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Signatures of black holes in string theory
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The eftect of string theory on the four-dimensional classical Einstein equations is investigated. It is
shown that the throats of nonrotating charged black holes are exact solutions of the gravitational field
equations with string correction terms.
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Gravitational field equations with string correction
terms have recently drawn much attention in several
respects. The most important contribution of these terms
is believed to change the singularity structure of the
spacetime geometry. For this purpose there has been
much interest in the black-hole solutions [1—10] of the
higher-dimensional Einstein field equations containing
higher-order curvature terms. Although not yet known,
it is believed that the low-energy string action is a pertur-
bation expansion in inverse powers of the string tension
parameter. This expansion contains, in addition to the
usual Einstein-Hilbert action, corrections quadratic and
higher-order invariants in the massless fields, curvature
tensor, and in Maxwell and dilaton fields.

Recently it has been shown that the plane-wave
metrics of the Einstein theory preserve their form under
string corrections at all orders [11—13]. The question
arises as to whether or not there exist spherically sym-
metric spacetimes with the same property. In particular,
nonrotating black-hole geometries are spherically sym-
metric and it is believed that they do not preserve their
form [1].

Since gravitation is weak far from the holes, the black-
hole solutions of the Einstein theory can be considered as
approximate solutions of the e6'ective field theory men-
tioned above. On the other hand, near the singularities,
the contribution of curvature terms in the extended
theory becomes important. Black-hole solutions of the
Einstein theory are not any more exact solutions of the
extended theory in these regions. In the general case, it is

very hard, almost impossible, to consider the full extend-
ed field equations and find their exact solutions with the
property that they asymptotically approach the black-
hole solutions of the Einstein theory. Recently [9] it has
been conjectured that metrics describing the neighbor-
hood of the event horizon of the extreme charged black
holes may solve the extended field equations exactly.
Such candidates are of extreme Reissner-Nordstrom type
and the recently found metric with a dilaton charge [8,9].
In this paper we shall show that the throats of these
black-hole solutions are, in fact, exact solutions of the ex-
tended field equations.
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%e assume a Bat internal space, an Abelian gauge fie)d
with zero components in the internal directions, and set
the three-form field equal to zero. %e also assume that
the four-dimensional metric, the MaxweH, and dilaton
fields do not depend on the internal coordinates. %ith
these assumptions the four-dimensional low-energy ac-
tion obtained from string theory is [9]

d4~ —g —R +2 g 2+g 2~+2

+L(R;Jt,t, F~,p)],
where the Maxwell field F;, is associated with a U(1) sub-

group of Es X Es or Spin(32)/Z2 and we set the remaining

gauge fields to zero. P is the dilaton field. The contribu-
tion of string theory to the classical gravitational action
is through the function L. It is a perturbation expansion
in inverse powers of the string tension parameter. The
terms in this expansion may depend on all possible invari-
ants constructed out of the curvature tensor R, .kt,
Maxwell field F, , dilaton field iI), and their covariant
derivatives. Under these assumptions, extremizing this
action with respect to the U(1) potential A, , dilaton field

P, and the metric, we obtain the four-dimensional low-

energy limit of the string theory (extended gravitational
field equations):

6; —2T; =E;, ,

P (e 2$Fii) —Fi
P' P+ 'e ~F =F.

2

(3)

(4)

The energy-momentum tensor T'J corresponds to a
Maxwell field coupled to the dilaton (t [9,10]. The
second-rank symmetric tensor E;, the vector F.„and sca-
lar E coming from the variation of L are the string
correction terms to the classical gravitationa1 field equa-
tions. They are believed to be composed of the curvature
tensor R,"ki, the Maxwell field F;, the dilaton field P, and

of their covariant derivatives at all orders.
Although we consider the low-energy limit of string

theory, our discussion in this paper applies to any theory
derivable from a variational principle where the Lagrang-
ian is an arbitrary smooth function of the Riemann ten-

sor, Maxwell fie1d tensor, dilaton field, and of their co-
variant derivatives.

The metric of a static and spherically symmetric space-
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time is given by

ds = —A dt +B dr +C (d8 + sin Hdg ), (5)

(AB) „
P3 (22)

R '/, /
= r'.

/ /, +r'
/, r /

—
( k I),

R j R kj R R k The Riemann tensor corresponding
to this metric in a compact form is given by

RgJkl g lS]k gjkSil+gjkSJl gJ1SkJ +'92H&j Hkl

where

(6)

S/i
= rtoM/i + rtiki k/+ , rI3—g/1 .

Here the scalars are given by

A „C—AC,
AB B

(7)

AB C,
C AB

where A, B, and C depend only on r. Our convention is
as follows:

The covariant derivatives of H;. and k;, as seen in Eqs.
(17) and (18), are expressed only by themselves and the
metric tensor. Hence, any higher-order covariant deriva-
tives of these tensors must obey this rule. Since in Eq. (6)
the Riemann tensor is given in terms of H;, g, -, and k,-,
and the scalars depending on r, its covariant derivatives
at any order obey the same rule. Hence, we have the fol-
lowing theorem.

Theorem 1. Covariant derivatives of the Riemann ten-
sor R;Jkl, the tensor H;J, and the vector k; at any order
are expressible only in terms of H;, g,", and k, .

Since the contraction of k' with H," vanishes, the only
symmetric tensors constructable out of H;, g;. , and k;
are M;, the metric tensor g;, and k;k . Then the follow-
ing theorems hold.

Theorem 2. Any second-rank symmetric tensor con-
structed out of the Riemann tensor, the antisymmetric
tensor H;, the dilaton field /t/=/t/(r), and their covariant
derivatives is a linear combination of M;, g;, and k, k .
Let this symmetric tensor be E . Then we have

C4 A „C—AC„
92

7r

(10) E,J =0 jM,J+ 2g;J+ (23)

A; = cos(e)5'&,

HJ=V;Aj —VjA; .

(12)

(13)

A„C„
AB C

The tensor H; is antisymmetric and derivable from a
vector potential A;:

E =crk, , (24)

where 0.
&,

0.2, and 03 are scalars which are functions of
the metric functions, invariants constructed out of the
curvature tensor R, kl, H;, and on the dilaton field.

Theorem 3. Any vector constructed out of the
Riemann tensor R;ik/, H;J, the dilaton field /t/=P(r), and
their covariant derivatives is proportional to k;. Let this
vector be E,'. Hence, it reads

The symmetric tensor M; is defined as

k & 2MJ=H;Hkj —
—,H glJ

where

C„
c '

pi
A „C+AC „

2AB'C

H =H'H ij

The spacelike vector k; is given by

k, =V;r .

The covariant derivatives of H;. and k; are given as

H,, =p( 2k, H,, +k, H,, —k, H//) ~—
Vi kj Plgij +P2 ij +P3 i j

where

(14)

(15)

(16)

(17)

(18)

(20)

where 0. is a scalar as 0 &,
0.2, and 0.3.

We first discuss the solutions of the Einstein field equa-
tions. The Einstein tensor is found as

6 /'
= ( 2'/I 0+ 'i/~ )M /

2B C4 (6B C i)3+B gq
—4C gati)g//. +2'/k/kj .

(25)

In the Einstein theory, the form of (25) gives us an idea
about the form of the energy-momentum tensor as the
source for the field equations. The source may include
the electromagnetic field F;, a dilaton field P, and possi-
bly a cosmological constant. In this case, the electromag-
netic field may have an electric part in addition to the
magnetic part, that is, F; - may have the form

F1 =e(r)H 1+qoH, (26)

where H, is the dual of the tensor H; . In the general
case, we have five equations for five functions A, B, C,
P(r), and e(r). In the spherically symmetric case, the
function e (r) is not independent. Equation (3) forces us to
choose it as

A, C —AC,
P2 C

AB2
(21) e(r)=e e ~,AB

0 (27)
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g) =F3=0, (28)

2
g2 gQ+CQ (29)

4
CQ

AB

A „
B

(30)

Since the dilaton field P is set to zero, the vector k,. does
not show up in the set of tensors discussed in the above
theorems. Hence, the tensor E;- is a linear combination
of M, and g; . This means that cr3=0 in (2). The vector
E, or o in Eq. (24) vanishes identically. Therefore, we

have three equations for two functions A, B. This is
again an overdetermined system. We shall further set
gQ= const. Under these assumptions, the extended field

equations reduce to

2 2= ~ Ilo+co —2qo =ai('tlo, co,qo;a ),
1 2 ~ I

4 (rjo co ) =cT2('go)co, go', a ),
2C0

(31)

(32)

where eQ is a constant. The remaining four functions A,
B, C, and P can be solved consistently. In fact, there are
various types of solutions reported so far (see, for in-
stance, [9]).

In the presence of string correction terms in Eqs.
(2)—(4), the inclusion of the electric part is problematic.
The dual H," introduces a timelike vector u, =5,'- into the
tensor algebra discussed in theorem 1. This increases the
number of symmetric tensors to five and number of vec-
tors to two. Comparing the coefficients of these tensors
and vectors in Eqs. (2) and (3), respectively, we obtain the
equations for the metric functions A, B, C, e(r), and the
dilaton field P=P(r) T.he total number of equations is
raised to eight for these functions. In the Einstein case,
since the right-hand sides of Eqs. (2)—(4) are absent, one
gets a correct number of equations for these functions. In
the case of the extended field equations it seems unlikely
that this overdetermined system of ordinary differential
equations has a solution.

In order to overcome this difhculty, we first let e(r) =0
and F, =qQH;, where qQ denotes the magnetic charge.
In this case, the tensor E; and the vector E, have exactly
the same forms as E and E, respectively. Therefore, in
the sequel we shall drop the primes over these tensors.
By the theorems given above, we have now five equations
for four functions. Again, the existence of a solution of
this system of differential equations is not guaranteed.
Hence, we further choose the electromagnetic field in
such a way that the right-hand side of Eq. (3) automati-
cally vanishes. This can be achieved in two ways: either
F; can be set equal to zero or F,J and P can be taken co-
variantly constants. In the first case the Einstein field
equations couple to a scalar field [1]. We have four equa-
tions and four unknown functions. Hence, we have a
well-defined set of ordinary differential equations which
may have exact solutions.

When the electromagnetic field is covariantly constant
and /=0, Eq. (19) leads to C =co= const. This simplifies
the curvature functions gQ, g„g2, and g3. They read

2
qp

2 =E(rlo, co qo, a'),
CQ

(33)

where o." is the inverse string parameter. Here we have
three algebraic equations for three constants CQ, g0, and
the constant q0. The scalars 0.

&,
o.2, and E are now also

constants depending upon cQ, qQ, and qQ, and on the pa-
rameters of the theory under consideration, such as the
string tension. Since rjo is a constant, Eq. (30) is exactly
soluble. It reads

A,B=
'1/ (qo/co)A +a,

(34)

where a& is a constant. This is the only equation which
determines the metric functions A and B. Although the
function A appears to be arbitrary, by changing r, B can
be set to any function of r We c. hoose it as 1/A. With
this choice of B, the above differential equation can be in-
tegrated easily and we determine the spacetime metric as

ds = —A dt + dr +co(d8 + sin Odg ),1
(35)

where

90
A =r r+a& +a2 .

CQ

(36)

Here a& and a2 are constants. According to whether g0
is zero or not there are two distinct solutions.

Type (a):

Q=ai=0 (37)

It is a direct product of S and a two-dimensional Hat
Minkowski space. The vector k, is covariantly constant;
hence, it is also a spacelike Killing vector.

Type (b):

t0a2=0, A =r r+a&
CQ

(38)

This metric describes a spacetime which is a direct prod-
uct of a two-dimensional pseudosphere and S .

We now state that the metrics given above are exact
solutions of the gravitational field equations with string
corrections. They are all nonsingular and homogeneous
spacetimes. These metrics are also the solutions of the
Einstein-Maxwell equations. For instance, the second
solution [type (b)] with

'g =C =q

is the Levi-Civita Bertotti-Robinson metric. Under the
string corrections the form of these metrics is preserved
but the parameters appearing in the metrics no longer
satisfy the above equations (39). In this case the relations
among these constants are given by Eqs. (31)—(33).

The above metrics, in particular type (b), have interest-
ing features. They describe the geometry of black-hole
solutions in the neighborhood of their outer horizons.
These regions are the throats of the Einstein-Rosen
bridges of the corresponding hole solutions. For exam-
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ds = —W dt + dr +r (d8 + sin 8dg ),1

8
where

(40)

W =1— + —
A,or

2m Q
p2

(41)

Here m, Q, and A,p are, respectively, the mass, charge,
and the cosmological constant. In the neighborhood of
the outer horizon r=r&+e, where W(r=rz)=0, the
metric and the function 8'take the form

ds = —W dt + de +r (d8 + sin 8dp )
1

h (42)

W =e(ae+P) . (43)

This metric remains to be the solution of the Einstein-
Maxwell field equations with a cosmological constant
provided

and a, P, and A,p are given by

a= (2Q —
rt, ),1

6
(45)

(46)

Ap= (rq Q) .—2 2 (47)

Notice that the cosmological constant is no longer an in-
dependent parameter. This limiting metric (42) is exactly
of type (b) given above with the identifications

90 =a, a, =P,
Co

(48)

cp rh~ gp Q (49)

The extended field equations (31)—(33) alter the
definitions given in Eqs. (44) —(47) of a, Q, rz, and A,p. By
the utility of this identification they now satisfy

rza+r& —2Q =cr, (a, r&, Q;a'), (50)

1
(rz a —1)=o z(a, rz, Q;a'),

276
(51)

pie, the Levi-Civita Bertotti-Robinson universe is known
to be the throat of the extreme charged black hole
[14—16]. Here, extending the same idea let us find the
metric describing the region near the outer horizons of
the charged black holes in de Sitter space [17]. In the
spherically symmetric case such a black-hole solution is
given by

2

2
4

=E(a, r&, Q;a') .
Tg

(52)

Hence, the above equations relate the mass and the
charge to the string tension. The type (a) solution corre-
sponds to the throat of the extreme charged hole with di-
laton discussed recently in [9].

We conclude that the regions in the neighborhood of
the outer horizons of the charged black holes are
preserved under string corrections. String theory only
changes the relations among the parameters a, Q, rz, and
the cosmological constant A,o. They are related to the in-
verse string tension parameter a' through Eqs. (50)—(52).

We have found two distinct metrics which may consti-
tute exact solutions of the gravitational field equations
with string correction terms at all orders. The existence
of solutions, of course, depends on the functional depen-
dencies of 0 &,

0.2, and E on the parameters co, go, qo or
on rz, a, and Q. Since the extended field equations or the
explicit forms of E;, E;, and E are not known yet, it is
not possible to give an answer to this existence problem.
On the other hand, the gravitational field equations with
the quadratic curvature terms, such as the Gauss-Bonnet
term, are commonly known to be the one-loop correc-
tions. The tensors E;, E;, and E in this case are simpler
and Eqs. (31)—(33) have consistent solutions.

We have shown that the metrics that solve the extend-
ed field equations are asymptotic forms of the charged
nonrotating black holes of the Einstein theory. The mass
and the charge are related to string tension. When we
consider only the first-order corrections, the tensor E," is
the Gauss-Bonnet term which vanishes identically for
both types of metrics we found in this paper. The effect
of string corrections at this order comes from Eq. (33).
When the cosmological constant is set to zero, the mass,
charge, and radius of the horizon turn out to be equal
and they are proportional to &a'. Hence, at the Planck
scale we have an exact solution of the extended field
equations which is the signature of a classical black hole.
It is exactly the throat of the extreme charged black hole.

Inclusion of the three-form field into the field equations
(2)—(4) is also possible. This will not alter our conclusion.
Let H;Jk =pk~;Hjk~, where p is a function of r. One can
prove the following theorem: The only antisymmetric
second-rank tensor obtainable out of Rijkl H;j k H&jk,
and their covariant derivatives is proportional to H;. .
Hence, in addition to the field equations (3) and (4), we
have V';(e t'H'~") =a4HJ", where o 4 is a scalar as o „o2,
o3. Letting H; be covariantly c.onstant, P=Pp= const
and p=0, we have (31)—(33) with o's also depending on

In addition to these equations we also have
cT4('gp cp gp Pp'a') =0. This leads to four algebraic equa-
tions for four constants rtp cp gp and Pp.

Extension of the results reported in this paper to
higher dimensions is also possible. For instance, a D-
dimensional spacetime, which is a direct product of a
two-dimensional pseudosphere and S,is a solution of
Einstein-Maxwell field equations in D dimensions. The
Maxwell field is covariantly constant. It is possible to
show that the Riemann tensor has exactly the same form
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as given in Eq. (6) with slight changes in the definitions of
7fp 'g

~
'g2 and g3. The theorems given in this work

remain valid. The form of the metric is preserved under
string corrections. The extended field equations are again
redefinitions of the parameters appearing in the theory.
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