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ABSTRACT

THE LINEAR MEAN VALUE OF THE REMAINDER 
TERM IN THE PROBLEM OF ASYMPTOTIC 
BEHAVIOUR OF EIGENFUNCTIONS OF THE 

AUTOMORPHIC LAPLACIAN

Zerni§an Emirleroglu 
M.S. in Mathematics 

Supervisor: Prof. Dr. N.V. Kuznetsov 
August 1996

The purpose of this thesis is to obtain the estimate for the average mean 
value of the remainder term of the asymptotic formula for the quadratic 
mean value of the Fourier coefficients of the eigenfunctions over the discrete 
spectrum of the automorphic Laplacian.

K eyw ords : The Fourier coefficients of the eigenfunctions of the Auto­
morphic Laplacian, Dirichlet Series.
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ÖZET

OTOMORFİK LAPLASİAN’IN ÖZFONKSİYONLARININ 
ASİMTOTİK KALANININ ORTALAMA DEĞERİ

Zernişan Ernirleroğlu 
Matematik Yüksek Lisans 

Tez Yöneticisi: Prof. Dr. N.V. Kuznetsov 
Ağustos 1996

Bu tezin amacı Otomorfik Laplasiarı’ın ayrık spekturumlarmm özfonksiyonlarının 
Fourier katsayılarının asimtotiğinin kalanının ortalama değerini hesapla­
maktır.

Anahtar K elim eler : Otomorfik Laplasian’in özfonksiyonlarının Fourier 
katsayıları, Dirichlet Serileri.
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Chapter 1

Introduction

An asymptotic formula for the quadratic mean value of the Fourier coef­
ficients of the eigenfunctions of the discrete spectrum of the automorphic 
Laplacian was proved in the paper of N.V.Kuznetsov.

In this thesis we’ll give the estimate for the average mean value of the 
remainder term of this asymptotic formula.

To formulate our results we introduce the following notations.

Let C be the Laplace-Beltrami operator on the upper half-plane of the 
complex variable z =  x -(- ¿3/, y > 0,

and let G denote the classical modular group of fractional linear transforma­
tions:

az +  6 
z - ^ g z  =  - — 7 , 

cz +  a

where a, 6, c and d are rational integers with ad — be =  1.

The eigenfunctions of the discrete spectrum of the Laplace operator are 
the nonzero solutions of the differential equation

Cil> =

which satisfy the periodicity condition

V>(yz) =  g ^ G ,
cz a
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and the finiteness condition

f mJD
z)\^dz < oo,

where dz =  dxdyly"^ is the G-invariant measure on the upper half-plane and 
D is the fundamental domain of the modular group.

Let 0 =  Ao <  Ai < · · · be the eigenvalues of C. The corresponding eigen­
functions are denoted by =  0,1, ·' '(if is known that Ai ~  91.1). It is
known that each eigenfunction which corresponds to positive eigenvalue 
\j >  1/4 has the Fourier expansion of the form:

where /Cj =  — 1/4, pj{n) are the Fourier coefficients of i>j{z) and AT(·)
is the Hankel function of the first kind of order v with purely imaginary 
argument [5].

A similar expansion is also valid for the eigenfunctions of the continuous 
spectrum of Laplace operator. It is known that the eigenfunctions of the 
continuous spectrum of the Laplace operator can be obtained by analytic 
continuation of the Eisenstein series onto the line Res =  | [4]. The Eisenstein 
series E{z,  s) is defined by

E{z^s) — y* -t- -  ^ 125 , Res >  1,
(c.ci)=l,c^0 1^^ +  ^1'

where the summation is over all pairs of relatively prime integers c, d with 
c ^  0.

In the case of modular group, the continuation of E{z,s )  onto the whole 
s-plane may be realized by the Fourier expansion:

E{z ,s )  = y ^ +  ^  E  Ts{n)K^_x {2Tr\n\ye^̂ '^̂ ),

where with the usual notations for gamma-function and for the Riemann 
zeta-function we have

f(s) =  ,r-T(s)C(2ä).

The quantities Ts{n) are the Fourier coefficients of the Eisenstein series; these 
are equal to

Ts{n) =  |n|*“ 2
c/|n,ii>0

2



Bilinear combinations of the Fourier coefficients of eigenfunctions of the 
Laplace operator can be expressed in terms of the mean value of the classical 
Kloosterman sums. By definition

S{n, m; c) = E
l<d<\c\

(c,c/) = l ,dd'=i(modc)

where the summation is over d prime to c and for every d, the integer d' is 
the solution of the congruence dd' =  l[modc).

More definitely, the identity between the Fourier coefficients and the sum 
of the Kloosterman sums is [5];

E Pj(n)pj{m)

^  ch[TTKj)

^  /00  +  £  ^3{n,  m;

where Sn,m is the Kronecker symbol, a^{n) =  ^  d'", and is the
d\n d>0

test function, which is defined by the integral transform

(p{x) =  — I  J-2ir{x) 
7T J — 00 -h{r)dr

ch(irr)

with the usual notation for the Bessel function. The identity is valid for 
the functions h{r) satisfiying the conditions: h{r) is an even function of 
r,regular in the strip \Imr\ <  A for some A > |·, and for some p >  0,as 
|r| —>· 00, |/mr| < A:

l% ) l  =  0 (|r| -^-).

Now, the remainder term of the asymptotic formula can be obtained with 
a small difference from the paper of N.V.Kuznetsov. The Fourier coefficients 
of the eigenfunctions of the continuous spectrum are also taken into consid­
eration, as well as the Fourier coefficients of the eigenfunctions of discrete 
spectrum of the Laplace operator.

We define the remainder term by the equality:

« » m = E n r ^ +  I 1« ,  J .011 ·7T J-x \({l +  2ir)\- I7T J-
2

-d r ----- - / rth(Trr)dj\
' 7T̂ Jo

where the p j(n )’s, ri. .̂,-,.(n)’s are the Fourier coefficients of the eigenfunctions 
of the discrete spectrum, and, the continuous spectrum respectively.



Chapter 2

The Initial Identities

2.1 First Identity

Lem m a 2.1 Let h(r) be a good function in the sense that it satisfies the 
assumptions in the main identity. Then

f Rn{r)h'{r)dr =  ^  -<S'(n, n,
c>l

(2.1)

P roo f: If we put ri=m in the main identity (1.1) we get;

^  c hTTKd  7T7 =  1 J

1 I i-f-t’r(n)
|C(1 + 2ir)P h{r)dr ·

1 1 47T77
—  /  rth{Trr)h{r)dr +  ' ^ - S ( n , n , c ) ( f { ----- ).
7T  ̂ 7 - 0 0  , C Cc—1

By using integration by parts we see that: 

and roo poo pr
J rth{'!rr)h(r)dr =  — j  (y rith{'Krx)dri)h'{r)dr.

Doing the same in the integral over continuous spectrum we come to (2.1).

In order to obtain a more explicit result we choose a specific function h{r)
as

h{r) =  tx,A(r)
q{r)

q{r) +  M 

4
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where

and

?(r) =  (r^ +  i ) ,

=  /_ e (/^( / e dif) *.
X  ·/ —GO

Clearly is almost 1 if r is in the interval [—X, X], and it rapidly decreases 
outside.

2.2 Averaging

We introduce the infinitely smooth function w{x) which is identically zero 
outside the fixed interval [1,2], and is near to one inside this interval.

Now we define the mean value of the remainder term by the equality

(2 .2 )
1 oo 

n = l

where T ( which determines the length of averaging) would be taken suffi­
ciently large.

2.3 The main result

Our main result is the following assertion:

T heorem  2.1 Letw{x) be an infinitely smooth finite function whose support 
is separated from zero and T  >> X^. Then

^  u > ( ^ ) R „ ( X )  =  c , T X I o g ^  +  (C 2 +  ^ w ( l ) ) T X  +  2 c , T ( L ( l , x )  +
n=l

+0{T'2+^X^+^ -b x ^ / l ^ ) ,

where

Cl

C2 =

1 u)(l)

id' C r ' 1
c i(2 -f- — (1) +  37 -  2—(2) -f -pr(«))i 

w ( , 1 2



x(n) =  ( - ^ ) ,  x '(n) =  ( -^ ) .

(Here 1̂ (5) is the Mellin transform ofw{x) , )

and



Chapter 3

The summation over n’s

3.1 The main congruence

Firstly we will give a simple property of the Kloosterman sums which will be 
used later.

L em m a 3.1 =  ci/„,(c) where Un{c) is the number of
the solutions of the quadratic congruence +  na +  1 =  0 (mod c).

Before the proof, we change the notation to e ( ^ )  since it is more
convenient to use(of course, the real reason is that this notation is used 
everywhere).

P roo f; It follows directly from the definition of the Kloosterman sums.

S(m ,m ;c )e ( -----) =
m = l  ^

^  . ma +  md mn
^  il<a<|c| m = l ^ ^

(a,c) =  l,ac/=l(mo(i c)

c li a +  d +  n =  0 {mod c)
1 <a<|c|

(a,c) =  l ,a d = l(m od  c)

ifa  +  d +  n ^ O  (mod c)

But the number of the solutions of the equation a + d +  n =  0 (mode) equals 
to the number of solutions of the equation +  an +  1 =  0 (mod c) (since 
(a,c) =  1 and ad =  l(mod c)).



3.2 The L-Series

In this part we will give the basic definition, and some properties of the 
L-series for they have a connection with the quadratic residues.

Let m be an integer > 1 and let y; be a character mod m, namely the 
character of the multiplicative group [ZfmZ)*  of the ring ZjrnZ. The cor­
responding T-function is defined by the Dirichlet series

OO

L{s,x)  =  5^x(n)/n·'·.
n=l

For X 1, the series converges(respectively converges absolutely) in the 
half plane Re s > 0 (respectively Re s >  1). Moreover, there is an analytic 
continuation over the whole plane which is more important for us [1].

3.3 Averaging The Remainder Term

From Lemma 2.1 we have the equation

roo ___  1 AtTTI
I Rn{r)h'{r)dr =  J2-S{n,n-,c)ip{----- ). (3.1)
Jo >̂1 c c

If we multiply (3.1) with lo(^) and sum over n we get;

£  - » ( i ) r  R-.(r)h'(r)dr =  E  “ (S )  E  u;

From now on, we will deal with the right side of the equation. Since the 
summation over n is finite, we have

f; w{̂ ) I Rn{r)h'{r)dr =
n = l  ^ C>1 ^ n = l

n,n;c)(^(— ). (3.2)

We can replace n by m-t-ni c where ni =  0, 1,2.. and 1 < m < c. It is obvious 
that 5 '(n ,m ,c) is a periodic function.Then from (3.2) we have

1 C  OO p  YY!

^  -  ^  5 ' ( m , m ; c )  ^  H--------) ) ( p ( 4 7 r ( - - +  n i ) ) .

c>l ^ m = l m=o



Now we consider the following function

f { x ] c ) =  w { - { n i  +  x))(p{4Tr{ni +  x)).
m = —oo

The series in (3.3) determines a periodic function of x, with period 1, hence 
f ( x ‘, c) has the fourier expansion

f { x ] c ) =  e { n — ) (f>nic),
n=—oo ^

where the coefficients are given by the integrals

f°° c
<f>n{c) =  /  e(—nx)w{—x)ip{4TTx)dx.

Jo I

So (3.2) equals to:

S "  ¿  S{m,m-,c) e (— ) /  e { - n x )  w {^ x )  (p{4Trx)dx.
C > 1  C m=l n=-oo C Jo T

By using Lemma 3.1 , we get

°° n 1 Atth °°
—  ) =  ^n{c) (t>n{c).

n=lc>l c>l n= —oo

In order to obtain the Dirichlet series, we will use the Mellin transform 
of w[j;x).  Namely it is

r o o  Q
•w(s) =  /  w {—x)x^~^dx,

Jo T

and the inversion formula

holds.(Here means the integration is over the line Res =  cr.) It can be seen 
from integration by parts that w{s) is an rapidly decreasing function.We can 
choose a arbitrarily since w{s) is an entire function. Then

^ I poo p ___ y (r)
E  ^n{c)M( )̂ = E  / ( / , e{-nx)w{s) ^  -^x-^Tip{4TTx)ds)dx

c>ln=-oo n=-oo -̂ 0 c>l ^

Clearly z/n(c) is an even function of n. Replacing n by —n, and changing the 
order of integration we get

oo 1 .
-  /  ip M w (s )T ^ U s )d s ,

^ 0
(3.4)



where Ln{s) =  ^  ^ y
c > l

POO

<̂ ni )̂ — / cos{2Trnx)x~‘ (p(4Trx)dx.
J 0

(The possibility of changing the order of summation and integration, and 
two integrations will be clear after calculating the (/?„(s).)

Now two questions arise, what is the inner integral and what is the ana­
lytic continuation of Ln{s) ‘l We will solve these questions seperately.

L em m a 3.2 ^2(5) =  ^ ^ C (s)((2 s  — 1) fo r  Res >  1.

P roo f:

^ 2(s) =  1 ]  fo r  Res >  1,
c>l

where î 2(c) is the number of the solutions of the equation =  0 (mode). It 
can be easily seen that ¿/«(c) is an multiplicative function of c for any n > 0. 
So

LAs) =

where the multiplication is taken over all primes. Therefore it is enough to 
find i'2{p°‘ )· We can show immediately that V2{p°‘ ) =  P̂ ^̂ · Then the result 
follows.

Lem m a 3.3 When n ^ 2

C(̂ )
-^n(*5) —

c(2.) 5
—4

where

(̂■5) -  ( r — x ) ( l  + - ^ ^  +  · · ·) 1 1 (1  +
-*■ ' *2«  ̂ p>2P>2 P

p\'n?—4
— + ^ + · · · )  n  (1 + 4 ) " ·p ;>2 p

p\n^—4

10



P roo f: Again it is enough to find t'nip“ )·

i^n(p") =  #  {a ;  â  +  n a  +  l =  0 mod{p°‘ )].

Let us choose p as an odd prime.

^n{p°‘ ) =  # { a :  4a^ + 4 n a + 4  =  0 mod(p°‘)}

— W '■ (2 a +  n)^ — +  4 =  0 mod(p°‘ )}

=  #  [x : mod{p"‘ )].

It can be shown that =  1 +  ( 2̂ )  if p -  4 where ( ^ )  is the
usual Legendre symbol. So we get the result.

3.4 The functions (fn{s)

Now we can give the explicit expressions for the integrals of (/p„(s).

L em m a 3.4 For any p with the condition Q < p <  ̂ we have for Res <
1+2/?

Fn{s) =  iir̂  i  V’n (r ,s )r -
Jlmr=—p C

h{r)
chirr

dr̂

XV here

\ r - ' ^ ____ r ( ^ - | ) r ( ^  +  »r)
r ( l ^  +  i r ) r ( f  +  i r ) r ( f - i r )  ^

li’» ( r , i ) = ]  +  i fn  =  0 o r l ,
r ( i f i  +  ir) ' 2 2 ’ 4

n -1 /Zi‘̂ \2ir 2 +  * )̂ mA ~
n r(2zr +  l)r (|  — ¿r)  ̂ 2  ̂ ~  o +  ir,2ir +  1; — ), i f n > ln“

IT p /  7 . ^  r(a  +  n) r(6 +  ra) r(c) z ”  . , ^  ,
Here F{a,b,c-,z) -  -------r /  -l \ri Gauss hy-

n=o U«) r(«) r (c  +  n )r (n  +  l)
pergeometric function.

11



P roo f: Using the regularity of h{r) in the strip \Imr\ < A , A  < | we can 
write:

2i
(piiTTx) =  — J2ir{iTTx)

TT J —oo
-h[r)dr

ch{Trr)
2i f V

"  — /  •/2ir(47Ta;)— — -Ji{r)dr,7T J lm r = -p  c/i(7rr)

here we take 0 < p < |. For large values of r, h{r) is very small and 
when a; —> 0, | J2t>(a:)| <C x^̂ . So the integrand of (pn{s) is not greater than 
x~<̂ +' p̂̂ rh[r)\. If we take Res <  1 +  2p, the double integral will be absolutely 
convergent. Therefore we can integrate in any order.

The inner integral is so called the discontinuous integral of Weber and 
Schafheitlin. This integral converges,but its analytic expression is different 
in two cases n < 2 or n > 2 [2]. By taking

cos(27rna:) =  Vi^'^nxj_i{2Trnx)

we can apply the formula from [2], and for n =  0 we use the well known 
formula for the Mellin transform,

POO

/  J^{at)t'^~^dt =  2 “̂ ^a“ ^
Jo

'̂ 1̂̂  X) where -R e{ f i )  < R e p <  \ .
r ( i  +  -  2p)

Then we get the desired result.

3.5 The Principal Term

As the result of Lemma 3.4, we have for p G (0, |), 1 < Res < 1 + 2/9

rh{r)

where

r R { r , T ) h \ r ) d r  =  i :  j  ^ i i „ ( r , T ) d r
Jo ^  Jlmr=-P ch{7rr)

i )n (r ,T )=  [  Tr^~^i}n{r,s)w{s)T"Ln{s)ds.
J  (T

(3.5)

Firstly we consider the function il2{r,T).  The integrand is the meromor- 
phic function, L2{s) has the double pole at s =  1, and other multipliers have

12



no singularity for H  Res < 1 +  2p. We move the line of integration to the 
left and we integrate now on the line Res =  a —  ̂ +  e, s > 0. Thus

—2logr -  i^cthirr) +  j  7r''’~̂ 'il̂ 2{r, s)w{s)T^L2{s)ds.
Z Ja=7r+€

vh( r )
After integrating Q,2{r,T)  with multiplier —----- on the line Imr =  —p

ch/TT'P
(here p can be taken as 0, and note that h[r) is 1 in the interval [—X, X ]) 
we get the main term of the series in the formula (3.5) which is:

where

C \ T  Х1од[2'кТ) +  C2 T  X  — 2c\T XlogX

lu ) ( l )

w' C Г' 1
C2 =  Ci(2 +  ^ (1 )  +  З7 -  2—(2) +  — ( - ) )  

w ( , 1 2

Г'
Here 7 is the Euler constant, 7 =  —— (1). And

rh{r)
[  I  7 T ^ -3 ^ 2 (r ,  s )w {s )T ^ L 2{ s ) ^ ^ ^ d s  dr  <  X '^ + %

J Imr= — p J<T=j-̂ € CflilTT)

Since

r ( l f^  +  ir)
r ( i±2 +  i r ) r ( f  +  i r ) r ( f  -  ir)

= r-**e“ i+’"’eip(0(4·)).
r»"

3.6 The Cases n 7̂  2

Now we consider the case n > 2.

Again the integrand of iln{r,T) is a meromorphic function, for Ln{s) has 
a simple pole at s =  1 when n > 2. We move the line of integration to the 
line Res =  cri =   ̂ +  e, e > 0 for n < T 2. We get when n > 2

йп{г,Т) =  - n - 2·’·— u > ( l ) m  +  /  7г -̂'·^φnir,s)w{s)T^■‘Lnis)ds,
7Г r  J<T̂  = l + e

13



where is the residue of Ln{s) at s =  1. The result follows by the equality

r(ir)

and

r(2^r +  l ) r ( i - i r )

1

=  7T 2 2
;rr) —2ir chirr

ir

F{ir, -  +  ir, 1 +  2zr; x) 

where x =  ^  and  ̂ =  log [3].
Here in order to estimate integral on the line <Ti =  | +  e, it is necessary to 
find a bound for T„(s).
To do this we express Ln{s) in terms of the classical Dirichlet’s series with 
the Kronecker symbol.

^n(s) =  Y^C   ̂ f o r  Res >  1.

Since our character is not primitive we write — 4 =  k^Q where Q is square 
free and A: > 0.
We get

^n(5) =  n ( l  -  ( — f^^ R e s > \ ,
p\k P P

where x  — (^ ) is real, primitive character.
We will use the functional equation for L(s,x).

L em m a 3.5

L {s ,x )  ^  f o r  any £o > 0 on the line Res — - .
2

P roo f: Considering a function « (x )  such that a  € (7°°(0,oo), a =  
1 for X < Xo < 1 ando;(x) =  0 if x > ^ -(It is convenient to take this 
a  such a way that o;(x) +  0!(^) =  1.) we have

x(«)> (3.6)

where a{p) is the Mellin transform of a{x)  and Rep =   ̂ Clearly a{p) 
has a simple pole at p =  0 with residue 1. Applying the functional equation 
for L{s ,x )  [1] to (3.6) and moving the line of integration to the line < — | 
we obtain

14



V  =  _ L  [  й (») л £ ( z E ± l )
^  n ‘  2m  J(. , ‘ Q i ^ Q ’  П ’- ^  +  i )

^(1 -  ^ -  P^x)dp-\- L{s ,x ) .

Here the Gaussian sum r (x ) is defined by for any character y(n) to the 
modulus

n

^(x) =  2^ x M e ( — ),
m = l

and

a = 0 if x(-i) = 1
1 i f x ( - l )  =  - l .

If n <  we move the path of integration to the right, we get the
equality,

=  E  — +  E  --^  +  » ) ) x ( » )
n<T r ( l ( s  +  a)) n ' -i < ( f  ) '  + ‘ o

roo ,+ E /
n<(^)l + '0 “

q i<̂Q2 n>-̂

2‘кТпх,,жТп,з

In order to get best estimate we choose T r>sj (^2+ 2 . So L{s ,x )  <  (^4+ 2 .
It is clear that the product Ln{s) =  Ilp|fc(l ~  la,rger than

d“ '’ {p =  Res), it is smaller than for any e > 0.
So we have estimate

\Ln{s)\<k^Q'^+^ if n ^ - 4 ^ k ‘̂ Q.

For the case n <C T 2 it gives |Ln(-s)l £o > 0.

r/ii r)
When we integrate fin(r, T) with multiplier —— -  on the line Imr =  —p,

chvr
we get

-n-^>’ Bnw{l )TX  +  /  йп{г, T ) " ^ d r .
7Г J lm r = -p  chirr

In order to obtain the estimate we find the asymptotic expansion of +
¿r, 1 — I +  ir,2ir +  1; for large values of r and n. We use the standard
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methods of the asymptotic integration of differential equation with large 
parameter. We get

F { ~ - H r , l - i  + ir,2ir+l·,·^) =  1 ) 5- 12" ' '

where

f i v )  =
- 3

1 6 { c h ^ - l ) c h ^  4c/i2f
-^-2s^ +  2s

—  +  - — r-r:^-----  and (  ~  2logn.

Using Stirling formula we have

r ( i ^  +  zr)
^  ' ------=  - ¿ r - ’ 2? - 2*"e^"exp(0 ( - ) ) .r(2zr +  l)r(| — ir)

And for n > T 2, we approximate fi„(r, T) on the line Res 
1 +  £0, £o >  0 we get

= (7i =

I Im r=—p crnrr

If we come back to the series in (3.5) we need to find ^̂ „>3 Bn.

Let B'{n) be the residue at the point s =  1 of the function
C(2'S)X^^i is known that

NI
n>3
£  B'{n) =  0 {N ) .

The proof follows from Theorem 2 in the paper of N.V. Kuznetsov [6] by 
correcting the misprint in the result. The error was noticed and corrected by 
Professor Kuznetsov.

So we have in (3.5)

^  3<n<N  ^  n>N
+  O(r?+"0 At+'O) if r  > A,

where N =  Ti"*"®®, and J2n>N can be estimated as 0 ( A ' ®̂).
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The cases n =  0 and n =  1, are the trivial ones since we have exponentially 
small functions in the integrand. The integrands of ilo(r, T) and (r, T)  have 
simple poles at s =  1 which comes from the Lq{s) and Li{s)  respectively for

y-v XiiP')

where

and

X4(n) =

( ( 2a·) , , n"^   ̂ n IS odd

1 if n =  1 {mod 4), 
— 1 if n =  — 1 {mod 4)

By moving the line of integration to the Res =  <ti =  | +  £o,we obtain

iio (r ,T ) =  - ^ t o
r Pizr -4-

i ( l ) T L ( l , x ) +  /  ^ - ^ 2 -  . J  ,1. ¿(»)T -Lo(»)rf».
Ja, i  nr -t- - ^ 1Trr((2) ’ Jat r (ir  +  i ^ )

By estimating the second integral we get the first term of the series in (3.5)
as

2 1
IT ( ( 2)

Tw(l)L(l,x) +  0 (T i* ‘ -).

Similarly,

n .( '- .r )  =  l ^ a ( l ) T L ( l , x ' ) F ( i r , - i r , i l )

Jai
+  I ^2' ‘ !!!” ' +  ir, -  ir, t ,  t)A(a)r*Ii(s)(i6!.r (ir  +  i± i) ' 2

By using

i( l ,x ')u ,(l)r  +  0(T5+·").

we get the second term of the series in (3.5) as 

2 1 
^ W )

As a result:
For T >> and £o > 0

2r? /*00
y w { ^ )  R J r W {r )d r  =  ciTXlog{27rT) +  C2T X - 2 c , T X l o g X +  - w { l ) T X  
^ 0  T Jo 7T

+2ciT(T(l,x) +  T(l,x ')) +  0 (T?+^»X2+.o)
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where

= n W i
w' c  P  1

C2 =  c i(2 +  ^ ( 1) +  37 -  2—(2) +  — ( - ) ) .w L Z

1 «;(!)

By estimating the integral Rn(r)h'{r)dr from below by Rn{X  — 
2/S.y/logX) +  0{Xy/togX)  and from above by Rn{X  +  2Xy/logX) +  

we prove the theorem.

3.7 The mean value of the integral over continuous 
spectrum

It is natural to ask the asymptotic behaviour of the mean value of the integral 
over the continuous spectrum.

Proposition 3.1

ІC(l+2гг)|2 ^  « 2)·̂  *  “  c * ’
+2-i)TX  +  0 {TlogX)  +  0 (T 2+'°).

Proof:
0000 1  ̂ 00

I ]  «;(-)|r^(n)|^ =  ^ J
n = l  ^ n = l

|r (̂n)|'
)ds for Res =  cr > 1. (3.7)

By moving the line of integration to the left, cr =  | +  £0, £0 >  0 and using 
the Ramanujan identity

g  _  Ĉ (-s)C('S +  2i/ -  l ) ( { s  -  2v +  1)

n = l C(2i)

we get

, n.
E « » (^ )K (n ) l^  =  t | ^ ( ( 2i/K (2 - 2. - ) ( % T + ^ ( 1) +  ^ ( 2 - 2:.)

X ( 2 v )  -  2^ (2) + 27) + 0 (T'i+·»). (3.8)

Taking 1/ =  I +  ¿r, and integrating (3.8) with the multiplier |̂ (î 2̂-r)|2 with 
respect to r, we get the result.
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Chapter 4

Conclusion

In the paper of N.V.Kuznetsov, it was proved that

where

B!^{X) <  X ln X  +  Xn^ + Hi

for any fixed e >  0 and for any A” > 2, n > 1.
The true order of this remainder term is unknown.

In this thesis we found the average mean value of the remainder term 
Rn{X)  (the Fourier coefficients of the eigenfunctions of the continuos spec­
trum is also taken in contrast to R'^[X)). We see that the average mean 
value of Rn{X)  is positive. Furthermore, from the theorem it can be seen 
that there are infinitely many n ’s and X ’s such that for n € (T,2T) and 
T >* A^, we have

Rn{X) X{lognY, 'ia < 1.

By using the proposition and theorem, it can be also shown that there 
exist infinitely many n ’s and X ’s satisfying

K W  < J r ^ V i o s A ·2ir C(2)

for n G (T, 2T) and T X' .̂
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