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Abstract—This paper will describe the application of 7-based de-
composition, which is a variation of the empirical mode decomposition
method based on modified peak selection, to de-noising and de-trending
of signals. The 7-based decomposition method will be explained, and
its application to synthetic and real-world signals in the context of
de-noising and de-trending will be described. Comparison between the
computational simplicity of the 7-based decomposition method to de-
noising and de-trending of signals and approaches based on empirical
mode decomposition will be highlighted.
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I. INTRODUCTION

Empirical Mode Decomposition (EMD) is a technique for decom-
posing non-stationary and non-linear multi-component signals into
amplitude and frequency modulated waveforms called intrinsic mode
functions (IMFs), which are obtained by adaptively extracting all
the oscillatory modes present in the signal. EMD is defined by an
algorithm [1], and the extraction of IMFs is through a process called
sifting. The sifting process involves approximating the local average
of the signal to be decomposed. For this, upper and lower envelopes
for the signal are formed using natural cubic splines through the
maxima and minima (extrema), which are identified by locating the
peaks (upper and lower) in the signal. The local average is then
approximated as the mean of the envelopes.

The work presented in this paper is based on a variation of EMD,
which we call 7-based decomposition. In 7-based decomposition, en-
velopes are formed using 7-based peak selection, where 7 represents a
length of time from within which only the extrema with the maximum
value is selected. The change in the choice of extrema limits the time
scale over which the sifting process allows a frequency component
in the signal to pass un-decomposed. Based on different values of 7,
different decompositions of a signal are possible. We have studied the
performance of 7-based decomposition, using different test signals,
both synthetic and real-world. This allowed us to test separation of
different frequency components in a signal into what we term as
T-functions, based on different values of 7 . Importantly, we have
empirically established a relation between the value of 7 and the
value of the frequency component that can be decomposed into a
T-function using 7-based decomposition.

In this paper, we will describe application of 7-based decomposi-
tion to de-noising and de-trending of signals. By appropriate selection
of the value of 7, noise can be easily separated from the signal.
Similarly, 7-based decomposition provides a simple mechanism for
de-trending of signals. Additionally, 7-based decomposition allows
separating the signals from noise in situations where the noise is in the
form of transients. Such situations are categorized as intermittency in
the signal, which occurs when components of particular frequencies
either come into existence, or disappear from a signal, over short
time durations. Intermittency negatively affects the EMD algorithm,
giving rise to a well-known issue with EMD known as mode-mixing
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[4]. Mode-mixing is said to occur when an IMF contains different
frequency components which cannot be properly separated by the
sifting process in EMD due to intermittency in the signal to be
decomposed.

In this context, Section II will describe the 7-based decomposition
method. Section III will explain the limit that has been established
for 7. Application of 7-based decomposition to de-noising and de-
trending of signals, both synthetic and real-world, will be described
in Section IV. Finally, Section V will conclude the paper.

II. 7-BASED DECOMPOSITION

T-based decomposition uses the sifting process to decompose a
signal. However, instead of using a time-scale based on successive
extrema, as is done in the case of EMD, a criterion for choosing the
extrema based on a period 7 is used. This criterion is explained next:

1) For a given signal x(t), a time period denoted by 7 is chosen,
and for each interval 7 over the whole signal, the highest from
among the minima and maxima within 7 are selected.

2) The upper envelope E, (v is calculated by using a cubic spline
to connect all the maxima identified (one maxima or peak
per 7). Similarly, the lower envelope E,(r) is calculated by
connecting the identified minima.

3) The mean E, (mean) of the upper and lower envelopes is
calculated, and x(t) is updated by subtracting the mean from
it x(t) — m(t) — En(meun)-

4) Since the previous 3 steps are based on the EMD algorithm,
which has a stopping criteria built-in, these steps are continued
till the algorithm stops and the signal x(¢) is decomposed into
what we term as 7-functions.

In the EMD-based sifting, step 3 is continued till z(¢) is reduced
to an IMFE, which then is subtracted from x(¢) to get the residue
r1(t). The residue r1(t) is then taken as the starting point instead
of z(t), and previous steps of the algorithm are repeated to find all
the IMFs in the signal. In contrast to this, 7-based peak selection
reduces the signal z(t) to coarse-grained 7-functions, which may
contain different coexisting modes of oscillation, each superimposed
on the other. This happens because the choice of extrema based on
the period 7 limits the scale over which the sifting process allows
component(s) to pass. In this context, 7 sets an upper limit on the
periods of the oscillations that can be included in any given 7-function
obtained using 7-based decomposition. In section III we will describe
this limit.

Limiting the number of extrema over the length of the signal,
however, as would happen with a large 7, can negatively affect the
formation of accurate envelopes using cubic splines. To overcome
this, we use the sifting approach of Ensemble Empirical Mode
Decomposition (EEMD) [3], which is a noise-assisted version of
EMD. In EEMD, a white noise series is added to the signal to
be decomposed. In general, the amplitude of the white noise, o, is
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kept around 0.2 times the standard deviation of the original signal.
Then, using the sifting algorithm, the signal with the added noise
is decomposed into IMFs. The previous two steps are repeated /N
times, with a different white noise series each time. The final set of
IMFs is obtained by calculating the ensemble means of the IMFs
c;(t) obtained by the decompositions. This can be seen as:

1

N
¢j(t) = lim —chk(t) (N
k=1

N—ooo N

As described in [3], the white noise series added to the signal during
the decomposition process cancel each other out when the ensemble
mean of the IMFs is calculated according to Eq. 1. For the 7-based
decomposition method, using the EEMD approach proves useful with
the formation of accurate envelopes using cubic splines, specially
for the cases where only a few peaks are selected given a large
7. This happens because the addition of a noise series provides
peaks throughout the length of the signal, whatever the 7 used, and
hence accurate envelope formation is possible, leading to accurate 7-
functions. This is in contrast to EMD, where using a large 7 would
lead to few peaks being selected, and hence inaccurate envelope
formation using cubic splines.

10 Hz sinusoidal signal with AWGN
T T
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Fig. 1. Low frequency sinusoidal signal with additive white gaussian noise
and SNR=20dB

III. A LIMIT FOR T

The value of 7 limits the scale over which a component is allowed
to pass. This scale is determined by % where Fy is the sampling
frequency, e.g. a value of 7 = 40 (in samples) corresponds to a
frequency value F' = 25H z for a F; = 1000H z. Using this 7, only
one peak in each 40 sample interval would be used in the envelope
formation, and the sifting process should then decompose all ' < 25
components, and let all components with F' > 25H z pass through
un-decomposed in one 7-function. This would suggest that in order
to isolate a frequency component F),, corresponding to a period 17,, a
value of 7 < T, is needed, where 0 < = < 1. Through experiments
with different signals, and with different values of 7, we have been
able to establish a value of 7 which can be written as

0.5T, < 7 <0.63T, (2)

or equivalently
1.6F, < Fr < 2F, 3)

where F’; corresponds to the frequency value represented by the
value of 7.

Equations 2 and 3 hold in general for a wide variety of signals.
This means that for a signal of frequency 10 H z mixed with additive
noise, which has been sampled at 1000 samples per second, 7 = 50
is a good value to separate the signal from the noise. According to
Eq. 3, this value of 7 corresponds to twice the value of the frequency
F,, of the component. Depending on the type of signals, at times it
might be necessary to use a value of 7 more than that established
in Egs. 2 or 3. This is necessitated due to the use of EEMD and is
explained in Sec. IV-A.
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Fig. 2. Using 7-based decomposition to de-noise signal of Fig. 1. Upper
figure shows the noise contained in one 7-function. Lower figure shows 7-
function containing the low frequency sinusoid compared with the original
signal.

IV. DE-NOISING AND DE-TRENDING

In this section we will describe the application of 7-based decom-
position to de-noising and de-trending of synthetic and real-world
signals. Figure 1 represents a 10 Hz sinusoidal signal mixed with
additive white gaussian noise having a signal-to-noise ratio (SNR) of
20dB. Such a signal is quite realistic, for example in the context of
electrical noise interference corrupting voltage signals [5]. Elaborate
mechanisms for de-noising such a signal based on EMD have been
proposed in literature [5]. Using 7-based decomposition, appropriate
selection of the value of 7 will isolate the noise in the signal un-
decomposed in one 7-function, and the low frequency sinusoid will
be decomposed into another 7-function. This is shown in Fig. 2,
which depicts the noise and the low-frequency sinusoid separated as
7-functions. The lower part of Fig. 2 compares the sinusoid separated
from the noise with the original sinusoid. It can be observed that
the recovered signal is very close to the original signal. Similarly,
Fig. 3 shows the same low-frequency sinusoid recovered as a 7-
function when the SNR is decreased to 10dB and 5dB. Even with
a low SNR of 5dB, the de-noised sinusoid is similar to the original
10 Hz sinusoid, as can be see in the lower part of Fig. 3. As an
objective measure of similarity between the de-noised and the original
signals, we calculated the values of the correlation coefficient using
the windowed RMS values of the de-noised and original signals. The
values of the correlation coefficient obtained are 0.996, 0.887 and
0.739 for the 20dB, 10dB and 5dB cases, respectively.

A. Mode-mixing

Mode-mixing is a known issue with EMD, and occurs due to inter-
mittency in signals. As described in Section I, intermittency refers to
the short-time appearance of particular frequency components in the
signal, taking the form of, for example, oscillatory transients. Such a
signal is shown in Fig. 4, which is a unit amplitude 10H z sinusoid
with low amplitude high frequency 50H 2 and 100H z sinusoidal
components occurring intermittently. Using EMD on this and similar
signals leads to mode-mixing, which refers to the situation where
an IMF has components of different frequencies due to the fact that
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Fig. 3. Upper figure shows the 7-function containing the low-frequency
sinusoid recovered when the SNR=10 dB. Lower figure shows 7-function
containing the low frequency recovered when the SNR=5 dB. Both figures
compare the de-noised sinusoid with the original 10 Hz sinusoid.
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Fig. 4. Low frequency (10 Hz) signal with intermittently occuring high
frequency components

a particular frequency component tracked by an IMF jumps as the
intermittent component begins or ends. Elaborate solutions to mode-
mixing have been proposed, such as the use of a masking signal
[4]. Also, EEMD, by nature of its algorithm, is also positioned as
a solution to mode-mixing, however according to our tests EEMD
does not resolve the issue of mode-mixing.

For the signal of Fig. 4, where the intermittency can represent
oscillatory transients occurring in many real-world phenomena, an
appropriate value of Tseparates the low-frequency sinusoid as a
T-function, and allows the intermittently occurring high-frequency
components to pass un-decomposed into another 7-function. This
result is shown in Fig. 5. As can be seen from the upper part of
Fig. 5, the low-frequency sinusoid extracted as a 7-function is very
similar to the original unit amplitude 10H z sinusoid. However, in this
case, a value of 7 much higher than that suggested by Eq. 2 has to be
used. This behaviour for signals such as that shown in Fig. 4, in which
low amplitude high frequency components occur intermittently, can
be explained by the nature of the EEMD algorithm when applied to
such signals. In the EEMD algorithm, noise is added to the signal to
be decomposed. However, for large values of 7, where only few peaks
are selected over the whole length of the signal, the envelope formed
will introduce spurious low frequency noise in the 7-functions, which
will not cancel out, even for low amplitude o of the noise added and
a large number N of iterations. This does not happen for smaller

values of 7, hence much cleaner 7-functions result.
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Fig. 5. Decomposing the low freq. signal with intermittently occurring high
freq. components of Fig. 4. Upper figure shows 7-function containing low
frequency signal, lower figure shows the unwanted high-frequency compo-
nents isolated in a 7-function. Both figures compare the 7-functions with the
original signals as well.

B. Real-world signals

We have applied 7-based decomposition to real-world signals as
well to test the efficacy of the technique. In this context, 7-based
decomposition has been used to de-trend EEG signals. Fig. 6 shows
the application of 7-based decomposition to EEG signals in order to
separate the low-frequency trend from the EEG signals from different
channels. In such signals, the interference and the signal of interest
are mixed in a non-linear and non-stationary way. The EEG signals
are 2500 samples long (10 seconds duration), and have been sampled
at 250 samples per second. Fig. 6 (upper half) shows the result of
de-trending the EEG signals from four channels. For this, a value
of 7 = 12.5, corresponding to F' = 20H z is used. Fig. 6 (lower
half) shows the marginal spectrum for the same four channels. The
marginal spectrum clearly shows the strength of the method in the low
frequency range (below 20H z), where overlapping of both spectra
is common. The 7-based decomposition method filtered out only the
interference leaving low frequency activity undisturbed, in contrast
to traditional bandpass filtering methods, where frequency content in
this range would be cut off. However, this has been achieved with
minimal complexity of the method, compared to other approaches for
a similar purpose [6].

Automated pathological speech detection using analysis of the
speech signals is an active area of research [7]. Pre-processing of
the speech signals is often used as part of such an analysis. Fig. 7
shows a 0.5 seconds segment of a pathological speech signal. In order
to limit the analysis of the speech signal to a spectrum of 2 kHz
only, for example to remove unnecessary noise and interference, 7-
based decomposition can be applied to the signal to remove frequency
components above the threshold of 2 kH z un-decomposed as a 7-
function, and to have the components with frequencies within the
2 kHz range in another 7-function. The speech signal of Fig. 7 is
sampled at 25000 samples per second, and a value of 7 = 12.5
corresponding to 2 kHz is needed for the purpose, according to
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Fig. 6. Using 7-based decomposition to de-trend EEG signals. Upper figure
shows detrended EEG signals from four selected channels. Lower figure shows
the marginal spectrum; the separation of the spectra is clearly visible.
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Fig. 7. A 0.5 seconds segment of a pathological speech signal.

the relation % presented in Sec. III. The 7-function containing the
frequency components above the threshold is shown in the upper
part of Fig. 8. The lower part of the same figure contains the de-
noised signal, which can be used for further analysis. The marginal
spectrum of the two 7-functions shown in Fig. 9 clearly shows the
separation of the spectra. A closer look at the marginal spectrum of
the de-noised signal in Fig. 9 will reveal that there is some spectrum,
though negligible, beyond 2 kH z. This is in accordance with Egs. 2
and 3, which means that to completely remove the spectrum beyond
the threshold, a value of 7 in accordance with Eq. 2 will have to
be used. The same holds true for the marginal spectrum of the EEG
signals depicted in Fig. 6.

V. CONCLUSION

In this paper we described the 7-based decomposition method
which uses a peak selection strategy to decompose a signal into
different 7-functions. We also presented the empirically obtained limit
relating the value of 7 and the frequency of the components to be
decomposed into 7-functions, as shown in Eq. 2. We showed, by
using synthetic and real-world signals, how 7-based decomposition
can be used to remove noise from signals in a computationally simple
way. We also showed that 7-based decomposition can be used to
de-noise signals for which application of EMD will result in mode-
mixing. Using EEG and speech signals, it was demonstrated how,
using an appropriate value of 7, the signals may be de-trended and
de-noised. This demonstrated that the 7-based decomposition method
can be applied to cases where interference and signals of interest
have significantly different bandwidths, but overlapping spectra, and
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Fig. 8. Using 7-based decomposition to remove noise and interference above
a threshold of 2 kH z from speech signal of Fig. 7. Upper figure shows 7-
function with components above the threshold, and the lower figure represents
the 7-function containing the de-noised signal.
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Fig. 9. Marginal spectrum showing the separation of the spectra of the noise
and the de-noised signal.

that the 7-based decomposition method represents an effective, but
conceptually and computationally simple technique compared to the
elaborate approaches mentioned in literature.
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