
A Run-Time Verification Framework for Smart Grid
Applications Implemented on Simulation

Frameworks
Selim Ciraci

Pacific Northwest
National Laboratory
Richland, WA, USA

selim.ciraci@pnnl.gov

Hasan Sözer
Özyeğin

University
Istanbul, Turkey

hasan.sozer@ozyegin.edu.tr

Bedir Tekinerdogan
Bilkent

University
Ankara, Turkey

bedir@cs.bilkent.edu.tr

Abstract—Smart grid applications are implemented and tested
with simulation frameworks as the developers usually do not
have access to large sensor networks to be used as a test bed.
The developers are forced to map the implementation onto these
frameworks which results in a deviation between the architecture
and the code. On its turn this deviation makes it hard to verify be-
havioral constraints that are described at the architectural level.
We have developed the ConArch toolset to support the automated
verification of architecture-level behavioral constraints. A key
feature of ConArch is programmable mapping for architecture
to the implementation. Here, developers implement queries to
identify the points in the target program that correspond to
architectural interactions. ConArch generates runtime observers
that monitor the flow of execution between these points and
verifies whether this flow conforms to the behavioral constraints.
We illustrate how the programmable mappings can be exploited
for verifying behavioral constraints of a smart grid application
that is implemented with two simulation frameworks.

I. INTRODUCTION

Smart grid combines the electric grid with communication
and information systems to provide automated and efficient
control of grid operations. These grids include millions of
sensor and control nodes that collect information about the
status of the grid (e.g., supply/demand) and adjust the grid op-
erations [1]. Applications running on these nodes are required
to efficiently process the collected information and control the
grid operations accordingly. These applications also have to
be reliable and dependable due to the mission critical nature
of the grid.

In general, mission critical systems like smart grid appli-
cations are subject to behavioral constraints. Most of these
constraints are systematic and likewise defined at the ar-
chitecture deign level as sequences of interactions between
components/connectors. To verify these behavioral constraints
the software architecture needs to be evaluated [2], [3], and
the implementation should be tested with respect to the defined
behavioral constraints.

In the literature, various approaches have been introduced
to verify the implementation with respect to the behavioral
constraints defined at the architecture level [3], [4], [5]. An

often used approach is runtime verification. Hereby, the behav-
ioral constraints defined for the architecture are mapped to the
implementation. Then, runtime observers are generated and
integrated in the software system. At runtime, these observers
log all the events that are defined as part of the documented
scenarios. The verification tools provided with the approaches
check the consistency of the collected logs with respect to the
documented scenarios and report mismatches to the user.

Usually, the required vast amount of grid control units
and/or sensor networks are not available to test smart grid ap-
plications. As such, these applications are often implemented
and tested with simulation frameworks such as network and
power distribution simulators [6]. However, such implementa-
tions deviate from the original software architecture of the
application as they have to the follow the structure and/or
the architecture of the simulation frameworks. This makes it
challenging to map the constraints defined for the architecture
to the implementation and verify these behavioral constraints.

In general, the proposed approaches from the literature
require the implementation of the software system to follow
strict rules. For instance, they require an interaction I between
components A and B to be implemented as a call from
class A to class B’s method I . Such rules are required in
order to map the documented architecture to the code and
generate runtime observers. Unfortunately, implementations
with simulation frameworks generally do not follow these rules
as the interactions between components/connectios are facili-
tated with the simulation framework. Therefore the proposed
approaches are less feasible to check behavioral constraints in
this context.

In contrast to existing approaches, Conarch framework [7] is
designed to provide programmable architecture to code map-
ping for verifying behavioral constraints with respect to the
implementation. Here, developers implement mapping queries
that ConArch uses to identify the points in the target program
that correspond to the interactions. ConArch automatically
generates runtime observers that monitor the flow of execution
between these points.

978-1-4673-6280-1/13/$31.00 c© 2013 IEEE SE4SG 2013, San Francisco, CA, USA1

Unlike most of the other approaches, ConArch performs
online monitoring and verification. At runtime, the observers
report the flow of execution to ConArch’s runtime verifier.
The verifier determines whether the flow matches to the
documented behavioral constraints.

The programmable mapping is the key feature of ConArch
for verifying whether implementations with simulation frame-
works follow the behavioral constraints defined for the archi-
tecture. As with this feature, developers can map interactions
to the communication mechanisms provided by the simulation
framework. In this paper, we show that ConArch is applicable
and effective for such implementations due to the flexibility
of programmable mapping. We illustrate it’s applicability on
a smart grid application implemented with two simulation
frameworks.

We have also studied various power and communication net-
work simulation frameworks (the necessary simulation frame-
works when testing smart grid applications) and identified
common styles for implementing interactions of the behavioral
scenarios in the simulation frameworks. We implemented these
styles as mapping queries and extended ConArch with a
library containing these rules. This library can be utilized
by developers to facilitate mapping of behavioral models to
implementation in a language-independent way.

This paper is organized as follows: The following section
provides background on smart grids and simulation frame-
works. In Section III, we introduce a smart grid application
that is implemented with simulation frameworks to motivate
the need for conformance checking. This application is also
used as a running example throughout the paper. Section IV
describes the ConArch framework. In section V, we present
how ConArch is used for the smart grid application. Section VI
presents the related work and, finally, Section VII provides the
conclusions.

II. SMART GRIDS AND SIMULATION

Smart grid is the application of data processing and com-
munications to the power grid. Millions of sensors gather
information about the demand from the consumer appliances
and the supply in stations. This information is used by con-
trollers to adjust the supply or the demand at the consumer
appliances. Due to mission critical nature of the grid, smart
grid applications, such as sensor and controller software,
needs to be rigourously tested before deployment. Usually,
developers do not have an access to a large smart grid setup
to be used as a test bed. As such, simulators are used to test
these applications.

Simulation of the smart grid is generally realized by com-
bining the power system and the computer network simula-
tors [6]. Developers extend the power simulator to implement
the sensor and controller software of the application to be
tested. The network simulator, on the other hand, is extended
with a middleware for sending/receiving messages from the
power simulator. Figure 1 presents the general co-simulation
setup for smart grids.

Fig. 1. Simulation setup for smart grid applications.

Power system simulators provide modules representing var-
ious power components, such as transformers and air con-
ditioning units. Using these modules the user implements
the distribution network model that will be simulated. This
model consists of power components, buses attached to these
components, and initial voltage/current values.

Tick-based simulation is generally used for simulating the
complex dynamics of the power system. Here, the simulator
sends tick messages to the modules, which means that time has
progressed a certain amount. The modules, in turn, calculate
new voltage/current values. The modules also let the simulator
know the time they expect a change in power demand. For
example, a module representing an air conditioner lets the
simulator know when it will turn off. The simulator gathers
this information and calculates next minimum time t that the
demand will change. It, then, sends a new tick message where
4t = t− tbefore. The simulation continues until none of the
components report a demand change.

Discrete event simulation is used for simulating the com-
puter networks. Network simulators provide modules repre-
senting various network components, such as transfer and link
layer protocols. The user implements the network model to
be simulated using these modules. A network model consists
of nodes, applications running at these nodes, and the links
between the nodes.

During the simulation, the applications at the nodes generate
packets to be transferred across the network and pass the
packet to the network stack. The network stack, in turn,
schedules events for discovering the route and transferring
the packets to their desired destinations. These events are
scheduled with respect to the time it would take the links to
deliver the message to the next hop. The simulator dispatches
these events, which simulates the routing of the messages.

2

III. MOTIVATING EXAMPLE: SMART GRID MARKET BID
APPLICATION

The market bid application is used for finding the cleared
(equilibrium) price of the electricity. A typical execution of
this application is as follows: control nodes (controllers) at
homes monitor the power demands of the air conditioning
units. Depending on this demand, they make a bid for the
price of electricity. The auction house, a sensor node attached
to the power supply, collects the bids from the control nodes
and calculates the cleared price for the electricity. It broadcasts
the cleared price to the control nodes, which in turn adjust the
thermostat settings on the air conditioning units to match the
price.

The execution scenario above gets executed every 5 minute
intervals where the auction house recalculates the cleared
price with the updated demand. This scenario is a behavioral
constraint that the sensor and controller nodes need to follow
in order to successfully calculate a cleared price. Usually,
constraints like this are defined during the architecture design
and it is tested whether the software architecture supports these
constraints. It is also important to verify whether the imple-
mentation follows such constraints. For the market bid ap-
plication, deviation in the implementation from the constraint
may result overcharging the customer or the air conditioners
operating with incorrect settings.

For a ’normal’ implementation (i.e., an implementation
without the simulators), one could use existing approaches
to check the conformance of the market bid application with
respect to it’s behavioral constraint during the testing phase.
However, a large controller network that supports a variety
of communication technologies (e.g., LTE, WiMAX, or etc.)
is not available for testing. Hence, the designers decided to
test the application using simulators and implemented it using
simulation frameworks, specifically using Gridlab-D [8] and
ns-3 [9] simulators.

Unfortunately, the implementation of the market bid ap-
plication using the simulation frameworks is different from
the planned architecture. The components controller and auc-
tion house are implemented as 4 classes, 2 for component
controller and 2 for component market, residing in different
modules of the simulation framework . This makes it hard
to assess whether the implementation follows the behavioral
constraints. Violation of the behavioral constraint might lead
to incorrect results in cleared price calculations. Because the
simulators tend to generate large output files, it might be hard
for the designers to capture that the incorrect results are due
to the mismatch between the implementation and the expected
behavior. Hence, they might assume the error is caused by
some other bug in the implementation and spend unnecessary
time in searching for this bug.

The above mentioned problem can be generally observed
in smart grid applications that are mapped to simulation
frameworks. Due to the different structure of the architecture
and the simulation framework the implementation will deviate
easily from the architecture.

IV. OVERVIEW OF CONARCH APPROACH

Figure 2 depicts the typical usage of ConArch framework
for checking the conformance between the implementation and
the behavioral constraints. Here, the inputs are i) Component
- Connector model of the software system, ii) the behavioral
constraints modeled as UML 2.x sequence diagrams, iii) the
source files, and iv) the mapping of behavioral models to the
source code. With this input, ConArch generates the runtime
verification specification and the source code instrumented
with runtime observers.

Fig. 2. ConArch framework: inputs, components, and output artifacts.

The runtime verification specification is a formalization of
the behavioral constraints, and it is derived from the user
specified sequence diagrams. The specification is used by
the runtime verifier to detect whether the executing software
system conforms to the behavioral constraints.

Using the behavioral models and the source code, ConArch
constructs a list of architectural elements that needs to be
mapped to the source code. We utilize Prolog [10] to provide
programmable mapping. Here, the abstract syntax tree (AST)
of the input source files are converted to Prolog facts. Using
these facts, software engineers implement queries that return
the points in the target program corresponding to the interac-
tions. We chose to utilize Prolog in ConArch as it has been
successfully used in the literature for querying the AST [11],
[12].

ConArch uses the mapping queries while generating the
runtime observers. The runtime observers are aspects [13] that
intercept the execution when the target program reaches a
point that corresponds to an interaction. Runtime observers
are generated to collect information about the interception
point. ConArch can generate runtime observers as aspects in
AspectJ [13] or AspectC++ [14]. After generating the runtime
observers, ConArch executes the appropriate aspect compiler
to weave them to the source code.

To check the conformance, the software system is executed
with ConArch’s runtime verifier. Runtime observers send the
information they collected to the runtime verifier. The runtime
verifier assesses whether the execution of the target program
follows the specified behavioral constraints. If the execution
deviates from any constraint, it notifies the developer with

3

information about the deviation. The software engineer can
use this information to formulate new behavioral constraints
or correct the implementation. In the remainder of this section,
we briefly describe the ConArch framework. Interested readers
are referred to the literature [7] for a detailed description.

A. Modeling Behavioral Constraints and Generation of Run-
time Verification Specification

ConArch requires the behavioral constraints for the archi-
tecture to be modeled using UML sequence diagrams. In
literature, UML sequence diagrams are often employed for
modeling interactions between components/connectors, and it
is a widely known modeling language. Figure 3-(a) shows a
scenario modeled as a sequence diagram. This diagram shows
the interaction between the auction house and one controller,
although the same interaction occurs between many controllers
and the auction house.

The optional frames, in the model, capture the interactions
that are executed depending on a condition. For example,
the controller (or the control node) is notified when the
temperature change causes the air conditioner to turn on.
ConArch supports both optional and alternative frames for
modeling conditional executions.

Fig. 3. A behavioral constraint of the market bid application.

Interactions can be synchronous or asynchronous. In the
former, the component/connector sending the message waits
until the receiver completes execution. In the latter, the sender
does not wait for the receiver to complete. In this scenario,
for example, asynchronous interactions are used to model
the message exchange between the controller and the auction
house as the auction collects all the bids from the controllers
and then sends a response message.

ConArch converts the input sequence diagrams to a state
machine with start and accept states. This state machine is
called Behavioral Execution Automata (BEA). The reason
for this conversion is twofold:
i) Due to alternative/optional frames and asynchronous in-
teractions, the sequence diagram for a behavioral constraint

contains multiple paths that the execution can follow. In a
BEA, each of these are explicitly captured as a path from the
start state to an accept state.
ii) At runtime, an interaction can correspond to the execution
of multiple events in a sequence. For instance, in order to carry
out an interaction, a series of method calls/message exchanges
can be executed. Identifying where each one of these events
are implemented for conformance checking can be a time
consuming task. Hence, we designed ConArch to verify the
send and receive message events of an interaction. In BEA
these events are explicitly shown as transitions; that is, an
interaction is represented as two consecutive transitions one
for the send event and one for the receive event.

The transitions of a BEA are of the form Event <
Theardid, Component, Interaction >. Event can be send
(S) or receive (R). The Theardid represents the identifer of
the thread executing the event. During conversion, ConArch
assigns logical thread identifiers to the transitions. At runtime,
these identifiers are bound to the actual thread identifiers from
the executing software system. Figure 3-(b) shows an excerpt
form the BEA generated from the behavioral constraint shown
in Figure 3-(a). Here, the transitions between states S4 and S6
correspond to the send and receive events of the asynchronous
interaction Bid() between Controller and AuctionHouse. Note
that these transitions are assigned different thread identifers,
namely T1 and T2. In asynchronous interactions, the thread
executing the send event is different from the one executing
the receive events. Hence, different thread identifiers are used.

After an asynchronous interaction, the execution follows in
two (interwind) distinct paths: one path contains the events
executed by the thread receiving the message, and the other
one contains the events executed by the thread sending the
message. In Figure 3-(b), this is represented with the two
transitions from state S5. The transition leading to state S6
represents the receive event of the interaction Bid(). The
transition leading to state S7, on the other hand, corresponds
to the interaction bidSent().

B. Mapping Architecture to the Code

The mapping is a semi-automated process; ConArch gener-
ates the necessary ‘API’ for architecture-code mapping. The
users implement the mapping queries by means of this API.
The generated API consists of two parts:
i) Prolog facts representing the source code. ConArch includes
tools for converting Java and C++ AST to Prolog facts.
Note that ConArch only converts the class structure and call
statements to Prolog facts as these are the AST elements
relevant to mapping. Figure 4-(a) lists an excerpt of the facts
that are derived from the implementation of the market bid
application. The same figure also details the AST elements
that these facts represent.
ii) Prolog rules representing each distinct event in the BEA
specification. Users implement the mapping queries in the
bodies of these rules. For example, the user implements
the mapping for the event send Bid() from the component
Controller in the rule shown at the bottom of Figure 4-(a).

4

Fig. 4. Generated Prolog file, and the mapping of the event send Bid() from
the component Controller.

A mapping query for the event event < Interaction>
<Component> (Maps) is the query on the AST that returns
the points in the target program corresponding to event.
ConArch utilizes aspects to monitor the execution of the pro-
gram (similar to most runtime verification frameworks [15]).
Thus, ConArch requires events to be mapped to points in
the target program that can be intercepted with aspects. In
addition to such points, ConArch provides facilities to map an
interaction to a sequence of call/execute pointcuts or specify
a condition for a mapping. For example, users can map the
event send Bid() from the component Controller to the
execution of the method ControllerInterface.commit() with
the value of the attribute inboxCount greater than zero. This
is considerably more flexible and fine-grained specification
compared to traditional approaches, where the same interaction
would be mapped to any call to the method Controller.bid().

The user implements the mapping queries using the facts
representing the AST. Figure 4-(b) shows how the event send
Bid() from the component Controller is mapped to the
execution of the method ControllerInterface.commit(). Here,
the predicates at lines 2− 4 identify the method ControllerIn-
terface.commit() and add a pointcut to intercept the execution
of this method. The predicate mapMethod, a part of the
mapping API, formulates an execution pointcut specification
to intercept the method passed in the first argument.

The predicates at lines 5 − 6, on the other hand, identify
the attribute Interface::inboxCount and add a condition on this
attribute. The predicate addAttributeCondition is also part
of the mapping API, and it is used for specifying conditions
on the attributes that should be stratified for the mapping to
succeed.

In addition to the predicate mapMethod, ConArch provides
other predicates to be used in mapping queries: i) If the event
maps to a call, then predicate mapCall is used. This predicate
formulates call pointcuts. ii) If the event maps to the return
from a call, then the predicate mapReturn is used. This

Fig. 5. Aspect for capturing the execution of the event send Bid().

predicate also formulates a call pointcut but an after advice is
generated. iii) If the event maps to a sequence of calls and/or
method executions, then the predicate mapSequence is used.
This predicate generates more than one pointcut specification
to intercept all these calls and executions. ConArch generates
the runtime observes to follow the flow of execution between
these pointcuts.

C. Runtime Observation Aspects and Online Verification

Once the mapping queries are implemented, the user loads
the Prolog file in ConArch’s runtime observer generator.
This tool executes the queries and generates the runtime
observer aspects. For example, executing the Prolog rule
shown in Figure 4-(b), returns an execution pointcut Con-
trollerInterface.commit() and a condition on the attribute In-
terface::inboxCount. ConArch uses these to formulate the
aspect shown in Figure 5. Here, the call at line 10 noti-
fies the ConArch’s runtime verifier that the target program
executed the send event Controller.Bid(). Note that this
notification is only sent when the condition on the attribute
Interface::inboxCount is true.

The runtime verifier traces the BEA with the notifications
about the events it receives from the runtime observers. If this
trace leads to an accept state then that execution conforms
to the behavioral constraint. If, however, the trace does not
lead to an accept state then the execution does not conform to
the constraint. In this case, the verifier prints out the trace in
the BEA with the last notification that was received from the
observer.

A major process in tracing the BEA is matching the
notification about an event with the real thread identifer to
the BEA transition with logical thread identifer. This process
can be summarized as follows: Let’s assume that the previous
notifications lead the verifier to the BEA state Si with an
outgoing transition Et < Tt, Ct, It > and that a runtime
observer has sent the notification En < Tid, Cn, In >. Then,
runtime verifier executes the following to determine whether
the notification matches the outgoing transition from Si:
i) Determine whether the executed event matches the event in
the transition. That is, whether Et = En, Ct = Cn, and It =
In.
ii) Determine whether the real value of the thread identifier
matches the logical thread identifier of the transition. This is
determined according to two rules: If this is the first BEA
transition with logical thread identifier Tt then bind Tt to
Tid (i.e., set Tt to Tid). If Tt is already bound (i.e., there was

5

transition in the path leading to Si with logical thread identifier
Tt), then check if the bound value of Tt is equal to Tid.
In case any of the steps described above fails, then the runtime
verifier declares that execution does not conform with the
behavioral constraint.

V. VERIFYING THE BEHAVIORAL CONSTRAINTS OF THE
MARKET BID APPLICATION

This section demonstrates how ConArch is used for check-
ing the conformance between the market bid application im-
plemented with simulators and it’s behavioral constraint shown
in Figure 3-(a). Before going into details of the application,
we describe the re-usable mapping queries we implemented
for mapping the interactions to the facilities provided by the
simulator frameworks.

A. Styles for Implementing Interactions in Simulation Frame-
works

When mapping the implementation of an application to the
simulator, developers often need to separate the components
of the applications into the modules of the simulator. Due
to this separation, conventional inter-object communication
mechanisms (such as method calls) cannot be used. The
developers need to implement interactions with the facilities
provided by the simulator. This is one of the major reasons
why such implementations deviate from the original designed
architecture.

We have studied various power and network simulators
and identified implementation styles used to facilitate the
communication between objects of separate modules (i.e.,
inter-module communication). As these styles can be em-
ployed by developers when implementing an application with
a simulator, we implemented re-usable mapping queries to
simplify the mapping process. Hereby, the developers only
provide the names of the involved classes and methods. The
queries locate the implementation style in the AST and return
the points to be intercepted by means of the observer aspects.
These queries are integrated to ConArch. We list the identified
implementation styles below:
Tick handler method and data sharing: In tick based
simulators, every object that needs to be notified about time
updates registers a tick handler method. The simulator calls
these handlers in an order. These simulators usually also
provide mechanisms for data sharing between objects, which
can be exploited to provide communication between objects
during a tick. Here, an object o1 receiving the tick call sets
the attributes of another object o2. When o2 receives the
tick call, it reads the value of this attribute and executes
the computations accordingly. This style of communication
can be used for implementing the send/receive events of an
interaction.
In fact, the event send Bid() from the component
Controller is implemented using this communication style,
where controllers that want to send a Bid message
to the auction house increment the value of the at-
tribute ControllerInterface :: inboxCount. The method

ControllerInterface :: commit() is the tick handler
method; when an instance of the class Controller receives
the commit call, it checks if the value of the attribute
inboxCount is greater than zero. If so, it formulates a Bid
message and sends it to the auction house.
We implemented the mapping query mapTickSharing (
Interaction, Component, Class, TickHandler, SharedAt-
tribute, Condition) for mapping events of the interactions
implemented with this style. For example, instead of the query
shown in Figure 4-(b), one can use mapTickSharing (’Bid’,
’Controller’, ’ControllerInterface’, ’commit’, ’inboxCount’),
’inboxCount>0’) for mapping the event send Bid().
Tick notification method: An object receiving a call to it’s
tick handler method might also correspond to an event of an
interaction. For mapping such events, we implemented the
mapping query mapTick (Interaction, Component, Class,
TickHandlerMethodName).
Scheduling events: Inter-module communication can be
achieved using the event scheduling mechanism provided by
discrete event simulators (for clarity, we use event for referring
to events of a discrete event simulator). Here, an object o1
wanting to send a message to another object o2, schedules an
event destined to o2. It also attaches any data items it wants
to pass to o2 with this message. The simulator dispatches the
event by calling o2’s event handler method.
The send/receive event of an interaction can be implemented
by scheduling events. We implemented the mapping query
mapScheduleEvent (Interaction, Component, Class, Meth-
odSchedulingEvent, EventScheduleMethod, EventData, Condi-
tion) for mapping the events of the interactions implemented
using this style. Here, the last two arguments are optional,
and they are used for implementing a condition on the data
attached to the event.
Dispatch of events: The send/receive event of an interac-
tion can correspond to an object receiving the event dis-
patched by the simulator. For mapping such events, we imple-
mented the mapping query mapDispatchEvent (Interaction,
Component, Class, DispatchedMethod, EventData, Condition
). Similar to the previous mapping query, the last two argu-
ments are optional.

B. Application of ConArch to Market Bid Application

The market bid application has two main components:
auction house and controller. The parts of these components
related to sensing the demand/supply, calculation of the cleared
price, and controlling power components are integrated to the
power grid simulator GridLab-D. These parts are implemented
in 7 classes/structures with ≈ 12KLoc.

The parts related sending bid/response messages and net-
work address configuration are implemented with the network
simulator ns-3. These parts are constitute 2 classes with
≈ 1KLoc. Developers used a custom middleware to handle
the communication between these two simulators.

6

Fig. 6. Mapping the event receive BidRsp to the return of the call to the
method CommGldNs3::getMessage().

To verify the behavioral constraints in Figure 3, we used
these 9 classes. The conversion of the AST to Prolog facts
completed in ≈ 6minutes and generated 17488 facts (using
a laptop with core i5 processor). Out of the 10 events of
the constraint, only two required us to implement a mapping
query. The remaining events were all mapped using the queries
listed about; mostly the Tick handler method and data sharing
implementation style is used as developers of GridLab-D
frequently employ this style to implement inter-object and
inter-module communications.

The two events that required a custom mapping query dealt
with receiving the messages from the middleware. Figure 6
presents the mapping query we used for one of these events,
namely the event component Controller receive BidRsp. Here,
the predicates at lines 2 − 4 locate the class ControllerInter-
face and the method CommGldNs3::getMessage(). With the
predicate mapReturn this event is mapped to return of call the
from an instance of the class ControllerInterface to the method
CommGldNs3::getMessage(). Note that, the query also sets a
condition on the return value of the method.

The mapping completed in ≈ 15seconds, as the queries on
the AST were not complicated. With the supplied mappings,
ConArch generated 10 aspects that are weaved to the code
using the AspectC++ compiler. We have executed the market
bid application with a power grid model consisting of 61 com-
ponents. Simulations of this application usually take around
45 minutes to complete; the runtime observes added a ≈ 11
overhead which was not that much compared to the overall
execution time. On the course of the simulation ConArch’s
runtime verifier detected various violation of the behavioral
constraint. The output showed that on certain occasions the
component Controller executed a send Bid() event instead of
a send adjustThermostat() event. The developers confirmed
that this is a known problem, and it is due to improper handling
of the delayed response message from the auction house. If
this message gets delay, the component Controller assumes
it’s bid message is lost and resend a bid message.

Developers confirming the findings of ConArch shows that
it can be indeed used to verify the behavioral constraints
of software systems implemented with simulators. The pro-
grammable mapping allowed us to map interactions to em-
ployed inter-module communication facilities. In this way,
ConArch was able to trace the interactions and detect the
violations. Below important findings of this case study are
listed:

1) Programmable mappings provided sufficient flexibility
to map interactions to implementation with simulator
frameworks.

2) It is necessary to verify the behavioral constraints on
implementation with simulator frameworks. As errors
such as the one detected by ConArch can happen. In this
case, the error caused unnecessary network traffic and
delayed other important messages.

3) Re-useable mapping queries for mapping interaction to
common inter-module communications simplified the
mapping process. Similar queries can be formulated for
mapping interactions to frequently used inter-object com-
munications (e.g., method calls). As future work we plan
to extend ConArch with a repository containing mapping
queries for mapping such communication styles.

VI. RELATED WORK

There have been dynamic analysis techniques introduced
[4], [5] for analyzing the runtime behavior of a system.
These techniques are mainly employed for the purpose of
reverse engineering, and not on verifying the consistency
of an architecture documentation at runtime. The derived
behavioral models could be checked (offline) with respect
to the existing documentation. However, there is a lack of
formalized mapping between the generated models and ex-
isting documents. As such, these approaches do not facilitate
automated consistency checking.

Recently, ArchSync [3] was introduced as a tool approach
that assists architects to check the conformance between a
scenario-based architectural description and the implementa-
tion. This approach does not facilitate a flexible mapping
between the architectural elements and the implementation
elements (limited to Java classes and methods).

In [11], the data obtained from the dynamic analysis is
represented as Prolog facts. Users implement Prolog rules
defining violations of the communication constraints of the
software architecture. These rules are evaluated over the facts
to identify method calls that should not have been executed.
Many other dynamic analysis and architecture reconstruction
techniques are surveyed in [16]. These are also introduced for
reverse engineering, but not on verifying the consistency of an
architecture documentation at runtime.

Mosaik [17] is proposed as an integrated co-simulation
framework for smart grid applications. Here, naming conven-
tions are used for mapping different models to implementa-
tion for checking the correspondence. Unfortunately, mapping
based on naming conventions is fragile and simulation frame-
works might have their own naming conventions for modules
to follow. ConArch, on the other hand, does not enforce any
conventions on the implementation. It provides a querying
mechanism for developers to describe how interactions of the
behavioral scenarios are implemented. As we have shown in
Section V, we were able to map the interactions behavioral
models to the implementation even when the names of meth-
ods did not match the names of interactions.

7

Previously we introduced ConArch [7], which is a runtime
verification approach for detecting inconsistencies between
the dynamic behavior of the documented architecture and
the actual runtime behavior of the system. As a major lim-
itation, ConArch required the user to manually implement
the mapping between the design elements and source code
elements in the form of Prolog rule. In this work, we have
introduced a domain-specific, reusable and extensible reposi-
tory of mapping rules. We have derived these rules based on
common implementation styles that are followed by develop-
ers to implement interactions in simulation frameworks. This
extension enabled ConArch to perform automated mapping for
the verification of smart grid control applications.

VII. CONCLUSION

Developers usually do not have direct access to a large
sensor network for testing the smart grid applications. As
such, very often simulators are used to analyze and predict
the behavior of these grids. Due this mapping, the implemen-
tation easily deviates from the documented architecture, which
impedes the analysis of behavioral constraints that are defined
at the architecture design level.

In this paper, we show that the programmable mapping
feature of ConArch can be utilized for checking the confor-
mance between the implementation with simulators and the
behavioral constraints. In ConAcrch, behavioral constraints are
modeled as sequences of interactions between components and
connectors. ConArch derives a formal verification automata
from these models. Users implement mapping queries on
the abstract-syntax trees that return the points in the target
program corresponding to the interactions. These queries can,
for example, be used to map interactions to the inter-object
communications mechanism provided by the simulator frame-
work.

ConArch generates aspects that observe the execution and
notify the runtime verifier when it reaches a point correspond-
ing to an interaction. ConArch’s runtime verify traces the
automata (generated from the behavioral constraint) with these
notifications. If a notification is not accepted by the automata
then there is a mismatch between the implementation and the
constraint. Hence, ConArch displays an error message showing
the notification and it is mapping to the implementation.

We have illustrated ConArch for the verification of be-
havioral constraints of a smart grid application implemented
with two simulators. With the programmable mappings, we
were able to provide ConArch locations corresponding to the
interactions. Thus, ConArch was able observe the execution
and identify executions that did not follow the behavioral
constraints. The developers of the application confirmed that
these executions were indeed erroneous.

We also extended ConArch with re-usable mapping queries
for mapping interactions to frequently used inter-object com-
munication styles used in simulators. Instead of implementing
a query on the abstract syntax tree, developer can use these
queries by just providing the names of the classes and methods
involved in the communication. In fact, we have heavily
used these queries during the case study which eased the
mapping process considerably. Similar re-usable queries can
be provided for other common inter-object communication
styles (such as method calls). As future work, we plan to
extend ConArch with a repository of mapping queries, where
user can select the communication style and provide the names
of the classes.

REFERENCES

[1] I. Gorton, Z. Huang, Y. Chen, B. Kalahar, S. Jin, D. Chavarría-Miranda,
D. Baxter, and J. Feo, “A high-performance hybrid computing approach
to massive contingency analysis in the power grid,” in E-Science ’09,
2009, pp. 277–283.

[2] L. Dobrica and E. Niemela, “A survey on software architecture analysis
methods,” IEEE Transactions on Software Engineering, vol. 28, no. 7,
pp. 638–654, 2002.

[3] J. Diaz-Pace, A. Soria, G. Rodriguez, and M. Campo, “Assisting con-
formance checks between architectural scenarios and implementation,”
Information and Software Technology, vol. 54, no. 5, pp. 448 – 466,
2012.

[4] G. Huang, H. Mei, and F.-Q. Yang, “Runtime recovery and manipulation
of software architecture of component-based systems,” IEEE Trans. on
Software Engineering, vol. 13, no. 2, pp. 257 – 281, 2006.

[5] L. Qingshan et al., “Architecture recovery and abstraction from the
perspective of processes,” in WCRE, 2005, pp. 57–66.

[6] J. Nutaro, “Designing power system simulators for the smart grid: Com-
bining controls, communications, and electro-mechanical dynamics,” in
IEEE Power and Energy Society General Meeting, 2011, pp. 1 –5.

[7] S. Ciraci, H. Sozer, and B. Tekinerdogan, “An approach for detecting
inconsistencies between behavioral models of the software architecture
and the code,” in COMPSAC, 2012, pp. 257 – 266.

[8] D. Chassin, K. Schneider, and C. Gerkensmeyer, “Gridlab-d: An open-
source power systems modeling and simulation environment,” in T&D
IEEE/PES ’08, 2008, pp. 1 –5.

[9] G. F. Riley and T. R. Henderson, “The ns-3 network simulator,” in
Modeling and Tools for Network Simulation, K. Wehrle, M. Günes, and
J. Gross, Eds. Springer Berlin Heidelberg, 2010, pp. 15–34.

[10] M. A. Covington, D. Nute, and A. Vellino, Prolog programming in
depth. Scott, Foresman & Co., 1987.

[11] C. Riva and J. Rodriguez, “Combining static and dynamic views for
architecture reconstruction,” in CSMR, 2002, pp. 47–55.

[12] S. Ciraci, P. van den Broek, and M. Aksit, “Graph-based verification of
static program constraints,” in SAC ’10, 2010, pp. 2265–2272.

[13] G. Kiczales et al., “Aspect-oriented programming,” in ECOOP, 1997,
pp. 220 – 242.

[14] O. Spinczyk, A. Gal, and W. Schröder-Preikschat, “Aspectc++: an
aspect-oriented extension to the c++ programming language,” in CRPIT
’02, 2002, pp. 53–60.

[15] N. Delgado, A. Gates, and S. Roach, “A taxonomy and catalog of
runtime software-fault monitoring tools,” EEE Transactions on Software
Engineering, vol. 30, no. 12, pp. 859 – 872, 2004.

[16] D. Pollet et al., “Towards a process-oriented software architecture
reconstruction taxonomy,” in CSMR, 2007, pp. 137 – 148.

[17] S. Schutte, S. Scherfke, and M. Troschel, “Mosaik: A framework for
modular simulation of active components in smart grids,” in SGMS’11,
2011, pp. 55–60.

8

