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Uluç Saranlı (Co-Advisor)

Hitay Özbay
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ABSTRACT

IDENTIFICATION OF LEGGED LOCOMOTION VIA
MODEL-BASED AND DATA-DRIVEN APPROACHES

İsmail Uyanık

Ph.D. in Electrical and Electronics Engineering

Advisor: Ömer Morgül

Co-Advisor: Uluç Saranlı

May 2017

Robotics is one of the core areas where the bioinspiration is frequently used

to design various engineered morphologies and to develop novel behavioral con-

trollers comparable to the humans and animals. Biopinspiration requires a solid

understanding of the functions and concepts in nature and developing practi-

cal engineering applications. However, understanding these concepts, especially

from a human or animal point of view, requires the significant use of mathe-

matical modeling and system identification methods. In this thesis, we focus on

developing new system identification methods for understanding legged locomo-

tion models towards building better legged robot platforms that can locomote

effectively as their animal counterparts do in nature.

In the first part of this thesis, we present our efforts on experimental valida-

tion of the predictive performance of mechanics-based mathematical models on a

physical one-legged hopping robot platform. We extend upon a recently proposed

approximate analytical solution developed for the lossy spring–mass models for

a real robotic system and perform a parametric system identification to carefully

identify the system parameters in the proposed model. We also present our as-

sessments on the predictive performance of the proposed approximate analytical

solution on our one-legged hopping robot data. Experiments with different leg

springs and cross validation of results yield that our approximate analytical solu-

tions provide a sufficiently accurate representation of the physical robot platform.

In the second part, we adopt a data-driven approach to obtain an input–output

representation of legged locomotion models around a stable periodic orbit (a.k.a.

limit cycle). To this end, we first linearize the hybrid dynamics of legged locomo-

tor systems around a limit cycle to obtain a linear time periodic (LTP) system
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representation. Hence, we utilize the frequency domain analysis and identifica-

tion methods for LTP systems towards the identification of input–output models

(harmonic transfer functions) of legged locomotion. We propose simulation ex-

periments on simple legged locomotion models to illustrate the prediction perfor-

mance of the estimated input–output models.

Finally, the third part considers estimating state space models of legged lo-

comotion using input–output data. To accomplish this, we first propose a state

space identification method to estimate time periodic state and input matrices of

a hybrid LTP system under full state measurement assumption. We then release

this assumption and proceed with subspace identification methods to estimate

LTP state space realizations for unknown stable LTP systems. We utilize bilin-

ear (Tustin) transformation and frequency domain lifting methods to generalize

our solutions to different LTP system models. Our results provide a basis towards

identification of state space models for legged locomotion.

Keywords: System identification, legged locomotion, mathematical models,

spring-loaded inverted pendulum (SLIP) model, linear time periodic systems,

harmonic transfer functions, subspace identification.
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Robotik, insan ve hayvan yapılarına uyumlu farklı yapısal morfolojilerin tasar-

lanması ve özgün davranışsal kontrolcülerin geliştirilmesi bakımından biyolo-

jik sistemlerden esinlenmenin en sık kullanıldığı araştırma alanlarından biri-

sidir. Biyolojik sistemlerden esinlenme doğadaki işlevleri ve kavramları kap-

samlı bir şekilde anlamayı ve bunlar üzerinden pratik mühendislik uygulamaları

geliştirmeyi gerektirir. Bununla birlikte, özellikle bir insan ya da hayvan için

bazı kavramların anlaşılabilmesi, yüksek seviyede matematiksel modelleme ve

sistem tanılama yöntemleri kullanımı gerektirmektedir. Bu tezde, doğadaki

canlılar gibi başarılı bir şekilde hareket edebilen bacaklı robot platformlarının

gerçeklenebilmesi amacıyla bacaklı hareketliliğin anlaşılabilmesi için yeni sistem

tanılama yöntemlerinin geliştirilmesi üzerine odaklanılmıştır.

Bu tezin ilk bölümünde mekanik-tabanlı matematiksel modellerin fiziksel bir

tek bacaklı zıplayan robot platformu üzerinde kestirim performansının deneysel

doğrulamalarını içeren çalışmalarımızı sunmaktayız. Yakın bir zamanda kayıplı

yay–kütle modeli için önerilen bir yakınsamalı analitik çözüm üzerine tarafımızca

eklemeler yapılarak gerçek bir robot sistemine uyarlanmış ve önerdiğimiz yeni

modeldeki sistem parametrelerini doğru kestirebilmek amacıyla bir parametrik

sistem tanılama çalışması yapılmıştır. Aynı zamanda önerilen yakınsamalı anali-

tik çözümün tek bacaklı zıplayan robotumuzun verileri üzerindeki kestirim perfor-

mansına ait değerlendirmelerimiz de sunulmuştur. Farklı bacak yaylarıyla yapılan

deneyler ve sonuçların çapraz doğrulamaları, önerdiğimiz yakınsamalı analitik

çözümün fiziksel robot platformunu yeterince hassas bir şekilde tanılayabildiğini

ortaya çıkarmıştır.
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İkinci bölümde, kararlı bir periyodik yörünge (limit çevrimi) etrafında ba-

caklı hareketlilik için bir girdi–çıktı gösterimi elde edilmesini sağlayacak veri-

güdümlü bir sistem tanılama yaklaşımı benimsenmiştir. Bu nedenle, doğrusal

ve periyodik olarak zamanla değişen (DPZD) bir sistem gösterimi elde ede-

bilmek amacıyla bacaklı hareketliliğin hibrit sistem dinamikleri bir limit çevrimi

etrafında doğrusallaştırılmaktadır. Böylece, bacaklı hareketlilik için girdi–çıktı

modellerinin tanılanabilmesi amacıyla DPZD sistemlerinin frekans düzleminde

analizini ve tanılamasını yapan yöntemler kullanılmaktadır. Tanılaması yapılan

girdi–çıktı modellerinin kestirim performansını gösterebilmek amacıyla basit ba-

caklı hareketlilik modelleri üzerinde benzetim ortamı deneyleri sunulmuştur.

Son olarak, üçüncü bölüm bacaklı hareketlilik için girdi–çıktı verisi kulla-

narak durum uzayı modellerinin veri-güdümlü tanılamasına odaklanmaktadır.

Bunu başarabilmek için öncelikle tam durum ölçümü varsayımı altında bir hibrit

DPZD sisteminin periyodik zamanlı durum ve giriş matrislerinin kestirilmesini

sağlayan bir durum uzayı tanılama metodu sunulmuştur. Daha sonra, bu

varsayımı kaldırarak bilinmeyen kararlı DPZD sistemleri için periyodik zamanlı

durum uzayı modellerini kestirebilmek amacıyla altuzay tanılama yöntemleri kul-

lanılmıştır. Çözümlerimizi farklı DPZD sistem modellerine genellemek amacıyla

Tustin dönüşümü ve zamanla değişmeyen sistemlere yükseltme yöntemleri kul-

lanılmıştır. Elde edilen sonuçlar bacaklı hareketlilik için durum uzayı modellerinin

tanılamasına yönelik bir temel oluşturmaktadır.

Anahtar sözcükler : Sistem tanılama, bacaklı hareketlilik, matematiksel mod-

elleme, yüklü-yay ters sarkaç (YYTS) modeli, doğrusal ve zamanla değişmeyen

sistemler, harmonik transfer fonksiyonları, altuzay tanılama.
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unconditional love. I also would like to thank my family, Ayhan Uyanık, Meryem

Uyanık, Ali Uyanık, Nurdan Uyanık, Serpil Tiryaki, Habib Tiryaki, Yakup Türel,
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Chapter 1

Introduction

Legged locomotion emerges from a staggering diversity of animal morphologies

in nature. However, despite the widespread use of legs by animals to achieve

terrestrial locomotion [1, 2], the majority of mobile robots use wheels or tracks to

move themselves. Unfortunately, this choice impairs mobility and performance on

broken and unstable terrain [3], shifting attention to the use of legs in mobile and

field robotics [4], despite significant challenges in the identification and control

of legged robot platforms [5–7]. This thesis concerns the system identification

problem of legged locomotion, since it still remains as a grand challenge in both

biology and engineering [2, 8].

The primary objective in this thesis is to develop novel system identification

tools that are applicable to legged locomotor systems. To this end, we utilize

mechanics-based mathematical models, the harmonic transfer functions as well

as the subspace identification theory. This thesis presents our efforts on utilizing

these concepts to the system identification problem of legged locomotion. Our

motivations from the results of existing studies and proposed methodology are

explained in the following sections.
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1.1 Mechanics-Based Mathematical Models of

Legged Locomotion

A common approach to understanding and controlling robotic legged locomotion

is the construction and analysis of simplified mathematical models that capture

essential features of locomotor behaviors [9–20]. Running behaviors, in particular,

are commonly represented by relatively simple spring–mass models such as the

Spring-Loaded Inverted Pendulum (SLIP) model [1, 21]. However, modeling and

analysis of even seemingly simple legged systems can be surprisingly complex

due to the hybrid dynamics arising from intermittent foot contact as well as

challenging nonlinearities in the equations of motion [9, 11, 22–25]. In this context,

modeling of legged behaviors generally rely on a white-box approach, involving

careful characterization of individual components in the system and the intended

behavior together with informed (but possibly incorrect) “decisions” about what

to neglect.

For instance, a common feature of such models is that their hybrid dynamics

involve alternating flight and stance phases during locomotion. The Langrangian

dynamics for these phases can be rather complex, with non-integrable equations

of motion such as the case in stance phase [21, 26]. Given the utility of having

accurate models and associated analytic solutions in constructing high perfor-

mance controllers for nonlinear systems, substantial effort has been devoted to

the construction of approximate analytical solutions to such non-integrable hybrid

models [9–11, 13, 18, 27–29].

1.2 Estimating Input–Output Models of Legged

Locomotion

The representational power of mechanics-based mathematical models is inevitably

limited due to the nonlinear and complex nature of biological legged locomotor
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systems. Attempting to identify and explicitly incorporate these key nonlinear-

ities into the model is daunting at best, increases complexity, and decreases the

analytic utility of the resulting models. Despite our previous studies showing how

accurate such models may be for simple spring–mass systems, there will always be

unmodeled components in the physical system, resulting in discrepancies between

the model and the experiments [22].

Consequently, we adopt a data-driven approach, with the goal of furnishing an

input–output representation of a legged locomotor system, thereby eliminating

the need to manually construct an explicit mathematical model for the system.

Our main goal is to provide a system identification framework applicable to a

useful (although not comprehensive) class of legged locomotion models [9], and

possibly more complex robotic systems [30]. Our approach is based on consid-

ering legged locomotion as a hybrid nonlinear dynamical system with a stable

periodic orbit (limit-cycle), corresponding to the locomotor behavior of interest.

We introduce a formulation that addresses the input–output system identification

problem in the frequency domain for a sub-class of hybrid legged locomotion mod-

els. More specifically, following certain assumptions on the hybrid dynamics of

legged systems, we approximate their hybrid dynamics around the limit-cycle as

a linear time-periodic system (LTP). Perturbing inputs to the locomotor system

with small chirp signals yields input–output data necessary for the application of

LTP system identification techniques, allowing us to estimate harmonic transfer

functions (HTFs) associated with the local LTP approximation to the system

dynamics around the limit cycle.

Existing studies on system identification of LTP systems focus on modeling

these systems as multi-input single-output LTI systems [31]. This approach is

based on the concept of harmonic transfer functions [32], which are infinite-

dimensional operators that are analogous to frequency response functions for LTI

systems. An identification strategy for such systems was developed in [33] using

power spectral density and cross spectral density functions. A similar method

was used in [34] considering the effects of noise in both input and output mea-

surements. Different than these studies, local polynomial methods and lifting

approaches were also used for the identification of harmonic transfer functions
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for multi-input single-output models of LTP systems [35]. Motivated by these

studies, our main goal is to represent the dynamics of legged locomotion as a

linear time periodic system, thereby enabling the use of the system identification

method proposed in [33] for such systems.

1.3 Towards Identification of State Space Mod-

els of Legged Locomotion

Although all finite dimensional representations of a system will produce same

input–output characteristics, state space models are accepted to be the natural

and intuitive representation of a system. Therefore, in this section, we seek to

develop novel system identification methods to estimate state space models of

linear time periodic system towards application on legged locomotor systems.

A great majority of the state space identification methods that are available in

the literature focus on linear time invariant (LTI) systems [36, 37]. However, as

stated earlier, the dynamics of legged locomotor systems exhibit nonlinear char-

acteristics, which yields a linear time periodic (LTP) behavior when linearized

around a stable periodic orbit and under certain assumptions. Hence, we require

novel tools for estimating time-periodic state space structures for these problems.

To this end, we propose two different methods. The first one assumes full state

measurement but considers hybrid linear time periodic systems, where each sub-

system is also an LTP system with known periodic switching times. The second

method considers a more general class of LTP systems by releasing the full state

measurement assumption of the first method. We utilize frequency domain sub-

space identification methods to estimate LTP state space models for unknown

stable LTP systems.
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1.4 Organization of the Thesis

This thesis consists of three main parts, each of which are explained in detail

in different chapters. The first part focuses on our efforts on mechanics-based

mathematical models for legged locomotor systems. As stated earlier, even the

simplest models, such as the Spring-Loaded Inverted Pendulum (SLIP) model,

of legged locomotion includes non-integrable system dynamics. Thus, Chapter 2

extends upon a recently proposed analytical approximate solution for the SLIP

dynamics and focuses on experimental validation of the predictive performance

on a physical one-legged hopping robot platform.

In Chapter 3, we begin with linear time periodic (LTP) system modeling of

legged locomotion around a stable periodic orbit. Hence, we utilize the frequency

domain analysis methods for LTP systems towards obtaining data-driven models

of legged locomotion. We illustrate the practicality of our approaches on different

simulation models by estimating harmonic transfer functions (HTFs) of these

models by just using input–output data without needing explicit mathematical

modeling. We also show the predictive performance of estimated HTFs on a

vertical hopping robot model.

Motivated by the successful results of Chapter 3, Chapter 4 focuses on estimat-

ing time-periodic state space structures from input–output data for LTP systems

towards identification of state space models for legged locomotion. We explain

two different novel methods for identifying state space models for LTP systems

first under full state measurement assumption and then for a general class of LTP

systems.

We finally conclude the thesis in Chapter 5 with some concluding remarks and

possible extensions for future research.
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1.5 Key Contributions

One of the first key contributions of this thesis is that we present an experimen-

tal validation study for an approximate analytical solution to the equations of

motion of mechanics-based mathematical legged locomotion models. We provide

systematic investigation of how mathematical models can present the state tra-

jectories of a physical one-legged hopping robot with different initial conditions

and control signals.

Another key contribution of this thesis is that we present a data-driven identi-

fication methodology for estimating frequency domain transfer functions of legged

locomotor dynamics around a stable periodic orbit. We formulate the legged lo-

comotion models as a linear time periodic (LTP) system around a limit cycle and

show how data-driven identification methods for LTP systems can be utilized for

system identification of legged locomotion models.

Our analysis on the identification of legged locomotion models with time delay

yielded that the input–output identification method we consider in this thesis also

allows estimation of transfer functions under input and measurement delay in the

system. More importantly, our LTP formulation allows independent estimation of

input and measurement delays which would otherwise be impossible to distinguish

with an LTI system framework.

In addition, we provide a state space identification method for hybrid, piece-

wise smooth LTP systems under full state measurement assumption. Our formu-

lation allows identification of switching time-periodic system and input matrices

for an unknown stable LTP system. Besides, we extended our formulation for

a general class of LTP systems by relaxing the full state measurement assump-

tion and present a frequency domain subspace based state space identification

methodology for LTP systems.
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Chapter 2

Experimental Validation of a

Feed-Forward Predictor for

Legged Locomotion

Widely accepted utility of simple spring-mass models for running behaviors both

as descriptive tools as well as literal control targets motivate accurate analytical

approximations to their dynamics. Despite the availability of a number of such

analytical predictors in the literature, their validation has been mostly done in

simulation and it is yet unclear how well they perform when applied to physical

platforms. In this study, we extend on one of the most recent approximations in

the literature to ensure its accuracy and applicability to a physical monopedal

platform. To this end, we present systematic experiments on a well-instrumented

planar monopod robot, first to perform careful identification of system parameters

and subsequently to assess predictor performance. The work presented in this

chapter has also been reported and appeared in [22].
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2.1 Introduction

Faced with an ever increasing need for mobile robotic platforms that can negotiate

complex outdoor surfaces, it has become evident that traditional wheeled and

tracked designs are approaching their morphological limits and the use of legs

in various forms has to be explored [3]. Recent research and progress in both

the theory [2] and practice [5–7, 30, 38] of building such machines provide ample

evidence to support this observation. Nevertheless, numerous challenges remain

before legged platforms can reach the level of autonomous performance already

commonly observed in mobile wheeled and tracked robot platforms.

The ultimate promise of nimble locomotion on complex terrain led to both

the construction of many legged morphologies as well as mathematical models

to describe their underlying dynamics. Among the latter, the Spring-Loaded In-

verted Pendulum (SLIP) model [21], an extended version of which is illustrated

in Fig. 2.1, has become one of the most widely accepted and utilized model. The

SLIP model is capable of accurately describing center-of-mass (COM) movements

of running animals of widely varying sizes and morphologies [39, 40]. Originally

motivated by biomechanical observations [41, 42], the SLIP model was adopted

and refined by numerous robotics researchers in the last three decades [4], be-

ing established as an effective and appropriate dynamic abstraction for running

behaviors [8].

The utility of this behavioral abstraction was also shown by its active embed-

ding within more complex morphologies such as the RHex hexapod [43]. This

provided further support to the idea pioneered by Raibert’s robots [4] and other

similar platforms [44–46], that the SLIP model could also act as the basis for hier-

archical control strategies wherein the abstract running behavior would be regu-

lated by SLIP controllers, unaware of the remaining redundancies in the complex

morphology [14, 20]. This means that regardless of the complexity of the mechan-

ical systems, the control problem can be solved by designing controllers for the

mathematical representation [47].
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Figure 2.1: The Extended Spring-Loaded Inverted Pendulum (SLIP) model.
Dashed curve illustrates a single stride from one apex event to the next, defining
the return map Xn+1 = f(Xn,un).

The availability of analytic solutions to SLIP dynamics is crucial for formulat-

ing predictors for future steps as well as for the design of model-based controllers.

Unfortunately, the non-integrable nature of SLIP stance phase dynamics necessi-

tates approximate analytical solutions that can predict center of mass movements

of legged locomotor systems under certain assumptions. A number of alternative

approximate analytical solutions for the SLIP dynamics have been proposed in

the literature. In this context, Schwind and Koditschek proposed an approximate

analytical solution based on the iterative application of the mean value theorem,

which converges to true SLIP dynamics after sufficient number of iterations [13].

Subsequently, Geyer formulated a simpler approximation based on certain as-

sumptions on model parameters and trajectories such as small angular sweep and

small leg compression [10]. Geyer’s work was later extended with support for

non-symmetric steps [18] and viscous damping in the leg [9]. Note that the ex-

tended SLIP model we use in this study considers the viscous damping in the leg

as well as the effects of non-symmetric steps.

Experimental evidence for the relevance of the SLIP model to both biological

and robotic running behaviors has also been established in a number of studies [12,

43]. However, the accuracy of approximate analytical solutions to the dynamics
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of this model have so far only been verified in simulation [9, 10], leaving their

practical applicability an open question. The validity of approximate analytical

predictors for SLIP trajectories strongly influences their usability in the design

of model-based controllers [48]. The main goal of this part is to establish that

even approximate analytical solutions to the SLIP model remain accurate for a

physical one-legged hopping robot platform. Similar to the work presented in

this study, Long et al. performed an experimental validation of approximate

analytical solutions to the Simplest Parkour Model (SPM) on ParkourBot [49],

a planar dynamic climbing robot with two compliant legs, exhibiting SLIP-like

behavior. Unlike SPM, which relies on an instantaneous stance phase, we consider

the full stance dynamics as proposed in [9].

Our primary contribution in this part is hence the experimental validation of

a feed-forward predictor for SLIP trajectories. To this end, we also present the

design of a well-instrumented monopod robot on which our validation experi-

ments are performed. We also extend the solution presented in [9] to model the

effects of non-negligible leg mass on system energy, an inescapable aspect of every

legged platform, and viscous damping during the flight phase that can be used

to model unexpected sources of energy losses. As a final step, we compare the

prediction performance of our predictor with Geyer’s approximation [10] as well

as the numeric integration of SLIP model with and without damping in the leg

to illustrate the practicality of the method proposed in [9].

2.2 The Extended SLIP Model

We begin our investigation by extending the ideal SLIP model to incorporate

features necessary for its applicability to a physical monopod platform. First,

we consider the effects of non-negligible leg mass, an inevitable component of all

legged platforms effecting system dynamics both due to its moment of inertia

and due to collision losses. Previous studies in this context focused on the effect

of leg mass on gait stability considering its effects both throughout the entire

stride [50] as well as just the touchdown collision [51]. Our extended model
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incorporates the latter, focusing on the energetic effects of the leg mass due to

phase transitions with collision, since swing leg dynamics were found to have

only a minor effect on locomotory dynamics [50]. In addition, integration of leg

inertia to the system dynamics increases the complexity of the solutions for the

stance dynamics. Therefore, we omit the effect of leg mass on system dynamics

during the stance phase but only consider it for the impact collisions. This way,

we can preserve approximate analytic nature of the solutions for the equations of

motion of the stance phase. We will also show that the omission of leg dynamics

during stance does not significantly impair the accuracy of our approximations

for monopedal systems. The inclusion of this extension in our model substantially

increases its applicability to physical legged platforms.

The second extension we consider is the presence of viscous damping dur-

ing flight. Even though this is primarily useful to us for modeling mechanical

properties of the central boom attachment for planarized robots such as our ex-

perimental platform, it generalizes the equations of motion in a way that allows

modeling energy loss during flight for physical systems as well. This might be

employed, for example, when leg retraction is found to effect flight dynamics or

when air friction is found to be significant for fast running.

It would certainly have been desirable to integrate lateral dynamics or a torso

in our model. However, it has been shown that the dynamics of steady-state

running in three dimensions is largely determined by motion occurring in the

sagittal plane, with negligible influence from the lateral plane [4]. Moreover, to

the best of our knowledge, there are currently no analytical approximations to

the dynamics of a 3D-SLIP with a torso and the feasibility of obtaining such

approximations is not yet clear. Consequently, even though this is a problem

that deserves and requires further theoretical and experimental investigation, we

leave this inquiry outside the scope of the present study.

Note that the extensions we consider do not alter the analytical simplicity

of the SLIP predictor and preserve the generality of our results. Both of our

extensions can be adapted to different monopedal robot platforms by calibrating

the leg mass and viscous damping during flight, whatever its source might be.
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Figure 2.2: SLIP locomotion phases (shaded regions) and associated transition
events (boundaries).

Also, our model reduces to the ideal SLIP model when the leg mass and flight

damping are chosen to be zero, making our model applicable to a broad set of

scenarios.

2.2.1 Model Structure and Definitions

The extended SLIP model we consider in this study consists of a point mass

attached to a compliant leg with mass ml concentrated at the toe, stiffness k

and viscous damping d as illustrated in Fig. 2.1. During locomotion, this model

alternates between stance and flight phases as shown in Fig. 2.2, with the toe re-

maining stationary on the ground during stance. No torque is applied to the leg

during stance and the body experiences gravitational acceleration with both ver-

tical and horizontal viscous damping during flight. Table 2.1 details the notation

we use throughout the chapter.

Touchdown and liftoff events mark transitions to and from the stance phase,

respectively. Touchdown occurs when the toe comes into contact with the ground

with the leg positioned at a fixed touchdown angle, θtd, during flight. We assume

negligible toe dynamics during flight, with the toe mass positioned as necessary
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to achieve the desired touchdown leg angle and an uncompressed leg spring.

As usual, our study of this legged system relies on a Poincaré section defined

at the “apex” point, which is indeed defined as the highest point on system

trajectories during flight with ż = 0.

This leads to the definition of apex states as

Xn := [ yn, ẏn, zn ]T , (2.1)

which is subsequently used to define the apex return map

Xn+1 = f(Xn,u), (2.2)

with control inputs u appropriately defined as in [9]. For the current problem,

the only control parameter we use is the leg angle at touchdown.

In contrast, liftoff occurs when the vertical component of the ground reaction

force on the toe becomes negative. Unlike existing ideal SLIP models, our ex-

tended model incorporates a discrete change in the body velocity at liftoff due

to the collision between the leg structure and a mechanical hard limiter on the

leg length, typically included on almost all prismatic leg designs to prevent radial

leg oscillations during flight. We model this discontinuity with an instantaneous

liftoff map. Consequently, the apex return map can be decomposed as

Xn+1 := (fa ◦ fc ◦ fs ◦ fd)(Xn,u) , (2.3)

combining the descent map fd, the stance map fs, the instantaneous liftoff map fc

and the ascent map fa. Subsequent sections detail analytic derivations for each

of these maps.

Table 2.1: Notation used throughout the chapter
Extended SLIP Parameters

y, z, ẏ, ż Body positions and velocities
mb, ml Body and leg mass of the robot
k, d Leg spring and damping constants
dh, dv Horizontal and vertical viscous damping during flight
ρ, θ Leg length and angle

† Note that subscripts represent the system parameters at
critical times such as ρtd, ρb, and ρlo represent the leg length
at touchdown, bottom and liftoff times, respectively.
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2.2.2 Descent and Ascent Maps

In contrast to the simple ballistic flight trajectories of [9], flight dynamics for the

extended model have viscous damping in both horizontal and vertical directions.

Hence, the associated equations of motion for the extended model take the form[
ÿ

z̈

]
=

[
−dhẏ
−g − dvż

]
, (2.4)

where dh and dv correspond to horizontal and vertical viscous damping during

flight, respectively.

Analytic solutions to these equations are given by

y(t) =
ẏ0

dh
(1− e−dht) + y0 , (2.5)

z(t) =
g

d2
v

(1− e−dvt − dvt) +
ż0

dv
(1− e−dvt) + z0 , (2.6)

where (y0, z0) and (ẏ0, ż0) represent initial body positions and velocities, respec-

tively. Velocity equations for the body can be obtained through differentiation

as

ẏ(t) = ẏ0e
−dht , (2.7)

ż(t) = ż0e
−dvt − g

dv
(1− e−dvt) . (2.8)

Using these solutions, time of touchdown can be found as the solution to the

equation z(ttd) = ρ cos θtd whereas time of apex is the solution to the equation

ż(ta) = 0.

2.2.3 Approximate Analytical Solutions to Stance Trajec-

tories of the SLIP Model

This section briefly summarizes the approximate analytical solutions proposed

in [9] towards our experimental validation studies. A key point that needs to be

noted for this section is that we utilize a non-dimensional coordinate system to
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generalize our results for legged locomotion models with different system param-

eters. Hence, using a non-dimensional formulation, we redefine time as t̄ := t/λ

with λ :=
√
ρ0/g and scale all distances with the spring rest length ρ0 to obtain

equations of motion for stance in polar coordinates as

¨̄ρ = ρ̄ ˙̄θ
2
− κ(ρ̄− 1)− c ˙̄ρ− cos(θ̄), (2.9)

0 =
d

dt̄
(ρ̄2 ˙̄θ)− ρ̄ sin θ̄. (2.10)

Note that (d/dt̄)n = λn(d/dt)n, where all time derivatives are with respect to the

newly defined, scaled time variable. Table 2.2 details descriptions and definitions

of non-dimensional parameters used throughout the chapter.

Table 2.2: Notation for non-dimensional parameters
Parameter Definition Description

t̄ := t/λ Time (where λ :=
√
ρ0/g)

[ρ̄, θ̄] := [ρ/ρ0, θ] Leg length and leg angle
κ := k(ρ0/(mbg)) Leg spring stiffness
c := d(ρ0/(λmbg)) Leg viscous damping
p̄θ̄ := pθ/(λ/(mbρ

2
0)) Angular momentum

We now define for the natural frequency ω̂0 :=
√
κ+ 3p̄2

θ̄
, the damping ra-

tio ξ := c/(2ω̂0), the damped frequency ωd := ω̂0

√
1− ξ2 and the forcing term

F := −1 +κ+ 4p̄2
θ̄
. Assuming the conservation of angular momentum and follow-

ing approximations introduced in [9], approximate analytical solutions to stance

trajectories can be computed as

ρ̄(t̄) = M e−ξω̂0 t̄ cos(ωdt̄+ φ) + F/ω̂2
0 (2.11)

˙̄ρ(t̄) = −Mω̂0 e
−ξω̂0 t̄ cos(ωdt̄+ φ+ φ2) (2.12)

θ̄(t̄) = θ̄td +X t̄+ Y (e−ξω̂0 t̄ cos(ωdt̄+ φ− φ2)

− cos(φ− φ2)) (2.13)

˙̄θ(t̄) = 3p̄θ̄ − 2p̄θ̄F/ω̂
2
0 − 2p̄θ̄Me−ξω̂0 t̄ cos(ωdt̄+ φ), (2.14)
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where

M :=
√
A2 +B2 (2.15)

φ := arctan (−B/A) (2.16)

φ2 := arctan (−
√

1− ξ2/ξ) (2.17)

A := ρtd − F/ω̂2
0 (2.18)

B := (ρ̇td + ξω̂0A)/ωd. (2.19)

This approximate solution for stance trajectories allows us to find the time of

occurrence for bottom and liftoff transitions. Bottom is reached when the leg is

maximally compressed and can be found as the solution to the equation ρ̇ = 0.

The liftoff event is more challenging since the presence of damping often results in

the toe lifting off the ground prior to the spring reaching its rest length. Its time

is computed as the minimum of these two conditions. Once these boundaries of

the stance phase are found, the trajectories for an entire stride from an apex to

the next can be computed.

Note that the derivations for the equations of motion explained above assumes

constant angular momentum during each stride. However, this assumption is

quickly violated for non-symmetric steps resulting in prediction errors for the

center of mass trajectories. In order to overcome this issue, [18] introduces a

correction for the effect of gravity on the angular momentum as a constant offset

p̄θ̄(t̄td) added to the angular momentum at the time of touchdown. This cor-

rection term on the angular momentum increases the domain of validity of the

approximate analytical solutions to the non-symmetric steps. Also, resolving this

issue with a simple correction term to the angular momentum preserves the an-

alytical simplicity of the solutions. This correction on the angular momentum is

formulated as

p̂θ̄ = p̄θ̄(t̄td) +
t̄lo
4

(ρ̄(t̄td) sin θ̄(t̄td) + ρ̄(t̄lo) sin θ̄(t̄lo)) . (2.20)
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2.2.4 Modeling the Liftoff Collision

The liftoff event marks the end of the stance phase. For the extended model,

this is accompanied by an inelastic collision between the body and the leg struc-

ture, after which both masses end up moving with the same velocity together.

This is captured in our model as an instantaneous liftoff map (collision map) fc,

corresponding to a discontinuity in the body velocity with[
ẏ+, ż+

]T
:=

mb

mb +ml

[
ẏ−, ż−

]T
, (2.21)

where mb and ml are the body and leg masses while the − and + superscripts

identify pre-collision and post-collision states, respectively. Even though the toe

may have lifted off the ground prior to this collision (hence resulting in nonzero

toe velocity prior to collision), its effect on the body through leg damping will also

contribute to the decrease in the body velocity. We represent the entirety of this

“liftoff phase” with the inelastic collision of (2.21), which has approximately the

same energetic effect on system velocities since no external forces except gravity

act on the system after liftoff and the leg mass is assumed to be small.

With all the maps in place, we now have an approximate analytical solution

to the return map defined in (2.2). Subsequent sections use this approximate

analytical solution for comparisons with experimental data collected for a wide

range of initial conditions and parameters for the extended SLIP model.

2.3 Experimental Setup

Our focus in this study is the experimental evaluation of the predictive perfor-

mance of our analytical approximations proposed in Section 2.2.3 to a SLIP-based

physical robot trajectories within a single stride. To this end, we have designed

and constructed a monopedal robot platform based on the SLIP morphology, in-

strumented to provide full state measurement while constraining robot motion to

the sagittal plane. In this section, we first describe our experimental platform,
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and then conduct systematic experiments to identify various dynamic parameters

for our setup.

2.3.1 Robot Platform

Our platform consists of the planarizer illustrated in Fig. 2.3 that constrains the

motion of an end-plate to a cylindrical plane, approximating unconstrained mo-

tion in the sagittal plane while eliminating unmodeled lateral dynamics. Such

designs are commonly used to investigate locomotion systems and their corre-

spondence to sagittal plane models [4, 45, 52] while allowing sustained forward

locomotion.

An important feature of our design is its ability to provide accurate and high-

bandwidth positional measurements through optical encoders mounted on the

central joint assembly. The main boom, a 5cm diameter, 1.67m long carbon-fiber

tube, is connected to the central joint assembly which has incremental encoders

with 8192 counts per revolution connected to each axis through 1 : 6 timing

belts. This yields a resolution of 0.21mm in positional measurements of the

robot attached to the end-plate.

The leg structure, also illustrated in Fig. 2.3, is affixed to the boom endplate,

which is constrained to a fixed orientation in the sagittal plane. The rest length

of the robot leg is 22cm and it is coupled to the boom plate through a DC motor.

The hip motor is kept inactive during the stance phase but only used during

the flight phase to maintain a fixed leg angle prior to touchdown and just after

liftoff. The hip motor is a Maxon RE30-268215 60W brushed DC motor combined

with a Maxon GP-32-C 1 : 18 planetary gear and is completely disabled during

stance [53]. A three-channel Type L, MR encoder with 512 counts per revolution

is used to measure the leg angle relative to the boom plate and hence the sagittal

plane horizontal.
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Figure 2.3: The hopper robot with an overall view of the planarizer and close
view of the leg.

The robot is programmed with C/C++ programming language and all com-

putations are performed at the center of the planarizer with a Cool LiteRunner-

LX800 PC104 single-board computer. The central computer is mainly used for

behavioral control of the robot and we utilized the Universal Robot Bus (URB)

architecture for communication with the peripheral units such as the motor am-

plifiers and encoder interfaces [54].

2.3.2 Data Collection and Preprocessing

The planarized monopod platform we described in preceding sections is used

for all the experiments presented in this study. To ensure general relevance of

our results, we used four different helical springs, hard, medium, soft and softer,

manufactured to have the same rest length but different stiffnesses and damping

values. The identified compliance and damping values for each of these springs

can be seen in Table 2.5.
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Note that the stiffness range were chosen to be consistent with biomechanics

literature. In particular, experiments on humans (with 80 kg mass and 1m leg

length on average) running at different speeds (in the range 2.5− 6.5m/s) reveal

leg stiffnesses in the range [12, 42]kN/m [55], which corresponds to the stiffness

range [15, 53] in non-dimensional coordinates. On the other hand, manual mea-

surements of our leg springs yield a stiffness range [16, 43] in non-dimensional

units, which covers a large portion of the human stiffness range reported in [55].

Each experiment consisted of manually throwing the robot with different ini-

tial conditions, ensuring in each case that the vertical velocity was upwards to

guarantee the occurrence of the first apex. Prior to this initial thrust, the leg was

positioned at a desired angle (varied across different experiments), maintained

throughout the initial flight phase using the hip motor without affecting flight

dynamics. Upon touchdown, the hip motor was deactivated, letting natural SLIP

stance dynamics govern the motion (see Remark 1). Immediately following liftoff,

the hip motor was re-activated to maintain the liftoff leg angle until the second

apex point was reached, following which it was positioned vertically to catch the

robot and stop its motion. An example for such an experiment is illustrated in

Fig. 2.5, with the corresponding approximate analytical solutions superimposed

as dashed lines.

Remark 1 Note that in this study the only control parameter we use is the touch-

down leg angle. However, there are also some approximate analytical solutions for

the torque-actuated legged locomotion models in which a torque input is applied

to inject additional energy to the system during the stance phase [11]. There are

also some recent studies on experimental validation of the approximate analyt-

ical solutions to the torque-actuated legged locomotion models on physical robot

platforms [56].

All system states were recorded during the experiment at 500Hz using encoders

mounted on the central assembly and the hip motor. Problematic experiments

with foot slippage or other erroneous conditions were manually eliminated. Sub-

sequently, positional data for clean experiments were filtered with a zero-phase
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fifth order Butterworth filter with a cutoff frequency of 50Hz to eliminate noise

resulting from the oscillations and vibration of the boom. These positional en-

coder measurements were then numerically differentiated to obtain body velocity

information. Following this filtering, key transition points along the trajectory,

touchdown, bottom, liftoff and apex, were extracted based on their corresponding

transition conditions and used for analysis and fitting.

2.3.3 Modeling of the Boom Dynamics

The center of mass of the boom–leg assembly is situated outside the sagittal plane

of locomotion. However, since the SLIP model is formulated in this sagittal

plane, we capture the inertial effect of the boom as an increased gravitational

acceleration on the robot body. A simplified lateral model of the boom assembly

is shown in Fig. 2.4, with the equations of motion taking the form

(I +Ml2) φ̈ = −Mlg0 cosφ− 0.5mlg0 cosφ , (2.22)

where m and I are the mass and moment of inertia for the boom and M is

the mass of the leg assembly. Assuming that φ stays small with cosφ ≈ 1 and

sinφ ≈ φ, we have

(I +Ml2) φ̈ ≈ −Mlg0 − 0.5mlg0 . (2.23)

m

φ

M

g0
g

z

l

Figure 2.4: Simplified lateral model for the boom and the leg assembly during
flight.
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Vertical robot position depends on the boom angle through z = l sinφ. For this

relation, our small angle approximation yields z ≈ lφ, whose second derivative

z̈ ≈ lφ̈ can be combined with (2.23) to yield

z̈ ≈ M +m/2

M +m/3
g0 , (2.24)

where we used I = ml2/3 considering that the boom is a cylinder rotating around

its tip. For our platform, we have M = 3.4kg and m = 0.39kg, that yields the

gravitational acceleration perceived in the body frame as g = 9.99m/s2.

2.4 Identification of the Experimental Platform

The two primary sources of inaccuracies in the predictive performance of our ex-

tended model are incorrect choices of model parameters, and inherent deficiencies

in the model or associated approximations. In this study, we seek to isolate the

latter to provide a fair assessment of our model and analytic approximations.

Consequently, we use system identification methods to estimate dynamic model

parameters which are difficult to measure. Similar parameter identification meth-

ods have been used in the literature to determine accurate models for complex

legged platforms [57], but our focus is on the validation of our approximations.

2.4.1 Identification of Body and Leg Masses

We first focus our system identification efforts on the body and leg mass param-

eters, mb and ml respectively, for the extended SLIP model since their influence

on system dynamics, particularly energy losses due to the liftoff collision are sub-

stantial. To this end, we first use vertical hopping experiments with the leg kept

vertical by the hip motor. For the flight phase, (2.6) and (2.8) remain valid and

yield the vertical position and velocity. In contrast, stance trajectories, (2.11)

to (2.14), take a much simpler form when we constrain the motion to vertical

dimension.
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Using the data collection and filtering procedure described in Section 2.3.2,

we ran 50 vertical experiments for each one of all four springs for a total of 200

experiments with θtd = 0 and ẏ0 = 0. Analytic solutions for these vertical trajec-

tories have three common parameters: the body mass mb, the leg mass ml and

the vertical flight damping dv in addition to the spring specific compliance k and

damping d parameters. In order to find these parameters, we construct a nonlin-

ear least-squares error problem with the cost function defined as the percentage

difference between measured and predicted apex and bottom positions, taking

the form

Cv :=
|| [za, zb]− [ẑa, ẑb] ||2
|| [za, zb] ||2

. (2.25)

We use Matlab’s lsqnonlin function to find solutions for mb, ml and dv com-

mon to all 200 experiments. Our results are shown in Table 2.3, while stiffness

and damping parameters for all four springs are detailed in Table 2.5. We will

use these parameters throughout the chapter during the experimental validation

process of our approximate analytical solution.

Table 2.3: Estimates of mass and vertical damping parameters based on vertical

experiments.

mb(kg) ml(kg) dv(Ns/m)

3.21 0.19 0.06

2.4.2 Identification of Horizontal Flight Damping

Vertically constrained experiments do not exercise horizontal degrees of freedom

in our boom assembly. Consequently, we use our entire set of single-stride exper-

iments to identify the horizontal damping coefficient during the flight phase.

We begin by introducing a first order approximation to horizontal flight dy-

namics, which normally have exponential decay terms in their solution, making
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linear fitting methods inapplicable. In particular, we will assume that the hori-

zontal velocity during the descent phase can be approximated as

ẏ(t) ≈ ẏ0 − dht , (2.26)

while relaxing the initial condition ẏ0 to possibly be different than the measured

initial condition ẏ(0) to increase the accuracy of the approximation. Recall that

the parameter of interest in this fitting procedure is the damping coefficient dh,

which justifies this relaxation in the fitting.

Having identified the touchdown states through the preprocessing steps de-

scribed in Section 2.3.2, we can now formulate a linear set of equations Ax = b,

by equating multiple predicted and measured state points along each trajectory

as 

1 0 · · · 0 t11
...

...

1 0 · · · 0 t1n1

...
...

0 0 · · · 1 tm1
...

...

0 0 · · · 1 tmnm





ẏ1
0

ẏ2
0

...

ẏm0

−dh


=



ẏ1(t11)
...

ẏ1(t1n1
)

...

ẏm(tm1 )
...

ẏm(tmnm
)


, (2.27)

where tji is the ith data point for the jth experiment, with the corresponding

horizontal velocity ẏj(tji ). The best fit to this set of data points is given by the

regressor

x = (ATA)−1AT b. (2.28)

Using this procedure, our experiments result in the horizontal flight damping

coefficient common to all experiments identified as dh = 0.3 Ns/m.
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2.5 Experimental Validation of Approximate

Analytic Solutions

Having identified fixed mass and flight damping parameters for the leg assembly

and the planarizing boom, we now continue with the evaluation of the predictive

performance of our analytic approximations to the extended SLIP model together

with the identification of spring compliance and damping coefficients for four

different leg springs. In order to ensure the validity of our evaluation, we ran

experiments with a wide range of initial conditions and touchdown leg angles as

described in Section 2.3.2. In particular, 181, 208, 267 and 174 valid experiments

were completed for the softer, soft, medium and hard springs, respectively, for

a total of 830 experiments. The initial conditions for single stride experiments

were chosen in the ranges ẏ ∈ [0.3, 2.5](m/s) and z ∈ [0.24, 0.48](m).

2.5.1 Performance Criteria

As a common basis for our cost function for system identification as well as the

evaluation of the predictive performance for our approximations, we first define

percentage apex position, velocity and time error measures for each stride as

Eap := 100
|| [ya, za]− [ŷa, ẑa] ||2
|| [ya, za] ||2

(2.29)

Eav := 100
|| ẏa − ˆ̇ya ||2
|| ẏa ||2

(2.30)

Eat := 100
|| ta − t̂a ||2
|| ta ||2

, (2.31)

where variables with hats denote our predictions. These definitions mirror sim-

ilar measures defined in [9]. In order to improve convergence for the system

identification, we also define a position error for the bottom transition as

Ebp := 100
|| [yb, zb]− [ŷb, ẑb] ||2
|| [yb, zb] ||2

. (2.32)
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The cost function we define for system identification is composed of four com-

ponents corresponding to the error measures defined above, taking the form

C :=
√
Cap

2 + Cav
2 + Cat

2 + Cbp
2 , (2.33)

where individual cost functions Cap, Cav, Cat and Cbp correspond to arithmetic

mean of corresponding errors.

2.5.2 Predictive Performance with Cross-Validation

In this section, we present a comprehensive evaluation of the predictive perfor-

mance of our analytic approximations (AAS) to the extended SLIP model, first

identifying the stiffness and damping coefficients for the compliant leg, then using

the error measures defined in Section 2.5.1 to quantify the accuracy of the ap-

proximations. In addition to AAS, we also evaluate the prediction performance

of Geyer’s approximation [10] as well as the numeric integration of the origi-

nal stance dynamics in (2.9) and (2.10) both with (SLIPD) and without (SLIP)

viscous damping in the leg.

For statistical validity, we used a cross-validation approach by dividing experi-

ments into disjoint subsets for training (estimating leg compliance and damping)

and testing (evaluating predictive performance). In this context, we considered

5-fold, 10-fold, 30-fold and leave-one-out options and observed their results sep-

arately. Consistent with observations described in [58], we confirmed that using

higher number of folds yields low deviations in training results but high devia-

tions in test results. Consequently, we use 30-fold cross-validation for this study,

ensuring that test results represent the worst case performance figures for our

approximations.

For the estimation of leg compliance and damping from training data, we

use the lsqnonlin method of MATLAB, which uses the trust-region-reflective

optimization algorithm [59]. We use the compliance and damping parameters

in Table 2.5 obtained from vertical experiments to initialize the optimization,

further refining resulting parameters through repeated runs of the optimization.
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Figure 2.5: An example stride for the hard spring with experimental data (solid
blue) and analytic predictions of AAS (dashed red) and Geyer’s method (dashed
black) for position and velocity trajectories are shown together.

Fig. 2.5 illustrates the results of our system identification for one of the ex-

periments, showing filtered system states superimposed with the predictions of

our analytic approximation and Geyer’s predictor. Initial conditions for the an-

alytic solutions were chosen to be the same as the experiment, except the initial

horizontal velocity which uses the estimate obtained from (2.28). Velocity oscil-

lations in the experimental data right after t = 0.235s are due to vibrations of

the boom assembly following the liftoff collision (also visible as a discontinuity in

horizontal and vertical velocities at around t = 0.235s), but dissipate long before

the end of the stride and hence do not effect the predictive performance of the

return map. Apart from this unmodeled effect, the extended SLIP model and

our approximations show an accurate performance in capturing the behavior of

the experimental platform as compared to Geyer’s predictor.

Table 2.4 details average percentage prediction errors for apex position, ve-

locity and time as well as parameter estimations and their standard deviations

across all experiments including training as well as test sets. Overall, our results

show that prediction errors in positional, velocity and time variables are 2%, 7%

27



and 1.85% on average, respectively. The standard deviations are also well below

0.1% and 2.5% for training and test data, respectively as a result of 30-fold cross

validation. Nevertheless, these experimentally validated single-stride prediction

errors are sufficiently low to be compensated by using adaptive controllers such

as in [48] when additional feedback can be introduced. Similarly, reactive control

algorithms, which are robust against model and measurement uncertainty, can

be used to compensate for such errors [60].

In contrast, numeric integration of SLIP model and Geyer’s prediction show

prediction errors around 10% on average for positional variables. The main rea-

son for this significant error is the unmodeled but inescapable damping loss in

experimental robot platforms. Note that AAS and Geyer’s predictor are ap-

proximations to SLIPD and SLIP dynamics, respectively. This is why numeric

integrations perform better than their corresponding analytic predictors. Con-

sequently, since the numeric SLIP predictor represents an upper bound for the

accuracy of all methods that approximate the trajectories of lossless SLIP models

and still performs worse than our method, we have not included results from any

other approximations in our comparative study.

We can also observe that prediction errors of AAS decrease with increasing

spring stiffness, which is expected since stiffer springs compress less, with tra-

jectories coming closer to satisfying the assumptions underlying our approxima-

tions [9]. In the case of hard spring, the average percentage position prediction

error is 1.53%, which corresponds to approximately 0.75cm for our robot running

at a maximum height of 50 cm.

It is interesting to note that average prediction errors for AAS with respect to

SLIPD were 0.75% and 1.40% for position and velocity coordinates, respectively

[9]. However, the relative prediction performance of AAS with respect to SLIPD

has drastically decreased to 0.1% on average in our experimental study. This is

due to our fitting procedure, which allows AAS and SLIPD to choose different leg

compliance and damping parameters in order to minimize their prediction errors.
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Table 2.4: Percentage prediction errors and parameter estimates resulting from 30-fold cross validation experiments.

Test Runs Training Runs Leg Parameters
Method Eap Eav Eat Eap Eav Eat k (N/m) d (Ns/m)

H
a
rd

SLIPD 1.41 ± 0.51 3.98 ± 1.04 1.69 ± 0.62 1.36± 0.01 3.75± 0.04 1.54± 0.02 6560± 3.09 12.3± 0.07
AAS 1.53 ± 0.40 4.23 ± 1.12 1.74 ± 0.54 1.52± 0.02 4.21± 0.04 1.74± 0.02 6605± 6.14 12.1± 0.06
SLIP 8.13 ± 0.63 4.32 ± 1.22 3.17 ± 0.67 7.9± 0.01 4.18± 0.04 3.06± 0.03 8136± 9.06 –
Geyer 10.46 ± 0.43 8.82 ± 2.28 2.74 ± 0.99 10.45± 0.03 8.68± 0.07 2.75± 0.04 11569± 93.97 –

M
e
d
iu

m SLIPD 1.69 ± 0.46 5.41 ± 1.34 1.24 ± 0.42 1.54± 0.02 5.26± 0.06 1.19± 0.02 4931± 7.00 11.3± 0.05
AAS 1.89 ± 0.40 6.31 ± 1.20 1.27 ± 0.35 1.88± 0.02 6.29± 0.04 1.26± 0.01 4828± 6.83 11.9± 0.05
SLIP 7.43 ± 0.56 6.24 ± 1.35 3.44 ± 0.32 6.92± 0.01 5.34± 0.06 3.47± 0.04 5921± 9.47 –
Geyer 9.49 ± 0.35 9.11 ± 2.54 2.09 ± 0.43 9.49± 0.01 9.05± 0.09 2.10± 0.02 8308± 30.50 –

S
o
ft

SLIPD 1.88 ± 0.72 5.56 ± 2.34 1.98 ± 0.64 1.83± 0.02 5.34± 0.06 1.72± 0.02 3570± 3.88 9.94± 0.05
AAS 2.07 ± 0.66 7.54 ± 2.45 2.68 ± 0.72 2.06± 0.02 7.54± 0.08 2.68± 0.03 3529± 3.05 9.84± 0.04
SLIP 8.37 ± 0.92 8.12 ± 2.55 2.48 ± 0.41 7.93± 0.02 7.73± 0.06 2.13± 0.02 4645± 2.34 –
Geyer 12.29 ± 0.68 15.25 ± 4.12 3.47 ± 0.91 12.28± 0.03 15.23± 0.13 3.48± 0.04 7602± 25.65 –

S
o
ft

e
r SLIPD 2.03 ± 0.40 8.23 ± 1.74 1.67 ± 0.62 2.02± 0.02 8.22± 0.09 1.65± 0.02 2598± 5.79 5.33± 0.05

AAS 2.21 ± 0.47 7.80 ± 1.84 1.68 ± 0.49 2.19± 0.03 7.74± 0.06 1.67± 0.02 2572± 4.18 6.49± 0.03
SLIP 7.14 ± 0.86 11.57 ± 2.36 3.06 ± 0.61 5.95± 0.01 9.19± 0.11 2.79± 0.03 3128± 8.67 –
Geyer 9.49 ± 1.15 19.97 ± 5.85 1.37 ± 0.40 9.47± 0.06 19.78± 0.19 1.38± 0.02 4117± 29.88 –



Our system identification process also reveals leg compliance and damping pa-

rameters for all four springs as listed in Table 2.5. Due to our adoption of the

30-fold cross-validation approach, we obtain 30 different values for these param-

eters, whose mean and standard deviation figures are summarized in Table 2.4.

Note that the estimated leg compliance and damping parameters through AAS

and SLIPD are very close to those revealed by vertical experiments. On the con-

trary, estimation through Geyer’s predictor and SLIP results in unrealistic leg

compliance values, since they assume zero damping in the leg.

Table 2.5: Estimated Leg compliance and damping parameters.
Spring: Softer Soft Medium Hard

k d k d k d k d

SLIPD 2598 5.3 3570 9.9 4931 11.3 6560 12.3
AAS 2572 6.5 3529 9.8 4828 11.9 6605 12.1
SLIP 3128 – 4645 – 5921 – 8136 –

Geyer 4117 – 7602 – 8308 – 11569 –
Vertical 2600 6.7 3536 9.9 4972 12.4 6630 12.7
Manual 2322 – 2915 – 4298 – 6282 –

Finally, we have also investigated the dependence of prediction performance

on the asymmetry of the stride trajectory with respect to the gravitational vec-

tor. The concept of a neutral touchdown angle plays an important role in the

characterization of equilibrium gaits for the ideal SLIP model [21]. Moreover,

analytic approximations to SLIP trajectories preceding our contributions relied

on the assumption of symmetric gaits, decreasing their efficacy for transient,

asymmetric steps. Consequently, an evaluation of how prediction performance

degrades as the touchdown leg angle deviates from its neutral choice was inves-

tigated in [9], revealing that the gravity correction featured in approximations

substantially improves prediction performance. We present a similar evaluation

on our experimental platform in the remainder of this section.

We begin by defining the relative angle, θtd,rel as

θtd,rel := θtd − θtd,n, (2.34)

to represent the deviation from the neutral angle θtd,n. An important difference

from the corresponding definition in [9] is the fact that stance trajectories are
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never symmetric for our lossy SLIP model or the experimental platform. Con-

sequently, our definition of a neutral angle focuses on forward velocity as the

solution to the equation

θtd,n = argmin
θ

((ẏn − ẏn+1(θ))2) (2.35)

which we use to compute the relative angle value corresponding to the initial

condition associated with each experiment.

Fig. 2.6 shows our results for each of the four different spring stiffnesses, where

marked data points represent different bins for the relative angle and the vertical

axes represent mean and standard deviation values for the average positional

prediction errors all experiments grouped in each bin. Continuous graphs show

quadratic fits to the mean errors in each bin to reveal the dependence of the errors

on the relative angle and coincide very well with mean data. Our results are

consistent with those obtained from pure simulation studies, confirming that the

gravity correction introduced by our approximations substantially improves the

degradation in prediction performance away from symmetric gaits with positional

errors remaining below 5% even when considerable asymmetry is present in the

stride.
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Figure 2.6: Dependence of mean prediction errors in apex position to the devia-
tion from the neutral touchdown angle (relative angle) for all leg springs.
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2.6 Conclusion

In this chapter, we presented the experimental validation of an approximate but

accurate feed-forward predictor we recently introduced for the well-known Spring-

Loaded Inverted Pendulum template. Our verification method first identifies un-

known system parameters for our SLIP-based experimental platform, then evalu-

ates prediction performance of the proposed predictor on the experimental data.

We also compare the prediction performance of our predictor with Geyer’s approx-

imation as well as the numeric integration of SLIP dynamics with and without

damping in the leg. Key extensions to the basic SLIP model, including viscous

damping during flight and leg collision at liftoff, were also introduced to improve

model performance in comparison to the experimental platform.

Our validation experiments include systematic tests by using four different leg

springs, covering a large range of initial conditions and control inputs to show

that the proposed map can provide accurate estimates for all trajectories of the

experimental platform. Our method not only provides an experimental valida-

tion strategy for the SLIP predictors but also reveals insight into the effects of

mechanical parameters of the physical robot platform. In particular, we observed

that harder springs yield better prediction performance, confirming theoretical

observations based on the nature of our approximations. Overall, our approxi-

mations can predict positional and velocity trajectories with mean 2% and 7%,

respectively, well within the range of errors that can be tolerated by adaptive [48]

or reactive [60] control strategies.

In addition to this performance characterization, we also investigated the per-

formance of the predictions with respect to the relative touchdown angle, which

is defined as the deviation from the touchdown angle that would yield symmet-

ric trajectory. Hence, we also validate the practicality of the gravity correction

incorporated by our approximations to the angular momentum. Our approxima-

tions preserve the accuracy even for non-symmetric trajectories where the angular

momentum around the toe is no longer conserved.
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Chapter 3

Input–Output Models of Legged

Locomotion via Harmonic

Transfer Functions

In this chapter, we adopt a data-driven approach, with the goal of furnishing an

input–output representation of legged locomotor systems. Under certain assump-

tions, we can approximate hybrid dynamics of such systems around their limit

cycle as a piecewise smooth linear time periodic (LTP) system. In this study, we

first use a simple one-dimensional hybrid model in which a limit-cycle is induced

through the actions of a linear actuator to illustrate the details of our method.

We derive theoretical harmonic transfer functions (HTFs) of our example model.

Then, we excite the model with small chirp signals to introduce perturbations

around its limit-cycle and present systematic identification tests to estimate the

HTFs for this model. Comparison between the data-driven HTFs model and its

theoretical prediction illustrates the potential effectiveness of such empirical iden-

tification methods in legged locomotion. Besides, we present how these methods

can be used to estimate input–output delays and to investigate stability charac-

teristics of legged locomotion models. Finally, we test the practical usability of

our approach on a more realistic legged locomotion model. The work presented

in this chapter has also been reported and appeared in [61–65].
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3.1 Introduction

Legged morphologies admit a wide range of locomotor behaviors, for which a

variety of mathematical models have been proposed. For example, simple spring-

mass models, including the Spring-Loaded Inverted Pendulum (SLIP) model [21],

have been very successful in representing running and walking behaviors [1, 39].

The hybrid structure of these models alternates between flight and stance phases,

each possessing smooth dynamics with continuous flows; transitions are punctu-

ated with discrete, state-based transitions. Despite the seemingly simple nature

of these models, however, their dynamics during stance include non-integrable

parts [26], which prevent the derivation of exact closed-form solutions. Various

approximate solutions were developed in the literature to address this problem [9–

11, 13], some of which have also been verified experimentally [22] as detailed in

Chapter 2.

It has also been shown that these models and associated solutions can support

the design of hierarchical controllers for more complex platforms and morpholo-

gies [20, 66, 67]. Moreover, [48] showed that the structure and efficiency of these

analytic solutions can also be exploited to yield effective solutions for parameter

identification and adaptive control. Nevertheless, such explicit modeling efforts

will always suffer from inaccuracies resulting from unmodeled aspects of physi-

cal platforms [22]. While one can certainly introduce more complexity along the

template–anchors continuum [8], beyond a certain point these extended models

begin to lose the analytic tractability in order to gain improvements in accuracy.

Here, we propose an alternative approach that steers away from explicit me-

chanical modeling towards data-driven system identification. Rather than intro-

ducing more and more specific, detailed mechanistic features of increasing com-

plexity to mathematical models, such a data-driven approach treats the system

as a black box, focusing on the adequacy of available data and the identifica-

tion method to increase accuracy. The goal with such empirical models is to

complement, not to replace, mechanistic models which have the benefit of trying

to explicitly connect system behavior to physical design details and controller
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parameters.

More specifically, our approach in this study is to use a Linear Time Peri-

odic (LTP) system structure to approximately model locomotor behaviors around

their limit cycles, using associated system identification techniques to obtain a

linearized input–output representation for the system. To this end, we first ap-

proximate state dependent hybrid transitions of these systems as time dependent

transition functions at steady state. We then linearize these approximate dynam-

ics around the limit cycle, yielding a piecewise smooth LTP system.

An important and powerful tool for the analysis and data-driven identification

of LTP systems is the concept of Harmonic Transfer Functions (HTF), which are

analogous to traditional transfer functions for Linear Time Invariant (LTI) sys-

tems [32]. Unlike LTI systems, an input signal with a specific frequency supplied

to an LTP system produces output components spread across different harmon-

ics of the periodic system frequency and components of HTF structure defines

the coupling between different harmonics. Within this framework, [33] developed

an identification strategy to estimate the individual HTFs for an LTP system

by exciting the system using specially designed chirp signals and using modified

“power spectral density” and “cross spectral density” functions as in the case of

LTI systems.

In this work, we adopt this technique to estimate the harmonic transfer func-

tions for a simplified vertical hopping robot model. Alternative identification

strategies for LTP systems were also proposed by [34, 68, 69]. In the present

study, we rely on chirp signals with their well-defined frequency range and pre-

determined power spectral density [70], rather than the sum of sines inputs used

by [68]. [34] uses single sine inputs in their work, but their method requires multi-

ple experiments to cover the frequency range that we are interested in this study.

For these reasons, our identification method is based on [33].

Prior to our work, a system-identification method for smooth rhythmic dy-

namical systems was developed by [71] using continuous-time HTFs. Later, [69]
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developed a new identification method for hybrid (non-smooth) dynamical sys-

tems based on discrete-time HTFs. In this study, we show that identification

methods based on continuous-time HTFs can be applied to a clock-driven hybrid

dynamical model of locomotion.

In this context, we extend and apply the HTF based system identification

method described in [33], which we briefly review in Section 3.3.3, to a clock-

driven hybrid vertical hopping robot model for which the analytic derivation for

the HTF representation appears to be challenging (or infeasible). In so doing, we

show that identification methods normally designed for continuous systems can

be applied to systems with hybrid components that are inevitable for legged loco-

motion, while also establishing the accuracy of the identification process through

systematic simulation studies. In addition, our investigations revealed the fact

that the LTP modeling of legged locomotor systems can also be used to identify

input and measurement delays in the system separately which would otherwise

be impossible with an LTI system model.

3.2 Legged Locomotion Models as a Linear

Time Periodic (LTP) System

Our goal in this section is to represent the legged locomotion models as a hybrid

dynamical system using linear time periodic (LTP) system models. As mentioned

before, our ultimate goal is to provide a system identification framework for a class

of models related to legged locomotion. For the current study, we limit ourselves

to “clock-driven” locomotion models as described in Section 3.2.1, representative

of controllers used by a wide variety of existing robots [30, 72], with open-loop

central pattern generators (CPG) coordinating control actions to achieve time

periodic behavior. This will allow us to directly use time periodicity in our LTP

analysis, while eliminating a variety of complications associated with estimating

the phase [73].
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3.2.1 Smooth Clock-driven Oscillators

In general, the dynamics of smooth, clock-driven oscillators with external inputs

can be written as

q̇ = f(q, φ, u),

φ̇ = 1

f : Rn × S1 × Rp 7→ Rn

(q, φ) ∈ Rn × S1,

u ∈ Rq

(3.1)

where (q, φ) and Rn × S1 denote the state vector and the state space of the

oscillator, respectively. The circle component S1 = mod(R+, T ) enforces the pe-

riodicity of the dynamics, while the external input u(t) represents small external

perturbations which we will use for system identification.

In this study, we focus on oscillators of the form (3.1) with asymptotically

stable, isolated periodic orbits (limit cycle) q̄(t) = q̄(t − T ) when u(t) = 0. For

such systems, if we let q(t) = q̄(t) + x(t) and linearize the dynamics in (3.1)

around the limit cycle q̄(t), and u(t) = 0 we get

ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t)
(3.2)

where

A(t) =

[
∂f

∂q

]
q(t) = q̄(t)
u(t) = 0

, (3.3)

B(t) =

[
∂f

∂u

]
q(t) = q̄(t)
u(t) = 0

. (3.4)

This corresponds to a linear time periodic (LTP) system, with all system matrices

sharing a common period, T .
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3.2.2 Modeling Framework for Hybrid Systems

Legged systems are often modeled using hybrid dynamics due to intermittent foot

contact with the ground, which cannot be represented with a single, smooth dy-

namical flow. In the broadest sense, a hybrid dynamical system is a set of smooth

flows together with discrete transitions (and associated transformations) between

these flows triggered by intersections of system trajectories with sub-manifolds

of the continuous state space [74]. These flows are called charts, indexed with

unique labels I := {0, · · · , d} each with possibly different equations of motion.

Along its trajectories, a hybrid system transitions from one chart to another,

with each transition defined by the zero crossing of a threshold function. For each

source chart α ∈ I and destination chart β ∈ I, the threshold function hβα defines

the transition from chart α to chart β. An example transition graph for a hybrid

dynamical system is illustrated in Fig. 3.1.

Since we are interested in the local behavior around the limit cycle, we assume

that there is only one transition function associated with each chart.1 We further

assume that the hybrid dynamical system we consider has an isolated periodic

orbit ensuring that chart transitions within the limit cycle are also periodic and

consistent.

It is important to note that these assumptions are generally satisfied by models

1This approach does not apply to gaits such as pronking that nominally involve multiple
legs making contact with the ground at the same time on the limit cycle, because small devi-
ations from the limit cycle can lead to different touchdown order between legs, violating our
assumption.

Chart α Chart β

hβα

hαβ

Figure 3.1: A simple state transition graph for a hybrid dynamical system.
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of common locomotory behaviors such as running and walking [9, 75] as well as

a wide range of legged robots for which leg masses are negligible compared to

the dynamics of a larger body [30, 72]. Consequently, the system identification

methods we introduce will remain applicable to systems other than the simplified

examples we will present in this chapter.

3.2.3 Modeling Legged Locomotion as a Linear Time Pe-

riodic (LTP) System

For clarity, we limit our focus in this section to an example hybrid dynamical

system with only two charts, I = {0, 1}, designed to capture stance and flight

phases of simple spring-mass models of locomotion. Based on a clock driven

assumption, for each i ∈ I the continuous dynamics can be represented with

φ̇ = 1

q̇i = fi(q, φ, u) ,

qi ∈ Rn

(3.5)

and let the associated threshold function be h
mod(i+1,2)
i (q). The transition map

associated with each hybrid event is simply the identity map, qi 7→ qi, due to the

continuity assumption. Our linearization of these hybrid dynamics towards an

LTP approximation assumes that these transition times, t̂, zero crossings of h1
0(q)

and h0
1(q), maintain their periodicity and offsets within the period in close prox-

imity of the limit cycle, resulting in the following form of the nonlinear dynamics

φ̇ = 1 (3.6)

q̇ ≈

 f0(q, φ, u) , if mod(t, T ) ∈ [0, t̂)

f1(q, φ, u) , if mod(t, T ) ∈ [t̂, T )
. (3.7)

Assuming that the system given above has a limit cycle q̄(t) with a period T ,

linearization around q̄(t) yields the piecewise smooth LTP system

ẋ(t) =

A0(t)x(t) +B0(t)u(t), if mod(t, T ) ∈ [0, t̂)

A1(t)x(t) +B1(t)u(t), if mod(t, T ) ∈ [t̂, T )
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where

A0(t) :=

[
∂f0

∂q

]
q(t) = q̄(t)
u(t) = 0

, B0(t) :=

[
∂f0

∂u

]
q(t) = q̄(t)
u(t) = 0

,

A1(t) :=

[
∂f1

∂q

]
q(t) = q̄(t)
u(t) = 0

, B1(t) :=

[
∂f1

∂u

]
q(t) = q̄(t)
u(t) = 0

.

It is natural to assume that direct measurement of all x(t) may not be available

or we may only measure a subset of x(t). Consequently, we also define a time-

periodic output equation as in the form (3.9).

Since system matrices Ai(t), Bi(t), Ci(t) and Di(t) with i ∈ {0, 1} are time

parametrized functions, the system has infinite parametric degrees of freedom,

making parametric system identification challenging even when Harmonic Trans-

fer Functions (HTFs) are used. At this point, we hypothesize that for hybrid

systems, the variability within a chart is small compared to the change between

charts and we approximate the LTP dynamics using a piecewise LTI approxi-

mation that preserves the LTP structure of the system. The LTP equations of

motion then take the form

ẋ(t) ≈

A0x(t) +B0u(t), if mod(t, T ) ∈ [0, t̂)

A1x(t) +B1u(t), if mod(t, T ) ∈ [t̂, T )
(3.8)

y(t) ≈

C0x(t) +D0u(t), if mod(t, T ) ∈ [0, t̂)

C1x(t) +D1u(t), if mod(t, T ) ∈ [t̂, T )
(3.9)

The formulation above constitutes the basis of our framework for analyzing and

identifying clock-driven legged locomotion models.

3.3 Harmonic Transfer Functions (HTFs)

Many finite-dimensional Linear Time Periodic systems can be described by a

state space model of the form

ẋ(t) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t) + D(t)u(t), (3.10)
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where A(t), B(t), C(t), and D(t) are all periodic with a common period T . De-

spite its linear nature, the time dependence of matrices in this representation

make it impossible to directly apply analysis and identification techniques devel-

oped for LTI systems.

System identification methods for asymptotically stable LTI systems are well

established, thanks in large measure to the one-to-one mapping between frequency

response characteristics of input and output signals at steady state. This allows

one to obtain empirical frequency response functions (i.e. “Bode plots”) describ-

ing the magnitude and phase changes in the input signal at each specific frequency

for the desired system. Due to the time dependence of matrices in (3.10), how-

ever, the response to a sinusoidal input with a specific frequency passing through

an LTP system may include multiple (possibly infinite) harmonics, with different

magnitudes and phases. In general, neglecting all higher order harmonics of the

system [76] to obtain a one-to-one mapping between the input and output sig-

nals in frequency domain may lead to unacceptable inaccuracies. Consequently,

a different approach is required for data-driven identification of such systems.

Wereley proposed a solution to this problem by transforming the input and

output signals to exponentially modulated periodic (EMP) signals [32]. In this

domain, it is possible to obtain a one-to-one mapping between the Fourier coef-

ficients of the input and output EMP signals. In the resulting structure input–

output representation is determined by multiple (possibly infinite) parallel LTI

subsystems whose inputs are multiplied by complex periodic signals. Fig. 3.2 il-

lustrates the resulting HTF structure. These LTI subsystems are called Harmonic

Transfer Functions (HTFs) and they characterize frequency response character-

istics of an LTP system. A detailed frequency domain analysis of linear time

periodic systems based on harmonic transfer functions has also been investigated

by [77]. Subsequent subsections in this section review theoretical derivations

behind the HTF framework as proposed by [32] and [78].
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Figure 3.2: Illustration of HTF structure. The input–output relation of an LTP
system can be expressed by multiple (possibly infinite) parallel LTI sub-systems

3.3.1 Derivation of HTFs via Harmonic Balance

In this section, we overview the derivation of harmonic transfer functions (HTFs)

as presented in [32, 79] using the principle of harmonic balance starting from the

state space representation (3.10). Note that system matrices in (3.10) are all

T-periodic. Consequently, they can be exactly represented by an infinite Fourier

series expansion with pumping frequency ωp = 2π/T , where T is the common

period of the system matrices. That is to say, we have

A(t) =
∞∑

n=−∞

Ane
jωpnt . (3.11)

where the matrices B(t), C(t) and D(t) can be similarly decomposed.
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Since both the input and output vectors are EMP signals [32], we can also

expand the state and output vectors as

x(t) =
∞∑

n=−∞

xne
snt (3.12)

ẋ(t) =
∞∑

n=−∞

snxne
snt (3.13)

y(t) =
∞∑

n=−∞

yne
snt , (3.14)

where we have sn = s+ jωpn.

Substituting these expansions into (3.10) and grouping similar terms, one ob-

tains

0 =
∞∑

n=−∞

(snxn −
∞∑

m=−∞

An−mxm −
∞∑

m=−∞

Bn−mum)esnt

0 =
∞∑

n=−∞

(yn −
∞∑

m=−∞

Cn−mxm −
∞∑

m=−∞

Dn−mum)esnt
(3.15)

Multiplying each equation by e−st, one then gets

0 =
∞∑

n=−∞
(snxn −

∞∑
m=−∞

An−mxm −
∞∑

m=−∞
Bn−mum)ejωpnt

0 =
∞∑

n=−∞
(yn −

∞∑
m=−∞

Cn−mxm −
∞∑

m=−∞
Dn−mum)ejωpnt.

The set of exponentials ejωpnt create an orthonormal basis on L2[0, T ] and as such

each term enclosed by braces must individually be equal to zero. This procedure

is also known as the principle of harmonic balance. After applying this procedure,

we have ∀n ∈ Z :

snxn =
∞∑

m=−∞

An−mxm +
∞∑

m=−∞

Bn−mum,

yn =
∞∑

m=−∞

Cn−mxm +
∞∑

m=−∞

Dn−mum.

(3.16)

Even though the above equations are a concise representation of the input-output

relationship between the Fourier series coefficients of the input and output signals,
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performing operations with infinite sums is tedious. Consequently, we adopt a

Toeplitz form notation to expand the infinite summations with matrix operations.

The system of equations in (3.16) can hence be expressed as the doubly infinite

matrix equation,

sX = (A−N )X + BU

Y = CX +DU ,
(3.17)

where the doubly infinite vectors representing the harmonics of the state, control,

and output signals are

X T = [· · · , xT−2, x
T
−1, x

T
0 , x

T
1 , x

T
2 , · · · ],

UT = [· · · , uT−2, u
T
−1, u

T
0 , u

T
1 , u

T
2 , · · · ],

YT = [· · · , yT−2, y
T
−1, y

T
0 , y

T
1 , y

T
2 , · · · ]

(3.18)

and the doubly infinite block diagonal matrix containing all harmonics of the

pumping frequency is

N = blockdiag{jnωpI} ∀n ∈ Z. (3.19)

The T-periodic dynamics matrix, A(t), is expressed in terms of its complex

Fourier series coefficients, {An|n ∈ Z}, as a doubly infinite block Toeplitz matrix

as

A =



. . .
...

...
...

...
...

· · · A0 A−1 A−2 A−3 A−4 · · ·
· · · A1 A0 A−1 A−2 A−3 · · ·
· · · A2 A1 A0 A−1 A−2 · · ·
· · · A3 A2 A1 A0 A−1 · · ·
· · · A4 A3 A2 A1 A0 · · ·

...
...

...
...

...
. . .


(3.20)

with a similar definition for B in terms of its Fourier coefficients represented by

{Bn|n ∈ Z}, C in terms of {Cn|n ∈ Z}, and D in terms of {Dn|n ∈ Z}.

This doubly infinite matrix representation (3.17) is called the harmonic state

space model of the system given in (3.10). However, it will also be useful to

determine an explicit input-output functional relationship between the Fourier
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series coefficients, or the harmonics of the input, {un|n ∈ Z}, and those of the

output, {yn|n ∈ Z}.

This relationship is represented by the harmonic transfer functions, G(s),

which is an infinite dimensional matrix of Fourier series coefficients describing

the relationship between the harmonics of the input signal, and those of the

output signal, such that

Y = GU , (3.21)

where

G = C[sI − (A−N )]−1B +D (3.22)

as long as the inverse within this equation exists.

There are, however, two problems associated with the harmonic transfer func-

tion as stated above. First, it is not clear whether the inverse of the doubly infinite

matrix in the definition of the harmonic transfer function will always exist. This

problem will be dealt with by application of the Floquet Theorem, where it is

simpler to check the conditions for the existence of the inverse operation. Sec-

ond, the harmonic transfer functions is a doubly infinite matrix operator, which

cannot practically be implemented on a computer. This second problem will be

mitigated by truncating the HTF in order to implement analysis on computer.

3.3.2 Derivation of HTFs via Time Periodic Impulse Re-

sponse

Different than Section 3.3.1, in this section, we summarize the derivation of HTFs

using the time periodic impulse response representation of an LTP system as

explained in [78] to establish some notation regarding this chapter. The output

of an LTP system, such as those in the form (3.10), can also be represented by

using its time periodic impulse response functions as

y(t) =

t∫
0

H(t, τ)u(τ)dτ , (3.23)
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where H(t, τ) = H(t − T, τ − T ) and T is the period of the system. In other

words, all time-varying impulse response functions of the system are periodic in

both arguments. Letting τ = t − r, we have H(t, τ) = H(t, t − r) which is T

periodic in t. This periodicity allows us to expand H(t, t− r) through an infinite

Fourier series expansion with pumping frequency, ωp = 2π/T , yielding

H(t, t− r) =
∞∑

k=−∞

Hk(r)e
jkωpt,

Hk(r) :=
1

T

T∫
0

e−jkωptH(t, t− r)dt.
(3.24)

Switching back to τ through r = t− τ gives

H(t, τ) =
∞∑

k=−∞

Hk(t− τ)ejkωpt. (3.25)

Substituting (3.25) into (3.2), we get

y(t) =
∞∑

k=−∞

T∫
0

Hk(t− τ)ejkωptu(τ)dτ

=
∞∑

k=−∞

T∫
0

Hk(t− τ)ejkωpt−τu(τ)ejkωpτdτ

=
∞∑

k=−∞

(Hk(t)e
jkωpt) ∗ (u(t)ejkωpt) ,

(3.26)

where ∗ denotes the convolution operator. Finally, taking the Laplace transform

of both sides yields

Y (s) =
∞∑

k=−∞

Hk(s− jkωp)U(s− jkωp) . (3.27)

Now, let us define Gk(s) := Hk(s−jkωp) as the elements of the HTF structure.
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3.3.3 Data-Driven Identification of Harmonic Transfer

Functions

When an explicit representation of a system is given, either in state space form

(3.10) or through an impulse response function as in (3.23), the derivations of

Section 3.3 can be used to obtain the corresponding harmonic transfer functions.

However, manual construction of such explicit models is often impractical beyond

a certain level of complexity. Consequently, the estimation of harmonic transfer

functions without the need for such explicit models is of great practical interest.

In this section, we review the data-driven system identification method introduced

by [33] for LTP systems, together with our extensions to support its application

for clock–driven legged locomotion models.

The HTF structure of (3.27) includes an infinite number of harmonics, which is

problematic for practical applications. Consequently, these harmonic components

are often truncated beyond a certain order to enable effective computational

implementations. Similarly, some LTP system identification methods also focus

on a preselected number of harmonics. For clarity, our review of the method

given in [33] considers only three harmonic transfer functions, Ĝ0, Ĝ−1 and Ĝ1,

leading to a representation of the system output in frequency domain as

Y (jω) ≈ Ŷ (jω) := Ĝ0(jω)U(jω) (3.28)

+ Ĝ−1(jω)U(jω + jωp) (3.29)

+ Ĝ1(jω)U(jω − jωp) , (3.30)

where variables annotated with a hat denote estimated versions of their system

counterparts. Based on this definition, the data-driven system identification prob-

lem can be reduced to the problem of estimating the quantities Ĝ0(jω), Ĝ−1(jω)

and Ĝ1(jω) at each specific frequency, ω, such that the difference between the

measured and estimated output vectors is minimized.

The correct choice of input signals plays a crucial role in the system iden-

tification process. Input signals must be designed to expose as much dynamic

behavior in the system as possible. To this end, chirp signal inputs as shown in
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Figure 3.3: Chirp signal used to perturb the system for system identification,
consisting of a sinusoid with amplitude 0.1 and frequency increasing linearly in
time within the range (0, 5] Hz in 20s.

Fig. 3.3, can be used to to cover a sufficiently wide frequency spectrum. The ac-

curacy of the identification critically depends on particular aspects of these chirp

inputs, such as its duration, frequency range and sweep rate. Moreover, the phase

timing of the input signal relative to the LTP system also effects the activation

of different dynamic components within the system. [33] addresses these prob-

lems by designing a single input sequence, incorporating phase-shifted replicas of

an original chirp signal spanning a sufficiently wide range of frequencies. Phase

shifts ensure that the system is excited evenly throughout the system’s period,

while the wide frequency range explores different modes in the system towards

a complete characterization of the effects of internal system dynamics on system

output.

Using the resulting input–output pairs, one can then compute “extended power

spectral density” and “extended cross spectral density” functions ΦUU(ω) and

ΦUY (ω), respectively. Even though ΦUU(ω) and ΦUY (ω) are analogous to power

spectral density and cross spectral density functions for LTI systems, they differ

in their representation as matrix operators. Detailed definitions of these functions

can be found in [33] and are omitted here for space considerations.

Now, the three harmonic transfer function components of the LTP system can
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be estimated as

Ĝ(jω) :=


Ĝ1

Ĝ0

Ĝ−1

 = (ΦUU)−1ΦUY . (3.31)

An important problem with this formulation, however, is that it embodies

an under-determined fitting problem. A single pair of input and output vectors

may not be sufficient to accurately estimate all three harmonic transfer functions

even though (3.30) represents a single-input single-output LTP system. In order

to address this problem, [33] observes continuity properties of physical transfer

functions and introduces additional constraints to penalize high curvature within

each harmonic transfer function towards better output prediction performance.

More formally, having modeled the system with three harmonic transfer functions,

its output response due to an input can be expressed as

Y (jω) =
1∑

k=−1

U(jω − kjωp)Ĝk + E(jω) (3.32)

= Ŷ (jω) + E(jω). (3.33)

The error term captures the difference between the measured system response and

the predictions of the estimated harmonic transfer functions. The cost function

adopted by [33] for the minimization problem penalizes the quadratic output

prediction error and the curvature of the harmonic transfer functions, taking the

form

J := [(Y −UT Ĝ)2 + α(D2Ĝ)2], (3.34)

where D2 is the second order difference operator, α is a scalar weight to tune the

smoothness of resulting transfer functions and Y, U and Ĝ are defined as in [33].

Differentiating J with respect to Ĝ and equating to zero yields the estimated

harmonic transfer functions as

Ĝ(jω) = (ΦUU + αD4)−1ΦUY . (3.35)
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3.4 Application to a Simplified Legged Locomo-

tion Model with Hybrid System Dynamics

In this section, we describe a simple, vertically constrained spring-mass-damper

system that possesses hybrid structural properties similar to the extensively stud-

ied Spring-Loaded Inverted Pendulum (SLIP) model for running behaviors. This

will provide a simple example to illustrate the application of the proposed system

identification method to such systems.

3.4.1 System Dynamics

Fig. 3.4 illustrates the vertical leg model we focus on in this section. It consists of

a mass attached to a leg with a spring-damper mechanism as well as a force trans-

ducer. Unlike the SLIP model, we assume that the toe is permanently affixed on

the ground. Nevertheless, we recover the hybrid nature of locomotory gaits by

assuming that the damper is turned on during a “stance phase” (lossy) and off

during a “flight phase” (lossless). This construction recovers the hybrid nature of

the dynamics, while allowing active input throughout the entire trajectory to sup-

port the generation of system identification data, as well as admitting theoretical

computation of its harmonic transfer functions for a comparative investigation.

Mg

fk c

Figure 3.4: A Simplified leg model as a spring-mass-damper mechanism with
linear force transducer.

50



We use the force transducer f in this system for two purposes. Firstly, active

energy input to the system must be provided to maintain the limit cycle and

compensate for energy losses due to the presence of damping. Second, it will be

used as an exogenous input to the system to support the system identification

process. Many physical legged platforms include similar active components in

their legs to regulate their mechanical energy [80, 81]. Notwithstanding differences

in how these actuators are incorporated into the system, they can all be used as

the necessary exogenous inputs to perform system identification. A similar model

was also investigated in [35] but using an additional nonlinear spring for energy

regulation.

The equations of motion for this simplified legged locomotion model are given

by

mẍ =

−mg − cẋ− k(x− x0) + ωp, if ẋ > 0

−mg − k(x− x0) + ωp, otherwise.
(3.36)

The lossy and lossless dynamics in (3.36) correspond to different charts in Fig. 3.1

and zero crossings of ẋ represent threshold functions for both phases.

Our illustrative examples use the parameters g = 9.81, k = 200, c = 2,

m = 1 and x0 = 0.2, chosen to be similar to the parameters of a vertical hopper

platform in our laboratory [82]. As noted above, we choose the linear actuator

input ωp = f0(t) + u(t), consisting of a forcing term f0(t) to compensate for

energy losses, and a chirp signal u(t) to introduce small periodic perturbations

for system identification.

3.4.2 Theoretical Computation of Harmonic Transfer

Functions

The goal of this section is to compute harmonic transfer functions for our model

around its limit cycle as outlined in Section 3.3.1.

We first assume that the forcing input f0(t) is appropriately chosen to induce
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an asymptotically stable limit cycle for this system. For example, our simple

leg model achieves a stable limit cycle with f0(t) = cos(2πt). At this point,

changing into error coordinates away from the limit cycle with ξ = x(t) − x̄(t),

and substituting into (3.36), the equations of motion take the form

ξ̈ =

−cξ̇ − kξ, if ξ̇ + ˙̄x(t) > 0

−kξ, otherwise
(3.37)

Due to the simplicity of the dynamics, this corresponds to a piecewise LTI system

without necessitating any additional approximations, taking the form[
ξ̇1

ξ̇2

]
=

[
0 1

−k −cs(ξ̇, t)

][
ξ1

ξ2

]
+

[
0

1

]
u(t), (3.38)

where the hybrid nature of the system is captured by the flag s(ξ̇, t), with s = 1,

when ξ̇ + ˙̄x(t) > 0 and s = 0 otherwise.

We now need to represent this piecewise LTI system as a linear time periodic

system. However, even though the binary valued function s(ξ̇, t) can be consid-

ered time-periodic on the limit cycle itself, this is not the case for trajectories

away from the limit cycle. To proceed, we hence assume that input induced per-

turbations are small, and that the binary valued function s(ξ̇, t) maintains its

period and becomes strictly time dependent rather than state dependent, taking

the form s(ξ̇, t) ≈ s(t). We can now perform a Fourier series expansion on s(t) by

treating it as a square wave with an offset to obtain a linear time periodic system

in the form [
ξ̇1

ξ̇2

]
=

[
0 1

−k −cs(t)

][
ξ1

ξ2

]
+

[
0

1

]
u(t), (3.39)

y =
[
1 0

] [ξ1

ξ2

]
.

Plugging these equations into the HTF framework described in Section 3.3.1

yields analytic solutions to the harmonic transfer functions. We use the resulting

analytic solutions for the harmonic transfer functions up to nh = 10 to evaluate

the output of our system identification method.
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3.4.3 Estimation of Harmonic Transfer Functions using

Input–Output Data

In this section, we obtain harmonic transfer functions corresponding to the lin-

earized dynamics of (3.39) by using input–output data without assuming prior

knowledge of the state space model. Using f0(t) = cos(2πt) and u(t) = 0 for 30

cycles without a perturbation, our example system stabilized to a limit cycle x̄(t)

with a period T = 1s. We use the 30th period as the numerical limit cycle of the

nonlinear system and subtract it from the trajectories of subsequent experiments

to obtain the error function ξ1.

In order to obtain input–output data for system identification, we apply an

input signal consisting of nine subsequent 30s long chirp signals, each with a

linearly increasing frequency in the range (0, 7] Hz over its duration but with

a different starting phase evenly distributed across the system’s period, T = 1s.

Each chirp signal has an amplitude of 0.004, chosen to be large enough to perturb

system dynamics but small enough to keep the system close to the periodic orbit.

A sample chirp signal with zero phase can be generated by

u(t) = 0.004 sin(14πt2/30). (3.40)

The resulting output is then subtracted from the numerically measured limit

cycle to obtain error trajectories ξ1 for vertical position. The input signal and ξ1

are then used as in Section 3.3.3 to estimate harmonic transfer functions for our

system. Since our theoretical computations showed that responses beyond the

third harmonic were very small, we only consider the fundamental harmonic and

three harmonics on both sides for our experiments.

Fig. 3.5 illustrates the estimation performance of our algorithm for the mag-

nitude and phase of the fundamental harmonic. Both graphs show that the

application of the identification algorithm in [33] works well even for nonlinear

periodic systems with hybrid dynamics.

We also show our identification results for three harmonics in both the neg-

ative and positive sides in Fig. 3.6. Even though magnitudes for the harmonic
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Figure 3.5: Estimation results for the fundamental harmonic. The upper figure
illustrates the magnitude plots obtained via theoretical derivation and data-driven
identification of HTFs as well as parametric system identification. The lower plot
illustrates the phase responses.

transfer functions are small compared to the fundamental, the identification algo-

rithm can provide accurate estimates for these transfer functions except in some

narrow regions of G−2 and G2. The identification algorithm could not correctly

estimate these two harmonics around 12 − 15 (rad/s). One possible reason for

this discrepancy is the presence of strong responses in all harmonics around the

same frequency except G−2 and G2, resulting in the inability of the identification

algorithm to distinguish between the contributions from each harmonic absent

knowledge of the internal system dynamics. Alternatively, these discrepancies

may also be a result of the fact that hybrid transitions are not strictly time

periodic (rather, they are state-dependent) which likely has effects on different

frequencies and harmonics. We plan on investigating these issues further in the

future.

For a comparative analysis, we also present results from a parametric iden-

tification in order to show that further corrections on estimation results from a

non-parametric method are possible. To this end, we fit the system parameters k
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Figure 3.6: Estimation results for the higher harmonics. The magnitude plots for
the first three harmonics are illustrated as a comparison of theoretical derivation,
data-driven identification and parametric identification.

and c in (3.39) by comparing root mean square error between theoretically com-

puted and estimated harmonic transfer functions G0, G−1 and G1. We truncate

the system response after the first harmonic in order to discard erroneous regions

in higher harmonics. The resulting estimates were k̂ = 200 for the spring con-

stant and ĉ = 2.12 for the damping coefficient, which closely coincide with the

parameters used to generate the input–output data. As such, harmonic transfer

functions obtained from parametric identification were found to closely match

those obtained from theoretical computations as seen in Fig. 3.6.

3.5 Identifying Stability Properties via Har-

monic Transfer Functions

In this section, our goal is to develop a method for the identification of the stability

properties of legged locomotor dynamics using input–output data based system

identification approaches. The proposed method does not require downsampling

the raw data and does not presume full state measurement as in the case of

model-based identification methods. Previous sections show that an input–output

55



linear time periodic (LTP) system structure can be used to represent rhythmic

locomotor behaviors around their limit cycles. In this section, we show that our

data-driven system identification technique can be utilized to characterize the

stability properties of limit cycles for clock-driven legged locomotion models. To

this end, we again use the concept of harmonic transfer functions (HTFs), first to

obtain a non-parametric system model based on input–output data of the system

and then to identify associated, explicitly parametrized model to estimate the

eigenvalues of a suitably defined Poincaré map. We utilize the simplified legged

locomotion model described in Section 3.4.1 to present our results on simulation

studies.

3.5.1 Estimating the Linearized Return Map

Let Σ0 and Σ1 be two Poincaré sections associated with the two distinct hybrid

transitions for our model. This results in a nonlinear map

P0→1 : Σ0 → Σ1 (3.41)

which is defined by continuous forward trajectories of the system from Σ0 until

their intersection with Σ1. Likewise, P1→0 : Σ1 → Σ0, resulting in an overall,

single-stride return map on Σ0 constructed as

P0→0 := P1→0 ◦ P0→1 (3.42)

Approximating the hybrid equations of motion around a limit cycle as a piecewise

LTI system, linearized versions of P0→1 and P1→0 correspond to transition states

between the two linear systems ẋ(t) = A0x(t), x(t0) = x0, at time t = t0 + t̂ and

ẋ(t) = A1x(t), x(t1) = x1, at time t = t1 + (T − t̂), respectively. The overall

linearized return map on Σ0 is then computed as

DP0→0 = eA1(T−t̂)eA0 t̂. (3.43)

In this study, we both analytically derive and parametrically estimate A0 and A1

matrices for the hybrid model of Section 3.4.1. However, one should note that

even the analytic version of (3.43) is an approximation to the “true” linearized
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return map, since we approximate hybrid transitions as being dependent on time

rather than state in close proximity to the limit cycle. For this reason, we use

a numerically computed Jacobian to the return map for the hybrid model as a

ground truth against which we compare the eigenvalues estimated with both the

parametric LTP model as well as our analytic approximations.

3.5.2 Stability characteristics of the simplified legged lo-

comotion model

For the analytic approximation, we explicitly derive the system matrices in (3.39)

using the simulated system parameters. For the data-driven identification step,

we first estimate the non-parametric HTFs using the input–output method de-

tailed in Section 3.3.3. Subsequently, we perform a parametric fitting to estimate

the values for k and c that minimize the error between non-parametric HTFs and

analytically derived HTFs of the explicitly parameterized LTP system structure

in (3.39) (See Section 3.4.3 for details). Having a piecewise LTI representation

with explicit estimates of system parameters, we obtain the eigenvalues of the

LTP system as described in Section 3.5.1 for both analytic and the identified

model.

We repeated the above steps for different values of spring constants as illus-

trated in Fig. 3.7. Note that our model is a two-dimensional system due to its

clock-driven structure and we observe two complex conjugate eigenvalues except

around k = 160, where we obtain two distinct real eigenvalues. Our results show

that the LTP framework yields accurate estimates for the true eigenvalues of the

system. We believe that the small error (see Fig. 3.7) originates primarily from

our approximating of state-dependent hybrid transitions as time dependent away

from steady state.
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Figure 3.7: Eigenvalues of the linearized return map for the dynamics around the
limit cycle, computed using three different methods as a function of the spring
stiffness.

3.6 System Identification of LTP Systems under

Input and Measurement Delays

In the previous sections, we showed input–output characterization for LTP sys-

tems both via analytical derivation of harmonic transfer functions for known LTP

systems as well as data driven estimation of harmonic transfer functions for un-

known stable LTP systems. Although there are some different tools to solve the

input–output characterization problem of LTP systems, few if any model-based

or data-driven identification methods for time-periodic systems address the prob-

lem of input and measurement delays in the system. In this section, we focus

on data-driven system identification for a simple mechanical system (shown in

Section 3.4.1) and analyze its dynamics in the presence of input and measure-

ment delays using HTFs. By exploiting the way input delays are modulated by

the periodic dynamics, our results enable the separate, independent estimation of
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input and measurement delays, which would be indistinguishable were the system

linear and time invariant.

3.6.1 Background

The finite dimensional, piecewise LTI representation given in Section 3.2.2 can-

not capture time delays (input, measurement, or internal/transmission), which

constitute an inevitable aspect of both biological and artificial locomotor systems

with significant impact on behavior. For instance, sensor latency and delays can

significantly limit neural control performance [83–85]. In the context of robotics,

delays can be introduced by different sources, including communication during

teleoperation [86] or between multi-agent systems [87] and latency arising from

the computational complexity and filtering associated with processing sensory

information such as visual and LiDAR data [88]. Even though these phenomena

can often be approximated as pure delays in the system [89], their impact on

the stability and performance of the closed loop system can be rather significant

and should be carefully taken into account in all stages of the analysis including

system identification and the design of controllers.

In this section, our main contribution is the extension of our prior work on the

identification and analysis of robotic legged locomotion [61] to explicitly consider

input and measurement delays, leaving the modeling of internal system delays

as future work. There is a long history of modeling and analyzing delays in

both biological [84, 90] and robotic [86, 89] control systems. Most of this previous

work, however, use linear time-invariant (LTI) models to approximate system

dynamics and their nominal trajectories. As we have shown before, such LTI

representations can be inadequate in capturing time-varying characteristics of

locomotor behaviors where nominal trajectories are large limit-cycles with distinct

hybrid phases [61, 62, 69, 71]. We now show that linear analysis can still be applied

in this context, using the LTP framework to relax the time-invariance assumption,

allowing us to identify and analyze input and measurement delays in rhythmic

legged locomotor behaviors.
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3.6.2 System Model with Input and Measurement Delays

Even though there are many different forms in which delay can be observed in

practical systems, our model for input and measurement delays in this study takes

the form of constant, frequency independent time shifts τu and τy in the action

of the input u(t) and the observation of the system output y(t), respectively. If

we define two intermediate variables ū(t) and ȳ(t), where

ū(t) = u(t− τu)

y(t) = ȳ(t− τy) ,

and write the system dynamics using these new variables, we get

ẋ(t) =

A0x(t) +B0ū(t), if mod(t, T ) ∈ [0, t̂)

A1x(t) +B1ū(t), if mod(t, T ) ∈ [t̂, T )

ȳ(t) =

C0x(t) +D0ū(t), if mod(t, T ) ∈ [0, t̂)

C1x(t) +D1ū(t), if mod(t, T ) ∈ [t̂, T )

(3.44)

We intentionally represent in a form that reveals the input–output dynamics

between ū(t) and ȳ(t), since the same structure is valid for u(t) and y(t).

The most important benefit of this representation arises from the difficulty

of trying to explicitly model delay in the harmonic transfer function framework,

which would have required substantial modifications to its derivation as well as

the associated system identification method. We will instead adopt a two stage

approach. First we will perform system identification on input-output pairs using

only the magnitude plots of the non-parametric HTFs and assume that neither

the input, nor the output signals are delayed. Then, we will analyze the resulting

model in the frequency domain using the phase plots of the non-parametric HTFs

to estimate the delays.

60



3.6.3 The Effects of Delays on Harmonic Transfer Func-

tions

Since the delayed LTP dynamics of (3.44) have the same structure with delayless

dynamics, the associated input–output relation between ū(t) and ȳ(t) has the

same form as (3.27) in the frequency domain. However, we need the relationship

between u(t) and y(t), which are the actual input and output signals of the system.

Fortunately, our assumption of fixed time linear delays allows us to express actual

input and output signals as a function of their undelayed counterparts in (3.44)

in the frequency domain, satisfying Ū(w) = U(w)e−jωτu and Y (w) = Ȳ (w)e−jωτy .

Substitution into (3.27) yields

Y (jω) =
∞∑

m=−∞

Gm(jω)e−j[(ω−mωp)τu+ωτy ]U(j(ω −mωp)) (3.45)

where the terms

Hm(jω) := Gm(jω)e−j[(ω−mωp)τu+ωτy ]

correspond to the harmonic transfer functions between the actual input U(w),

and the actual measurement Y (w) for the delayed system. Comparing the HTFs

for the zero-delay input–output representation, Gm(jω), with their delayed coun-

terparts, Hm(jω), we will show that we can separately identify input and mea-

surement delays in the system. This will be the main contribution of this section.

We begin by noting that the harmonic transfer functions both with and without

delay have the same magnitudes. This is easily shown through the definition of

Hm(jω), with

|Hm(jω)| = |Gm(jω)e−j[(ω−mωp)τu+ωτy ]|,

= |Gm(jω)|.
(3.46)

On the other hand, phase responses with and without delays can be different.

More specifically, we have

Hm(jω) = Gm(jω)− [(ω −mωp)τu + ωτy] . (3.47)

Note that for m = 0, these derivations are analogous to LTI systems, where

input and measurement delays cannot be distinguished since the fundamental
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harmonic is phase-shifted according to their sum. More importantly, however,

when additional harmonics with m 6= 0 are considered, the frequency dependence

of contributions from input and measurement delays to the HTF phase shift will

be different. This property of harmonic transfer functions allows us to indepen-

dently estimate the input and measurement delays in an LTP system, which are

otherwise indistinguishable for LTI systems.

We incorporate both of these observations in our approach to estimate system

delays. We begin by using input–output pairs u(t) and y(t) from the original,

delayed system to obtain the harmonic transfer functions Hm(jω). Since the

magnitudes of these HTF components are identical to their counterparts for the

undelayed version of the system, we can use our previously proposed method

to estimate unknown parameters for an explicitly constructed, undelayed system

model based on |Hm(jω)| alone [61]. This parametric model gives us the phase

responses of the undelayed system, Gm(jω), as a reference against which the

phase characteristics of the delayed system, Hm(jω) can be compared. This

comparison allows independent and robust computation of the input and mea-

surement delays, τu and τy, when multiple harmonics m ∈ Z are considered to as

closely satisfy (3.47) as possible.

3.6.4 Application to Hybrid, Vertical, Spring–Mass Sys-

tem Example

In this section, we illustrate the application of the proposed method to estimate

the input and measurement delays for a hybrid, vertical, spring–mass system

example with system dynamics defined as in Section 3.4.1 and harmonic transfer

functions computed as in Section 3.4.2.

Similar to previous sections, we begin to our analysis by estimating the har-

monic transfer functions of the linearized LTP system dynamics by using input–

output data, but this time under input and measurement delay, without assum-

ing any prior knowledge of the state space model. We use f0(t) = cos(2πt) and
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u(t) = 0 to achieve an asymptotically stable limit cycle and record steady state

data.

Subsequently, we start perturbing the limit cycle with an input signal, con-

structed as the concatenation of nine consecutive, 30s long chirp signals. Each

chirp signal is designed to linearly increase in the range (0, 7] Hz over its duration,

taking the form

ui(t) = 0.004 sin(7πt2/30). (3.48)

In contrast, the starting phases of consecutive copies of the chirp signal are cho-

sen to be evenly separated throughout system’s period, T = 1s as explained in

Section 3.3.3.

In order to evaluate the performance of our identification method, we present 9

separate experiments with different combinations input and measurement delays,

listed in Table 3.1. We feed the sequence of chirp signals described above with

an input delay, τu and simulate the system with the input ū(t) = u(t − τu).

We then impose an output delay with y(t) = ȳ(t − τy) to simulate the effect of

measurement delays on system response. This yields input–output data we use

to estimate harmonic transfer functions as described in Section 3.3.3. At this

stage, as noted before, the identification process will be unaware of the amount

of input and measurement delays that are present in the system.
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Table 3.1: Estimation results for input and measurement delay via different harmonic transfer functions.

Exp. Actual Delays G0 Estimates G−1 Estimates G1 Estimates

τu [ms] τy [ms] τ̂u+y [ms] PEu+y τ̂u [ms] PEu τ̂y [ms] PEy τ̂u [ms] PEu τ̂y [ms] PEy

#1 0 0 0 - 0 - 1.6 - 0 - 0 -

#2 0 50 49.9 0.20 % 0 - 51.6 3.2 % 0 - 47.5 5.0 %

#3 0 100 99.9 0.10 % 0 - 101.6 1.6 % 0 - 97.5 2.5 %

#4 40 0 40.0 0 % 41.1 2.75 % 0 - 38 5.0 % 0 -

#5 40 50 90.1 0.10 % 41.7 4.25 % 49.7 0.6 % 41.2 3.0 % 47.6 4.8 %

#6 40 100 140.1 0.07 % 41.9 4.75 % 99.5 0.5 % 41.2 3.0 % 95.1 4.9 %

#7 80 0 80.1 0.12 % 81.7 2.12 % 0.5 - 76.7 4.1 % 2.9 -

#8 80 50 130.1 0.08 % 81.8 2.25 % 50.4 0.8 % 76.8 4.0 % 52.4 4.8 %

#9 80 100 180.1 0.55 % 82.1 2.62 % 100.2 0.2 % 76.9 3.9 % 102.7 2.7 %
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Figure 3.8: Magnitudes of HTF components for theoretically computed (solid
red), estimated (dotted black) and parametrically fitted (dashed blue) models.

Fig. 3.8 illustrates the magnitudes of harmonic transfer functions obtained

through the theoretical derivations of Section 3.4.2 (solid red) and the data-driven

estimates of Section 3.3.3 (dotted black). However, the theoretical transfer func-

tions rely on the knowledge of dynamic systems parameters which may normally

not be available for a physical system. Consequently, before we proceed with

the estimation of delays using the phase characteristics, we first estimate these

unknown parameters k and c in (3.39) using the identification strategy presented

in [61]. Equation (3.46) shows that the input and measurement delay does not

effect the magnitude of the harmonic transfer functions. We can hence use data

from all nine experiments with different delays, resulting in estimated values

k̂ = 200 and ĉ = 2.12 for the spring and damping constants, respectively. This

yields parametric magnitude responses shown in Fig. 3.8 in dashed blue, closely
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matching the theoretical derivations with the exact parameter values. Phase re-

sponses for this parametric model will be used in the next section to identify

input and measurement delays in the system.

As is evident from (3.47), a comparison of phase responses associated with HTF

components for the models with and without time delay can be used to separately

estimate input and measurement delays. These phase plots are illustrated in

Fig. 3.9, with the undelayed parametric model and the delayed input–output

estimates are shown in solid blue and dotted black, respectively. The phase error

between these two responses can be expressed using (3.47) with respect to input

and measurement delays as

Gerr = Gm(jω)− Ĝm(jω) + [(ω −mωp)τu + ωτy]. (3.49)

Based on this expression, we formulate a minimization problem as a function of

unknown input and measurement delays, taking the form

(τ ∗u , τ
∗
y ) = argmin

(τu,τy)

√∫ 40

0

(|Ĝm(jω)| Gerr)2 dω . (3.50)

Green dashed plots in Fig. 3.9 show phase responses of the identified system

compensated with the delay estimates resulting from this minimization problem.

More systematically, Table 3.1 shows estimation results for input and mea-

surement delays by only using phase responses from Ĝ0, Ĝ−1 and Ĝ1 with respect

to parametrically identified harmonic transfer functions. As predicted by (3.47),

Ĝ0 alone can not separate the effects of input and measurement delays. Conse-

quently, we evaluate the estimation performance of the total delay in the system

for this case. Table 3.1 shows that individual estimates of both types of delay

stay below 5% for all nine experiments with differing amounts of actual delays.

3.6.5 Discussion

In this section, we presented a system identification strategy to estimate input

and measurement delays for a hybrid, vertical, spring–mass–damper system. We
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Figure 3.9: Phase responses of HTF components for the parametrically fitted
(dashed blue) and estimated (dotted black) models. The dashed green plot shows
the phase responses of the estimated model compensated with the identified input
and measurement delays.

first show how rhythmic locomotor systems can be identified in frequency domain

using data-driven system identification techniques. To this end, we linearize the

system dynamics around an asymptotically stable limit cycle and approximate

the hybrid transitions between different states as a time-periodic behavior, so

that we obtain a linear time periodic system representation for our simple hybrid

model.

Our system identification process requires perturbing the limit cycle with chirp

signals and recording deviations from the limit cycle as measured in the system

output. However, our goal is to perform system identification under input and
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measurement delay and estimate the delay in the system using our transfer func-

tion estimates. To accomplish this, we performed nine experiments with different

input and measurement delays in the system and estimated harmonic transfer

functions corresponding to input–output characteristics of the system.

As for LTI transfer functions, we show that input and measurements delay

on harmonic transfer functions do not effect the magnitudes of harmonic transfer

functions. Therefore, we perform parametric identification based on the estimated

harmonic transfer functions by only using the magnitude responses. The key point

in our theoretical analysis is that the use of harmonic transfer functions allows us

to independently estimate input and measurement delay in the system when the

higher order harmonics are considered in the estimation process. We compare the

phase response of the estimated and parametrically identified harmonic transfer

functions for this purpose and estimate input and measurement delay in the

system for the nine different experiments performed in this study.

3.7 Identification of VHOP

In this section, we apply the harmonic transfer functions (HTFs) based system

identification method described in Section 3.3.3 to a more realistic vertical hop-

ping robot model (VHOP) that captures some crucial aspects of the well-known

Spring-Loaded Inverted Pendulum (SLIP) model of running. We provide simu-

lation results to illustrate our approach and to characterize the performance of

the system identification method applied to the VHOP system. Note that all

simulations including the estimation of HTFs are implemented in Matlab envi-

ronment using standard ordinary differential equation solvers and built-in matrix

operators.
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3.7.1 The Vertical Hopper (VHOP) Model

The Vertical Hopper (VHOP) model, illustrated in Fig. 3.10 consists of a verti-

cally constrained point mass attached to a compliant leg with viscous damping.

A linear actuator in parallel with the leg spring is incorporated to compensate

for energy losses due to damping, and to implement behavioral controllers. The

model also incorporates a very small mass at the toe which also allows both better

correspondence to physical robot platforms, as well as the ability to apply inputs

to the system during flight.

u k d

h

h
t

m

M

Figure 3.10: The Vertical Hopper (VHOP) model with leg compliance, damping
and a parallel linear actuator, where h and ht represents the height of the body
and toe mass, respectively.

Our use of a linear actuator as an input to the system is inspired by similarly

structured robot implementations in the literature [25, 80, 81]. There are two

significant roles for the linear actuator in the VHOP model. First, it allows us

to obtain a clock-driven structure, facilitating the construction of asymptotically

stable limit cycles. Second, it can also be used to inject additional “external”

input signals to support our system identification approach. This clock-driven

69



structure with an additive input allows us to avoid phase resetting [71] and the

complications associated with estimating phase [73]. Previously, [35] also adopted

clock driven models to perform LTP type analysis on nonlinear systems.

Our ultimate goal is to apply the techniques in this study to more complex

models such as the SLIP and its many variants. As a first step, however, we use

the relatively simple VHOP model to keep our focus on LTP system identification

of hybrid dynamics. Nonlinearities and control systems challenges associated

with more complex models are hence left out of scope for the present study.

Nevertheless, despite its simplicity, the VHOP model still possesses some of the

critical features of locomotor dynamics, including hybrid dynamics with flight

and stance phases, discontinuities in the state due to collisions, as well as periodic

behavior in the form of limit cycles.

The VHOP model alternates between stance and flight phases and hence can

be modeled as a hybrid dynamical system consisting of a set of smooth flows with

discrete transitions between them [74]. As usual, the stance phase corresponds

to states where the foot is in contact with the ground, while the flight phase

corresponds to states when the robot is off the ground. Transitions from and

to stance called liftoff and touchdown events, respectively. A simple diagram of

VHOP phases and transitions is shown in Fig. 3.11. The system state for both

phases is defined as

x :=
[
h ht ḣ ḣt

]T
. (3.51)

Figure 3.11: The two phases of locomotion with the VHOP model and associated
transition events. Each phase has its own smooth flow.
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3.7.2 VHOP System Dynamics

Structural differences between the stance and flight phases require their modeling

through separate differential equations, leading to the hybrid nature of the VHOP

model. During flight, the toe has no contact with the ground and is hence free

to move vertically, leading to the equations of motion

Mḧ = −Mg − d(ḣ− ḣt) + k(`0 − (h− ht)) + u(t) (3.52)

mḧt = −mg + d(ḣ− ḣt)− k(`0 − (h− ht))− u(t) ,

where the viscoelastic leg has damping coefficient, d, spring constant, k, and rest

length `0. Even though this formulation leaves the actuator input u(t) unspecified,

we will impose a clock-driven structure on this input signal in the form u(t) =

a cos(ωpt) + uc(t), incorporating a periodic open-loop forcing term to achieve a

limit cycle, and an additive uc(t) for additional control affordance. The signal

uc(t) will be the input used for system identification.

During stance, the toe is assumed to remain stationary on the ground until

liftoff and the body mass experiences the spring, damper and actuator forces.

The corresponding equations of motion hence take the form

Mḧ = −Mg − dḣ+ k(`0 − h) + u(t) (3.53)

mḧt = 0 , (3.54)

where the same actuator action is used and initial height and velocity for the

toe mass is also zero. Kinematic and dynamic parameters for both phases are

detailed in Table 3.2, chosen to be consistent with the physical monopod platform

in our laboratory [82] for future extensions to real-world applications.

The final remaining component in the hybrid dynamics are the threshold and

transition functions. The liftoff event occurs during stance when the net vertical

force on the toe mass crosses zero, beyond which the toe lifts off the ground and

the flight phase starts. The corresponding boundary condition is defined as

flo(x) := −dḣ+ k(`0 − h) + a cos(ωpt) + uc(t) = 0. (3.55)
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Table 3.2: VHOP Model Parameters.

Parameter Description Value Unit
M Body mass 2.7 kg
m Toe mass 0.05 kg
k Compliance 6500 N/m
d Damping 12 Ns/m
a Pumping magnitude 75 N
ωp Pumping frequency 2π / 0.33 rad / s
g Gravity 9.81 m/s2

`0 Rest length 0.2 m

In contrast, the touchdown event, defining the transition from flight to stance, oc-

curs when the toe touches the ground, captured through the boundary condition

ftd(x) := ht = 0.

System trajectories remain continuous through the liftoff event, but the touch-

down event induces discontinuous state trajectories due to the associated collision,

modeled through a transition function ensuring that ḣt(t
+
td) = 0. An important

consequence of this discrete change is that the derivation of a closed-form, time-

varying state space model is not feasible with available methods. However, [69]

explicitly showed that a hybrid dynamical system with discrete jumps in system

states and even system dimension can be modeled (locally) with a discrete-time

impulse response function by choosing a set of Poincaré sections and considering

the mapping between those sections. Motivated by this result, we conjecture that

the discrete jumps and hybrid transitions can be embedded into a continuous-

time, time-periodic impulse response function model. This is more general than

a state space model and hence allows us to utilize the HTF structure. We leave

attempts to prove this conjecture as a future work. Note, however, that analytic

derivations of time-periodic impulse response functions are not straightforward

even for very simple LTP systems, which further motivates our use of a data-

driven system identification approach.
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3.7.3 Non-parametric System Identification for the

VHOP Model

The VHOP dynamics of (3.52) and (3.53) clearly do not correspond to a Lin-

ear Time-Periodic (LTP) system. Linearization of these dynamics around an

isolated point is also not useful since the expected behavior takes the form of

periodic trajectories that never stabilize around a single point in the state space.

Consequently, our approach is to linearize the system around its periodic behavior.

−1 0 1
0.19
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0.26

0.29

0.32

ḣ (m/s)

h
(m

)

 

 

Flight
Stance

-0.5 0.5

Figure 3.12: A cross section of an example VHOP limit cycle obtained with
the periodic excitation u(t) = 75 cos(2πt/0.33). Red and blue sections represent
stance and flight phases on the limit cycle, respectively.

We start by assuming that the system has an asymptotically stable limit cycle

xlc(t) := [hlc(t), ht,lc(t), ḣlc(t), ḣt,lc(t)]
T with period T when uc(t) = 0. Such a limit

cycle can be obtained through suitable choices of the periodic excitation compo-

nent a cos(ωpt) within u(t). For example, choosing a = 75 and ωp = 2π/0.33,

results in the limit cycle illustrated in Fig. 3.12 that appears to be asymptotically

stable according to numerical simulations. In this study, we selected the height

of the upper mass, h(t), as our output measurement to construct input–output

model. We treat the output relative to the nominal behavior on the limit–cycle,

i.e. y(t) := h(t) − hlc(t), where hlc(t) is the robot height on the limit cycle, as-

sumed to be known (e.g., recorded during operation with uc(t) = 0). Then, the
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resulting LTP system can be modeled via its impulse response:

y(t) =

t∫
0

H(t, τ)uc(τ)dτ, (3.56)

where the impulse response function is periodic, H(t, τ) = H(t− T, τ − T ), with

period T = 2π/wp. We apply the system identification method described in

Section 3.3.3 on these coordinates. To this end, we use uc(t) to perturb the

system away from the limit cycle and analyze the effects on system trajectories.

As noted in Section 3.3.3, chirp signals are a good choice for these perturbations,

exciting as many modes and components in the system dynamics as possible.

In particular, we use an input signal formed by the concatenation of 21 phase-

shifted instances of the chirp signal illustrated in Fig. 3.3, whose frequency

changes linearly in the range of zero to 5 Hz in 20 s. Each instance of this chirp

signal is shifted in time by T/21 relative to the previous signal. The magnitude

of these chirp signals was chosen through manual tuning in such a way that the

perturbations are sufficient, but do not appear to excite significant nonlinearities.

Each chirp signal uic(ti) with i ∈ {1, 2, ..., 21}, is hence defined as

uic(ti) = 0.1 sin(0.5πt2i ) . (3.57)

where ti := t − ((i − 1)D − (i − 1)T/21) ∈ [0, 20) and D = 20s is the duration

of each chirp application. This yields the final form of our perturbation input

(partially shown in Fig. 3.13) as

uc(t) =



u1
c(t1), if 0 ≤ t < D

...
...

u21
c (t21), if 20D ≤ t < 21D

0, if 21D ≤ t .

(3.58)

Finally, we compute the Fourier transforms of the input and output signals

as Uc(jw) and Y (jw), respectively. The identification methods described in Sec-

tion 3.3.3 compare the actual output to the predicted output Ŷ (jw), resulting in
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Figure 3.13: The perturbation input uc(t) used for the system identification pro-
cess. (A) Phase-shifted repetitions of the original chirp signal, concatenated
sequentially (only the 1st and 21st are shown for better illustration). (B) 1st and
21st chirp signals superimposed on top of each other for better visualization of
phase difference between them.

the desired estimates of the three harmonic transfer functions Ĝ0, Ĝ−1 and Ĝ1

for the VHOP system.

We evaluate the accuracy of the system identification by comparing the out-

put from VHOP dynamics to the inverse Fourier transform of Ŷ (jw) obtained

using the estimated harmonic transfer functions in Ĝ. Fig. 3.14(A) shows the

output y(t) for the VHOP response to the chirp signal defined by (3.26), whereas

Fig. 3.14(B) shows the discrepancy between the actual and predicted system out-

puts as a function of time.

As seen in Fig. 3.14, the estimated harmonic transfer functions can successfully

predict system response. This result, however, is for the response of the system

to the chirp input used for system identification itself and hence is not suitable

for a fair evaluation of the prediction performance. A good predictor should be

able to estimate system outputs for input signals that might differ substantially
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Figure 3.14: Prediction performance of harmonic transfer functions with the chirp
input training signal. (A) The VHOP system output, (B) Discrepancy between
the actual and predicted system outputs. The time axis is normalized with the
hopping period. Stance and flight phases are indicated at the bottom by the
letters S and F, respectively.

from those used for system identification. In the following section, we will present

a more systematic characterization of the predictive accuracy obtained through

the estimated harmonic transfer functions using sinusoid and step inputs.

3.7.4 Prediction Accuracy of HTF Responses to Sinusoid

and Step Inputs

To evaluate the prediction performance of the harmonic transfer functions, we val-

idate the input–output model identified using chirp excitation on sinusoidal and

step input waveforms. We calculate the percentage error based on the difference
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between the actual and predicted system responses to a particular input:

Erms := 100

√
1

Trms

∫ Trms

0
(y(t)− ŷ(t))2dt√

1
Trms

∫ Trms

0
y(t)2dt

, (3.59)

where Trms is the duration of the sinusoidal input.

We simulate the VHOP dynamics of Section 3.7.2 using sinusoidal inputs with

amplitude 0.1 and frequencies in the range f ∈ [0.1, 20] Hz to find the “actual”

outputs of the system. We then compute the output predictions by plugging the

previously estimated harmonic transfer functions into the output equation with

nh harmonics for comparison.

Fig. 3.15(A) illustrates Erms for each input sinusoid frequency when the system

identification was performed with a chirp signal covering frequencies from 0 to

5 Hz, whereas Fig. 3.15(B) illustrates the same quantity when system identifica-

tion was performed with a wider chirp signal covering frequencies from 0 to 10 Hz.

Our results show that increasing the frequency coverage of the chirp signal used

for training increases the accuracy of the resulting harmonic transfer function

representation for higher frequencies. This is, of course, expected since exciting

the system with a wider frequency range allows the harmonic transfer functions

to be properly trained to also match system response for these higher frequencies.

Both the smoothness condition imposed by the system identification process, as

well as the nature of LTP systems wherein an input with a single frequency com-

ponent yields many other frequencies in the output, result in improvements in

prediction accuracy for even higher frequency ranges when the chirp spectrum is

increased. These results show that the choice of the training input has substantial

impact on the accuracy of the resulting HTF estimates.

As noted, practical implementation of this system identification method re-

quires truncating the HTF beyond a certain order, but this threshold cannot be

determined beforehand, in general. Consequently, we have explored the effect

of incorporating different numbers of HTFs on prediction performance. The four

plots in each graph of Fig. 3.15 correspond to system identification with 11, 15, 21

and 31 harmonic transfer functions taken into account. Theoretically, we should
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Figure 3.15: Percentage output prediction errors Erms for the HTF representation
of the VHOP system in response to single sinusoid excitations at different fre-
quencies in the range [0, 20] Hz. (A) The HTF representations obtained through
training with a chirp signal spanning frequencies in the range 0 to 5 Hz. (B) HTF
representations obtained using a chirp input from 0 to 10 Hz.

expect prediction accuracy to increase when more harmonics are included in the

representation, which we verify empirically as illustrated in Fig. 3.15. Beyond

a certain number of harmonics (21 in our case), improvements no longer seem

substantial, suggesting a reasonable threshold for our system. Including addi-

tional harmonics only increases computational complexity without any further

significant improvements in accuracy.

A final comment is required on the performance results of Fig. 3.15. The

predictive performance of the HTF degrades significantly around 3 Hz, which

corresponds to the VHOP limit cycle frequency. As detailed before, LTP systems

generate output signals at the input frequency plus harmonics of the pumping
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frequency. When the input and system frequencies are same (ωp = 3 Hz in our

case), different harmonics at multiples of ωp may also effect the response at this

frequency. [69] showed that the identification of HTF should not be performed at

frequencies k ωp

2
, k ∈ Z when using sum-of-sines input stimuli for identification.

A similar phenomena may be contributing to the errors in our result. However, it

is also possible that our linearity assumption is being violated near the pumping

frequency. Addressing this problem further is left to future work.

In addition to sinusoid inputs at specific frequencies, we have also investigated

HTF prediction performance under a step input with magnitude 0.01. Note, once

again, that system identification is still performed with a chirp signal and the step

input is only applied for characterizing the prediction performance of the result-

ing HTF representation. The step input was applied to the system after the 200th

cycle, making sure that it has reached steady-state. In this case, the estimated

system output was computed using the estimated harmonic transfer functions

with nh harmonics identified using the chirp signal. Then Inverse Fourier trans-

form was used to compute the time domain step response prediction of the HTF

system.

Fig. 3.16 illustrates a comparison of measured and predicted responses of the

HTF system for a single sinusoid at frequency 1 Hz in panel (A) and the step

input in panel (B). As expected, the HTF representation accurately predicts

system response as shown in Fig. 3.16(A), consistent with the results shown in

Fig. 3.15 (Erms = 3.3%). On the other hand, the prediction results for the step

inputs exhibit significant errors as shown in Fig. 3.16(B). Even though the HTF

response captures the qualitative behavior of the step response, including the

spiked response around touchdown, noticeable errors remain with a percentage

root mean square error Erms = 68%. This is somewhat similar to the large

prediction errors observed around the system periodic frequency and may be due

to the harmonics of the step input in the pumping frequency.

One possible reason for these errors may be the relatively small range of fre-

quencies covered by the chirp signal for the identification process. Unfortunately,

increasing the frequency range covered by the chirp signal requires substantially
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Figure 3.16: Prediction performance of harmonic transfer functions with the test
input signals. Stance and flight phases indicated by S and F, respectively. Com-
parison between measured and predicted system responses for two types of inputs
(not used for training): (A) 1 Hz sinusoidal input and (B) step input. In both
cases, steady state response is shown.

longer durations for the input signal. This dramatically increases both the dura-

tion of the simulation for data collection, as well as the computational complexity

of the identification process. Even though increasing the frequency range, and

hence the chirp duration, may increase accuracy, it would impair the feasibility of

the system identification method on physical robot platforms due to the resulting

need for substantially longer experiments with sustained locomotion.

The nonlinearities and the hybrid nature of the VHOP model may also be con-

tributing to these errors. Note that both the system identification and evaluation

tests are performed around a limit cycle of the VHOP model. Our method as-

sumes that trajectories around the limit cycle exhibit hybrid transitions that are

consistently timed with the limit cycle. However, especially for trajectories ob-

tained with a step input, these transitions may occur much earlier than the limit
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cycle’s corresponding transition. This violates one of the underlying assumptions

in representing system behavior around the limit cycle as an LTP system. More-

over, the unidirectional forcing of the step input results in a larger deviation from

the limit cycle than the symmetric sinusoid input, which may lead to a further vi-

olation of the linearity assumption behind the LTP representation. These effects

can be more significant around the harmonics of the pumping frequency, which

also includes the DC frequency.

Despite these prediction errors, however, an important feature observed in

Fig. 3.16(B), is the ability of the HTF representation to predict the hybrid tran-

sitions in the system output resulting from the collision at touchdown. The effects

of such impact collisions were investigated in a number of studies [22, 51], which

are rather difficult to model within explicitly constructed models. Consequently,

the ability of a data-driven system identification approach to model such hy-

brid features of a system is promising since they are an inevitable part of any

locomotor system.

3.7.5 Prediction Accuracy of HTF Responses Under Un-

correlated Input and Output Noise

In Section 3.7.4, we investigated the prediction performance of the estimated har-

monic transfer functions for different input waveforms assuming perfect measure-

ment of input and output signals. However, our goal is to develop a data-driven

system identification framework applicable to physical legged robot platforms.

Therefore, we contaminate the input–output data used for system identification

with zero-mean Gaussian noise in order to simulate its performance in more re-

alistic settings.

In order to accomplish this, we use the noise modeling approach for HTFs

adopted by [34]. Fig. 3.17 illustrates a block diagram representation of how

noise affects the system identification data. Measured input and output data are

corrupted by uncorrelated noise with zero mean and standard deviations; σU and
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σY , respectively. In other words, the measured input, ũc(t), and output, ỹ(t), are

represented with

ũc(t) = uc(t) + n(t) (3.60)

ỹ(t) = y(t) + v(t) , (3.61)

where n(t) and v(t) are zero-mean noise signals affecting the input and output

data, respectively.

uc( t)

n( t) ũc( t)

v( t)

y( t) ỹ( t)VHOP

System

Figure 3.17: Block diagram representation of the VHOP system incorporating
measurement noise on the input and output signals.

Fig. 3.18 illustrates the prediction performance of the estimated harmonic

transfer functions for different cases of how the noise applied to sinusoid input

tests with different frequencies. Note that addition of noise deteriorates the pre-

diction performance of the estimated harmonic transfer functions as expected.

The single sine excitation results show that our identification strategy is robust

to noise corruption in input and output data up to SNR values of 12.5 (where

SNR := (Asignal/Anoise)
2, with A denoting root mean square (RMS) amplitude)

as in the case of [34]. However, further increasing the standard deviations dras-

tically reduces the prediction performance, since noise starts to dominate the

information necessary for system identification.

3.7.6 Summary of Approach

In this section, we proposed a data-driven system identification strategy to rep-

resent a simple, vertical hopping robot (VHOP) model. Most existing work on
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Figure 3.18: Percentage prediction errors Erms for the HTF representation of
the VHOP system with input and measurement noise (with SNR values of 12.5)
in response to single sinusoid excitations at different frequencies in the range
[0, 1] Hz.

models of legged locomotion is based on explicit mathematical models. Even

though these models are sufficiently accurate to describe various aspects of lo-

comotory behaviors, their correspondence to physical behavior degrades in the

presence of unmodeled components in actual hardware platforms. Our strategy is

to use data-driven system identification techniques to describe legged locomotion

systems.

The identification strategy we use relies on the perturbation of locomotion

behaviors with small chirp signals, with the resulting system response used as

output data. LTP system identification techniques are then applied to this input–

output data. As a specific example, we estimate Harmonic Transfer Functions

for our VHOP model around a periodic, stable hopping trajectory. We then

compare the output prediction of the estimated harmonic transfer functions with

actual output data obtained from VHOP simulations. Our results show that

harmonic transfer functions can be used as predictors of simple locomotion models

on training data.

Specifically, we performed prediction tests with numerically identified har-

monic transfer functions on step inputs. Our results showed that the predictive
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performance of the HTF representation on step inputs is not as good as its per-

formance on sinusoid inputs. Nevertheless, our results revealed that harmonic

transfer functions are still capable of capturing the qualitative effects of hybrid

transitions associated with touchdown collisions on system output. This type of

phenomena is usually difficult to incorporate into explicit mathematical models.

We have shown that harmonic transfer functions can capture and predict such

discrete jumps in system dynamics, which is a promising result that highlight pos-

sible advantages of using data-driven techniques for the identification of legged

locomotion models.

3.7.7 Limitations and Possible Future Extensions

The hybrid nature of the VHOP model does not allow us to obtain theoretical

harmonic transfer functions due to discontinuities in the system state associated

with collisions. A comparison of the system identification results to an ulti-

mate, theoretical HTF representation was hence not possible. Consequently, we

performed systematic simulation tests to characterize the adequacy of the nu-

merically identified harmonic transfer functions in representing system behavior

for simple legged locomotion models. To this end, we presented single sinusoid

input tests to evaluate the prediction performance of harmonic transfer functions.

In addition, we corrupted the input–output data with uncorrelated noise to in-

vestigate its accuracy towards experimental inquiries. Our simulation studies

showed that LTP system identification techniques yield promising results on the

identification of simple locomotion models when sufficient number of harmonics

are considered during the identification process. However, an important next

step will be to more formally address hybrid transitions in a continuous HTF

framework.

Our approach is based on modeling legged locomotion systems as linear time

periodic (LTP) systems around their limit cycles. Legged locomotion models

exhibit hybrid dynamics during their locomotion, with discrete transitions be-

tween different dynamics. For trajectories in close proximity to the limit-cycle,
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phase resetting does not occur and these transitions can be approximated as

time-dependent for stable clock-driven systems. This enables us to use an LTP

structure for local system behavior around limit cycles. We are planning to ex-

tend our methods to systems which are not clock-driven by adopting methods

developed by [69, 71].

3.8 Conclusions

In this chapter, we presented a system identification strategy to estimate input–

output transfer functions for a simple vertically constrained vertical hopper robot

model towards data-driven models of legged locomotion. We first showed that a

class of hybrid locomotion models can be approximated as a hybrid Linear Time

Periodic (LTP) system in close proximity to their asymptotically stable limit

cycle.

We used the concept of Harmonic Transfer Functions (HTFs) to analyze the

frequency response characteristics of the LTP system. We identify the HTFs

using input–output data of the system in order to estimate the input–output

models for legged locomotion models. Our results showed that HTFs can also be

used to investigate stability characteristics of the legged locomotor systems via

data-driven system identification.

Motivated by the successful identification results of this chapter, we plan to

extend our work to the identification of the Spring-Loaded Inverted Pendulum

(SLIP) model [21] and its extensions, widely used as models of locomotory be-

haviors in the literature. Our future goal is to apply our system identification

methods to our physical monopod robot platform and to compare the identifica-

tion performances with our previously verified analytical model [22].
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Chapter 4

Towards State Space Models of

Legged Locomotion

This chapter presents our studies towards developing state space models of legged

locomotion. To accomplish this, we first present a state space system technique

for a class of hybrid LTP systems, formulated in the frequency domain based

on frequency domain input–output data. Our goal in this study is to develop

a technique for estimating time-periodic system and input matrices for a hybrid

LTP system, assuming full state measurement. The identification problem is

formulated in a linear regression framework using Fourier transformations in or-

der to estimate Fourier series coefficients of the time-periodic system and input

matrices via a least-squares solution. In addition, we propose a new subspace-

based state space identification method for a more general class of LTP systems

without any assumption on full state measurement. Our method is based on the

fact that LTP systems can be transformed into equivalent discrete-time LTI sys-

tems using bilinear transform and lifting. To this end, we use frequency domain

subspace identification methods to estimate an equivalent discrete-time LTI sys-

tem from the input–output data of the original LTP system. Subsequently, we

use optimization methods to obtain an LTP realization by exploiting the specific

parametric structure of Fourier series coefficients in our lifting method. The work

presented in this chapter has also been reported and appeared in [91, 92].
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4.1 Parametric Identification of Hybrid Linear

Time Periodic Systems

Our main focus in this part is the identification of nonlinear, hybrid dynamical

systems that operate near their periodic solutions. A wide variety of dynamical

phenomena in biology and engineering include oscillatory and hybrid characteris-

tics [93–95]. Thus, such dynamical behaviors are commonly modeled as nonlinear

hybrid dynamical systems that operate near some isolated periodic orbits (a.k.a.

limit-cycle). Though, there are remarkably fewer studies focusing on the problem

of system identification for hybrid dynamical systems operating around limit-

cycles than system identification studies on dynamical systems that operate near

their point equilibria (e.g. LTI systems).

In the broadest sense, a hybrid dynamical system is one that both flows

smoothly (defined by a set of differential equations) and jumps discretely (defined

by a set of transition maps) [96]. These discrete jumps are often accompanied

by a switch between different smooth flows, punctuating system trajectories with

discontinuous jumps, sometimes even changing the dimension of the underlying

state space [16]. Despite the generality of this definition, we limit our scope

to hybrid systems for which state trajectories are continuous, but possibly non-

differentiable. In other words, we exclude systems that undergo discrete jumps

in states as well as changes in the state dimensions.

Under certain assumptions, the linearization of smooth nonlinear systems

around their periodic solutions (orbit), yields linear time-periodic (LTP) sys-

tems [96], whereas the linearization of the class of nonlinear hybrid systems we

consider around their periodic orbits yields hybrid LTP systems [97]. Since we

exclude hybrid transitions with discrete jumps in system state and dimension, the

class of induced hybrid LTP systems that we study exhibit continuous but only

piece-wise differentiable vector fields [61, 62]. In Section 4.2.1, we formally define

the general form of LTP systems that we focus on. Our main contribution in this

study is a parametric system identification method for hybrid LTP systems that

we consider, using frequency domain representations of input-output data.
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Unlike the literature on LTP and/or hybrid system identification, the iden-

tification of LTI systems is a relatively mature field. There is a wide range of

techniques for the identification of LTI systems, appropriate for widely differing

needs of engineers and scientists [36]. For example, subspace system identifica-

tion methods provide a powerful and popular parametric tool for estimating state

space representations of LTI systems from input–output data [98].

There are a number of methods that extend the LTI identification techniques

to the identification of LTP systems. For example [99] utilizes the subspace

system identification method of [98] to estimate physical parameters of smooth

linear time-varying systems, whereas [100] developed a different subspace system

identification technique for discrete time periodically time-varying systems. In

the context of piece-wise smooth system identification, [101] introduced a formu-

lation to estimate state space models for piecewise LTI systems, which may be

considered as a special case of our formulation in Section 4.2.1, when the switch-

ing time between the subsystems is known. Similarly, [102] utilizes a data-driven

input–output system identification method to estimate piecewise affine models

for approximating dynamics of a hexapedal robot. However, none of these meth-

ods completely cover our class of LTP systems and they all perform identification

based on time domain input-output data.

In our formulation, we assume that switching times between different continu-

ous LTP vector fields are known. This information is used to separately identify

individual contributions from each LTP subsystem to the overall periodic system.

In our approach, we obtain Fourier series coefficients for the state and input ma-

trices and then formulate the problem in a linear regression framework. Different

than [103], where the authors also use a linear regression approach to formulate

state space subspace system identification problem for LTI systems, we consider

LTP systems and the variables to be estimated are the Fourier series coefficients

of the periodic system and input matrices. After estimating system matrices

using a least squares solution, we use Fourier synthesis equations to construct

time-periodic system and input matrices.
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4.1.1 Problem Formulation

In this study, we focus on linear time-periodic systems, whose state evaluation

equation can be written as

ẋ(t) = A(t)x(t) +B(t)u(t) , (4.1)

where A(t) ∈ Rn×n, B(t) ∈ Rn and both system matrices are periodic with a

fixed, known period T > 0 such that A(t) = A(t + nT ) and B(t) = B(t + nT ),

∀n ∈ Z. In this study, we further assume that we can measure all system states.

Existing literature on frequency domain system identification of LTP systems

concentrates mainly on non-parametric estimation of the harmonic transfer func-

tions (HTFs) [33, 34, 62, 104], Even though a number of previous studies perform

parametric identification by fitting parameterized transfer function models to the

non-parametrically identified HTFs [61, 63, 69], the present section focuses on a

direct state-space parametric identification method for the hybrid LTP system

without dealing with computational details of HTFs.

In this formulation, the steady-state response of the system can be represented

as

X(jω) =
∞∑

n=−∞

Hn(jω − jnωp)U(jω − jnωp) , (4.2)

where Hn(s) can be theoretically derived for certain special cases when the state

space representation of the system is available, such as for systems with finite

harmonic expansions or constant system matrices [32, 78]. In the general case,

these harmonic transfer functions can only be approximated by truncating the

infinite dimensional Toeplitz matrices that arise during the derivation phase Sec-

tion 3.3.1.

In this section, we will work with systems in the form of (4.1), assumed to

be driven by an observable input, u(t), with measurements provided for all of its

states. Moreover, we also require the following assumptions to hold.

89



Assumption 1 Our models of interest consist of M alternating “unknown” LTP

sub-dynamics, A1(t), A2(t), · · · , AM(t), whose activations are triggered by M

complementary “known” rectangular switching functions, s1(t), s2(t), · · · , sM(t),

during each cycle of the system. Both Ai(t) and si(t) are T -periodic functions,

with the switching functions taking the form

si(t) =

1, if ti + nT ≤ t < ti+1 + nT, ∀n ∈ Z

0, otherwise,
(4.3)

where ti’s denote the known switching times and satisfy the conditions t1 = 0,

tM+1 = T , and ti < ti+1,∀i ∈ 1, · · · ,M . The state and input matrices of (4.1)

can hence be written as

A(t) =
M∑
i=1

Ai(t)si(t), B(t) =
M∑
i=1

Bi(t)si(t). (4.4)

�

Assumption 2 We assume that the system period T as well as the transition

times between different sub-system dynamics can be measured and are known.

This information is sufficient to construct the switching functions, s1(t), s2(t),

· · · , sM(t), that trigger the activation of alternating sub-systems. �

Based on the LTP framework and our assumptions listed above, the problem we

are interested can be defined as: Given

• a number of single-sine (or sums-of-sines) input measurements applied at

different frequencies, u(t),

• corresponding state measurements, x(t),

• the system period, T , and the switching times between successive subsys-

tems, s1(t), s2(t), · · · , sM(t),

Estimate piecewise smooth, linear time-periodic state and input matrices,

A1(t), A2(t), · · · , AM(t) and B1(t), B2(t), · · · , BM(t).
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4.1.2 Estimation of LTP System Matrices

Our analysis begins with obtaining Fourier series expansions for the state and

input matrices, A(t) and B(t) as

A(t) =
∞∑

n=−∞
Ane

jnωpt, B(t) =
∞∑

n=−∞
Bne

jnωpt , (4.5)

and transforming (4.1) into

ẋ(t) =
∞∑

n=−∞

Ane
jnωptx(t) +

∞∑
n=−∞

Bne
jnωptu(t) . (4.6)

Assuming that the system is stable and that oscillations reach steady-state, we

can then switch to the frequency domain through the Fourier transformation to

yield

(jω)X(jω) =
∞∑

n=−∞

AnX(jω − jnωp) +
∞∑

n=−∞

BnU(jω − jnωp) . (4.7)

Fourier series coefficients of the multiplication of two periodic signals with the

same period can be obtained as the convolution of the Fourier coefficients of

the each individual signal. Considering the Fourier series coefficients for the

rectangular switching functions as

si(t) =
∞∑

n=−∞

Sine
jnωpt (4.8)

and using (4.4), Fourier series coefficients of A(t) can then be obtained as

An =
∞∑

k=−∞

A1
kS

1
n−k + · · ·+

∞∑
k=−∞

AMk S
M
n−k. (4.9)
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Substituting (4.9) and a similar expansion for Bn into (4.7), we obtain

(jω)X(jω) =
∞∑

n=−∞

{ ∞∑
k=−∞

A1
kS

1
n−k

}
X(jω − jnωp) +

...
∞∑

n=−∞

{ ∞∑
k=−∞

AMk S
M
n−k

}
X(jω − jnωp) +

∞∑
n=−∞

{ ∞∑
k=−∞

B1
kS

1
n−k

}
U(jω − jnωp) +

...
∞∑

n=−∞

{ ∞∑
k=−∞

BM
k S

M
n−k

}
U(jω − jnωp) . (4.10)

After reorganizing the terms, we obtain

(jω)X(jω) =
∞∑

k=−∞

A1
k

{ ∞∑
n=−∞

S1
n−kX(jω − jnωp)

}
︸ ︷︷ ︸

X1
k(jω)

+

...
∞∑

k=−∞

AMk

{ ∞∑
n=−∞

SMn−kX(jω − jnωp)
}

︸ ︷︷ ︸
XM

k (jω)

+

∞∑
k=−∞

B1
k

{ ∞∑
n=−∞

S1
n−kU(jω − jnωp)

}
︸ ︷︷ ︸

U1
k (jω)

+

...
∞∑

k=−∞

BM
k

{ ∞∑
n=−∞

SMn−kU(jω − jnωp)
}

︸ ︷︷ ︸
UM
k (jω)

. (4.11)

Here, X i
k(jω) and U j

k(jω) correspond to the convolution of the Fourier coefficients

for the switching functions with the Fourier coefficients of the state and input

functions, respectively. Now, truncating the infinite Fourier series to only K
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components in either direction and converting (4.11) into matrix form yields

(jω)X(jω) =
[
A1
−K · · · A1

0 · · · A1
K

]
︸ ︷︷ ︸

A1



X1
−K(jω)
...

X1
0 (jω)
...

X1
K(jω)


︸ ︷︷ ︸

X 1(jω)

+

...

[
AM−K · · · AM0 · · · AMK

]
︸ ︷︷ ︸

AM



XM
−K(jω)
...

XM
0 (jω)
...

XM
K (jω)


︸ ︷︷ ︸
XM (jω)

+

[
B1
−K · · · B1

0 · · · B1
K

]
︸ ︷︷ ︸

B1



U1
−K(jω)
...

U1
0 (jω)
...

U1
K(jω)


︸ ︷︷ ︸

U1(jω)

+

...

[
BM
−K · · · BM

0 · · · BM
K

]
︸ ︷︷ ︸

BM



UM
−K(jω)
...

UM
0 (jω)
...

UM
K (jω)


︸ ︷︷ ︸
UM (jω)

. (4.12)
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Remark 2 In the identification of real systems and even for most simulated non-

linear systems, prior information on the proper choice of K, the limit on the

number of Fourier series to be estimated, is unavailable. Moreover, the “true”

value of K can be even infinity. Since we currently focus on the identification of

deterministic systems, an ad-hoc, yet acceptable solution is to choose a sufficiently

big value for K and disregard Fourier series coefficients that are less than a certain

threshold. �

Remark 3 Note that our choice of K does not require truncating infinite sum-

mations for computing X1
k(jω), · · · , XM

k (jω), U1
k (jω), · · · , UM

k (jω) in (4.11).

On the other hand, computing infinite summations in computerized environments

is of course not generally possible and hence another, possibly larger truncation

n = N can be used for these summations involving known quantities. �

Before proceeding with a least-squares solution, we add an additional constraint

to (4.12) to capture the requirements that system matrices, states and inputs are

real valued. Let

AiK = AiK,Re + jAiK,Im , (4.13)

where AiK,Re and AiK,Im denote real and imaginary parts of the Kth Fourier coef-

ficient of the ith system matrix. We must then have

Ai−K = AiK,Re − jAiK,Im (4.14)

to ensure that the system matrix is real-valued in the time domain. This yields

Ai =
[
AiK,Re − jAiK,Im · · · Ai0 · · · AiK,Re + jAiK,Im .

]
In order to simplify the formulation of our least-squares solution, we re-organize

the terms in Ai to eliminate repetitions. More formally, we define

Āi :=
[
AiK,Re · · · Ai0 · · · AiK,Im

]
(4.15)
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and

P :=



I I
. . . . .

.

I 0 I
0 I 0

−jI 0 jI

. .
. . . .

−jI jI


, (4.16)

which are specifically constructed to satisfy

Ai = ĀiP . (4.17)

Using the decomposition above, (4.12) can be simplified by reorganizing terms

and grouping known and unknown quantities in separate matrices as

(jω)X(jω)︸ ︷︷ ︸
yT (jω)

=
[
Ā1 · · · ĀM B̄1 · · · B̄M

]
︸ ︷︷ ︸

vT



P X̄ 1(jω)
...

P X̄M(jω)

P Ū1(jω)
...

P ŪM(jω)


︸ ︷︷ ︸

nT (jω)

.

Transposing both sides yields a linear equation as

n(jω) v = y(jω) (4.18)

As explained in Section 3.3, LTP system outputs contain components not

only in the input frequency but also at frequencies shifted by the harmonics of

the pumping frequency. Consequently, we will evaluate (4.7) both at the input

frequency ω as well as the shifted harmonics ω ± hωp, h ∈ Z in order to capture

95



time-periodic system as

n(jω + hωp)
...

n(jω)
...

n(jω − hωp)


︸ ︷︷ ︸

N(jω)

v =



y(jω + hωp)
...

y(jω)
...

y(jω − hωp)


︸ ︷︷ ︸

Y (jω)

. (4.19)

In order to ensure that the solutions are real-valued, we separate the real and

imaginary parts of the possibly complex-valued components computed from out

test data as [
Re{N(jω)}
Im{N(jω)}

]
︸ ︷︷ ︸

Nw

v =

[
Re{Y (jω)}
Im{Y (jω)}

]
︸ ︷︷ ︸

Yw

. (4.20)

Remark 4 Separating real and imaginary components of complex-valued compo-

nents computed from data doubles the number of tests used for the least squares

solution. �

Subsequently, collecting together multiple measurements from different fre-

quencies yields 
...

Nw

...


︸ ︷︷ ︸
N

v =


...

Yw
...


︸ ︷︷ ︸
Y

(4.21)

Now, assuming that N has full rank, the least squares error solution can be found

as

v = (NHN )−1NHY . (4.22)

We can extract Fourier series coefficient matrices from v and then construct A1(t),

A2(t), · · · , AM(t) and B1(t), B2(t), · · · , BM(t) using Fourier series synthesis as

Ai(t) =
K∑

n=−K
Aine

jnωpt, Bi(t) =
K∑

n=−K
Bi
ne
jnωpt. (4.23)
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4.1.3 Application: Switching Damped Mathieu Function

In this section, we present an example system, a piecewise smooth linear time-

periodic function, and evaluate the performance of the proposed algorithm on

this example. The piecewise smooth LTP system we consider in this example

consists of two switching damped Mathieu function with the form

ẍ(t) + 2ζωn︸ ︷︷ ︸
c

ẋ(t) + (1 + 2β cosωpt)ω
2
n︸ ︷︷ ︸

κ(t)

x(t) = u(t) (4.24)

where c represents piecewise constant damping term, while κ(t) represents piece-

wise smooth time-periodic compliance term in the Mathieu function. Piecewise

smooth LTP system dynamics can now be written as

ẍ(t) =

u(t)− c1ẋ(t)− κ1(t)x(t), if Tn ≤ t ≤ Tn+ T/2

u(t)− c2ẋ(t)− κ2(t)x(t), otherwise.
(4.25)

By using (4.25), state and input matrices can be obtained as

A1(t) =

[
0 1

−(1 + 2β1 cosωpt)ω
2
n −2ζ1ωn

]
B =

[
0

1

]

A2(t) =

[
0 1

−(1 + 2β2 cosωpt)ω
2
n −2ζ2ωn

]

where the input matrix is time-invariant for this example. By using the param-

eters specified in Table 4.1, actual values of the Fourier series coefficients to be

estimated can be found as

A1
0 =

[
0 1

−39.4784 −3.7699

]
, A1

1 =

[
0 0

−3.9478 0

]

A2
0 =

[
0 1

−39.4784 −1.2566

]
, A2

1 =

[
0 0

−7.8957 0

]
(4.26)

Notice that A1
−1 = A1

1 and A2
−1 = A2

1, since they have real values.

In order to begin our estimation process, we first simulate the system in order

to collect necessary data for the parametric identification process. To accomplish
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Table 4.1: Mathieu Function Parameters
T ωp ωn ζ1 β1 ζ2 β2

0.5 4π 2π 0.3 0.1 0.1 0.2

this goal, we simulate the piecewise smooth LTP dynamics of (4.25) by applying

single sine inputs as

u(t) = sin (2π(0.2 + 0.4k)t) (4.27)

where k is chosen in the range, k ∈ [0, 19], so that we generate 20 input stimuli for

our example and record the state measurements. Our input signals are 10 s. long

and all data are sampled at 100 Hz. Note that we currently use single sine inputs

in our tests but our modeling framework also supports sums-of-sines methodology,

which decreases the number of tests required for system identification

Note that previously, [34] showed that in order to estimate HTF components

uniquely using single sinusoidal signals (i.e. one experimental data per each

frequency), the input signal must not be equal to the harmonics of the half

of the pumping frequency, i.e. ω 6= kωp/2, k ∈ Z. Since we are attempting

to compute the parametric LTP matrices from input-output data, we no longer

need to satisfy this constraint for the case of pure piece-wise smooth LTP systems.

However, [105] also showed that for the identification of non-linear systems that

operate around a limit-cycle, input frequencies that are equal to the harmonics

of the pumping frequency should also be avoided in order to isolate the frequency

components of the limit-cycle and response around the limit-cycle. For this reason

we also do not include the harmonics of the pumping frequency in our input

signals.

Once we applied the input stimuli and collected our state measurements, we

need to make three implementation choices before building our least squares es-

timation matrices. First of all, we consider N = 20, yielding 41 Fourier series

coefficients for the computation of X i
k(jω) and U i

k(jω) in (4.11), since our bound

here originates from the signal length (see Remark 3). Secondly, we choose K = 1,

yielding the number of Fourier series coefficients to be estimated as 3, so that we

can capture the time-periodic behavior in our estimations. Finally, we consider

h = 2 harmonics of the LTP system for (4.19), so that we evaluate each input at
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5 different frequencies.

Based on our implementation choices explained above, Fourier series coeffi-

cients are estimated as

Â1
0 =

[
0.0002 0.9999

−39.4404 −3.7786

]
(4.28)

Â1
1 =

[
−0.0001− j0.0003 −0.0001− j0.0000

−3.9253 + j0.0095 0.0090− j0.0012

]

Â2
0 =

[
0.0009 1.0003

−40.0038 −1.2824

]

Â2
1 =

[
0.0002− j0.0008 −0.0001− j0.0002

−7.9860 + j0.0242 0.0017 + j0.0084

]

with A1
−1 = A1

1
∗

and A2
−1 = A2

1
∗
. We then reconstruct Â1(t) and Â2(t) using

(4.23). Similarly, B is estimated as B̂ =

[
0

0.9965

]
.

In order to better express our estimation results, we plot time domain graphs

of κ(t) and c(t) defined in (4.24) both using the actual and estimated system

matrices as illustrated in Fig. 4.1. κ(t) represents the piecewise time-periodic

compliance behavior in our Mathieu function, while c(t) represents piecewise

time-invariant damping loss. Both of these variables switch to another parameter

at the half of the period, which brings a time-periodic nature to both functions.

As illustrated in Fig. 4.1, our estimations with K = 1 fits well to the actual

system parameters, since we didn’t contaminate our simulation data with noise

for experiments. Apart from that, K = 1 is the exact number of Fourier series

coefficients for our system as seen in (4.26). Actually, it gives an exact fit for

κ(t) but it is an overfit for c(t), since K = 0 would be sufficient to represent its

piecewise LTI nature. However, overfitting does not cause any problem for c(t),

since higher order Fourier series coefficients are estimated too small as in (4.28).

In order to investigate the effects of under-fitting, we repeated our estimations

for K = 0 and re-estimated our system parameters as illustrated in Fig. 4.1. In
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Figure 4.1: Estimation results for compliance and damping term for a single
period. K = 0 corresponds to piecewise LTI case and K = 1 corresponds to
piecewise LTP case.

this case, it can be observed that κ(t) can not be estimated accurately, although

we can still obtain accurate estimations for c(t).

4.1.4 Discussion

A huge class of physical physical dynamical systems exhibit quasi-periodic tra-

jectories and hybrid characteristics. However, it is fair to assume that only a few

of the system identification studies in literature concentrate on the identification

of hybrid dynamic system that operate around some periodic orbits, which is the
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main goal of this study. Specifically, we limit our attention to the hybrid sys-

tems that has continuous state trajectories but potentially discontinuous vector

fields. Under some assumptions, the local flow around the periodic orbit of such

a system can be approximated with a hybrid LTP system.

Based on these motivations, we introduced a state space parametric identifi-

cation framework for hybrid LTP systems for which the periodic switching times

are assumed to be known. We formulated the problem in a linear regression

framework in frequency domain, where we estimated Fourier series coefficients of

the time-periodic system and input matrices. Then, we re-constructed the time

domain system and input matrices using Fourier synthesis after a least squares

solution. Currently, our formulations assume full state measurements which is the

main limitation of our method. In the next section, we will attempt to improve

our method such that we can relax this assumption also including process and

measurement noise.

4.2 Frequency Domain Subspace Identification

of Linear Time Periodic Systems

In this part, we introduce a frequency domain subspace-based state space iden-

tification method for linear time periodic (LTP) systems. Many problems in

engineering and biology, such as wind turbines [106], rotor bearing systems [31],

aircraft models [107], power distribution networks [108], and human walking [109]

require the consideration of time periodic dynamics. As such, the analysis, iden-

tification, and control of LTP systems received considerable attention [32, 69, 77,

110].

The frequency domain analysis method for LTP systems introduced by Wereley

[32, 111], wherein time periodic system matrices and signals in the LTP state

space formulation were expanded into their Fourier series coefficients, is among

important first contributions in this area. In this work, the principle of harmonic
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balance was used to obtain the concept of harmonic transfer functions (HTFs)

for LTP systems. The initial formulation was developed for continuous-time

LTP systems as infinite-dimensional operators, which were subsequently extended

to handle discrete-time LTP systems in the form of finite-dimensional transfer

functions operators [34].

Most existing literature on LTP system identification focuses on non-

parametrically identifying HTFs as an input–output characterization of LTP sys-

tems [31, 34, 69, 112], including our previous work on identification of legged lo-

comotion behaviors around stable periodic orbits [61–63]. Even though there are

many representations for a given finite-dimensional linear dynamical system that

would produce equivalent input–output characterizations, state space models are

commonly used and widely accepted to be practical for multi-variable finite di-

mensional linear systems. Consequently, this study aims to develop a frequency

domain state space identification method for LTP systems.

A well-established solution to state space identification for linear time invari-

ant (LTI) systems is the subspace identification framework [98], wherein system

matrices are estimated using oblique projections and singular value decompo-

sition. These are non-iterative algorithms that produce “optimal” state space

estimates with a very low time complexity. More importantly, the subspace iden-

tification framework supports both time domain [98] and frequency domain [113]

data to obtain state space estimates for LTI systems. There are also studies on

extending this framework to time-varying systems. Verhaegen et al. developed a

subspace identification method for estimating successive discrete state transition

matrices from time domain data for periodically and arbitrarily time varying sys-

tems [100]. A similar time domain subspace identification method for linear time

varying (LTV) systems has been proposed by Shi et al. in [99]. There are also

some studies which assume known/chosen scheduling functions for identifying

linear parameter varying (LPV) systems [91, 114]. Similarly, a continuous-time

subspace identification method for periodically time varying state space models

with known/chosen scheduling functions is presented in [115].

Nevertheless, to the best of our knowledge, there are currently no general
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methods that can address the frequency domain subspace identification problem

for LTP systems without any prior assumptions on scheduling functions. In this

context, our aim in this study is to develop a new general subspace identification

methodology for estimating state space models from frequency response data for

LTP systems.

LTP systems can generally be transformed to equivalent discrete-time LTI sys-

tems via bilinear transform [116] and lifting [117]. Based on this observation, we

first use the frequency domain subspace identification method of [113] to estimate

a discrete-time LTI state space equivalent model from the input–output data of

the original LTP system. A key property of our frequency domain lifting method

is the specific parametric structure of Fourier series coefficients associated with

the original LTP system. In order to identify these coefficients in the estimated

system, we propose to use an optimization framework based on particle swarm

optimization (PSO) methods. An important contribution of this study is hence

the method we propose to obtain an LTP state-space realization using the es-

timated lifted LTI system. Our identification–realization algorithm also allows

the realization of Floquet-transformed state space models for LTP systems with

arbitrary time-periodic system matrices, whose analytic derivation are often very

challenging and may even be impossible [118].

4.2.1 Problem Formulation and Solution Methodology

In this study, we consider multi-input/multi-output (MIMO), stable, linear time-

periodic (LTP) systems represented by

˙̄x(t) = Ā(t)x̄(t) + B̄(t)u(t)

y(t) = C̄(t)x̄(t) + D̄(t)u(t) ,
(4.29)

where u(t) ∈ Rnu , y(t) ∈ Rny and x̄(t) ∈ Rnp represent input, output and state

vectors, respectively. The system matrices are assumed to be periodic with a

fixed, known common period T > 0, with Ā(t) = Ā(t + nT ), B̄(t) = B̄(t + nT ),

C̄(t) = C̄(t + nT ) and D̄(t) = D̄(t + nT ), ∀n ∈ Z. We now formulate the

identification problem as follows:
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Given

• a number of single-sine (or sum-of-sines [69]) input signals applied at dif-

ferent frequencies, u(t),

• corresponding output measurements, y(t),

• the system period, T ,

Estimate

• linear, time-periodic system matrices Ā(t), B̄(t), C̄(t) and D̄(t) up to a

similarity transformation.

In principle, the subspace identification method we propose and describe in

this section is applicable to both continuous-time and discrete-time LTP systems

for which the associated monodromy matrix is non-singular. However, it has been

noted that the data (Hankel) matrices used for frequency domain subspace iden-

tification of continuous-time systems may become ill-conditioned with increasing

system dimension [119]. Even though different methods have been proposed to

address this issue [119, 120], we will find it more convenient to formulate our esti-

mation method for discrete-time LTP systems, noting that continuous-time LTP

systems can be transformed into discrete-time equivalents using bilinear (Tustin)

transformations [117].

As stated earlier, for an LTP system, a complex exponential input with fre-

quency ω produces output not only at the input frequency (which is the case for

LTI systems), but also at different harmonics ω ± kωp, k ∈ Z separated by the

system frequency, ωp = 2π/T , with possibly different magnitudes and phases in

steady state. In this context, the concept of Harmonic Transfer Functions (HTFs)

was developed to represent each harmonic response of the LTP system with a dis-

tinct transfer function Gk(w + kωp) for k ∈ Z [32]. This approach represents an

LTP system as the superposition of multiple modulated LTI systems. As such,

HTFs can be used as a lifting technique to transform an LTP system to an LTI

equivalent [121] for which subspace identification methods can now be expected

to yield sufficiently accurate state space estimates [98, 113, 114, 122, 123]. Among
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available alternatives, we utilize the frequency domain subspace identification

technique presented in [113].

To this end, we first introduce the transformations used for obtaining a

discrete-time LTI equivalent to an LTP system. Naturally, the original state

space form of (4.29) will not be available before system identification is per-

formed. Therefore, the transformations explained in this section are not directly

applied. Nevertheless, these derivations are necessary to transform input–output

data (not the state space model) collected from the original unknown LTP system

to the reciprocal input–output data of the equivalent discrete-time LTI system.

4.2.2 The Floquet Theory (Transform)

The Floquet theorem is a crucial tool used for the analysis and control of linear

time periodic (LTP) systems. One of the main results of the Floquet theorem

is the existence of a coordinate change by using which any LTP system in the

form (4.29) can be represented with a time-invariant state update matrix with

the other system matrices preserve their periodic nature.

In a mathematical sense, Let Φ(t, τ) be the state transition matrix and Φ(T, 0)

be the fundamental monodromy matrix (state transition matrix over one period)

of (4.29). Then, the main results of the Floquet theorem can be summarized as

below.

Theorem 1 (Floquet [124]) If the monodromy matrix, Φ(T, 0) for an LTP sys-

tem in the form (4.29) is nonsingular, then the following results hold:

1. State transition matrix: The state transition matrix of (4.29) can al-

ways be represented in the form

Φ(t, τ) = P (t)eA(t−τ)P−1(τ) (4.30)

where P (t) is an invertible T -periodic matrix and A is a (possibly complex-

valued) constant matrix.
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2. Similarity transformation: Then, the state transformation P (t) trans-

forms the system in (4.29) to a new form for which the state update matrix

is time-invariant as

ẋ(t) = Ax(t) + B(t)u(t),

y(t) = C(t)x(t) + D(t)u(t). (4.31)

where

A = P−1(t){Ā(t)P (t)− Ṗ (t)} (4.32)

B(t) = P−1(t)B̄(t) (4.33)

C(t) = C̄(t)P (t) (4.34)

D(t) = D̄(t) (4.35)

Remark 5 Note that although the initial definition of Floquet transformation

does not guarantee a real-valued state update matrix A, it is always possible to

find a real-valued A by using a 2T -periodic P (t) [118].

4.2.3 Discretization via Bilinear (Tustin) Transform

We now describe how the continuous-time state-space model in (4.31) is trans-

formed to a discrete-time LTP equivalent. Motivated by the literature [116], we

utilize the bilinear (Tustin) transform to map the complex values in s domain to

the z domain with a trapezoidal rule approximation as

s =
2(z − 1)

Ts(z + 1)
, (4.36)

where Ts is the sampling period for the continuos-time system. Taking the Laplace

transform of (4.31), we have

sX(s) = AX(s) + B(s) ∗U(s),

Y(s) = C(s) ∗X(s) + D(s) ∗U(s).
(4.37)
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where, ∗ represents the convolution operator. We then transform (4.37) into the

z-domain by using (4.36) as

(z − 1)X(z) = A
Ts
2

(z + 1)X(z)

+
Ts
2

(z + 1)(B(s) ∗U(s)),

(4.38)

Y(z) = C(z) ∗X(z) + D(z) ∗U(z). (4.39)

Now, after transforming (4.38) to time domain yields the state update equation

as

x((k + 1)Ts)− x(kTs) = A
Ts
2

[
x((k + 1)Ts) + x(kTs)

]
+

Ts
2

[
B((k + 1)Ts)u((k + 1)Ts)

]
+

Ts
2

[
B(kTs)u(kTs)

]
(4.40)

Separating the terms for time k and k + 1 to different sides yields

x((k + 1)Ts)−A
Ts
2

x((k + 1)Ts)

− Ts
2

[
B((k + 1)Ts)u((k + 1)Ts)

]
= x(kTs) + A

Ts
2

x(kTs) +
Ts
2

[
B(kTs)u(kTs)

]
.

(4.41)

By using a change of variables as√
Tsxd[k + 1] := x(kTs) + A

Ts
2

x(kTs) +
Ts
2

[
B(kTs)u(kTs)

]
(4.42)

and evaluating (4.41) at time k yields

(I −A
Ts
2

)x(kTs) =
√
Tsxd[k] +

Ts
2

[
B(kTs)u(kTs)

]
(4.43)

Hence, solution for x(kTs) can be obtained as

x(kTs) = (I −A
Ts
2

)−1
√
Tsxd[k]

+ (I −A
Ts
2

)−1Ts
2

[
B(kTs)u(kTs)

] (4.44)
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Now, considering the right hand side of (4.41) as√
Tsxd[k + 1] = (I + A

Ts
2

)x(kTs) +
Ts
2

[
B(kTs)u(kTs)

]
, (4.45)

and plugging (4.44) into (4.45) and organizing the terms yield

xd[k + 1] = (I + A
Ts
2

)(I −A
Ts
2

)−1︸ ︷︷ ︸
Ad

xd[k]

+
2√
Ts

(
2

Ts
I −A)−1B(kTs)︸ ︷︷ ︸

Bd[k]

ud[k],
(4.46)

where ud[k] := u(kTs).

In order to obtain a discrete-time representation for the output equation, we

first sample the output equation (4.31) as

y(kTs) = C(kTs)x(kTs) + D(kTs)u(kTs). (4.47)

Now, plugging (4.44) into (4.47) and organizing the terms yields

yd[k] =
2√
Ts

C(kTs)(
2

Ts
I −A)−1︸ ︷︷ ︸

Cd[k]

xd[k]

+
(

D(kTs) + C(kTs)(
2

Ts
I −A)−1︸ ︷︷ ︸

Dd[k]

)
ud[k],

(4.48)

where yd[k] := y(kTs). The transformed discrete-time LTP state space model of

(4.31) can now be formulated as

xd[k + 1] = Adxd[k] + Bd[k]ud[k],

yd[k] = Cd[k]xd[k] + Dd[k]ud[k],
(4.49)

where

Ad = (
2

Ts
I + A)(

2

Ts
I −A)−1, (4.50)

Bd[k] =
2√
Ts

(
2

Ts
I −A)−1B(kTs), (4.51)

Cd[k] =
2√
Ts

C(kTs)(
2

Ts
I −A)−1, (4.52)

Dd[k] = D(kTs) + C(kTs)(
2

Ts
I −A)−1B(kTs). (4.53)
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Note that (4.49) also forms a periodic system, where Bd[k] = Bd[k+nN ], ∀n ∈ Z
(also valid for Cd[k] and Dd[k]) and N is the discrete-time system period defined

as N := T/Ts. For the sake of simplicity, N is assumed to be even.

4.2.4 Lifting to a Time-Invariant Reformulation

It has been shown that a majority of the LTP systems can be represented with

time invariant formulations [117]. This motivates our use of the frequency do-

main lifting method based on the principle of harmonic balance to obtain an LTI

equivalent state space model for the discrete-time LTP system of (4.49). Among

possible alternatives (see [117] for a survey), we use the approach proposed in [34]

due to the convenient structure of Fourier series coefficients for periodic system

matrices in time invariant Toeplitz matrices.

Wereley showed that an LTP system maps a complex exponential input to

another complex exponential signal, which is modulated by the complex Fourier

series expansion of a periodic signal of ωp [32]. These signals are called exponen-

tially modulated periodic (EMP) signals and are defined as

u(t) = est
∞∑

n=−∞

Une
jnωpt (4.54)

where t ≥ 0 and s ∈ C. Sampling the continuous-time signal (4.54) with a period

Ts yields the discrete-time EMP signal

ud[k] := zk
N/2−1∑
n=−N/2

Une
j2π nk

N . (4.55)

where, Un are called modulated Fourier series coefficients for EMP signals and

are defined as

Un :=
1

N

N−1∑
k=0

(ud[k]z−k)e−j2π
nk
N . (4.56)

It has been shown that when an LTP system is given an EMP input, state and

output signals are also EMP in steady-state [32]. Therefore, similar to (4.55), we
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obtain the state and output signals as

xd[k] = zk

N
2
−1∑

n=−N
2

Xne
j2π nk

N , (4.57)

yd[k] = zk

N
2
−1∑

n=−N
2

Yne
j2π nk

N . (4.58)

In addition, discrete-time Fourier synthesis equation for the periodic system

matrices are computed as

Bd[k] =

N
2
−1∑

n=−N
2

Bne
j2π nk

N , (4.59)

Cd[k] =

N
2
−1∑

n=−N
2

Cne
j2π nk

N , (4.60)

Dd[k] =

N
2
−1∑

n=−N
2

Dne
j2π nk

N , (4.61)

Note that since Ad is in time-invariant form due to Floquet transform, there is

no need to compute Fourier series coefficients for Ad.

Now, plugging in the Fourier synthesis equations of (4.59), (4.60) and (4.61)

into (4.49) yields

zk+1

N
2
−1∑

n=−N
2

Xne
j2π

n(k+1)
N =

Ad

(
zk

N
2
−1∑

n=−N
2

Xne
j2π nk

N

)

+

( N
2
−1∑

n=−N
2

Bne
j2π nk

N

)(
zk

N
2
−1∑

m=−N
2

Ume
j2πmk

N

)
.

(4.62)
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Organizing the terms in both sides yields

zk+1

N
2
−1∑

n=−N
2

Xne
j2π n

N ej2π
nk
N =

zk

N
2
−1∑

n=−N
2

(
AdXn +

N
2
−1∑

m=−N
2

Bn−mUm

)
ej2π

nk
N .

(4.63)

Now, rearranging the terms in the right hand side yields

0 = zk

N
2
−1∑

n=−N
2

(
zXne

j2π n
N −AdXn −

N
2
−1∑

m=−N
2

Bn−mUm

)
ej2π

nk
N (4.64)

The set of exponentials,
{
ej2π

nk
N | n ∈ [−N

2
, N

2
− 1]

}
, constitute an orthonormal

basis. Thus, by the principle of harmonic balance, each term enclosed by the

brackets must individually equal zero to ensure that the overall sum is zero.

Therefore, for all n ∈ [−N
2
, N

2
− 1], we have

zej2π
n
NXn = AdXn +

N/2−1∑
m=−N/2

Bn−mUm. (4.65)

Note that the above equation is valid since Fourier coefficients, Bm, are also

periodic with N . Performing similar steps for the output equation yields

Yn =

N/2−1∑
m=−N/2

Cn−mXn +

N/2−1∑
m=−N/2

Dn−mUm (4.66)

for all n ∈ [−N/2, N/2− 1].

Similar to continuos-time systems, (4.65) and (4.66) can be represented with

Toeplitz matrices towards obtaining an LTI state space model. To this end, we

first redefine the state, input and output vectors as

Xd :=



X−N
2

· · ·
X−1

X0

X1

· · ·
XN

2
−1


Ud :=



U−N
2

· · ·
U−1

U0

U1

· · ·
UN

2
−1


Yd :=



Y−N
2

· · ·
Y−1

Y0

Y1

· · ·
YN

2
−1


. (4.67)
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In addition, time-invariant reformulation of the originally N -periodic input ma-

trix can be obtained as

Bd :=



B0 B−1 . . . B−N
2

0 . . . 0

B1 B0 B−1 . . . B−N
2

. . . · · ·

· · ·
. . .

. . .
. . .

. . .
. . . 0

BN
2
−1 . . . B1 B0 B−1 . . . B−N

2

0
. . .

. . .
. . .

. . .
. . . · · ·

0
. . . BN

2
−1 . . . B1 B0 B−1

0 . . . 0 BN
2
−1 . . . B1 B0


. (4.68)

Similarly, Toeplitz forms for Cd and Dd matrices can be obtained in terms of their

Fourier series coefficients,
{
Cn | n ∈ [−N

2
, N

2
− 1]

}
and

{
Dn | n ∈ [−N

2
, N

2
− 1]

}
,

respectively. Note that, since Ad is time-invariant, its Toeplitz form, Ad includes

only Ad in its diagonals

Ad := blkdiag{Ad} | Ad ∈ RNnp×Nnp (4.69)

where blkdiag represents a block-diagonal matrix composed of Ad in its diagonals.

As a final step, we define a modulation matrix, Nd to capture the exponential

terms in (4.65) as

Nd := blkdiag{ej2π
n
N Inp | ∀n ∈ [−N/2, N/2− 1]}. (4.70)

by using which we also define

AdN := N−1
d Ad, BdN := N−1

d Bd. (4.71)

Now, (4.65) and (4.66) is represented as an LTI system using the Toeplitz ma-

trices as

zXd = AdNXd + BdNUd
Yd = CdXd +DdUd.

(4.72)

and harmonic transfer functions of the system becomes

Gd(z) = Cd(zI −AdN)−1BdN +Dd. (4.73)
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Remark 6 Note that different than continous-time harmonic transfer functions

(HTFs) defined in [32], the discrete-time HTFs has finite dimensions due to

discrete-time Fourier series expansion. This feature allows us to obtain finite-

dimensional LTI equivalents for LTP systems without needing a truncation. �

Remark 7 Note that both the bilinear (Tustin) transformation in Section 4.2.3

and the lifting operation in Section 4.2.4 can be derived without needing a Floquet

transformation. However, having a time-invariant state update matrix A allows

proving the existence of the inverses in (4.50) and (4.73) with simple conditions

based on the eigenvalues of A. �

4.2.5 Transforming to a Real-Valued State Space Model

An important problem for the LTI state-space model of (4.72) is that its sys-

tem matrices may be complex-valued. However, the majority of state-space sub-

space identification techniques in the literature assume real-valued input–output

data, estimating real-valued system matrices [113, 125–128]. To address this prob-

lem, we propose a similarity transformation to obtain a real-valued form for the

complex-valued system structure. Note that the original LTP system given in

(4.29) was assumed to be real-valued as indicated in Section 4.2.1. Therefore, the

Fourier series coefficients for these time-periodic matrices are in complex conju-

gate form, which allows us to separate the real and imaginary parts via a simple

similarity transformation as in [91, 121] without changing the system dimension.

To this end, we define a complex-valued transformation matrix

Tu :=


0.5IN/2 0N/2 0.5IN/2

0TN/2 I 0TN/2

−jIN/2 0N/2 jIN/2

 (4.74)

which is used to transform the input signal with U = TuŨd, with IN/2 denoting

a N/2 by N/2 identity matrix, 0N/2 a zero-column vector with length N/2 and

Ud expanded as Ũd = [UTd UN
2

]T . Similar expansions can be used to obtain

ÃdN , ˜BdN , C̃d, D̃d and Ỹ . Defining similarity transformation matrices for state
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and output as Tx and Ty, respectively, the real-valued state space model can

hence be obtained as

zX = TxÃdNT −1
x︸ ︷︷ ︸

A

X + Tx ˜BdNT −1
u︸ ︷︷ ︸

B

U

Ỹ = TyC̃dT −1
x︸ ︷︷ ︸

C

X + TyD̃dT −1
u︸ ︷︷ ︸

D

U .
(4.75)

Note that different than a standard similarity transformation, Tx, we use Tu
and Ty to transform input–output data of the system. Thus, the newly defined

real-valued system matrices and signals results in the LTI system

x[k + 1] = Ax[k] +Bu[k]

y[k] = Cx[k] +Du[k],
(4.76)

which is suitable for most LTI frequency domain subspace identification methods

such as [113].

4.2.6 Subspace Identification via Frequency Response

Data

Having showed that an LTP system can also be represented with an equivalent

discrete-time LTI system, this section briefly summarizes the frequency domain

subspace identification method of [113] to estimate a discrete-time LTI equivalent

for the original LTP system.

Consider the discrete-time Fourier transform of the LTI system represented in

(4.76)

ejωX(ω) = AX(ω) +BU(ω)

Y (ω) = CX(ω) +DU(ω).
(4.77)

Let u[k] = ejωk, then U(ω) = [0 . . . 0 1 0 . . . 0]T by computing (4.56) for each

Fourier series coefficients, where the only non-zero term is the zeroth Fourier

coefficient. Then, plugging in U(ω) into (4.77) yields

ejωX(ω) = AX(ω) + B̄ (4.78)

G(ejω) = CX(ω) + D̄, (4.79)
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where G(ejω) is the frequency response of the multi-output LTI system, B̄ and

D̄ corresponds to (N
2

+ 1)th column of B and D, respectively.

In order to derive the data matrices for the subspace identification, we recur-

sively multiply (4.79) with ejω and plug in (4.78) into (4.79), which yields
G(ejω)

ejωG(ejω)

· · ·
ej(q−1)ωG(ejω)


︸ ︷︷ ︸

Gω

= QX(ω) + Γ


I

ejωI

· · ·
ej(q−1)ωI


︸ ︷︷ ︸

Uω

. (4.80)

Here Q is the extended observability matrix, which is calculated up to q − 1th

power of A as

Q =



C

CA

CA2

· · ·
CAq−1


(4.81)

and Γ is a lower triangular block Toeplitz matrix defined as

Γ =



D̄ 0 . . . . . . 0

CB̄ D̄ 0 . . . . . .

CAB̄ CB̄ D̄ 0 · · ·

· · ·
. . .

. . .
. . . 0

CAq−2B̄ CAq−3B̄ . . . . . . D̄


. (4.82)

Note that q is a chosen number that should be greater than the “dimension” of

the LTI system represented in (4.76). Assuming that the dimension of the original

LTP system to be np, dimension of the LTI system to be estimated becomes 2Nnp

when there is no dimension reduction.

One advantage of using frequency domain identification techniques is that

multiple measurements can be simply combined by expanding the input, output
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and state matrices as

U =


I I . . . I

ejω1I ejω2I . . . ejωM I

· · · · · ·
. . . · · ·

ej(q−1)ω1I ej(q−1)ω2I . . . ej(q−1)ωM I



G =


G1 G2 . . . GM

ejω1G1 ejω2G2 . . . ejωMGM

· · · · · ·
. . . · · ·

ej(q−1)ω1G1 ej(q−1)ω2G2 . . . ej(q−1)ωMGM


X =

[
X(ω1) X(ω2) . . . X(ωM)

]
, (4.83)

where M is the number of tests at different frequencies. In this context, (4.80)

can be expanded as

G = QX + ΓU (4.84)

Since the original LTI system to be estimated (4.76) has real-valued state space

representation, (4.84) are separated to their real and imaginary parts to force

real-valued estimations

[Re{G} Im{G}]︸ ︷︷ ︸
G

= Q [Re{X} Im{X}]︸ ︷︷ ︸
X

+ Γ [Re{U} Im{U}]︸ ︷︷ ︸
U

. (4.85)

which yields an equation of the form

G = QX + ΓU. (4.86)

The estimation process starts by projecting (4.86) onto the null space of U

using the projector

U⊥ = I −UT (UUT )−1U (4.87)

and hence we obtain

GU⊥ = QXU⊥ +���
��:0

ΓUU⊥. (4.88)

A numerically efficient implementation of this projection can be performed via

QR decomposition [98]. We then compute the singular value decomposition for

GU⊥ as

GU⊥ =
[
Ûn Ûo

] [Σ̂n 0

0 Σ̂o

][
V̂ T
n

V̂ T
o

]
(4.89)

116



where n is the estimated system dimension, which is chosen based on LTP system

properties mentioned in Remark 8.

Remark 8 In classical LTI subspace identification, the estimated system order,

n, is chosen based on the drastical drops in singular values of (4.89). However,

if one seeks to find a possible LTP realization for the estimated system, n needs

to be chosen to satisfy additional constraints. Let the eigenvalues of Ad be Sd =

{λdi }
np

i=1. Lifting to a time-invariant form as in (4.72) results in AdN with the

following eigenvalues

S =
{{

λdi e
−j2π k

N

}np

i=1

∣∣∀k ∈ [−N/2, N/2− 1]
}
. (4.90)

It is quite possible that the user could limit the estimated number of harmonics,

K, such that K < N/2− 1. In this case (4.90) will take the form

Ŝ =
{{

λdi e
−j2π k

N

}np

i=1

∣∣∀k ∈ [−K,K]
}
. (4.91)

Note that under these constraints n would be equal to the cardinality of Ŝ, i.e.

n = |S| = (2K + 1)np. �

One possible estimate for the extended observability matrix is found as (see

[113])

Q = ÛnΣ̂1/2
n . (4.92)

Hence, by definition (4.81), we can estimate C and A as

Â = (J1Q)†J2Q (4.93)

Ĉ = J3Q (4.94)

where

J1 =
[
I(q−1)ny×(q−1)ny 0(q−1)ny×ny

]
(4.95)

J2 =
[
0(q−1)ny×ny I(q−1)ny×(q−1)ny

]
(4.96)

J3 =
[
Iny×ny 0ny×(q−1)ny

]
. (4.97)
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Having found Â and Ĉ, estimates for input and feedthrough matrices can be

obtained via a least-squares problem as

(B̂, D̂) = arg min
(B,D)

M∑
k=0

||G(z)− Ĉ(zI − Â)−1B −D||2F . (4.98)

where ||.||F denotes the Frobenious norm.

At this point, our method provides a parametric dynamical system represen-

tation which can predict the output of the original system to any type of input

using a compact representation of information compared to non-parametric rep-

resentations such as time-periodic impulse response functions and HTFs. To the

best of our knowledge such a method which yields a state space realization for a

general class of LTP systems based on frequency domain input–output data does

not appear in the literature.

The main drawback of this representation—lifted LTI— is that it is unintu-

itive for the general audience. In Section 4.2.7, we will introduce an optimization

based transformation which maps the lifted LTI representation to a more intu-

itive classical state-space LTP representation in the Floquet transformed form.

This optimization step adds extra computational burden, but helps to obtain an

intuitive representation.

4.2.7 Reconstructing LTP State Space Estimates

The estimated system matrices Â, B̂, Ĉ and D̂ yield an equivalent discrete-time

LTI state space model for the system formulated in (4.29) as

x̂[k + 1] = Âx̂[k] + B̂u[k]

ŷ[k] = Ĉx̂[k] + D̂u[k].
(4.99)

Our goal in this section is to obtain an LTP realization for the estimated

system (4.99). In Section 4.2.4, we showed that it is possible to find a discrete-

time LTI equivalent for LTP systems having a specific parametric structure of
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the Fourier series coefficients. Unfortunately, subspace identification yields state

space estimates up to a similarity transformation. Therefore, we need to find a

similarity transformation matrix, T , for (4.99) in order to identify Fourier series

coefficients of the underlying LTP system towards obtaining a periodic realization.

Let the LTI system of (4.99) be represented in the form

P̂ =

[
Â B̂

Ĉ D̂

]
. (4.100)

Also let P denote the form satisfying specific parametric structure of the Fourier

series coefficients explained in Section 4.2.4. Then, our goal is to find a similarity

transformation matrix, T satisfying[
T −1 0

0 I

]
︸ ︷︷ ︸
M−1

P̂

[
T 0

0 I

]
︸ ︷︷ ︸
M

= P . (4.101)

Note that P is a parametric representation with unknown system parameters.

Therefore, any solution satisfying P yields an LTP realization for the estimated

system. Our goal in this section is to find one of these solutions to obtain an

LTP state space realization for the estimated system. To accomplish this, we

first define an error metric, d(M−1P̂M,P), which measures the distance be-

tween transformed system, M−1P̂M and P . Then, our problem is reduced to a

nonlinear optimization process as

Mopt = arg min
M

d(M−1P̂M,P) (4.102)

such that the distance between transformed estimated system and the solution

set is minimized. Details on the computation of d are given in Section 4.2.8.

In order to solve this nonlinear optimization problem, we use particle swarm

optimization (PSO) followed by the Nelder-Mead algorithm. PSO starts with

n2 particles to find a similarity transformation matrix that minimizes (4.102).

Note that PSO does not guarantee convergence to the global minima. Thus, even

though it is always possible to estimate an LTI state space equivalent for the

original LTP system, it is not always guaranteed to find an LTP realization.
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Once Mopt is estimated, we can extract the Fourier series coefficients and

construct LTP state space estimates by using (4.59) to (4.61) to obtain estimated

discrete-time LTP system as

x̂d[k + 1] = Âdx̂d[k] + B̂d[k]ud[k],

ŷd[k] = Ĉd[k]x̂d[k] + D̂d[k]ud[k].
(4.103)

Remark 9 Note that the solution structure we aim to derive in the LTP realiza-

tion step has a constant (time-invariant) system matrix. Therefore, the estimated

LTP system will be in Floquet-transformed form based on the original LTP sys-

tem. Thus, this method can be also used for finding the Floquet transformation

for a known LTP system for which analytical derivation is challenging. �

Finally, inverse bilinear (Tustin) transformation can be applied for (4.103) by

using a similar methodology as in Section 4.2.3 to obtain continuos-time state

space model estimates as

˙̂x(t) = Âx̂(t) + B̂(t)u(t),

ŷ(t) = Ĉ(t)x̂(t) + D̂(t)u(t).
(4.104)

where

Â =
2

Ts
(Âd + I)−1(Âd − I),

B̂(kTs) =
2√
Ts

(Âd + I)−1B̂d[k],

Ĉ(kTs) =
2√
Ts

Ĉd[k](Âd + I)−1,

D̂(kTs) = D̂d[k]− Ĉd[k](Âd + I)−1B̂d[k],

and intersample behavior is obtained via zero-order-hold.

4.2.8 Computation of Distance Function

In this section, we give the details of computations for the distance function

d(M−1P̂M,P) used in (4.102). To this end, we define an error metric for each
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estimated system matrix, Â, B̂ and Ĉ as dA, dB and dC , respectively and define

the total error as

d := dA + dB + dC . (4.105)

Let Â be represented as (2K + 1)× (2K + 1) block matrices with Âi,j ∈ Cnp×np ,

where (i, j) corresponds to block in ith row and jth column. The parametric form

ofAdN suggests a block diagonal structure with the exponential modulation terms

multiplying the block-diagonal matrices as in (4.71). Thus, all non-diagonal block

matrices must contribute to error. Besides, the diagonal matrices must have the

specific parametric structure of (4.71). Let the mid-diagonal term of the estimated

system be Âd. Then, the error due to diagonal terms can be computed as

||Âd −
1

2K + 1

2K+1∑
k=1

Âk,ke
−j2kπ/N

︸ ︷︷ ︸
ĀK+1,K+1

||2F (4.106)

Since we seek a real-valued Âd, we pick Âd = Re{ĀK+1,K+1} to minimize the

error in (4.106). Then, dA is defined as

dA := ||Im{ĀK+1,K+1}||2F +
2K+1∑
i,j=1
i 6=j

||Âi,j||2F . (4.107)

Similarly, let B̂ be represented as (2K+1)×1 block matrices with B̂i ∈ Cnp×1. We

also define B̄ as the transformed B̂ satisfying the specific parametric structure of

the Fourier series coefficients. Then, error due to input matrix, B̂ can be defined

as ||B̂− B̄||2F . Similarly, we pick B̄K+1 = Re{B̂K+1} to minimize the error. Then,

we choose B̄n = 1
2
(B̂n + B̂2K+2−n) for n = 1, 2, . . . , K and B̄2K+2−n = B̄∗n for

n = 1, 2, . . . , K. Thus, dB is defined as

dB := ||Im{B̄K+1}||2F +
2K+1∑
i=1

i 6=K+1

||1
2
B̂i −

1

2
B̂∗2K+2−i||2F . (4.108)

Finally, let Ĉ be represented as (2K + 1)× (2K + 1) block matrices with Ĉi,j ∈
C1×np . We also define C̄ as the transformed Ĉ satisfying the specific parametric

structure of the Fourier series coefficients for the output matrix. Then, the error
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due to this term can be defined as ||Ĉ − C̄||2F . Now, we seek to find C̄ in order

to compute the error.

To accomplish this, we first define ¯̄C0 as

¯̄C0 := Re
{ 1

2K + 1

2K+1∑
i=1

Ĉi,i

}
(4.109)

as the zeroth Fourier series coefficient. Then, we define the candidate solutions

for the other Fourier series coefficients as

¯̄Cn :=
1

2(2K − n)

{
2K+1∑
i=n+1

Ĉi,i−1 +

[
2K∑
i=n

Ĉi,i+1

]∗}
(4.110)

and ¯̄C−n := ¯̄C∗n for all n = 1, 2, . . . , 2K. Then,

C̄i,j = ¯̄Ci−j | (i, j) = 1, 2, . . . , 2K + 1. (4.111)

Having computed C̄, error due to output matrix can be computed as

dC := ||Ĉ − C̄||2F (4.112)

4.2.9 Numerical Example

In this section, we provide an example system based on the well-known Mathieu

function to evaluate the performance of the proposed method. Consider the

system

ẍ(t) = −ω2
nx(t)− 2ζωnẋ(t) + (1 + 2βbcosωpt)u(t) (4.113)

and the measurement function

y(t) = (1 + 2βccosωpt)x(t). (4.114)

where ωp = 4π, ωn = 2π, ζ = 0.3, βb = 0.2 and βc = 0.1.
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In state space, the LTP system can be represented as

ẋ(t) =

[
0 1

−ω2
n −2ζωn

]
x(t) +

[
0

1 + 2βbcosωpt

]
u(t),

y(t) =
[
1 + 2βccosωpt 0

]
x(t)

(4.115)

where the numerical representation of the system matrices can be obtained as

A =

[
0 1

−39.4784 −3.7699

]

B(t) =

[
0

1 + 0.4 cos(ωpt)

]
C(t) =

[
1 + 0.2 cos(ωpt) 0

]
.

(4.116)

In order to start the identification process, we simulate the LTP system in (4.115)

by applying single cosine inputs as

u(t) = cos(2π(0.15 + 0.1k)t) (4.117)

where k ∈ {1, 2, . . . , 400}, so that we generate 400 input stimuli and record the

output measurements as in (4.114). The input signals, and hence the simulation

durations, were chosen as 200 s and all data were sampled with fs = 100 Hz.

Note that our solution method also supports sum-of-cosines tests, which would

drastically reduce the number of tests required for system identification [69].

Once we obtain the input–output data from the “unknown” system, we ap-

ply the proposed subspace identification method to estimate an LTP realization

for the original system. We obtain the following LTP system as an equivalent

representation of the system given in (4.115) as

˙̂x(t) = Âx̂(t) + B̂(t)u(t),

ŷ(t) = Ĉ(t)x̂(t) + D̂(t)u(t).
(4.118)
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where

Â =

[
5.8078 4.5134

−21.0736 −9.5772

]
(4.119)

B̂(t) =

[
−0.0238− 0.0097 cos(ωpt+ 0.0026)

0.0552 + 0.0224 cos(ωpt+ 0.0012)

]
(4.120)

Ĉ(t) =

[
10.0552 + 2.1630 cos(ωpt+ 0.0003)

4.3252 + 0.8815 cos(ωpt+ 0.0084)

]T
. (4.121)

Note that subspace identification yields a state space estimate up to a similarity

transformation. Therefore, we transform the estimated system to controllable

canonical form (similar to the original system) for comparison and obtain

Â =

[
0 1

−39.4911 −3.7694

]
(4.122)

B̂(t) =

[
−0.0004 cos(ωpt+ 0.3337)

1 + 0.4071 cos(ωpt+ 0.0023)

]
(4.123)

Ĉ(t) =

[
0.9980 + 0.2055 cos(ωpt+ 0.0063)

−0.0029− 0.0027 cos(ωpt− 0.1409)

]T
. (4.124)

The proposed subspace identification methodology produces accurate parametric

estimations of the state space structure of the original system. We also computed

normalized matrix norm of the error between the predicted and actual system

matrices as well as normalized signal norms of error signals between the time

periodic input and output vectors:

||A− Â||2/||A||2 = 0.0003

∆B(t) = B(t)− B̂(t)→ ||∆B||2/||B||2 = 0.0049 (4.125)

∆C(t) = C(t)− Ĉ(t)→ ||∆CT ||2/||CT ||2 = 0.0056.

It can be seen that normalized quantitive errors between the actual and predicted

data are very small. To evaluate the prediction performance, we illustrate the

HTFs of the continuos-time LTP systems (actual and estimated) in Fig. 4.2. We

observe negligible errors in magnitude plots and some minor errors in phase plots.

In order to investigate the effect of these differences on input–output data, we
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Figure 4.2: Harmonic transfer functions of the original (red-solid) and estimated
(blue-dashed) systems. Magnitude and phase plots for G0 are illustrated with
standard red-solid and blue-dashed lines, respectively. G1 and G−1 are illustrated
with dark and light tones of the corresponding colors.

simulated the actual and estimated system with a square wave input with period

π and magnitude varying between −1 and 1. Fig. 4.3 illustrates the response of

both the actual and the estimated system. As seen in Fig. 4.3, the estimated

LTP system can accurately predict the response to a square wave function.

Table 4.2: N-RMSE errors for different test signals
Single Sine Square Wave Periodic Ramp

N-RMSE 0.0030 0.0042 0.0040

In addition, we used normalized root mean squared error (N-RMSE) to quan-

tify the prediction performance of the estimated LTP system for different test
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Figure 4.3: Response of the actual and estimated system to a square wave input
signal. Shaded and white regions represent the +1 and −1 regions of the square
wave, respectively.

signals. Table 4.2 reports N-RMSE errors for the square wave example illus-

trated in Fig. 4.3, a periodic ramp input with period, π (varying between −1

and 1) and a sinusoidal input with period, π. Note that the square wave and

periodic ramp signal predictions produce small N-RMSE errors when we consider

the N-RMSE error of the sinusoidal input signal, which was used as a training

data for the system identification process.

4.3 Conclusions

In this chapter, we proposed two state space identification methods for linear

time periodic (LTP) systems towards developing state space models of legged

locomotor behaviors. In the first part, we limited our attention to the hybrid

LTP systems that has continuous state trajectories but potentially discontinu-

ous vector fields. We introduced a state space parametric system identification

framework for these systems assuming full state measurement and switching time

between successive subsystems are known.
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In the second part, we proposed a new method for subspace-based state space

identification of linear time periodic (LTP) systems using frequency response

data. Our solution methodology is based on the fact that LTP systems can

be transformed into equivalent discrete-time linear time-invariant (LTI) systems.

To accomplish this, we utilize bilinear (Tustin) transformation and a frequency

domain lifting method available in the literature. Then, we estimate an LTI

system representation that can predict the input–output data of the original

system.

We then introduced an optimization based transformation which helps us to

identify the Fourier series coefficients in the lifted LTI representation. Then, we

obtain an LTP realization by using Fourier synthesis equations. Note that the

optimization process adds an extra computational burden to standard subspace

identification as a cost of obtaining a more intuitive realization. Finally, the

estimated LTP system has a time invariant state matrix in Floquet-transformed

form. Therefore, our method allows finding Floquet transforms for known LTP

systems via system identification.
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Chapter 5

Conclusion and Future Works

Inspired from animals in nature, the legged locomotion is one of the trending areas

in robotics to design legged robots that can move like their animal counterparts

do in nature. To accomplish this, we first need to understand the functions

and concepts in nature, so that we can engineer them to develop better robotics

applications. To this end, novel system identification methods are required to

mathemetically represent legged locomotion and understand the physics behind

the animal locomotion.

In the first part of this thesis, we focused on mechanics-based mathematical

modeling of legged locomotion. Especially, we aimed to experimentally validate

the prediction performance of a recently proposed approximate analytical solution

to Spring-Loaded Inverted Pendulum (SLIP) model dynamics. To this end, we

first designed and built a one-legged hopping robot platform based on the SLIP

template and then performed parametric system identification to identify model

parameters. Then, we assessed the prediction performance of the approximate

analytical solution on single-stride locomotion experiments that are collected with

different leg springs and various initial conditions. Our results showed that even

the approximate analytical solutions to SLIP dynamics provides sufficiently ac-

curate predictions for a one-legged hopping robot platform.
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In the second part, we focused on developing input–output models of legged

locomotion without explicitly modeling the physical system dynamics. Our aim

was to estimate transfer functions corresponding to input–output behavior of

legged locomotor systems. To achieve this, we modeled the legged locomotor

dynamics as a Linear Time Periodic (LTP) system by linearizing around a stable

periodic orbit. We then utilized the frequency domain analysis and identification

methods for LTP systems towards identification of input–output models for legged

locomotion problems.

Finally, we worked on estimating state space models of legged locomotion to

obtain a more intuitive system representation. To accomplish this, we proposed

two state space identification methods to estimate time periodic system represen-

tations for LTP systems. Firstly, we considered a hybrid, LTP system with full

state measurement assumption. We showed that frequency domain input–output

data yields sufficiently accurate state space estimations for the state and input

matrices for hybrid LTP systems. We then released our full state measurement

assumption and formulated the identification problem for a general class of LTP

systems. To this end, we utilized frequency domain subspace identification meth-

ods to estimate LTP state space realizations for unknown stable LTP systems.

As a natural future work, experimental validation of the data-driven system

identification techniques is fundamental towards application of our methods to

biological locomotor systems. Besides, extending the data-driven system iden-

tification methods presented in this thesis to closed-loop systems is also crucial

for analysis and identification of biological systems. As a continuation of this

study, we plan to utilize these methods for separate identification of plant and

the controller in a biological locomotor system in order to understand the control

principles of animal in nature.
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fication of a vertical hopping robot model via harmonic transfer functions,”

Transactions of the Institute of Measurement and Control, vol. 38, no. 5,

pp. 501–511, 2016.

[63] I. Uyanik, M. M. Ankarali, N. J. Cowan, U. Saranli, Ö. Morgül, and
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