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1. Introduction

In modern quantum physics, the formalism of quantum operations can be
used to describe a very large class of dynamical evolution of quantum sys-
tems, e.g. see K. Kraus [7], E.B. Davies [4]. Also, there is a recent interest
in quantum information theory in connection to quantum operations that
can be used to model quantum channels, quantum measurements, and many
others, see D. Leung [8] and the bibliography cited there. In quantum in-
formation theory a quantum operation is a linear map ϕ : Mn → Mk (here
Mk denotes the C∗-algebra of all k× k complex matrices) that is trace non-
increasing and completely positive. The requirement of complete positivity
is justified by the fact that if a state is entangled by another state, mathe-
matically expressed as a tensor product, the output state should be a valid
state as well.

The three equivalent forms of a completely positive map ϕ on matrices
are the following:
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(S) (Stinespring) ϕ(A) = V ∗π(A)V , where π is a ∗-representation and V
a matrix of appropriate size.

(K) (Kraus) ϕ(A) =
∑

j V
∗
j AVj , where Vj are matrices of the same appro-

priate size.

(C) (Choi) ϕ(A) =
∑

r,s ϕr,sE∗rAEs, where Φ = [ϕr,s] is a positive matrix
and Er are matrix units of appropriate sizes.

The aim of this article is to rigorously show the equivalence of these three
forms for completely positive maps on matrices. Our approach uses the
technique of the Arveson’s Radon-Nikodym derivative following [10] and [5].
The Stinespring form, as well as the Kraus form, are more general objects
but, in this finite dimensional setting, we view them in a more elementary
way that make use only of linear algebra notions.

The reader may have knowledge of the more advanced monograph of
V. Paulsen [9] on completely positive maps, but this is not necessary. We
prefer to keep the prerequisites to a minimum by assuming that the reader
has a good command on linear algebra, for example, as in the S. Axler’s
linear algebra textbook [2], but any other (more advanced) textbook on
linear algebra is sufficient. In order to make this article useful for a broader
audience, we carefully recall the prerequisites: the C∗-algebra Mk, tensor
products, and the Arveson’s Radon-Nikodym derivative. Since we addressed
this article to mathematicians but do not want to exclude the physicists from
our potential readers, we also briefly indicated the correspondence between
the Dirac formalism and the mathematical formalism that we employ in this
article.

2. Notation and Preliminaries

This section reviews the notation and the linear algebra prerequisites that
are necessary for reading the material on completely positive maps.

2.1. The Inner Product Space Cn

For arbitrary natural number n let Cn denote the vector space over the
complex field C of complex column vectors with n entries x = (ξj)nj=1. On
this vector space we consider the inner product

〈x, y〉 =
n∑
j=1

ξjηj , x = (ξj)
n
j=1, y = (ηj)

n
j=1. (2.1)

Note that, in this notation, the inner product 〈·, ·〉 is linear in the first
variable and conjugate linear in the second variable.
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We denote by ‖ · ‖ the associated unitary norm, that is,

‖x‖ =

 n∑
j=1

|ξj |2
1/2

, x = (ξj)
n
j=1, (2.2)

and by {e(n)
i }ni=1 the canonical basis of Cn, that is, e(n)

i is the n-tuple with
1 on the i-th position and 0 elsewhere.

2.2. The Vector Space Mk,n

For arbitrary natural numbers k and n we denote by Mk,n the vector space
over the field C of k × n matrices with complex entries. We identify in a
natural way Mk,n with the vector space L(Cn,Ck) of linear transformations
A : Cn → Ck, by means of the canonical bases {e(k)i }ki=1 and {e(n)

j }nj=1, more
precisely, the identification is A = [ai,j ]i=1,k,j=1,n where

ai,j = 〈Ae(n)
j , e

(k)
i 〉, i = 1, . . . , k, j = 1, . . . , n. (2.3)

By this identification, onMk,n there exists the operator norm, more precisely,

‖A‖ = sup{‖Ax‖ | x ∈ Cn, ‖x‖ ≤ 1} (2.4)
= inf{t ≥ 0 | ‖Ax‖ ≤ t‖x‖ for all x ∈ Cn}.

This norm makes Mk,n a (complete) normed space.
On Mk,n we consider the adjoint operation, more precisely, Mk,n 3 A 7→

A∗ ∈ Mn,k, where the matrix of A∗ is obtained by changing rows into
columns in the matrix of A and taking the complex conjugate. In terms
of the identification of Mk,n with the vector space L(Cn,Ck), this means

〈Ax, y〉 = 〈x,A∗y〉, x ∈ Cn, y ∈ Ck. (2.5)

The map Mk,n 3 A 7→ A∗ ∈Mn,k has the following properties:

• (αA+ βB)∗ = αA∗ + βB∗, A,B ∈Mk,n, α, β ∈ C;

• (AB)∗ = B∗A∗, A ∈Mk,n and B ∈Mn,m;

• (A∗)∗ = A, A ∈Mk,n.

With respect to the canonical bases of Cn and Ck, for n, k ∈ N, we
consider the matrix units {E(n,k)

i,j | i = 1, . . . , n, j = 1, . . . , k} ⊂ Mn,k of

size n × k , that is, E(n,k)
i,j is the n × k matrix with all entries 0 except the

(i, j)-th entry which is 1. In case n = k, we denote simply E(n)
i,j = E

(n,n)
i,j .
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We also record the following direct consequences of the definitions: for
all j = 1, . . . , n and i = 1, . . . , k we have

E
(n,k)
i,j

∗
= E

(k,n)
j,i , (2.6)

and if, in addition, p ∈ N, r = 1, . . . , k, and s = 1, . . . , p, then

E
(n,k)
i,j E(k,p)

r,s = δj,rE
(n,p)
i,s . (2.7)

2.3. The C∗-Algebra Mk

We denote Mk = Mk,k and note that it is an algebra over the complex
field. On Mk we consider the adjoint operation ∗ which now it is internal
Mk 3 A 7→ A∗ ∈ Mk. Thus, Mk is a unital ∗-algebra; we denote by Ik its
unit, that is, the matrix with 1 on the main diagonal and 0 elsewhere.

A matrix A ∈ Mk is called selfadjoint (hermitian) if A = A∗. If A is
selfadjoint then all its eigenvalues are simple and real. A matrix A ∈Mk is
called positive if it is selfadjoint and all its eigenvalues are nonnegative. We
denote by M+

k the set of positive matrices from Mk.

Proposition 2.1. Let A ∈Mk. The following assertions are equivalent:

(i) A is positive.

(ii) A = B∗B for some B ∈Mk.

(iii) A = B2 for some B ∈M+
k .

(iv) 〈Ax, x〉 ≥ 0 for all x ∈ Ck.

Given A ∈ M+
k , the matrix B ∈ M+

k such that A = B2, as in item (iii)
of Proposition 2.1, is unique, and it is denoted by A1/2. From the spectral
point of view, A and A1/2 have same kernel and any eigenvalue of A1/2 is of
the form λ1/2 for λ an eigenvalue of A, with the same multiplicity. Clearly,
M+
k is a convex cone, that is, αA+ βB ∈ M+

k for any A,B ∈ M+
k and any

α, β ≥ 0. In addition, it is also strict, that is, M+
k ∩ (−M+

k ) consists only
on the null matrix.

The cone M+
k induces an order on the set of all selfadjoint k×k matrices

Mh
k . More precisely, A ≥ 0 for all A ∈ M+

k and, if B,C ∈ Mh
k we have

B ≥ C, by definition, if B − C ∈ M+
k . In view of Proposition 2.1.(iv), this

order relation can be defined in terms of the action of Mk on Ck. More
precisely, B ≥ C if and only if 〈Bx, x〉 ≥ 〈Cx, x〉 for all x ∈ Ck.

Mh
k is a vector space over the field of real numbers. In addition, the cone

M+
k generates Mh

k , more precisely:

Proposition 2.2. Any A ∈ Mh
k can be written as a difference of two pos-

itive matrices A = A+ − A−. If, in addition, we require that there are no
common eigenvalues of A+ and A−, then this decomposition is unique.
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The operator norm (2.4) makes Mk a unital normed algebra, that is,

‖AB‖ ≤ ‖A‖‖B‖, A,B ∈Mk, ‖Ik‖ = 1. (2.8)

With respect to the involution ∗ the norm has an important property:

‖A∗A‖ = ‖A‖2, A ∈Mk. (2.9)

In particular, the involution is isometric, that is, ‖A∗‖ = ‖A‖ for all A ∈Mk.
On Mk there is a special linear form, the trace tr : Mk → C defined as

the sum of the entries from the main diagonal

tr(A) =
k∑
j=1

aj,j , A = [ai,j ]ki,j=1 ∈Mk. (2.10)

In addition to linearity, the trace has two remarkable properties:

tr(AB) = tr(BA), A,B ∈Mk and tr(A) ≥ 0, A ∈M+
k . (2.11)

The trace is faithful in the sense that if A ∈M+
k and tr(A) = 0 then A = 0.

2.4. Abstract Tensor Products

In this subsection we recall the definition, the construction, and the basic
properties of tensor products of vector spaces.

Proposition 2.3. Let E, F and G be three vector spaces over the same field
K and let τ : E × F → G be a bilinear map. The following assertions are
equivalent:

(a) Let r be an arbitrary natural number and e1, . . . , er ∈ E, f1, . . . , fr ∈ F
vectors such that

r∑
j=1

τ(ej , fj) = 0.

If e1, . . . , er are linearly independent then f1 = f2 = . . . = fr = 0 and,
symmetrically, if f1, . . . , fr are linearly independent then e1 = e2 =
. . . = er = 0.

(b) For any r, s natural numbers and for any linearly independent vectors
e1, . . . , er ∈ E and f1, . . . , fs ∈ F the family of vectors {τ(ei, fj) | i =
1, . . . , r, j = 1, . . . , s} is linearly independent in G.

Given E , F , and G, three vector spaces over the same field K and a
bilinear map τ : E × F → G, the couple (τ ;G) is called linearly independent
if any, hence both, of the conditions (a) and (b) in Proposition 2.3 hold(s).

A tensor product of two vector spaces E and F over the same field K is
a pair (G; τ) such that:



84 Aurelian Gheondea

• (G; τ) is linearly independent.

• τ(E × F ) linearly spans G.

Theorem 2.1. Let E and F be two arbitrary vector spaces over the same
field K. Then:

(i) There exists a tensor product (G; τ) of E and F .

(ii) Let (G; τ) be a tensor product of E and F . Then, for any vector space
H over K and any bilinear map χ : E × F → H there exists a unique
linear map χ̃ : G → H such that χ̃ ◦ τ = χ.

(iii) For any two tensor products (Gi; τ i) of E and F , i = 1, 2, there exists
a unique linear isomorphism χ : G1 → G2 such that χ ◦ τ1 = τ2.

The property depicted at (ii) is called the universality property of the
tensor product. According to the property (iii) the tensor product is unique
to a linear isomorphism; we use the notation E ⊗ F to denote it, more
precisely, letting (G; τ) be the notation for the tensor product of E and F as
in the definition, G = E ⊗ F and τ(e, f) = e⊗ f for any e ∈ E and f ∈ F .

We recall briefly one of the constructions of the tensor products. On the
vector space X of K-valued functions defined on E × F and having finite
supports we consider the vector subspace N spanned by the functions

δα1e1+α2e2,β1f1+β2f2−α1β1δe1,f1−α1β2δe1,f2−α2β1δe2,f1−α2β2δe2,f2 , (2.12)

where e1, e2 ∈ E , f1, f2 ∈ F , and α1, α2, β1, β2 ∈ K, and we denote by
δe,f : E × F → K the delta function supported at (e, f) ∈ E × F . Then, by
definition, E ⊗F = X/N and e⊗f = π(δe,f ) for all e ∈ E and f ∈ F , where
π : X → X/N is the canonical projection.

Remark 2.1. Tensor Products of Function Spaces. Let X and Y be two
nonempty sets and assume that the vector space E consists of functions on
e : X → K and, similarly, the vector space F consists on functions f : Y → K.
Then the tensor product E ⊗F can be realized as a vector space of functions
on X×Y , as follows. For arbitrary e ∈ E and f ∈ F , define e⊗f : X×Y → K
by

(e⊗ f)(x, y) = e(x)f(y), x ∈ X, y ∈ Y. (2.13)

Then, letting E ⊗ F denote the vector space spanned by all elementary
tensors e⊗ f , it is easy to see that it is a tensor product of E and F .

Proposition 2.4. Let (ei)i∈I be a Hamel (that is, algebraic) basis of the
vector space E and (fj)j∈J be a Hamel basis of the vector space F . Then
{ei ⊗ fj | i ∈ I, j ∈ J } is a Hamel basis of the vector space E ⊗ F . In
particular, dim(E ⊗ F) = dim(E) dim(F).
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One way of getting the above proposition is to note that fixing a Hamel
basis (ei)i∈I on the vector space E yields an identification of E with the
vector space of all finitely supported functions e : I → K, doing a similar
identification of F with finitely supported functions on J , and then applying
Remark 2.1 in order to get a Hamel basis {ei ⊗ fj | i ∈ I, j ∈ J }.

We finally recall the tensor product of linear maps. Assume that E , F , G,
and H are vector spaces over the same field K and let ϕ : E → G and ψ : F →
H be two linear maps. We define a new linear map ϕ⊗ψ : E ⊗F → G⊗H in
the following way: for each e ∈ E and f ∈ F let (ϕ⊗ψ)(e⊗f) = ϕ(e)⊗ψ(f)
and then extend it by linearity. It can be proven that is a correct definition
(in general, the representation of an element as a linear combination as
elementary tensors in not unique) and that ϕ⊗ ψ is a linear map.

2.5. Tensor Products of Matrices

For finite dimensional vector spaces the tensor product has more concrete
representations.

Let n and k be two natural numbers. Then the tensor product space
Cn ⊗ Ck can be naturally identified with Cnk as follows: if x = (ξj)nj=1 and
y = (ηi)ki=1, then the elementary tensor x ⊗ y is identified with the vector
(ξjηi)

n,k
i=1,j=1. Thus, Cn ⊗ Ck can be further identified with Mk,n.

Here and in the following we use the tensor notation for rank one oper-
ators, that is, if k and n are natural numbers and x ∈ Cn and y ∈ Ck are
nontrivial vectors, then the rank 1 operator x ⊗ y ∈ L(Ck,Cn) = Mn,k is
defined by (x⊗ y)z = 〈z, y〉x for all z ∈ Ck.

With this notation, the system of matrix units {E(n,k)
i,j | i = 1, . . . , n, j =

1, . . . , k} ⊂ Mn,k that makes a basis of Mn,k have a tensor representation
in terms of the canonical bases {e(n)

i | i = 1, . . . , n} of Cn and {e(k)i | j =
1, . . . , k} of Ck, that is,

E
(n,k)
i,j = e

(n)
i ⊗ e

(k)
j , i = 1, . . . , n, j = 1, . . . , k. (2.14)

Let m and n be natural numbers. Initially Mm ⊗Mn is only a vector
space. We show that it is a C∗-algebra in a natural way. We first identify
Mm ⊗Mn with Mm(Mn), defined as the vector space of all m × m block
matrices with entries in Mn, more precisely, we identify A ⊗ B with the
matrix

a1,1B a1,2B . . . a1,mB
a2,1B a2,2B . . . a2,mB

...
...

...
am,1B am,2B . . . am,mB

 , A = [ai,j ]mi,j=1 ∈Mm, B ∈Mn.

(2.15)
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Further, we identify Mm(Mn) with Mmn through (2.15). These identifica-
tions are ∗-isomorphisms, and thus Mm⊗Mn is a C∗-algebra, ∗-isomorphic
with Mmn.

From the operational point of view, we point out the multiplication on
elementary tensors:

(A⊗B)(C ⊗D) = AC ⊗BD, A,C ∈Mm, B,D ∈Mn, (2.16)

and the involution

(A⊗B)∗ = A∗ ⊗B∗, A ∈Mm, B ∈Mn. (2.17)

In addition, the operator norm of an elementary tensor can be easily calcu-
lated

‖A⊗B‖ = ‖A‖‖B‖, A ∈Mm, B ∈Mn. (2.18)

The definition of the matrix A⊗B for matrices A and B is in accordance
with the definition of the tensor product of linear maps as well.

2.6. Dirac Formalism vs. Tensor Product Formalism

In the formula (2.14) there is a certain abuse of notation with respect to
the Hilbert space formalism. To be more precise, assume that e ∈ Cn and
f ∈ Ck are two vectors and we want to define a linear operator of rank one
: Ck → Cn with range spanned by e and null space the orthogonal of f : the
classical way is to use the notation e⊗ f

(e⊗ f)h = 〈h, f〉e, h ∈ Ck. (2.19)

The bar on f is motivated by the fact that the inner product is antilinear
in the second variable. Apparently, this conflicts with (2.14), but taking
into account that the vectors e(k)j have all their components real numbers,
actually there is no contradiction here.

From this point of view, the Dirac formalism makes the difference be-
tween the vectors in an inner product 〈e||f〉 by calling 〈e| a ”bra” and |f〉
a ”ket”, and the inner product being linear in the second variable and con-
jugate linear in the first variable, which means only a swap of left and right
arguments in the inner product. In addition to this mild change, the Dirac
formalism makes a difference between vectors in the Hilbert space Cn and
linear functionals on Cn via the Riesz representation theorem, by identi-
fying a linear functional ϕ : Cn → C with the vector zϕ ∈ Ck such that
ϕ(·) = 〈·, zϕ〉. Also, in the Dirac formalism, what we defined at (2.19) by
the rank one operator e⊗ f corresponds to |f〉〈e|.
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3. Completely Positive Maps on Matrices

In this section we recall the definition of completely positive maps on matri-
ces, their equivalence with positive semidefinte maps, the Stinespring repre-
sentation, and briefly review the Arveson’s Radon-Nikodym.

3.1. Definition and Examples

Let k and n be natural numbers and ϕ : Mn →Mk a linear map. The map ϕ
is called positive if it maps positive matrices into positive matrices, briefly,
ϕ(M+

n ) ⊆M+
k .

Example 3.1. The transpose map τ : Mk → Mk that maps each k × k
matrix into its transpose is positive.

Let, in addition, m be a natural number. A linear map ϕ : Mn → Mk

always induces a linear map ϕm = Im ⊗ ϕ : Mm ⊗Mn → Mm ⊗Mk, more
precisely, with the identification Mm ⊗Mn ' Mm(Mn), the C∗-algebra of
all m × m matrices with entries from Mn, and similary the identification
Mm ⊗Mk 'Mm(Mk),

ϕm([Ai,j ]mi,j=1) = [ϕ(Ai,j)]mi,j=1, [Ai,j ]mi,j=1 ∈Mm(Mn). (3.1)

Recall that Mm ⊗Mn is a C∗-algebra in a natural way and hence positive
elements are unambiguously defined. The map ϕ is called m-positive if ϕm
is positive. Clearly, if ϕ if m-positive then it is l-positive for all natural
numbers l ≤ m, in particular, it is positive. The converse implication is not
true.

Example 3.2. The transpose map τ : M2 → M2 is positive but not 2-
positive. To see this let

A =

[
E

(2)
1,1 E

(2)
1,2

E
(2)
2,1 E

(2)
2,2

]
≥ 0

but

τ2(A) =

[
E

(2)
1,1 E

(2)
2,1

E
(2)
1,2 E

(2)
2,2

]
is not positive.

A linear map ϕ : Mn →Mk is called completely positive if it is m-positive
for all natural numbers m. We denote by CP(Mn,Mk) the set of all com-
pletely positive maps from Mn to Mk. It is easy to see that CP(Mn,Mk)
is a strict convex cone in the vector space L(Mn,Mk). In particular, there
is the natural order relation on CP(Mn,Mk), more precisely, given ϕ,ψ ∈
CP(Mn,Mk) we have ϕ ≤ ψ, by definition, if ψ − ϕ ∈ CP(Mn,Mk).

The following examples will be proven to be generic.
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Example 3.3. 1. ∗-Morphisms. Let π : Mn → Mk be a morphism of ∗-
algebras, for n ≤ k (if n > k there are not so many!). Then π is completely
positive.

2. Stinespring Representation. Let π : Mn → Mm be a morphism of
∗-algebras, for n ≤ m and V ∈Mm,k. Then ϕ = V ∗π(·)V ∈ CP(Mn,Mk).

3. Kraus Representation. Given n × k matrices V1, V2, . . . , Vm ∈ Mn,k

define ϕ : Mn →Mk by

ϕ(A) = V ∗1 AV1 + V ∗2 AV2 + · · ·+ V ∗mAVm for all A ∈Mn. (3.2)

Then ϕ is completely positive.

3.2. Positive Semidefinite Maps

A linear map ϕ : Mn → Mk is called positive semidefinite if for any real
number l, matrices A1, . . . , Al ∈ Mn, and any vectors x1, . . . , xl ∈ Ck, we
have

l∑
i,j=1

〈ϕ(A∗iAj)xj , xi〉 ≥ 0. (3.3)

Proposition 3.1 (W.F. Stinespring [11]) A linear map ϕ : Mn → Mk

is positive semidefinite if and only if it is completely positive.

Proof. Assume that ϕ ∈ CP(Mn,Mk) and let l be any natural number,
matrices A1, . . . , Al ∈ Mn, and vectors x1, . . . , xl ∈ Ck, all arbitrary. Then
the block l × l matrix A = [A∗iAj ]

l
i,j=1 is positive in Ml(Mn) ' Ml ⊗Mn

since

A =


A∗1 0 . . . 0
A∗2 0 . . . 0
...
A∗l 0 . . . 0



A1 A2 . . . Al
0 0 . . . 0
...
0 0 . . . 0

 . (3.4)

Also, letting x be the column vector with ”entries” x1, . . . , xl we have

l∑
i,j=1

〈ϕ(A∗iAj)xj , xi〉 = 〈ϕl(A)x,x〉 ≥ 0, (3.5)

since ϕ is l-positive.
Conversely, let l be an arbitrary natural number and consider ϕl : Ml ⊗

Mn →Ml ⊗Mk. Let A ∈ (Ml ⊗Mn)+. With the identification Ml ⊗Mn '
Ml(Mn) as explained before, there exists B ∈Ml(Mn) such that A = B∗B.
Letting B = [Bi,j ]li,j=1, with Bi,j ∈Mn, we have

A =
l∑

p=1

B∗jBj (3.6)
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where Bj is the block l × l matrix with the j-th row exactly the j-th row
of B and all the other rows filled with zeros. From here and (3.5) it follows
easily that ϕ is l-positive. 2

We use the proof of the previous proposition to derive a useful charac-
terization of the natural order relation on CP(Mn;Mk).

Corollary 3.1. Let ϕ,ψ ∈ CP(Mn;Mk). Then ϕ ≤ ψ if and only if for all
natural numbers l, matrices A1, . . . , Al ∈ Mn, and vectors x1, . . . , xl ∈ Ck,
we have

l∑
i,j=1

〈ϕ(A∗iAj)xj , xi〉 ≤
l∑

i,j=1

〈ψ(A∗iAj)xj , xi〉 (3.7)

3.3. The Stinespring Representation

In this subsection we prove that any completely positive map has a Stine-
spring representation (see Example 3.3.2).

Theorem 3.1 (W.F. Stinespring [11]) For any θ ∈ CP(Mn,Mk) there
exists a triple (πθ;Vθ; Cm) subject to the following properties:

(st1) m ≤ n2k is a natural number.

(st2) πθ : Mn →Mm is a morphism of ∗-algebras and V is an m×k matrix,
such that θ(A) = V ∗θ πθ(A)Vθ for all A ∈Mn.

(st3) Lin(πθ(Mn)VθCk) = Cm.

In addition, the triple (πθ;Vθ;m) is unique, up to a unitary (orthonor-
mal) matrix U ∈ Mm, in the sense that if (π;V ; Cm′) is another triple
subject to the conditions (st1)-(st3), then m = m′ and there exists a uni-
tary (orthonormal) matrix U ∈ Mm such that π(A)V = Uπθ(A)Vθ for all
A ∈Mn.

The triple (πθ;Vθ; Cm) is called the Minimal Stinespring Representation
of ϕ.

We briefly sketch the existence part in Theorem 3.1.
On the vector space Mn⊗Ck we consider the inner product 〈·, ·〉θ defined

as follows: for l and p natural numbers, matrices A1, . . . , Al, B1, . . . , Bp ∈
Mn and vectors x1, . . . , xl, y1, . . . , yp ∈ Ck, all arbitrary, let

〈
l∑

i=1

Ai ⊗ xi,
p∑
j=1

Bj ⊗ yj〉θ =
l∑

i=1

p∑
j=1

〈θ(B∗jAi)xi, yj〉. (3.8)

The inner product 〈·, ·〉θ is positive semidefinite by Proposition 3.1. We
factor Mn⊗Ck by the null space Nθ of the semidefinite inner product 〈·, ·〉θ

Nθ = {f ∈Mn ⊗ Ck | 〈f, f〉θ = 0} (3.9)
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and get a vector space of dimensionm, on which this inner product is positive
definite. Clearly, the dimension of this new vector space Mn ⊗ Ck/Nθ is at
most n2k and, modulo a unitary identification, without loss of generality we
can take Mn ⊗ Ck/Nθ = Cm.

The ∗-morphism πθ : Mn →Mm is firstly defined on elementary tensors
by

πθ(A)(B ⊗ x) = (AB)⊗ x, A,B ∈Mn, x ∈ Ck, (3.10)

and then it can be proven that π(A) factors by Nθ. Then we let Vθx = [In⊗
x]θ, where for any element h ∈Mn ⊗ Ck we denoted by [h]θ its equivalence
class, modulo the factorization and its identification by the corresponding
orthonormal transformation to a vector in Cm.

Let us note that if θ ∈ CP(Mn,Mk) is unital, that is, θ(In) = Ik, then
Vθ is an isometric transformation (its columns are orthonormal).

3.4. The Arveson’s Radon-Nikodym Derivative

Let ϕ, θ ∈ CP(Mn;Mk) be such that ϕ ≤ θ and consider the Minimal Stine-
spring Representation (πϕ;Vϕ; Cp) of ϕ, and similarly the Minimal Stine-
spring Representation (πθ;Vθ; Cm) of θ. With the notation as in (3.9), from
ϕ ≤ θ and Corollary 3.1, the identity operator Jϕ,θ : Mn ⊗ Ck → Mn ⊗ Ck

has the property that Jϕ,θNθ ⊆ Nϕ, hence it can be factored to a linear op-
erator Jϕ,θ : (Mn⊗Ck)/Nθ → (Mn⊗Ck)/Nϕ and then, modulo the unitary
identification of these spaces with Cm and, respectively, Cp it is a contrac-
tive linear operator Jϕ,θ ∈ L(Cm,Cp), that is, a contractive p ×m matrix.
It is easy to see that

Jθ,ϕVθ = Vϕ, (3.11)

and that
Jθ,ϕπθ(A) = πϕ(A)Jθ,ϕ, for all A ∈Mn. (3.12)

Thus, letting
Dθ(ϕ) := J∗θ,ϕJθ,ϕ (3.13)

we get a contractive linear operator in L(Cm). In addition, as a consequence
of (3.12), Dθ(ϕ) commutes with all operators πθ(A) for A ∈ A, briefly,
Dθ(ϕ) ∈ πθ(A)′; indeed, by taking adjoints in (3.12) we have πθ(A)J∗θ,ϕ =
J∗θ,ϕπϕ(A) for all A ∈Mn, hence

Dθ(ϕ)πθ(A) = J∗θ,ϕJθ,ϕπθ(A)

= J∗θ,ϕπϕ(A)Jθ,ϕ = πθ(A)J∗θ,ϕJθ,ϕ
= πθ(A) Dθ(ϕ), A ∈Mn.

In addition, from (3.11) and (3.13) it follows

ϕ(A) = V ∗ϕπϕ(A)Vϕ = V ∗θ Dθ(ϕ)πθ(a)Vθ for all A ∈Mn,



Completely positive maps on matrices 91

which, taking into account that Dθ(ϕ) ∈ π(A)′, and hence Dθ(ϕ)1/2 ∈ π(A)′,
we write

ϕ(A) = V ∗θ Dθ(ϕ)1/2πθ(A) Dθ(ϕ)1/2Vθ, for all A ∈Mn. (3.14)

It is immediate from (3.14) that, for any l ∈ N, (Aj)lj=1 ∈ Mn, and
(hj)lj=1 ∈ Ck, the following formula holds

l∑
i,j=1

〈ϕ(A∗jAi)hi, hj〉 = ‖Dθ(ϕ)1/2
n∑
j=1

πθ(Aj)Vθhj‖2. (3.15)

It is easy to show that (3.14) is equivalent to (3.15). The property (3.14)
uniquely characterizes the operator Dθ(ϕ). The operator Dθ(ϕ) is called the
Radon-Nikodym derivative of ϕ with respect to θ.

Recalling Corollary 3.1, (3.15) shows that for any ϕ,ψ ∈ CP(A;H) with
ϕ,ψ ≤ θ, we have ϕ ≤ ψ if and only if Dθ(ϕ) ≤ Dθ(ψ).

In addition, if ϕ,ψ ∈ CP(Mn;Mk) are such that ϕ,ψ ≤ θ then for any
t ∈ [0, 1] the completely positive map (1− t)ϕ+ tψ is ≤ θ and

Dθ((1− t)ϕ+ tψ) = (1− t) Dθ(ϕ) + tDθ(ψ). (3.16)

The above considerations can be summarized in the following

Theorem 3.2 (W.B. Arveson [1]) Let θ ∈ CP(Mn;Mk). The mapping
ϕ 7→ Dθ(ϕ) defined in (3.13), with its inverse given by (3.14), is an affine
and order-preserving isomorphism between the convex and partially ordered
sets

(
{ϕ ∈ CP(Mn;Mk) | ϕ ≤ θ};≤

)
and

(
{D ∈ πθ(Mn)′ | 0 ≤ D ≤ I};≤

)
.

One says that ψ uniformly dominates ϕ, and we write ϕ ≤u ψ, if for some
t > 0 we have ϕ ≤ tψ. This is a partial preorder relation (only reflexive
and transitive). The associated equivalence relation (we can call it uniform
equivalence) is denoted by 'u, that is, for ϕ,ψ ∈ CP(Mn;Mk) we have
ϕ 'u ψ if and only if ϕ ≤u ψ ≤u ϕ. It is immediate from Theorem 3.2 the
following

Corollary 3.2. For a given θ ∈ CP(Mn;Mk), the mapping ϕ 7→ Dθ(ϕ)
defined in (3.13), with its inverse given by (3.14), is an affine and order-
preserving isomorphism between the convex cones

(
{ϕ ∈ CP(Mn;Mk) | ϕ ≤u

θ};≤
)

and
(
{D ∈ πθ(Mn)′ | 0 ≤ D};≤

)
.

4. The Kraus Form and the Choi’s Matrix

In this section we focus on completely positive maps from Mn, the C∗-
algebra of n×n matrices, to Mk, for which we describe the Kraus form and
the Choi’s matrix representation.
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We first consider the system of matrix units {E(n,k)
i,j | i = 1, . . . , n, j =

1, . . . , k}, that makes a basis of Mn,k, on which we perform a lexicographic
reindexing, more precisely(

E
(n,k)
1,1 , . . . , E

(n,k)
1,k , E

(n,k)
2,1 , . . . , E

(n,k)
n,1 , . . . , E

(n,k)
n,k

)
=
(
E1, E2, ...., Enk

)
(4.1)

An explicit form of this reindexing is the following

Er = E
(n,k)
i,j where r = (i− 1)k + j, for all i = 1, . . . , n, j = 1, . . . , k. (4.2)

Proposition 4.1. The formula

ϕ(i−1)k+m,(j−1)k+l = 〈ϕ(E(n)
i,j )e(k)l , e(k)m 〉, m, l = 1, . . . , k, i, j = 1, . . . , n,

(4.3)
and its inverse

ϕ(C) =
nk∑
r,s=1

ϕr,sE∗rCEs, C ∈Mn, (4.4)

establish a linear and bijective correspondence

L(Mn,Mk) 3 ϕ 7→ Φ = [ϕr,s]
nk
r,s=1 ∈Mnk. (4.5)

Proof. Clearly, the correspondence Mnk 3 Φ 7→ ϕ ∈ L(Mn,Mk) given
by (4.4) is linear, so it remains to prove that it is bijective and that its
inverse is given by the formula (4.3). To see this, let i, j ∈ {1, . . . , n} and
l,m ∈ {1, . . . , k} be arbitrary. Thus, assuming that (4.4) holds, we have

〈ϕ(E(n)
i,j )e(k)l , e(k)m 〉 =

nk∑
r,s

ϕr,s〈E∗rE
(n)
i,j Ese

(k)
l , e(k)m 〉

and, by representing uniquely r = (q − 1)k + p and s = (b − 1)k + a, for
a, p ∈ {1, . . . , k} and b, q ∈ {1, . . . , n}, we get

=
k∑

a,p=1

n∑
b,q=1

ϕ(q−1)k+p,(b−1)k+a〈E
(n)
i,j E

(n,k)
b,a e

(k)
l , E(n,k)

q,p e(k)m 〉

and then, by (2.14) and (2.7), we get

= ϕ(i−1)k+m,(j−1)k+l.

2

Remark 4.1. With respect to the identification Cnk ' Cn⊗Ck, any matrix
Φ = [ϕr,s]nkr,s=1 ∈ Mnk = L(Cnk) is identified with a linear operator Φ ∈
L(Cn ⊗ Ck), in such a way that the formula (4.3) becomes

ϕ(i−1)k+m,(j−1)k+l = 〈Φ(e(n)
j ⊗e

(k)
l ), e(n)

i ⊗e
(k)
m 〉, m, l = 1, . . . , k, i, j = 1, . . . , n.

(4.6)
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Remark 4.2. In the correspondence in Proposition 4.1, ϕ is unital if and
only if

n∑
i=1

ϕ(i−1)k+m,(i−1)k+l = δm,l for all l,m ∈ {1, . . . , k}.

Let ρ : Mn →Mk be the tracial map defined by

ρ(C) =
1
n

tr(C)Ik, C ∈Mn. (4.7)

Let the linear mapping

V : Ck → Cn2k ' Cn ⊗ Cnk ' Cn ⊗ Cn ⊗ Ck

be defined by

V h =
1√
n


E1h
E2h

...
Enkh

 , h ∈ Ck, (4.8)

or, equivalently, with the identification Cn2k ' Cn ⊗ Cn ⊗ Ck and the rein-
dexing defined at (4.1),

V h =
1√
n

n∑
i=1

k∑
j=1

E
(n,k)
i,j h⊗ e(n)

i ⊗ e
(k)
j . (4.9)

We consider also the map

π : Mn →Mn2k ' L(Cn2k) ' L(Cn ⊗ Cnk),

defined by
π(C) = C ⊗ Ink, C ∈Mn. (4.10)

Proposition 4.2. With the notation as in (4.7)–(4.10), (π;V ; Cn2k) is the
Minimal Stinespring Representation of ρ, in particular, ρ ∈ CP(Mn,Mk).

Proof. Clearly, π is a ∗-representation. We prove that

ρ(C) = V ∗π(C)V, C ∈Mn. (4.11)

Indeed, for any i, j ∈ {1, . . . , n}

V ∗π(E(n)
i,j )V =

1
n

nk∑
l=1

E∗l E
(n)
i,j El =

1
n

n∑
r=1

k∑
s=1

E(n,k)
r,s

∗
E

(n)
i,j E

(n,k)
r,s
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which, taking into account of (2.6), becomes

=
1
n

n∑
r=1

k∑
s=1

E(k,n)
s,s E

(n)
i,j E

(n,k)
r,s

then, taking into account of (2.7), we get

=
1
n

n∑
r=1

k∑
s=1

δr,iδj,rE
(k)
s,s

=
1
n

k∑
s=1

( n∑
r=1

δr,iδj,r
)
E(k)
s,s

=
1
n
δi,jIk =

1
n

tr(E(n)
i,j )Ik = ρ(E(n)

i,j ).

Since {E(n)
i,j | i, j = 1, . . . , n} is a linear basis of Mn, this proves (4.11).

It remains to prove the minimality condition, that is, that

Cn2k = Lin{ϕ(Mn)V Ck}. (4.12)

To see this, let i, j ∈ {1, . . . , n} and m ∈ {1, . . . , k} be arbitrary. Then

(E(n)
i,j ⊗ Ink)V e

(k)
m = (E(n)

i,j ⊗ In ⊗ Ik)V e
(k)
m

which, taking into account of (4.9), becomes

=
n∑
r=1

k∑
s=1

(E(n)
i,j ⊗ In ⊗ Ik)(E

(n,k)
r,s e(k)m ⊗ e(n)

r ⊗ e(k)s )

=
n∑
r=1

k∑
s=1

(E(n)
i,j E

(n,k)
r,s e(k)m ⊗ e(n)

r ⊗ e(k)s )

then, taking into account of (2.7), we get

=
n∑
s=1

E
(n,k)
i,s e(k)m ⊗ e

(n)
j ⊗ e

(k)
s

which, taking into account that E(n,k)
i,s e

(k)
m = δm,se

(n)
i , becomes

= e
(n)
i ⊗ e

(n)
j ⊗ e

(k)
m .

Since {e(n)
i ⊗ e

(n)
j ⊗ e

(k)
m | i, j = 1, . . . , n, m = 1, . . . , k} is a basis for Cn ⊗

Cn ⊗ Ck = Cn2k, the proof of (4.12) is complete. Thus, (π;V ; Cn2k) is the
Minimal Stinespring Representation of ρ.
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Since ρ is unital, note that actually V is an embedding of Ck into Cn2k, in
agreement with the requirements of the Minimal Stinespring Representation
for this particular case. 2

Proposition 4.3. The tracial map ρ uniformly dominates any map ϕ ∈
CP(Mn,Mk).

Proof. We prove that any linear map ϕ ∈ CP(Mk,Mn) is uniformly
dominated by ρ, that is, there exists t > 0 such that, for all m ∈ N, (aj)mj=1 ⊂
Mn, and all (hj)mj=1 ∈ Cn, we have

m∑
i,j=1

〈ϕ(a∗jai)hi, hj〉 ≤ t
m∑

i,j=1

〈ρ(a∗jai)hi, hj〉. (4.13)

To see this, note that the left side of (4.13) represents the inner product
〈·, ·〉ϕ on Mn ⊗ Ck as in (3.8), and similarly, the sum in the right hand side
of (4.13) represents the inner product 〈·, ·〉ρ on Mn⊗Ck as in (3.8). On the
other hand, due to the minimality property (4.12), it follows that the inner
product 〈·, ·〉ρ is nondegenerate and hence, that the associated seminorm
‖ ·‖ρ is actually a norm. Since Mn⊗Ck has finite dimension, any seminorm,
in particular, ‖ · ‖ϕ, is ‖ · ‖ρ-continuous, and hence (4.13) holds for some
t > 0. 2

Theorem 4.1 (K. Kraus [6]) Let ϕ : Mn → Mk be a completely positive
map. Then there are n× k matrices V1, V2, . . . , Vm with m ≤ nk such that

ϕ(A) = V ∗1 AV1 + V ∗2 AV2 + · · ·+ V ∗mAVm for all A ∈Mn. (4.14)

Proof. To see this, we consider ρ and its Minimal Stinespring Representa-
tion (π, V,Cn2k) as in Proposition 4.2. Since, by Proposition 4.3 ρ uniformly
dominates ϕ, we can apply Theorem 3.2 and get Dρ(ϕ) ≥ 0 in the commu-
tant of π(Mn) such that ϕ = V ∗Dρ(ϕ)1/2π(·)ρθ(ϕ)1/2V . By considering
n2k × n2k matrices as nk × nk block matrices we see that

Dρ(ϕ)1/2V =


V1

V2
...
Vnk


for some n×k matrices V1, V2, ..., Vnk. Since ϕ = (Dρ(ϕ)1/2V )∗π(·) Dρ(ϕ)1/2V
and π(A) is the diagonal block matrix with A’s on the diagonal, (4.14) fol-
lows. 2

The main result of this section is the following description of completely
positive maps in terms of Choi’s matrices.
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Theorem 4.2 (M.-D. Choi [3]) The formulae (4.3) and its inverse (4.4)
establish an affine and order preserving isomorphism

CP(Mn,Mk) 3 ϕ 7→ Φ ∈M+
nk. (4.15)

Proof. Consider the completely positive map ρ : Mn →Mk defined at (4.7),
as well as its Minimal Stinespring Representation (π;V ; Cn2k), as proven in
Proposition 4.2. We combine the facts obtained so far in Proposition 4.1,
Proposition 4.2, and Proposition 4.3 with those in Corollary 3.2 in order
to get that the Radon-Nikodym derivative with respect to ρ establishes an
affine and order preserving isomorphism between the cones

CP(Mn,Mk) 3 ϕ 7→ Dρ(ϕ) ∈ π(Mn)′+. (4.16)

Since
π(Mn)′ =

(
Mn ⊗ Ink

)′ = In ⊗Mnk,

and this identification induces an affine and order preserving isomorphism
between the corresponding cones of positive elements, it follows that the
Radon-Nikodym derivative with respect to ρ establishes an affine and order
preserving isomorphism

CP(Mn,Mk) 3 ϕ 7→ Φ ∈M+
nk,

more precisely
Dρ(ϕ) = In ⊗ Φ, ϕ ∈ CP(Mn,Mk). (4.17)

It remains to prove that the isomorphism (4.17) coincides with that defined
at (4.15), which, by the uniqueness of the Radon-Nikodym derivative, is
equivalent with proving that

ϕ(C) = V ∗(In ⊗ Φ)(C ⊗ Ink)V = V ∗(C ⊗ Φ)V. (4.18)

To see this, it is sufficient to prove that for all i, j ∈ {1, . . . , n} and all
l,m ∈ {1, . . . , k} we have

〈ϕ(E(n)
i,j )e(k)l , e(k)m 〉 = 〈V ∗(E(n)

i,j ⊗ Φ)V e(k)l , e(k)m 〉. (4.19)

First, we note that

V e
(k)
l =

n∑
r=1

k∑
s=1

(E(n,k)
r,s e

(k)
l )⊗ e(n)

r ⊗ e(k)s

=
n∑
r=1

k∑
s=1

δl,se
(n)
r ⊗ e(n)

r ⊗ e(k)s

=
n∑
r=1

e(n)
r ⊗ e(n)

r ⊗ e
(k)
l .
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Then

〈V ∗(E(n)
i,j ⊗ Φ)V e(k)l , e(k)m 〉 =

= 〈(E(n)
i,j ⊗ Φ)V e(k)l , V e(k)m 〉

=
n∑
r=1

n∑
p=1

〈(E(n)
i,j ⊗ Φ)(e(n)

r ⊗ e(n)
r )⊗ e(k)l , e(n)

p ⊗ e(n)
p ⊗ e(k)m 〉

=
n∑
r=1

n∑
p=1

〈δr,je(n)
i ⊗ (e(n)

r ⊗ e
(k)
l ), e(n)

p ⊗ e(n)
p ⊗ e(k)m 〉

=
n∑
p=1

〈e(n)
i ⊗

(
Φ(e(n)

j ⊗ e
(n)
l

)
, e(n)
p ⊗ e(n)

p ⊗ e(k)m 〉

=
n∑
p=1

〈e(n)
i , e(n)

p 〉〈Φ(e(n)
j ⊗ e

(n)
l ), e(n)

p ⊗ e(k)m 〉

=
n∑
p=1

δj,p〈Φ(e(n)
j ⊗ e

(n)
l ), e(n)

p ⊗ e(k)m 〉

= 〈Φ(e(n)
j ⊗ e

(k)
l , e

(n)
i ⊗ e

(k)
m 〉

= 〈ϕ(E(n)
i,j )e(k)l , e(k)m 〉,

where, at the last step, we used (4.6) and (4.3). Thus, (4.19) is proven, and
hence (4.18) is proven. 2
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