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ABSTRACT

THE LINEAR MEAN VALUE OF THE REMAINDER,
TERM IN THE PROBLEM OF ASYMPTOTIC
BEHAVIOUR OF EIGENFUNCTIONS OF THE

AUTOMORPHIC LAPLACIAN

Zernisan Emirleroglu
M.S. in Mathematics
Supervisor: Prof. Dr. N.V. Kuznetsov
August 1996

The purpose of this thesis is to obtain the estimate for the average mean
value of the remainder term of the asymptotic formula for the quadratic
mean value of the Fourier coeflicients of the eigenfunctions over the discrete

spectrum of the automorphic Laplacian.

Keywords : The Fourier coefficients of the eigenfunctions of the Auto-

morphic Laplacian, Dirichlet Series.

i



OZET

OTOMORFIK LAPLASIAN’IN OZFONKSIYONLARININ
ASIMTOTIK KALANININ ORTALAMA DEGERI

Zernigan Emirleroglu
Matematik Yiksek Lisans
Tez Yoneticisi: Prof. Dr. N.V. Kuznetsov
Agustos 1996

Bu tezin amaci Otomorfik Laplasian’in ayrik spekturumlarinin 6zfonksiyonlarinin
Fourier katsayilarinin asimtotiginin kalaninin ortalama degerini hesapla-

maktir.

Anahtar Kelimeler: Otomorfik Laplasian’in 6zfonksiyonlarinin Fourier

katsayilari, Dirichlet Serileri.
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Chapter 1

Introduction

An asymptotic formula for the quadratic mean value of the Fourier coef-
ficients of the eigenfunctions of the discrete spectrum of the automorphic

Laplacian was proved in the paper of N.V.Kuznetsov.

In this thesis we’ll give the estimate for the average mean value of the

remainder term of this asymptotic formula.
To formulate our results we introduce the following notations.

Let £ be the Laplace-Beltrami operator on the upper half-plane of the

complex variable z = z +1y,y > 0,

0* 9
L=~y (= + ),
Y (83:2 + (')yz)
and let G' denote the classical modular group of fractional linear transforma-
tions:
az+b
2 — gz =
Y= ard

where a, b, ¢ and d are rational integers with ad — bc = 1.

The eigenfunctions of the discrete spectrum of the Laplace operator are

the nonzero solutions of the differential equation

Lip = My,
which satisfy the periodicity condition
_ ez +b
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and the finiteness condition

), W)z < o,

where dz = dzdy/y? is the G-invariant measure on the upper half-plane and

D is the fundamental domain of the modular group.

Let 0 = Ao < A; < --- be the eigenvalues of £. The corresponding eigen-
functions are denoted by 1;(z),; = 0,1,---(it is known that \; ~ 91.1). It is
known that each eigenfunction 1;(z) which corresponds to positive eigenvalue
A; > 1/4 has the Fourier expansion of the form:

Bilz) = 5 S, (2n|nly)ps(n),
nF0

where &; = /A; — 1/4, p;(n) are the Fourier coefficients of v;(z) and K,(.)
is the Hankel function of the first kind of order v with purely imaginary

argument [5].

A similar expansion is also valid for the eigenfunctions of the continuous
spectrum of Laplace operator. It is known that the eigenfunctions of the
continuous spectrum of the Laplace operator can be obtained by analytic
continuation of the Eisenstein series onto the line Res = 1 [4]. The Eisenstein

series F(z, s) is defined by

S

1 Y
E(z,8)=y"+ = ——— | Res>1,
(c,d):zl,c¢0 |cz + df*s

where the summation is over all pairs of relatively prime integers ¢, d with
c#0.

In the case of modular group, the continuation of F(z,s) onto the whole

s-plane may be realized by the Fourier expansion:

6(1 ) 1- 2\/_ K 2ming
Ez,s) =y + ———y ~° K1 27r|n|ye )
) @ T R
where with the usual notations for gamma-function and for the Riemann

zeta-function we have
E(s) = 7 T(s)((29)
The quantities 75(n) are the Fourier coefficients of the Eisenstein series; these

are equal to

7s(n) = Inls"li Z d'7% = Inls"%al_gs(n).

d|n,d>0



Bilinear combinations of the Fourier coefficients of eigenfunctions of the
Laplace operator can be expressed in terms of the mean value of the classical
Kloosterman sums. By definition

S(n,m;c) = > 62’”'(%4"'%),

1<d<]c|
(c,d)=1,dd’=1(modc)

where the summation is over d prime to ¢ and for every d, the integer d' is

the solution of the congruence dd’ = 1(modec).

More definitely, the identity between the Fourier coefficients and the sum

of the Kloosterman sums is [5]:

S ) K; 1 OoTi’a-?lcrf'rrz——-h(r)
; ( J)+ / ( ) 217‘( ) —2”‘( )|€(1+22r)lzdr (ll)

7m]) TJ-co 1
(47r\/nm)

C

bnm [ >
= ; /_ rth(rr)h(r)dr + %S(n, m;c)p
o0 c=1

™

where 6, ,, is the Kronecker symbol, o,(n) = Z d”, and w(fﬂc”@) is the
dln d>0
test function, which is defined by the integral transform

o(z) = 12—1—/_0:0 Jzir(:v);m:r—r)h(r)dr

Ve

with the usual notation for the Bessel function. The identity is valid for
the functions h(r) satisfiying the conditions: h(r) is an even function of
r,regular in the strip [Imr| < A for some A > 1, and for some p > 0,as
|r| — oo, [Imr| < A:

[A(r)] = O(Ir7™*).

Now, the remainder term of the asymptotic formula can be obtained with
a small difference from the paper of N.V.Kuznetsov. The Fourier coefficients
of the eigenfunctions of the continuous spectrum are also taken into consid-

eration, as well as the Fourier coefficients of the eigenfunctions of discrete

spectrum of the Laplace operator.

We define the remainder term by the equality:

Jps(n) l/X 73 pir () 2 X
—E2—————dr — — tl dr
~Z<:X chms] x |¢(1 + 2ir)|? 7r2/o rth(mr)dr,

where the p;(n)’s, T;_H,,(n)’s are the Fourier coefficients of the eigenfunctions

of the discrete spectrum, and, the continuous spectrum respectively.
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Chapter 2

The Initial Identities

2.1 First Identity

Lemma 2.1 Let h(r) be a good function in the sense that it satisfies the

assumptions in the main identity. Then

/000 Ro(r)l/(r)dr =" éS(n, n, c)c,o(47r—n) (2.1)

c2>1 ¢

Proof: If we put n=m in the main identity (1.1) we get:

T 'pf(rl)!zh(nj) + % I ————]T%“'(".’Ijzh(r)dr -

i1 chmk; —o0 |C(1 + 207)
Iy 4mn
=/ rth(mr)h(r)dr +Z -S(n,n,c)p(— . ).

By using integration by parts we see that.

|3 le; (
Z chmc] / ~Z<r chmc] )h

and

[ rtblarr)dr = — [ ([ oy W

Doing the same in the integral over continuous spectrum we come to (2.1).

In order to obtain a more explicit result we choose a specific function A(r)

o(r)

h(T) = tX,A(T')m for M > 4,

4



where

otr) =+ 7),

X r—£)2 [>) r—£)2
txa =/Xe‘(_A§)_d§(/ e~ de),

Clearly t; a is almost 1 if r is in the interval [~ X, X], and it rapidly decreases

and

outside.

2.2 Averaging

We introduce the infinitely smooth function w(z) which is identically zero

outside the fixed interval [1,2], and is near to one inside this interval.

Now we define the mean value of the remainder term by the equality

R(z;T) = 7 > (%) Bale), (2.2

n=1

N[~

where T ( which determines the length of averaging) would be taken suffi-

ciently large.

2.3 The main result

Our main result is the following assertion:

Theorem 2.1 Let w(z) be an infinitely smooth finite function whose support

is separated from zero and T > X?. Then
> w(Z)Ba(X) = T Xlog%E + (2 + 2(1))TX + 2 T(L(L, x) + L(L, X))

n=1
+O(T2te X + X \/TogX),

where

_ 1a(1)
¢ = ;*(7)7
. w ! I 1
e = a2+ 5(1) + 3y - 2?(2) + F(ﬁ))’

)



and

(Here w(s) is the Mellin transform of w(z).)



Chapter 3

The summation over n’s

3.1 The main congruence

Firstly we will give a simple property of the Kloosterman sums which will be

used later.

nm

Lemma 3.1 Y%, _; S(m,m;c)e?™ ) = cu,(c) where v,(c) is the number of

the solutions of the quadratic congruence a> + na+1=0 (mod c).

Before the proof, we change the notation *"°*) to e("™) since it is more

convenient to use(of course, the real reason is that this notation is used

everywhere).

Proof: It follows directly from the definition of the Kloosterman sums.

c nm ‘. ma+md mn
Y- S(m,m;c)e(—) = > S e(———+—)
m=1 ¢ 1<a<]e| m=1 ¢ ¢

(a,c):l,t—ldEl(mod c)
> ¢ ifat+d+n=0 (modc)

— 1<a<]e|
- (a,c)=1,ad=1(mod c)

0 ifa+d+n#0 (modc)

But the number of the solutions of the equation a+d+n =0 (modc) equals
to the number of solutions of the equation a? + an+ 1 =0 (mod ¢) (since

(a,¢) = 1 and ad = 1(mod c)).



3.2 The L-Series

In this part we will give the basic definition, and some properties of the

L-series for they have a connection with the quadratic residues.

Let m be an integer > 1 and let x be a character mod m, namely the
character of the multiplicative group (Z/mZ)* of the ring Z/mZ. The cor-
responding L-function is defined by the Dirichlet series

o0

L(s,x) = > x(n)/n’.

n=1

For x # 1, the series converges(respectively converges absolutely) in the
half plane Re s > 0 (respectively Re s > 1). Moreover, there is an analytic

continuation over the whole plane which is more important for us [1].

3.3 Averaging The Remainder Term

From Lemma 2.1 we have the equation

o0 4
/ Ra(r)h'(r)dr = 3 25(n, s c)o( 222). (3.1)
0 Sic o
If we multiply (3.1) with w(%F) and sum over n we get:
2. n, [*® , T 1 ' 4mn
Do w() [ Ralr W)= 3 i) T2 St miehol(=o)

3

From now on, we will deal with the right side of the equation. Since the

summation over n is finite, we have

S u(®) [ B = £ 15 w3 mce(). (32

=1 >1 n=1

3
o

We can replace n by m+n;c where ny = 0,1,2.. and 1 <m < c. It is obvious

that S(n,m,c) is a periodic function.Then from (3.2) we have



Now we consider the following function

[ee]

flwie)= 30 w(zlm +a)pln(n +x)). (3.3)

n1=—00

The series in (3.3) determines a periodic function of z, with period 1, hence

f(z; c) has the fourier expansion

[ = 3 el ™) gule),

n=-—oo

where the coeflicients are given by the integrals
$n(c) = /0 e(—nw)w(%m)(,o(llwa:)dm.

So (3.2) equals to:

(o]

;;1 Z S(m,m;c n_z_:oo e(%) /Ooo e(—nz) w(%w) w(4rz)d.
By using Lemma 3.1 , we get
4 o0
> S w() =S mie) o) =X L le) dale)
n=1c>1 c21 n=-o0

In order to obtain the Dirichlet series, we will use the Mellin transform

of w(£z). Namely it is

(s) = /0 - w(—%m)ms_ldx,

and the inversion formula
1
w(ﬁx) = —/ w(s)e ™z T ds

271 Jo
holds.(Here f, means the integration is over the line Res = 0.) It can be seen
from integration by parts that w(s) is an rapidly decreasing function. We can

choose ¢ arbitrarily since W(s) is an entire function. Then

Z i Vn(€)n Z 27”/ ( —nz)w(s )Zync—() T p(4rz)ds)dz.

ch n=-—o00 n=-00 cZ]

Clearly v,(c) is an even function of n. Replacing n by —n, and changing the

order of integration we get

il

n=0

/(0) on(8)0(8)T° Lo(s)ds, (3.4)

e
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vn(c) for Res > 1 and

where L,(s) =)

S
>1 €

on(s) = /000 cos(2rnz)z " p(4rz)dz.

(The possibility of changing the order of summation and integration, and

two integrations will be clear after calculating the ¢, (s).)

Now two questions arise, what is the inner integral and what is the ana-

lytic continuation of L,(s)? We will solve these questions seperately.

Lemma 3.2 Ly(s) = ((ITs)C(‘S)C(Z" —1) for Res > 1.

Proof:
va(c)
Ly(s) =) —  for Res>1,
c>1 ¢
where v2(c) is the number of the solutions of the equation a> =0 (rnodc). It

can be easily seen that v,(c) is an multiplicative function of ¢ for any n > 0.

So

LZ(S) _ ZVZ(C)

cb

c>1
v 2 v o
. D ! :
where the multiplication is taken over all primes. Therefore it is enough to

find v5(p*). We can show immediately that v,(p®) = plz}. Then the result

follows.

Lemma 3.3 When n # 2

Ln(s)zé(;)) I (l-—z%(n 1)—4))—1 n(s) for Res>1,
PII;">22—4
where
) — 1 V"(Q) Vn(p) l/n(p2) i -1
106 = g+ 50+ TL 0+ 224 2 e T (s 5

pln?-4 pln?-4

10



Proof: Again it is enough to find v, (p*).
v(p®*)=# {a: a*+na+1=0 mod(p™)}.
Let us choose p as an odd prime.

Vn(pa) = # {at 4a2—|—4na +4=0 mod(p“)}
= # {a: (2a+n) —n*+4=0 mod(p*)}
= # {z: 2?=n—4 mod(p™)}.

It can be shown that v,(p*) = 1 + (%) if p /n* —4 where ("2;4) is the

usual Legendre symbol. So we get the result.

3.4 The functions p,/(s)

Now we can give the explicit expressions for the integrals of @n(s).

Lemma 3.4 For any p with the condition 0 < p < % we have for Res <
142p

. h(r)
) — 52 s
on(s) =1m /Imr:—p Yo (r, .s)rchﬂ_rdr,

where

(s —3) [(!5* +r)
+ur)0(5 4+ or)[(2 —ir)

r
2T ifn =2,
(5

(52 +r) 1—s . 1-s
+

.1 n? :
Po(r,s) = 25—1F(lis + e, 5 _ZT’Q;%—)’ ifn=0orl,

X [la+n)T(b+n) I(c) 2
Here F(a,b,c;z) = Z I(a) [(n) T(c+n)l(n+1)

n=0
pergeometric function.

is the Gauss hy-

11
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Proof: Using the regularity of A(r) in the strip [Imr| < A, A <1 we can

write:
(4rz) = 2 [ Jair(dm) h(r)d
v I e ch(mr) (r)dr
2 o (472)——h(r)d
= — 2ir 2T T 5
T JImr=—p 2 Ch(ﬂ"f’) ' r) g
here we take 0 < p < 2. For large values of r, k(r) is very small and

when z — 0, |J3i:(z)| < 2**. So the integrand of ¢, (s) is not greater than
z=t22|rh(r)|. If we take Res < 1+2p, the double integral will be absolutely

convergent. Therefore we can integrate in any order.

The inner integral is so called the discontinuous integral of Weber and
Schatheitlin. This integral converges,but its analytic expression is different

in two cases n < 2 or n > 2 [2]. By taking
cos(2mnz) = \/7r2nxJ_15(27rn:1:)

we can apply the formula from [2], and for n = 0 we use the well known

formula for the Mellin transform,

C(zx + 3p)

, where —Re(p) < Rep < 3 .
[+ - 9) () < frep <

/Oo J,(at)t?~1dt = 2°"1a~"
0

Then we get the desired result.

3.5 The Principal Term

As the result of Lemma 3.4, we have for p € (0,2), 1< Res<1+42p

/1 ThT) o TVdr (3.5)

where

Qn(r,T) =/7rs‘3¢»n(r,s)ﬁ)(s)T’Ln(s)ds.

g

Firstly we consider the function Qy(r,T). The integrand is the meromor-

phic function, Ls(s) has the double pole at s = 1, and other multipliers have

12



no singularity for 1 < Res < 1+ 2p. We move the line of integration to the

left and we integrate now on the line Res = o =1 +¢, &> 0. Thus

Qo(r,T) = %T?((zl)) C"r”(zogm + 20 43y - 2%(2) + %(%)

—2logr — igct/mr) + / 7o (r, ) ()T Ly(s)ds.
o‘:%—-}-e

W

rh(r)

After integrating Qz(r, T") with multiplier on the line Imr = —p
T
(here p can be taken as 0, and note that A(r) is 1 in the interval [- X, X])

we get the main term of the series in the formula (3.5) which is:

aT Xlog(2nT) + ;T X — 2T XlogX

where
_1w(l)
a = ;4(2) , and
w' ¢’ I’ 1
e = a2+ E(l) + 3y = 2?(2) + F(g))
: I
Here 7 is the Euler constant, v = ——?(1). And
[ syd(s) T La(s) TMT) 4 dr < O(TH xPH)
Imr=—p =%+e ’ Ch(ﬂ'r) ’
since
I'(2 +ir) 25 isI4 1
— 2 sy tar O(—
T TG G —m " ¢ «n03)

3.6 The Cases n # 2

Now we consider the case n > 2.

Again the integrand of Q,(r,T') is a meromorphic function, for L,(s) has
a simple pole at s = 1 when n > 2. We move the line of integration to the
line Res = oy =%+€, e>0forn<Ts3. We get when n > 2
Qu(r,T) = 22 T G ()T B, + 75 (ry $)0(8) T Ln(s)ds,

™ r alz%—{-e

chrr |
— W

13



where B, is the residue of L,(s) at s = 1. The result follows by the equality

['(ir) - chrr
=17 —_—

['(2ir + 1)I(3 —ar) ior

)

and
L : . o 2ir _—ir€
F(zr,§+zr,l+22r;a)) ' =2"Te™,

where z = % and ¢ = log%\/% [3].
Here in order to estimate integral on the line oy = % + €, it 1s necessary to
find a bound for L,(s).

To do this we express L,(s) in terms of the classical Dirichlet’s series with

the Kronecker symbol.

Ln(s) =3

c21

241
z )— for Res > 1.
cS

C

Since our character is not primitive we write n? —4 = k?Q) where Q is square
free and £ > 0.

We get

|
ps

Yy=)L(s,x) for Res>1,

Ln(s) = JI(1 = (

plk

Q
P

where y = (%) is real, primitive character.
We will use the functional equation for L(s, x).
Lemma 3.5

1
L(s,x) <« Q4l+5° for any €y >0 on the line Res = 5

Proof: Considering a function a(x) such that a € C*(0,00), «a =
1 forz <zp <1 anda(z) =0 ifz > ;—0.(It is convenient to take this

a such a way that a(z) + a(3) = 1.) we have

2 ~ omi / Z )rigfp (3:6)

where &(p) is the Mellin transform of a(z) and Rep = ¢ > 1. Clearly &(p)
has a simple pole at p = 0 with residue 1. Applying the functional equation
for L(s,x) [1] to (3.6) and moving the line of integration to the line £ < -1

we obtain

14



X0y o L ) e (e O 4 5)
LR = g A0 T

2
L(l — 8= /)7X)dp + L('S)X)'

Here the Gaussian sum 7(x) is defined by for any character x(n) to the

modulus ¢,

and

“ = 0 if x(—-1)=1
L if x(=1) = -1

If n < (%)”‘50, we move the path of integration to the right, we get the

equality,
x(n) 7(x) 7\ =21y, D(5(1 = s +a)) x(n)
L(s,x) = =+ — ()74 S
DAL T L R T
oo L, 2rTnz, ,7Tn a_,
Y st (T
Qy14¢g 2 Q Q
nS(T)
Tys—L T{X X(n
(—) 2.(—1 E_s)d$
q zann

In order to get best estimate we choose T' ~ Qz+7%. So L(s,x) < Qit7.
It is clear that the product L.(s) = [(1 — (%)pl is not larger than
Tard™? (p = Res), it is smaller than k¢ for any € > 0.

So we have estimate
|La(s)] < KQite if n®—4=£kQ.

For the case n < T7 it gives |Ln(s)| < T4, &y > 0.

h
When we integrate Q,,(r, T') with multiplier r} 5:2 on the line Imr = —p,
ch
we get
2 h
Zn % Ba(1)TX + Qu(r, 7)) g,
T Imr=—p chmr

In order to obtain the estimate we find the asymptotic expansion of F(lz;g +

ir, 1 — 5+, 2ir + 1 niz) for large values of r and n. We use the standard

15



methods of the asymptotic integration of differential equation with large
parameter. We get

l1—3s
2

, s .. 4 —ir
F( +zr,1—§+zr,22r+l;$) = (;—2-) (1 —

where

. -3 T—2s%+2s
fn) = I6(ch?Z — 1)ch?l | dch?l

and ¢ ~ 2logn.

Using Stirling formula we have

F(lz;s + ir)
F(Qir + 1)F(% — ir)

. : 1
= —zr“"Z%_Z"e’"exp(O(;)).

And for n > Tz, we approximate Q,(r,T) on the line Res = o, =

14+¢e0, €o>0 we get

h
RS ) pieaxian L
Imr=—p chmr

noe '

If we come back to the series in (3.5) we need to find 22’23 B,.

Let B'(n) be the residue at the point s = 1 of the function
¢(25) £, =) It is known that

CS

The proof follows from Theorem 2 in the paper of N.V. Kuznetsov [6] by
correcting the misprint in the result. The error was noticed and corrected by

Professor Kuznetsov.

So we have in (3.5)
gTXu*;(l) > BT’; + ). T‘+€°X‘-€°1:Tp +O(TFtoX3%%) if T > X,
™

3<n<N n>N

1
where N = Tz%% and ),y Tt X1~

ni,) can be estimated as O(X'~%),

16



The cases n = 0 and n = 1, are the trivial ones since we have exponentially
small functions in the integrand. The integrands of Qo(r, T') and Q;(r, T'} have
simple poles at s = 1 which comes from the Ly(s) and L;(s) respectively for

¢(s) xa(n)

LO = P
¢(2s) n 1s odd
where
I  if n=1(mod4),
xa(n) = . ( )
=1 if n=-1(mod4)
and
_ () < x(n) 3
Li(s) = 2(25) g::l > where x'(n) = ( - )-
By moving the line of integration to the Res = oy = % + €g,we obtain
_ 2 1 A s—30s—1 F(”'_}_ 1;-‘»‘) AL s .
(r,T) = = (DT L1, ) +/d] T e Ty () ().

By estimating the second integral we get the first term of the series in (3.5)

as
1 (1)L(1,x) + O(T=*=)
— w ' X
™ ((2)
Similarly,
2 1 11
T) = ———w(1)TL(,xF(ir,—ir,=, =
Q](T‘, ) 7('7'{(2)w<) (7X) (ZT‘, 27‘,2,4)
Per+528) 1-s . 1-s 11
s-39s—1 2 - — wl(s)T? 5)ds.
+/Tl7r 2 F(z’r-{—lgs)F( 5 tin— ZT‘,2,4)U)(.S)TL1(.5)&
By using
1-s 1-s 11 r 1
: _a i L Lo
F( 5 i zr,2,4) CL_3(1+O(7'))’

we get the second term of the series in (3.5) as

2 1

S L1, X ) 3te),
~ T ML XB(IT +O(T+)

As a result:
For T'>> X?, and ¢¢ > 0

00 00 9
Z w(%)A Rn(r)h'(r)dr = clTXl()g(zﬂ'T) + CQTX - QClTXl()gX + ;’lf)(l)TX

n=0

+2e, T(L(1L, x) + L(1, X)) + O(Tz+% X 2+=0)
17



where
lu?(l)
T ((2)
) ' I 1

@ = al+ (1) +3r-270) + 5 (3)

and

By estimating the integral [;° R,(r)h'(r)dr from below by R,(X —
2A/TogX) + O(X+/logX) and from above by R,.(X + 2AlogX) +
O(X+/TogX)), we prove the theorem.

3.7 The mean value of the integral over continuous

spectrum

[t is natural to ask the asymptotic behaviour of the mean value of the integral

over the continuous spectrum.

Proposition 3.1

Ly [™ T4 (R)" _14d(1) LaQ) @ ¢
2 L i Tampt = e T ey ) 2
+29)TX + O(TlogX) + O(T5+).
Proof:
iw(%)h,,(n)lz 27r/ $)T* Z IT" ds for Res=o0>1. (3.7)

By moving the line of integration to the left, ¢ = ; + €0, €0 > 0 and using

the Ramanujan identity

() _ G020~ 1Gls =20 1)

ITV .
> ) ’
we get
S u(pnn = TR - 2)loaT + 5 (1) + (2 -2)
+8 ) —25@) +29) + o1 ). (338)

s ¢

Taking v = 1 + ir, and integrating (3.8) with the multiplier I—C—(% with

respect to r, we get the result.
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Chapter 4

Conclusion

In the paper of N.V.Kuznetsov, it was proved that

X Chﬂ'K,] s
where
R (X) < XInX + Xn 4+ ni*

for any fixed ¢ > 0 and for any X > 2, n > 1.
The true order of this remainder term is unknown.

In this thesis we found the average mean value of the remainder term
R.(X) (the Fourier coeflicients of the eigenfunctions of the continuos spec-
trum is also taken in contrast to R;(X)). We see that the average mean
value of R,(X) is positive. Furthermore, from the theorem it can be seen

that there are infinitely many n’s and X’s such that for n € (T,2T) and

T > X2, we have

R.(X) > X(logn)*, Va<1.

By using the proposition and theorem, it can be also shown that there

exist infinitely many n’s and X’s satisfying

—1w(1)

5 C()Xl g X

R.(X) <

for n € (T,2T) and T > X2
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