
HARDWARE IMPLEMENTATION OF FANO
DECODER FOR

POLARIZATION-ADJUSTED
CONVOLUTIONAL (PAC) CODES

a dissertation submitted to

the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements for

the degree of

doctor of philosophy

in

electrical and electronics engineering

By

Amir Mozammel Hokmabadi

June 2022

Hardware Implementation of Fano Decoder for Polarization-Adjusted

Convolutional (PAC) Codes

By Amir Mozammel Hokmabadi

June 2022

We certify that we have read this dissertation and that in our opinion it is fully

aclequate, in scope ancl in quality, as a clissertation for the clegree of Doctor of

Philosophy.

Orhan Arıkan

-------­
Barış Nakiboğlu

Approved for the Gracluate School of Engineering and Science:

Ezhan Karaşan
Director of the Gracluate School

11

Erdal Arıkan (Advisor)

AH Ziya Alkar

Tolga ~,1ete Duman

(-

ABSTRACT

HARDWARE IMPLEMENTATION OF FANO
DECODER FOR POLARIZATION-ADJUSTED

CONVOLUTIONAL (PAC) CODES

Amir Mozammel Hokmabadi

Ph.D. in Electrical and Electronics Engineering

Advisor: Erdal Arıkan

June 2022

Polarization-adjusted convolutional (PAC) codes are a new class of error-

correcting codes that have been shown to achieve near-optimum performance.

By combining ideas from channel polarization and convolutional coding, PAC

codes create an overall encoding transform that achieves a performance near the

information-theoretic limits at short block lengths.

In this thesis we propose a hardware implementation architecture for Fano

decoding of PAC codes. First, we introduce a new variant of Fano algorithm

for decoding PAC codes which is suitable for hardware implementation. Then

we provide the hardware diagrams of the sub-blocks of the proposed PAC Fano

decoder and an estimate of their hardware complexity and propagation delay. We

also introduce a novel branch metric unit for sequential decoding of PAC codes

which is capable of calculating the current and previous branch metric values

online, without requiring any storage element or comparator. We evaluate the

error-correction performance of the proposed decoder on FPGA and its hardware

characteristics on ASIC with TSMC 28 nm 0.72 V library. We show that, for

a block length of 128 and a message length of 64, the proposed decoder can be

clocked at 500 MHz and achieve approximately 38.1 Mb/s information throughput

at 3.5 dB signal-to-noise ratio with a power consumption of 3.85 mW.

Keywords: PAC codes, sequential decoding, Fano decoding, polar coding, VLSI.

iii

ÖZET

KUTUPSAL VE POLARİZAYSON AYARLI EVRİŞİMLİ
(PAC) KODLAR İÇİN FANO ÇÖZÜCÜSÜNÜN

DONANIM UYGULAMASI

Amir Mozammel Hokmabadi

Elektrik ve Elektronik Mühendisliği, Doktora

Tez Danışmanı: Erdal Arıkan

Haziran 2022

Kutupsal ve polarizasyon ayarlı evrişimli (PAC) kodlar, optimuma yakın perfor-

mans elde ettiği gösterilmiş olan hata düzeltme kodlarının yeni bir sınıfıdır. PAC

kodları, kanal polarizasyonu ve evrişimli kodlamadan gelen fikirleri birleştirerek,

kısa blok uzunluklarında bilgi teorik sınırlarına yakın bir performans elde eden

genel bir kodlama dönüşümü oluşturur.

Bu tezde, PAC kodlarının Fano algoritması ile çözülmesi için bir donanım

uygulama mimarisi öneriyoruz. İlk olarak, PAC kodlarını çözmek için Fano al-

goritmasının donanım uygulamasına uygun olan yeni bir çeşidini tanıtıyoruz.

Ardından, önerilen PAC Fano kod çözücünün alt bloklarının donanım şemalarını

sağlamakla birlikte donanım karmaşıklığı ve yayılma gecikmesinin tahminini de

sunuyoruz. Ayrıca, herhangi bir depolama öğesi veya karşılaştırıcı gerektirme-

den mevcut ve önceki dal metrik değerlerini çevrimiçi olarak hesaplayabilen PAC

kodlarının sıralı kodunun çözülmesi için yeni bir dal metrik birimi tanıtıyoruz.

Önerilen kod çözücünün FPGA üzerinde hata düzeltme performansını ve ASIC

donanım özelliklerini TSMC 28 nm 0.72 V kitaplığı ile değerlendiriyoruz. Blok

uzunluğu 128 bit ve mesaj uzunluğu 64 bit olan bir kod için, önerilen kod

çözücünün 500 MHz saat hızı ve 3.5 dB sinyal-gürültü oranında 3.85 mW güç

tüketimi ile yaklaşık 38.1 Mb/s bilgi çıkışı elde edebileceğini gösteriyoruz.

Anahtar sözcükler : APAC kodları, sıralı kod çözme, Fano kod çözücü, polar

kodlama, VLSI.

iv

Acknowledgement

First, I would like to thank my advisor, Prof. Erdal Arıkan, whose office door was

always open whenever I faced a problem or I had a question about my research.

Without his guidance and advice, it would not have been possible to finish this

thesis.

I would like to express my sincere gratitude to my thesis monitoring committee

members, Prof. Orhan Arıkan and Prof. Ali Ziya Alkar, for their insightful and

constructive suggestions throughout this work.

I would also like to thank Prof. Tolga Mete Duman and Asst. Prof. Barış

Nakiboğlu for their willingness to serve as examiners for my thesis defense.

I would like to thank my wife, Maryam, for her love and unwavering support,

for all the late nights and early mornings, and for keeping me sane during the

course of this work. Thank you for being my muse, editor, and proofreader. Most

importantly, thank you for being my best friend.

I would like to take this opportunity to thank my parents and siblings for

their emotional and financial support throughout my years of study. Without

their support, this journey would have been very difficult to get through.

Finally, I would like to thank my friend, colleague, and research partner,

Mohsen Moradi, for our valuable discussions and the cherished time we spent

together in the office and social settings.

v

Contents

1 Introduction 1

1.1 Motivation and Contributions . 4

1.2 Publications . 5

1.3 Organization of the Thesis . 6

1.4 Notations . 7

2 Review of Codes 8

2.1 Polar Codes . 8

2.1.1 Channel Polarization . 9

2.1.2 Code Construction . 12

2.1.3 Rate Profiling . 14

2.1.4 Encoding of Polar Codes 15

2.1.5 SC Decoding of Polar Codes 15

2.2 Convolutional Codes . 17

2.2.1 Fano Decoding of Convolutional Codes 18

2.2.2 Computational Complexity of Sequential Decoding 22

2.3 PAC Codes . 25

2.3.1 Fano Decoding of PAC Codes 28

3 Hardware Implementation of PAC Fano Decoder 32

3.1 A Hardware-Friendly Fano Algorithm for PAC Codes 32

3.2 Hardware Implementation . 40

3.2.1 Polar Demapper . 40

3.2.2 Branch Metric Unit . 46

3.2.3 Fano Control Unit . 50

vi

CONTENTS vii

4 Implementation Results 53

4.1 FPGA Implementation Results 53

4.2 Post-Synthesis Results . 59

4.3 Comparison With Polar Decoders 61

5 Conclusion 65

5.1 Suggestions for Future Work . 66

A Fixed-point Simulation 68

B Threshold Spacing Simulation 71

List of Figures

1.1 A general framework for channel coding. 1

2.1 Polar coding scheme. 9

2.2 Channel combining for N = 2. 10

2.3 SC decoding factor graph. 16

2.4 Internal LLR (λ) calculations. 17

2.5 An example of convolutional encoding using a shift-register. . . . 18

2.6 Tree representation of a convolutional code. 19

2.7 Fano decoding algorithm for binary tree, modified after [1, p 373] 22

2.8 Incorrect subsets for the first three nodes. 23

2.9 PAC coding scheme. 25

2.10 Tree representation of convolutional operation of a PAC code. . . 27

2.11 Fano decoding algorithm for PAC codes. 29

3.1 Fano decoding tree, modified after [2]. 33

3.2 Extended Fano algorithm flowchart for PAC codes. 34

3.3 Flowchart of PAC Fano decoder. 38

3.4 PAC Fano decoder. 41

3.5 The FFT-like polar demapper architecture for N = 8. 42

3.6 The FFT-like polar demapper simplified architecture for N = 8. . 44

3.7 Hardware implementation of Table 3.3 (metric calculator). 47

3.8 Hardware diagram of branch metric unit (BMU). 49

3.9 The circuit for generating the condition signals of Fano algorithm. 51

3.10 The circuit for generating the rule signals of Fano algorithm. . . . 51

3.11 Fano control unit (FCU). 52

viii

LIST OF FIGURES ix

4.1 FPGA test setup. 54

4.2 FER performance of FPGA implementation of PAC Fano decoder. 55

4.3 Time complexity of FPGA implementation of PAC Fano decoder. 56

4.4 Relative time complexity of the polar demapper. 57

4.5 Relative frequency of the rules executed by the Fano algorithm. . 58

4.6 FER performance comparison of PAC Fano decoder with decoders

of Polar codes. 63

A.1 FER performance of FPGA implementation of PAC Fano decoder

for various number of quantization bits Q. 69

A.2 Time complexity of FPGA implementation of PAC Fano decoder

for various number of quantization bits Q. 70

B.1 Time complexity and FER performance of FPGA implementation

of PAC Fano decoder versus ∆ at Eb/N0 = 1 dB. 72

B.2 Time complexity and FER performance of FPGA implementation

of PAC Fano decoder versus ∆ at Eb/N0 = 1.5 dB. 73

B.3 Time complexity and FER performance of FPGA implementation

of PAC Fano decoder versus ∆ at Eb/N0 = 2 dB. 74

B.4 Time complexity and FER performance of FPGA implementation

of PAC Fano decoder versus ∆ at Eb/N0 = 2.5 dB. 75

B.5 Time complexity and FER performance of FPGA implementation

of PAC Fano decoder versus ∆ at Eb/N0 = 3 dB. 76

B.6 Time complexity and FER performance of FPGA implementation

of PAC Fano decoder versus ∆ at Eb/N0 = 3.5 dB. 77

List of Tables

3.1 Fano rules for decoding PAC codes. 37

3.2 An example of PAC Fano decoder. 39

3.3 γi(ûi) for Different Values of s(zi) and bi. 47

3.4 M23 for Different Values of s(zi) and ti. 48

3.5 Logical expressions used in the Fano rule set. 50

4.1 ASIC Implementation Results . 60

4.2 Power consumption of main blocks of PAC Fano decoder. 61

4.3 Comparison of the PAC Fano Decoder Against the ASIC Decoders

of Polar Codes. 64

5.1 Summary of ASIC Implementation Results 66

B.1 Information throughput (Mb/s) of the PAC Fano decoder for var-

ious values of ∆ and SNR. 78

x

Chapter 1

Introduction

Channel coding is the process of improving the reliability of data transmission

over a communication channel by adding redundancy to the source word. Fig-

ure 1.1 shows a general framework for channel coding that comprises a channel

encoder, a communication channel, and a channel decoder. The channel encoder’s

primary function is to provide the receiver with the capability of detecting trans-

mission errors and, in typical situation, correcting them. The process of error

detection and correction is performed by the channel decoder located at the re-

ceiver side.

Encoder Decoder
d x y d

^
d
^

Channel

Figure 1.1: A general framework for channel coding.

Suppose that we want to transmit a source word d of K bits, d0, . . . , dK−1.

The encoder maps the information bits of the source word d to a codeword x of

N bits, x0, . . . , xN−1, resulting in a transmission rate of R = K/N . The encoded

codeword is transmitted through a communication channel. At the receiver side,

a noisy version of the codeword, y = (y0, . . . , yN−1), is received and passed to the

channel decoder. The task of the decoder is to recover the source word bits di

from the received noisy codeword y.

1

According to Shannon’s channel capacity theorem [3], by proper design of

encoder and decoder, reliable transmission over a noisy channel is possible at any

given rate R if R < C, where C (known as the channel capacity) is the largest

rate at which information can be transmitted with a probability of error that

approaches zero exponentially as the block length N increases.

In this regard, to allow the reliable transmission of information at rates close

to the channel capacity, several high-performance channel codes have been devel-

oped. In particular, turbo codes [4], low-density parity-check (LDPC) codes [5–9],

and polar codes [10] are three high-performing well-known classes of codes that

have been used in many modern communication standards, such as, 3rd Genera-

tion (3G), 4th Generation (4G), and 5th Generation (5G) of mobile communica-

tion, and WiFi and satellite standards.

Although experimental results show that turbo codes and LDPC codes can

achieve the channel capacity, they have no mathematical proof for their capac-

ity achieving property. Polar codes, on the other hand, are the first class of

codes that can provably achieve the channel capacity. These codes utilize the

channel polarization that takes N independent copies of a given discrete mem-

oryless channel (DMC) W and create a second set of N synthetic bit-channels

{Wi : 0 ≤ i ≤ N − 1} that shows a polarization effect. Asymptotically, a I(W)

fraction of the bit-channel capacities I(Wi) approach 1, and the rest approach

0, where I(W) is the capacity of symmetric DMC. This class of codes benefits

from low complexity encoding and decoding algorithms and have explicit code

construction.

Originally proposed algorithm for decoding polar codes is the successive cancel-

lation (SC) decoding [10]. Although SC algorithm benefits from low-complexity

decoding, it suffers from throughput bottleneck and poor error-correction perfor-

mance. To improve the performance of SC decoder, SC list (SCL) decoding has

been proposed [11]. This algorithm was shown to achieve better error-correction

performance compared to SC decoding algorithm, but still lacking the error-

correction performance of the state-of-the art turbo and LDPC codes for short

and moderate block lengths [11]. To address this issue, SCL decoding with cyclic

2

redundancy check (CRC) has been proposed in [12]. Another well-known decoder

adapted to polar codes is belief propagation (BP) decoder which has been used

in [13].

However, even under SCL-CRC decoding, there is a gap between the error-

correction performance of polar codes and the dispersion approximation. The

dispersion approximation [14] is an approximation of the lowest achievable prob-

ability of error for finite block length codes. Recently in [15], Arıkan proposed

a new class of codes which combines the ideas from polar coding and convolu-

tional coding and have been shown to perform near the dispersion approximation

in certain cases [15] for short block lengths. These codes utilize a convolutional

pretransform on polar codes and are called polarization-adjusted convolutional

(PAC) codes. It has been shown that PAC codes can outperform short polar

codes and convolutional codes for certain code rates [15–18].

The first algorithm used for decoding PAC codes is sequential decoding [19]

algorithm in [15]. PAC codes can be decoded using any tree search algorithm such

as depth-first, breadth-first, and beam search (constrained breadth-first search)

algorithms. Sequential decoding is a depth-first tree search algorithm which was

originally developed for convolutional codes. Despite their near-optimal perfor-

mance, PAC codes under sequential decoding exhibit variable time complexity,

resulting in variable decoding latency. Although the depth-first search algorithms

have variable search complexity, their average search complexity is low in high

signal-to-noise ratio (SNR) regime. On the other hand, breadth-first search al-

gorithms have fixed but higher average search complexity. List decoding [17, 18]

and list Viterbi decoding [20] of PAC codes are examples of beam search decod-

ing. However, to achieve the error-correction performance of the PAC sequential

decoder, these list decoders require a very large list size.

Two well-known sequential decoders are Fano [21] and stack algorithms [22,23].

Both algorithms use a path metric to search for the correct path through the code

tree. The stack algorithm performs its search operation by storing the partial

paths in a sorted stack in accordance with their path metrics and extends the

most promising path at each step of decoding. On the other hand, the Fano

3

algorithm stores only the most promising path and requires a smaller memory

than the stack algorithm. However, unlike the stack algorithm, the Fano decoder

may visit a node more than once. In comparison to the stack algorithm, the Fano

decoder is better suited for hardware implementations due to its lower memory

usage and lack of sorting operations.

1.1 Motivation and Contributions

Various hardware implementation architectures have been reported in the lit-

erature for decoding of polar codes and Fano decoding of convolutional codes

[2, 24–39], but to the best of our knowledge, the suitability of sequential de-

coding for PAC codes has never been studied from a hardware implementation

perspective. Motivated by this, we implement a Fano decoder for PAC codes by

introducing a new hardware-friendly variant of Fano algorithm for PAC codes.

Moreover, we obtain a simplified branch metric function for sequential decoding

of PAC codes and design a novel branch metric unit that is capable of calculating

the current and previous branch metrics without requiring any storage element

or comparator.

We provide analytical estimates for the hardware complexity and combina-

tional delay of the proposed PAC Fano decoder. We also provide ASIC and

FPGA implementation results of the proposed decoder and show that the de-

coder achieves an information throughput of approximately 38 Mb/s at 3.5 dB

SNR with a power consumption of 3.85 mW and an area of 0.059 mm2 with 28

nm 0.72 V technology, block length of N = 128, and a code rate of 1/2.

We compare the error-correction performance and ASIC implementation re-

sults of the PAC Fano decoder with those of the state-of-the-art polar decoders.

The results show that the PAC Fano decoder achieves significantly better error

correction performance compared to the SC and SCL decoders of polar codes with

a block length of N = 128. The results also show that the PAC Fano decoder

has similar error-correction performance with the SCL decoder (with a list size

4

of 2) of polar codes with a block length of N = 1024 and code rate of 1/2. How-

ever, in terms of decoding throughput, the decoders of polar codes show superior

performance compared to the proposed PAC Fano decoder.

1.2 Publications

P1 A. Mozammel, “Hardware Implementation of Fano Decoder for Polarization-

adjusted Convolutional (PAC) Codes,” IEEE Transactions on Circuits and

Systems II: Express Briefs, 2021. [40].

P2 M. Moradi, A. Mozammel, K. Qin, and E. Arıkan, “Performance and

Complexity of Sequential Decoding of PAC Codes,” arXiv preprint

arXiv:2012.04990, 2020. [16].

P3 M. Moradi and A. Mozammel, “A Monte-Carlo Based Construction

of Polarization-adjusted Convolutional (PAC) Codes,” arXiv preprint

arXiv:2106.08118, 2021. [41].

P4 M. Moradi and A. Mozammel, “Concatenated Reed-Solomon and

Polarization-Adjusted Convolutional (PAC) Codes,” arXiv preprint

arXiv:2106.08822, 2021. [42].

Paper P1 contains the fundamental results of this thesis. Paper P2 compares

the error-correction performance and computational complexity of PAC codes

with those of the conventional convolutional codes and polar codes with block

length of N = 128. The results show that PAC codes under sequential decoding

have superior error-correction performance compared to convolutional codes and

have the potential to improve the error-correction performance of 5G polar codes.

Paper P3 proposes a Monte-Carlo based rate-profile construction method for PAC

codes that employs a trade-off between the error-correction performance and the

decoding complexity of PAC codes. The simulation results show that, compared

to RM-Polar rate profile construction method, the proposed construction method

results in a coding gain of 0.5 dB at FER = 10−3 for PAC codes with block

5

length of N = 256 and message length of K = 128. Paper P4 investigates the

performance of PAC codes concatenated with Reed-Solomon (RS) codes. The

simulation results show that concatenation scheme of RS and PAC codes has

0.25 dB coding gain at bit error rate of 10−5 compared to the concatenation

scheme of RS and convolutional codes.

1.3 Organization of the Thesis

In Chapter 2, we give background information on polar codes, convolutional

codes, and PAC codes. We explain the channel polarization phenomenon and

common methods for rate profiling the polar codes. We provide a brief overview

of SC polar code decoding. Then, we go over the convolutional codes, explain the

Fano decoding of convolutional codes, and discuss the Fano algorithm’s variable

computational complexity. After that, we explain the encoding process of PAC

codes and their Fano decoding algorithm.

In Chapter 3, we discuss the Fano decoding algorithm of PAC codes in more

detail and obtain a hardware-friendly version of the algorithm which we use in

the design of PAC Fano decoder. Then, we introduce a hardware architecture

for Fano decoding of PAC codes. We provide a detailed discussion of hardware

implementation of each block and its corresponding circuitry. We also analyze

the hardware complexity and combinational delay of each individual block.

Chapter 4 presents the performance results for FPGA and ASIC implemen-

tations of our proposed PAC Fano decoder and compares them with the ASIC

implementations of polar codes.

Chapter 5 concludes the thesis and provides potential use case applications for

the PAC Fano decoder. This chapter also provides suggestions for new research

directions that are relevant to the thesis’s topics.

We investigate the impact of the number of quantization bits and the threshold

6

spacing on the error correction performance and time complexity of our PAC Fano

decoder in Appendix A and B.

1.4 Notations

Throughout this thesis, we denote vectors and matrices by boldface letters. All

matrix and vector operations are over vector spaces over the binary field F2. We

represented addition over F2 by the ⊕ operator. Unless otherwise stated, all

logarithmic functions log are in base 2. For any set A ⊆ {0, 1, ..., N − 1}, we
denote its complement by Ac = {i : i /∈ A}. For any vector y and set A, yA

denotes the sub-vector (yi : i ∈ A). For any vector y, yj = (y0, y1, ..., yj) and

yj
i = (yi, yi+1, ..., yj) for i < j. For any vector y, ye and yo denotes sub-vectors

with the elements of y whose indices are even and odd, respectively.

7

Chapter 2

Review of Codes

In this chapter, we provide background knowledge on the basics of polar codes,

convolutional codes, and PAC codes.

2.1 Polar Codes

Polar codes [10] are the first family of codes to be proven to achieve Shannon

channel capacity [3]. Polar codes have a low decoding and encoding complexity:

both the decoding and encoding complexities are O(N logN) for a code of length

N . We investigate the system shown in Figure 2.1 in this section, which employs

a polar code for channel coding. A polar code’s block length is denoted by

N = 2n, where n is an integer number greater than 0. In the first block, the

bits of the information vector d = (d0, d1, · · · , dK−1) are inserted into the bits

of a data-carrier vector u = (u0, u1, · · · , uN−1). Then the uncoded bit vector u,

which contains the both information and redundant bits, is sent into the polar

encoder. The encoder output codeword is x, which is communicated across the

channel W . The channel W in this system is a memoryless channel with a binary

input alphabet X , continuous output alphabet Y , and the transition probabilities

W (y|x), where y ∈ Y and x ∈ X . Each time the system is used, a codeword x is

8

communicated and a channel output vector y is received. On the receiver side,

the decoder obtains an estimate of the data-carrier vector û and then, using the

frozen-bit vector as input, extracts the estimates of the information bits d̂ from

the data-carrier vector û.

Data
Insertion

Polar
Encoder

Channel

Polar
Decoder

Data
Extraction

d x

y

u

d
^

u^

Figure 2.1: Polar coding scheme.

The mutual information of a channel W with uniform inputs (known as sym-

metric capacity) denoted by

I(W) ≜
∑
y∈Y

∑
x∈X

1

2
W (y|x) log W (y|x)

1
2
W (y|0) + 1

2
W (y|1)

(2.1)

and the Bhattacharyya parameter of the channel

Z(W) ≜
∑
y∈Y

√
W (y|0)W (y|1) (2.2)

are the two important parameters. I(W) reflects the maximum rate of the chan-

nel, and Z(W) indicates the reliability of the channel (it is an upper bound for

maximum-likelihood (ML) rule). Both parameters have values between 0 and 1

and are inversely related to one another.

2.1.1 Channel Polarization

Polar codes work by converting N independent and identical copies of a chan-

nel W into N synthetic (virtual) channels that are either better (less noisy) or

worse (noisier) than the original channel W through a polarization transforma-

tion. Channel polarization is comprised of two processes: the channel combining

process and the channel splitting process. We first explain the polarization ef-

fect using the N = 2 case. In this case, the channel combining process phase is

depicted in Figure 2.2.

9

W+u0

Wu1

y0

y1

x0

x1

W2

Figure 2.2: Channel combining for N = 2.

For a uniform input vector u = (u0, u1), channel combining produces the

combined channel vector W2 : {0, 1} −→ Y × Y , whose transition probabilities

are denoted by

W2(y|u) = W (y0|x0)W (y0|x0) = W (y0|u0 ⊕ u1)W (y1|u1). (2.3)

We may express this figure transformation as matrix multiplication

W2(y|u) = W 2(y|uG2), (2.4)

where

uG2 = (u0, u1)

[
1 0

1 1

]
= (x0, x1). (2.5)

The following step is channel splitting, which results in the creation of two

synthetic channels W
(0)
2 and W

(1)
2 . For the first synthetic channel W

(0)
2 , the

transition probability can be expressed as

W
(0)
2 (y|u0) =

∑
u1∈X

W2(y, u1|u0) =
∑
u1∈X

1

2
W2(y|u0, u1)

=
∑
u1∈X

1

2
W (y0|u0 ⊕ u1)W (y1|u1)

=
1

2
W (y0|u0)W (y1|0) +

1

2
W (y0|u0 ⊕ 1)W (y1|1),

(2.6)

where the third equality is by (2.3). If W
(0)
2 (y|0) > W

(0)
2 (y|1), we can estimate

the first bit as û0 = 0, and otherwise as û0 = 1.

Next assume that the genie-aided decoder provides the correct value of the

previous bit u0 to the second synthetic channel W
(1)
2 . In this case, for W

(1)
2 , we

10

can express the transition probability as

W
(1)
2 (y, u0|u1) =

1

2
W2(y|u0, u1) =

1

2
W (y0|u0 ⊕ u1)W (y1|u1), (2.7)

where the first equality is by the Bayes’ rule and the second equality is by (2.3).

The capacity of the original W and synthetic channels (W
(0)
2 ,W

(1)
2) are as

I(W
(0)
2) ≤ I(W) ≤ I(W

(1)
2),

I(W
(0)
2) + I(W

(1)
2) = 2I(W).

(2.8)

These formulas demonstrate that when channel polarization occurs, the over-

all mutual information is retained, and that one synthetic channel has a larger

capacity than the initial channel while the other has a lower capacity [10].

A similar relationship is obtained in terms of the channels’ Bhattacharyya

parameters as

Z(W
(0)
2) ≥ Z(W) ≥ Z(W

(1)
2),

Z(W
(0)
2) + Z(W

(1)
2) = 2Z(W),

(2.9)

with the second equation satisfying the equality if and only if the channel W is

a binary erasure channel (BEC).

Using the aforementioned polarization method, if one wishes to communicate

a single bit of information, the information is carried onto u1 bit and sent across

the more reliable synthetic channel W
(1)
2 . Other bit, u0, is selected as frozen bit

and given a value that is known to both the encoder and decoder. A common

practice is to set the frozen bits to zero. The fixed value of frozen bit is utilized

in the decoding to retrieve the information that has been encoded.

This technique of channel transformation can be expanded recursively using

the formulae

W
(2i)
2N (y2N−1,u2i−1|u2i) =

∑
u2i+1

1

2
W

(i)
N (yN−1,u2i−1

o ⊕ u2i−1
e |u2i ⊕ u2i+1)

·W (i)
N (y2N−1

N ,u2i−1
e |u2i+1)

W
(2i+1)
2N (y2N−1,u2i|u2i+1) =

1

2
W

(i)
N (yN−1,u2i−1

o ⊕ u2i−1
e |u2i ⊕ u2i+1),

·W (i)
N (y2N−1

N ,u2i−1
e |u2i+1)

(2.10)

11

for 0 ≤ i ≤ N − 1, so that we get the 2N synthetic channels (W
(2i)
2N ,W

(2i+1)
2N)

in logN + 1 recursions. The relations for the capacities and the Bhattacharyya

parameters of the resulting bit-channels are as

I(W
(2i)
2N) ≤ I(W

(i)
N) ≤ I(W

(2i+1)
2N)

I(W
(2i)
2N) + I(W

(2i+1)
2N) = 2I(W

(i)
N),

(2.11)

and

Z(W
(2i)
2N) ≥ Z(W

(i)
N) ≥ Z(W

(2i+1)
2N)

Z(W
(2i)
2N) + Z(W

(2i+1)
2N) ≤ 2Z(W

(i)
N),

(2.12)

where the last equation is an equality if and only if the channel W
(i)
N is a BEC.

Arıkan [10] proved that for each binary-input discrete memoryless channel (B-

DMC) W , the synthetic channels W
(i)
N polarize, i.e., asymptotically (as N goes to

infinity) the fraction of synthetic channels for which I(W
(i)
N) is close to 1 (reliable

channels) goes to I(W) and the fraction of synthetic channels for which I(W
(i)
N)

is close to 0 (noisy channels) goes to 1− I(W).

2.1.2 Code Construction

An issue in the context of polar coding is the determination of the synthesized

channels reliabilities, which is known as the polar code construction. While the

code construction in polar codes is explicit in principle, estimating the reliability

of synthesized channels is challenging in practice. Specifically, when the underly-

ing channel of the synthesized bit channels or the SNR value change, the indices

of reliable bit channels change as well. As a result, in an (N,K) polar code, in

order to pick the K highest reliable channels from N synthesized channels, a rate-

profiling algorithm must be developed for calculating the bit-channel reliabilities

and selecting the K indices with highest reliabilities.

There is an efficient construction technique for a BEC [10]. If the underlying

BEC’s Bhattacharyya parameter is ϵ, from (2.12) the two obtained synthesized

channels are also BECs with Bhattacharyya values of 2ϵ − ϵ2 and ϵ2 [13]. The

Bhattacharyya parameters is determined recursively, and eventually, the data

12

transmission is performed using the K channels with the least Bhattacharyya

parameters.

Numerous different estimation approaches are given for constructing polar

codes for generic channels. Arıkan suggested that for a given channel with ca-

pacity C, the Bhattacharyya parameters of the synthesized channels can be cal-

culated in the same way as calculating the Bhattacharyya parameters of a BEC

channel with capacity C [13]. As another technique, density evaluation [43] is

used to construct polar codes in [44]. Moreover, it was proposed in [45] (Gaus-

sian approximation method) that intermediate log-likelihood ratios (LLRs) can

be treated as Gaussian random variables for the AWGN channel in order to de-

crease the complexity of density evaluation.

In the Gaussian approximation approach, the update rule for mutual informa-

tion in a single level transform is as

I− = 1− J
[√

2J−1(1− I)
]
,

I+ = J
[√

2J−1(I)
]
,

(2.13)

where the initial value I is the mutual information of the given binary input

AWGN channel and I+ and I− are the approximated mutual information values

after one level evolution [46,47]. The approximations of the function J(t) and its

inverse J−(t) are as [48]

J(t) =
[
1− 2−0.3073t2×0.8935

]1.1064
,

J−1(t) =

[
− 1

0.3073
log2

(
1− t

1
1.1064

)] 1
2×0.8935

.

(2.14)

After logN evolution levels, estimates for I(W
(i)
N) are obtained, and the K chan-

nels with the highest mutual information are employed to transmit the data in

an (N,K) polar code.

13

2.1.3 Rate Profiling

In Figure 2.1, the first block is the data insertion block. This block accepts a

source word d of length K and inserts it into a data carrier word v of length N

in accordance with a data index set A, where vA = d and vA = 0. The selection

of index set A along with the data insertion is referred to as rate profiling. Two

known rate-profiling techniques for the polar codes are the polar rate profiling

[10] and Reed-Muller-polar (RM-polar) [49] rate profiling. As described in the

preceding section, polar rate profiling selects the set A depending on the bit-

channel reliabilities (corresponding to the highest I(W
(i)
N) values or equivalently

with the smallest Z(W
(i)
N) values).

To understand the RM-polar rate profiling procedure, consider the generator

matrix of a rate one polar code. The generator matrix of a rate-one polar code

with a code length N = 2n is F⊗n, which is the n-th Kronecker product of

the kernel matrix F = [1 0
1 1]. The matrix F⊗n has 1 row with weight N ,

(
n
1

)
rows with wight N/2,

(
n
2

)
rows with wight N/4 , and so on. To construct an

(N,K) polar code with RM-polar rate profiling, we first obtain the smallest k =(
n
0

)
+
(
n
1

)
+
(
n
2

)
+ · · ·

(
n
r

)
, where 0 ≤ r ≤ n, such that k ≥ K. The corresponding

(N, k) RM code has a minimum Hamming distance equal to N/2r [50]. In an

(N,K) polar code, the set A is obtained from the corresponding row indices of

(N, k) RM code with the K most reliable ones.

It is important to realize that polar codes constructed on the basis of the Bhat-

tacharyya parameters or mutual information of the bit channels are optimized for

SC decoders. As a result, they are not always optimal when used for other de-

coders such as the sequential or SCL decoders. To the best of our knowledge,

there is no explicit polar code construction procedure optimised for sequential or

SCL decoding, and so the nature of sequential or list decoding is often ignored

when designing polar codes. As a result constructing polar codes for sequential

or SCL decoding is still an open problem. However, there are several heuristic

approaches for code construction that converge to a satisfactory result [41,51,52].

14

2.1.4 Encoding of Polar Codes

Polar encoder block of Figure 2.1 maps the output of the data insertion block

u of length N into a codeword vector x = uF⊗n. Polar encoder is a one-to-one

mapping and F⊗n is the n-th Kronecker product of the kernel matrix F = [1 0
1 1].

2.1.5 SC Decoding of Polar Codes

Polar codes with the SC decoding were presented in [10]. Because of the channel

combining in polar codes, which has been explained in the previous sections, a

correlation between the data bits is introduced. As a consequence, each coded

bit associated with a particular index i is dependent on the previous data bits

associated with lower indices than i. When utilized, this type of correlation

may be conceptualized like interference in the data-bit domain, which results in

significantly improved decoding performance. As a result, in the SC decoding

bits are decoded successively; ûi−1 is estimated before ûi and all the previously

determined bits ûi−1 impact the decision of current bit ûi.

We explain the SC decoding for N = 4, and it would be straightforward to

generalize it. Figure 2.3 demonstrates the factor graph of SC decoder for N = 4.

As shown in this figure, in SC decoding, the data bits are estimated via hard

decision on the final LLRs λ0
i . If the ith bit is a frozen bit (i ∈ Ac), regardless of

the value of final LLR λ0
i , decoder assigns ûi = 0. Otherwise, the value of ûi is

determined by a local maximum likelihood (ML) rule expressed as the equation

(2.15), which is based on the output (y, ûi−1) of the ith bit-channel W
(i)
N .

ûi = h(λ0
i) =

0, if λ0
i = log P (y,ûi−1|ûi=0)

P (y,ûi−1|ûi=1)
> 0,

1, otherwise.
(2.15)

The receiver first calculates the channel LLR vector λ = λn−1
0 , . . . λn−1

N−1 with

λn−1
i = ln

P (yi|xi = 0)

P (yi|xi = 1)
, (2.16)

15

for each element of the channel output vector. Then the bits are estimated

successively by updating the intermediate LLR values. each intermediate LLR

λj
i , where i is the bit index and j is the stage index, is computed by

λj
i =

f(λj+1
i , λj+1

i+2j
), if ⌊ i

2j
⌋mod 2 = 0

g(λj+1
i−2j

, λj+1
i , β̂j

i−2j
), if ⌊ i

2j
⌋mod 2 = 1,

(2.17)

where 0 ≤ j ≤ n, 0 ≤ i ≤ N − 1, and β̂j
i is used to represent the partial sum,

which is the left to right propagation of the estimated bits ûi in the factor graph.

The propagation of β̂j
i is show in the Figure 2.3.

+

=

+

= =

=

+

+

Channel

LLRs

Final

LLRs

λ 2

0

β 1

0

λ 2

1

λ 2

2

λ 2

3

λ 1

1

λ 1

0

λ 1

2

λ 1

3

λ 0

0

λ 0

1

λ 0

2

λ 0

3

j = 0 j = 1 j = 2

β 11

β 00

β 01

β 02

u^0

u^1

u^2

u^3

Figure 2.3: SC decoding factor graph.

Figure 2.4 depicts the f and g functions used in (2.17). These functions are

well approximated as

f(λa, λb) ≈ sgn(λa) · sgn(λb) ·min (|λa|, |λb|) (2.18)

g(λa, λb, β̂) = (−1)β̂λa + λb, (2.19)

where λa and λb denote the entering LLRs to a node, respectively, and β̂ denotes

the partial sum of previously estimated bits.

16

+

=

+

=

λ

β

λb

f(λa,λb)

g(λa,λb,β)

λa

λb

Figure 2.4: Internal LLR (λ) calculations.

2.2 Convolutional Codes

Convolutional codes [53] are a class of linear codes with a particular structure in

the generator matrix so that the encoding operation can be viewed as a convo-

lution operation. The encoding process of convolutional codes can be expressed

by x = dT, where d and x are the input and output of the encoder, respec-

tively, and T is the generator matrix. For time-invariant convolutional codes, T

is a Toeplitz matrix in a row-reduced echelon form. In this case, the generator

matrix is often characterized by a generator polynomial c = (c0, · · · , cm), where
c0 ̸= 0 and cm ̸= 0. The parameters m and m + 1 are called the memory or-

der and constraint length of the convolution, respectively. Then the convolution

operation can be expressed as xi =
∑m

j=0 cjdi−j with di−j = 0 for i < j. This

corresponds to combining m previous bits of the input d and the current input

bit di in accordance with the generator polynomial c. As a result, a rate r = k/n

convolutional encoder with memory order m can be implemented as a k-input,

n-output circuit with shift register of length m.

Figure 2.5 shows an example circuit for a convolutional code with k = 1,

n = 2, m = 2, c0 = (1, 0, 1), and c1 = (1, 1, 1), where c0 = (c0,0, c0,1, c0,2) and

c1 = (c1,0, c1,1, c1,2) are the polynomials for generating the first and second output

17

of convolutional encoder, respectively. The generator matrix of this example is

T =



1 1 0 1 1 1 0 0 0 0 0 0 . . .

0 0 1 1 0 1 1 1 0 0 0 0 . . .

0 0 0 0 1 1 0 1 1 1 0 0 . . .

0 0 0 0 0 0 1 1 0 1 1 1 . . .
...

...
...

...
...

...
...

...
...

...
...

...
. . .


.

It is also possible to represent a convolutional code’s encoding in the form of

a tree through which each source word d = (d0, ..., dK−1) of length K defines

a path. Figure 2.6 shows the first four levels of the tree corresponding to the

convolutional code of Figure 2.5. For a node at level i of this tree, the upper-

branch corresponds to di = 0 and the lower-branch corresponds to di = 1. Each

branch is labeled by the corresponding convolution output pair (x2ix2i+1).

di-2di-1di

+

c1,0=1 c1,1=1 c1,2=1

x2i+1

+

x2i

c0,0=1 c0,2=1

d

Figure 2.5: An example of convolutional encoding using a shift-register.

2.2.1 Fano Decoding of Convolutional Codes

The optimal algorithm for decoding convolutional codes is the Viterbi algo-

rithm [54], which is a maximum likelihood sequence estimator. The Viterbi

algorithm operates on the trellis diagram of the convolutional codes in which

the nodes represent the encoder state [55]. At each step, the algorithm examines

the encoder’s entire state space S = {s1, . . . , s2m}, where m is the memory order

18

00

11

01

10

11

00

10

01

00

11

01

10

11

00

10

01

root

d i =0

d i =1

00

11

01

10

11

00

10

01

00

01

10

11

00

11

Figure 2.6: Tree representation of a convolutional code.

19

of convolutional code. For this reason, the computational complexity of Viterbi

decoder grows exponentially with the memory order of convolutional code.

For practical implementations, especially when the memory order of the convo-

lutional code is large, sub-optimal decoding algorithms are also of interest. These

algorithms achieve the majority of the performance of the Viterbi algorithm while

having a lower computational complexity. Two of the well known sub-optimal

decoding algorithms are the two versions of sequential decoding [19] known as

Fano algorithm [21] and stack algorithm [22,23].

In stack decoding, the partial explored paths of Figure 2.6 are stored in a stack

and sorted with respect to their path metric values. At each step, the algorithm

pops the top element of the stack and extends its path. Then, the children paths

of the top path are pushed to the stack and a sorting is performed on the stack.

For this reason, the stack algorithm is a memory intensive algorithm and requires

sorting operation at each step of decoding.

The Fano algorithm is a depth-first search algorithm that only keeps track of

the most promising path. As a result, the memory requirement of the Fano de-

coder is smaller compared to the stack algorithm, but unlike the stack algorithm,

the Fano algorithm may visit each node more than once. The task of Fano algo-

rithm is to traverse through the convolution tree and find the correct path which

is an estimate d̂ of the transmitted message d. To identify the correct path, the

Fano algorithm uses a path metric Γ and a metric threshold T .

The function used by the Fano decoder for calculating the path metric is called

the Fano metric and is defined as

Γi =
i∑

j=0

γj =
i∑

j=0

[
log

P (yj|xj)

P (yj)
− bj

]
, (2.20)

where γj is the branch metric, P (yj|xj) is the channel transition probability,

P (yj) is the channel output probability, and bj is a bias term. The Fano metric

is the optimum metric for comparing paths of different lengths [56]. If the Fano

metric grows along a given path, the algorithm considers it as a correct path

and continues to search further along it. But if the metric drops significantly,

20

the algorithm backtracks and searches other paths. This is accomplished by

comparing the path metric with a threshold T in a way that whenever the path

metric grows significantly on a forward search, the threshold is tightened (raised

by threshold spacing ∆), and whenever the algorithm backtracks, the threshold

is relaxed (lowered by ∆). In this way, the algorithm ensures that no node will

ever be searched twice using the same threshold [1, p 372-373].

To explain the Fano algorithm, we examine the flowchart of Figure 2.7. At

the beginning of decoding, the threshold T and a search pointer i are initialized

to 0. In the look forward block, the algorithm computes both metrics of the two

branches di = 0 and di = 1, and if the algorithm is looking forward to most likely

node, it adds the greater of the two branch metrics to the current path metric.

If the look forward block is entered from A , it means that the most likely node

has already been searched and the threshold T has been violated. Hence, the

algorithm must look to the least likely node (the branch with the smaller branch

metric). In either case, the Fano decoder compares the new path metric Γi with

the threshold T , and if Γi ≥ T (T satisfied), the algorithm moves forward by

incrementing the search pointer i. After a forward move, if the node is visited for

the first time, the threshold is tightened by increasing the threshold by integer

multiples of ∆ such that the new threshold satisfies Γi −∆ < T ≤ Γi.

In the look forward block if Γi < T (T violated), the algorithm looks back and

compares the previous path metric Γi−1 with the threshold, and if Γi−1 ≥ T (T

satisfied) it moves back by decrementing the search pointer i. If the backward

move was made on the better of the two branches stemming from the node just

reached (the most likely node), the least likely node has to be searched next. But,

if it was made on the least likely branch, there is no branch left to be explored, and

the algorithm must continue the backward search. If, during a backward look,

the threshold T is violated, the algorithm cannot move back, and eventually, all

paths from here have been searched and violated the current threshold. Thus,

the algorithm decreases the threshold by ∆ and continues the forward search

using the new threshold. The Fano algorithm keeps repeating these steps until

it reaches the last level of the convolution tree, i.e., i = N − 1, or a predefined

early termination criterion like maximum search limit is satisfied. An extensive

21

study of the Fano algorithm may be found in [57].

Look forward to
most likely node

or
if entering via

to least likely
node

Move forward

First visit to
this node?

Thighten
threshold if

possible

Look back

Move back

Did move
originate on
least likely

node?

Decrease
threshold

by

Initialize with T=0

T violated

T satisfied

Yes

No

T satisfied

T violated

Yes

No

(Forward search) (Backward search)

A

A

Figure 2.7: Fano decoding algorithm for binary tree, modified after [1, p 373]

2.2.2 Computational Complexity of Sequential Decoding

Sequential decoding has the benefit of having a computational complexity that

does not depend to the convolutional encoder constraint length. When it comes to

the Viterbi decoding, on the other hand, the computational complexity increases

exponentially with respect to the encoder constraint length. This limits the

use of Viterbi decoding to very small constraint lengths, which makes reaching

arbitrarily low error probability in practice unfeasible Additionally, even when

just a few or no errors are available in the received sequence (high SNR values),

the Viterbi algorithm executes a constant amount of calculations per decoding

22

bit. On the other hand, sequential decoding is capable of adjusting the amount of

computations per decoding bit in response to the intensity of background noise.

However, the downside of sequential decoding is that the amount of computations

needed is random and may become too large in conditions of extreme noise,

resulting in decoding failures or erasure.

root

C1

C2

C3

Figure 2.8: Incorrect subsets for the first three nodes.

The amount of computations performed throughout the decoding process is

the primary assessment tool in sequential decoding. The ith wrong subset of the

code tree is a notion that is used to theoretically measure the computation of

sequential decoding and is defined as the set of all the nodes that branch out

from the ith node of the correct path, 1 ≤ i ≤ N . Figure 2.8 shows incorrect

subsets for the first three nodes of a convolutional code whose correct path is

highlighted by red. It is proved that the amount of computations Ci done in the

23

ith wrong subset follows a Pareto distribution, which is given by

P (Ci ≥ x) ≈ Ax−ρ, 1 ≤ i ≤ N − 1, (2.21)

for 0 < ρ <∞, where A is a constant that differ based on the sequential decoding

technique in use.

The parameter ρ is referred to as the Pareto exponent, and it is associated to

the coding rate R using the equation

R =
E0(ρ)

ρ
, 0 < R < C, (2.22)

where C is the channel capacity (in bits per channel usage). The function E0(ρ)

is referred to as the Gallager function, and for a symmetric B-DMC it is expressed

by

E0(ρ) = ρ− log2
1

2

∑
j

[∑
i

W (j|i)
1

1+ρ

]1+ρ

. (2.23)

The average amount of computations per decoded branch is infinite if ρ is less

than or equal to one. For a finite average amount of computations (ρ > 1) we

have

R =
E0(ρ)

ρ
< E0(1) = R0, (2.24)

where R0 is referred to as the computational cutoff rate of the channel (R0 < C).

This means that for sequential decoding to have a finite average computational

complexity, the code rate R has to be less than the channel cutoff rate R0.

R0 is referred to as the computational cutoff rate and is often represented

as Rcomp. This is a feasible upper limit on the largest code rate R at which a

sequential decoder may run, because a Pareto distribution with ρ = 1 has an

infinite mean. This implies that any sequential decoder working at a rate greater

than R0 would have significant computational issues, including frequent buffer

overflows. R0 is often used to anticipate the minimal practical value of Eb/N0

with which a sequential decoder would work [58, p. 303]. For this reason, R0 is

a critical performance parameter of sequential decoding. As an example, we get

R0 = 1/2 at 2.46 dB SNR for a convolutional code operating at the rate 1/2.

24

2.3 PAC Codes

Figure 2.9 shows a block diagram of PAC coding scheme. The data insertion block

receives a source word d of length K and inserts it into a data carrier word v of

length N in accordance with a data index set A such that vA = d and vAc = 0.

The bits fixed to zero are called frozen, whereas all the other bits are called non-

frozen. As a result, the coding rate can be expressed as R = K/N . The data

carrier word v goes through a convolution block with generator matrix T which

is a Toeplitz matrix whose first row is the generator polynomial c = (c0, · · · , cm),
where c0 ̸= 0 and cm ̸= 0. Similar to the convolutional codes, the parameters m

and m+1 are called the memory order and constraint length of the convolution,

respectively. The resulting word u goes through a polar mapper and the overall

encoding process of PAC codes can be expressed by x = vTF⊗n, where F⊗n is

the generator matrix of polar codes with F⊗n being the n-th Kronecker product

of the kernel matrix F = [1 0
1 1].

At the receiver side, the PAC decoder receives the channel output y and gener-

ates an estimate v̂ of v. Then, a data extractor extracts an estimate d̂ of d from

v̂ using d̂ = v̂A. The performance of the system is measured by the probability

of frame error Pe = P (d̂ ̸= d).

Data
Insertion

Convolu-
tion

Polar
Mapper

Channel

Polar
Demapper

Sequential
Decoder

Data
Extraction

d v x

y

u

ziv^v^

^ui-1^ui-1PAC Decoder

d
^
d
^

Figure 2.9: PAC coding scheme.

Consider an example of PAC codes with N = 8, K = 4, A = {3, 5, 6, 7}, and
c = (1, 0, 1). The data insertion block inserts the source word d = (d0, . . . , d3)

into the carried word v = (v0, . . . , v7) so that

v = (0, 0, 0, d0, 0, d1, d2, d3).

25

The encoded codeword x for this example can be obtained by

x =



0

0

0

d0

0

d1

d2

d3



T

︸ ︷︷ ︸
v



1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0

0 0 1 0 1 0 0 0

0 0 0 1 0 1 0 0

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


︸ ︷︷ ︸

T



1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1


︸ ︷︷ ︸

F⊗3

(2.25)

=



0

0

0

d0

0

d0 + d1

d2

d1 + d3



T

︸ ︷︷ ︸
vT



1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1


︸ ︷︷ ︸

F⊗3

(2.26)

Just like conventional convolutional codes, it is also possible to represent the

convolution operation of PAC codes in the form of a tree through which each

carrier word v = (v0, . . . , vK−1) defines a path. Due to the existence of frozen

bits, the tree generated by the convolution operation of PAC codes is an irregular

tree that branches only at indices provided by the data index set A. In other

words, for a node at level i, the tree branches if and only if i ∈ A.

Figure 2.10 shows the convolution tree of a PAC code with N = 8, K = 4,

A = {3, 5, 6, 7}, and c = (1, 0, 1). For a node at level i of this tree, the upper-

branch corresponds to vi = 0 and the lower-branch corresponds to vi = 1. Each

branch is labeled by the corresponding convolution output ui.

26

0

1

0

1

1

0

1

0

0

1

0

1

1

0

1

0

root

v i =0

v i =1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0 0 0

0

0

Figure 2.10: Tree representation of convolutional operation of a PAC code.

27

2.3.1 Fano Decoding of PAC Codes

As mentioned in Chapter 1, the Fano variant of sequential decoding requires a

smaller memory size and is more suitable for hardware implementations compared

to stack algorithm. For this reason, in this section, we focus on the Fano decoding

of PAC codes. A PAC Fano decoder consists of two blocks: polar demapper

and the Fano decoder. The polar demapper receives the channel output y and

calculates a log-likelihood ratio (LLR) vector λ according to (2.16). Similar to the

SC decoder of polar codes, the polar demapper also operates on the SC decoding

factor graph. But unlike the SC decoder, the polar demapper does not make

any hard decision on the final LLRs, i.e., it does not generate any bit-estimate

output ûi. Instead, it receives the prior bit-estimates ûi−1 from the Fano decoder

and passes the soft LLR value of the ith bit back to the Fano decoder. In short,

a polar demapper can be considered and implemented as a soft-in soft-out SC

decoder. To distinguish the final LLRs from the intermediate LLRs, we denote

the final LLRs (the output of polar demapper) by z = (z0, · · · , zN−1). Hence, we

can express the output of polar demapper by

zi ≜ ln
P (y, ûi−1|ûi = 0)

P (y, ûi−1|ûi = 1)
. (2.27)

The Fano decoder uses the zi value to calculate a path metric which helps the

decoder to generate an estimate v̂ of v.

The Fano decoding of PAC codes is similar to the Fano decoding of conven-

tional convolutional codes but with a difference that the Fano decoder of PAC

codes performs its search for the correct path on an irregular tree. Figure 2.11

demonstrates the flowchart of Fano decoding for PAC codes. The flowchart of

PAC Fano decoder is similar to the flowchart of the Fano decoder of convolutional

codes shown in Figure 2.7 with a single difference that upon a backward move,

the PAC Fano decoder checks whether the currently reached node is frozen or

non-frozen; if the node is frozen, there is no more branches to be explored, and

the algorithm must continue the backward search; if the node is non-frozen the

operation of algorithm is the same as decoding convolutional codes. This block

is indicated with a dashed line in Figure 2.11.

28

Look forward to
most likely node

or
if entering via

to least likely
node

Move forward

First visit to
this node?

Thighten
threshold if

possible

Look back

Move back

Did move
originate on
least likely
node or is
this bit
frozen?

Decrease
threshold

by

Initialize with T=0

T violated

T satisfied

Yes

No

T satisfied

T violated

Yes

No

(Forward search) (Backward search)

A

A

Figure 2.11: Fano decoding algorithm for PAC codes.

29

The Fano algorithm uses the output zi of the polar demapper to calculate the

path metric Γi of node i based on the hypothesis ûi = 0 and ûi = 1, which are

also provided by the Fano decoder. Since the channel seen by the convolution

operation of PAC codes is a polarized channel, the Fano metric of (2.20) is not

suitable for decoding of PAC codes. Since the rate-one convolution operation

and polar mapping are one-to-one transforms, the path metric for PAC codes can

expressed as [47]

Γi = log
P (y|ûi)

P (y)
−

i∑
j=0

bj, (2.28)

where y = (y0, · · · , yN−1) are the channel output values, û
i = (û0, · · · , ûi) are the

prior bit-estimates, and bj is a bias term. Since the Fano decoder always moves

from a current node either to its predecessor or to one of its immediate successors,

it is more convenient to obtain a branch metric function and calculate the path

metric as the sum of branch metrics. The branch metric can be calculated using

(2.28) as

γi(ûi) ≜ Γi − Γi−1

= log
P (y|ûi)

P (y|ûi−1)
− bi

= log
P (y, ûi−1|ûi)

P (y, ûi−1)
− bi, (2.29)

where P (y, ûi−1|ûi) is the bit-channel transition probability, P (y, ûi−1) is the bit-

channel output probability, and bi is a bias term. Consequently, the path metric

can be calculated as

Γi =
i∑

j=0

γj(ûj). (2.30)

For a binary input channel with equiprobable inputs, ûi ∈ {0, 1} with P (ûi =

0) = P (ûi = 1) = 1/2. Assume ûi = 0. Then, the branch metric function of

30

(2.29) can be written as

γi(ûi = 0) = log
P (y, ûi−1|ûi = 0)

P (y, ûi−1)
− bi

= log
P (y, ûi−1|ûi = 0)

1
2
[P (y, ûi−1|ûi = 0) + P (y, ûi−1|ûi = 1)]

− bi

= 1− log (1 +
P (y, ûi−1|ûi = 1)

P (y, ûi−1|ûi = 0)
)− bi

= 1− log (1 + e−zi)− bi,

where zi is the output of polar demapper which is defined in (2.27). Similarly,

we can obtain the branch metric for the condition ûi = 1 as

γi(ûi = 1) = 1− log (1 + ezi)− bi.

We can express the Fano branch metric for decoding PAC codes in a compact

form of

γi(ûi) = 1− log(1 + e−(1−2ûi)zi)− bi. (2.31)

Note that the metric function of (2.31) is a function of polar demapper output

zi and the estimate convolution output ûi. To generate the estimate ûi, the Fano

decoder uses a convolutional encoder replica with the same generator polynomial

c used in the encoder of PAC codes. As shown in Figure 2.10, for a non-frozen

node at level i of the convolution tree, there are always two possible values of ûi

each corresponding to one of the hypothesis v̂i = 0 (upper-branch) and v̂i = 1

(lower-branch). Let ûi,0 and ûi,1 be the convolution outputs for the hypothesis

v̂i = 0 and v̂i = 1, respectively. After generating ûi,0 and ûi,1, the Fano decoder

uses the output of polar demapper zi and calculates γi(ûi,0) and γi(ûi,1). Now

by comparing γi(ûi,0) and γi(ûi,1) the algorithm can distinguish the most likely

branch from the least likely branch; if γi(ûi,0) ≥ γi(ûi,1) holds, then the most

likely branch is v̂i = 0; otherwise, then the most likely branch is v̂i = 1.

In the next chapter, we study the Fano decoding of PAC codes in more details

and provide a detailed flowchart for Fano decoding of PAC codes. We then modify

the Fano algorithm to obtain a hardware-friendly PAC Fano decoder.

31

Chapter 3

Hardware Implementation of

PAC Fano Decoder

In section 2.3.1, we showed an abstract flowchart for Fano decoding of PAC codes

(Figure 2.11). In this chapter, we provide a detailed version of the flowchart of

Figure 2.11 and obtain a hardware-friendly variant of Fano algorithm for decoding

PAC codes. After that, we introduce a hardware architecture for the obtained

Fano decoder of PAC codes.

3.1 A Hardware-Friendly Fano Algorithm for

PAC Codes

Consider the local node diagram of the Fano decoding tree shown in Figure 3.1.

We denote the time unit (node pointer) by i. Assume that N1 is the current node,

N2 is the most likely node (with larger metric), N3 is the least likely node (with

smaller metric), and N4 is the previous node. M2 and M3 denote the metrics of

branches from the current node to N2 and N3, respectively, and M1 is the metric

of the branch from the previous node to the current node. We define N23 as a

node that corresponds to N2 when the most likely node is being examined or N3

32

when the least likely node is being examined. Similarly, M23 corresponds to M2

when N2 is being examined or M3 when N3 is being examined.

N1

N2

N3N4

M1

M2

M3

Time unit

i-2 i-1 i i+1

Figure 3.1: Fano decoding tree, modified after [2].

The path metric of (2.30) is expressed as the sum of branch metric values. This

may result in a metric overflow especially at high SNR regime. To avoid this, we

compute relative metric values rather than absolute path metric values [2]. In this

regard, whenever the Fano decoder performs a forward move, the value of M23

is subtracted from the threshold T , and whenever it performs a backward move

the value of M1 is added to the threshold T . Using this method lets the current

node’s path metric be zero and all other path metrics relative to the current

node’s metric. Moreover, using the relative metric values makes it possible for

the Fano algorithm to perform its search operation by using the branch metric

values (M1 and M23), and eliminates the need for calculating the path metric

values. Let us define a variable Ψ such that Ψ = 1 when the Fano decoder

backtracks to a frozen node or to a node whose both children are examined;

otherwise, Ψ = 0. In other words, the Fano algorithm performs forward search

when Ψ = 0; otherwise it performs backward search. We consider a node as a

new node if it is being visited for the first time. Using the introduced parameters

and concepts, we modify the flowchart of Figure 2.11 and present an extended

flowchart in Figure 3.2.

By careful observation of the flowchart of Figure 3.2 we realize that there are

five independent set of actions from which the Fano algorithm performs one at

each step of decoding. These five sets of actions are labeled by A0-A4. Action A0

33

Ψ = 0?

M23 ≥ T?

N23 is
new node?

T←T+∆-M23 T←T-M23

N1 is root?

M1+T ≤ 0?

N4 is frozen?

N1 is the
most likely

node?

T←T+M1
Ψ←0

move to N23
and examine

the most
likely node

leading from
N23

T←T-∆
Ψ←0

T←T+M1
Ψ←1

examine N23
again

move to N4
and examine
the lateral
node of N1

move to N4
and perform
backward

check

Yes

initialize with
T←0, Ψ←0

Yes

Yes

No

No

No

No

No

No

Yes

Yes

No

Yes

Yes

(Forward search) (Backward search)

move to N23
and examine

the most
likely node

leading from
N23

A0

A3

A1

A4

A2

Figure 3.2: Extended Fano algorithm flowchart for PAC codes.

34

corresponds to moving forward to a new node; A1 corresponds to moving forward

to an old node; A2 corresponds to the case when the Fano algorithm can move

neither forward nor backward and needs to drop the threshold; A3 corresponds to

moving backward and checking the lateral node of N1; A4 corresponds to moving

backward and performing backward search again. Hence, we may restate the

Fano algorithm as the following set of rules.

• Rule 0

Conditions: Ψ = 0, M23 ≥ T , N23 is new node.

Actions: Move to N23, update T to T +∆−M23, examine the most likely node

leading from N23 at the next step.

• Rule 1

Conditions: Ψ = 0, M23 ≥ T , N23 is old node.

Actions: Move to N23, update T to T − M23, examine the most likely node

leading from N23 at the next step.

• Rule 2

Conditions: Ψ = 0, M23 < T , N1 is root node; or Ψ = 0, M23 < T , N1 is not

root node, M1+T > 0; or Ψ = 1, N1 is root node; or Ψ = 1, N1 is not root node,

M1 + T > 0

Actions: Make no move, update T to T −∆, assign Ψ = 0, examine N2 again

at the next step

• Rule 3

Conditions: Ψ = 0, M23 < T , N1 is not root node, M1 + T ≤ 0, N4 is not

frozen, N1 is the most likely node leading from N4; or Ψ = 1, N1 is not root

node, N4 is not frozen, N1 is the most likely node leading from N4.

Actions: Move to N4, update T to T +M1, assign Ψ = 0, examine the lateral

node of N1 at the next step.

• Rule 4

Conditions: Ψ = 0, M23 < T , N1 is not root node, M1 + T ≤ 0, N4 is frozen

or N1 is the least likely node leading from N4; or Ψ = 1, N1 is not root node,

35

M1 + T ≤ 0, N4 is frozen or N1 is the least likely node leading from N4;

Actions: Move to N4, update T to T + M1, assign Ψ = 1, perform backward

check at the next step.

It is possible to detect if a node is new using M23 as follow [59, p. 436]:

• If 0 < T +∆ holds, the node N1 cannot have been visited with a threshold

higher than T . Hence, N1 was a new node and, since N23 is a successor of

N1, N23 is also a new node.

• If 0 ≥ T + ∆ and M23 < T + ∆ hold, then N23 cannot have been visited

before, but N1 has. Since M23 < T +∆, the threshold is already tight.

• If 0 ≥ T +∆ and M23 ≥ T +∆ hold, both N1 and N23 have been visited

before and the threshold should bot be increased.

Hence, node N23 is considered as a new node if

0 < T +∆ ≤ M23, (3.1)

where the first inequality indicates N23 is a new node and the second inequality

implies that the threshold is not already tight. To detect whether a node is frozen

or not, we define a binary vector a such that ai = 0 for frozen nodes (i ∈ Ac)

and ai = 1 for non-frozen nodes (i ∈ A) for i = 0, 1, . . . , N − 1. Additionally,

we define another binary vector t such that when ti = 0, the Fano algorithm

examines the most likely branch, and when ti = 1, it examines the least likely

branch for i = 0, 1, . . . , N − 1.

The branch metrics M1 and M23 are calculated using the metric function of

(2.31) which is a function of polar demapper output. Hence, the polar demapper

is required to provide the Fano algorithm with the values of zi−1 and zi at every

step of decoding. However, when the Fano algorithm drops the threshold (rule 2),

the calculated value of zi can be reused in the next step of decoding. Moreover,

when the Fano decoder moves backward from a least-likely node or to a frozen

node (rule 4), it does not need the value of M23 during the next step of decoding

since it performs backward search.

36

Hence, if the polar demapper stores its previous output values, the activation of

the polar demapper is not required after the Fano decoder executes rule 2 or rule

4. In this regard, we introduce a “polar demapper enable” (PDE) parameter such

that the polar demapper is activated if PDE = 1. This parameter is set to logical

one when any of rules 0, 1, or 3 is executed and to logical zero otherwise. This

method prevents unnecessary activation of the polar demapper and significantly

reduces the decoder’s latency, especially at low SNR regimes where backtracking

happens more frequently. Using these definitions and the condition for detecting

a new node, we summarize the Fano rules and their corresponding conditions and

actions in Table 3.1.

Table 3.1: Fano rules for decoding PAC codes.

Rule 0
Cond. (Ψ = 0) &(M23 ≥ T) & (0 < T +∆ ≤ M23)
Actions store v̂i and ûi, T ← T +∆−M23, i← i+ 1, ti ← 0, PDE← 1

Rule 1
Cond. (Ψ = 0) & (M23 ≥ T) & (T +∆ ≤ 0 | T +∆ > M23)
Actions store v̂i and ûi, T ← T −M23, i← i+ 1, ti ← 0, PDE← 1

Rule 2
Cond.

(M23 < T) & (M1 + T > 0)
(M23 < T) & (i = 0)
(Ψ = 1) & (M1 + T > 0)
(Ψ = 1) & (i = 0)

Actions T ← T −∆, Ψ← 0, ti ← 0, PDE← 0

Rule 3
Cond.

(M23 < T) & (i ̸= 0) & (M1 + T ≤ 0) & (ai−1 = 0) & (ti−1 = 0)
(Ψ = 1) & (i ̸= 0) & (M1 + T ≤ 0) & (ai−1 = 0) & (ti−1 = 0)

Actions T ← T +M1, Ψ← 0, i← i− 1, ti ← 1, PDE← 1

Rule 4
Cond.

(M23 < T) & (i ̸= 0) & (M1 + T ≤ 0) & (ai−1 = 1 | ti−1 = 1)
(Ψ = 1) & (i ̸= 0) & (M1 + T ≤ 0) & (ai−1 = 1 | ti−1 = 1)

Actions T ← T +M1, Ψ← 1, i← i− 1, PDE← 0

Figure 3.3 shows the corresponding flowchart of the Fano decoder. The “De-

termine Rule and Perform Corresponding Actions” block executes the Fano rules

of Table 3.1. A decoding session ends when either the Fano algorithm reaches

the end of the frame (i.e. i = N − 1) or a predetermined termination criterion

(such as maximum iteration bound) is satisfied.

As an example, consider a PAC code with N = 8, K = 5, A = {1, 3, 5, 6, 7},
and c = (1, 0, 1). For a source word d = (0, 1, 1, 1, 1, 1), the data car-

rier word is constructed as v = (0, 0, 0, 1, 0, 1, 1, 1) and encoded as x =

37

Start

Determine Rule
and perform

corresponding
Actions

Activate Polar
Demapper

Yes

No
No

Yes

End of Frame
or Time Out?

PDE = 1?

Initialize with
T←0, Ψ←0, PDE←1

End

Figure 3.3: Flowchart of PAC Fano decoder.

(0, 1, 0, 1, 1, 0, 1, 0). Assume a BPSK signalling over an AWGN channel with

a noise variance corresponding to an SNR of 1 dB and a channel output of

y = (−1.674, 1.180, 0.101, 1.109, 3.022, 0.218, 0.022,−2.880). The receiver cal-

culates the channel LLR vector λ from the channel output y and passes it to

the PAC Fano decoder. Table 3.2 traces the execution of the proposed PAC

Fano decoder when the branch metric function of (2.31) is used with bias vector

b = (0, 0, 0, 1, 0, 1, 1, 1) and ∆ = 2. The PAC Fano decoder obtains a correct es-

timate of data carrier word in 15 iterations. In this table, MF = (γi(ûi,0), γi(ûi,1))

denotes the forward branch metrics, where ûi,0 and ûi,1 correspond to the convo-

lution output estimates for the branches v̂i = 0 and v̂i = 1, respectively.

38

T
ab

le
3.
2:

A
n
ex
am

p
le

of
P
A
C

F
an

o
d
ec
o
d
er
.

S
te
p

i
Ψ

a
i

a
i−

1
t i

t i
−
1

T
v̂

û
z i

M
1

M
F

M
23

R
u
le

1
0

0
0

—
0

—
0

()
()

0.
05
6

—
(0
.0
40
,−

)
0.
04
0

1
2

1
0

1
0

0
0

-0
.0
40

(0
)

(0
)

-0
.6
06

0.
04
0

(−
0.
50
2,
0.
37
2)

0.
37
2

1
3

2
0

0
1

0
0

-0
.4
12

(0
,1
)

(0
,1
)

-3
.3
42

0.
37
2

(−
3.
87
2,
−
)

-3
.8
72

3
4

1
0

1
0

1
0

-0
.0
40

(0
)

(0
)

-0
.6
06

0.
04
0

(−
0.
50
2,
0.
37
2)

-0
.5
02

4
5

0
1

0
—

0
—

0
()

()
0.
05
6

—
(0
.0
40
,−

)
0.
04
0

2
6

0
0

0
—

0
—

-2
()

()
0.
05
6

—
(0
.0
40
,−

)
0.
04
0

1
7

1
0

1
0

0
0

-2
.0
40

(0
)

(0
)

-0
.6
06

0.
04
0

(−
0.
50
2,
0.
37
2)

0.
37
2

1
8

2
0

0
1

0
0

-2
.4
12

(0
,1
)

(0
,1
)

-3
.3
42

0.
37
2

(−
3.
87
2,
−
)

-3
.8
72

3
9

1
0

1
0

1
0

-2
.0
40

(0
)

(0
)

-0
.6
06

0.
04
0

(−
0.
50
2,
0.
37
2)

-0
.5
02

1
10

2
0

0
1

0
1

-1
.5
34

(0
,0
)

(0
,0
)

2.
24
2

-0
.5
02

(0
.8
54
,−

)
0.
85
4

0
11

3
0

1
0

0
0

-0
.3
92

(0
,0
,0
)

(0
,0
,0
)

-6
.4
01

0.
85
4

(−
9.
23
7,
−
0.
00
2)

-0
.0
02

1
12

4
0

0
4

0
0

-0
.3
90

(0
,0
,0
,1
)

(0
,0
,0
,1
)

-0
.1
97

-0
.0
02

(−
0.
14
9,
−
)

-0
.1
49

1
13

5
0

1
0

0
0

-0
.2
41

(0
,0
,0
,1
,0
)

(0
,0
,0
,1
,0
)

2.
22
2

-0
.1
49

(−
3.
35
4,
−
0.
14
8)

-0
.1
48

1
14

6
0

1
1

0
0

-0
.0
91
5

(0
,0
,0
,1
,0
,1
)

(0
,0
,0
,1
,0
,0
)

-1
1.
62
7

-0
.1
49

(−
16
.7
75
,0
)

0
1

15
7

0
1

1
0

0
-0
.0
91
5

(0
,0
,0
,1
,0
,1
,1
)

(0
,0
,0
,1
,0
,0
,1
)

—
—

—
—

—

39

3.2 Hardware Implementation

In this section, we introduce a hardware architecture for the Fano decoder of

PAC codes which have been obtained in the previous section. Figure 3.4 shows

the hardware architecture of the proposed PAC Fano decoder. This architecture

mainly comprises a polar demapper (PD), a branch metric unit (BMU), a Fano

control unit, a convolution output register (Ureg), and a convolution input register

(Vreg). The Fano control unit implements the flowchart of Figure 3.3. The branch

metric unit (BMU) provides the Fano control unit with the current branch metric

M23 and previous branch metric M1. Vreg is a bidirectional shift register used

to store the prior convolution input estimates v̂. Whenever the Fano decoder

moves forward, the current convolution input estimate v̂i is stored in Vreg. To

allow a maximum backtracking depth of N , the size of Vreg is set to N and the

first m part of Vreg provides the BMU with convolution state (CS), where m

is the memory order of the convolution. The Ureg register is used to store the

prior convolution output estimates û. When the Fano decoder moves forward,

depending on the proceeding branch, the corresponding ûi is stored in the Ureg.

The input buffer stores the channel output LLR values, and the output buffer

stores the final estimate v̂ of v. A clock cycle (CC) counter counts the number of

clock cycles consumed to decode a single codeword. The decoding of a codeword is

terminated whenever the value of the CC counter exceeds a predefined maximum

cycle (MC). In this case, a timeout (TO) signal is generated, and a new LLR

vector λ is loaded into the input buffer. The input a determines the frozen and

non-frozen nodes such that ai = 0 for frozen nodes (i ∈ Ac) and ai = 1 for

non-frozen nodes (i ∈ A). In the following subsections, we show how to design

the hardware for three of the main sub-blocks of our proposed decoder: the polar

demapper, the branch metric unit, and the Fano control unit.

3.2.1 Polar Demapper

A polar demapper can be implemented by modifying the SC decoder of polar

codes as they both operate on the polar decoding factor graph of Figure 2.3. In

40

Input
Buffer

Output
Buffer

PD
M
U
X

M
U
X

M
U
X

M
U
X

BMU

M
U
X

M
U
X

M
U
X

M
U
X

z i -1

z i

M
U
X

M
U
X

bi -1

bi
b

aia
Fano

Control
Unit

Vreg

CS

Ureg
M
U
X

M
U
X

�

u i -1
^u i -1
^

C
C

C
o
u
n
te

r

MC

TO
N

N

Figure 3.4: PAC Fano decoder.

this regard, we adopt the fully parallel FFT-like architecture of [60] and apply

the following modifications to make it operate as a polar demapper.

1. The polar demapper is required to generate the soft values of final LLRs.

For this reason, we remove the decision unit of the SC decoder which was

used to generate the bit-decisions from the final LLRs.

2. The bit estimates û are provided by the Fano decoder; hence, we remove

the partial sum update unit and its corresponding registers. Instead, we

implement the partial sum update network using a combinational circuit

that receives the bit estimates û from Ureg and updates the partial sum

values. The reason behind using a combinational circuit is to reduce the

latency of the polar demapper in terms of the number of clock cycles.

3. Due to the sequential nature of the Fano decoder, the zi values are required

to be generated in a natural order. We modify the bit-reversal architecture

of [60] to generate the zi values in a natural order.

Figure 3.5 shows the factor graph of polar demapper for N = 8. The channel

LLR values λi are assumed to be presented to the right hand side of the graph

and the final LLR values are generated on the left side. This polar demapper is

composed of n = logN stages, each of which containing N process elements (f or

g). The f and g blocks implement the functions of (2.18) and (2.18), respectively.

41

f

g

f

g

f

g

f

g

ff

f

f

g

g

f

g

g

g

f

g

f

g

f

g

u0+u1+u2+u3^ ^ ^ ^u0+u1+u2+u3^ ^ ^ ^

u1+u3^ ^u1+u3^ ^

u2+u3^ ^u2+u3^ ^

u3^u3^u5^u5^

u4+u5^ ^u4+u5^ ^

u6^u6^

u0^u0^

u2^u2^

u4û4^

u0+u1^ ^u0+u1^ ^

u1^u1^

0

1

2

3

4

5

6

7

z0

z1

z2

z3

z4

z5

z6

z7

j=0 j=1 j=2

l=0

l=1

l=2

l=3

l=4

l=5

l=6

l=7

u0^u0^

u1û1^

u2^u2^

u3^u3^

u4û4^

u5^u5^

u0+u1^ ^u0+u1^ ^

u2+u3^ ^u2+u3^ ^

u0+u1+u2+u3^ ^ ^ ^u0+u1+u2+u3^ ^ ^ ^

u4+u5^ ^u4+u5^ ^

u1+u3^ ^u1+u3^ ^

partial sum update network

Figure 3.5: The FFT-like polar demapper architecture for N = 8.

42

We refer to a specific process element as Xj,l, where X represents the type of the

process element (either f or g), and j and l denote the stage index and node index

within a stage, respectively, for (0 ≤ j < n) and (0 ≤ l < N). To implement

this polar demapper, n×N process elements are required. The number of XOR

gates required to implement the combinational partial sum update network can

be obtained as

(
N

2
− 1) + 2(

N

4
− 1) + 4(

N

8
− 1) + · · ·+ N

2
(
N

N
− 1)

=
n−1∑
i=1

N

2
−

n−2∑
i=0

2i = (n− 1)
N

2
− N

2
+ 1

= (n− 2)
N

2
+ 1.

Despite the similarity in architecture, the timing schedule of polar demapper

is different from that of the SC decoder in the sense that the polar demapper

generates the values zi one at a time. That is, once the LLR value of a node zi

has been generated, it remains idle until another node LLR value is requested.

It should be noted that the next LLR value request may be for the immediate

forward node or any other backward node. Hence, the polar demapper must be

able to follow the Fano algorithm whenever it backtracks. To fulfill this require-

ment, all the intermediate LLR values must be stored and retained until the end

of each decoding session. As a result, every time a new zi value is requested, the

polar demapper does not have to start from scratch. The FFT-like architecture

of [60] uses distributed registers to stores the intermediate LLR values. Any SC

decoder capable of storing the intermediate LLR values can be used as a polar

demapper.

To understand the timing schedule of polar demapper, consider the simplified

architecture of the polar demapper of Figure 3.6 which is obtained by grouping

the parallel operations of Figure 3.5. To generate the LLR value zi for the ith

node, the block Xj,l is activated, where X denotes the type of operation (either

f or g), j denotes the stage index which is determined by ffs∗(i) (find first set

operation), and l denotes the ID number of the block determined by l = i
2j
. The

43

z0
z1
z2
z3
z4
z5
z6
z7

f0,0

g0,1

f0,2

g0,3

f0,4

g0,5

f0,6

g0,7

f1,0

g1,1

f1,2

g1,3

f2,0

g2,1

λ

j=0 j=1 j=2

Figure 3.6: The FFT-like polar demapper simplified architecture for N = 8.

44

ffs∗ operation is defined as

ffs∗(ik−1 · · · i1i0) =

min(j) : ij = 1, if i > 0,

k − 1, if i = 0,
(3.2)

where ik−1 · · · i1i0 is the binary representation of i. The control signals of blocks

are connected in a way that once the output of a block is ready, it immediately

activates its following block until reaching the stage j = 0 (the final stage). Upon

reaching the final stage, the polar demapper stops and waits for the next request.

The hardware complexity of polar demapper can be expressed in terms of

total number of comparators, adders, and subtractors used in the implementa-

tion. First, we estimate the number of comparators. Comparators are used in

implementing the function f in (2.18). We define cN as the total number of com-

parators used in a polar demapper of size N . From Figure 3.5 we realize that

the number of f functions used at each stage of decoding is N/2 and there are

logN stages in total. As a result, the total number of comparators used for im-

plementing the polar demapper of size N is cN = (N/2) logN . Next, we estimate

the number of adders and subtractors. Let aN denote the total number of adders

and subtractors used in a polar demapper of size N . Adders and subtractors

are used in implementing the function g in (2.19). Since the total number of g

functions used is the same as the total number of f functions and each g block

uses one adder and one subtractor, the total number of adders and subtractors

can be expressed as aN = N logN . Thus, the total number of basic logic blocks

with similar complexities used for implementing the polar demapper is given by

cN + aN =
3

2
N logN (3.3)

which shows that the complexity of the polar demapper is O(N logN).

We approximately calculate the delay of polar demapper using combinational

logic delays of its components. First we calculate the propagation delay of partial

sum update network. From Figure 3.5, the critical path of the partial sum update

network is the path between either of the inputs ûi for i = 0, 2, 4, . . . , (N/2)−2 and
the process element gn−1,N/2, which is activated when the Fano decoder request

zN/2. Let δx be the propagation delay of an XOR gate. Then, the worst-case

45

propagation delay of partial sum update network can be expressed as (n − 2)δx

or (logN − 2)δx If we denote the propagation delays of f and g block by δf ,

δg, respectively, we can express the worst-case combinational delay of the polar

demapper by max {δf , δg, (logN − 2)δx}.

3.2.2 Branch Metric Unit

The BMU block is a fundamental block that distinguishes the Fano decoding of

PAC codes from that of convolutional codes. This block uses the Fano metric of

(2.31) to provide the Fano control unit with the current branch metric M23 and

previous branch metric M1. The branch metric function of (2.31) is too complex

to be implemented using simple logical gates as it contains log and exponential

operations. To implement the exact branch metric functions, it is required to

store the metric values of (2.31) for every possible input value of zi. If we denote

the number of quantization bits for the LLR values by Q, a memory of size 2Q×Q
is required.

To obtain a hardware-friendly version of (2.31), we use the following approxi-

mation [61]

log(1 + e−(1−2ûi)zi) ≈

0, if ûi = s(zi),

|zi|, otherwise,
(3.4)

where s(z) is a sign function such that

s(z) =

0, if z ≥ 0,

1, otherwise.
(3.5)

By applying the approximation of (3.4) to the metric function of (2.31) we can

obtain

γi(ûi) =

1− bi, if ûi = s(zi),

1− |zi| − bi, otherwise.
(3.6)

46

To simplify (3.6) further, we assume the bias term bi can take only binary values,

i.e. bi ∈ {0, 1}. As a result, we can tabulate γi(0) and γi(1) for all the possible

combinations of bi and s(zi) in Table 3.3.

Table 3.3: γi(ûi) for Different Values of s(zi) and bi.
s(zi) bi γi(0) γi(1)
0 0 1 1− |zi|
0 1 0 −|zi|
1 0 1− |zi| 1
1 1 −|zi| 0

If we represent the LLR values zi in the form of sign-magnitude, the term s(zi)

corresponds to the sign bit of zi. As a result, we can implement this table using

two 4-to-1 multiplexers and one adder. Fig. 3.7 shows the hardware implementa-

tion of Table 3.3 (metric calculator). The number of quantization bits for LLRs is

denoted by Q. The metric calculator receives zi and bi and generates the branch

metric γi(ûi) for the two possible values of ûi = 0 and ûi = 1. The constant 0

and 1 inputs to the adder and multiplexers are padded with zeros to have Q-bit

width (not shown in the figure for clarity).

Q

bi

z i

γi(0)

γi(1)

|zi|

s(zi)

1
0

Adder
-|zi|

1
1

1
0

2

M
U
X

M
U
X

Q

Q

Figure 3.7: Hardware implementation of Table 3.3 (metric calculator).

Note that γi(0) and γi(1) are the two tentative branch metric values from

which only one must be selected depending on the value of convolution output

estimate ûi and whether the Fano decoder is examining the most likely node or

least likely node. Let ûi,0 and ûi,1 be the convolution output estimates for the

two possible successor branches v̂i = 0 and v̂i = 1, respectively. Due to the fact

that rate-one convolution is a one-to-one operation, if ûi,0 is 0, then ûi,1 must be

47

1; and if ûi,0 is 1, then ûi,1 must be 0. In other words, the value of ûi,1 is always

the complement ûi,0 and vice versa. As a result, a single convolution encoder is

enough for obtaining ûi,0 and ûi,1.

With a careful observation of Table 3.3 we realize that γi(0) ≥ γi(1) when

s(zi) = 0 and γi(0) ≤ γi(1) when s(zi) = 1. Hence, the most likely branch can be

distinguished from the least likely branch without using an actual comparator.

Recalling the set of rules listed in Table 3.1, we use a parameter ti such that the

Fano algorithm examines the most likely branch when ti = 0 and the least likely

branch when ti = 1. This can be accomplished by passing the most likely branch

metric when ti = 0 or the least likely branch metric when ti = 1 to the Fano

control unit. Table 3.4 lists the current branch metric (M23) for all the possible

combinations of s(zi) and ti which can be implemented using an XOR gate and

a multiplexer that selects γi(0) when s(zi) = ti and selects γi(1) when s(zi) ̸= ti.

Table 3.4: M23 for Different Values of s(zi) and ti.
s(zi) ti M23
0 0 γi(0)
0 1 γi(1)
1 0 γi(1)
1 1 γi(0)

Figure3.8 shows the hardware diagram of BMU, which uses two metric calcu-

lator blocks to generate the current and previous branch metrics M1 and M23,

respectively. We use a convolutional encoder replica to generate ûi,0 which is the

convolution output for the assumption v̂i = 0. The input ti is provided by FCU

and is used to request the most likely branch metric (M2) when ti = 0 or the

least likely branch metric (M3) when ti = 1 from BMU. As explained before, this

signal is XORed with s(zi) to select the metric corresponding to the branch which

is currently being explored by the the Fano algorithm. Additionally, when the

current node N1 is frozen (i.e. ai = 0) the BMU is forced to output the branch

metric which corresponds to v̂i = 0. We implement this using a multiplexer that

assigns ûi,0 to ûi when ai = 0 and forces the BMU to output γi(0). Otherwise, it

assign the output of (s(zi) ⊕ ti) to ûi. In addition to M1 and M23 metrics, the

48

BMU block provides FCU with the selected branch v̂i and its corresponding con-

volution output ûi. To generate v̂i, we compare ûi with ûi,0 using an XOR gate.

Recalling that ûi,0 corresponds to the the convolution output for the assumption

v̂i = 0, if the compared two signals are equal, then the decision ûi corresponds to

v̂i = 0; otherwise, v̂i = 1. To generate the previous branch metrics (M1) the ûi−1

is provided to the BMU block by the Ureg register. This signal is used to select

the corresponding branch metric from the output of metric calculator block. The

zi−1 and zi input LLRs are provided by the polar demapper and the convolution

state (CS) is provided by the Vreg register.

Metric
Calculator

Encoder

Metric
Calculator

M
U
X

M
U
X

M
U
Xbi -1

z i -1

bi

z i

u i
^

v i
^

u i,0

s(zi)

ti
ai

0

u i -1
^

M1

M23

CS

Figure 3.8: Hardware diagram of branch metric unit (BMU).

By observing Figure 3.7 and Figure 3.8, we can conclude that the hardware

complexity of the BMU is independent of block-length N . Hence, the hardware

complexity of BMU is O(1). The critical path of the proposed BMU is the path

from either of input LLRs zi/zi−1 to their corresponding output metric values

M1/M23. Let us express the propagation delays of multiplexer and adder by δm

and δa, respectively. One multiplexer is used to select zi/zi−1 from the output of

polar demapper, one adder and one multiplexer is used inside the metric calculator

block, and one multiplexer is used to select the desired branch metric from the

output of metric calculator. Hence, we can express the combinational delay of

BMU by 3δm + δa.

49

3.2.3 Fano Control Unit

The Fano control unit is the core block of the proposed PAC Fano decoder.

This block is responsible for controlling the flow of Fano algorithm by checking

the conditions of Table 3.1 and executing the corresponding actions. This block

generates the control signals to activate the polar demapper and provides the

necessary inputs to the BMU. By examining the rule sets in Table 3.1, we discover

that the Fano control unit must check a total of six cases to determine which rule’s

conditions are satisfied. We denote these conditions by C0-C5 and list them in

Table 3.5.

Table 3.5: Logical expressions used in the Fano rule set.
Case Expression
C0 Ψ = 1
C1 M23 ≥ T
C2 0 < T +∆ ≤ M23
C3 i = 0
C4 M1 + T ≤ 0
C5 ai−1 = 1 | ti−1 = 1

Figure 3.9 shows the circuit diagram for generating the signals of Table 3.5.

Since the parameter Ψ is a binary variable, the signal C0 corresponds to this

parameter and does not require any extra circuit to be generated. On the other

hand, the signal i is a vector signal of width n = logN and to check the condition

i = 0, it is required to check if all the bits of i are zero. We implement this

condition using an n-input NOR gate.

Using these binary signals, we can implement the circuitry for detecting the

rule whose conditions are being satisfied. Figure 3.10 demonstrates the circuitry

for generating the rule signals of the PAC Fano decoder of Table 3.1. Here, the

output signal Rx corresponds to the rule x for x = 0, 1, ..., 4. The input signals

to these circuits are generated by the circuits of Figure 3.9.

The architecture of the Fano control unit is shown in Figure 3.11. The key part

of Fano control unit is the control logic (CL) that governs which of the Fano rules

is executed at the next step. This block also performs the threshold T and node

50

M23

T
C1

a

b
a ≥ b

a

b
a ≥ b

T
C1

a

b
a ≥ b

i C3
n

i C3
n

ai-1

ti-1
C5

ai-1

ti-1
C5

Adder

M23

0

T

�
C2

a

b
a > b

a

b
a > b

a

b
a ≥ b

a

b
a ≥ b

Adder

M23

0

T

�
C2

a

b
a > b

a

b
a ≥ b

Adder
T

M1 C4
a

b
a ≤ b

a

b
a ≤ b

0

Adder
T

M1 C4
a

b
a ≤ b

0

Figure 3.9: The circuit for generating the condition signals of Fano algorithm.

C0

C1

C2

R0

C0

C1

C2

R1

R3

R2

C1

C4

C1

C3

C0

C4

C0

C3

R2

C1

C4

C1

C3

C0

C4

C0

C3

R4

C1

C3

C4

C5

C0

C3

C4

C5

R4

C1

C3

C4

C5

C0

C3

C4

C5

C1

C3

C4

C5

C0

C3

C4

C5

Figure 3.10: The circuit for generating the rule signals of Fano algorithm.

51

index i updates. The Vreg and Ureg registers are also updated by this module.

Every time a forward move is performed, the Vreg is shifted to right, the estimate

v̂i is stored in the MSB of Vreg, and the estimate ûi is stored in the ith index of

Ureg. On the other hand, whenever a backward move is performed, the Vreg is

shifted to left. Activating the polar demapper when PDE = 1 is also the task of

CL block.

Adder

M1�

Adder

T

Subt.

T �

Subt.

M23T

MUX

T Control Logic (CL)

R0 R1 R2 R3 R4
Adder Subt.

i
1 1

MUX

i

Update T
Activate

PD
Update
Vreg

Update
Ureg

tiΨ
Update i

Figure 3.11: Fano control unit (FCU).

By observing Figure 3.9, Figure 3.10, and Figure 3.11, we can conclude that

the hardware complexity of the Fano control unit is independent of block-length

N . Hence, the hardware complexity of Fano control unit is O(1). The critical

path of the Fano control unit is the path between the T input of C2 generating

circuit and R1 output of the rule generating circuit. This path includes one adder,

one comparator, one NOT gate, and one OR gate. If we denote the propagation

delays of adder, comparator, NOT gate, and OR gate by δa, δc, δn, and δo,

respectively, the combinational delay of Fano control unit can be expressed as

(δa + δc + δn + δo).

52

Chapter 4

Implementation Results

In this chapter, we present the FPGA and ASIC implementation results of the

proposed PAC Fano decoder for block length N = 128 and message length

K = 64. For both FPGA and ASIC implementation we use the following

parameters. For the connection polynomial of convolution operation we use

c = (1, 0, 1, 1, 0, 1, 1) or c = 131 in octet representation. We choose the data

index set A according to the Reed-Muller scoring rule as explained in [15]. As for

the bias vector b, we use the hard quantized (1-bit quantization) values of bit-

channel capacities [47]. For number quantization bits Q and threshold spacing ∆

we use Q = 7, ∆ = 2, respectively. The impact of Q and ∆ on error-correction

performance and computational complexity of the proposed PAC Fano decoder

is investigated in Appendix A and Appendix B, respectively. We calculate the

channel LLR values λ using a noise variance that corresponds to an SNR of

Eb/N0 = 3.5 dB.

4.1 FPGA Implementation Results

The proposed PAC Fano decoder is successfully implemented onto Xilinx Nexys 4

Artix®-7 (28 nm) FPGA. At 100 MHz clock frequency, the place-and-route results

53

show that the decoder uses 16443 lookup tables (LUTs) and 8306 registers. To

evaluate the FER performance and measure the search complexity of the PAC

Fano decoder, we use the test setup shown in Figure 4.1. At each iteration, a

pseudorandom message d of length K is generated using MATLAB® software.

Then the message d is encoded into a codeword x using a software implemented

PAC encoder. After that, the codeword x is modulated using a BPSK modulator.

To mimic an AWGN channel, the modulated signal is added with additive white

Gaussian noise whose variance corresponds to the SNR point for which the test

is being performed. The channel output y is then sent to the FPGA through the

serial communication port. The PAC Fano decoder on the FPGA decodes the

received data and transmits back the estimate of carrier word v̂ to the computer

through the serial communication port. Also transmitted by the FPGA is the

number of clock cycles consumed to decode each codeword which is measured

by the CC counter. At the computer side, the d̂ is extracted from v̂ using d̂ =

v̂A, and compared with the actual transmitted message d. The error correction

performance of the decoder is measured by the probability of frame error Pe =

P (d̂ ̸= d).

Random
Message

Generator

PAC
Encoder

AWGN

RS232
Tx/Rx

PAC
Decoder

PAC
Decoder

Compare

CompareFER
FPGA

FER
MATLAB

PC FPGA

BPSK

Data
Extraction

Figure 4.1: FPGA test setup.

Figure 4.2 plots the FER performance of the proposed PAC Fano decoder for

different values of maximum clock cycles (MC) and compares them with the FER

performance of software simulation of original PAC codes reported in [15]. We

also plot the dispersion approximation with N = 128 and K = 64 to compare

the FER performance of our decoder with the theoretical limit. As expected,

increasing the value of MC allows the Fano algorithm to perform more searches

54

and maintain better FER performance. With MC = 218, the proposed PAC Fano

decoder obtains a FER performance close to the FER performance of software

implementation at high SNR regime; At Eb/N0 = 3.5 dB the decoder achieves a

FER performance of FER = 1.6×10−5. It is worth mentioning that for MC values

greater than 218 the decoder maintains same FER performance. The performance

loss is majorly due to the quantization of LLRs and approximation of the Fano

metric. In low SNR regime, the metric approximation error is large since the term

log(1 + e−(1−2ûi)zi) diverges from |zi| as SNR decreases. But, as SNR increases,

this error becomes negligible.

1 1.5 2 2.5 3 3.5

Eb/No (dB)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

F
E

R

PAC, MC = 2
18

PAC, MC = 2
17

PAC, MC = 2
16

PAC, MC = 2
15

PAC, MC = 2
14

PAC, Software

Disp. Approx.

Figure 4.2: FER performance of FPGA implementation of PAC Fano decoder.

Figure 4.3 shows the average number of clock cycles consumed by the proposed

PAC Fano decoder for decoding a single codeword with different values of MC.

55

From this figure we realize that the effect of MC value on average number of

clock cycles required for decoding a codeword is significant at low SNR regime

but as SNR increases, this effect fades out. This is due to the Pareto distribution

of Fano decoder’s search complexity such that for high SNR values, only a small

fraction of codewords require a very large search complexity [16]. At Eb/N0 = 1

dB, using MC = 214 reduces the average number of clock cycles per codeword

by 51% compared to using MC = 218. Obviously, as shown in Figure 4.2, this

complexity reduction is achieved at a cost of FER performance drop, especially

at high SNR values (significant at Eb/N0 = 3.5 dB).

1 1.5 2 2.5 3 3.5

Eb/No (dB)

0

2000

4000

6000

8000

10000

12000

14000

16000

A
v

er
ag

e
C

lo
ck

 C
y

cl
es

 p
er

 C
o

d
ew

o
rd

PAC, MC = 2
18

PAC, MC = 2
17

PAC, MC = 2
16

PAC, MC = 2
15

PAC, MC = 2
14

Figure 4.3: Time complexity of FPGA implementation of PAC Fano decoder.

It is worth mentioning that the PAC Fano decoder does not reach the iteration

bound for MC values of 218 and higher. At Eb/N0 = 3.5 dB, regardless of the

value of MC, the proposed decoder consumes an average of approximately 840

56

clock cycles to decode a single codeword. Operating at 100 MHz frequency, the

decoder reaches an average information throughput of 7.6 Mb/s with an average

latency of 8.39 µs at Eb/N0 = 3.5 dB.

It is worth to investigate the average time complexity of the polar demapper.

Figure 4.4 demonstrates the relative complexity of the polar demapper in terms of

the portion of total average clock cycles that is consumed by the polar demapper.

At Eb/N0 = 1 dB, approximately 25% of the total clock cycles is consumed by

the polar demapper; as SNR increases, the polar demapper’s share increases as

well, to the extent that at Eb/N0 = 3.5 dB, the polar demapper accounts for more

than one-third of the total time complexity. This is due to the fact, for higher

SNR values, the Fano algorithm mostly performs forward search and, as a result,

the polar demapper is activated more frequently.

1 1.5 2 2.5 3 3.5

Eb/No (dB)

0

5

10

15

20

25

30

35

40

R
el

at
iv

e
A

v
er

ag
e

C
lo

ck
 C

y
cl

es
 (

%
)

Figure 4.4: Relative time complexity of the polar demapper.

To justify the latter statement, we refer to Figure 4.5, which plots the average

57

relative frequency of the Fano rules executed by the Fano algorithm for various

SNR values. At Eb/N0 = 1 dB, roughly half of the executed actions correspond

to forward moves (Rule 0 and Rule 1), and nearly all of the remaining actions

correspond to backtracking (Rule 3 and Rule 4). However, at Eb/N0 = 3.5 dB,

approximately 85% of the executed actions belong to forward moves and only

less than 13% of the total actions correspond to backtracking. As SNR decreases,

the severity of the noise increases and the probability of the Fano algorithm

identifying the correct path decreases which results in many incorrect branch

selections and long backtracking for low SNR values.

1 1.5 2 2.5 3 3.5

Eb/No (dB)

0

10

20

30

40

50

60

70

80

R
el

at
iv

e
F

re
q
u
en

cy
 (

%
)

Rule 0

Rule 1

Rule 2

Rule 3

Rule 4

Figure 4.5: Relative frequency of the rules executed by the Fano algorithm.

58

4.2 Post-Synthesis Results

We implement the proposed PAC Fano decoder using Cadence® InnovusTM Im-

plementation System with TSMC 28 nm 0.72 V library. Table 4.1 lists the post-

synthesis results of the proposed PAC Fano decoder. We present the results for

the PAC Fano decoder with MC = 218. The decoder occupies an area of 0.059

mm2 from which approximately 80%, 16%, and 1% are occupied by polar demap-

per, Fano control unit, and branch metric unit, respectively. The power value is

estimated with Cadence® VoltusTM IC Power Integrity Solution using 104 pseu-

dorandom input vectors. Operating at 500 MHz clock frequency, the proposed

decoder consumes 3.85 mW power.

The performance values in Table 4.1 are reported at Eb/N0 = 3.5 dB, and the

average values are calculated from 107 decoding trials. The average information

throughput (TP) of the decoder is estimated by

TP [bit/s] =
fclk[cycle/s]

ACC [cycle/bit]
×K.

where fclk is the operating frequency and ACC is the average number of clock

cycles consumed for decoding a single frame which is obtained from Fig. 4.3. The

proposed PAC Fano decoder reaches an average information throughput of 38.1

Mb/s with an average latency of 1.68 µs and worst-case latency of 526 µs. The

worst-case latency and information throughput of the decoder are determined by

the value of MC = 218. On the other hand, the best-case latency and information

throughput are obtained at higher SNR points where the Fano algorithm performs

no backtracking. In this case, the proposed PAC Fano decoder consumes 638 clock

cycles to decode each codeword. This corresponds to 5N−2 clock cycles, of which

2N − 2, 2N , and N is consumed by the polar demapper, Fano control unit, and

branch metric unit, respectively.

The low power consumption of the decoder is because a large chunk of the logic

(especially a significant portion of the polar demapper) is inactive at any given

time. The polar demapper architecture uses N logN process elements (f and g

blocks) from which a large fraction is inactive during the decoding. The activation

59

Table 4.1: ASIC Implementation Results
Technology 28 nm
K 64
N 128
Supply Voltage (V) 0.72
Frequency (MHz) 500
Area (mm2) 0.059
Power (mW) 3.85
Average Information TP† (Mb/s) 38.1
Best-Case Information TP (Mb/s) 50.16
Worst-Case Information TP (Mb/s) 0.12
Average Latency† (CC) 838
Average Latency† (µs) 1.68
Best-Case Latency (CC) 638
Best-Case Latency (µs) 1.28
Worst-Case Latency (CC) 218

Worst-Case Latency (µs) 524
Area Efficiency† (Gb/s/mm2) 0.646
Power Density (W/mm2) 0.065
Energy Efficiency† (pJ/bit) 101
†Average value at Eb/N0 = 3.5 dB.

60

of largest number of process elements occurs when the Fano control unit requests

z0 or zN/2. In this case, all the stages of polar demapper are activated and at

each state j, 2j number of process elements are activated for j = 0, · · · , logN−1.

Hence, each time the polar demapper is activated, at most 2n−1
Nn

(or N−1
Nn
≈ 1

n
)

portion of process elements are activated, where n = logN . For N = 128, this

corresponds to approximately 14% of the polar demapper logic. Also we would

like to emphasize that the polar demapper is idle during the operation of the

branch metric unit (BMU) and Fano control unit (FCU). Table 4.2 lists the

power consumption of main blocks of PAC Fano decoder. From 3.85 mW total

power consumption, 2.58 mW is used by the polar demapper which corresponds

to approximately 67% of the total power.

Table 4.2: Power consumption of main blocks of PAC Fano decoder.
Module Power Consumption (mW) %
PAC Fano decoder 3.85 100
Polar Demapper 2.58 67.01
FCU 0.67 17.41
Input buffer 0.28 7.27
Vreg 0.05 1.29
Ureg 0.03 0.78
Output buffer 0.03 0.78
BMU 0.01 0.26

4.3 Comparison With Polar Decoders

In this section we compare our proposed PAC Fano decoder against five different

decoders of polar codes with block lengths of N = 128 and N = 1024. Through-

out this section we refer to our proposed PAC Fano decoder with a maximum

allowed cycle of MC = 218 as PAC Fano decoder. Kestel et al. [26] present high

throughput SC and SCL polar codes’ decoders that can achieve throughput up

to 516 Gbit/s in 28 nm CMOS FD-SOI technology. From the decoders of [26],

we choose an SC decoder for (N = 128, K = 64) polar codes, an SCL decoder

with a list size of 8 and CRC length of 6 (SCL8-CRC6) for (128, 70) polar codes,

and an SCL decoder with a list size of 2 (SCL2) for (1024, 512) polar codes.

61

Giard et al. [27] present a flexible SCL decoder with a list size of 4 (SCL4) for

(1024, 512) polar codes fabricated in 28 nm CMOS FD-SOI technology. Park

et al. [28] present a rate-flexible belief propagation (BP) decoder for (1024, 512)

polar codes fabricated in 65 nm CMOS TSMC technology.

Fig. 4.6 compares the FER performance of the proposed PAC Fano decoder

against the decoders of polar codes mentioned above. For the same block length

(i.e. N = 128) the proposed PAC Fano decoder outperforms the SC and SCL8-

CRC6 polar decoders. Compared to SC and SCL8-CRC6 polar decoders, the

proposed PAC Fano decoder has a coding gain of approximately 2.1 dB and 1.2

dB at FER = 10−5, respectively. Comparing PAC codes of length 128 with polar

codes of length 1024, the proposed PAC Fano decoder performs better than the

BP decoder with a coding gain of approximately 0.6 dB at FER = 10−5. The

PAC Fano decoder performs close to the SCL2 decoder of (1024, 512) polar codes.

However, in case of using a list size of 4, the SCL4 decoder of (1024, 512) polar

codes outperforms the proposed PAC Fano decoder of (128, 64) PAC codes with

a coding gain of 0.4 dB at FER = 10−5.

Table 4.3 shows a comparison of our PAC Fano decoder against the other

ASIC decoders of polar codes. Since the results of other decoders are for other

technologies or/and different supply voltages, for a fair comparison, we provide

the normalized results as well. Also in [26–28] the throughput values are reported

in term of coded throughput (not information throughput). For this reason we

report the coded throughput of the PAC Fano decoder and calculate the area

efficiency and energy efficiency values accordingly. Comparing our PAC Fano

decoder with the normalized results of polar decoders, it can be seen from Ta-

ble 4.3 that the PAC Fano decoder occupies smaller area (slightly smaller than

SC decoder) and has significantly lower power consumption. On the other hand,

the SCL2 and SC polar decoders of [26] have the highest throughput and the best

energy efficiency, respectively. These decoders use various architectural optimiza-

tions and are designed for throughputs beyond 100 Gbit/s. It should be noted,

however, that the FER performance of the PAC Fano decoder is significantly

better than that of the SC decoder. The energy efficiency of the proposed PAC

Fano decoder is smaller than the SCL4 decoder of [27] but is significantly larger

62

than the rest of the polar decoders.

Benefiting from pipelining and unrolling techniques, SC and SCL decoders of

polar codes are capable of achieving high throughput values. However, because

of the Fano decoder’s backtracking feature, the PAC Fano decoder requires to

decode one codeword at a time and hence suffers from low throughput. Among

all the decoders, the PAC Fano decoder has the lowest throughput. Compared to

SC and SCL8-CRC6 decoders of [26], the PAC Fano decoder has lower throughput

by a factor of approximately 800 and 660, respectively.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Eb/No (dB)

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

F
E

R

Fano PAC (128,64)

SC Polar (128,64)

SCL8-CRC6 Polar (128,70)

BP Polar (1024,512)

SCL2 Polar (1024,512)

SCL4 Polar (1024,512)

Figure 4.6: FER performance comparison of PAC Fano decoder with decoders of
Polar codes.

63

T
ab

le
4.
3:

C
om

p
ar
is
on

of
th
e
P
A
C

F
an

o
D
ec
o
d
er

A
ga
in
st

th
e
A
S
IC

D
ec
o
d
er
s
of

P
ol
ar

C
o
d
es
.

Im
p
le
m
en
ta
ti
on

T
h
is
w
or
k

[2
6]

[2
6]

[2
6]

[2
7]

[2
8]

A
lg
or
it
h
m

F
an

o
S
C

S
C
L
8-
C
R
C
6

S
C
L
2

S
C
L
4

B
P
(1
5
it
er
.)

(N
,K

)
(1
28
,6
4)

(1
28
,6
4)

(1
28
,7
0)

(1
02
4,
51
2)

(1
02
4,
51
2)

(1
02
4,
51
2)

E
b
/N

0
at

F
E
R

=
10

−
5

3.
6
d
B

5.
7
d
B

4.
8
d
B

3.
7
d
B

3.
2
d
B

4.
2
d
B

T
ec
h
n
ol
og
y

28
n
m

28
n
m

28
n
m

28
n
m

28
n
m

65
n
m

S
u
p
p
ly

(V
)

0.
72

1.
0

1.
0

1.
0

1.
3

1.
0

F
re
q
u
en
cy

(M
H
z)

50
0

50
3

41
8

50
3

72
1

30
0

A
re
a
(m

m
2
)

0.
05
9

0.
07

3.
15

7.
52

0.
44

1.
48

P
ow

er
(m

W
)

3.
85

80
33
40

45
30

12
8.
3

47
7.
5

A
v
g.

C
o
d
ed

T
P
(M

b
/s
)

76
.2

†
64
00
0

53
00
0

51
60
00

30
6.
8

46
75
.8

⋄

W
.-
C
.
C
o
d
ed

T
P
(M

b
/s
)

0.
24

64
00
0

53
00
0

51
60
00

30
6.
8

20
48

A
v
g.

L
at
en
cy

(µ
s)

1.
68

0.
01
79

0.
14
13

0.
29
2

3.
34

0.
21
9⋄

W
.-
C

L
at
en
cy

(µ
s)

52
4

0.
01
79

0.
14
13

0.
29
2

3.
34

0.
5

A
re
a
E
ff
.
(G

b
/s
/m

m
2
)

1.
29
2

93
1

17
69

0.
69
2

3.
16
8⋄

E
n
er
gy

E
ff
.
(p
J
/b

it
)

50
.5

1.
28

62
.4
6

8.
79

41
8.
3

10
2.
1⋄

N
or
m
al
iz
ed

fo
r
0.
72

V
an

d
28

n
m

u
si
n
g
th
e
sc
al
in
g
m
et
h
o
d
in

[6
2,
63
]

F
re
q
u
en
cy

(M
H
z)

50
0

50
3

41
8

50
3

72
1

69
6

A
re
a
(m

m
2
)

0.
05
9

0.
07

3.
15

7.
52

0.
44

0.
27
5

P
ow

er
(m

W
)

3.
85

41
.4
7

17
31
.4
6

23
48
.3
5

39
.3
5

10
6.
63

A
v
g.

C
o
d
ed

T
P
(M

b
/s
)

76
.2

†
64
00
0

53
00
0

51
60
00

30
6.
8

10
85
4.
54

⋄

W
.-
C
.
C
o
d
ed

T
P
(M

b
/s
)

0.
24

64
00
0

53
00
0

51
60
00

30
6.
8

47
54
.2
9

A
v
g.

L
at
en
cy

(µ
s)

1.
68

0.
01
79

0.
14
13

0.
29
2

3.
34

0.
09
43

⋄

W
.-
C

L
at
en
cy

(µ
s)

52
4

0.
01
79

0.
14
13

0.
29
2

3.
34

0.
21
54

A
re
a
E
ff
.
(G

b
/s
/m

m
2
)

1.
29
2

93
1

17
69

0.
69
2

39
.6
32

⋄

E
n
er
gy

E
ff
.
(p
J
/b

it
)

50
.5

0.
66
3

32
.3
79

8.
79

12
8.
31
2

9.
82
1⋄

† A
ve
ra
ge

va
lu
e
at

E
b
/N

0
=

3.
5
d
B
.

⋄ A
ve
ra
ge

va
lu
e
at

E
b
/N

0
=

4
d
B

w
it
h
ea
rl
y
te
rm

in
at
io
n
an

d
an

av
er
ag
e
n
u
m
b
er

of
it
er
at
io
n
s
of

6.
57
.

64

Chapter 5

Conclusion

In this thesis, we proposed a hardware architecture for Fano decoding of PAC

codes. First, we introduced a hardware-friendly variant of the Fano algorithm

that is suitable for sequential decoding of PAC codes. Then, we discussed the

hardware implementation of the proposed PAC Fano algorithm. The proposed

design consist of three main blocks: polar demapper, branch metric unit, and

Fano control unit. To design the polar demapper we modified the architecture of

SC decoder of [60]. We obtained a simplified branch metric function for sequen-

tial decoding of PAC codes and presented a novel branch metric unit that can be

implemented with simple logic gates. The presented branch metric unit is capa-

ble of calculating the current and previous branch metric values online, without

requiring any storage element or comparator. We showed that the Fano control

unit, which implements the introduced Fano algorithm, can be implemented us-

ing simple logic gates. We provided estimates for the hardware complexity and

combinational delays of the sub-block of PAC Fano decoder.

Table 5.1 summarises ASIC implementation results of the PAC Fano decoder

and compares them with those of the SC and SCL decoders of polar codes with

N = 128 which are reported in [26]. Post-synthesis results showed that the

decoder can provide an average information throughput of approximately 38 Mb/s

at 3.5 dB with a power consumption of 3.85 mW and an area of 0.059 mm2 for a

65

block length of 128 and a code rate of 1/2. Compared to the SC and SCL8-CRC6

decoders of polar codes, the PAC Fano decoder has a coding gain of 2.1 dB and

1.2 dB, respectively. However, due to its backtracking nature, the PAC Fano

decoder has significantly lower throughput than the polar decoders.

Because of their excellent FER performance at short block lengths and low

encoding complexity, one of the potential use cases of PAC codes could be the In-

ternet of Things (IoT), for which reliable communication is of great interest and

low throughput and high decoding latency are tolerable. For example, remote

electrocardiography (ECG) applications require high reliability of data transmis-

sion and low throughput of tens of Kb/s, and can tolerate end-to-end transmission

latency of 2 seconds [64].

Table 5.1: Summary of ASIC Implementation Results
Implementation This work [26] [26]
Algorithm Fano SC SCL8-CRC6
(N,K) (128,64) (128,64) (128,70)
Eb/N0 at FER = 10−5 3.6 dB 5.7 dB 4.8 dB
Technology 28 nm 28 nm 28 nm
Supply (V) 0.72 1.0 1.0
Frequency (MHz) 500 503 418
Area (mm2) 0.059 0.07 3.15
Power (mW) 3.85 80 3340
Avg. Coded TP (Mb/s) 76.2† 64000 53000
Area Eff. (Gb/s/mm2) 1.292† 931 17
Energy Eff. (pJ/bit) 50.5† 1.28 62.46
Normalized for 0.72 V using the scaling method in [62,63]
Power (mW) 3.85 41.47 1731.46
Energy Eff. (pJ/bit) 50.5† 0.663 32.379
†Average value at Eb/N0 = 3.5 dB.

5.1 Suggestions for Future Work

We provide some suggestions for future research directions that are relevant to

the work discussed in this thesis.

66

Line Architecture for Polar Demapper

To design the polar demapper block, we adopted the fully parallel FFT-like

architecture of [60]. This architecture consists of n = log2N stages, each of which

containing N process elements. The stages of polar demapper are activated se-

quentially, as explained in section 4.2, and at most N of the process elements

of each stage are used. However, the line SC architecture introduced in [60] has

only single stage which contains N process element. In this architecture, the

intermediate LLRs are stored in a register bank and are connected via multiplex-

ers to the process elements, and at each step of decoding, the proper portion of

LLRs are passed to the process elements. Adopting this architecture for the polar

demapper can reduce the area and power consumption of the PAC Fano decoder

significantly.

Adaptive Quantization of LLRs

In this thesis, we used a fixed number of quantization bits (Q) for the channel

and intermediate LLRs of the polar demapper. In [24], an adaptive quantization

method is introduced that uses a variable number of bits for storing and processing

the intermediate LLRs. This method partitions the polar code into smaller code

segments and uses different number of bits for each segment based on maximizing

the mutual information between the quantizer’s input and output. Employing

this method can reduce the chip area and power consumption of the PAC Fano

decoder further.

Tree Search Constraining

Depending on the severity of the noise, the Fano algorithm may fail to identify

the correct path and explore the wrong paths that may already result in a frame

error. The authors of [17] introduce couple of early termination criteria that

stop the decoder whenever the Fano decoder is likely to make a frame error

and consequently, reduce the search complexity of the decoder. We believe it

is worthwhile to study the suitability of these early termination techniques for

hardware implementation.

67

Appendix A

Fixed-point Simulation

The quantization level plays an important role in the FER performance and

time complexity of the Fano decoder. Increasing the number of quantization

bits provides the decoder with more information on LLR values and helps the

decoder perform better. But using more bits for representing the real values of

LLRs requires extra resources. As an example, consider the architecture of polar

demapper used in our design. This architecture has N(log2N − 1) intermediate

nodes and N final nodes. To store the LLR values of these nodes QN log2N

flip-flops are required. Thus, increasing Q by one increases the flip-flop usage by

a factor of N log2N . As a result, it is critical to select the number of quantization

bits in such a way that performance loss and resource allocation are minimized.

In this appendix, we investigate the effect of quantization level on the compu-

tational complexity and FER performance of the proposed PAC Fano decoder.

For this, we implement the proposed PAC Fano decoder on FPGA for N = 128

and K = 64 using c = (1, 0, 1, 1, 0, 1, 1) and ∆ = 2 for four different quantization

levels Q ∈ {5, 6, 7, 8}. We choose the data index set A according to the Reed-

Muller scoring rule and use the hard quantized bit-channel capacities as the bias

vector b.

Figure A.1 and Figure A.2 show the FER performance and Time complexity of

68

the proposed PAC Fano decoder under different quantization levels. With Q = 5

and Q = 6, the FER performance loss is significant but the time complexity

is low (especially very low when using Q = 5). This demonstrates that using

Q = 5 or Q = 6 does not provide enough information about the LLRs, and as

a result, the decoding process ends prematurely, resulting in many incorrectly

decoded codewords. On the other hand, the FER performance gain with Q = 8

is negligible when compared to Q = 7, but it results in increased time complexity

at low SNR regime. For this reason, we use 7-bits for quantization (i.e. Q = 7)

in the implementation of our PAC Fano decoder.

1 1.5 2 2.5 3 3.5

Eb/No (dB)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

F
E

R

Q = 5

Q = 6

Q = 7

Q = 8

Figure A.1: FER performance of FPGA implementation of PAC Fano decoder
for various number of quantization bits Q.

69

1 1.5 2 2.5 3 3.5

Eb/No (dB)

0

5000

10000

15000

A
v
er

ag
e

C
lo

ck
 C

y
cl

es
 p

er
 C

o
d
ew

o
rd

Q = 5

Q = 6

Q = 7

Q = 8

Figure A.2: Time complexity of FPGA implementation of PAC Fano decoder for
various number of quantization bits Q.

70

Appendix B

Threshold Spacing Simulation

In this appendix, we investigate the impact of the threshold spacing ∆ on the

FER performance and time complexity of our proposed PAC Fano decoder. Al-

though in our design the value of ∆ can be reconfigured during the execution

phase, because different values of ∆ result in different FER performance and

time complexity [47], it is critical to investigate this impact on the performance

of our proposed decoder.

In order for the algorithm to find the correct path, the threshold must be

reduced to a value less than the minimum metric along the correct path at some

point. When a large ∆ is used, lowering the threshold below the minimum metric

of the correct path may cause the new threshold to fall below the minimum metric

of several other incorrect paths. As a result, it possible for any of those incorrect

paths to be decoded before the correct path [50].

The following figures in this appendix demonstrate the impact of threshold

spacing ∆ on the FER performance and time complexity of the proposed PAC

Fano decoder for the SNR values from Eb/N0 = 1 dB to Eb/N0 = 3.5 dB with a

step size of 0.5 dB. To obtain these curves, we use the FPGA implemented PAC

Fano decoder for N = 128 and K = 64 with c = (1, 0, 1, 1, 0, 1, 1) and ∆ = 2. We

choose the data index set A according to the Reed-Muller scoring rule and use

71

the hard quantized bit-channel capacities as the bias vector b.

As expected, the value of ∆ creates a trade-off between the decoder’s FER

performance and time complexity. Using smaller ∆ values results in improved

FER performance but increased time complexity; as ∆ increases, the FER per-

formance degrades, and the time complexity drops. The proper value for ∆ is

determined by the requirements of the application for which the PAC Fano de-

coder will be used. Table B.1 tabulates the estimated information throughput of

the ASIC implementation of PAC Fano decoder for various values of ∆ and SNR

when clocked at fclk = 500 MHz.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Threshold Spacing ()

0.28

0.3

0.32

0.34

0.36

0.38

F
E

R

0.5

1

1.5

2

2.5

3

A
v
er

ag
e

C
lo

ck
 C

y
cl

es
 p

er
 C

o
d
ew

o
rd

10
4

FER

Avg. CC

Figure B.1: Time complexity and FER performance of FPGA implementation of
PAC Fano decoder versus ∆ at Eb/N0 = 1 dB.

72

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Threshold Spacing ()

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

F
E

R

0.6

0.8

1

1.2

1.4

1.6

1.8

A
v
er

ag
e

C
lo

ck
 C

y
cl

es
 p

er
 C

o
d
ew

o
rd

10
4

FER

Avg. CC

Figure B.2: Time complexity and FER performance of FPGA implementation of
PAC Fano decoder versus ∆ at Eb/N0 = 1.5 dB.

73

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Threshold Spacing ()

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

0.032

0.034

F
E

R

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

A
v
er

ag
e

C
lo

ck
 C

y
cl

es
 p

er
 C

o
d
ew

o
rd

FER

Avg. CC

Figure B.3: Time complexity and FER performance of FPGA implementation of
PAC Fano decoder versus ∆ at Eb/N0 = 2 dB.

74

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Threshold Spacing ()

1.5

2

2.5

3

3.5

4

4.5

5

F
E

R

10
-3

1600

1800

2000

2200

2400

2600

2800

3000

A
v
er

ag
e

C
lo

ck
 C

y
cl

es
 p

er
 C

o
d
ew

o
rd

FER

Avg. CC

Figure B.4: Time complexity and FER performance of FPGA implementation of
PAC Fano decoder versus ∆ at Eb/N0 = 2.5 dB.

75

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Threshold Spacing ()

2

2.5

3

3.5

4

4.5

5

5.5

F
E

R

10
-4

900

1000

1100

1200

1300

1400

A
v
er

ag
e

C
lo

ck
 C

y
cl

es
 p

er
 C

o
d
ew

o
rd

FER

Avg. CC

Figure B.5: Time complexity and FER performance of FPGA implementation of
PAC Fano decoder versus ∆ at Eb/N0 = 3 dB.

76

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Threshold Spacing ()

1.5

2

2.5

3

3.5

4

4.5

F
E

R

10
-5

700

750

800

850

900

950

1000

A
v
er

ag
e

C
lo

ck
 C

y
cl

es
 p

er
 C

o
d
ew

o
rd

FER

Avg. CC

Figure B.6: Time complexity and FER performance of FPGA implementation of
PAC Fano decoder versus ∆ at Eb/N0 = 3.5 dB.

77

Table B.1: Information throughput (Mb/s) of the PAC Fano decoder for various
values of ∆ and SNR.

Eb/N0 (dB)
1 1.5 2 2.5 3 3.5

∆

1 1.32 1.93 4.39 11.01 23.24 32.45
1.5 1.85 2.63 5.85 14.04 27.59 36.51
2 2.30 3.19 6.92 16.12 30.32 38.92
2.5 2.65 3.66 7.74 17.65 32.11 40.48
3 3.03 3.99 8.33 18.68 33.35 41.58
3.5 3.30 4.24 8.70 19.3 34.2 42.35
4 3.5 4.52 9.00 19.58 34.72 42.88
4.5 3.73 4.72 9.10 19.74 34.95 43.27
5 3.93 4.82 9.05 19.79 35.1 43.62
5.5 4.19 4.98 9.19 19.82 35.24 43.87
6 4.41 5.12 9.24 19.74 35.18 44.03

78

Bibliography

[1] A. J. Viterbi and J. K. Omura, Principles of digital communication and

coding. New York: McGraw-Hill, 1979.

[2] M. Benaissa and Y. Zhu, “Reconfigurable hardware architectures for sequen-

tial and hybrid decoding,” IEEE Transactions on Circuits and Systems I:

Regular Papers, vol. 54, no. 3, pp. 555–565, 2007.

[3] C. E. Shannon, “A mathematical theory of communication,” The Bell system

technical journal, vol. 27, no. 3, pp. 379–423, 1948.

[4] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit error-

correcting coding and decoding: Turbo-codes. 1,” in Proceedings of ICC ’93

- IEEE International Conference on Communications, vol. 2, pp. 1064–1070

vol.2, 1993.

[5] R. Gallager, “Low-density parity-check codes,” IRE Transactions on infor-

mation theory, vol. 8, no. 1, pp. 21–28, 1962.

[6] D. J. MacKay and R. M. Neal, “Good codes based on very sparse matrices,”

in IMA International Conference on Cryptography and Coding, pp. 100–111,

Springer, 1995.

[7] D. J. MacKay and R. M. Neal, “Near shannon limit performance of low

density parity check codes,” Electronics letters, vol. 32, no. 18, p. 1645,

1996.

[8] M. Sipser and D. A. Spielman, “Expander codes,” IEEE transactions on

Information Theory, vol. 42, no. 6, pp. 1710–1722, 1996.

79

[9] D. A. Spielman, “Linear-time encodable and decodable error-correcting

codes,” IEEE Transactions on Information Theory, vol. 42, no. 6, pp. 1723–

1731, 1996.

[10] E. Arikan, “Channel polarization: A method for constructing capacity-

achieving codes for symmetric binary-input memoryless channels,” IEEE

Transactions on information Theory, vol. 55, no. 7, pp. 3051–3073, 2009.

[11] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Transactions on

Information Theory, vol. 61, no. 5, pp. 2213–2226, 2015.

[12] B. Li, H. Shen, and D. Tse, “An adaptive successive cancellation list decoder

for polar codes with cyclic redundancy check,” IEEE communications letters,

vol. 16, no. 12, pp. 2044–2047, 2012.

[13] E. Arikan, “A performance comparison of polar codes and Reed-Muller

codes,” IEEE Communications Letters, vol. 12, no. 6, pp. 447–449, 2008.

[14] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding rate in the finite

blocklength regime,” IEEE Transactions on Information Theory, vol. 56,

no. 5, pp. 2307–2359, 2010.

[15] E. Arıkan, “From sequential decoding to channel polarization and back

again,” arXiv preprint arXiv:1908.09594, 2019.

[16] M. Moradi, A. Mozammel, K. Qin, and E. Arıkan, “Performance

and complexity of sequential decoding of PAC codes,” arXiv preprint

arXiv:2012.04990, 2020.

[17] M. Rowshan, A. Burg, and E. Viterbo, “Polarization-adjusted convolutional

(PAC) codes: Sequential decoding vs list decoding,” IEEE Transactions on

Vehicular Technology, vol. 70, no. 2, pp. 1434–1447, 2021.

[18] H. Yao, A. Fazeli, and A. Vardy, “List decoding of Arıkan’s PAC codes,”

Entropy, vol. 23, no. 7, p. 841, 2021.

[19] J. M. Wozencraft, “Sequential decoding for reliable communication,” Tech.

Rep. 325, Research Laboratory of Electronics, MIT, Cambridge, 1957.

80

[20] M. Rowshan and E. Viterbo, “List viterbi decoding of pac codes,” IEEE

Transactions on Vehicular Technology, vol. 70, no. 3, pp. 2428–2435, 2021.

[21] R. Fano, “A heuristic discussion of probabilistic decoding,” IEEE Transac-

tions on Information Theory, vol. 9, no. 2, pp. 64–74, 1963.

[22] K. Zigangirov, “Some sequential decoding procedures,” Problemy Peredachi

Informatsii, vol. 2, no. 4, pp. 13–25, 1966.

[23] F. Jelinek, “Fast sequential decoding algorithm using a stack,” IBM journal

of research and development, vol. 13, no. 6, pp. 675–685, 1969.

[24] A. Süral, E. G. Sezer, Y. Ertuğrul, O. Arikan, and E. Arikan, “Terabits-per-

second throughput for polar codes,” in 2019 IEEE 30th International Sym-

posium on Personal, Indoor and Mobile Radio Communications (PIMRC

Workshops), pp. 1–7, IEEE, 2019.

[25] O. Dizdar and E. Arıkan, “A high-throughput energy-efficient implemen-

tation of successive cancellation decoder for polar codes using combina-

tional logic,” IEEE Transactions on Circuits and Systems I: Regular Papers,

vol. 63, no. 3, pp. 436–447, 2016.

[26] C. Kestel, L. Johannsen, O. Griebel, J. Jimenez, T. Vogt, T. Lehnigk-Emden,

and N. Wehn, “A 506 Gbit/s polar successive cancellation list decoder with

CRC,” in 2020 IEEE 31st Annual International Symposium on Personal,

Indoor and Mobile Radio Communications, pp. 1–7, 2020.

[27] P. Giard, A. Balatsoukas-Stimming, T. C. Müller, A. Bonetti, C. Thibeault,

W. J. Gross, P. Flatresse, and A. Burg, “Polarbear: A 28-nm FD-SOI ASIC

for decoding of polar codes,” IEEE Journal on Emerging and Selected Topics

in Circuits and Systems, vol. 7, no. 4, pp. 616–629, 2017.

[28] Y. S. Park, Y. Tao, S. Sun, and Z. Zhang, “A 4.68 Gb/s belief propagation

polar decoder with bit-splitting register file,” in 2014 Symposium on VLSI

Circuits Digest of Technical Papers, pp. 1–2, IEEE, 2014.

81

[29] P. Giard, G. Sarkis, C. Thibeault, and W. J. Gross, “237 Gbit/s unrolled

hardware polar decoder,” Electronics Letters, vol. 51, no. 10, pp. 762–763,

2015.

[30] P. Giard, G. Sarkis, C. Thibeault, and W. J. Gross, “Multi-mode unrolled ar-

chitectures for polar decoders,” IEEE Transactions on Circuits and Systems

I: Regular Papers, vol. 63, no. 9, pp. 1443–1453, 2016.

[31] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Fast polar

decoders: Algorithm and implementation,” IEEE Journal on Selected Areas

in Communications, vol. 32, no. 5, pp. 946–957, 2014.

[32] A. Süral, E. G. Sezer, E. Kolağasıoğlu, V. Derudder, and K. Bertrand, “Tb/s

polar successive cancellation decoder 16nm ASIC implementation,” arXiv

preprint arXiv:2009.09388, 2020.

[33] A. Pamuk, “An FPGA implementation architecture for decoding of polar

codes,” in 2011 8th International symposium on wireless communication sys-

tems, pp. 437–441, IEEE, 2011.

[34] X.-Y. Shih, J.-H. Tsai, B.-X. Li, and C.-P. Huang, “Reconfigurable hard-

ware architecture of area-efficient multi-mode successive cancellation (SC)

decoder,” IEEE Transactions on Circuits and Systems II: Express Briefs,

2022.

[35] B. Yuan and K. K. Parhi, “Low-latency successive-cancellation list decoders

for polar codes with multibit decision,” IEEE Transactions on very large

scale integration (VLSI) Systems, vol. 23, no. 10, pp. 2268–2280, 2014.

[36] M. Jeong and S. Hong, “SC-Fano decoding of polar codes,” IEEE Access,

vol. 7, pp. 81682–81690, 2019.

[37] I. Jacobs, “Sequential decoding for efficient communication from deep space,”

IEEE Transactions on Communication Technology, vol. 15, no. 4, pp. 492–

501, 1967.

82

[38] J. Layland and W. Lushbaugh, “A flexible high-speed sequential decoder for

deep space channels,” IEEE Transactions on Communication Technology,

vol. 19, no. 5, pp. 813–820, 1971.

[39] G. Forney and E. Bower, “A high-speed sequential decoder: Prototype design

and test,” IEEE Transactions on Communication Technology, vol. 19, no. 5,

pp. 821–835, 1971.

[40] A. Mozammel, “Hardware implementation of fano decoder for polarization-

adjusted convolutional (pac) codes,” IEEE Transactions on Circuits and

Systems II: Express Briefs, 2021.

[41] M. Moradi and A. Mozammel, “A Monte-Carlo based construction

of polarization-adjusted convolutional (PAC) codes,” arXiv preprint

arXiv:2106.08118, 2021.

[42] M. Moradi and A. Mozammel, “Concatenated Reed-Solomon and

polarization-adjusted convolutional (PAC) codes,” arXiv preprint

arXiv:2106.08822, 2021.

[43] T. Richardson and R. Urbanke, Modern coding theory. Cambridge university

press, 2008.

[44] R. Mori and T. Tanaka, “Performance and construction of polar codes on

symmetric binary-input memoryless channels,” in 2009 IEEE International

Symposium on Information Theory, pp. 1496–1500, 2009.

[45] H. Li and J. Yuan, “A practical construction method for polar codes in

AWGN channels,” in IEEE 2013 Tencon - Spring, pp. 223–226, 2013.

[46] F. Brannstrom, L. Rasmussen, and A. Grant, “Convergence analysis and

optimal scheduling for multiple concatenated codes,” IEEE Transactions on

Information Theory, vol. 51, no. 9, pp. 3354–3364, 2005.

[47] M. Moradi, “On sequential decoding metric function of polarization-

adjusted convolutional (PAC) codes,” IEEE Transactions on Communica-

tions, vol. 69, no. 12, pp. 7913–7922, 2021.

83

[48] F. Brannstrom, Convergence analysis and design of multiple concatenated

codes. Ph.D. dissertation, Chalmers University, 2004.

[49] B. Li, H. Shen, and D. Tse, “A RM-polar codes,” arXiv preprint

arXiv:1407.5483, 2014.

[50] S. Lin and D. J. Costello, Error control coding, vol. 2. New York: Prentice

hall, 2001.

[51] A. Elkelesh, M. Ebada, S. Cammerer, and S. t. Brink, “Decoder-tailored

polar code design using the genetic algorithm,” IEEE Transactions on Com-

munications, vol. 67, no. 7, pp. 4521–4534, 2019.

[52] V. Bioglio, C. Condo, and I. Land, “Design of polar codes in 5G new radio,”

IEEE Communications Surveys Tutorials, vol. 23, no. 1, pp. 29–40, 2021.

[53] P. Elias, “Coding for noisy channels,” IRE Conv. Rec., vol. 3, pp. 37–46,

1955.

[54] A. Viterbi, “Error bounds for convolutional codes and an asymptotically

optimum decoding algorithm,” IEEE transactions on Information Theory,

vol. 13, no. 2, pp. 260–269, 1967.

[55] G. D. Forney, “The Viterbi algorithm,” Proceedings of the IEEE, vol. 61,

no. 3, pp. 268–278, 1973.

[56] J. L. Massey, Threshold decoding. Cambridge, MA: USA: MIT Press, 1963.

[57] R. G. Gallager, Information theory and reliable communication, vol. 2. New

York: Wiley, 1968.

[58] I. M. Jacobs and J. Wozencraft, Principles of communication engineering.

New York: John Wiley and Sons, 1965.

[59] R. Johannesson and K. S. Zigangirov, Fundamentals of convolutional coding.

John Wiley & Sons, 2015.

[60] C. Leroux, I. Tal, A. Vardy, and W. J. Gross, “Hardware architectures for

successive cancellation decoding of polar codes,” in 2011 IEEE International

84

Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1665–

1668, IEEE, 2011.

[61] A. Balatsoukas-Stimming, M. B. Parizi, and A. Burg, “LLR-based succes-

sive cancellation list decoding of polar codes,” IEEE transactions on signal

processing, vol. 63, no. 19, pp. 5165–5179, 2015.

[62] C.-C. Wong and H.-C. Chang, “Reconfigurable turbo decoder with parallel

architecture for 3GPP LTE system,” IEEE Transactions on Circuits and

Systems II: Express Briefs, vol. 57, no. 7, pp. 566–570, 2010.

[63] C.-H. Lin, C.-Y. Chen, A.-Y. Wu, and T.-H. Tsai, “Low-power memory-

reduced traceback map decoding for double-binary convolutional turbo de-

coder,” IEEE Transactions on Circuits and Systems I: Regular Papers,

vol. 56, no. 5, pp. 1005–1016, 2009.

[64] N. Golmie, D. Cypher, and O. Rébala, “Performance analysis of low rate

wireless technologies for medical applications,” Computer Communications,

vol. 28, no. 10, pp. 1266–1275, 2005.

85

	Introduction
	Motivation and Contributions
	Publications
	Organization of the Thesis
	Notations

	Review of Codes
	Polar Codes
	Channel Polarization
	Code Construction
	Rate Profiling
	Encoding of Polar Codes
	SC Decoding of Polar Codes

	Convolutional Codes
	Fano Decoding of Convolutional Codes
	Computational Complexity of Sequential Decoding

	PAC Codes
	Fano Decoding of PAC Codes

	Hardware Implementation of PAC Fano Decoder
	A Hardware-Friendly Fano Algorithm for PAC Codes
	Hardware Implementation
	Polar Demapper
	Branch Metric Unit
	Fano Control Unit

	Implementation Results
	FPGA Implementation Results
	Post-Synthesis Results
	Comparison With Polar Decoders

	Conclusion
	Suggestions for Future Work

	Fixed-point Simulation
	Threshold Spacing Simulation

