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a b s t r a c t 

We study the vehicle routing problem with roaming delivery locations in which the goal 

is to find a least-cost set of delivery routes for a fleet of capacitated vehicles and in which 

a customer order has to be delivered to the trunk of the customer’s car during the time 

that the car is parked at one of the locations in the (known) customer’s travel itinerary. 

We formulate the problem as a set-covering problem and develop a branch-and-price al- 

gorithm for its solution. The algorithm can also be used for solving a more general variant 

in which a hybrid delivery strategy is considered that allows a delivery to either a cus- 

tomer’s home or to the trunk of the customer’s car. We evaluate the effectiveness of the 

many algorithmic features incorporated in the algorithm in an extensive computational 

study and analyze the benefits of these innovative delivery strategies. The computational 

results show that employing the hybrid delivery strategy results in average cost savings of 

nearly 20% for the instances in our test set. 

© 2017 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

A recent survey revealed that in 2016, for the first time, online purchases have surpassed in-store purchases ( Farber,

2016 ). The business-to-consumer retail segment continues to grow year-over-year with an ever-increasing push towards

online shopping. As an example, Amazon, one of the e-commerce giants received 398 orders per second and 34.4 million

orders in total during its Prime Day event on July 15th, 2015 ( Garcia, 2015 ). A year later, on Prime Day 2016, the number

of orders increased by more than 60%, making it the biggest sales day in the history of the company ( Gustafson, 2016 ). Due

to the sheer volume, the huge number of delivery locations, and the aggressive service levels promised, last-mile logistics is

a huge challenge for Amazon. Amazon’s first-quarter shipping costs in 2016 hit $3.27 billion, a 42% increase from the same

period in 2015 ( Solomon, 2016 ). 

Not surprisingly, Amazon is seeking and exploring innovative ideas to improve the efficiency of last-mile delivery oper-

ations. Among these innovative ideas is trunk delivery, where the orders of customers are delivered to the trunk of their

cars, and introduced by Amazon in collaboration with Audi and DHL in certain areas ( Popken, 2015; Geuss, 2015; Audi,

2015 ). Volvo too is offering the required technology and has launched an in-car delivery service, initially limited to Stock-

holm, Sweden ( Volvo, 2015; 2016 ). Recently, Smart has partnered with DHL to start providing trunk delivery service to

customers in Germany who order merchandise from Amazon in September 2016 ( Behrmann and Weiss, 2016 ). 
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Motivated by the interest in trunk delivery, we study the variant of the vehicle routing problem (VRP) in which each

customer has an itinerary specifying one or more locations with corresponding time windows where the customer’s order

can be delivered to the trunk of his/her car (the car will be parked at these locations during the given time windows). This

problem is known as the vehicle routing problem with roaming delivery locations (VRPRDL) and was introduced recently by

Reyes et al. (2016) , who developed various construction and improvement heuristics for the problem. 

We consider the static and deterministic version of the VRPRDL, i.e., we assume complete knowledge of the itinerary of

each customer and deterministic travel times. It is not unrealistic, when planning delivery routes, to assume that knowledge

of a customer’s itinerary is available, as many companies, e.g., Roadie roadie.com , are already using analytics to predict the

travel patterns of people using the location data collected from the GPS tracking technology in their smart phones. However,

given that the actual travel times and customer itineraries may differ when the planned delivery routes are executed, in

practice, technology to dynamically adjust routes will also be needed. 

The VRPRDL combines two well-studied problems, namely, the VRP with time windows (VRPTW) and the generalized

VRP (GVRP). The VRPTW is the problem of determining an optimal set of delivery routes serving the demand of a set of

customers within their respective time windows. There is a vast body of literature on the VRPTW and its variants (see, for

example, Savelsbergh, 1985; Solomon, 1987; Desrochers et al., 1988; 1992; Dabia et al., 2013; Agra et al., 2013; Schneider

et al., 2014; Ta ̧s et al., 2014; Koç et al., 2015 ). The GVRP was introduced by Ghiani and Improta (20 0 0) and it is another

generalization of the VRP in which the set of delivery locations is partitioned into clusters and exactly one location from

each cluster has to be visited in a solution. Despite its relatively recent introduction, the GVRP has already attracted the

attention of many researchers, in part because it has many real-life applications ( Baldacci et al., 2010; Bektas et al., 2011;

Kovacs et al., 2014; Afsar et al., 2014; Quttineh et al., 2015; Biesinger et al., 2016; Louati et al., 2016 ). 

The integration of the features of these two problems leads to the generalized vehicle routing problem with time win-

dows (GVRPTW). To the best of our knowledge, the first study on the GVRPTW is due to Moccia et al. (2012) , who present

an incremental tabu search algorithm to solve the problem. The VRPRDL can be seen as a special case of the GVRPTW in

which the sets of delivery locations for the customers form the clusters. However, the time windows exhibit a special struc-

ture, as the time windows of the locations in a cluster, i.e., the time windows of the delivery locations for a single customer,

are non-overlapping. Our computational experiments reveal that it is this special structure that allows us to solve large in-

stances. We note, however, that our solution approach does not explicitly exploit the time window structure and can, thus,

also be used to solve instances of the GVRPTW. 

The main contribution of our paper is that it presents an effective branch-and-price algorithm for the VRPRDL. Branch-

and-price ( Barnhart et al., 1998 ) has established itself as an effective solution methodology for a variety of vehicle routing

and scheduling problems, e.g., the VRPTW ( Desrochers et al., 1992 ), the VRP with stochastic demands ( Christiansen and

Lysgaard, 2007 ), the VRP with pickup and deliveries ( Dell’Amico et al., 2006 ), and the VRP with split deliveries ( Salani

and Vacca, 2011 ). As far as we know, this is the first study in which an exact solution approach for the VRPRDL, or, more

generally, for the GVRPTW, is developed. The novelty of our branch-and-price algorithm lies in the fact that it works with

location clusters instead of locations. This requires modification of existing techniques for solving the pricing problem and

modification of the implementation of certain branching rules. Furthermore, since the GVRPTW generalizes several variants

of the VRP, our branch-and-price algorithm can be used to solve instances of these variants as well. 

An extensive computational study shows that our branch-and-price algorithm is capable of solving instances of up to 120

customers. We also demonstrate that the algorithm can be used to solve instances of the variant in which a customer order

can be delivered either to the customer’s home or to the customer’s car, although only instances of up to 60 customers. In

Reyes et al. (2016) , this problem variant is called the VRP with home and roaming delivery locations (VRPHRDL). Finally, we

use our algorithm to analyze the cost savings that can be achieved when making optimal use of the option to deliver to the

trunk of a car. 

The remainder of this paper is organized as follows. Section 2 presents a mixed-integer programming formulation as

well as a set-partitioning model for the VRPRDL, describes the pricing problem and how to solve it. Section 3 discusses the

techniques employed in our branch-and-price algorithm to increase its efficiency and gives some implementation details.

Section 4 explains how the VRPHRDL can be solved with our algorithm. Section 5 provides the results of an extensive com-

putational study, demonstrating the efficacy of the branch-and-price algorithm and analyzing the benefits of trunk delivery.

Section 6 concludes with some final remarks. 

2. Problem definition and formulations 

The VRPRDL is formally defined as follows. Let G = (N, A ) with N = { 0 , 1 , . . . , n } be a complete directed graph in which

node 0 corresponds to the depot and the remaining nodes correspond to the locations of interest. Each arc ( i, j ) ∈ A has

an associated travel time t ij and cost w ij both satisfying the triangle inequality. The set of customers that require a delivery

during the planning period [0, T ] is represented by C . The delivery for a customer c ∈ C is characterized by a demand

quantity d c and a geographic profile which specifies where and when a delivery can be made. Let N c ⊆N denote the set

of locations that customer c will visit during the planning horizon. By duplicating locations, we may assume N c ∩ N c ′ = ∅
for different customers c, c ′ ∈ C . Note that we can express the set of nodes as N = N 0 ∪ { i ∈ N c | c ∈ C} , where N 0 = { 0 } .
The locations i ∈ N c for c ∈ C have non-overlapping time windows [ e i , l i ] during which the delivery can take place and

correspond to the customer’s vehicle itinerary during the planning horizon. We use c ( i ) to denote the customer associated

http://roadie.com


G. Ozbaygin et al. / Transportation Research Part B 100 (2017) 115–137 117 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with location i and we let c(0) = 0 . A fleet of m homogeneous vehicles, each with capacity Q , is available to make deliveries;

vehicles start and end their delivery routes at the depot. The goal is to find a set of delivery routes visiting each customer

at one of the locations in the customer’s itinerary, during the time that the customer is at that location, and such that the

demand delivered on a route is no more than Q , the duration of a route does not exceed T , and the total cost is minimized.

The basic version of the VRPRDL is static and deterministic, i.e., it is assumed that all customer locations and the time

spent at these locations are known with certainty for the entire planning horizon. Let x ij for be a binary variable indicating

whether arc ( i, j ) ∈ A is used or not. We write x (A 

′ ) = 

∑ 

(i, j) ∈ A ′ x i j for A 

′ ⊆A and we use δ−(i ) and δ+ (i ) to denote the sets

of incoming and outgoing arcs of node i , respectively. The basic version of the VRPRDL can be formulated as follows: 

min 

∑ 

(i, j) ∈ A 
w i j x i j 

x (δ−(i )) − x (δ+ (i )) = 0 ∀ i ∈ N, (1)

∑ 

i ∈ N c 
x (δ−(i )) = 1 ∀ c ∈ C, (2)

x (δ+ (0)) ≤ m, (3)

s j ≥ s i + t i j x i j + (e j − l i )(1 − x i j ) ∀ (i, j) ∈ A, j � = 0 , (4)

s i + t i 0 x i 0 ≤ min { l i + t i 0 , T } ∀ (i, 0) ∈ A, (5) 

e i ≤ s i ≤ l i ∀ i ∈ N, (6)

y j ≥ y i + d c( j) − Q(1 − x i j ) ∀ (i, j) ∈ A, j � = 0 , (7)

d c(i ) ≤ y i ≤ Q ∀ i ∈ N, (8)

x i j ∈ { 0 , 1 } ∀ (i, j) ∈ A, 

where s i is the arrival time at location i and y i is the cumulative quantity delivered by a vehicle making a delivery at

location i when it is leaving location i . Note that the values of the y i variables are relevant only for those locations that

are actually visited. The objective is to minimize the total cost of the delivery routes. Vehicle flow conservation at every

location is captured by Constraint s (1) . Constraint s (2) guarantee that each customer receives a delivery at exactly one of

the locations in his/her itinerary. Constraint s (3) limit the number of vehicle departures from the depot to at most m .

Constraints (4) –(6) determine the arrival times at each of the locations while ensuring that all vehicles return to the depot

by time T and the time windows at the locations are respected. At the same time, these constraints prevent subtours from

occurring. Constraints (7) and (8) ensure that the required quantities are delivered to the customers (in combination with

Constraint s (2) ) and that the capacity of the vehicles is respected. Note that this formulation is slightly different from the

one presented in Reyes et al. (2016) . 

The VRPRDL can also be formulated as a set partitioning problem by applying Dantzig-Wolfe decomposition to the for-

mulation above. Let R denote the set of all feasible delivery routes (i.e., respecting capacity and time window constraints),

let w r be the cost of route r ∈ R , and let a ir for every i ∈ N and r ∈ R indicate whether location i is visited on route r ( a ir = 1 )

or not ( a ir = 0 ). The set partitioning formulation of the VRPRDL is as follows: 

min 

∑ 

r∈ R 
w r z r (9)

∑ 

r∈ R 

∑ 

i ∈ N c 
a ir z r = 1 ∀ c ∈ C, (10)

∑ 

r∈ R 
z r ≤ m, (11)

z r ∈ Z + ∀ r ∈ R, (12)

where z r is the number of times route r is used. This formulation has exponentially many variables as the number of

routes is exponential in the size of N . Therefore, we use column generation to solve its LP relaxation, which will be re-

ferred to as the master problem from now on. Note that since the arc costs satisfy the triangle inequality, we can replace∑ 

r∈ R 
∑ 

i ∈ N c a ir z r = 1 , c ∈ C with 

∑ 

r∈ R 
∑ 

i ∈ N c a ir z r ≥ 1 , c ∈ C and still obtain a solution in which each customer is visited ex-

actly once. This restricts the associated dual variable to be nonnegative, which typically leads to faster convergence of the

column generation procedure. 
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2.1. Pricing problem 

Let R̄ ⊂ R be such that there exists a feasible solution to the master problem when z r = 0 for all r ∈ R \ R̄ . A formulation

involving only routes in R̄ is called a restricted master problem (RMP). Once RMP is solved to optimality, we check if there

exists a column with negative reduced cost with respect to the original master problem. Such a column is a route r for

which the following condition is satisfied: 

w r − λ∗
0 −

∑ 

c∈ C 

∑ 

i ∈ N c 
a ir λ

∗
c < 0 . (13) 

Note that since w r = 

∑ 

(i, j) ∈ r w i j and λ∗
0 

+ 

∑ 

c∈ C 
∑ 

i ∈ N c a ir λ
∗
c = 

∑ 

i ∈ N a ir λ∗
c(i ) 

, we can rewrite the condition as: 

∑ 

(i, j) ∈ r 
w i j −

∑ 

i ∈ N 
a ir λ

∗
c(i ) < 0 . (14) 

Thus, the pricing problem is an elementary shortest path problem with time window and capacity constraints (ESPPTWCC),

where the cost of arc ( i, j ) is set to w i j − λ∗
c(i ) 

for i ∈ N c and j ∈ N �N c , i.e., the goal is to find an elementary path of

shortest length starting and ending at the depot and respecting capacity and time window constraints. The ESPPTWCC can

be formulated as follows: 

min 

∑ 

(i, j) ∈ A 
(w i j − λ∗

c(i ) ) x i j 

x (δ−(0)) = 1 , (15) 

x (δ+ (0)) = 1 , (16) 

x (δ−(i )) − x (δ+ (i )) = 0 ∀ i ∈ N \ { 0 } , (17) 

∑ 

i ∈ N c 
x (δ−(i )) ≤ 1 ∀ c ∈ C, (18) 

∑ 

c∈ C 
d c 

∑ 

i ∈ N c 
x (δ+ (i )) ≤ Q, (19) 

s j ≥ s i + t i j x i j + (e j − l i )(1 − x i j ) ∀ (i, j) ∈ A, j � = 0 , (20) 

s i + t i 0 x i 0 ≤ min { l i + t i 0 , T } ∀ (i, 0) ∈ A, (21) 

e i ≤ s i ≤ l i ∀ i ∈ N, (22) 

x i j ∈ { 0 , 1 } ∀ (i, j) ∈ A. 

Constraints (15) –(17) , together with subtour elimination Constraint s (20) , define a path starting from and ending at the

depot. Constraint s (18) force this path to be elementary, i.e., they guarantee that each customer is visited at most once.

Constraints (19) –(22) enforce the capacity and time window restrictions. 

2.2. Solving the pricing problem 

Solving a mixed integer programming problem using an off-the-shelf solver at every pricing iteration is computationally

expensive. Hence, we adopt the iterative label setting algorithm proposed by Boland et al. (2006) to solve the ESPPTWCC.

Given a directed graph with arbitrary arc lengths and a specified pair of source and sink nodes s and t , ESPPTWCC is the

problem of finding the shortest resource-feasible path from s to t . As implied by its name, we have two different resources

in ESPPTWCC arising from time window and capacity restrictions. Hence, a resource-feasible path in our context is one that

respects the availability of time and capacity resources. Moreover, this path should also be elementary, i.e., free of cycles. A

common way to ensure that an elementary resource-feasible path is obtained at the end of a label setting algorithm is to use

node-visit resources, which were introduced by Feillet et al. (2004) . A node-visit resource is a resource with a capacity of

one unit, which is consumed when the associated node is visited. Note, however, that the definition of an elementary path is

slightly different in the case of the VRPRDL, because multiple locations are associated with a single customer. If nodes i and j

are both locations associated with customer c ∈ C , then a path containing both i and j should not be considered elementary

because it visits customer c at least twice. Therefore, instead of using node-visit resources, we maintain a customer-visit

resource for each customer, which is consumed when any one of his associated locations is included in the path. 

Label setting is a dynamic programming approach which constructs resource-feasible paths originating at a source node

s and ending at a sink node t . Starting with the trivial path containing only the source node s , the label setting procedure

extends unprocessed partial paths along all feasible arcs to create new (partial) paths. A state is associated with each partial
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path capturing the cost and the resource consumptions along the path. The extension of a partial path along an arc is

infeasible if the resulting path would not be resource-feasible or if it cannot be augmented to reach the sink node within

the available resource limits. 

The efficiency of a label setting algorithm depends on the dominance relation that is used to eliminate partial paths. Let

P si and P 
′ 
si 

be two distinct paths from the source node s to node i with their respective states given by the label vectors

U and U 

′ 
. Suppose that the first element of the label vector represents the cost and the remaining elements represent the

resource consumptions (in the same order for both label vectors) along the corresponding path. Path P si is said to dominate

path P 
′ 
si 

if U � = U 

′ 
and U k ≤ U 

′ 
k 

for k = 1 , . . . , K + 1 , where K is the number of resources. 

To be able to eliminate additional partial paths using the above dominance relation, Feillet et al. (2004) introduce the

notion of unreachable nodes . When creating a new partial path, the idea is to consume not only the node-visit resources

for the nodes in the partial path itself, but also the node-visit resources of nodes that are not in the path, but cannot be

reached by any feasible extension of the current partial path. Because we use customer-visit resources (rather than node-

visit resources), we consider the unreachability of customers and say that customer c is unreachable if every node i ∈ N c

is unreachable. Thus, the following resource consumption rule is adopted in our algorithm when consuming customer-visit

resources. The resource corresponding to customer c in a partial path is consumed either when a node i ∈ N c is in the path,

or else when none of the nodes from N c can be contained in any feasible extension of the current partial path. 

As the label associated with a partial path is a vector representing the state of the path, i.e., its cost and resource con-

sumptions, the size of the state-space increases with the number of resources. In order to limit the size of the state-space

and to accelerate the label-setting algorithm, Boland et al. (2006) suggest to start the solution procedure with a state-space

relaxation in which node-visit resources are initially not present. When the label setting procedure ends, the multiplicity of

each node (number of times each node is visited) in the optimal path is computed and node-visit resources are introduced

for some or all of the nodes with multiplicity greater than one. The label setting procedure is iteratively executed, each

time starting with the original resources and the set of all node-resources introduced during the previous iterations, until

the optimal path returned at the end of an iteration is elementary. The advantage of this state-space augmenting approach

is that the number of node-visit resources introduced to obtain a least-cost elementary path is usually much smaller than

the number of nodes. 

To be able to provide details of the state-space augmenting approach of Boland et al. (2006) , we introduce some addi-

tional notation. Let S be the set of critical customers, i.e., the customers for which a customer-visit resource is maintained.

We denote the multiplicity of customer c on path p , i.e., the number of times a location i ∈ N c is visited on path p , by

M c ( p ). We start with S = ∅ and update S at the end of each label setting iteration that did not return an elementary optimal

path by adding the customer with the highest multiplicity. In case of ties, we add the customer with the smallest index.

Now suppose that the state corresponding to a given path p is described by the label vector U = (U 0 , . . . , U | S| +2 ) . We assume

that U 0 , U 1 , and U 2 specify the cost of p , and the consumption of the time and capacity resource along p , respectively. The

remaining elements of U indicate the consumption of customer-visit resources in the order that they were added to S . For

example, if c k is the k th customer added to S , then U k +2 shows whether customer c k is included in the path p or not. To

keep track of the resource consumption, we define h r 
i j 

to be the amount of resource r consumed when arc ( i, j ) is used

( h 1 
i j 

= t i j and h 2 
i j 

= d j ). When extending a label U 

i through arc ( i, j ) to create a new label U 

j , we set U 

j 
1 

= max { U 

i 
1 

+ t i j , e j } ,
because if the delivery vehicle arrives at location j before e j , then it has to wait for customer c ( j ), and U 

j 
2 

= U 

i 
2 

+ d j . We de-

fine R r 
i 

to be the limit of resource r at node i . The need to have a node index in our resource limit definition is the presence

of time windows, since the closing time of a window is different for each node and we have to respect these limits while

constructing resource-feasible paths. Even though the capacity resource limit is independent of the node and is equal to Q ,

we keep the node index for generality. 

Algorithm 1 represents a straightforward implementation of the state-space augmenting approach that solves the

Algorithm 1: State-space augmenting algorithm. 

Set S = ∅ 
do 

P 

∗ = labelSetting( S) 

Find p ∗ ∈ P 

∗ with shortest length 

Find the customer c having the highest multiplicity on path p ∗

if M c (p ∗) > 1 then 

Set S ← S ∪ { c} 
while p ∗ is not elementary 

Return p ∗

ESPPTWCC optimally. Details of the label setting subroutine can be found in Appendix A . Despite being more efficient

than using off-the-shelf software to solve the integer programming formulation of the pricing problem, employing a

straightforward implementation of the state-space augmenting algorithm to solve the pricing problem may still be (too)
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time-consuming. However, to solve the master problem there is no need to identify a most negative reduced cost column

at every pricing iteration; identifying any negative reduced cost column suffices. Finding a most negative reduced cost col-

umn is typically needed only towards the end of the column generation process, because few, if any, negative reduced cost

columns exist at that time. Consequently, we invoke Algorithm 1 in our implementation only if no negative reduced cost

columns can be detected heuristically, and even in that case we terminate the algorithm as soon as a pre-specified number

of negative reduced cost columns is constructed by the algorithm. 

3. A branch-and-price algorithm 

We develop a branch-and-price algorithm to solve the VRPRDL, i.e., a branch-and-bound algorithm in which at each node

of the search tree the LP relaxation is solved using column generation. The most time consuming component of a branch-

and-price algorithm is typically the solution of the pricing problem. Therefore, the efficient detection of negative reduced

cost columns is critical to the performance of any branch-and-price algorithm. In the following, we present the techniques

we employ to speed up the solution of the pricing problem, we describe the adopted branching scheme, and we discuss

how we deal with the tailing-off effect. 

3.1. Heuristic pricing 

It is not necessary to return a most-negative reduced cost column in each pricing iteration, it suffices to return (at least

one) negative reduced cost column, if one exists. Even though the change in the value of the solution to the restricted

master problem, when adding any negative reduced cost column rather than a most-negative reduced cost column, may be

smaller, and more pricing iterations may have to be performed to reach an optimal solution, the reduction in solution time

in each pricing step typically reduces the overall computation time. 

A simple application of the above idea is based on the observation that usually many elementary negative reduced cost

paths are found during the first few label setting iterations. Therefore, in our implementation of the state-space augmenta-

tion algorithm, we collect elementary negative reduced cost paths found in each iteration and will sometimes terminate the

algorithm prematurely, i.e., before a most-negative reduced cost column has been found, and return all elementary negative

reduced cost columns collected. 

Another observation leads to a second useful idea: as the dual values are updated after each pricing iteration, some ele-

mentary paths with a non-negative reduced cost in one pricing iteration may have a negative reduced cost in a subsequent

iteration. Therefore, at the end of a pricing iteration, non-dominated elementary paths with non-negative reduced costs

found in the last label setting iteration are kept in a column pool. At the start of each pricing iteration, the columns in the

pool are evaluated to see if they (now) have a negative reduced cost. To ensure that it does not become too costly to explore

the column pool, we limit its size, i.e., we keep a maximum number of columns. At the end of a pricing iteration, if we add

elementary non-negative reduced cost columns to the pool, we check its size, and, if the maximum pool size is exceeded,

the oldest columns are removed until the desired pool size is reached. 

Another strategy to detect negative reduced cost columns quickly is to make use of heuristics before invoking the exact

pricing algorithm. To this end, we implement a truncated search version of the state-space augmenting approach. Instead of

maintaining all non-dominated labels and their associated partial paths, we store only a small number of such labels at each

node to speed up the search procedure. More specifically, we keep only a pre-specified number of efficient labels per node,

and each time a new label is added to the list of efficient labels of a node, we discard the one with the largest cost if the

number of labels exceeds the limit. In this way, fewer labels are treated at each label setting iteration which can facilitate

faster detection of negative cost elementary paths. Again, excluding a part of the solution space may come at the expense

of performing more iterations, i.e., there is a trade-off between the number of efficient labels maintained and the number

of label setting iterations performed by the state-space augmenting approach. 

Briefly, we try to identify negative reduced cost columns first by exploring the column pool, then by invoking the

truncated-search version of the state-space augmentation algorithm, and finally by invoking the full-search version of the

state-space augmentation algorithm when the other approaches fail. To control the time spent in pricing iterations even fur-

ther, we terminate any pricing iteration as soon as a predetermined number of elementary negative reduced cost columns

has been found. 

Finally, we keep track of the minimum cost γ of the elementary paths detected during the search, which gives an upper

bound on the optimal value of the ESPPTWCC, and the cost η of the optimal path obtained at the end of each label setting

iteration, which gives a lower bound on the optimal value of the ESPPTWCC. Once the gap between these bounds is closed,

we can conclude that the pricing problem has been solved optimally. 

As mentioned earlier, the state-space augmenting approach starts without any customer-visit resources. However, the 

customers added to the set S of critical customers during a pricing iteration are likely to be visited more than once in

subsequent pricing iterations, and clearing S at the end of each pricing iteration may therefore result in an increase in the

number of label setting iterations. Consequently, rather than initializing the algorithm with S = ∅ each time, we retain the

set of critical customers throughout the column generation process at a node of the search tree. We set S = ∅ only at the

start of processing a node in the search tree. 
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3.2. Bidirectional search 

A common technique used to speed up the solution of the pricing problem is bidirectional search, in which paths, con-

suming around half of the resources available, are constructed from both the source and the sink and then merged to obtain

complete paths. Even though our implementation of bidirectional search provided efficiency gains when solving the pricing

problem exactly, the overall performance of the branch-and-price algorithm deteriorated. We speculate that the reason is

that we infrequently solve the pricing problem exactly and that the columns returned by the truncated search, which can

be substantially different when deploying bidirectional search, are not as effective. 

3.3. Branching 

When the optimal solution to the master problem is fractional, we have to perform branching to find integer solutions.

We branch on the arc variables, x ij , in the original formulation. If an arc variable has a fractional value, we force the arc

to be a part of the solution in one branch while prohibiting routes containing that arc in the other branch. Branching on

variables in the original formulation has become a standard feature of many branch-and-price algorithms ( Feillet, 2010 ). 

Each variable of the master problem corresponds to the number of times a particular route is used in the optimal delivery

plan. Therefore, we compute the value of an arc ( i, j ) in an optimal solution to the master problem by summing the optimal

values of the routes that include the arc ( i, j ). Once a branching decision is enforced, we have to ensure that the columns

in the restricted master problem and the ones that will be returned by the pricing subroutine are compatible with this

decision. To guarantee compatibility at a child node, first we filter the columns coming from the restricted master problem

associated with its parent node to exclude those that are in conflict with the branching decision and then update the pricing

problem by forbidding the proper arc(s). 

Ensuring compatibility is rather straightforward when the branching decision requires prohibiting a certain arc ( i, j ),

i.e., the columns containing this arc are removed from the restricted master problem and the arc ( i, j ) is ignored while

solving the pricing problem. On the other hand, to ensure that ( i, j ) is included in the solution, we omit all columns (routes)

containing any arc from the set (δ+ (i ) \ (i, j)) ∪ (δ−( j) \ (i, j)) ∪ (δ−(l) : l ∈ (N c(i ) \ { i } ) ∪ (N c( j) \ { j} )) from the restricted

master problem, and discard all the arcs in this set while solving the pricing problem (i.e., we do not extend partial paths

through these arcs). Note that as a result of column filtering, the master problem may become infeasible. Therefore, we

always maintain a set of artificial columns with a high cost that guarantee the feasibility of the master problem. More

specifically, we store the columns used to initialize the restricted master problem, and introduce these columns as “artificial”

columns prior to starting column generation at a node of the search tree. By assigning the sum of the costs of these columns

to each one of them individually, we ensure that these columns will not be in the optimal basis when column generation

completes. 

We have considered three strategies for selecting the arc to branch on. The first one is conventional branching, denoted

by CB , where we select an arc with value closest to 0.5. The second one is to choose an arc that appears in the greatest

number of routes in the solution to the master problem, denoted by MF . The last one is to choose an arc with a fractional

value that occurs the earliest in time, denoted by ED . In particular, for an arc ( i, j ), we determine the time at which a

vehicle using this arc in its route departs from node i . There may be multiple routes containing ( i, j ), in this case, we take

the minimum of the departure times from node i over all such routes. In all of the arc selection strategies, we have the

additional restrictions that the value of the chosen arc should be less than one and both of its endpoints should correspond

to customer locations. 

In CB , if there is more than one arc whose value is closest to 0.5, then we pick the first one encountered. In MF , we

break ties by choosing either the arc encountered first during the search ( MF ) or the arc whose value is closest to 0.5 ( MFC ).

Similarly, for ED , we either select the arc encountered first during the search ( ED ) or the arc whose value is closest to 0.5

( EDC ). 

3.4. Initial set of columns and feasible solutions 

The column generation method starts by solving a restriction of the master problem. Therefore, we need to provide an

initial set of columns that guarantees the feasibility of the master problem, i.e., a feasible starting solution. The quality of

this solution can have a significant impact on the performance of the branch-and-price algorithm, especially for large prob-

lem instances. In our experiments, we use the feasible solution found by the heuristic of Reyes et al. (2016) . The heuristic

constructs a feasible solution within a few seconds for small and medium size instances and within a few minutes for large

instances. The time spent by the heuristic on improving the initial feasible solution depends on the quality of that solution,

but is small compared to the time spent by our branch-and-price algorithm. 

The value of any feasible solution provides an upper bound on the optimal objective function value and can thus be

used to fathom nodes by bound. Of course, the higher the quality of the feasible solution, the more effective the fathoming

becomes. Therefore, we also embed the following commonly used heuristic for producing a, hopefully high-quality, feasible

solution. After solving the master problem at the root node, we solve the restricted master problem, i.e., including initial as

well as generated columns, as an integer program (simply handing it to an off-the-shelf software package). This heuristic
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has proven to be quite successful in a number of different applications, and initial experimentation in our setting revealed

that the resulting integer programs could be solved quickly, and, thus, did not impede the overall solution process. 

3.5. Handling the tailing-off effect 

Many pricing iterations may have to be performed with little or no improvement in the objective function value towards

the end of the column generation process at a node in the search tree. This situation is quite common in branch-and-price

algorithms and is known as the tailing-off effect. Below, we discuss two approaches for dealing with the tailing-off effect. 

3.5.1. Using lagrangian dual bounds for early pruning 

The occurrence of tailing-off at a node is especially unfortunate if the node is fathomed by bound once the master prob-

lem has been solved, because in that case much time may have been “wasted” by “unnecessarily” solving pricing problems.

This situation can, possibly, be prevented if an alternative lower bound can be computed that can be used to fathom the

node before the column generation process at the node completes. Such a bound can be computed using concepts from

Lagrangian relaxation. Note, however, that this may also mean that fewer columns are added to the column pool, which can

have a negative impact on solution efficiency. 

Dualizing the covering constraints in the master problem, we obtain the Lagrangian relaxation 

min 

∑ 

r∈ R 
w r z r + 

∑ 

c∈ C 
λc (1 −

∑ 

r∈ R 

∑ 

i ∈ N c 
a ir z r ) 

s.t. 
∑ 

r∈ R 
z r ≤ m, (23) 

z r ≥ 0 , r ∈ R, (24) 

which provides a lower bound on the optimal value of the master problem for any nonnegative vector of multipliers

(λ1 , . . . , λ| C| ) . Rearranging gives 

∑ 

c∈ C 
λc + 

{
min 

∑ 

r∈ R (w r −
∑ 

i ∈ N\{ 0 } a ir λc(i ) ) z r 
s.t. (23) , (24) 

}
, 

which, when taking the values of the optimal dual solution to RMP, gives 

∑ 

c∈ C 
λc + 

{
min 

∑ 

r∈ R ( w̄ r + λ0 ) z r 
s.t. (23) , (24) 

}
, 

where w̄ r is the reduced cost of route r and λ0 is the value of the dual variable corresponding to (23) . This quantity can be

bounded from below by ∑ 

c∈ C 
λc + m ( w̄ min + λ0 ) = 

∑ 

c∈ C 
λc + mλ0 + m ̄w min = θ ∗

RMP + m ̄w min , 

where w̄ min is the minimum reduced cost and θ ∗
RMP is the optimal value of RMP. 

This lower bound can be computed easily at the end of a column generation iteration if the optimal value of the pricing

problem is known. (Note that θ ∗
RMP 

always provides an upper bound on the optimal value of the master problem, and that

when w̄ min = 0 it provides a lower bound as well, in which case the master problem is solved optimally.) Observe that

it is possible to obtain a lower bound on the optimal value of the master problem as soon as a complete label setting

iteration is performed, because the state-space augmenting algorithm yields a lower bound on the optimal value of the

pricing problem at the end of each label setting iteration. Therefore, whenever the full-search version of the state-space

augmentation algorithm is used in a pricing iteration, we compute a lower bound for the master problem at the end of

each label setting iteration and see if it can be used to prune the node. 

3.5.2. Early branching 

Another strategy to deal with the tailing-off effect is to prematurely terminate the column generation procedure and

perform branching early. To accomplish this, one can stop generating columns and apply branching, for example, when the

improvement in the objective function value is less than ε in the last � iterations. Note that the values of ε and � need to

be set carefully, because branching too aggressively may grow the search tree significantly and may be counterproductive. 

3.6. Implementation details 

There are many algorithmic choices and parameter settings that impact the computational performance of the branch-

and-price algorithm. In the following, we first summarize our implementation of a straightforward branch-and-price algo-

rithm and then describe the algorithmic choices and parameter settings for the enhanced version that incorporates the ideas

discussed above. 
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3.6.1. Straightforward branch-and-price 

In order to evaluate the improvements achieved by our enhanced branch-and-price algorithm, we consider a straight-

forward approach, in which out-and-back routes from the depot to the first location of every customer are used to define

the initial set of columns (these routes always correspond to a feasible solution because m = | C| in VRPRDL instances), the

state-space augmenting algorithm is initialized with S = ∅ at every pricing iteration, only a single column with the most

negative reduced cost is added to the restricted master problem (i.e., the pricing problem is solved to optimality), and the

conventional branching strategy ( CB ) is employed; there is no early pruning, no early branching, and the restricted master

problem at the end of the column generation process at the root node is not used to seek a, possibly improved, feasible

solution. 

3.6.2. Enhanced branch-and-price 

In our enhanced branch-and-price algorithm, the following parameter settings control the solution of the pricing prob-

lem: the column generation process terminates as soon as β elementary negative reduced cost columns are identified. The

truncated-search version of the state-space augmentation algorithm restricts the number of non-dominated labels at each

node to α. In the truncated-search version of the state-space augmentation algorithm, we also monitor the cost γ of the

shortest elementary path detected so far, which yields an upper bound on the optimal ESPPTWCC value, and the cost η of

the shortest path obtained at the end of each truncated label setting iteration, which provides a lower bound on the cost

of the shortest elementary path that can be obtained by truncated-search, and terminate the truncated search when these

bounds at the end of a label setting iteration are equal. The size of the column pool is 10 0 0, i.e., at most 10 0 0 columns are

stored at any one time. Only when neither the exploration of the column pool nor the truncated search produces any ele-

mentary negative reduced cost columns do we invoke exact pricing. The set S of critical customers used in the state-space

augmentation algorithm is retained throughout the column generation process at each node in the search tree, and it is

cleared right before column generation starts at another node. 

In some of our computational experiments and for some values of α and β , we also consider forcing the truncated search

to stop upon completing a single label setting iteration even when the number of negative reduced cost columns detected

is less than β and the gap between γ and η is not closed at the end of this label setting iteration. We use T to denote that

we adopt this termination criterion, i.e., stop at the end of the first label setting iteration, instead of iterating until γ and η
become equal, which is denoted by F . 

Furthermore, the solution obtained by the heuristic of Reyes et al. (2016) is used to initialize the algorithm, the restricted

master problem is solved as an integer program upon completing column generation at the root node in the hope of find-

ing an improved feasible solution, early pruning is active, and the nodes in the branch-and-price tree are evaluated in a

depth-first order (best-bound and depth-first search produce similar results on small and medium size instances, the lat-

ter performs better for large size instances). Early branching is not used as computational experiments revealed that the

benefits are negligible. 

Finally, we want to point out that our branch-and-price algorithm can also solve instances where arc costs or travel

times do not satisfy the triangle inequality. In the former case, one can simply use the partitioning constraints given by

(10) when defining the master problem. In the latter case, one has to compute the shortest travel time between each pair of

locations prior to executing the branch-and-price algorithm, because this information is used in certain steps of the state-

space augmenting method when solving the pricing problems and in preprocessing the problem graph to reduce its size. 

4. Incorporating a home delivery option 

Trunk delivery was introduced in the hope that it would create cost-saving opportunities compared to making home

deliveries. It is easy to construct examples where this is indeed the case. However, it is also easy to construct examples

where this is not the case and the cost actually increases. Thus, companies that are considering trunk delivery will likely

deploy a hybrid model in which deliveries can either be made at the home location of the customer (during the entire

planning horizon) or to trunk of the customer’s car at one of the locations in the car’s itinerary, if this creates cost savings.

Fortunately, our branch-and-price algorithm can be used for solving this hybrid model by simply making slight changes

in the instance data. In particular, we replace the time windows associated with the home location of each customer, which,

in the instances of VRPRDL, are the first and last location of the car’s itinerary by a single location with time window [0,

T ], where T is the length of the planning horizon. Note that this means that the time windows of the locations visited by a

customer are no longer non-overlapping. However, the branch-and-price algorithm has no components that exploit or rely

on this non-overlapping property and thus it can be applied without any modification. Of course the performance may (and,

as we will see, will) deteriorate. 

5. Computational study 

We conduct a computational study to (1) evaluate the performance of our branch-and-price algorithm, and to (2) assess

the benefits of employing trunk delivery services. 
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5.1. Instances and preprocessing 

In our computational experiments, we use two sets of VRPRDL instances. 

The first set consists of slightly modified versions of the 40 random instances introduced in Reyes et al. (2016) , in which

the travel times have been adjusted to ensure that they satisfy the triangle inequality and, when necessary, the time win-

dows at locations have been adjusted accordingly. These instances range in size from 15 to 120 customers, each with up

to 5 roaming delivery locations. This set of instances is well-suited to assess the impact of the number of customers and

roaming delivery locations on the performance of the branch-and-price algorithm. 

The second set contains two variations of 10 medium-size instances generated in order to investigate the impact of the

distance of the roaming delivery locations to the depot on the performance of the branch-and-price algorithm. The distance

of the roaming delivery locations to the depot may impact the performance of the branch-and-price algorithm for several

reasons. When the roaming delivery locations are closer to the depot, this typically implies that the customers spend more

time traveling, which in turn implies that there is less time available for making deliveries, i.e., the time windows at the

roaming delivery locations are narrower. Narrower time windows may lead to more effective preprocessing, i.e., elimination

of more variables. On the other hand, when the roaming delivery locations are closer to the depot, this typically implies that

the roaming delivery locations of different customers are closer together, which in turn implies that there are more feasible

solutions. More feasible solutions not only implies possibly lower costs, but may also lead to less effective preprocessing,

i.e., elimination of fewer variables. The first variation of each instance is created using the instance generator described in

Reyes et al. (2016) , which chooses the roaming delivery locations for a customer uniform randomly in a circle with radius

sT /2 ρ and center at the customer’s home location, where s is the (constant) vehicle speed and ρ is the maximum number

of locations per customer. In the second variation of each instance, the home location and the fraction of time spent at

every roaming delivery location are the same, but the roaming delivery locations themselves tend to be closer to the depot

(which implies that the associated time window widths are usually different). More precisely, in the second variation, the

roaming locations are chosen uniform randomly in a circle with radius sT /2 ρ and center on the line connecting the home

location and the depot, either at the midpoint of the line or at distance sT /2 ρ of the home location, whichever is closer to

the home location. (As with the first set of instances, the travel times and the time windows are adjusted to ensure that

the travel times satisfy the triangle inequality.) 

In all the instances, the planning horizon is 12 hours, the vehicle capacity is 750, and the geographic profile of every

customer consists of at least one and at most six locations (the first and last location always being the home location of the

customer - in case there is only one location, it signals that the customer is at home all day). 

Although there is no restriction on the fleet size in the original instances, we assume that m , the number of vehicles

available for making the deliveries, is equal to the number of routes in the solution provided by the heuristic of Reyes et al.

(2016) plus one when solving VRPRDL and VRPHRDL instances with our enhanced algorithm. We impose this restriction,

because smaller values of m results in stronger lower bounds on the optimal value of the master problem, and preliminary

experiments using small to medium sized instances revealed that the optimal costs remain unchanged even if we set m =
| C| . Characteristics of the first and second sets of instances are provided in Tables 1 and 2 , respectively. For each instance,

we present the number of customers, the average number of locations per customer, and, considering all customers, the

minimum, average, and maximum distance from home location to the depot, the minimum, average, and maximum fraction

of time available for making a delivery, and the average width of time windows. Note that for the second set of instances,

the number of customers is not specified in the table as all instances in this set contain 40 customers. Also in Table 2 is an

additional column presenting the average distance from the roaming delivery locations to the depot. We observe that there

are noticeable differences between instances, with some instances having, on average, only 2.47 locations per customer

whereas others have, on average, 4.33 locations per customer, and some instances having, on average, only 49% of the

planning horizon available to make deliveries whereas others have, on average, 90% of the planning horizon available. 

We compute the Euclidean distance between each pair of locations based on their coordinates and then round this dis-

tance to the nearest integer. In order to ensure that arc costs satisfy the triangle inequality, we assign the shortest distance

between each pair of nodes to the cost of the arc connecting these two nodes. Furthermore, we reduce the size of the net-

work by eliminating nodes and arcs that cannot be a part of any feasible solution. Our preprocessing steps are as follows: 

1. Eliminate node i and all arcs incident to this node if t 0 i > l i or e i + t i 0 > T ; and 

2. Eliminate arc ( i, j ) if max { t 0 i , e i } + t i j > l j or max { t 0 i , e i } + t i j + t j0 > T 

Essentially, we eliminate a node i if an out-and-back route from the depot to the node, i.e., route 0 − i − 0 , leads to a time

window violation. Similarly, we eliminate an arc ( i, j ) if route 0 − i − j − 0 is not time-feasible. This simple preprocessing is

very effective, it reduces the number of nodes and arcs substantially: the minimum, average, and maximum reduction in

the number of arcs across the VRPRDL instances are 72.53%, 87.49% and 93.1%, respectively. The reduction is smaller for the

VRPHRDL instances as the home locations now have wide time windows, and thus fewer nodes and arcs are eliminated. 

The algorithm is implemented in Java using the branch-and-price framework of Java OR library ( jORLib ) and Java graph

theory library ( JGraphT ), and CPLEX 12.6.3 is employed for solving the restricted master problems through Concert Tech-

nology. All experiments are performed on a 64-bit machine with Intel Xeon E5-2650 v3 processor at 2.30 GHz. The time

limit is set to two hours for instances with up to 60 customers and to six hours for instances with 120 customers. In the
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Table 1 

Characteristics of the instances in the first set. 

Instance Number of Avg number of Avg width of Distance to depot Fraction of time 

customers customer locations time windows (from home location) available for delivery 

Min Avg Max Min Avg Max 

1 15 4 .07 102 .93 3 67 .07 166 0 .05 0 .58 1 

2 15 3 .73 125 .25 28 83 .73 148 0 .31 0 .65 1 

3 15 3 .40 139 .61 7 72 .33 167 0 .08 0 .66 1 

4 15 3 .27 130 .96 3 70 .80 159 0 .08 0 .59 1 

5 15 3 .40 142 .96 13 101 .07 174 0 .14 0 .68 1 

6 20 3 .25 148 .23 2 76 .45 152 0 .16 0 .67 1 

7 20 3 .35 138 .49 15 76 .25 174 0 .08 0 .64 1 

8 20 3 .95 102 .09 6 87 .10 161 0 .04 0 .56 1 

9 20 3 .75 94 .65 3 73 .35 171 0 .01 0 .49 1 

10 20 3 .10 154 .32 0 80 .55 169 0 .14 0 .66 1 

11 30 3 .40 130 .90 2 85 .43 176 0 .03 0 .62 1 

12 30 3 .73 103 .13 20 78 .03 174 0 .01 0 .53 1 

13 30 3 .90 99 .88 3 71 .27 171 0 .04 0 .54 1 

14 30 3 .53 124 .70 5 73 .07 171 0 .12 0 .61 1 

15 30 4 .10 94 .59 3 81 .70 176 0 .04 0 .54 1 

16 30 3 .93 107 .95 2 72 .77 160 0 .03 0 .59 1 

17 30 4 .30 83 .51 2 85 .23 165 0 .08 0 .50 1 

18 30 3 .50 120 .30 17 89 .70 154 0 .01 0 .58 1 

19 30 3 .23 139 .63 12 82 .47 179 0 .08 0 .63 1 

20 30 2 .47 223 .78 12 75 .10 172 0 .05 0 .77 1 

21 60 3 .73 115 .26 4 78 .88 173 0 .04 0 .60 1 

22 60 3 .53 117 .18 1 80 .07 170 0 .01 0 .58 1 

23 60 3 .90 100 .76 2 89 .03 179 0 .04 0 .55 1 

24 60 3 .80 118 .83 8 93 .12 175 0 .03 0 .63 1 

25 60 3 .88 108 .87 3 79 .60 165 0 .06 0 .59 1 

26 60 3 .73 108 .36 1 89 .77 178 0 .01 0 .56 1 

27 60 3 .45 131 .47 8 90 .27 176 0 .03 0 .63 1 

28 60 3 .63 111 .70 1 75 .07 180 0 .04 0 .56 1 

29 60 3 .75 112 .79 2 91 .95 179 0 .02 0 .59 1 

30 60 3 .95 108 .27 4 93 .97 177 0 .01 0 .59 1 

31 120 3 .83 112 .43 0 76 .23 178 0 .01 0 .60 1 

32 120 3 .67 116 .42 0 83 .98 174 0 .04 0 .59 1 

33 120 3 .92 104 .71 0 69 .69 179 0 .02 0 .57 1 

34 120 3 .78 112 .51 2 79 .45 176 0 .01 0 .59 1 

35 120 3 .75 107 .41 1 77 .35 174 0 .07 0 .56 1 

36 120 3 .51 127 .94 0 89 .57 178 0 .05 0 .62 1 

37 120 3 .88 102 .49 3 83 .14 177 0 .02 0 .55 1 

38 120 3 .51 126 .62 0 86 .11 177 0 .03 0 .62 1 

39 120 3 .56 119 .54 0 89 .30 178 0 .03 0 .59 1 

40 120 3 .84 103 .44 0 79 .73 171 0 .07 0 .55 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

computational results tables, we will indicate that a time limit was reached with TL. Note that the solution times reported

in the tables do not include the time spent by the heuristic of Reyes et al. (2016) to find the initial solution. 

5.2. Evaluating the performance of the branch-and-price algorithm 

To be able to evaluate the benefits of the various techniques introduced in the branch-and-price algorithm, we start

by solving the first set of instances with the straightforward implementation described in Section 3.6.1 . The results can be

found in Table 3 . For each instance, we report the name of the instance, the cost of the initial solution, the cost of the

best solution, the integrality gap, the solution time (in seconds), the total number of pricing iterations performed during

the execution of the algorithm, and the number of nodes evaluated during the search, respectively. When the algorithm

terminates within the time limit, the best solution is optimal, otherwise it may or may not be optimal. The integrality gap

is computed as the ratio (θ ∗
IP 

− θ ∗
LP 

) /θ ∗
LP 

, where θ ∗
LP 

is the optimal value of the master problem at the root node of the search

tree and θ ∗
IP is the cost of the best solution found during the execution of the algorithm. When the master problem at the

root node cannot be solved within the time limit, it is not possible to compute an integrality gap, which is indicated with a

dash. If an instance is solved to optimality (i.e., the algorithm terminates within the time limit), the integrality gap provides

some additional insight into the relative difficulty of the instance. If, on the other hand, an instance cannot be solved within

the time limit, then the integrality gap provides a quality guarantee of the best solution found. 

We observe that the straightforward implementation is able to solve all instances with 15, 20, and 30 customers, but

fails to find an optimal solution or prove its optimality for three of the instances with 60 customers. In fact, the first pricing
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Table 2 

Characteristics of the instances in the second set. 

Instance Avg number of Avg width of Avg distance from Distance to depot Fraction of time 

customer locations time windows roaming locations to depot (from home location) available for delivery 

Min Avg Max Min Avg Max 

41_v1 3 .98 159 .60 101 .71 16 24 .57 176 0 .75 0 .88 1 

41_v2 149 .79 80 .72 16 24 .50 175 0 .66 0 .83 1 

42_v1 3 .93 161 .66 91 .10 19 23 .60 167 0 .72 0 .88 1 

42_v2 151 .25 68 .85 18 23 .59 167 0 .70 0 .82 1 

43_v1 4 .05 158 .07 88 .51 4 21 .43 171 0 .76 0 .89 1 

43_v2 144 .85 69 .19 4 21 .44 171 0 .57 0 .81 1 

44_v1 3 .53 181 .38 93 .58 2 24 .65 174 0 .68 0 .89 1 

44_v2 173 .61 72 .11 2 24 .61 174 0 .62 0 .85 1 

45_v1 3 .60 180 .12 67 .59 4 22 .67 177 0 .79 0 .90 1 

45_v2 166 .60 48 .31 4 22 .69 177 0 .59 0 .83 1 

46_v1 4 .33 143 .42 98 .54 1 20 .57 176 0 .77 0 .86 1 

46_v2 131 .63 79 .35 1 20 .52 176 0 .65 0 .79 1 

47_v1 4 .18 145 .56 96 .31 11 22 .85 174 0 .70 0 .84 1 

47_v2 139 .58 77 .20 11 22 .87 173 0 .67 0 .81 1 

48_v1 3 .83 167 .82 97 .96 9 25 .11 178 0 .72 0 .89 1 

48_v2 153 .76 76 .83 9 25 .08 178 0 .53 0 .82 1 

49_v1 3 .80 165 .56 100 .17 12 26 .97 175 0 .74 0 .87 1 

49_v2 148 .48 72 .55 12 26 .96 175 0 .51 0 .78 1 

50_v1 4 .03 155 .06 78 .11 2 20 .42 176 0 .75 0 .87 1 

50_v2 146 .07 60 .85 2 20 .48 177 0 .68 0 .82 1 

Table 3 

Results with the straightforward BAP. 

Instance Initial Best Integrality Solution Iterations Nodes 

solution solution gap (%) time (s) 

1 2074 901 0 0 .58 39 1 

2 2316 1286 0 0 .27 29 1 

3 2234 991 0 0 .43 30 1 

4 1982 1062 0 0 .27 30 1 

5 3322 1832 0 0 .04 26 1 

6 3328 1294 1 .73 2 .30 245 31 

7 3204 1155 1 .29 30 .47 773 70 

8 3170 1455 0 0 .18 39 1 

9 2838 1260 1 .86 3 .32 307 32 

10 3270 1684 0 0 .55 33 1 

11 4932 1922 0 .31 14 .28 283 27 

12 4610 2324 2 .52 120 .38 16914 2707 

13 4 86 8 1747 0 23 .33 101 1 

14 4084 1273 0 30 .83 100 1 

15 4656 1694 0 22 .78 97 1 

16 4770 1938 0 57 .13 82 1 

17 4502 1965 0 .10 5 .75 117 3 

18 5392 1827 0 2 .10 83 1 

19 5286 2083 2 .46 93 .55 4140 413 

20 4236 1822 0 78 .70 103 1 

21 10374 3761 0 606 .60 216 1 

22 9316 2828 0 272 .43 357 3 

23 10326 4 4 40 0 .01 238 .27 208 3 

24 10536 3378 0 382 .37 250 1 

25 9784 9784 – TL 1 0 

26 10822 4536 0 78 .61 158 1 

27 10634 2865 0 296 .23 242 1 

28 9450 9450 – TL 1 0 

29 10988 3964 0 .73 TL 82536 11593 

30 11840 4107 0 45 .22 177 1 

31 18142 18142 – TL 1 0 

32 19514 19514 – TL 1 0 

33 18008 18008 – TL 4 0 

34 19880 19880 – TL 2 0 

35 19196 19196 – TL 1 0 

36 21772 21772 – TL 3 0 

37 20010 20010 – TL 2 0 

38 20032 20032 – TL 2 0 

39 20136 20136 – TL 480 0 

40 20042 20042 – TL 1 0 
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problem cannot be solved within two hours for Instances 25 and 28. None of the instances with 120 customers can be

solved within six hours. 

Next, we solve Instances 1–30 using the enhanced implementation introduced in Section 3.6.2 with different combina-

tions of control parameters for the solution of the pricing problem and with different branching schemes. More specifically,

six configurations for solving the pricing problem were evaluated: (5, 5, F ), (5, 10, F ), (10, 10, F ), (15, 10, F ), (10, 10, T ) and

(15, 10, T ), where the first parameter specifies the number of labels kept in the truncated-search ( α), the second parameter

specifies the number of negative reduced cost columns required before terminating the solution of the pricing problem early

( β), and the third parameter specifies whether or not the state-space augmenting algorithm is terminated after a single la-

bel setting iteration ( T or F ). Furthermore, all branching schemes were evaluated: CB, MF, MFC, ED , and EDC . Thus, in total,

the 30 instances were solved 30 times. 

We found that 19 of the instances can be solved optimally without branching by each of the tested configurations. The

solution to the master problem at the root node is always integer in 18 cases. In the other case (for Instance 21), some

settings required solving the restricted master problem at the end of the column generation process at the root node as

an integer program in order to produce an integer solution with cost equal to the optimal objective value of the master

problem. Furthermore, we found that the branching schemes ED and EDC performed poorly compared to the other branching

schemes. Therefore, in Table 4 , we present the results for six configurations and three branching schemes for 12 instances.

We report the solution time (in seconds), the number of pricing iterations, and the number of nodes evaluated. 

To analyze the results and to choose a default branching scheme and default control parameters for the solution of the

pricing problem, we will focus on the solution times. First, we observe that both the MF and the MFC branching schemes

outperform the CB branching scheme. Second, when comparing the different pricing parameter configurations used in the

experiments, we see that the pricing problem is solved to optimality more often when multiple label setting iterations are

not allowed during truncated search. This is expected given the fact that the column generation procedure is initialized

with S = ∅ at each branch-and-price tree node and no customers are added to S by truncated-search when it is terminated

during or at the end of the first label setting iteration. Invoking the full-search provides a means to update S and to identify

the negative reduced cost columns that would not otherwise be encountered during truncated-search. However, this usually

increases the total number of column generation iterations as well as the number of nodes in the branch-and-price tree, and

results in longer solution times. Hence, we conclude that the configurations ( α, β , F ) lead to better performance in general.

Although the choice between the different configurations of control parameters for the solution of the pricing problem is

not obvious, schemes MF (5, 5, F ), MFC (5, 5, F ), and MFC (10, 10, F ) appear to be most “robust”, in the sense that they lead to

the minimum total solution time across the first set of instances (with up to 60 customers). 

We also examined how often a pricing iteration completes after (1) exploring the column pool, (2) applying truncated-

search, and (3) applying full-search. For all branching schemes and all parameter configurations, most pricing iterations

complete after truncated-search, which implies that truncated-search returns at least one elementary negative reduced cost

column. Although rare, pricing iterations sometimes complete after exploring the column pool, especially when many pricing

iterations have to be performed, which is not surprising since the column pool fills up gradually and the more columns, the

better the chance of having negative reduced cost columns in the column pool in subsequent iterations. 

We use the three most promising settings, i.e., MF (5, 5, F ), MFC (5, 5, F ), and MFC (10, 10, F ) to solve the 120 customer

instances. The results can be found in Table 5 . For each instance, the first four columns correspond to the name of the

instance, the cost of the initial solution, the cost of the solution obtained by solving the restricted master problem at the

root node as an integer program, and the cost of the best solution found, respectively. The remaining columns provide the

integrality gap, the solution time, the total number of pricing iterations, the average time per pricing iteration, and finally,

the number of nodes evaluated. The best solution for each instance is highlighted in bold. 

We observe that the algorithm is able to find an optimal solution to three instances with the settings MF (5, 5, F ), MFC (5,

5, F ) and MFC (10, 10, F ). Considering the number of best solutions obtained with each of these settings, MF (5, 5, F ) is superior

to the others as it produces the best solution for seven instances, whereas six best solutions are found by the other two

schemes. Based on the solution times for the instances that are solved to optimality, MFC (5, 5, F ) results in the minimum

total solution time. Hence, no setting clearly dominates the others. 

We also observe that solving the restricted master problem at the root node as an integer program is quite effective.

With the setting MF (5, 5, F ), the solution value improves, on average, by almost 5%, and for Instance 39 the improvement

exceeds 10%. The integrality gap values reveal that high-quality solutions are produced; with the setting MF (5, 5, F ), the

average integrality gap is only 1.31%. Finally, we observe that although the total number of pricing iterations significantly

decreases for most instances with a larger value of β , the time per pricing iteration increases when the number of labels

kept at a node during truncated-search is larger (compare the time per iterations for MFC (5, 5, F ) and MFC (10, 10, F )). 

To evaluate the benefits of the various techniques introduced in the branch-and-price algorithm to improve its perfor-

mance, we next compare the straightforward implementation with the enhanced implementation with the setting MF (5, 5,

F ). The results can be found in Table 6 . A dash in the column “Root IP solution” means that the master problem has an

integer optimal solution. 

We observe that the benefits of implementing the techniques described earlier are significant. Instances that can be

solved to optimality are solved orders of magnitude faster, and for the instances that cannot be solved to optimality, solu-

tions of much better quality are obtained. Specifically, for the instances that can be solved optimally by both approaches, the

reduction in average solution time is 97%. Furthermore, when the straightforward implementation fails to find an optimal
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Table 4 

Results with CB, MF , and MFC arc selection rules. 

(5, 5, F ) (5, 10, F ) (10, 10, F ) (15, 10, F ) (10, 10, T ) (15, 10, T ) 

Time Iters. Nodes Time Iters. Nodes Time Iters. Nodes Time Iters. Nodes Time Iters. Nodes Time Iters. Nodes 

Select the arc for branching using the CB rule 

6 1 .06 193 47 0 .75 84 21 0 .96 100 25 0 .99 106 29 1 .16 164 33 1 .21 198 45 

7 1 .52 217 20 1 .48 150 16 1 .67 139 19 2 .27 169 23 2 .85 217 23 3 .04 216 23 

9 0 .67 143 25 0 .52 103 22 0 .53 76 17 0 .57 88 19 0 .73 125 25 0 .88 138 25 

11 0 .87 119 11 0 .68 73 7 0 .82 82 13 1 .17 93 15 0 .85 85 7 1 .45 109 11 

12 96 .68 16833 4765 82 .10 12567 3957 53 .76 9881 3195 101 .41 15435 4981 57 .07 9877 2971 95 .59 14331 4243 

17 0 .64 73 3 0 .59 60 7 0 .76 77 7 0 .59 44 3 0 .52 45 3 0 .57 67 3 

19 5 .76 523 73 14 .14 1464 293 8 .58 586 105 7 .47 399 79 8 .51 557 89 11 .78 712 111 

23 1 .06 72 1 2 .11 54 1 2 .60 58 1 3 .98 73 3 5 .25 95 2 2 .10 53 1 

25 883 .02 12085 899 158 .57 1810 171 852 .88 8379 962 832 .75 7832 1027 389 .69 3544 333 857 .31 7307 699 

28 43 .52 572 31 241 .30 2022 251 30 .89 161 5 89 .42 441 35 194 .78 1119 113 106 .05 656 61 

29 1,714 .91 42775 8557 1,713 .56 39998 9471 2,407 .46 43979 11197 1,461 .10 20813 5207 2,776 .68 51304 10841 1,570 .03 25831 5477 

Select the arc for branching using the MF rule 

6 1 .08 193 47 0 .82 84 21 0 .98 100 25 0 .98 106 29 1 .10 164 33 1 .13 198 45 

7 2 .87 391 57 1 .91 222 25 2 .23 203 27 4 .16 360 81 2 .94 222 29 3 .62 251 29 

9 0 .52 125 21 0 .50 98 21 0 .63 98 23 0 .68 102 25 0 .72 134 23 0 .85 143 27 

11 1 .13 151 25 0 .94 98 17 0 .85 82 13 1 .14 93 15 1 .22 122 19 1 .34 109 11 

12 14 .61 2174 579 9 .25 1277 325 6 .44 762 221 12 .00 1389 401 17 .59 2261 607 14 .06 1889 489 

17 0 .73 89 7 0 .57 60 7 0 .74 77 7 0 .55 44 3 0 .44 45 3 0 .93 99 7 

19 11 .13 1216 201 16 .19 1881 379 10 .41 844 173 6 .79 524 113 10 .10 860 153 15 .82 1180 209 

23 1 .10 72 1 2 .13 54 1 2 .61 58 1 4 .12 73 3 5 .35 95 2 2 .13 53 1 

25 643 .79 8695 687 451 .87 6236 761 1,394 .33 15068 2063 2,277 .97 22493 3319 1,282 .84 15608 1642 2,340 .25 21952 2516 

28 43 .90 572 31 116 .01 1027 131 30 .48 161 5 103 .08 502 45 175 .97 1030 101 103 .48 619 52 

29 38 .25 789 155 330 .35 6644 1689 367 .58 6145 1635 174 .20 2215 555 127 .94 1825 371 115 .17 1643 281 

Select the arc for branching using the MFC rule 

6 1 .19 193 47 0 .79 84 21 0 .97 100 25 1 .02 106 29 1 .10 164 33 1 .16 198 45 

7 2 .11 264 37 1 .83 212 23 1 .92 179 21 4 .19 329 65 3 .10 236 29 3 .38 242 27 

9 0 .63 143 25 0 .52 98 21 0 .65 90 21 0 .79 124 31 0 .71 134 23 0 .87 138 25 

11 0 .97 125 17 0 .95 98 17 0 .81 82 13 1 .134 93 15 0 .86 85 7 1 .42 109 11 

12 13 .06 2022 523 9 .21 1244 321 12 .42 1479 419 11 .089 1277 361 11 .77 1644 461 14 .11 1736 453 

17 0 .53 70 3 0 .57 60 7 0 .74 77 7 0 .58 44 3 0 .449 45 3 0 .58 67 3 

19 8 .72 894 155 11 .25 1172 229 11 .53 900 177 8 .44 641 147 9 .15 817 145 14 .96 1095 195 

23 1 .08 72 1 2 .13 54 1 2 .62 58 1 4 .26 73 3 5 .22 95 2 2 .13 53 1 

25 63 .17 713 25 376 .50 3901 471 119 .80 830 66 503 .35 4230 556 1,179 .33 14473 1510 1,500 .08 12833 1286 

28 44 .93 572 31 283 .52 2221 289 31 .46 161 5 88 .14 441 35 172 .70 1027 99 103 .78 656 61 

29 163 .76 3744 818 145 .53 2618 587 83 .35 1127 261 189 .05 2736 653 98 .72 1644 318 174 .85 2847 551 
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Table 5 

Results obtained with the selected settings on the large instances. 

Instance Initial Root IP Best Integrality Solution Iterations Time per Nodes 

solution solution solution gap (%) time (s) in total iteration (s) 

(5, 5, F ) with MF branching rule 

31 5186 4935 4935 0.01 1,629.82 1375 1.18 1 

32 5685 5278 5278 2.82 TL 56702 0.38 5518 

33 5156 5091 5091 3.06 TL 48765 0.44 3564 

34 5486 5219 5218 0.19 8,547.16 5747 1.48 305 

35 5685 5536 5530 1.70 TL 39837 0.54 3708 

36 7088 6498 6498 0 168.13 599 0.28 1 

37 4967 4845 4845 0.55 TL 48336 0.44 3305 

38 5745 5610 5608 0.99 TL 112974 0.19 120 0 0 

39 6552 5878 5878 1.37 TL 114894 0.19 12733 

40 5265 5056 5048 2.43 TL 57739 0.37 3677 

Average 5681.5 5394.6 5392.9 1.31 3448.37 48696.8 0.55 4481.2 

(5, 5, F ) with MFC branching rule 

31 5186 4935 4935 0.01 1,645.31 1375 1.19 1 

32 5685 5278 5278 2.82 TL 20252 1.06 1561 

33 5156 5091 5083 2.90 TL 39177 0.55 2154 

34 5486 5219 5218 0.19 4,618.77 3114 1.48 125 

35 5685 5536 5528 1.67 TL 41013 0.52 2749 

36 7088 6498 6498 0 183.85 599 0.31 1 

37 4967 4845 4845 0.55 TL 51382 0.42 3966 

38 5745 5610 5609 1.01 TL 122279 0.17 9513 

39 6552 5878 5878 1.37 TL 88890 0.24 10250 

40 5265 5056 5056 2.59 TL 52736 0.41 3217 

Average 5681.5 5394.6 5392.8 1.31 2149.31 42081.7 0.64 3353.7 

(10, 10, F ) with MFC branching rule 

31 5186 4935 4935 0.01 1,513.15 622 2.43 1 

32 5685 5278 5278 2.82 TL 23568 0.91 2479 

33 5156 5093 5085 2.94 TL 40682 0.53 3111 

34 5486 5221 5218 0.19 12,159.45 5605 2.16 501 

35 5685 5548 5519 1.50 TL 21859 0.98 2234 

36 7088 - 6498 0 213.30 364 0.58 1 

37 4967 4854 4854 0.74 TL 34600 0.62 3641 

38 5745 5616 5610 1.02 TL 66327 0.32 7344 

39 6552 5882 5849 0.87 TL 51237 0.42 7256 

40 5265 5050 5050 2.47 TL 28476 0.75 3448 

Average 5681.5 5275.22 5389.6 1.26 4628.63 27334 0.97 3001.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

solution within the time limit, it is also unable to solve the root LP; this never happens with the enhanced implementation.

Finally, we note that the average integrality gap, when using the enhanced implementation, is 1.85%, which demonstrates

that high-quality solutions can be obtained for VRPRDL instances with up to 120 customers. 

5.3. Impact of distance of roaming delivery locations to the depot on algorithm performance 

In the previous experiments, we focused on identifying an effective parameter configuration for solving the pricing prob-

lems and an effective branching scheme. Next, we assess the performance of the branch-and-price algorithm (with configu-

ration MF (5, 5, F )) on the second set of instances in order to evaluate whether the distance of the roaming delivery locations

to the depot affects its performance. The results for both variations are reported in Table 7 . 

We observe that for each instance the cost of the solution to the second variation is smaller than the cost of the solution

to the first variation, which is to be expected as it should be possible to better exploit the roaming delivery locations when

they are closer to the depot. Furthermore, we see that all second variation instances are solved optimally, with a maximum

solution time of 1005.36 s , whereas instance 42 _ v 1 cannot be solved within the time limit of two hours. Moreover, the total

time spent by the algorithm in solving all second variation instances is considerably less than the total time required to

solve all first variation instances. However, the algorithm does not perform uniformly better on second variation instances.

The fact that there are likely fewer feasible solutions in the first variation instances may explain why more first variation

instances can be solved at the root node of the search tree. That there are likely more feasible solutions in the second

variation instances is reflected by the fact that the problem graph after preprocessing for the second variation is denser for

all instances. 

5.4. Assessing the benefits of employing trunk delivery services 

To be able to comprehensively assess the benefits of trunk delivery services, we need to be able to solve instances of

the VRPHRDL as well. Therefore, we start by investigating how well our branch-and-price algorithm performs on VRPHRDL
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Table 6 

Straightforward branch-and-price vs. the default branch-and-price with parameter configuration (5, 

5, F ) and the MF branching rule. 

Instance Straightforward MF (5, 5, F ) 

Best Solution Initial Root IP Best Integrality Solution 

solution time (s) solution solution solution gap (%) time (s) 

1 901 0.58 957 – 901 0 0.26 

2 1286 0.27 1292 – 1286 0 0.04 

3 991 0.43 1004 – 991 0 0.07 

4 1062 0.27 1069 – 1062 0 0.04 

5 1832 0.04 1832 – 1832 0 0.02 

6 1294 2.30 1300 1300 1294 1.73 1.08 

7 1155 30.47 1158 1158 1155 1.29 2.87 

8 1455 0.18 1555 – 1455 0 0.07 

9 1260 3.32 1272 1268 1260 1.86 0.52 

10 1684 0.55 1733 – 1684 0 0.03 

11 1922 14.28 1931 1922 1922 0.31 1.13 

12 2324 120.38 2325 2325 2324 2.52 14.61 

13 1747 23.33 1758 – 1747 0 0.68 

14 1273 30.83 1281 – 1273 0 0.64 

15 1694 22.78 1696 – 1694 0 0.50 

16 1938 57.13 1941 – 1938 0 0.75 

17 1965 5.75 1966 1965 1965 0.10 0.73 

18 1827 2.10 1831 – 1827 0 0.23 

19 2083 93.55 2121 2110 2083 2.46 11.13 

20 1822 78.70 1889 – 1822 0 1.53 

21 3761 606.60 3775 – 3761 0 4.13 

22 2828 272.43 2877 – 2828 0 10.74 

23 4 4 40 238.27 4 4 47 4 4 40 4 4 40 0.01 1.10 

24 3378 382.37 3477 – 3378 0 11.62 

25 9784 TL 3375 3169 3161 0.84 643.79 

26 4536 78.61 4586 – 4536 0 1.87 

27 2865 296.23 2877 – 2865 0 7.08 

28 9450 TL 4220 4176 4173 0.08 43.90 

29 3964 TL 4017 3979 3964 0.73 38.25 

30 4107 45.22 4122 – 4107 0 1.80 

31 18142 TL 5186 4935 4935 0.01 1629.82 

32 19514 TL 5685 5278 5278 2.82 TL 

33 18008 TL 5156 5091 5091 3.06 TL 

34 19880 TL 5486 5219 5218 0.19 8547.16 

35 19196 TL 5685 5536 5530 1.70 TL 

36 21772 TL 7088 6498 6498 0.00 168.13 

37 20010 TL 4967 4845 4845 0.55 TL 

38 20032 TL 5745 5610 5608 0.99 TL 

39 20136 TL 6552 5878 5878 1.37 TL 

40 20042 TL 5265 5056 5048 2.43 TL 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

instances. We experimented with the three settings that proved most effective for the VRPRDL instances and found that

although no setting clearly dominated, most best-known solutions are found with the setting MFC (10, 10, F ). Therefore, we

report the results obtained with this setting in Table 8 , where, for completeness sake, we include also the value of the best

solution found by any of the three settings (highlighting in bold the values of the solutions that have a smaller cost than

the value of the best solution obtained with the setting MFC (10, 10, F )). 

For the VRPHRDL instances with up to 60 customers, 24 of the 30 instances can be solved to optimality within two

hours and optimal solutions to most of these instances are found at the root node. Note that, as in previous experiments,

the initial solutions are obtained by the heuristic of Reyes et al. (2016) . 

For the VRPHRDL instances with 120 customers, the algorithm does not finish solving the root node LP within six hours,

demonstrating that VRPHRDL instances are harder to solve than VRPRDL instances. Even when the time limit is reached

before solving the root node LP, a large number of columns has been generated, which enables us to find an improved

solution by solving the restricted master problem as an integer program when the time limit is reached. We observe that

for these difficult instances, the branch-and-price algorithm finds solutions that, on average, improve the initial solution by

approximately 4%. As mentioned at the start of this section, the primary reason that VRPHRDL instances are more difficult

than VRPRDL instances is that time windows at the home locations are much wider, which reduces the effectiveness of the

preprocessing, and, as a consequence, leads to denser graphs and more arc variables. 

Having alternative locations to deliver a customer order, e.g., to the trunk of the customer’s car when it is parked some-

where other than at home, provides additional flexibility to a delivery company. However, it is easy to construct examples
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Table 7 

Results for Instances 41–50 obtained by enhanced branch-and-price with MF (5, 5, F ). 

Instance Initial Root IP Best Integrality Solution Iterations Nodes 

solution solution solution gap (%) time (s) 

41 _ v 1 3278 3208 3203 1.88 1249.35 33672 6147 

41 _ v 2 2147 2139 2133 2.33 854.47 7528 805 

42 _ v 1 2842 – 2799 0 3.00 58 1 

42 _ v 2 2032 2012 1946 4.12 1005.36 6472 743 

43 _ v 1 2614 2607 2607 3.68 TL 111845 14854 

43 _ v 2 1995 1966 1966 1.09 270.72 1644 135 

44 _ v 1 2344 2273 2261 2.03 98.52 2342 251 

44 _ v 2 1749 – 1610 0 41.59 222 1 

45 _ v 1 3220 – 3217 0 1.63 34 1 

45 _ v 2 2479 – 2478 0 9.76 80 1 

46 _ v 1 2806 2805 2805 0.91 3.81 126 5 

46 _ v 2 2504 2469 2469 1.11 27.37 302 39 

47 _ v 1 3463 3385 3339 3.38 3710.35 89246 21169 

47 _ v 2 1992 1947 1946 1.22 68.96 556 37 

48 _ v 1 3331 – 3325 0 1.15 48 1 

48 _ v 2 2418 2386 2380 1.65 477.83 8384 1493 

49 _ v 1 3598 3538 3534 1.82 104.26 3084 595 

49 _ v 2 2605 2507 2492 0.55 13.62 207 9 

50 _ v 1 2779 – 2752 0 8.74 114 1 

50 _ v 2 2551 2449 2443 0.38 164.371 1038 119 

Table 8 

Results for the VRPHRDL instances with parameter configuration (10, 10, F ) and the MFC branching rule. 

Instance Initial Root IP Best Best known Integrality Solution Iterations Nodes 

solution solution solution solution gap (%) time (s) 

1 777 – 773 773 0 0.62 23 1 

2 1111 – 1065 1065 0 0.08 9 1 

3 991 – 988 988 0 0.11 15 1 

4 916 – 914 914 0 0.17 16 1 

5 1710 – 1710 1710 0 0.04 10 1 

6 1099 1099 1099 1099 2.04 2.84 147 23 

7 1020 1010 996 996 0.67 11.02 290 36 

8 1457 – 1346 1346 0 0.33 24 1 

9 998 – 997 997 0 0.56 22 1 

10 1167 – 1166 1166 0 0.18 26 1 

11 1607 – 1587 1587 0 8.54 80 1 

12 1834 – 1808 1808 0 4.70 53 1 

13 1563 – 1563 1563 0 3.38 38 1 

14 1058 – 1058 1058 0 3.26 45 1 

15 1363 1355 1347 1347 2.06 155.93 1232 175 

16 1574 1564 1517 1517 2.09 TL 139823 30731 

17 1446 1445 1445 1445 0 2.14 58 1 

18 1679 1627 1627 1627 0.95 26.67 271 35 

19 1468 – 1461 1461 0 1.59 38 1 

20 1730 – 1715 1715 0 2.09 49 1 

21 2860 – 2580 2580 0 396.47 495 1 

22 2213 2213 2213 2213 4.98 TL 7654 591 

23 3393 3373 3363 3363 0.18 194.98 372 23 

24 2587 2574 2574 2569 4.70 TL 8400 596 

25 2429 2414 2400 2400 5.38 TL 8898 622 

26 2881 2847 2846 2845 0.80 TL 19931 2414 

27 2521 – 2518 2518 0 33.85 114 1 

28 2830 2758 2758 2758 0.04 3,392.94 578 5 

29 2917 2913 2913 2892 6.93 TL 22862 3460 

30 2711 – 2691 2691 0 41.77 106 1 

31 3991 3984 3984 3984 – TL 1876 0 

32 4012 3958 3958 3958 – TL 1011 0 

33 3828 3645 3645 3630 – TL 2155 0 

34 4065 3958 3958 3891 – TL 1598 0 

35 3290 3255 3255 3255 – TL 1905 0 

36 4607 4533 4533 4525 – TL 1102 0 

37 3585 3395 3395 3395 – TL 2063 0 

38 4131 3980 3980 3976 – TL 1343 0 

39 4686 4316 4316 4316 – TL 1519 0 

40 3980 3680 3680 3680 – TL 1876 0 
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Table 9 

Comparison of the VRP, the VRPRDL, and the VRPHRDL solutions. 

Instance VRP VRPRDL VRPHRDL 

Routes Best Home/total Routes Best Home/total Routes Best Savings wrt best 

solution solution solution VRP solution (%) 

1 3 864 0.47 4 901 0.60 3 773 10.53 

2 4 1187 0.47 5 1286 0.73 4 1065 10.28 

3 5 1305 0.60 4 991 0.67 3 988 24.29 

4 3 974 0.53 5 1062 0.87 3 914 6.16 

5 7 2171 0.53 6 1832 0.67 6 1710 21.23 

6 4 1246 0.65 5 1294 0.75 4 1099 11.80 

7 4 1156 0.55 4 1155 0.85 3 996 13.84 

8 5 1636 0.60 6 1455 0.70 5 1346 17.73 

9 4 1215 0.35 5 1260 0.60 4 997 17.94 

10 5 14 4 4 0.60 8 1684 0.85 4 1166 19.25 

11 8 2491 0.50 7 1922 0.70 5 1587 36.29 

12 6 2001 0.50 8 2324 0.67 6 1808 9.65 

13 6 1774 0.60 6 1747 0.73 6 1563 11.89 

14 5 1648 0.50 6 1273 0.80 4 1058 35.80 

15 6 1935 0.47 6 1694 0.57 5 1347 30.39 

16 6 1890 0.47 7 1938 0.80 5 1517 ∗ 19.74 

17 7 2199 0.33 8 1965 0.57 5 1445 34.29 

18 6 1836 0.43 7 1827 0.73 5 1627 11.38 

19 6 1889 0.70 7 2083 0.83 5 1461 22.66 

20 6 1823 0.83 6 1822 0.83 6 1715 5.92 

21 9 3046 0.47 13 3761 0.80 8 2580 15.30 

22 7 2452 ∗ 0.57 10 2828 0.78 7 2213 ∗ 9.75 

23 12 3949 0.48 16 4 4 40 0.87 10 3363 14.84 

24 9 2924 0.43 11 3378 0.80 8 2569 ∗ 12.14 

25 8 2648 ∗ 0.47 11 3161 0.78 8 2400 ∗ 9.37 

26 11 3663 0.47 16 4536 0.73 9 2845 ∗ 22.33 

27 11 3438 0.60 10 2865 0.72 8 2518 26.76 

28 10 3423 0.55 14 4173 0.83 8 2758 19.43 

29 12 4010 ∗ 0.48 14 3964 0.75 9 2892 ∗ 27.88 

30 12 3924 0.38 14 4107 0.77 8 2691 31.42 

31 16 4919 0.53 18 4935 0.82 14 3984 ∗ 19.01 

32 15 4593 ∗ 0.46 19 5278 ∗ 0.80 13 3958 ∗ 13.83 

33 14 4296 ∗ 0.53 18 5083 ∗ 0.73 13 3630 ∗ 15.50 

34 14 4613 ∗ 0.52 17 5218 0.83 13 3891 ∗ 15.65 

35 11 3725 ∗ 0.48 20 5519 ∗ 0.86 11 3255 ∗ 12.62 

36 18 5745 ∗ 0.51 22 6498 0.83 15 4525 ∗ 21.24 

37 14 4804 ∗ 0.48 17 4845 ∗ 0.74 11 3395 ∗ 29.33 

38 14 4395 ∗ 0.55 21 5608 ∗ 0.79 14 3976 ∗ 9.53 

39 19 6028 ∗ 0.45 24 5849 ∗ 0.84 15 4316 ∗ 28.40 

40 13 3871 ∗ 0.46 19 5048 ∗ 0.85 13 3680 ∗ 4.93 

Average 8.88 2828.75 0.51 11.10 3065.23 0.76 7.65 2290.53 18.26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where allowing deliveries only to the trunk of a customer’s car may not lead to cost savings, but may, in fact, lead to an

increase in cost, compared to being able to only deliver at the customer’s home. This is the reason that companies are more

likely to deploy a hybrid model in which deliveries can either be made to the customer’s home or to the customer’s car. 

To assess the benefits of trunk delivery, we compute, for the same instance, a VRP solution, in which deliveries can only

be made at the customer’s home location, a VRPRDL solution, in which deliveries can only be made to the trunk of the

customer’s car, and a VRPHRDL solution, in which deliveries can be made either to the customer’s home or to the trunk of

the customer’s car. The results can be found in Table 9 , where the VRP solution is also computed with our branch-and-price

algorithm. We report the cost, the fraction of deliveries made at a customer’s home, and the number of delivery routes. We

use a star to indicate that the best solution is not necessarily optimal, i.e., the algorithm reached the time limit. 

We observe that having the flexibility to deliver either to a customer’s home or to the trunk of the customer’s car

has huge advantages. The average percentage of cost-savings is over 18% (with a minimum cost savings of 4.93% and a

maximum cost savings of 36.29%). This is, in a large part, because fewer delivery routes are required; on average 8.88 for

the VRP solutions and on average 7.65 for the VRPHRDL solutions. Interestingly, the average number of delivery routes in the

VRPRDL solutions is 11.10. Even though there are more delivery locations to choose from, the time during which deliveries

can be made is less, because deliveries cannot be made while the car is driving. Also interesting to note is that the fraction

of deliveries made at a customer’s home location in VRPHRDL solutions is quite high, on average 0.76. 

The difference in VRP, VRPRDL, and VRPHRDL solutions can be seen quite well in Fig. 1 , where we show the optimal

VRP, VRPRDL, and VRPHRDL solutions for Instance 28. The empty rectangles represent the home locations while the filled
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Fig. 1. The optimal VRP, VRPRDL and VRPHRDL solutions for Instance 28 from top to bottom, respectively . 
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circles represent the other potential delivery locations. The optimal VRP solution has 10 delivery routes and a cost of 3423,

whereas the number of delivery routes in the optimal VRPRDL solution is 14 with cost 4173 (55% of the deliveries are made

at home locations), and the number of delivery routes in the optimal VRPHRDL solutions is only 8 with cost 2758 (83% of

the deliveries are made at home locations). 

We repeated the last experiment for the instances of the second set and found similar results (see Table 10 in the

Appendix B ). 

6. Concluding remarks 

Trunk delivery is one of the innovative ideas being explored to reduce delivery cost in the business-to-consumer retail

market sector. Our computational study shows that a hybrid model in which a delivery can be made either at a customer’s

home or to the trunk of the customer’s car has huge potential. On the instances in our test suite, the cost savings were in

the order of 20%. 

We have assumed deterministic travel times and complete knowledge of the itinerary of a customer (more specifically

the itinerary of the customer’s car). These are strong assumptions, but they are, in our opinion, not completely unrea-

sonable. There are well-funded and highly-regarded start-up companies, e.g., Roadie ( www.roadie.com ), with a business

proposition that is entirely based on the assumption that in the future, there will be reliable and predictable information

on the travel patterns of people (based on 24 h monitoring of the location of their smart phone and predictive analytics).

Starting to explore new business models assuming this information is available is important, and we are among the first to

do so. 

However, we recognize that an important next step is to investigate operational strategies and related optimization mod-

els that can dynamically handle deviations from the planned customer itineraries. This is precisely what we are currently

pursuing. 
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Appendix A 

Let L i denote the set of all labels associated with the efficient (i.e., non-dominated) partial paths ending at node i , and

let the source s and the sink t correspond to the depot ( Algorithm 2 ). 

Algorithm 2: labelSetting(S). 

Data : Source node s , sink node t , resource limits R r 
i 

for i ∈ N and r ∈ { 1 , 2 } , resource consumptions h r 
i j 

for (i, j) ∈ A and 

r ∈ { 1 , 2 } , opening of time window e i for every i ∈ N 

Result : The set P 

∗ of all paths corresponding to non-dominated labels on the sink node t 

Initialization 

Let L 0 = { (0 , 0 , 0) } , L i = ∅ for all i ∈ N \ { s } , and L = 

⋃ 

i ∈ N L i . 
Label selection and treatment 

while L � = ∅ do 

Select i ∈ N and U 

i ∈ L i so that U 

i is the lexicographically minimal label in L 

L ← L \ { U 

i } 
for (i, j) ∈ A do 

if canExtendLabel( i, U 

i , j ) then 

U 

j = extendLabel( i, U 

i , j ) 

performDominanceCheck( U 

j , j ) 

Return P 

∗

http://www.roadie.com
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Subroutine 3: canExtendLabel( i , U 

i , j) 

Returns false if the extension of label U 

i along (i, j) is not resource-feasible. Note that the feasibility of extension along (i, t) 

is established before creating U 

i 

if j � = t then 

if c( j) ∈ S then 

Let k be the order of customer c( j) in S 

if U 

i 
k +2 

= 1 then 

Return false 

if max { U 

i 
1 

+ h 1 
i j 
, e j } > R 1 

j 
or max { U 

i 
1 

+ h 1 
i j 
, e j } + h 1 

jt 
> R 1 t then 

Return false 

else if U 

i 
2 

+ h 2 
i j 

> R 2 
j 

then 

Return false 

else 

Return true 

else 

Return true 

Subroutine 4: extendLabel( i , U 

i , j) 

Extends the label U 

i through arc (i, j) by updating the cost component and resource consumptions, and then returns the 

new label 

U 

j 
0 

← U 

i 
0 

+ (w i j − λc(i ) ) 

U 

j 
1 

← max { U 

i 
1 

+ h 1 
i j 
, e j } 

U 

j 
2 

← U 

i 
2 

+ h 2 
i j 

if j � = t then 

if c( j) ∈ S then 

Let k be the order of customer c( j) in S 

U 

j 

k +2 
← 1 

For strong dominance, consume the visitation resource for each customer in S that is not on the partial path extended to 

j, and yet is unreachable from node j 

for c ∈ S do 

Let l be the order of customer c in S 

if U 

j 

l+2 
= 0 and isReachable( j, U 

j , c ) = false then 

U 

j 

l+2 
← 1 

Return U 

j 

Subroutine 5: isReachable( i , U 

i , c) 

Returns true if any of the locations corresponding to customer c is reachable from node i by extending the partial path 

associated with the label U 

i 

for j ∈ N c do 

if canExtendLabel( i , U 

i , j) then 

Return true 

Return false 
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Subroutine 6: performDominanceCheck( U 

i , i ) 

If the label U 

i is dominated by an existing label, then this method returns false; otherwise it adds U 

i to L i and L , removes 

the labels dominated by U 

i from L i and L (if any such label is found), and returns true 

for U ∈ L i do 

if U 

i � = U then 

if U dominates U 

i then 

Return false 

else if U i dominates U then 

L i ← L i \{ U } 
L ← L \{ U } 

else 

Continue 

else 

Break the loop 

L i ← L i ∪{ U 

i } 
if i � = t then 

L ← L ∪{ U 

i } 
Return true 

 

 

 

Appendix B 

Table 10 

Comparison of the VRP, the VRPRDL, and the VRPHRDL solutions for instances in the second set. 

Instance VRP VRPRDL VRPHRDL 

Routes Best Home/total Routes Best Home/total Routes Best Savings wrt best 

solution solution solution VRP solution (%) 

41 _ v 1 8 2745 0.55 10 3203 0.80 8 2662 3.02 

41 _ v 2 8 2738 0.53 7 2133 0.65 6 1998 27.03 

42 _ v 1 9 2805 0.58 9 2799 0.80 8 2610 6.95 

42 _ v 2 9 2806 0.58 7 1946 0.58 6 1946 ∗ 30.65 

43 _ v 1 8 2536 ∗ 0.45 8 2607 ∗ 0.70 7 2260 10.88 

43 _ v 2 8 2536 ∗ 0.43 8 1966 0.50 6 1830 27.84 

44 _ v 1 7 2318 0.65 7 2261 0.75 7 2147 7.38 

44 _ v 2 7 2315 0.60 6 1610 0.70 5 1478 36.16 

45 _ v 1 10 3191 0.80 10 3217 0.90 10 3172 0.60 

45 _ v 2 10 3192 0.70 8 2478 0.73 8 2466 22.74 

46 _ v 1 8 2718 0.53 9 2805 0.75 8 2616 3.75 

46 _ v 2 8 2717 0.50 8 2469 0.58 8 2388 12.11 

47 _ v 1 9 3069 0.53 10 3339 0.70 9 3011 ∗ 1.89 

47 _ v 2 9 3060 0.40 7 1946 0.50 6 1848 39.61 

48 _ v 1 10 3358 0.50 10 3325 0.65 10 3278 2.38 

48 _ v 2 10 3359 0.40 8 2380 0.60 7 2264 32.60 

49 _ v 1 11 3615 0.55 11 3534 0.65 11 3514 ∗ 2.79 

49 _ v 2 11 3615 0.45 8 2492 0.55 8 2457 32.03 

50 _ v 1 9 2928 0.50 10 2752 0.55 10 2727 6.86 

50 _ v 2 9 2930 0.55 8 2443 0.73 7 2302 21.43 

Average 8.90 2927.55 0.54 8.45 2585.25 0.67 7.75 2448.70 16.44 
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