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Abstract— We present the solution of large-scale scattering
problems involving three-dimensional closed conducting objects
with arbitrary shapes. With an efficient parallelization of the
multilevel fast multipole algorithm on relatively inexpensive com-
putational platforms using distributed-memory architectures, we
perform the iterative solution of integral-equation formulations
that are discretized with tens of millions of unknowns. In addition
to canonical problems, we also present the solution of real-life
problems involving complicated targets with large dimensions.

I. INTRODUCTION

For the numerical solution of scattering problems in elec-
tromagnetics, integral-equation formulations provide accurate
results when they are discretized appropriately by using small
elements with respect to wavelength [1]. Simultaneous dis-
cretizations of the scatterer and the integral equations lead
to dense matrix equations, which can be solved iteratively
using efficient acceleration methods, such as the multilevel fast
multipole algorithm (MLFMA) [2]. On the other hand, accu-
rate solutions of many real-life problems require discretiza-
tions with millions of elements, which result in dense matrix
equations with millions of unknowns. To solve these large
problems, it is helpful to increase computational resources
by assembling parallel computing platforms and at the same
time by parallelizing the solvers. Of the various paralleliza-
tion schemes for MLFMA, the most popular use distributed-
memory architectures by constructing clusters of computers
with local memories connected via fast networks [3]-[8].
However, parallelization of MLFMA is not trivial. Simple par-
allelization strategies usually fail to provide efficient solutions
because of the communications between the processors and
the unavoidable duplication of some of the computations over
multiple processors.

In this paper, we present a parallel MLFMA implementation
for the efficient solution of scattering problems involving
tens of millions of unknowns. Our approach involves load-
balancing and partitioning techniques to distribute the tasks
equally among the processors and to minimize the inter-
processor communications. We demonstrate the accuracy and
efficiency of our implementations on a scattering problem
involving a sphere of radius 110 discretized with 41,883,638
unknowns. To the best of our knowledge, this is the largest
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integral-equation problem ever solved. In addition to canonical
problems, we also solve real-life problems involving compli-
cated geometries discretized with large numbers of unknowns.

II. NUMERICAL SOLUTION OF THE INTEGRAL EQUATIONS

For the solution of the scattering problems involving three-
dimensional arbitrary shapes, the unknown surface current
density J(r) is expanded in a series of basis functions b,,(7)
as

N
J(r) =" anby(r), (1)

where a,, represents the unknown coefficients of the basis
functions for n = 1,2, ..., N. Testing the boundary conditions
on the surface of the scatterer and applying discretization on
the resulting integral equation, we obtain N x N dense matrix
equation

N
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where the matrix element Z,,,, is the electromagnetic inter-
action of the nth basis and mth testing functions. Among
various choices for the integral-equation formulations, we
prefer the combined-field integral equation (CFIE), which
produces well-conditioned matrix equations that are easy to
solve iteratively [9],[10].

III. STRUCTURE OF MLFMA

In the iterative solution of the scattering problems, matrix-
vector multiplications (MVMs) are required at each itera-
tion [11]. MLFMA reduces the complexity of the MVMs
related to an N x N dense matrix equation from O(N?) to
O(Nlog N) [2]. This is achieved by considering the matrix
elements as the electromagnetic interactions and calculating
the far-field interactions in group-by-group manner. As de-
picted in Fig. 1, the scatterer is included in a cubic box and
the computational domain is recursively divided into subboxes
(clusters). The smallest clusters include the basis and testing
functions. Then, using the clustering information, a multilevel
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Fig. 1. Recursive clustering to divide the computational domain into
subdomains (clusters).
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Fig. 2. Multilevel tree structure and MLFMA operations.

tree structure is constructed as depicted in Fig. 2. MLFMA
splits the MVMs as

7~$:7NF~SE+7FF~ZB. 3)

In (3), the near-field interactions denoted by Znp are cal-
culated directly and stored in memory. These interactions are
related to the basis and testing functions that are located in
the same or in two touching clusters in the lowest level. On
the other hand, the rest of the interactions, i.e., the far-field
interactions denoted by Z -, are computed approximately via
three main stages performed on the multilevel tree [12]:

1) Aggregation: Radiated fields at the centers of the clusters
are calculated from the bottom of the tree structure to
the highest level. Oscillatory nature of the Helmholtz
solutions requires that the sampling rate for the fields de-
pend on cluster size as measured by the wavelength [13].
During the aggregation stage, we employ local Lagrange
interpolation to match the different sampling rates of the
consecutive levels [14].

2) Translation: Radiated fields at the centers of the clusters
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Fig. 3. Simple partitioning of the tree structure based on distributing the
clusters among the processors in all levels.

are translated into incoming fields for other clusters. For
a basis cluster at any level, there are O(1) testing clusters
to translate the radiated field.

3) Disaggregation: The incoming fields at the centers of
the clusters are calculated from the top of the tree
structure to the lowest level. At the lowest level, the
incoming fields are received by the testing functions.
During the disaggregation stage, we employ local La-
grange anterpolation (transpose interpolation) method to
match the different sampling rates of the consecutive
levels [14],[15].

We note that the lower levels of the multilevel tree include
many clusters with low sampling rates for the radiated and
incoming fields. On the other hand, higher levels involve a
few clusters with large numbers of samples.

IV. PARTITIONING OF THE TREE STRUCTURE

Because of its complicated structure, parallelization of
MLFMA is not trivial. For high efficiency, it is essential to
distribute the tree structure among the processors with minimal
duplication and communication between the processors. A
simple partitioning of the multilevel tree is depicted in Fig. 3,
which involves the distribution of the clusters among the
processors. In this scheme, each cluster at any level is assigned
to a single processor. This strategy works efficiently for
the lower levels involving many clusters. However, problems
arise when the clusters in the higher levels are distributed
among processors, especially when the number of processors
is comparable to the number of clusters [7]. For these levels,
it is difficult to distribute the clusters among the processors
without a duplication. In addition, dense communications are
required between the processors, which reduce the efficiency
of the parallelization significantly.

To improve the parallelization efficiency, a hybrid partition-
ing approach is introduced in [6], where different strategies are
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Fig. 4. Hybrid partitioning of the tree structure involving different strategies
for the upper and lower levels.
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Fig. 5. Hierarchical partitioning based on adjusting the number of partitions
in both directions (fields and clusters) appropriately.

applied for the lower and higher levels of the tree structure.
As depicted in Fig. 4, each cluster in the lower (distributed)
levels is assigned to a single processor similar to the simple
partitioning scheme. In the higher (shared) levels, however,
processor assignments are made on the basis of the fields of
the clusters, not on the basis of the clusters themselves. Then,
each cluster is shared by all processors and each processor is
assigned to the same portion of the fields of all clusters. Since
the fields in the higher levels have large sampling rates, the
samples can be distributed efficiently among the processors.
In addition, dense one-to-one communications between the
processors during the translations are eliminated.

Although the hybrid partitioning strategy increases the par-
allelization efficiency significantly compared to simple paral-
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Fig. 6. Parallelization efficiency for the solution of a scattering problem
involving a sphere of radius 20\ discretized with 1,462,854 unknowns.

lelization approach, this is not sufficient. For some of the levels
of the tree structure, neither distributing the fields nor the
clusters among the processors is efficient. Consequently, we
propose to use a hierarchical partitioning scheme as described
in Fig. 5 to further increase the parallelization efficiency.
In this strategy, partitioning is performed in both directions
(clusters and fields) for all levels and we adjust the numbers
of partitions appropriately by considering the numbers of
clusters and the samples of the fields. As depicted in Fig. 5,
the clusters in the lowest level are still distributed among
all processors without any partitioning of the fields. As we
proceed to the higher levels, however, the numbers of partitions
for the clusters and the fields are systematically decreased and
increased, respectively. The hierarchical partitioning strategy
is detailed in the Appendix.

As an example, we demonstrate the efficiency of MLFMA
parallelization for the solution of a scattering problem involv-
ing a sphere of radius 20\. The problem is discretized with
1,462,854 unknowns and solved on a cluster of quad-core Intel
Xeon 5355 processors connected via an Infiniband network.
Fig. 6 depicts the efficiency when the solution is parallelized
into various numbers of processes. The parallelization effi-
ciency is defined as

275
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where T}, is the processing time of the solution with p
processes. Fig. 6 shows that the efficiency is increased signifi-
cantly by using the hierarchical partitioning strategy compared
to the hybrid and simple strategies, when all three strategies
are optimized by employing load-balancing algorithms. For
16 processes, the efficiency is 91% using the hierarchical
parallelization, while it is 86% and 77% for the hybrid and
simple parallelization strategies, respectively. Even in the 64-
process case, the parallelization efficiency is above 75% with
the hierarchical partitioning approach.



V. COMMUNICATIONS IN PARALLEL MLFMA

In parallel MLFMA, processors need to communicate with
each other to transfer data. Using appropriate partitioning
schemes (such as hierarchical partitioning) and load-balancing
algorithms significantly reduces the data traffic. However,
the remaining communications must be organized carefully.
Communications required in the MVMs by parallel MLFMA
can be summarized as follows:

1) Near-Field to Far-Field Switch: Using load-balancing al-
gorithms, the rows of the matrix equation are partitioned
differently for the near-field and far-field interactions.
Therefore, we perform all-to-one (gather) and one-to-all
(scatter) communications in each MVM to match the
different partitioning schemes for the output vector.

2) Inflation and Deflation for the Interpolation and Anter-
polation Operations: During the aggregation stage, inter-
polation operations in a processor require samples that
are located in other processors [6]. These are obtained
by one-to-one communications. Similarly, some of the
data produced by the anterpolation operations during the
disaggregation stage should be sent to other processors
via one-to-one communications.

3) Data Exchange From Level to Level: Using the hier-
archical parallelization strategy, the partitioning should
be changed between levels during the aggregation and
disaggregation stages. This is achieved by exchanging
data between pairs of processors.

4) Intra-Processor Translations: Some of the translations
are related to basis and testing clusters that are located
in different processors. Therefore, one-to-one communi-
cations are required between the processors to perform
these translations [6],[7].

To improve the efficiency of the parallelization, we use
nonblocking send and receive operations of message passing
interface (MPI) to transfer the data. For high efficiency, it
is also essential to use high-speed networks to connect the
Processors.

VI. SOLUTIONS OF LARGE-SCALE PROBLEMS

By constructing a sophisticated simulation environment
based on parallel MLFMA, we are able to solve scattering
problems discretized with tens of millions of unknowns. As
an example, we present the solution of a very large scat-
tering problem involving a sphere of radius 110\, which is
discretized with 41,883,648 unknowns. For the solution of
the problem, 9-level MLFMA is employed and parallelized
into 16 processes. The near-field and far-field interactions are
calculated with 1% error. The setup and iterative solution
parts take about 274 and 290 minutes, respectively. Using
BiCGStab algorithm [11] and an efficient block-diagonal pre-
conditioner (BDP) [2], the number of iterations to reduce the
residual error below 1072 is only 19. The peak memory re-
quirement is 229 GB using the single-precision representation
to store the data. To present the accuracy of the solution, Fig. 7
depicts the normalized bistatic radar cross section (RCS/A?)
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Fig. 7. Bistatic RCS (in dB) of a sphere of radius 110 discretized with
41,883,648 unknowns from 170° to 180°, where 180° corresponds to the
forward-scattering direction.

values in decibels (dB). Analytical values obtained by a Mie-
series solution is plotted as a reference from 170° to 180°,
where 180° corresponds to the forward-scattering direction.
Fig. 7 shows that the computational values sampled at 0.1° are
in agreement with the analytical curve. For more quantitative
information, we define a relative error as

.. lla=cls
1Al

where A and C are the analytical and computational RCS
values, respectively, ||.||2 is the [>-norm defined as

)

(6)

l2l2 =

and S is the number of samples. The relative error is 0.047 in
the 170°-180° range.

Next, we present the solution of a real-life problem in-
volving the Flamme, which is a stealth airborne target, as
detailed in [16] and also depicted in Fig. 8. The scattering
problem is solved at 16 GHz and the maximum dimension
of the Flamme is 6 meters, corresponding to 320\. Using
A/10 triangulation, the problem is discretized with 24,782,400
unknowns. Solution of the problem is performed by a 10-level
MLFMA parallelized into 16 processes. As shown in Fig. §,
the nose of the target is directed towards the = axis and it is
illuminated by a plane wave propagating in the —x direction.
Both 6 and ¢ polarizations are considered. After the setup,
which takes about 104 minutes, the problem is solved twice
(for two polarizations) in about 470 minutes. Using BiCGStab
and BDP, the numbers of iterations to reduce the residual error
below 1073 are 39 and 36, respectively, for the § and the ¢
polarizations of the plane-wave excitation. Fig. 9 presents the
co-polar RCS values in dBm? on the z-y plane as a function of
the bistatic angle ¢. In the plots, 0° and 180° correspond to the
back-scattering and forward-scattering directions, respectively.



Fig. 8. A stealth airborne target Flamme.

VII. CONCLUSION

In this paper, we consider fast and accurate solutions of
large-scale scattering problems discretized with tens of mil-
lions of unknowns using a parallel MLFMA implementation.
We demonstrate the accuracy of our implementations by
considering a canonical scattering problem involving a sphere
of radius 110\ discretized with 41,883,638 unknowns. We also
demonstrate the effectiveness of our implementation on a real-
life problem involving the Flamme geometry with a size larger
than 300\.

APPENDIX
HIERARCHICAL PARALLELIZATION OF MLFMA

In MLFMA, far-field interactions are calculated in a mul-
tilevel scheme using a tree structure constructed by placing
the scatterer in a cubic box and recursively dividing the com-
putational domain into subboxes. Without losing generality,
we consider a smooth scatterer with a maximum electrical
dimension of kD, where k = 27/ is the wavenumber. Using
a discretization with A/10 mesh size for such a geometry leads
to N unknowns, where N = O(k'/2D'/?). Constructing a tree
structure with L = O(log N) levels, the smallest box size is
in the range from 0.15X to 0.3\ and there are O(1) unknowns
in each cluster in the lowest level. At level [ from 1 to L, the
number of clusters can be approximated as

Ny~ N;_1/4 (1#1), @)
Nl ~ 417ZN1, (8)

where Ny = O(N) and Ny = O(1). In other words, the
number of clusters decreases approximately by a factor of four
from a level to the next upper level.

In our implementations, radiated and incoming fields of the
clusters are sampled uniformly in the ¢ direction, while we
use the Gauss-Legendre quadrature in the 6 direction. There
are a total of S; = (T;+1) x (27} + 2) samples required for a
cluster in level [, where T; is the truncation number determined
by the excess bandwidth formula as [13]

Ty ~ 1.73ka; + 2.16(do)?/> (kay) /3. )

In (9), a; is the cluster size at level [ and dj is the desired
digits of accuracy. We note that S; = 2(Ty+1)? = O(1) since
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Fig. 9. Bistatic RCS (in dBm?) of the stealth airborne target Flamme at
16 GHz. Maximum dimension of the Flamme is 6 meters corresponding to
320\. The target is illuminated by a plane wave propagating in the —x
direction. Co-polar RCS is plotted for (a) 6 and (b) ¢ polarizations of the
plane-wave excitation.

the size of the clusters in the lowest level is independent of
N. In general,

Sl =~ 451_1
Sl ~ 41_151,

(10)
Y

and S;, = O(N). Considering the number of clusters (IV;)
and the samples of the fields (.5;), all levels of MLFMA have
equal importance with N;S; = N1.S; = O(N) complexity in
terms of processing time and memory.

Using the hierarchical partitioning strategy, we distribute the
clusters and the samples of the radiated and incoming fields
among the processors. The partitioning is performed carefully
by considering the numbers clusters and the samples at each
level. In a parallelization scheme with p processors, where
p = 2! for some integer i > L — 1, it is appropriate to choose

(#1),



the number of partitions for the clusters as

p
Pet = 5 (12)
Then, the samples of the fields are divided into

psy = — =271 (13)

c,l
partitions for each level | = 1,2,...,L. We note that the

samples are partitioned only along € direction (not along ¢
direction). Using the hierarchical partitioning, the number of

clusters assigned to each processor ¢ = 1,2,...,p at level
l=1,2,...,L can be approximated as

N, 21 N

N9~ 2L o gl-IN, gt—t 1 (14)

pc,l p

while the number of samples assigned to each processor is
S 4l7151
9 ~ _ ol—1

During the aggregation and disaggregation stages, one-to-
one communications are required due to the partitioning of the
samples [6]. For a cluster in level [, the processor ¢ has S} =
(T'+1) x (2174 2) samples, where T} ~ T} is approximately
constant for the entire tree structure. This is an important
advantage of using the hierarchical partitioning strategy, which
provides a well-balanced distribution of the samples for all
levels. For an interpolation operation in a processor, the
amount of data required from other processors is proportional
to number of samples in the ¢ direction, i.e., 27; + 2, per
cluster. Similarly, an anterpolation operation produces same
amount of data to be sent to other processors. Considering all
clusters, the processing time for communications during the
aggregation or disaggregation from level ! to next level can be
expressed as

tagg)dis < NI T) = 21—1&21—@1 x —=—=,  (16)
p p

which is the same for all levels. To switch the partitioning
scheme from level to level, each processor exchanges half of
its data produced during the aggregation and disaggregation
stages. The processing time for these communications can be
expressed as

a7

NS
tezeh X quSlq = 21 = %

Finally, due to the partitioning of the clusters, some of
the translations are related to the basis and testing clusters
that are located in different processors. Therefore, one-to-one
communications are required also during the translation stage.
These communications are achieved by pairing the processors
and transferring the radiated fields of the clusters between
the pairs [7]. In general, each processor is paired one by one
with other p.; — 1 processors, while the number of cluster-
cluster interactions required to be performed for each pair is
proportional to N;! = 21=! Ny /p. In addition, the amount of
the transferred data is Slq = 218, for each cluster-cluster

interaction. As a consequence, the communication time for
the translations can be approximated as

p 22Ny, N1 Sy
tirans X —————2'7°851 = . 18
t X 2l71 P 1 2171 ( )
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