then
present the details of the GMM estimation procedure using PSO.

6.1. General formulation

PSO is a population-based stochastic search algorithm that is
inspired by the social interactions of swarm animals. In PSO, each
member of the population is called a particle. Each particle ZðmÞ is
composed of two vectors, a position vector ZðmÞu and a velocity
vector ZðmÞv where m¼1,y,M indicates the particle index in a
population of M particles. The position of each particle ZðmÞu ARn

corresponds to a candidate solution for an n-dimensional optimi-
zation problem.

A fitness function defined for the optimization problem of
interest is used to assign a goodness value to a particle based on
its position. The particle having the best fitness value is called the
global best, and this position is denoted as ZðGBÞ

u . Each particle also
remembers its best position throughout the search history as its
personal best, and this position is denoted as Zðm,PBÞ

u .
PSO begins by initializing the particles with random positions

and small random velocities in the n-dimensional parameter
space. In the subsequent iterations, each of the n velocity
components in ZðmÞv is computed independently using its previous
value, the global best, and the particle’s own personal best in a
stochastic manner as

ZðmÞv ðtþ1Þ ¼ ZZðmÞv ðtÞþc1U1ðtÞðZ
ðm,PBÞ
v ðtÞ�ZðmÞv ðtÞÞ

þc2U2ðtÞðZ
ðGBÞ
v ðtÞ�ZðmÞv ðtÞÞ ð18Þ

where Z is the inertia weight, U1 and U2 represent random
numbers sampled from Uniform[0,1], c1 and c2 are acceleration
weights, and t is the iteration number. The randomness of the
velocity is obtained by the random numbers U1 and U2. These
numbers can be sampled from any distribution depending on
the application, but we chose the uniform distribution used in the
standard PSO algorithm. Then, each particle moves from its old
position to a new position using its new velocity vector as

ZðmÞu ðtþ1Þ ¼ ZðmÞu ðtÞþZðmÞv ðtþ1Þ ð19Þ

and its personal best is modified if necessary. Additionally, the
global best of the population is updated based on the particles’
new fitness values.

The main difference between PSO and other popular search
algorithms like genetic algorithms and differential evolution is
that PSO is not an evolutionary algorithm. In evolutionary algo-
rithms, a newly created particle cannot be kept unless it has a
better fitness value. However, in PSO, particles are allowed to
move to worse locations and this mechanism allows the particles
to escape from local optima gradually without the need of any
long jump mechanism. In evolutionary algorithms, this can
generally be achieved by mutation and crossover operations but
these operations can be hard to design for different problems. In
addition, PSO uses the global best to coordinate the movement of
all particles and uses personal bests to keep track of all local
optima found. These properties make it easier to incorporate
problem specific ideas into PSO where the global best serves as
the current state of the problem and the personal bests serve as
the current states of the particles.

6.2. GMM estimation using PSO

The solutions proposed in this paper enable the formulation of
a PSO framework for the estimation of GMMs with arbitrary
covariance matrices. This formulation involves the definition of
the particles, the initialization procedure, the fitness function, and
the update procedure.

Particle definition: Each particle that corresponds to a candi-
date solution stores the parameters of the means and covariance
matrices of a GMM. Assuming that the number of components in
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the mixture is fixed as K, the position vector of the mth particle is
defined as

ZðmÞu ¼ ððl
ðm,kÞ
u Þ

T ,lðm,kÞ
1,u , . . . ,lðm,kÞ

d,u ,f12,ðm,kÞ
u , . . . ,fðd�1ÞðdÞ,ðm,kÞ

u ,

for k¼ 1, . . . ,KÞ ð20Þ

where lðm,kÞ
u ARd for k¼ 1, . . . ,K denote the mean vectors para-

metrized using d real numbers, lðm,kÞ
i,u ARþ þ for i¼1,y,d and

k¼ 1, . . . ,K denote the eigenvalues of the covariance matrices, and
fpq,ðm,kÞ

u A ½�p=4;3p=4� for 1rpoqrd and k¼ 1, . . . ,K denote the
Givens rotation angles as defined in Section 5.1. The velocity
vector ZðmÞv is defined similarly. The K mixture weights a1, . . . ,aK

are calculated from the probabilistic assignments of the data
points to the components, and are not part of the PSO particles.

Initialization: Initialization of each particle at the beginning of
the first iteration can be done using random numbers within the
ranges defined for each parameter. The proposed parametrization
makes this possible because the angles are in a fixed range while
lower and upper bounds for the mean values and upper bounds
for the eigenvalues can easily be selected with the knowledge of
the data. As an alternative, one can first randomly select K data
points as the means, and form the initial components by assigning
each data point to the closest mean. Then, the covariance matrices
can be computed from the assigned points, and the parameters of
these matrices can be extracted using eigenvalue decomposition
and QR factorization using the Givens rotations method as
described in Section 5.1. Another alternative for selecting the
initial components is the k-means initialization procedure
described in [27].

Fitness function: The PSO iterations proceed to find the max-
imum likelihood estimates by maximizing the log-likelihood
defined in (1).

Update equations: Before updating each particle as in (18) and
(19), the correspondences between its components and the
components of the global best particle are found. This is done
by using the particle’s personal best as the reference GMM and
the global best particle as the target GMM in (15). The corre-
spondence relation computed using (15) and (16) as Iij ¼ 1 is
denoted with a function f(k) that maps the current particle’s
component index k to the global best particle’s corresponding
component index f(k) according to k¼ j and f(k)¼ i for If ðkÞk ¼ 1.
Using this correspondence relation, the mean parameters are
updated as

lðm,kÞ
v ðtþ1Þ ¼ Zlðm,kÞ

v ðtÞþc1ðtÞðl
ðm,PB,kÞ
u ðtÞ�lðm,kÞ

u ðtÞÞ

þc2ðtÞðl
ðGB,f ðkÞÞ
u ðtÞ�lðm,kÞ

u ðtÞÞ ð21Þ

lðm,kÞ
u ðtþ1Þ ¼ lðm,kÞ

u ðtÞþlðm,kÞ
v ðtþ1Þ ð22Þ

and the eigenvalues and angles as the covariance parameters are
updated as

lðm,kÞ
i,v ðtþ1Þ ¼ Zlðm,kÞ

i,v ðtÞþc1ðtÞðl
ðm,PB,kÞ
i,u ðtÞ�lðm,kÞ

i,u ðtÞÞ

þc2ðtÞðl
ðGB,f ðkÞÞ
i,u ðtÞ�lðm,kÞ

i,u ðtÞÞ ð23Þ

lðm,kÞ
i,u ðtþ1Þ ¼ lðm,kÞ

i,u ðtÞþl
ðm,kÞ
i,v ðtþ1Þ ð24Þ

fpq,ðm,kÞ
v ðtþ1Þ ¼ Zfpq,ðm,kÞ

v ðtÞþc1ðtÞðf
pq,ðm,PB,kÞ
u ðtÞ�fpq,ðm,kÞ

u ðtÞÞ

þc2ðtÞðf
pq,ðGB,f ðkÞÞ
u ðtÞ�fpq,ðm,kÞ

u ðtÞÞ ð25Þ

fpq,ðm,kÞ
u ðtþ1Þ ¼fpq,ðm,kÞ

u ðtÞþfpq,ðm,kÞ
v ðtþ1Þ: ð26Þ

The uniform random numbers U1 and U2 are incorporated into
c1 and c2. The rest of the notation is same as in Sections 5.1 and 6.1.

The convergence of the search procedure can also be improved
by running a set of EM iterations for each particle at the end of
each iteration. After the covariance parameters are updated as
above, new covariance matrices are constructed from the para-
meters using R¼VKVT , the EM procedure is allowed to converge
to a local maximum as described in Section 4, and new para-
meters are computed by performing another set of eigenvalue
decomposition and QR factorization steps. These EM iterations
help converging to local maxima effectively and efficiently,
whereas the PSO iterations handle the search for the global
maximum. The overall estimation procedure is summarized in
Algorithm 2.

Algorithm 2. PSO algorithm for GMM estimation.
Input: d-dimensional data set with N samples, number of
components (K), PSO parameters (Z, c1, and c2)

1:
 Initialize population with M particles as in (20)

2:
 for t¼1 to T1 do {T1: number of PSO iterations}

3:
 for m¼1 to M do

4:
 Construct K eigenvalue matrices

5:
 Construct K eigenvector matrices by multiplying

Givens rotation angles

6:
 Run EM for local convergence for T2 iterations {T2:

number of EM iterations for each PSO iteration}

7:
 Compute K eigenvalue and eigenvector matrices via

singular value decomposition of new covariance matrices

8:
 Reorder eigenvalues and eigenvectors of each

covariance matrix according to personal best

9:
 Extract Givens rotation angles using QR factorization

10:
 Replace particle’s means, eigenvalues, and angles

11:
 Calculate log-likelihood

12:
 Update personal best

13:
 end for

14:
 Update global best

15:
 for m¼1 to M do

16:
 Reorder components of global best according to

personal best

17:
 Update particle’s means, eigenvalues, and angles as in

(21)–(26)

18:
 end for

19:
 end for
7. Experiments

We evaluated the framework for GMM estimation (Sections
5 and 6) using both synthetic and real data sets. Comparative
experiments were also done using the EM algorithm (Section 4).
The procedure used for synthetic data generation and the results
for both synthetic and real data sets are given below.

7.1. Experiments on synthetic data

Data sets of various dimensions dAf5;10,15;20,30;40g and
number of components KAf5;10,15;20g were generated. For
dimensions dAf5;10,15g, d¼20, and dAf30;40g, the sample size
N was set to 1000, 2000, and 4000, respectively. The d and N

values were chosen based on real data sets used for the experi-
ments described in the next section. For a particular d and K

combination, a GMM was generated as follows. The mixture
weights were sampled from a uniform distribution such that
the ratio of the largest weight to the smallest weight was at most
2 and all weights summed up to 1. The mean vectors were
sampled from the uniform distribution Uniform[0,100]d. The
covariance matrices were generated using the eigenvalue/eigen-
vector parametrization described in Section 5.1. The eigenvalues
were sampled from the uniform distribution Uniform[1,16], and
the Givens rotation angles were sampled from the uniform



Table 3
Details of the synthetic data sets used for performance evaluation. The three

groups of rows correspond to the settings categorized as easy, medium, and hard

with respect to their relative difficulties. The parameters are described in the text.

Setting # d K c N M T1 T2 T1 � T2

1 5 5 8.0 1000 20 30 20 600

2 5 10 8.0 1000 20 30 20 600

3 10 5 8.0 1000 20 30 20 600

4 10 5 4.0 1000 20 30 20 600

5 10 10 4.0 1000 20 30 20 600

6 10 15 4.0 1000 20 30 20 600

7 15 5 4.0 1000 30 30 20 600

8 15 10 4.0 1000 30 30 20 600

9 15 15 4.0 1000 30 30 20 600

10 20 5 4.0 2000 30 50 20 1000

11 20 10 2.0 2000 30 50 20 1000

12 20 15 2.0 2000 30 50 20 1000

13 20 20 2.0 2000 30 50 20 1000

14 30 10 2.0 4000 40 100 20 2000

15 30 15 2.0 4000 40 100 20 2000

16 30 20 2.0 4000 40 100 20 2000

17 40 15 2.0 4000 40 100 20 2000

18 40 20 2.0 4000 40 100 20 2000

Table 4
Statistics of the estimation error for the synthetic data sets using the GMM

parameters estimated via the EM and PSO procedures. The mean, standard

deviation (std), median, and median absolute deviation (mad) are computed from

100 different runs for each setting.

Setting

#

EM PSO

Mean Std Median Mad Mean Std Median Mad

1 6.18 61.46 0.00 0.00 0.00 0.00 0.00 0.00

2 304.99 183.36 362.71 71.94 41.30 112.55 0.00 0.00

3 66.59 335.93 0.00 0.00 17.42 122.22 0.00 0.00

4 20.32 115.54 0.00 0.00 0.00 0.00 0.00 0.00

5 283.29 135.85 331.03 37.41 27.15 81.98 0.00 0.00

6 500.68 110.17 480.89 78.46 69.80 83.05 0.00 0.00

7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

8 300.83 174.13 367.08 68.42 11.28 55.66 0.00 0.00

9 654.48 145.67 654.23 163.56 51.39 100.70 0.00 0.00

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

11 490.14 307.53 615.89 126.93 112.75 227.90 0.00 0.00

12 842.94 242.63 880.06 192.40 224.89 231.03 97.21 75.14

13 975.60 152.44 912.21 113.53 261.34 98.73 120.66 45.12

14 1171.30 592.29 1105.42 205.61 236.63 315.23 102.31 102.70

15 1651.47 518.35 1576.24 124.21 309.21 232.49 272.18 58.23

16 2098.39 460.39 1971.43 384.08 523.84 183.92 375.28 114.02

17 2328.13 676.15 2093.80 403.16 609.92 281.59 412.54 93.84

18 2946.89 760.48 2882.77 425.04 697.02 292.17 468.27 100.57
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distribution Uniform½�p=4;3p=4�. Furthermore, the proximity of
the components were controlled using c-separation defined in
(17). Different values of cAf2:0,4:0,8:0g were used to control the
difficulty of the estimation problem. The selection of c value was
based on visual observations in two-dimensional data. We
observed that the minimum value of c where K individual
Gaussian components were distinguishable by visual inspection
was close to 2.0, and c¼8.0 corresponded to the case where the
components were well separated. Consequently, we divided the
relative difficulties of the data sets into three. The easy settings
corresponded to dAf5;10g and c¼8.0, the medium settings
corresponded to dAf10;15,20g and c¼4.0, and the hard settings
corresponded to dAf20;30,40g and c¼2.0. Ten different mixtures
with N samples each were generated for each setting.

The PSO and EM parameters were initialized similarly for a fair
evaluation. We assumed that the number of components was
known a priori for each data set. Following the common practice
in the literature, the initial mean vector for each component was set
to a randomly selected data point. The initial covariance matrices
and the initial mixture weights were calculated from the probabil-
istic assignment of the data points to the components with the
initial mean vectors and identity covariance matrices. The initial
mixture weights were used only in the EM procedure as the
proposed algorithm does not include the weights as parameters.
After initialization, the search procedure constrained the compo-
nents of the mean vectors in each particle defined in (20) to stay in
the data region defined by the minimum and maximum values of
each component in the data used for estimation. Similarly, the
eigenvalues were constrained to stay in ½lmin,lmax� where
lmin ¼ 10�5 and lmax was the maximum eigenvalue of the covar-
iance matrix of the whole data, and the Givens rotation angles were
constrained to lie in ½�p=4;3p=4�. The PSO parameters Z, c1, and c2

in (18) were fixed at Z¼ 0:728, c1 ¼ c2 ¼ 1:494 following the
common practice in the PSO literature [24]. Thus, no parameter
tuning was done during both initialization and search stages.

For each test mixture, each PSO run consisted of M particles that
were updated for T1 iterations where each iteration also consisted of
at most T2 EM iterations as described at the end of Section 6.2. Each
primary EM run consisted of a group of M individual secondary runs
where the initial parameters of each secondary run was the same as
the parameters of one of the M particles in the corresponding PSO
run. Each secondary run was allowed to iterate for at most T1 � T2

iterations or until the relative change in the log-likelihood in two
consecutive iterations was less than 10�6. The number of iterations
were adjusted such that each PSO run (M particles with T1 PSO
iterations and T2 EM iterations for each PSO iteration) and the
corresponding primary EM run (M secondary EM runs with T1 � T2

iterations each) were compatible.
Table 3 shows the details of the synthetic data sets generated

using these settings. For each setting, 10 different mixtures with
N samples each were generated as described above. For each
mixture, the target log-likelihood was computed from the true
GMM parameters. Then, for each mixture, 10 different initializa-
tions were obtained as described above, and both the PSO and the
EM procedures were run for each initial configuration. The
parameters of the global best particle were selected as the final
result of each PSO run at the end of the iterations. The final result
of each primary EM run was selected as the parameters corre-
sponding to the best secondary run having the highest log-
likelihood among the M secondary runs. The estimation error
was computed as the difference between the target log-likelihood
and the resulting log-likelihood computed from the estimated
GMM parameters.

Table 4 and Fig. 7 present the error statistics computed from
the 100 runs (10 different mixtures and 10 different initializations
for each mixture) for each setting. When all settings were
considered, it could be seen that the proposed PSO algorithm
resulted in better estimates compared to those by the EM
algorithm for all settings. In particular, the PSO algorithm con-
verged to the true GMM parameters in more than half of the runs
for 11 out of 18 settings (all of the 10 easy and medium settings
and one hard setting) with a median error of zero, whereas the EM
algorithm could do the same for only five settings. For all settings,
the average error obtained by the PSO algorithm was significantly
lower than the error by the EM algorithm. For the settings with a
small number of components, both EM and PSO had no problem
in finding the optimal solution. This was mainly due to good
initial conditions where it was relatively easier to find a small
number of good initial data points that behaved as good initial
means. Note that a good initialization for only one of the M

secondary runs for each primary EM run was sufficient to report a
perfect performance because the best out of M was used.
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The above argument could be extended for PSO to all settings
relatively independent of the number of dimensions and the
number of components. We could conclude that the proposed
algorithm was less sensitive to initializations because in every
iteration the particles took small number of steps toward one of
the local maxima using the local EM iterations, and then due to
their interaction with the global best, they could move away from
that local maximum. We could argue that the common character-
istic of the small number of wrong convergences of PSO was the
initialization of most of the particles including the global best
near the same local maximum. In that case, both the local EM
iterations and the global best particle attracted all particles
toward the same region. This problem could be eliminated by a
more sophisticated initialization procedure that increased the
diversity of the particles. However, we used the same initializa-
tion procedure that used the same random points for both EM and
PSO algorithms to do a fair comparison.

In this paper, we only investigated the advantages of corre-
spondence identification with regard to finding better global
maxima of the log-likelihood. We showed that stochastic search
algorithms performed better in finding global optima. However,
correspondence identification can also be useful in increasing the
population diversity. For instance, once we find the correspon-
dence relations via the proposed matching algorithm, we can
force the parameters to be updated with the distant (not match-
ing) ones in the global best in some random way to increase the
diversity. Another approach may be to temporarily modify the
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update equations so that the particles move away from the global
best if the KL divergence between their personal best and the
global best becomes too small in early iterations to overcome
premature convergence to a local maximum.

We did not try to tune the parameters of PSO such as Z, c1, and c2.
For different settings, parameter tuning might be useful in terms of
increased convergence speed and increased estimation accuracy.
However, such tuning could have led to an unfair advantage of PSO
over the EM algorithm. We also did not tune the number of particles
and the number of iterations except increasing them linearly with
increasing dimension. Increasing the number of iterations will not
improve the performance of EM after its convergence but larger
number of iterations will allow PSO to explore a larger portion of the
parameter space. However, the number of iterations were fixed to the
same number for EM and PSO to allow a fair comparison.

7.2. Experiments on real data

We also used four data sets from the UCI Machine Learning
Repository [28] for real data experiments. These data sets are
referred to as Glass (glass identification), Wine, ImgSeg (Statlog
image segmentation), and Landsat (Statlog Landsat satellite).
Table 5 summarizes the characteristics of these data sets and the
corresponding experimental settings. For each data set and for each
K value, both PSO and EM were run using 10 different initial
configurations that were generated as described in the previous
section. The resulting log-likelihood values for each setting for each
data set are shown in Fig. 8. The results show that the proposed PSO
algorithm performed better than the EM algorithm for all settings.

7.3. Computational complexity

The overall worst case time complexity of the EM algorithm in
terms of the overall number of iterations T, the number of
components K, and the number of data dimensions d is OðTKd3NÞ.
It involves a singular value decomposition that takes Oðd3

Þ for each
of the K covariance matrices in each of the T iterations, and the
multiplication of K eigenvalues (d), eigenvector matrices (d� d), and
mean subtracted data matrices (d� N). The former has OðTKd3

Þ
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tails of the real data sets used for performance evaluation. Ktrue corresponds to

e number of classes in each data set. K corresponds to the number of Gaussian

mponents used in the experiments. The rest of the parameters are described in

e text.

Data set d Ktrue K N M T1 T2 T1 � T2

Glass 9 6 {6, 7, 8, 9, 10} 214 20 30 20 600

Wine 13 3 {3, 4, 5, 6, 7} 178 30 30 20 600

ImgSeg 19 7 {7, 8, 9, 10, 11} 2310 30 50 20 1000

Landsat 36 7 {7, 8, 9, 10, 11} 4435 40 100 20 2000
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complexity and the latter has OðTKd3NÞ complexity, leading to the
overall complexity given above. The PSO algorithm has additional
QR factorizations to extract the Givens rotation angles and the
multiplication of the resulting angles that both take Oðd3

Þ time, but
these operations do not change the overall complexity. We can
conclude that both the EM algorithm and the proposed PSO-based
algorithm have the same worst case time complexities.
8. Conclusions

We presented a framework for effective utilization of stochastic
search algorithms for the maximum likelihood estimation of unrest-
ricted Gaussian mixture models. One of the contributions of this
paper was a covariance parametrization that enabled the use of
arbitrary covariance matrices in the search process. The parame-
trization used eigenvalue decomposition, and modeled each covar-
iance matrix in terms of its eigenvalues and Givens rotation angles
extracted from the eigenvector matrices. This parametrization
allowed the individual parameters to be independently modifiable
so that the resulting matrices remained valid covariance matrices
after the stochastic updates. Furthermore, the parameters had finite
lower and upper bounds so that they could be searched within a
bounded solution space. We also described an algorithm for order-
ing the eigenvectors so that the parameters of individual Gaussian
components were uniquely identifiable.

Another contribution of this paper was an optimization formula-
tion for resolving the identifiability problem for the mixtures. The
proposed solution allowed a unique correspondence between two
candidate solutions so that desirable interactions became possible
for parameter updates throughout the stochastic search.

We showed that the proposed methods can be used effectively
with different stochastic search algorithms such as genetic algo-
rithms, differential evolution, and particle swarm optimization.
The final set of experiments using particle swarm optimization
with synthetic and real data sets showed that the proposed
algorithm could achieve significantly higher likelihood values
compared to those obtained by the conventional EM algorithm
under the same initial conditions.
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