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A B S T R A C T

This paper addresses risk-averse stochastic hub location problems where the risk is measured
using the conditional 𝛽-mean criterion. Three variants of the classical multiple allocation hub
location problem, namely the 𝑝-hub median, the 𝑝-hub maximal covering, and the weighted
𝑝-hub center problems are studied under demand data uncertainty represented by a finite set of
scenarios. Novel mixed-integer linear programming formulations are proposed for the problems
and exact algorithms based on Benders decomposition are developed for solving large instances
of the problems. A large set of computational tests are conducted so that the efficiency of
the proposed algorithms is proved and the effect of various input parameters on the optimal
solutions is analyzed.

. Introduction

Hub location problems (HLPs) play a pivotal role in the design of many-to-many distribution networks arising in various
ervice industries such as transportation, logistics, telecommunications, etc. Hub facilities accommodate key functions such as
ransshipment, sorting, and consolidation. Origin–destination (O/D) traffic are routed via hub facilities rendering a consolidated
low of commodities where traffic with different origins and/or destinations are agglomerated while being transported over the
etwork. The latter allows exploitation of economies of scale on transportation cost, especially over the hub arcs. The HLP aims to
ind the optimal location of the hub facilities and determine the routing path for the O/D traffic in such a manner that a specific
bjective such as cost minimization or service level maximization is achieved. Demand (non-hub) nodes can be assigned to the
nstalled hubs based on two mainly adopted protocols: single and multiple allocation. The single allocation hub networks force any
on-hub node to send/receive its traffic via a single hub, whereas in multiple allocation networks, the non-hub nodes can exchange
lows via more than one hub. In the current work, we deal with multiple allocation hub networks which is more flexible than the
ingle allocation version in terms of customer allocation.

Perfect information is mostly unavailable while making long-term decisions such as hub location. Therefore, the decision maker
aces a great deal of uncertainty regarding the problem data stemming from a number of factors such as population size shifts,
yclic fluctuations due to economic recession and expansion, technological developments, unexpected outbreak of diseases such as
OVID-19, etc. In order to deal with uncertainty, some researchers have employed techniques such as stochastic programming in
he design of hub networks (Contreras et al., 2011b; Alumur et al., 2012; Rostami et al., 2021), where the focus is normally on the
verage performance of the system which is suitable for repetitive decision making problems. However, for long-term non-repetitive
roblems such as the HLP, the risk-neutral approach may result in solutions with very poor performance under certain realizations
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of the uncertain parameters. Hence, adopting a risk-averse approach that focuses on the variability of random outcomes would yield
solutions that are more robust toward data uncertainty.

In this work we address three variants of the risk-averse uncapacitated multiple allocation hub location problem, namely the
-hub median, the 𝑝-hub maximal covering, and the weighted 𝑝-hub center problems under demand uncertainty. The underlying

uncertainty is modeled by using a finite set of scenarios and the conditional 𝛽-mean criterion is employed to measure the risk.
The conditional 𝛽-mean was originally proposed as a fairness measure in deterministic facility location problems (Ogryczak and
Zawadzki, 2002). In stochastic setting, on the other hand, the conditional 𝛽-mean has been used as a coherent risk measure (Filippi
et al., 2019) which is strictly related to conditional value-at-risk (CVaR), a very popular risk measure proposed for financial
optimization (Rockafellar and Uryasev, 2000) but also applied in different managerial and engineering contexts (Filippi et al., 2020).
An advantage of the conditional 𝛽-mean is that it can be embedded into a mixed-integer linear programming (MILP) model by only
adding a small number of continuous variables and linear constraints which makes it applicable to many location problems (Filippi
et al., 2021b). Furthermore, the proposed method is more flexible in terms of risk-aversion and can incorporate the preferences of
different types of decision makers towards risk. In other words, by selecting a proper value for the risk parameter (𝛽), solutions

ith favorable levels of risk-aversion can be obtained.
The contributions of this paper to the existing literature can be listed as follows:

• Risk-averse 𝑝-hub median, 𝑝-hub maximal covering, and weighted 𝑝-hub center problems are introduced.
• Conditional 𝛽-mean is used in a stochastic setting to measure the risk.
• Problems are formulated as two-stage stochastic models and their deterministic equivalent formulations are derived as MILP

models.
• Exact algorithms based on Benders decomposition are developed to solve large-scale instances of the problems.
• Extensive computational experiments are designed and performed based on three well-known data sets from the literature of

the HLP in order to study the impact of various input parameter on the output of the proposed models and also to demonstrate
the efficiency of the proposed formulations and algorithms.

his paper is structured as follows. The literature related to the addressed problems are briefly reviewed in Section 2. MILP
ormulations for the three problems under study are developed in Section 3. The proposed Benders decomposition algorithms are
resented in Section 4. Section 5 present the numerical results obtained from our computational experiments, followed by Section 6
hich concludes the paper and provide some outlooks for further research.

. Literature review

The HLPs have attracted high attention in the literature of network design and facility location due to their wide applicability
n many real-world problems. The multiple allocation 𝑝-hub median problem was first formulated as a linear integer program

by Campbell (1992). Later, Campbell (1994) introduced different variants of the multiple allocation HLP and developed integer
programming formulations for them. As noted earlier, the multiple allocation HLPs are more flexible in terms of customer assignment
as there is no limitation on the number of hubs to which each non-hub node can be allocated. For recent reviews on the topic, the
interested readers are referred to Alumur and Kara (2008), Campbell and O’Kelly (2012), Farahani et al. (2013), Contreras and
O’Kelly (2019) and Alumur et al. (2021).

Analogous to the classical facility location models, the three basic variants of the HLP are called the 𝑝-hub median, the 𝑝-hub
maximal covering, and the (weighted) 𝑝-hub center problems. The 𝑝-hub median problem deals with locating 𝑝 hubs in such a way
that the total transportation cost (time, distance, etc.) is minimized. The other two variants are more concerned with service level
enhancement rather than cost minimization. More specifically, the 𝑝-hub maximal covering problem tries to locate 𝑝 hubs in such a
way that the total amount of covered O/D demands is maximized. The (weighted) 𝑝-hub center problem, on the other hand, aims
at locating 𝑝 hubs in such a manner that the maximum service cost among all the O/D pairs is minimized.

Uncertainty is an important issue that needs to be considered in the design of hub networks and so far, it has been addressed
by researchers in various ways. Some authors use queuing theory to model the uncertain transportation and/or service times in the
hub facilities (Marianov and Serra, 2003; Rodriguez et al., 2007; Mohammadi et al., 2011). Designing reliable hub networks that
incorporate the possibility of (natural or man-made) disruptions at hub facilities is another important stream of research (Kim
and O’Kelly, 2009; An et al., 2015; Chaharsooghi et al., 2017; Rostami et al., 2018; Ghaffarinasab and Motallebzadeh, 2018;
Ghaffarinasab and Atayi, 2018; Zhalechian et al., 2018; Madani et al., 2018; Mohammadi et al., 2019; Shen et al., 2021; Korani and
Eydi, 2021). Chance constrained programming technique is also used in some other works to limit the probability of undesirable
outcomes in the performance of hub networks (Sim et al., 2009; Nikokalam-Mozafar et al., 2014; Gao and Qin, 2016). Another
important technique used for dealing with uncertainty in the HLPs is robust optimization (RO) where it is assumed that the
randomness in problem data is structured around a predefined uncertainty set without a given probability distribution for the
associated data (Shahabi and Unnikrishnan, 2014; Ghaffari-Nasab et al., 2015; Merakli and Yaman, 2016; de Sá et al., 2018; Zetina
et al., 2017; Ghaffarinasab, 2018; Ghaffarinasab et al., 2020; Ghaffarinasab, 2021). Nevertheless, RO is too conservative and focuses
on the worst-case performance of the system which results in network configurations with large investment and operational costs.

One of the widely used approaches in dealing with uncertain HLPs is stochastic programming (SP) (Birge and Louveaux, 2011)
where the hub location and allocation/routing decisions are made at different stages (Yang, 2009; Contreras et al., 2011b; Alumur
et al., 2012; Correia et al., 2018; Rostami et al., 2021; Taherkhani et al., 2020). In most of the cases, SP models are based on the
2
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average performance of the system. However, as noted earlier, this approach may result in solutions with very poor performance
under certain realizations of the uncertain parameters.

The conditional 𝛽-mean was originally developed for incorporating fairness criterion into the decision making process in facility
ocation problems (Ogryczak and Zawadzki, 2002). Filippi et al. (2019) use the conditional 𝛽-mean in 𝑝-median and 𝑝-center

problems as a measure of equity. A single-source capacitated facility location with cost and fairness objectives is addressed by Filippi
et al. (2021b) using the conditional 𝛽-mean criterion. Filippi et al. (2021a) study another fair facility location problem employing
the conditional 𝛽-mean. In case of stochastic problems with a discrete underlying distribution, the conditional 𝛽-mean is only used
n Filippi et al. (2019) as a coherent risk measure in stochastic multidimensional knapsack problem. The authors also elaborate
he relationship between the conditional 𝛽-mean and CVaR in the stochastic setting. Yu et al. (2017) use CVaR for studying risk
n a facility location problem where the facilities are subject to random disruptions. A stochastic pre-disaster relief network design
roblem is addressed by Özgün Elçi and Noyan (2018) using CVaR as a risk measure. Noyan (2012) proposes a risk-averse two-stage
tochastic program for a disaster management application, where the CVaR is used as the risk measure. Hosseini and Verma (2018)
se the CVaR criterion for minimizing the transportation risk in routing rail hazmat shipments. Golpîra et al. (2017) address the
ulti-objective multi-echelon supply chain network design problem in which the demand uncertainty is taken into account by using

he CVaR measure. The interested reader is referred to Filippi et al. (2020) as a recent survey on the applications of CVaR beyond
inance.

Benders decomposition (BD) (Benders, 1962) has been successfully used to tackle large-scale HLPs. de Camargo et al. (2008) solve
he uncapacitated multiple allocation hub location problem (UMAHLP) using BD algorithms. Another BD algorithm is devised by de
amargo et al. (2009a) for the HLPs with flow-dependent discount factor. A generalized BD algorithm is developed for HLPs under
ongestion by de Camargo et al. (2009b, 2011). Large-scale instances of the UMAHLP are solved by using BD algorithms proposed
y Contreras et al. (2011a). The same authors apply a BD algorithm for solving stochastic uncapacitated HLPs (Contreras et al.,
011b). Gelareh and Nickel (2011) propose a BD procedure for HLPs arising in urban transport and line shipping. The proposed
lgorithm is extended by Gelareh et al. (2015) for solving a multi-period HLP in transportation systems. Gelareh and Pisinger (2011)
tudy a hub network design problem for a deep-sea line service provider and proposed a BD algorithm for solving it. Capacitated
ersion of the HLPs are tackled by a BD algorithm in Contreras et al. (2012). de Camargo et al. (2013) apply a BD algorithm for
he many-to-many hub location routing problem. BD algorithm are also used to solve the tree of hubs location problem and the
ub line location problem by de Sá et al. (2013, 2015), respectively. Another BD algorithm is devised by O’Kelly et al. (2015) for
he HLP with price-sensitive demands. Two BD procedures are proposed by Merakli and Yaman (2016) for the robust uncapacitated
ultiple allocation 𝑝-hub median problem (UMApHMP) under polyhedral demand uncertainty. de Sá et al. (2018) study a robust
ub location problem with uncertain demands and fixed costs. Ghaffarinasab and Kara (2019) propose BD algorithms for solving
ncapacitated single allocation HLPs with fixed and variable number of hubs. Taherkhani et al. (2020) develop a BD procedure
or solving the profit maximizing hub location problems. Ghaffarinasab (2020) proposes an efficient BD algorithm for solving the
ncapacitated multiple allocation 𝑝-hub center problem (UMA𝑝HCP). Finally, Monemi et al. (2021) address a multi-period HLP with
pplication to humanitarian aids distribution and tackle the problem by using a BD approach.

In order to better highlight the strength and differences of this paper and better position it within the literature, Table 1
ummarizes the relevant works on the HLP under uncertainty from different aspects. According to this table, risk-averse models
ave not been developed and used in the study of the hub location problems. Therefore, this is the first study in the literature that
eals with risk in the HLP and uses the conditional 𝛽-mean as a risk measure. In other words, the effect of risk on three important
ariants of the HLP under demand uncertainty is analyzed in this work. Due to successful application of BD to various HLPs in
revious works, we also develop exact solution procedures based on BD to solve the proposed problems in this study.

. Mathematical models

.1. Deterministic models

Let 𝐺 = (𝑁,𝐸) be a network with 𝑁 as the set of nodes and 𝐸 as the set of edges. The set of candidate nodes for locating hubs
is denoted by 𝐻 ⊆ 𝑁 and 𝑝 nodes have to be selected for installing hub facilities. Assume that 𝐴 = {(𝑖, 𝑗) ∈ 𝑁 ×𝑁 ∶ 𝑖 ≠ 𝑗} is the set
f all O/D pairs with some traffic to be routed between each pair. For all (𝑖, 𝑗) ∈ 𝐴, let 𝑤𝑖𝑗 represent the traffic volume originated
t node 𝑖 and destined to node 𝑗, and 𝑑𝑖𝑗 represent the unit transportation cost of traffic from node 𝑖 to node 𝑗. Hence, the total
ransportation cost for routing one unit of traffic from node 𝑖 to node 𝑗 via hubs 𝑘 and 𝑚 can be calculated as:

𝑐𝑖𝑗𝑘𝑚 = 𝜒𝑑𝑖𝑘 + 𝛼𝑑𝑘𝑚 + 𝛿𝑑𝑚𝑗

here 𝜒 , 𝛼, and 𝛿 are cost coefficients applied to collection, transfer, and distribution arcs on each route, respectively. The
oefficient 𝛼 is the volume discount factor reflecting economies of scale for transportation costs on transfer (inter-hub) arcs
0 ≤ 𝛼 ≤ 1;𝜒 ≥ 𝛼; 𝛿 ≥ 𝛼) (Ernst and Krishnamoorthy, 1996).

We use the non-negative decision variable 𝑥𝑖𝑗𝑘𝑚 as the fraction of traffic from node 𝑖 ∈ 𝑁 to node 𝑗 ∈ 𝑁 that is routed via hubs
𝑘 ∈ 𝐻 and 𝑚 ∈ 𝐻 in that order. If the traffic from node 𝑖 to node 𝑗 passes via only a single hub 𝑘 on its path, then the corresponding
fraction of flow is represented by the decision variable 𝑥𝑖𝑗𝑘𝑘. Further, let the binary variable 𝑦𝑘 take the value of 1 if node 𝑘 ∈ 𝐻
is selected as a hub and 0, otherwise. Our problems consist of locating 𝑝 hubs and routing the O/D traffic via installed hubs so that
3

the desired objective function (i.e., cost or service level) is optimized.
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Table 1
Review of related works on the HLP under uncertainty.

Author(s)/Year Allocation scheme Objective Uncertain parameters Modeling Risk Reliability Solution procedure

Si
ng

le

M
ul

tip
le

Co
st

/M
ed

ia
n

Co
ve

r

Ce
nt

er

Pr
of

it
Fl

ow

Tr
an

sp
or

t
co

st
/T

im
e

Fi
xe

d
co

st

H
ub

/L
in

k
fa

ilu
re

Tw
o-

/M
ul

ti-
st

ag
e

Ro
bu

st

Ch
an

ce
co

ns
tr

ai
nt

Bi
le

ve
l

So
lv

er

H
eu

ris
tic

Ex
ac

t

H
yb

rid

Marianov and Serra (2003) � � � � �
Rodriguez et al. (2007) � � � � �
Sim et al. (2009) � � � � �
Yang (2009) � � � � �
Kim and O’Kelly (2009) � � � � � �
Mohammadi et al. (2011) � � � � �
Contreras et al. (2011b) � � � � �
Alumur et al. (2012) � � � � � � � �
Nikokalam-Mozafar et al. (2014) � � � � � � �
Shahabi and Unnikrishnan (2014) � � � � �
An et al. (2015) � � � � �
Ghaffari-Nasab et al. (2015) � � � � � �
Gao and Qin (2016) � � � � �
Merakli and Yaman (2016) � � � � �
Zetina et al. (2017) � � � � � �
Chaharsooghi et al. (2017) � � � � � �
Ghaffarinasab and Motallebzadeh (2018) � � � � � � �
Ghaffarinasab and Atayi (2018) � � � � �
Ghaffarinasab (2018) � � � � � �
Rostami et al. (2018) � � � � �
Correia et al. (2018) � � � � �
de Sá et al. (2018) � � � � � �
Madani et al. (2018) � � � � �
Mohammadi et al. (2019) � � � � � �
Taherkhani et al. (2020) � � � � �
Ghaffarinasab et al. (2020) � � � � � �
Rostami et al. (2021) � � � � �
Shen et al. (2021) � � � � �
Korani and Eydi (2021) � � � � � �
Ghaffarinasab (2021) � � � � �

This paper � � � � � � � �

Our first problem, called the uncapacitated multiple allocation 𝑝-hub median problem (UMA𝑝HMP), is concerned with minimizing
the total transportation cost incurred for transferring the O/D commodity flows. The MILP model for the deterministic version of
the UMA𝑝HMP can be written as (Hamacher et al., 2004):

min
∑

(𝑖,𝑗)∈𝐴

∑

𝑘∈𝐻

∑

𝑚∈𝐻
𝑤𝑖𝑗𝑐𝑖𝑗𝑘𝑚𝑥𝑖𝑗𝑘𝑚 (1)

s.t.:
∑

𝑘∈𝐻
𝑦𝑘 = 𝑝 (2)

∑

𝑘∈𝐻

∑

𝑚∈𝐻
𝑥𝑖𝑗𝑘𝑚 = 1 ∀(𝑖, 𝑗) ∈ 𝐴 (3)

∑

𝑚∈𝐻
𝑥𝑖𝑗𝑘𝑚 +

∑

𝑚∈𝐻|𝑚≠𝑘
𝑥𝑖𝑗𝑚𝑘 ≤ 𝑦𝑘 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐻 (4)

𝑥𝑖𝑗𝑘𝑚 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘, 𝑚 ∈ 𝐻 (5)

𝑦𝑘 ∈ {0, 1} ∀𝑘 ∈ 𝐻 (6)

The objective function (1) aims at minimizing the total transportation cost for the O/D traffic. The number of installed hubs is
fixed by constraint (2). Constraints (3) implies that the entire traffic corresponding to each O/D pair is routed through some hub
pair. Constraints (4) ensure the O/D traffic can only be routed via intermediate hub nodes. Non-negativity and binary conditions
on decision variables are imposed by (5) and (6), respectively.

In case of the uncapacitated multiple allocation 𝑝-hub maximal covering problem (UMA𝑝HMCP), we first need to define the
4

concept of coverage. The O/D flow 𝑤𝑖𝑗 is said to be covered if its cost of routing via some pair of installed hubs does not exceed a
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threshold value 𝑅. Accordingly, we use a binary parameter 𝑎𝑖𝑗𝑘𝑚 as follows:

𝑎𝑖𝑗𝑘𝑚 =
{

1, if 𝑐𝑖𝑗𝑘𝑚 ≤ 𝑅
0, otherwise ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘, 𝑚 ∈ 𝐻. (7)

In other words, if the cost of routing unit traffic from node 𝑖 ∈ 𝑁 to node 𝑗 ∈ 𝑁 via hubs 𝑘 ∈ 𝐻 and 𝑚 ∈ 𝐻 does not exceed the
value 𝑅, the parameter 𝑎𝑖𝑗𝑘𝑚 takes value of 1 and it takes 0, otherwise. As it is defined in (7), 𝑎𝑖𝑗𝑘𝑚 takes the value of 1 if the cost
of routing the flow 𝑤𝑖𝑗 via the hub pair (𝑘, 𝑚) does not exceed the threshold value 𝑅; and 0, otherwise. The MILP model for the
deterministic version of the uncapacitated multiple allocation 𝑝-hub maximal covering problem (UMA𝑝HMCP) can now be written
as:

max
∑

(𝑖,𝑗)∈𝐴

∑

𝑘∈𝐻

∑

𝑚∈𝐻
𝑤𝑖𝑗𝑎𝑖𝑗𝑘𝑚𝑥𝑖𝑗𝑘𝑚 (8)

s.t.: (2) − (6)

The objective function (8) maximizes the total covered O/D traffic in the network.
Finally, the MILP model for the deterministic version of the uncapacitated multiple allocation weighted 𝑝-hub center problem

(UMAW𝑝HCP) can be written as:

min 𝑧 (9)
s.t.: (2) − (6)

𝑧 ≥
∑

𝑘∈𝐻

∑

𝑚∈𝐻
𝑤𝑖𝑗𝑐𝑖𝑗𝑘𝑚𝑥𝑖𝑗𝑘𝑚 ∀(𝑖, 𝑗) ∈ 𝐴 (10)

𝑧 ≥ 0 (11)

The objective function (9) along with the constraints (10) minimize the maximum weighted transportation cost among all the O/D
pairs.

3.2. Risk-averse formulations using conditional 𝛽-mean criterion

We now assume that the O/D flows are uncertain and the associated uncertainty is captured as a finite set of discrete scenarios
represented by 𝛺. The number of scenarios is denoted by 𝑆 (i.e., |𝛺| = 𝑆) and we assume that the scenarios are equally likely (they
probability of occurrence for each scenario is 1∕𝑆). Under each scenario 𝑠 ∈ 𝛺, let 𝑤𝑠𝑖𝑗 denote the corresponding realized demand
from node 𝑖 ∈ 𝑁 to node 𝑗 ∈ 𝑁 . In a similar manner, we define the second-stage decision variable 𝑥𝑠𝑖𝑗𝑘𝑚 as the fraction of flow
𝑤𝑠𝑖𝑗 that is sent from node 𝑖 ∈ 𝑁 to node 𝑗 ∈ 𝑁 using the link between the hubs 𝑘 ∈ 𝐻 and 𝑚 ∈ 𝐻 under scenario 𝑠 ∈ 𝛺. In
our risk-averse problems, we are interested in system’s performance under a subset of worst-case scenarios. In other words, for any
fraction 𝛽, with 𝛽 ∈ (0, 1], our objective is to determine the location of hubs as well as the routing of O/D traffic in such a way that
the average performance of the system over the worst ⌈𝛽𝑆⌉ scenarios is optimized.

In case of the 𝑝-hub median problem, the conditional 𝛽-mean risk-averse formulation can be written as:

min
(𝑥,𝑦)∈𝑋

max

{

1
⌈𝛽𝑆⌉

∑

𝑠∈𝛺

(

∑

(𝑖,𝑗)∈𝐴

∑

𝑘∈𝐻

∑

𝑚∈𝐻
𝑤𝑠𝑖𝑗𝑐𝑖𝑗𝑘𝑚𝑥

𝑠
𝑖𝑗𝑘𝑚

)

𝑟𝑠 ∶
∑

𝑠∈𝛺
𝑟𝑠 = ⌈𝛽𝑆⌉, 𝑟𝑠 ∈ {0, 1},∀𝑠 ∈ 𝛺

}

(12)

where 𝑟𝑠 is a binary variable that takes the value of 1 if the scenario 𝑠 belongs to the set of worst ⌈𝛽𝑆⌉ scenarios and takes zero
otherwise and 𝑋 is the feasibility set decision variables (𝑥, 𝑦) in the upper level (outer) problem that satisfy the following constraints:

∑

𝑘∈𝐻
𝑦𝑘 = 𝑝 (13)

∑

𝑘∈𝐻

∑

𝑚∈𝐻
𝑥𝑠𝑖𝑗𝑘𝑚 = 1 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑠 ∈ 𝛺 (14)

∑

𝑚∈𝐻
𝑥𝑠𝑖𝑗𝑘𝑚 +

∑

𝑚∈𝐻|𝑚≠𝑘
𝑥𝑠𝑖𝑗𝑚𝑘 ≤ 𝑦𝑘 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐻, 𝑠 ∈ 𝛺 (15)

𝑥𝑠𝑖𝑗𝑘𝑚 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘, 𝑚 ∈ 𝐻, 𝑠 ∈ 𝛺 (16)

𝑦𝑘 ∈ {0, 1} ∀𝑘 ∈ 𝐻 (17)

Note that the inner problem in (12) is a binary knapsack problem and its coefficient matrix is totally unimodular enabling us to
relax the integrality constraints on 𝑟𝑠 variables as 0 ≤ 𝑟𝑠 ≤ 1, for all 𝑠 ∈ 𝛺. Hence, the inner problem is turned into a continuous
knapsack problem which can be solved by a greedy algorithm. The resulting model is nonlinear and therefore we use the dual
transformation method in order to linearize it. By fixing the upper level decision variables as (�̂�, �̂�), the dual of the lower level
(inner) linear programming model is obtained and the whole problem is written as a pure minimization problem. Accordingly, we
can formulate the risk-averse 𝑝-hub median problem (RA𝑝HMP) using conditional 𝛽-mean criterion as follows:

min⌈𝛽𝑆⌉𝜇 +
∑

𝜆𝑠 (18)
5

𝑠∈𝛺
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s.t.: (13) − (17)

𝜇 + 𝜆𝑠 ≥ 1
⌈𝛽𝑆⌉

∑

(𝑖,𝑗)∈𝐴

∑

𝑘∈𝐻

∑

𝑚∈𝐻
𝑤𝑠𝑖𝑗𝑐𝑖𝑗𝑘𝑚𝑥

𝑠
𝑖𝑗𝑘𝑚 ∀𝑠 ∈ 𝛺 (19)

𝜆𝑠 ≥ 0 ∀𝑠 ∈ 𝛺 (20)

where 𝜆𝑠 is the dual variable associated with the constraint 𝑟𝑠 ≤ 1, for all 𝑠 ∈ 𝛺, and 𝜇 is the dual variable corresponding to
constraint ∑𝑠∈𝛺 𝑟

𝑠 = ⌈𝛽𝑆⌉.
For the 𝑝-hub maximal covering problem, the aim is to locate the hubs and to route the O/D traffic so that the average total

covered flow over the worst ⌈𝛽𝑆⌉ scenarios is maximized:

max
(𝑥,𝑦)∈𝑋

min

{

1
⌈𝛽𝑆⌉

∑

𝑠∈𝛺

(

∑

(𝑖,𝑗)∈𝐴

∑

𝑘∈𝐻

∑

𝑚∈𝐻
𝑤𝑠𝑖𝑗𝑎𝑖𝑗𝑘𝑚�̂�

𝑠
𝑖𝑗𝑘𝑚

)

𝑟𝑠 ∶
∑

𝑠∈𝛺
𝑟𝑠 = ⌈𝛽𝑆⌉, 0 ≤ 𝑟𝑠 ≤ 1,∀𝑠 ∈ 𝛺

}

(21)

The inner problem in (21) is a continuous min-knapsack problem which can be solved using a greedy algorithm.
According to earlier discussions, the MILP model for the risk-averse 𝑝-hub maximal covering problem (RA𝑝HMCP) using

conditional 𝛽-mean criterion can be stated as follows:

max⌈𝛽𝑆⌉𝜇 −
∑

𝑠∈𝛺
𝜆𝑠 (22)

s.t.: (13) − (17)

𝜇 − 𝜆𝑠 ≤ 1
⌈𝛽𝑆⌉

∑

(𝑖,𝑗)∈𝐴

∑

𝑘∈𝐻

∑

𝑚∈𝐻
𝑤𝑠𝑖𝑗𝑎𝑖𝑗𝑘𝑚𝑥

𝑠
𝑖𝑗𝑘𝑚 ∀𝑠 ∈ 𝛺 (23)

𝜆𝑠 ≥ 0 ∀𝑠 ∈ 𝛺 (24)

In case of the weighted 𝑝-hub center problem, the objective is to locate 𝑝 hubs and allocate of the O/D demands in such a way
that the average maximum weighted cost over the worst ⌈𝛽𝑆⌉ scenarios is minimized:

min
(𝑥,𝑦)∈𝑋

max

{

1
⌈𝛽𝑆⌉

∑

𝑠∈𝛺

∑

(𝑖,𝑗)∈𝐴

(

∑

𝑘∈𝐻

∑

𝑚∈𝐻
𝑤𝑠𝑖𝑗𝑐𝑖𝑗𝑘𝑚�̂�

𝑠
𝑖𝑗𝑘𝑚

)

𝑟𝑠𝑖𝑗 ∶
∑

𝑠∈𝛺

∑

(𝑖,𝑗)∈𝐴
𝑟𝑠𝑖𝑗 = ⌈𝛽𝑆⌉, (25)

∑

(𝑖,𝑗)∈𝐴
𝑟𝑠𝑖𝑗 ≤ 1,∀𝑠 ∈ 𝛺, 0 ≤ 𝑟𝑠𝑖𝑗 ≤ 1,∀(𝑖, 𝑗) ∈ 𝐴, 𝑠 ∈ 𝛺

}

where 𝑟𝑠𝑖𝑗 takes the value of 1 if the scenario 𝑠 belongs to the set of worst ⌈𝛽𝑆⌉ scenarios and the O/D pair (𝑖, 𝑗) represents the
maximum cost in that scenario and takes zero otherwise. Note that the inner problem in (25) is a continuous bounded knapsack
problem which can also be solved by a greedy algorithm. By taking the dual of the inner problem, we can formulate the risk-averse
weighted 𝑝-hub center problem (RAW𝑝HCP) as follows:

min⌈𝛽𝑆⌉𝜓 +
∑

𝑠∈𝛺
𝜑𝑠 +

∑

𝑠∈𝛺

∑

(𝑖,𝑗)∈𝐴
𝜁 𝑠𝑖𝑗 (26)

s.t.: (13) − (17)

𝜓 + 𝜑𝑠 + 𝜁 𝑠𝑖𝑗 ≥
1

⌈𝛽𝑆⌉
∑

𝑘∈𝐻

∑

𝑚∈𝐻
𝑤𝑠𝑖𝑗𝑐𝑖𝑗𝑘𝑚𝑥

𝑠
𝑖𝑗𝑘𝑚 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑠 ∈ 𝛺 (27)

𝜁 𝑠𝑖𝑗 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑠 ∈ 𝛺 (28)

𝜑𝑠 ≥ 0 ∀𝑠 ∈ 𝛺 (29)

where 𝜁 𝑠𝑖𝑗 is the dual variable associated with the constraint 𝑟𝑠𝑖𝑗 ≤ 1, for all (𝑖, 𝑗) ∈ 𝐴, 𝑠 ∈ 𝛺, 𝜑𝑠 is the dual variable associated with
the constraint ∑(𝑖,𝑗)∈𝐴 𝑟

𝑠
𝑖𝑗 ≤ 1, for all 𝑠 ∈ 𝛺, and 𝜓 is the dual variable corresponding to the constraint ∑𝑠∈𝛺

∑

(𝑖,𝑗)∈𝐴 𝑟
𝑠
𝑖𝑗 = ⌈𝛽𝑆⌉.

Proposition 1. If (𝛽𝑆) is an integer value, the conditional 𝛽-mean model is equivalent to (1 − 𝛽)-CVaR optimization model for uniform
finite probability distributions.

Proof. We prove the claim for the 𝑝-hub median problem and leave out the two other versions to the reader. Assuming that (𝛽𝑆)
is an integer value, we can rewrite the RA𝑝HMP as follows:

min (𝛽𝑆)𝜇 +
∑

𝑠∈𝛺
𝜆𝑠 (30)

s.t.: (13) − (17), (20)

𝜇 + 𝜆𝑠 ≥ 1
(𝛽𝑆)

∑

(𝑖,𝑗)∈𝐴

∑

𝑘∈𝐻

∑

𝑚∈𝐻
𝑤𝑠𝑖𝑗𝑐𝑖𝑗𝑘𝑚𝑥

𝑠
𝑖𝑗𝑘𝑚 ∀𝑠 ∈ 𝛺 (31)

Now we define new variables 𝜂 and 𝑣𝑠 as 𝜂 = (𝛽𝑆)𝜇 and 𝑣𝑠 = (𝛽𝑆)𝜆𝑠 for all 𝑠 ∈ 𝛺. Let 𝑝𝑠 be the probability of scenario 𝑠 ∈ 𝛺 and
since the scenarios are assumed to have equal probabilities, we set 𝑝𝑠 = 1 . Replacing the new variables in the above model we
6

𝑆
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S

have:

min 𝜂 + 1
𝛽
∑

𝑠∈𝛺
𝑝𝑠𝑣𝑠 (32)

s.t.: (13) − (17)

𝜂 + 𝑣𝑠 ≥
∑

(𝑖,𝑗)∈𝐴

∑

𝑘∈𝐻

∑

𝑚∈𝐻
𝑤𝑠𝑖𝑗𝑐𝑖𝑗𝑘𝑚𝑥

𝑠
𝑖𝑗𝑘𝑚 ∀𝑠 ∈ 𝛺 (33)

𝑣𝑠 ≥ 0 ∀𝑠 ∈ 𝛺 (34)

etting 𝛾 = 1 − 𝛽, we have 𝛾 ∈ [0, 1) and replacing it in the above model we have:

min 𝜂 + 1
(1 − 𝛾)

∑

𝑠∈𝛺
𝑝𝑠𝑣𝑠 (35)

s.t.: (13) − (17)

𝑣𝑠 ≥
∑

(𝑖,𝑗)∈𝐴

∑

𝑘∈𝐻

∑

𝑚∈𝐻
𝑤𝑠𝑖𝑗𝑐𝑖𝑗𝑘𝑚𝑥

𝑠
𝑖𝑗𝑘𝑚 − 𝜂 ∀𝑠 ∈ 𝛺 (36)

𝑣𝑠 ≥ 0 ∀𝑠 ∈ 𝛺 (37)

which is a 𝛾-CVaR or (1−𝛽)-CVaR optimization model for finite probability space as defined by Rockafellar and Uryasev (2000). □

4. Benders reformulation

BD is a partitioning method for solving mixed-integer programming problems. In this approach the problem is partitioned into
two simpler problems: a master problem, and a slave problem which are solved iteratively until the algorithm converges to an
optimal solution (if one exits) for the original mixed-integer program. Our proposed algorithms, however, are based on a modern
implementation of BD in which a single search tree is employed to solve the master problem in a branch-and-cut setting which is
possible thanks to recent developments in commercial solvers. This strategy for BD implementation is called Branch-and-Benders-cut
and has shown better performance over the traditional implementation for many problems (Rahmaniani et al., 2017). The Benders
cuts are separated and added to the master problem on the fly whenever an incumbent integer solution is found for the master
problem. We also devise a special algorithm for solving the dual SPs by inspection (without resorting to standard solver) in order
to further accelerate the convergence of our algorithms.

4.1. The risk-averse 𝑝-hub median problem

We fix the binary variables vector as 𝒚 = �̂� in order to write the slave problem (SP) for the RA𝑝HMP as:

min⌈𝛽𝑆⌉𝜇 +
∑

𝑠∈𝛺
𝜆𝑠 (38)

s.t.: 𝜇 + 𝜆𝑠 ≥ 1
⌈𝛽𝑆⌉

∑

(𝑖,𝑗)∈𝐴

∑

𝑘∈𝐻

∑

𝑚∈𝐻
𝑤𝑠𝑖𝑗𝑐𝑖𝑗𝑘𝑚𝑥

𝑠
𝑖𝑗𝑘𝑚 ∀𝑠 ∈ 𝛺 (39)

∑

𝑚∈𝐻
𝑥𝑠𝑖𝑗𝑘𝑚 +

∑

𝑚∈𝐻|𝑚≠𝑘
𝑥𝑠𝑖𝑗𝑚𝑘 ≤ �̂�𝑘 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐻, 𝑠 ∈ 𝛺 (40)

∑

𝑘∈𝐻

∑

𝑚∈𝐻
𝑥𝑠𝑖𝑗𝑘𝑚 = 1 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑠 ∈ 𝛺 (41)

𝑥𝑠𝑖𝑗𝑘𝑚 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘, 𝑚 ∈ 𝐻, 𝑠 ∈ 𝛺 (42)

𝜆𝑠 ≥ 0 ∀𝑠 ∈ 𝛺 (43)

Let 𝜌𝑠, 𝜋𝑠𝑖𝑗𝑘, and 𝜎𝑠𝑖𝑗 be the dual variable of the SP constraints (39), (40), and (41), respectively. We can derive the dual slave problem
(DSP) for the RA𝑝HMP as follows:

max
∑

(𝑖,𝑗)∈𝐴

∑

𝑠∈𝛺
𝜎𝑠𝑖𝑗 −

∑

(𝑖,𝑗)∈𝐴

∑

𝑘∈𝐻

∑

𝑠∈𝛺
�̂�𝑘𝜋

𝑠
𝑖𝑗𝑘 (44)

s.t.: 𝜎𝑠𝑖𝑗 − 𝜋
𝑠
𝑖𝑗𝑘 − 𝜋

𝑠
𝑖𝑗𝑚 ≤ 1

⌈𝛽𝑆⌉
𝑤𝑠𝑖𝑗𝑐𝑖𝑗𝑘𝑚𝜌

𝑠 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘, 𝑚 ∈ 𝐻, (𝑘 ≠ 𝑚), 𝑠 ∈ 𝛺 (45)

𝜎𝑠𝑖𝑗 − 𝜋
𝑠
𝑖𝑗𝑘 ≤

1
⌈𝛽𝑆⌉

𝑤𝑠𝑖𝑗𝑐𝑖𝑗𝑘𝑘𝜌
𝑠 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐻, 𝑠 ∈ 𝛺 (46)

∑

𝑠∈𝛺
𝜌𝑠 = ⌈𝛽𝑆⌉ (47)

0 ≤ 𝜌𝑠 ≤ 1 ∀𝑠 ∈ 𝛺 (48)

𝜋𝑠𝑖𝑗𝑘 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐻, 𝑠 ∈ 𝛺 (49)
7
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i

f

The master problem (MP) for the RA𝑝HMP can now be written as follows:

min 𝜃 (50)

s.t.: 𝜃 ≥
∑

(𝑖,𝑗)∈𝐴

∑

𝑠∈𝛺
𝜎𝑠𝑣𝑖𝑗 −

∑

(𝑖,𝑗)∈𝐴

∑

𝑘∈𝐻

∑

𝑠∈𝛺
𝜋𝑠𝑣𝑖𝑗𝑘𝑦𝑘 𝑣 = 1,… , 𝑉 (51)

(13), (17)

n which (𝜎𝑣, 𝜋𝑣) denotes 𝑣th extreme point of the feasible solution space of the DSP (44)–(49). Note the by installing 𝑝 hubs which
is implied by (13), feasibility of the SP is guaranteed, Therefore, we do not need to add feasibility cuts to the master problem.

By exploring the special structure of the DSP, we devise an algorithm for solving it without using a standard solver. The proposed
method substantially reduces the computational burden of the algorithm. Our algorithm starts with determining the optimal values
of 𝜌𝑠 variables. Note that 𝜌𝑠 variables are equivalent to 𝑟𝑠 variables in (12) and since the inner problem in (12) is a knapsack
problem, we devise a greedy algorithm for obtaining the optimal values of 𝜌𝑠 variables. Based on the proposed greedy algorithm,
the 𝜌𝑠 variables associated with ⌈𝛽𝑆⌉ scenarios having the largest transportation costs will take the value 1 and the remaining
variables will take the value of 0. The pseudo-code for the proposed greedy algorithm for determining the optimal values of 𝜌𝑠

variables for the RA𝑝HMP is presented in Algorithm 1.

Algorithm 1 : Greedy algorithm for determining the optimal values for 𝜌𝑠 variables for the RA𝑝HMP
1: for all 𝑠 ∈ 𝛺 do
2: 𝑣𝑠 ← 0
3: for all (𝑖, 𝑗) ∈ 𝐴 do
4: 𝑣𝑠 ← 𝑣𝑠 +𝑤𝑠

𝑖𝑗 min
𝑘,𝑚∈𝐻1

{𝑐𝑖𝑗𝑘𝑚}

5: end for
6: end for
7: 𝐼 ← ∅
8: 𝐽 ← 𝛺
9: for 𝑟 = 1, ..., ⌈𝛽𝑆⌉ do

10: 𝑣𝑚𝑎𝑥 ← −∞
11: 𝑖𝑚𝑎𝑥 ← 0
12: for all 𝑠 ∈ 𝐽 do
13: if 𝑣𝑚𝑎𝑥 < 𝑣𝑠 then
14: 𝑣𝑚𝑎𝑥 ← 𝑣𝑠

15: 𝑖𝑚𝑎𝑥 ← 𝑠
16: end if
17: end for
18: 𝐼 ← 𝐼 ∪ {𝑖𝑚𝑎𝑥}
19: 𝐽 ← 𝐽 ⧵ {𝑖𝑚𝑎𝑥}
20: end for
21: for all 𝑠 ∈ 𝐼 do
22: 𝜌𝑠 ← 1
23: end for
24: for all 𝑠 ∈ 𝐽 do
25: 𝜌𝑠 ← 0
26: end for

In the pseudo-code, 𝐻1 represents the set of nodes that are selected as hubs at any iteration. After obtaining the optimal values
or the 𝜌𝑠 variables, we can re-write the reduced DSP for the RA𝑝HMP as follows:

max
∑

(𝑖,𝑗)∈𝐴

∑

𝑠∈𝐼
𝜎𝑠𝑖𝑗 −

∑

(𝑖,𝑗)∈𝐴

∑

𝑘∈𝐻

∑

𝑠∈𝐼
�̂�𝑘𝜋

𝑠
𝑖𝑗𝑘 (52)

s.t.: 𝜎𝑠𝑖𝑗 − 𝜋
𝑠
𝑖𝑗𝑘 − 𝜋

𝑠
𝑖𝑗𝑚 ≤ 1

⌈𝛽𝑆⌉
𝑤𝑠𝑖𝑗𝑐𝑖𝑗𝑘𝑚 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘, 𝑚 ∈ 𝐻, (𝑘 ≠ 𝑚), 𝑠 ∈ 𝐼 (53)

𝜎𝑠𝑖𝑗 − 𝜋
𝑠
𝑖𝑗𝑘 ≤

1
⌈𝛽𝑆⌉

𝑤𝑠𝑖𝑗𝑐𝑖𝑗𝑘𝑘 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐻, 𝑠 ∈ 𝐼 (54)

𝜋𝑠𝑖𝑗𝑘 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐻, 𝑠 ∈ 𝐼 (55)

in which 𝐼 is the set of scenarios for which the corresponding variables 𝜌𝑠 take the value of 1 as determined by Algorithm 1. This
problem in turn can be solved by inspection separately for each scenario 𝑠 ∈ 𝐼 using a similar method proposed by Contreras et al.
(2011a) as shown in Algorithm 2.
8
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1
1
1
1
1
1
1

1
1
2
2

Algorithm 2 : Determining the optimal values for 𝜎𝑠𝑖𝑗 and 𝜋𝑠𝑖𝑗𝑘 variables for the RA𝑝HMP

1: for all 𝑠 ∈ 𝐼 do
2: for all (𝑖, 𝑗) ∈ 𝐴 do
3: 𝜎𝑠𝑖𝑗 ←

1
⌈𝛽𝑆⌉

𝑤𝑠
𝑖𝑗 min
𝑘,𝑚∈𝐻1

{𝑐𝑖𝑗𝑘𝑚}

4: for all 𝑘 ∈ 𝐻1 do
5: 𝜋𝑠𝑖𝑗𝑘 ← 0
6: end for
7: for all 𝑘 ∈ 𝐻0 do
8: 𝜋𝑠𝑖𝑗𝑘 ← max{0, 𝜎𝑠𝑖𝑗 −

1
⌈𝛽𝑆⌉

𝑤𝑠
𝑖𝑗𝑐𝑖𝑗𝑘𝑘}

9: for all 𝑚 ∈ 𝐻1 do
0: 𝜋𝑠𝑖𝑗𝑘 ← max{𝜋𝑠𝑖𝑗𝑘 ,max{𝜎𝑠𝑖𝑗 −

1
⌈𝛽𝑆⌉

𝑤𝑠
𝑖𝑗𝑐𝑖𝑗𝑘𝑚 , 𝜎

𝑠
𝑖𝑗 −

1
⌈𝛽𝑆⌉

𝑤𝑠
𝑖𝑗𝑐𝑖𝑗𝑚𝑘}}

1: end for
2: end for
3: for all (𝑘, 𝑚) ∈ 𝐻0 ×𝐻0 , (𝑘 ≠ 𝑚) do
4: 𝛥 ← 𝜎𝑠𝑖𝑗 − min{ 1

⌈𝛽𝑆⌉
𝑤𝑠
𝑖𝑗𝑐𝑖𝑗𝑘𝑚 ,

1
⌈𝛽𝑆⌉

𝑤𝑠
𝑖𝑗𝑐𝑖𝑗𝑚𝑘} − 𝜋

𝑠
𝑖𝑗𝑘 − 𝜋

𝑠
𝑖𝑗𝑚

5: if 𝛥 > 0 then
6: 𝜋𝑠𝑖𝑗𝑘 ← 𝜋𝑠𝑖𝑗𝑘 +

𝛥
2

17: 𝜋𝑠𝑖𝑗𝑚 ← 𝜋𝑠𝑖𝑗𝑚 + 𝛥
2

8: end if
9: end for
0: end for
1: end for

4.2. The risk-averse 𝑝-hub maximal covering problem

By fixing the binary location variables vector as 𝒚 = �̂�, the slave problem for the RA𝑝HMCP can be written as:

max⌈𝛽𝑆⌉𝜇 −
∑

𝑠∈𝛺
𝜆𝑠 (56)

s.t.: 𝜇 − 𝜆𝑠 ≤ 1
⌈𝛽𝑆⌉

∑

(𝑖,𝑗)∈𝐴

∑

𝑘∈𝐻

∑

𝑚∈𝐻
𝑤𝑠𝑖𝑗𝑎𝑖𝑗𝑘𝑚𝑥

𝑠
𝑖𝑗𝑘𝑚 ∀𝑠 ∈ 𝛺 (57)

∑

𝑚∈𝐻
𝑥𝑠𝑖𝑗𝑘𝑚 +

∑

𝑚∈𝐻|𝑚≠𝑘
𝑥𝑠𝑖𝑗𝑚𝑘 ≤ �̂�𝑘 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐻, 𝑠 ∈ 𝛺 (58)

∑

𝑘∈𝐻

∑

𝑚∈𝐻
𝑥𝑠𝑖𝑗𝑘𝑚 = 1 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑠 ∈ 𝛺 (59)

𝑥𝑠𝑖𝑗𝑘𝑚 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘, 𝑚 ∈ 𝐻, 𝑠 ∈ 𝛺 (60)

𝜆𝑠 ≥ 0 ∀𝑠 ∈ 𝛺 (61)

Let 𝜌𝑠, 𝜋𝑠𝑖𝑗𝑘, and 𝜎𝑠𝑖𝑗 respectively represent the dual variable associated with constraints (57), (58), and (59). Accordingly, the DSP
for the RA𝑝HMCP is stated as:

min
∑

(𝑖,𝑗)∈𝐴

∑

𝑠∈𝛺
𝜎𝑠𝑖𝑗 +

∑

(𝑖,𝑗)∈𝐴

∑

𝑘∈𝐻

∑

𝑠∈𝛺
�̂�𝑘𝜋

𝑠
𝑖𝑗𝑘 (62)

s.t.: 𝜎𝑠𝑖𝑗 + 𝜋
𝑠
𝑖𝑗𝑘 + 𝜋

𝑠
𝑖𝑗𝑚 ≥ 1

⌈𝛽𝑆⌉
𝑤𝑠𝑖𝑗𝑎𝑖𝑗𝑘𝑚𝜌

𝑠 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘, 𝑚 ∈ 𝐻, (𝑘 ≠ 𝑚), 𝑠 ∈ 𝛺 (63)

𝜎𝑠𝑖𝑗 + 𝜋
𝑠
𝑖𝑗𝑘 ≥

1
⌈𝛽𝑆⌉

𝑤𝑠𝑖𝑗𝑎𝑖𝑗𝑘𝑘𝜌
𝑠 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐻, 𝑠 ∈ 𝛺 (64)

∑

𝑠∈𝛺
𝜌𝑠 = ⌈𝛽𝑆⌉ (65)

0 ≤ 𝜌𝑠 ≤ 1 ∀𝑠 ∈ 𝛺 (66)

𝜋𝑠𝑖𝑗𝑘 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐻, 𝑠 ∈ 𝛺 (67)

The master problem for the RA𝑝HMCP can be written as:

max 𝜃 (68)

s.t.: 𝜃 ≤
∑

(𝑖,𝑗)∈𝐴

∑

𝑠∈𝛺
𝜎𝑠𝑣𝑖𝑗 +

∑

(𝑖,𝑗)∈𝐴

∑

𝑘∈𝐻

∑

𝑠∈𝛺
𝜋𝑠𝑣𝑖𝑗𝑘𝑦𝑘 𝑣 = 1,… , 𝑉 (69)

(2), (6)

In order to determine the optimal values of 𝜌𝑠 variables in the DSP (62)–(67), we devise a similar greedy procedure to Algorithm
1. Since the inner problem in (21) is a continuous min-knapsack problem, the 𝜌𝑠 variables corresponding to ⌈𝛽𝑆⌉ scenarios having
the smallest coverage percentage will take the value of 1 and the remaining variables will be 0 in an optimal solution. Algorithm 3
presents the pseudo-code for the greedy algorithm proposed for determining the optimal values of 𝜌𝑠 variables for the RA𝑝HMCP.
9
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Algorithm 3 : Greedy algorithm for determining the optimal values for 𝜌𝑠 variables for the RA𝑝HMCP
1: for all 𝑠 ∈ 𝛺 do
2: 𝑣𝑠 ← 0
3: for all (𝑖, 𝑗) ∈ 𝐴 do
4: 𝑣𝑠 ← 𝑣𝑠 +𝑤𝑠

𝑖𝑗 max
𝑘,𝑚∈𝐻1

{𝑎𝑖𝑗𝑘𝑚}

5: end for
6: end for
7: 𝐼 ← ∅
8: 𝐽 ← 𝛺
9: for 𝑟 = 1, ..., ⌈𝛽𝑆⌉ do

10: 𝑣𝑚𝑖𝑛 ← +∞
11: 𝑖𝑚𝑖𝑛 ← 0
12: for all 𝑠 ∈ 𝐽 do
13: if 𝑣𝑚𝑖𝑛 > 𝑣𝑠 then
14: 𝑣𝑚𝑖𝑛 ← 𝑣𝑠

15: 𝑖𝑚𝑖𝑛 ← 𝑠
16: end if
17: end for
18: 𝐼 ← 𝐼 ∪ {𝑖𝑚𝑖𝑛}
19: 𝐽 ← 𝐽 ⧵ {𝑖𝑚𝑖𝑛}
20: end for
21: for all 𝑠 ∈ 𝐼 do
22: 𝜌𝑠 ← 1
23: end for
24: for all 𝑠 ∈ 𝐽 do
25: 𝜌𝑠 ← 0
26: end for

By replacing the optimal values for the 𝜌𝑠 variables, the DSP for the RA𝑝HMCP can be rewritten as the following linear
programming problem:

min
∑

(𝑖,𝑗)∈𝐴

∑

𝑠∈𝐼
𝜎𝑠𝑖𝑗 +

∑

(𝑖,𝑗)∈𝐴

∑

𝑘∈𝐻

∑

𝑠∈𝐼
�̂�𝑘𝜋

𝑠
𝑖𝑗𝑘 (70)

s.t.: 𝜎𝑠𝑖𝑗 + 𝜋
𝑠
𝑖𝑗𝑘 + 𝜋

𝑠
𝑖𝑗𝑚 ≥ 1

⌈𝛽𝑆⌉
𝑤𝑠𝑖𝑗𝑎𝑖𝑗𝑘𝑚 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘, 𝑚 ∈ 𝐻, (𝑘 ≠ 𝑚), 𝑠 ∈ 𝐼 (71)

𝜎𝑠𝑖𝑗 + 𝜋
𝑠
𝑖𝑗𝑘 ≥

1
⌈𝛽𝑆⌉

𝑤𝑠𝑖𝑗𝑎𝑖𝑗𝑘𝑘 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐻, 𝑠 ∈ 𝐼 (72)

𝜋𝑠𝑖𝑗𝑘 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐻, 𝑠 ∈ 𝐼 (73)

The method proposed by Contreras et al. (2011a) cannot be used for solving the reduced DSP (70)–(73). Therefore, we devise a
similar method for obtaining the optimal values for 𝜎𝑠𝑖𝑗 and 𝜋𝑠𝑖𝑗𝑘 variables for the RA𝑝HMCP as shown in Algorithm 4.

Algorithm 4 : Determining the optimal values for 𝜎𝑠𝑖𝑗 and 𝜋𝑠𝑖𝑗𝑘 variables for the RA𝑝HMCP

1: for all 𝑠 ∈ 𝐼 do
2: for all (𝑖, 𝑗) ∈ 𝐴 do
3: 𝜎𝑠𝑖𝑗 ←

1
⌈𝛽𝑆⌉

𝑤𝑠
𝑖𝑗 max
𝑘,𝑚∈𝐻1

{𝑎𝑖𝑗𝑘𝑚}

4: for all 𝑘 ∈ 𝐻1 do
5: 𝜋𝑠𝑖𝑗𝑘 ← 0
6: end for
7: for all 𝑘 ∈ 𝐻0 do
8: 𝜋𝑠𝑖𝑗𝑘 ← max{0, 1

⌈𝛽𝑆⌉
𝑤𝑠
𝑖𝑗𝑎𝑖𝑗𝑘𝑘 − 𝜎

𝑠
𝑖𝑗}

9: for all 𝑚 ∈ 𝐻1 do
10: 𝜋𝑠𝑖𝑗𝑘 ← max{𝜋𝑠𝑖𝑗𝑘 ,max{ 1

⌈𝛽𝑆⌉
𝑤𝑠
𝑖𝑗𝑎𝑖𝑗𝑘𝑚 − 𝜎𝑠𝑖𝑗 ,

1
⌈𝛽𝑆⌉

𝑤𝑠
𝑖𝑗𝑎𝑖𝑗𝑚𝑘 − 𝜎

𝑠
𝑖𝑗}}

11: end for
12: end for
13: for all (𝑘, 𝑚) ∈ 𝐻0 ×𝐻0 , (𝑘 ≠ 𝑚) do
4: 𝛥 ← max{ 1

⌈𝛽𝑆⌉
𝑤𝑠
𝑖𝑗𝑎𝑖𝑗𝑘𝑚 ,

1
⌈𝛽𝑆⌉

𝑤𝑠
𝑖𝑗𝑎𝑖𝑗𝑚𝑘} − 𝜎

𝑠
𝑖𝑗 − 𝜋

𝑠
𝑖𝑗𝑘 − 𝜋

𝑠
𝑖𝑗𝑚

5: if 𝛥 > 0 then
6: 𝜋𝑠𝑖𝑗𝑘 ← 𝜋𝑠𝑖𝑗𝑘 +

𝛥
2

17: 𝜋𝑠𝑖𝑗𝑚 ← 𝜋𝑠𝑖𝑗𝑚 + 𝛥
2

8: end if
9: end for
0: end for
1: end for

In the above algorithm, 𝐻0 is the set of nodes that are not selected as hubs at the current iteration.
10
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4.3. The risk-averse weighted 𝑝-hub center problem

By fixing the binary location variables vector as 𝒚 = �̂�, the SP for RAW𝑝HCP can be written as:

min⌈𝛽𝑆⌉𝜓 +
∑

𝑠∈𝛺
𝜑𝑠 +

∑

(𝑖,𝑗)∈𝐴

∑

𝑠∈𝛺
𝜁 𝑠𝑖𝑗 (74)

s.t.: 𝜓 + 𝜑𝑠 + 𝜁 𝑠𝑖𝑗 ≥
1

⌈𝛽𝑆⌉
∑

𝑘∈𝐻

∑

𝑚∈𝐻
𝑤𝑠𝑖𝑗𝑐𝑖𝑗𝑘𝑚𝑥

𝑠
𝑖𝑗𝑘𝑚 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑠 ∈ 𝛺 (75)

∑

𝑚∈𝐻
𝑥𝑠𝑖𝑗𝑘𝑚 +

∑

𝑚∈𝐻|𝑚≠𝑘
𝑥𝑠𝑖𝑗𝑚𝑘 ≤ �̂�𝑘 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐻, 𝑠 ∈ 𝛺 (76)

∑

𝑘∈𝐻

∑

𝑚∈𝐻
𝑥𝑠𝑖𝑗𝑘𝑚 = 1 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑠 ∈ 𝛺 (77)

𝑥𝑠𝑖𝑗𝑘𝑚 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘, 𝑚 ∈ 𝐻, 𝑠 ∈ 𝛺 (78)

𝜁 𝑠𝑖𝑗 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑠 ∈ 𝛺 (79)

𝜑𝑠 ≥ 0 ∀𝑠 ∈ 𝛺 (80)

Let 𝜌𝑠𝑖𝑗 , 𝜋
𝑠
𝑖𝑗𝑘, and 𝜎𝑠𝑖𝑗 denote the dual variable corresponding to the constraints (75), (76), and (77), respectively. We can write the

DSP for the RAW𝑝HCP as:

max
∑

(𝑖,𝑗)∈𝐴

∑

𝑠∈𝛺
𝜎𝑠𝑖𝑗 −

∑

(𝑖,𝑗)∈𝐴

∑

𝑘∈𝐻

∑

𝑠∈𝛺
�̂�𝑘𝜋

𝑠
𝑖𝑗𝑘 (81)

s.t.: 𝜎𝑠𝑖𝑗 − 𝜋
𝑠
𝑖𝑗𝑘 − 𝜋

𝑠
𝑖𝑗𝑚 ≤ 1

⌈𝛽𝑆⌉
𝑤𝑠𝑖𝑗𝑐𝑖𝑗𝑘𝑚𝜌

𝑠
𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘, 𝑚 ∈ 𝐻, (𝑘 ≠ 𝑚), 𝑠 ∈ 𝛺 (82)

𝜎𝑠𝑖𝑗 − 𝜋
𝑠
𝑖𝑗𝑘 ≤

1
⌈𝛽𝑆⌉

𝑤𝑠𝑖𝑗𝑐𝑖𝑗𝑘𝑘𝜌
𝑠
𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐻, 𝑠 ∈ 𝛺 (83)

∑

(𝑖,𝑗)∈𝐴

∑

𝑠∈𝛺
𝜌𝑠𝑖𝑗 = ⌈𝛽𝑆⌉ (84)

∑

(𝑖,𝑗)∈𝐴
𝜌𝑠𝑖𝑗 ≤ 1 ∀𝑠 ∈ 𝛺 (85)

0 ≤ 𝜌𝑠𝑖𝑗 ≤ 1 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑠 ∈ 𝛺 (86)

𝜋𝑠𝑖𝑗𝑘 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐻, 𝑠 ∈ 𝛺 (87)

he master problem for the RAW𝑝HCP can now be formulated as:

min 𝜃 (88)

s.t.: 𝜃 ≥
∑

(𝑖,𝑗)∈𝐴

∑

𝑠∈𝛺
𝜎𝑠𝑣𝑖𝑗 −

∑

(𝑖,𝑗)∈𝐴

∑

𝑘∈𝐻

∑

𝑠∈𝛺
𝜋𝑠𝑣𝑖𝑗𝑘𝑦𝑘 𝑣 = 1,… , 𝑉 (89)

(2), (6)

ow we determine the optimal values of 𝜌𝑠𝑖𝑗 variables in the DSP (81)–(87). Since the inner problem in (25) is a continuous minimum
napsack problem, based on the proposed greedy algorithm, the optimal value of variable 𝜌𝑠𝑖𝑗 associated with ⌈𝛽𝑆⌉ scenarios that
ave the largest transportation cost among all O/D pairs in each scenario will be 1 and the optimal values of the remaining 𝜌𝑠𝑖𝑗
ariables will be 0. Algorithm 5 shows the pseudo-code for greedy algorithm proposed for determining the optimal values of 𝜌𝑠

ariables for the RAW𝑝HCP.

After calculating the optimal values for the 𝜌𝑠𝑖𝑗 variables, the DSP for the RAW𝑝HCP can be reduced to the following linear
programming problem:

max
∑

𝑠∈𝐼
𝜎𝑠𝑜𝑠𝑑𝑠 −

∑

𝑘∈𝐻

∑

𝑠∈𝐼
�̂�𝑘𝜋

𝑠
𝑜𝑠𝑑𝑠𝑘 (90)

s.t.: 𝜎𝑠𝑜𝑠𝑑𝑠 − 𝜋
𝑠
𝑜𝑠𝑑𝑠𝑘 − 𝜋

𝑠
𝑜𝑠𝑑𝑠𝑚 ≤ 1

⌈𝛽𝑆⌉
𝑤𝑠𝑜𝑠𝑑𝑠 𝑐𝑜𝑠𝑑𝑠𝑘𝑚 ∀𝑘, 𝑚 ∈ 𝐻, (𝑘 ≠ 𝑚), 𝑠 ∈ 𝐼 (91)

𝜎𝑠𝑜𝑠𝑑𝑠 − 𝜋
𝑠
𝑜𝑠𝑑𝑠𝑘 ≤

1
⌈𝛽𝑆⌉

𝑤𝑠𝑜𝑠𝑑𝑠 𝑐𝑜𝑠𝑑𝑠𝑘𝑘 ∀𝑘 ∈ 𝐻, 𝑠 ∈ 𝐼 (92)

𝜋𝑠𝑜𝑠𝑑𝑠𝑘 ≥ 0 ∀𝑘 ∈ 𝐻, 𝑠 ∈ 𝐼 (93)
11
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Algorithm 5 : Greedy algorithm for determining the optimal values for 𝜌𝑠𝑖𝑗 variables for the RAW𝑝HCP

1: for all 𝑠 ∈ 𝛺 do
2: 𝑣𝑠 ← −∞
3: (𝑜𝑠 , 𝑑𝑠) ← (0, 0)
4: for all (𝑖, 𝑗) ∈ 𝐴 do
5: if 𝑣𝑠 < 𝑤𝑠

𝑖𝑗 min
𝑘,𝑚∈𝐻1

{𝑐𝑖𝑗𝑘𝑚} then
6: (𝑜𝑠 , 𝑑𝑠) ← (𝑖, 𝑗)
7: 𝑣𝑠 ← 𝑤𝑠

𝑖𝑗 min
𝑘,𝑚∈𝐻1

{𝑐𝑖𝑗𝑘𝑚}

8: end if
9: end for
0: end for
1: 𝐼 ← ∅
2: 𝐽 ← 𝛺
3: for 𝑟 = 1, ..., ⌈𝛽𝑆⌉ do
4: 𝑣𝑚𝑎𝑥 ← −∞

15: 𝑖𝑚𝑎𝑥 ← 0
16: for all 𝑠 ∈ 𝐽 do
17: if 𝑣𝑚𝑎𝑥 < 𝑣𝑠 then
18: 𝑣𝑚𝑎𝑥 ← 𝑣𝑠

19: 𝑖𝑚𝑎𝑥 ← 𝑠
20: end if
21: end for
22: 𝐼 ← 𝐼 ∪ {𝑖𝑚𝑎𝑥}
23: 𝐽 ← 𝐽 ⧵ {𝑖𝑚𝑎𝑥}
24: end for
25: for all 𝑠 ∈ 𝐼 do
26: 𝜌𝑠𝑜𝑠𝑑𝑠 ← 1
27: end for
28: for all 𝑠 ∈ 𝐽 do
29: 𝜌𝑠𝑜𝑠𝑑𝑠 ← 0
30: end for

where 𝑜𝑠 and 𝑑𝑠 are respectively the origin and destination nodes of the O/D pair that corresponds to the maximum weighted cost
mong all O/D pairs under scenario 𝑠 ∈ 𝐼 which are determined by Algorithm 5. This problem can also be solved by inspection

separately for each scenario 𝑠 ∈ 𝐼 by using Algorithm 6.

Algorithm 6 : Determining the optimal values for 𝜎𝑠𝑖𝑗 and 𝜋𝑠𝑖𝑗𝑘 variables for the RA𝑝HCP

1: for all 𝑠 ∈ 𝐼 do
2: 𝜎𝑠𝑜𝑠𝑑𝑠 ←

1
⌈𝛽𝑆⌉

𝑤𝑠
𝑜𝑠𝑑𝑠 min

𝑘,𝑚∈𝐻1
{𝑐𝑜𝑠𝑑𝑠𝑘𝑚}

3: for all 𝑘 ∈ 𝐻1 do
4: 𝜋𝑠𝑜𝑠𝑑𝑠𝑘 ← 0
5: end for
6: for all 𝑘 ∈ 𝐻0 do
7: 𝜋𝑠𝑜𝑠𝑑𝑠𝑘 ← max{0, 𝜎𝑠𝑜𝑠𝑑𝑠 −

1
⌈𝛽𝑆⌉

𝑤𝑠
𝑜𝑠𝑑𝑠 𝑐𝑜𝑠𝑑𝑠𝑘𝑘}

8: for all 𝑚 ∈ 𝐻1 do
9: 𝜋𝑠𝑜𝑠𝑑𝑠𝑘 ← max{𝜋𝑠𝑜𝑠𝑑𝑠𝑘 ,max{𝜎𝑠𝑜𝑠𝑑𝑠 −

1
⌈𝛽𝑆⌉

𝑤𝑠
𝑜𝑠𝑑𝑠 𝑐𝑜𝑠𝑑𝑠𝑘𝑚 , 𝜎

𝑠
𝑜𝑠𝑑𝑠 −

1
⌈𝛽𝑆⌉

𝑤𝑠
𝑜𝑠𝑑𝑠 𝑐𝑜𝑠𝑑𝑠𝑚𝑘}}

10: end for
11: end for
12: for all (𝑘, 𝑚) ∈ 𝐻0 ×𝐻0 , (𝑘 ≠ 𝑚) do
13: 𝛥← 𝜎𝑠𝑜𝑠𝑑𝑠 − min{ 1

⌈𝛽𝑆⌉
𝑤𝑠
𝑜𝑠𝑑𝑠 𝑐𝑜𝑠𝑑𝑠𝑘𝑚 ,

1
⌈𝛽𝑆⌉

𝑤𝑠
𝑜𝑠𝑑𝑠 𝑐𝑜𝑠𝑑𝑠𝑚𝑘} − 𝜋

𝑠
𝑜𝑠𝑑𝑠𝑘 − 𝜋

𝑠
𝑜𝑠𝑑𝑠𝑚

14: if 𝛥 > 0 then
15: 𝜋𝑠𝑜𝑠𝑑𝑠𝑘 ← 𝜋𝑠𝑜𝑠𝑑𝑠𝑘 +

𝛥
2

6: 𝜋𝑠𝑜𝑠𝑑𝑠𝑚 ← 𝜋𝑠𝑜𝑠𝑑𝑠𝑚 + 𝛥
2

7: end if
8: end for
9: end for

5. Computational experiments

This section deals with analyzing the efficiency of the developed mathematical models and solution algorithm by using three
ell-known data sets: the CAB, the TR, and the AP data sets. The CAB data set includes the air passenger transportation data between
5 US cities in 1970 (O’Kelly, 1987). The TR data set include cargo traffic data between 81 provinces in Turkey (Tan and Kara,
007). The third data set is the Australia Post (AP) data set introduced by Ernst and Krishnamoorthy (1996). The AP data set is
ased on a postal delivery system in Sydney, Australia and consists of 200 nodes representing postal districts. The parameters 𝜒

and 𝛿 are set to be 1 and four different values are used for the discount factor parameter as: 𝛼 ∈ {0.2, 0.4, 0.6, 0.8}. The number of
12
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Table 2
Performance comparison between BD algorithms with the CAB data set.

Problem 𝑝 𝛼 = 0.2 𝛼 = 0.4 𝛼 = 0.6 𝛼 = 0.8

BD-Trd BD-Enh BD-Trd BD-Enh BD-Trd BD-Enh BD-Trd BD-Enh

CPU (s) # iter CPU (s) CPU (s) # iter CPU (s) CPU (s) # iter CPU (s) CPU (s) # iter CPU (s)

Median 2 22.48 9 0.10 20.18 8 0.05 18.87 8 0.05 18.98 8 0.04
3 30.64 13 0.12 26.87 11 0.10 25.97 12 0.10 24.40 12 0.09
4 27.14 12 0.23 29.04 13 0.24 30.43 15 0.25 30.71 17 0.23
5 28.21 13 0.24 24.88 13 0.28 25.93 14 0.36 31.22 18 0.48

Covering 2 20.42 31 0.09 10.88 17 0.07 11.04 18 0.09 6.66 9 0.04
3 23.75 39 0.20 20.95 40 0.21 11.36 21 0.11 9.23 15 0.09
4 18.66 30 0.12 20.18 39 0.20 14.08 26 0.20 10.87 21 0.14
5 43.06 74 0.36 19.03 37 0.27 15.36 32 0.25 10.36 21 0.17

Center 2 15.20 5 0.10 16.99 6 0.03 17.53 6 0.01 15.93 6 0.01
3 23.68 8 0.02 19.18 7 0.03 18.07 6 0.02 18.59 7 0.01
4 28.06 10 0.03 21.57 8 0.02 20.74 8 0.01 16.96 7 0.01
5 36.95 11 0.02 23.66 10 0.02 17.62 8 0.02 13.98 6 0.01

Average 26.52 0.14 21.12 0.13 18.92 0.12 17.32 0.11

hubs to be opened is set as: 𝑝 ∈ {2, 3, 4, 5} and we take all the demand nodes as candidate sites for locating hubs (i.e., 𝐻 = 𝑁) in all
the three data sets. In case of the maximal covering problem, the covering radius is set as 𝑅 = 1000, 800, and 20000 for the CAB,
TR, and AP data sets, respectively. These values are selected as meaningful fractions of the optimal objective function values for
the uncapacitated multiple allocation 𝑝-hub center problem as solved by Ghaffarinasab (2020).

In order to analyze the effect of uncertainty, we generated 100 scenarios for demand matrix realizations in both the data sets
using the method proposed by Rostami et al. (2021). Based on this method, under each scenario 𝑠 ∈ 𝛺 a multiplicative factor 𝜋𝑖
uniformly distributed in the interval [0.5, 1.5] is generated for each node 𝑖 ∈ 𝑁 denoting the deviation from the base case. For
every O/D pair (𝑖, 𝑗) ∈ 𝐸, the flow volume 𝑤𝑠𝑖𝑗 is generated according to Poisson probability distribution with rate of (𝜋𝑖𝜋𝑗𝑤𝑖𝑗 ) in

hich 𝑤𝑖𝑗 is the corresponding base flow value. As customarily done in the literature, the flow matrix for the CAB and TR data sets
re scaled so that the sum of flows be 1 for each scenario. Furthermore, the original distances are divided by 1000 in the AP data
et. Finally, the occurrence probability for each scenario is assumed to be 0.01. The risk parameter (𝛽) is considered at six levels
s: 𝛽 ∈ {0.01, 0.05, 0.1, 0.3, 0.5, 1}.

The proposed algorithms are implemented in JAVA and the mathematical models are solved by CPLEX version 12.10 using
efault parameter values. Experiments are conducted by using a computer with Intel(R) Core(TM) i3-3220 CPU of 3.30 GHz and
6 GB of RAM, on Microsoft Windows 7 operating system. The BD algorithms are implemented within a branch-and-cut tree using
he lazy constraint callback function available in CPLEX. The time limit for CPLEX is set to five hours in all experiments.

.1. Evaluation of algorithmic enhancements on the proposed BD approaches

As noted in Section 4, our proposed BD algorithms benefit from some tailored algorithmic refinement features enabling efficient
olution of the problems as compared with the traditional implementation of the BD algorithm. The main refinement features in
ur BD procedures are (𝑖) proposing efficient algorithms for solving the subproblems and generating strong cuts without resorting
o off-the-shelf solvers, and (𝑖𝑖) modern implementation of the BD algorithm within a branch-and-cut framework. However, the
raditional algorithm uses CPLEX for solving the subproblems and solves the master problem from scratch at each iteration of the
lgorithm. In order to evaluate the effect of the applied enhancements on the performance of the proposed BD procedures, we
olve a large number of instances from the three problems using both the proposed enhanced BD algorithm and the traditional BD
lgorithm. The performance of the two solution procedures is compared for all the three problem variants on instances from the
AB data set in Table 2.

The first column shows the problem variant as the median, covering, or center problem. The second column shows the number
f opened hubs. The next columns show the solution information for the two algorithms under different discount factor values.
he two columns under heading “BD-Trd” show the performance of the traditional BD algorithm in terms of solution times and
umber of algorithm iterations which are averaged over different values of risk parameter 𝛽 ∈ {0.01, 0.05, 0.1, 0.3, 0.5, 1}. The average
umbers for the algorithm iterations are rounded to their closest integer values. The column under heading “BD-Enh” shows the
verage solution times for our proposed enhanced BD algorithm. Observe that the solution times for the BD-Trd are two orders of
agnitude larger than those of the BD-Enh which shows the absolute superiority of the proposed BD procedure to the traditional

mplementation of the algorithm.
Table 3 shows the results obtained by the two solution procedures for the instances from the AP (|𝑁| = 40) data set.
As can be observed from Table 3, the difference in solution times is even more noticeable for the instances of the AP (|𝑁| = 40)

data set as compared with those of the CAB data set. The average solution times for the AP (|𝑁| = 40) instances with the BD-Trd are
289, 238, 245, and 197 s for discount factor values 𝛼 = 0.2, 0.4, 0.6, and 0.8, respectively. In contrast, the average solution times
for the BD-Enh are less than or equal to one second for all values of 𝛼. Note that the AP instances with 40 nodes are the largest
instances that we could solve using the BD-Trd as the memory requirement for solving the subproblems exceeded the available RAM
of our computer.
13
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Table 3
Performance comparison between BD algorithms with the AP (|𝑁| = 40) data set.

Model 𝑝 𝛼 = 0.2 𝛼 = 0.4 𝛼 = 0.6 𝛼 = 0.8

BD-Trad BD BD-Trad BD BD-Trad BD BD-Trad BD

CPU (s) # iter CPU (s) CPU (s) # iter CPU (s) CPU (s) # iter CPU (s) CPU (s) # iter CPU (s)

Median 2 90.33 7 0.48 84.15 7 0.12 78.03 6 0.11 89.92 8 0.10
3 212.43 11 0.39 113.87 9 0.32 107.06 9 0.33 112.17 11 0.28
4 203.68 16 1.87 175.08 14 1.30 174.65 14 0.92 130.50 13 0.66
5 198.10 16 5.13 189.57 18 3.43 156.20 14 2.37 168.71 17 1.92

Covering 2 86.81 29 0.45 76.30 22 0.17 45.25 14 0.11 35.78 10 0.07
3 223.56 59 0.43 149.83 49 0.34 123.98 56 0.29 62.51 26 0.14
4 426.90 130 1.27 292.28 100 1.51 124.06 57 0.84 87.36 39 0.55
5 493.49 136 1.62 315.28 106 3.37 177.73 80 3.39 108.21 54 2.17

Center 2 141.27 9 0.09 146.34 9 0.05 132.31 9 0.06 117.71 8 0.05
3 152.65 10 0.05 139.21 9 0.05 245.42 13 0.05 230.35 12 0.04
4 494.02 16 0.09 544.79 17 0.07 996.60 17 0.07 437.21 11 0.05
5 749.09 21 0.13 641.02 22 0.13 581.63 18 0.09 791.14 14 0.05

Average 289.36 1.00 238.98 0.91 245.24 0.72 197.63 0.51

Table 4
Results for the RA𝑝HMP with the CAB data set.
𝑝 𝛽 𝛼 = 0.2 𝛼 = 0.4 𝛼 = 0.6 𝛼 = 0.8

Opt. CPU (s) Opt. CPU (s) Opt. CPU (s) Opt. CPU (s)

OF Hubs MILP BD OF Hubs MILP BD OF Hubs MILP BD OF Hubs MILP BD

2 1 1000.09 12, 20 157.94 0.32 1077.21 12, 20 157.09 0.06 1142.00 12, 20 153.25 0.05 1184.61 12, 20 157.69 0.05
0.5 1030.10 12, 20 158.27 0.06 1107.48 12, 20 158.89 0.05 1173.14 12, 20 166.54 0.05 1216.81 12, 20 154.46 0.05
0.3 1042.77 12, 20 157.97 0.05 1120.02 12, 20 158.20 0.04 1186.91 12, 20 164.17 0.05 1231.18 12, 20 154.49 0.04
0.1 1063.48 12, 20 161.40 0.05 1141.13 12, 20 156.30 0.05 1206.29 12, 20 168.98 0.04 1249.85 12, 20 154.93 0.04
0.05 1075.22 12, 20 163.42 0.05 1151.83 12, 20 162.81 0.04 1216.25 12, 20 167.29 0.04 1258.48 12, 20 152.88 0.04
0.01 1082.59 12, 20 163.09 0.05 1164.51 12, 20 157.40 0.05 1231.05 12, 20 165.17 0.04 1271.81 12, 20 161.28 0.04

3 1 759.31 12, 17, 21 171.80 0.10 865.85 4, 12, 17 153.29 0.11 954.33 4, 12, 18 153.31 0.09 1025.42 4, 12, 18 159.85 0.09
0.5 790.10 12, 18, 21 162.10 0.10 897.31 12, 18, 21 155.78 0.09 987.50 12, 18, 21 154.95 0.09 1057.68 12, 18, 21 154.52 0.09
0.3 801.51 12, 18, 21 162.08 0.10 908.79 12, 18, 21 157.19 0.09 1001.12 12, 18, 21 155.44 0.11 1072.98 12, 18, 21 154.29 0.09
0.1 822.55 12, 18, 21 162.49 0.10 928.83 12, 18, 21 161.11 0.10 1018.35 12, 18, 21 156.87 0.11 1092.13 12, 18, 21 154.02 0.08
0.05 833.01 12, 18, 21 199.40 0.22 938.77 12, 18, 21 157.21 0.12 1029.47 2, 12, 21 156.29 0.09 1101.29 2, 12, 21 164.96 0.10
0.01 841.80 18, 21, 22 178.13 0.11 953.25 12, 18, 21 169.93 0.11 1039.91 2, 12, 21 168.07 0.09 1107.69 2, 12, 21 176.16 0.08

4 1 623.15 4, 12, 17, 24 154.06 0.15 759.17 4, 12, 17, 24 149.63 0.15 872.34 1, 4, 12, 17 166.12 0.21 957.13 1, 4, 12, 17 154.39 0.17
0.5 653.18 4, 12, 17, 24 181.28 0.30 790.47 4, 12, 17, 24 154.88 0.21 904.89 4, 7, 12, 18 197.87 0.22 991.53 1, 4, 12, 17 167.17 0.20
0.3 667.22 4, 12, 17, 24 174.49 0.20 804.76 4, 12, 17, 24 180.99 0.22 917.40 4, 7, 12, 18 192.71 0.21 1006.59 4, 7, 12, 18 192.15 0.34
0.1 692.00 4, 12, 16, 17 179.50 0.22 829.50 4, 12, 18, 24 207.18 0.27 937.17 4, 7, 12, 18 185.99 0.35 1028.44 4, 7, 12, 18 194.26 0.23
0.05 704.46 4, 12, 16, 17 182.79 0.24 839.29 4, 12, 18, 24 190.18 0.32 948.69 4, 7, 12, 18 201.56 0.25 1036.82 1, 4, 12, 17 179.19 0.26
0.01 716.17 4, 12, 16, 17 250.68 0.27 846.75 1, 4, 12, 18 231.20 0.30 954.54 1, 4, 12, 17 183.29 0.24 1042.20 1, 4, 12, 18 188.76 0.21

5 1 532.04 4, 7, 12, 14, 17 151.74 0.19 678.84 4, 7, 12, 14, 17 154.13 0.27 807.83 4, 7, 12, 14, 17 155.77 0.30 913.41 4, 7, 12, 17, 24 172.72 0.30
0.5 555.38 4, 7, 12, 14, 17 164.42 0.22 704.10 4, 7, 12, 14, 17 161.25 0.21 836.03 4, 7, 12, 14, 18 166.95 0.27 945.03 4, 7, 12, 17, 24 176.44 0.40
0.3 565.38 4, 7, 12, 14, 17 161.97 0.21 715.17 4, 7, 12, 14, 17 161.31 0.25 846.00 4, 7, 12, 14, 18 159.87 0.25 958.03 4, 7, 12, 17, 24 178.18 0.38
0.1 586.33 4, 7, 12, 14, 17 165.69 0.27 735.51 4, 7, 12, 14, 18 160.55 0.23 866.70 4, 7, 12, 14, 18 172.17 0.33 979.67 4, 7, 12, 17, 24 203.90 0.43
0.05 598.98 4, 7, 12, 14, 17 158.57 0.29 747.90 4, 7, 12, 14, 18 170.60 0.35 878.80 4, 7, 12, 14, 18 163.35 0.47 990.43 4, 7, 12, 14, 18 174.45 0.57
0.01 610.98 4, 7, 12, 17, 24 222.35 0.29 762.43 4, 7, 12, 18, 24 203.10 0.40 893.92 2, 4, 7, 12, 24 173.09 0.53 1003.30 1, 4, 12, 17, 22 249.12 0.82

Average 172.74 0.17 167.92 0.17 168.71 0.19 172.09 0.21

5.2. Results for the risk-averse 𝑝-hub median problem

Table 4 shows the results obtained by solving the RA𝑝HMP under different input parameters with the CAB data set. The number
of installed hubs and the value of the risk parameter are shown in columns entitled 𝑝 and 𝛽, respectively. Solution results for the
MILP model and the BD algorithm under different discount factor (𝛼) values are given next. For each value of 𝛼, the optimal objective
function value (OF) and the corresponding set of opened hubs as well as the solution times (in seconds) for the MILP model and
the BD algorithm are presented. The average computational times for the two solution procedures are shown in the last row of the
table.

According to the results presented in Table 4, the proposed BD algorithm is able to solver all the instances of the CAB data set
to optimality within very short CPU times. The average time taken by CPLEX to solve the MILP model is around 170 s, whereas the
BD obtains the optimal solutions in small fraction of a second. Note that the results for 𝛽 = 1 are equivalent to risk-neutral expected
value problem which, as shown by Contreras et al. (2011b), can also be obtained by solving a deterministic version of the problem
using the average of O/D demand values over 100 scenarios. It can be observed that as the value of the risk parameter (𝛽) decreases,
the optimal objective function value increases. This is because when the value of 𝛽 is small, the focus is on the average performance
over a small fraction of the worst scenarios which have larger values of objective function. In other words, smaller values of 𝛽 are
used when the decision maker is highly risk-averse, while the larger values of 𝛽 are used by more risk-neutral decision makers. As
expected, we can see that for a given number of opened hubs 𝑝, the optimal objective value increases as the value of the discount
factor (𝛼) increases. On the other hand, for a fixed value of the discount factor, the objective value decreases as the number of
opened hubs (𝑝) increases.
14
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Fig. 1. Changes in the objective value with respect to 𝛽 for the RA𝑝HMP with the CAB data set.

As far as the optimal network configuration is concerned, we observe a large variability in location of hubs when the value of the
isk parameter (𝛽) is changed. This variability is more noticeable when the number of opened hubs is relatively large. For instance,
n case of 𝑝 = 4 and 𝛼 = 0.4, the optimal hubs when 𝛽 = 1, 0.5, and 0.3 are located at nodes 4 (Chicago), 12 (Los Angeles), 17
New York), and 24 (Tampa). For the more risk-averse settings with 𝛽 = 0.1 and 0.05, the four optimal locations are 4 (Chicago),

12 (Los Angeles), 18 (Philadelphia), and 24 (Tampa). Finally, for 𝛽 = 0.01, the cities 1 (Atlanta), 4 (Chicago), 12 (Los Angeles), and
18 (Philadelphia) constitute the optimal set of hubs.

In order to better illustrate the effect of the risk parameter (𝛽) and the number of opened hubs (𝑝) on the value of the objective
unction value of the RA𝑝HMP, we plot the total transportation cost with respect to the value of risk parameter 𝛽 for different values
f 𝑝 in Fig. 1. The values are averaged over the four values of discount factor (𝛼). Observe that 𝛽 = 1 corresponds to the risk-neutral
roblem in which the average value of the objective function over all scenarios are considered. The case with 𝛽 = 0.01, on the
ther hand, has the highest level of risk-aversion where the value of the objective function for the worst 1% of scenarios (the worst
cenario among the 100 scenarios) is considered as the evaluation criterion between different network configurations. As stated
efore, as the value of the risk parameter decreases, the total transportation cost increases. However, the growth of total cost is
teeper when the value of 𝛽 gets closer to zero. Moreover, the total cost with 𝑝 = 2 is considerably larger than the corresponding
ost associated with the remaining values of 𝑝.

Table 5 presents the obtained results for solving the RA𝑝HMP with the TR data set. Due to the large size of the instances in the
R data set, the corresponding MILP model could not be solved using CPLEX due to memory restrictions. Therefore, we only report
he results obtained by the BD algorithm. It can be observed that the proposed BD algorithm solves all the instances with quite short
PU times. Solution times for the TR instances is less than 140 s on average. Observe that the mean solution times decrease as the
iscount factor value (𝛼) gets larger. For example, the average solution time is less than 50 s for 𝛼 = 0.8. Further, we can see that
he solution times generally increase as the risk parameter value (𝛽) decreases. In other words, more risk-averse instances are more
ifficult to be solved by the proposed BD algorithm.

From a network configuration point of view, we observe a substantial variability in the optimal location of hubs with respect to
hanges in the risk parameter (𝛽) even when the number of opened hubs is small as 𝑝 = 2. In case of 𝑝 = 4 and 𝛼 = 0.4, the optimal
ubs when 𝛽 = 1 and 0.5 are located at nodes 6 (Ankara), 34 (Istanbul), 44 (Malatya), and 45 (Manisa). For the settings with 𝛽 =
.3 and 0.1, the four optimal locations are 3 (Afyon), 27 (Gaziantep), 41 (Kocaeli), and 60 (Tokat). Finally, for 𝛽 = 0.05 and 0.01,
he optimal hubs are located at nodes 21 (Diyarbakir), 38 (Kayseri), 41 (Kocaeli), and 64 (Uşak).

Table 6 shows the results obtained by solving the RA𝑝HMP under different input parameters with the AP data set. Note that
he solution time for solving the large-scale instances od the AP data set is quite reasonable. It can be observed that by increasing
he number of opened hubs 𝑝 the solution time increases. Also, we can observe that the solution time deceases as the value of the
iscount factor 𝛼 gets larger. For this reason the instances with 𝑝 = 5 and 𝛼 = 0.2 and 0.4 could not be solved to optimality within
he allowed solution time of five hours. For these instances, the gap percentages between the upper and lower bounds are reported.

The curves showing the changes in the objective function value of the RA𝑝HMP with respect to different values of 𝛽 and 𝑝 for
the TR and AP data sets are depicted in Fig. 2. As can be seen, the increase in the value of the objective function for the TR data
15

set as 𝛽 decreases is more uniform compared to the cases of the CAB and AP data sets.
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Table 5
Results for the RA𝑝HMP with the TR data set.
𝑝 𝛽 𝛼 = 0.2 𝛼 = 0.4 𝛼 = 0.6 𝛼 = 0.8

Opt. CPU (s) Opt. CPU (s) Opt. CPU (s) Opt. CPU (s)

OF Hubs BD OF Hubs BD OF Hubs BD OF Hubs BD

2 1 770.99 38, 41 8.17 820.41 38, 41 5.30 857.14 38, 41 4.15 878.53 38, 41 2.59
0.5 784.60 44, 54 7.86 835.16 38, 41 7.56 871.23 38, 41 4.09 891.78 38, 41 3.07
0.3 789.79 26, 44 8.14 843.96 38, 41 6.33 879.47 38, 41 6.76 899.27 38, 41 2.93
0.1 796.00 26, 44 8.11 858.28 38, 41 7.71 893.60 38, 41 8.09 913.25 38, 41 3.68
0.05 798.43 26, 44 8.63 861.39 26, 44 9.24 902.11 38, 41 6.97 921.32 38, 41 4.42
0.01 800.97 26, 44 8.47 864.47 26, 44 6.59 906.90 38, 41 7.02 925.23 38, 41 5.27

3 1 659.47 12, 41, 68 39.88 725.86 6, 41, 44 23.57 777.85 6, 41, 44 21.06 814.14 6, 41, 44 10.13
0.5 671.53 12, 41, 68 41.98 739.92 6, 41, 44 28.26 790.68 6, 41, 44 20.59 826.10 6, 41, 44 11.78
0.3 678.56 12, 41, 68 46.03 747.00 6, 41, 44 29.95 797.54 6, 41, 44 18.84 832.65 6, 41, 44 15.12
0.1 688.29 12, 41, 68 49.12 760.97 23, 41, 68 37.88 810.39 23, 41, 68 23.29 845.43 23, 41, 68 15.53
0.05 693.30 12, 41, 68 48.12 765.75 21, 41, 68 37.95 815.91 23, 41, 68 27.90 851.01 23, 41, 68 16.57
0.01 698.43 21, 41, 50 53.13 770.37 23, 41, 68 38.93 819.52 23, 41, 68 19.90 856.25 3, 41, 44 15.13

4 1 568.83 6, 34, 44, 45 112.71 656.46 6, 34, 44, 45 77.30 728.57 6, 34, 44, 45 82.35 777.90 1, 3, 41, 58 56.48
0.5 584.49 3, 27, 34, 60 158.41 671.35 6, 34, 44, 45 116.59 740.64 3, 27, 41, 60 103.30 787.19 3, 21, 38, 41 60.79
0.3 590.42 3, 27, 34, 60 152.08 678.31 3, 27, 41, 60 133.98 744.91 3, 27, 41, 60 102.48 791.39 3, 21, 38, 41 54.80
0.1 599.27 3, 27, 34, 60 184.37 685.94 3, 27, 41, 60 130.48 753.62 3, 27, 41, 60 97.79 799.50 3, 21, 38, 41 52.70
0.05 602.24 21, 38, 41, 64 168.25 689.08 21, 38, 41, 64 139.18 756.29 35, 41, 44, 68 89.11 804.99 3, 21, 38, 41 55.38
0.01 604.81 21, 38, 41, 64 171.56 690.35 21, 38, 41, 64 105.50 757.62 35, 41, 44, 68 63.60 813.43 6, 34, 35, 44 57.54

5 1 491.35 6, 12, 34, 45, 80 110.36 594.17 1, 6, 12, 34, 45 100.04 677.72 1, 6, 23, 34, 45 93.58 743.59 1, 6, 23, 41, 45 97.23
0.5 505.99 6, 12, 34, 45, 80 197.09 607.44 1, 6, 12, 34, 45 173.54 689.07 1, 6, 23, 34, 45 139.87 752.07 1, 3, 21, 41, 60 95.73
0.3 513.10 6, 12, 34, 45, 80 253.03 614.22 1, 6, 12, 34, 45 279.04 694.97 1, 6, 23, 41, 45 193.81 756.23 1, 3, 21, 41, 60 98.41
0.1 524.80 12, 34, 64, 71, 80 526.21 626.05 1, 6, 12, 35, 41 516.03 702.44 1, 3, 21, 41, 60 186.66 764.22 1, 3, 21, 41, 60 109.75
0.05 527.51 12, 34, 64, 71, 80 468.33 629.09 6, 12, 35, 41, 80 565.73 706.33 1, 3, 21, 41, 60 180.32 768.93 1, 3, 21, 41, 60 103.47
0.01 531.65 12, 35, 41, 71, 80 480.30 631.42 12, 41, 45, 71, 80 489.08 711.17 6, 24, 35, 41, 46 206.11 778.46 1, 6, 23, 34, 35 118.28

Average 137.93 127.74 71.15 44.45

Table 6
Results for the RA𝑝HMP with the AP data set.
𝑝 𝛽 𝛼 = 0.2 𝛼 = 0.4 𝛼 = 0.6 𝛼 = 0.8

Opt. CPU (s) Opt. CPU (s) Opt. CPU (s) Opt. CPU (s)

OF Hubs BD OF Hubs BD OF Hubs BD OF Hubs BD

2 1 62 346.49 57, 140 182.81 65 195.34 57, 140 156.81 67 021.68 56, 139 137.91 68 105.25 56, 139 120.41
0.5 63 346.85 57, 140 148.89 66 221.32 57, 139 150.50 68 067.80 56, 139 122.16 69 162.16 56, 139 107.12
0.3 63 771.50 57, 140 132.65 66 671.16 57, 139 128.80 68 534.28 56, 139 107.20 69 635.38 56, 139 96.58
0.1 64 569.55 57, 140 94.59 67 501.45 57, 139 91.17 69 385.92 56, 139 82.16 70 484.85 56, 139 62.79
0.05 64 893.90 57, 140 62.33 67 848.47 57, 140 66.35 69 728.41 56, 139 59.84 70 812.18 56, 139 48.13
0.01 65 589.20 57, 140 30.33 68 530.80 57, 140 28.74 70 458.61 56, 139 27.28 71 501.58 56, 139 23.12

3 1 55 191.26 53, 110, 140 1501.45 59 274.86 56, 112, 140 1504.08 62 173.56 56, 111, 140 1473.18 63 888.68 56, 126, 145 1081.29
0.5 56 083.29 53, 110, 140 1275.92 60 216.01 56, 112, 140 1266.53 63 154.07 56, 111, 140 1258.17 64 887.02 56, 126, 145 1013.25
0.3 56 441.90 56, 112, 140 1178.29 60 614.27 56, 111, 140 1082.15 63 572.64 56, 111, 140 1132.75 65 320.00 56, 126, 145 856.56
0.1 57 080.18 56, 112, 140 729.45 61 353.67 56, 112, 140 780.53 64 393.05 56, 111, 140 871.37 66 161.75 56, 126, 145 578.64
0.05 57 370.18 56, 112, 140 526.21 61 614.53 56, 112, 140 569.16 64 676.41 56, 111, 140 574.80 66 527.14 56, 108, 140 479.62
0.01 58 200.59 53, 110, 140 294.74 62 533.92 53, 107, 140 320.84 65 349.81 56, 126, 144 276.50 67 024.47 56, 126, 145 237.46

4 1 48 899.58 22, 110, 126, 141 4694.11 53 819.51 22, 110, 126, 141 3567.73 57 454.64 56, 111, 126, 140 3014.93 60 056.41 56, 108, 126, 140 2442.58
0.5 49 681.13 22, 110, 126, 141 3675.17 54 666.27 22, 110, 126, 141 3426.26 58 363.06 56, 111, 126, 140 2328.73 61 005.22 56, 111, 126, 140 2044.07
0.3 50 034.00 22, 110, 126, 141 3345.91 55 042.98 22, 110, 126, 141 2940.52 58 749.31 56, 111, 126, 140 2208.44 61 402.78 56, 111, 126, 140 1870.25
0.1 50 621.62 22, 110, 126, 141 2348.64 55 722.54 22, 110, 126, 141 2020.42 59 526.28 56, 111, 126, 140 1552.45 62 209.87 21, 69, 126, 140 1373.28
0.05 50 976.83 22, 110, 126, 141 2076.85 56 077.09 22, 110, 126, 141 1690.78 59 836.97 56, 111, 126, 140 1213.11 62 528.48 56, 108, 126, 140 1019.78
0.01 51 396.55 21, 107, 126, 141 912.27 56 508.28 22, 107, 126, 141 738.48 60 361.03 22, 107, 126, 141 580.10 62 991.35 56, 108, 126, 140 519.08

5 1 45 130.10 20, 57, 112, 126, 140 5 h(4.22%) 50 710.31 13, 58, 112, 126, 141 5 h(2.85%) 54 878.47 14, 61, 111, 126, 140 14 910.43 57 898.71 14, 61, 111, 126, 140 8541.37
0.5 45 851.09 20, 57, 112, 126, 140 5 h(3.94%) 51 507.43 13, 58, 112, 126, 141 5 h(2.53%) 55 749.98 14, 61, 111, 126, 140 14 719.59 58 815.48 14, 61, 111, 126, 140 9835.65
0.3 46 168.27 20, 57, 112, 126, 140 5 h(3.76%) 51 857.53 13, 58, 112, 126, 141 5 h(2.46%) 56 121.78 14, 61, 111, 126, 140 12 736.59 59 206.20 14, 61, 111, 126, 140 9492.88
0.1 46 787.99 19, 56, 112, 126, 140 5 h(3.70%) 52 450.67 20, 56, 112, 126, 141 5 h(2.00%) 56 822.30 14, 61, 111, 126, 140 10 384.22 59 961.61 14, 61, 111, 126, 140 8642.11
0.05 46 912.12 20, 56, 112, 126, 141 5 h(3.04%) 52 738.43 20, 56, 112, 126, 141 5 h(1.67%) 57 116.48 14, 61, 111, 126, 140 11 326.88 60 249.37 14, 61, 111, 126, 140 4221.03
0.01 47 501.12 20, 56, 112, 126, 141 5 h(2.48%) 53 284.79 13, 58, 111, 126, 140 5 h(1.61%) 57 493.29 14, 61, 111, 126, 140 4925.10 60 734.65 14, 61, 113, 126, 140 3566.94

Average >5467.11 >5355.41 3584.33 2428.08

5.3. Results for the risk-averse 𝑝-hub maximal covering problem

Table 7 presents the results for solving the RA𝑝HMCP with the CAB data set. The objective function values show the percentage
f the covered traffic. The instances are solved both using the BD algorithm and CPLEX as MILP model. The solution times for the
D are less than a second for all the instances. Also the mean solution times for CPLEX decrease as the discount factor value (𝛼)
ets larger or as the risk parameter value (𝛽) increases. In other words, more risk-averse instances are more difficult to be solved.
ote that as the value of the risk parameter (𝛽) gets smaller, the optimal objective function value also decreases. As the 𝑝-hub
aximal covering problem is a maximization problem, the worst scenarios have smaller objective function values and this justifies

he positive correlation between the values of the parameter 𝛽 and the objective function. It can also be seen that for a given number
f opened hubs (𝑝), the optimal objective value decreases as the value of the discount factor (𝛼) increases because larger values of
16
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Fig. 2. Changes in the objective value with respect to 𝛽 for the RA𝑝HMP with the TR and AP data sets.

Table 7
Results for the RA𝑝HMCP with the CAB data set.
𝑝 𝛽 𝛼 = 0.2 𝛼 = 0.4 𝛼 = 0.6 𝛼 = 0.8

Opt. CPU (s) Opt. CPU (s) Opt. CPU (s) Opt. CPU (s)

OF (%) Hubs MILP BD OF (%) Hubs MILP BD OF (%) Hubs MILP BD OF (%) Hubs MILP BD

2 1 56.39 6, 24 73.29 0.09 54.88 6, 24 16.54 0.05 51.08 6, 13 18.13 0.06 50.62 6, 13 3.84 0.03
0.5 52.87 6, 12 99.40 0.08 51.01 6, 24 28.66 0.07 47.48 6, 13 23.11 0.06 47.03 6, 13 7.83 0.04
0.3 51.60 6, 12 144.60 0.08 49.28 6, 24 34.60 0.05 45.85 6, 13 21.32 0.06 45.40 6, 13 5.75 0.04
0.1 49.26 6, 12 131.87 0.08 47.37 6, 24 48.63 0.07 43.68 6, 13 34.54 0.20 43.26 6, 13 6.83 0.05
0.05 47.73 6, 24 126 0.10 46.20 6, 24 72.78 0.06 42.90 6, 13 27.81 0.08 42.52 6, 13 8.07 0.05
0.01 46.94 6, 12 164.13 0.10 44.32 6, 14 77.69 0.09 42.28 6, 13 39.77 0.07 41.91 6, 13 11.33 0.06

3 1 73.20 12, 18, 21 41.25 0.14 65.31 13, 24, 25 34.70 0.11 61.48 21, 24, 25 14.91 0.10 56.92 2, 14, 21 9.27 0.06
0.5 70.46 12, 18, 21 81.79 0.13 61.44 13, 24, 25 57.57 0.15 57.79 21, 24, 25 20.68 0.08 53.31 2, 14, 21 14.41 0.08
0.3 69.18 12, 18, 21 91.00 0.13 59.63 13, 24, 25 57.55 0.15 56.01 21, 24, 25 20.72 0.11 51.57 2, 14, 21 12.78 0.11
0.1 66.70 12, 18, 21 126.39 0.28 57.41 13, 24, 25 75.11 0.33 54.03 21, 24, 25 27.76 0.10 50.21 6, 12, 13 10.91 0.10
0.05 65.59 12, 18, 21 125.69 0.16 55.98 13, 24, 25 79.45 0.18 52.69 21, 24, 25 32.56 0.12 49.53 6, 12, 13 7.99 0.09
0.01 64.87 12, 18, 21 99.29 0.33 54.49 18, 21, 24 92.70 0.32 51.32 21, 24, 25 42.65 0.14 48.53 6, 12, 13 17.43 0.10

4 1 87.64 12, 18, 21, 24 41.61 0.11 74.16 12, 17, 21, 24 27.29 0.25 66.68 12, 21, 24, 25 16.31 0.22 61.72 2, 12, 14, 21 9.70 0.15
0.5 85.89 12, 18, 21, 24 62.85 0.13 71.63 12, 17, 21, 24 44.39 0.17 64.07 12, 21, 24, 25 27.64 0.24 59.14 2, 12, 14, 21 13.75 0.13
0.3 85.02 12, 18, 21, 24 75.81 0.13 70.41 12, 17, 21, 24 75.68 0.17 62.91 12, 21, 24, 25 37.57 0.18 58.00 2, 12, 14, 21 11.54 0.11
0.1 83.31 12, 18, 21, 24 89.76 0.12 68.42 12, 17, 21, 24 66.32 0.20 61.49 12, 21, 24, 25 24.20 0.19 56.56 2, 12, 14, 21 13.93 0.13
0.05 82.59 12, 18, 21, 24 106.92 0.12 67.31 12, 21, 24, 25 48.00 0.23 60.62 12, 21, 24, 25 27.60 0.20 55.87 2, 12, 14, 21 15.59 0.13
0.01 80.94 12, 18, 21, 24 91.44 0.12 66.32 6, 11, 12, 24 80.29 0.21 59.49 12, 21, 24, 25 37.73 0.19 54.38 12, 13, 14, 25 20.46 0.19

5 1 91.82 4, 7, 12, 18, 24 69.03 0.31 81.92 4, 7, 12, 17, 24 16.46 0.19 72.57 5, 7, 12, 18, 24 11.58 0.19 66.39 4, 7, 12, 14, 25 3.99 0.16
0.5 90.54 4, 7, 12, 18, 24 82.07 0.28 79.90 4, 7, 12, 17, 24 25.28 0.17 70.17 5, 7, 12, 18, 24 25.59 0.23 64.12 2, 4, 7, 12, 14 6.10 0.17
0.3 89.79 4, 7, 12, 18, 24 111.96 0.39 79.10 4, 7, 12, 17, 24 29.14 0.30 69.19 5, 7, 12, 18, 24 30.78 0.22 63.21 2, 4, 7, 12, 14 9.57 0.13
0.1 88.48 4, 7, 12, 18, 24 152.76 0.33 77.36 4, 7, 12, 17, 24 33.45 0.22 67.68 5, 7, 12, 18, 24 31.67 0.34 61.77 2, 4, 7, 12, 14 8.55 0.16
0.05 87.65 4, 7, 12, 18, 24 173.99 0.37 76.02 4, 7, 12, 17, 24 33.17 0.31 66.73 5, 7, 12, 18, 24 22.17 0.27 61.00 2, 4, 7, 12, 14 13.35 0.18
0.01 86.79 12, 18, 21, 22, 24 125.39 0.48 75.21 4, 7, 12, 17, 24 32.59 0.43 65.66 5, 7, 12, 18, 24 22.98 0.25 59.44 5, 7, 12, 14, 25 19.99 0.25

Average 103.68 0.19 49.50 0.19 26.66 0.16 10.96 0.11

𝛼 increase the transportation cost for the O/D pairs which in turn decrease the total flow captured within a certain covering radius.
On the other hand, for a fixed value of 𝛼, the objective value increases as 𝑝 gets larger. This is because of the fact that by installing
larger number of hubs, it is more likely to find a path for each O/D pair that does not exceed the covering threshold 𝑅.

The optimal locations of hubs vary significantly by changing the degree of risk-aversion. As an example, in the instances with 𝑝
= 4 and 𝛼 = 0.4, the optimal hub set for four values of the risk parameter as 𝛽 = 1, 0.5, 0.3, and 0.1 is {12, 17, 21, 24}. For the
instances with 𝛽 = 0.05 and 𝛽 = 0.01, the optimal sets of hubs are {12, 21, 24, 25} and {6, 11, 12, 24}, respectively.

Results for the RA𝑝HMCP with the TR data set are shown in Table 8. The average solution times for solving the maximal covering
version of the problem is larger than the median version. However, it can be observed that the CPU time for solving the RA𝑝HMCP
is less than 4 min on average. Since the TR data set is a large data set with 6480 O/D commodities, obtaining the optimal solution
within such a short computational time demonstrates efficiency of the proposed BD algorithm. The changes in the objective function
value with respect to variations is the number of hubs (𝑝), the discount factor (𝛼), and the risk parameter (𝛽) are similar to those
of the CAB data set.

Variations in the optimal location of hubs are noticeable for the instances of the TR data set. For example, in case of 𝑝 = 2 and
𝛼 = 0.2, the optimal hub set for the instances with 𝛽 = 1 is {26, 46}, while for 𝛽 = 0.5 through 0.05, the optimal hubs are {43, 46}.
Finally, for 𝛽 = 0.01, the optimal hub set is again {26, 46}. This interesting observation holds true for some of the problem settings
where the network configurations for risk-neutral (𝛽 = 1) and highly risk-averse (small values of 𝛽) cases are the same, while the
configurations for moderately risk-averse network (intermediate values of 𝛽) are different.

Results obtained by solving the RA𝑝HMCP with the AP data set are presented in Table 9. The results reveal that by increasing
the number of opened hubs 𝑝 the solution time increases. As a result, the instances with 𝑝 = 5 could not be solved to optimality
within the allowed solution time of five hours for which the optimality gap percentages are reported.

Fig. 3 shows the curves of the objective function value of the RA𝑝HMCP with respect to different values of 𝛽 and 𝑝 for the three
data sets. The curves illustrate the way in which the value of the coverage percentage diminishes as 𝛽 decreases. Observe that the
17
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Table 8
Results for the RA𝑝HMCP with the TR data set.
𝑝 𝛽 𝛼 = 0.2 𝛼 = 0.4 𝛼 = 0.6 𝛼 = 0.8

Opt. CPU (s) Opt. CPU (s) Opt. CPU (s) Opt. CPU (s)

OF (%) Hubs BD OF (%) Hubs BD OF (%) Hubs BD OF (%) Hubs BD

2 1 58.31 26, 46 20.69 51.39 38, 54 17.64 46.76 50, 54 11.29 44.41 38, 43 6.22
0.5 56.81 43, 46 18.85 49.31 38, 54 17.49 44.66 50, 54 11.59 42.75 38, 43 7.09
0.3 56.07 43, 46 18.34 48.16 38, 54 16.11 43.58 50, 54 11.81 41.98 38, 43 7.38
0.1 54.99 43, 46 19.61 46.14 38, 54 17.79 41.75 38, 43 13.70 41.09 38, 43 5.90
0.05 54.26 43, 46 16.14 45.24 38, 54 18.04 41.28 38, 43 13.43 40.58 38, 43 5.73
0.01 52.94 26, 46 17.99 44.80 38, 54 18.09 40.37 50, 54 13.71 38.96 38, 54 7.50

3 1 74.72 43, 46, 60 93.17 62.66 19, 43, 80 103.55 55.39 6, 41, 80 64.49 51.12 6, 43, 44 40.13
0.5 73.53 43, 46, 60 86.44 61.16 19, 43, 80 99.69 53.47 41, 44, 68 69.52 49.59 6, 43, 44 42.40
0.3 73.03 43, 46, 60 76.99 60.53 19, 43, 80 105.81 52.62 41, 44, 68 77.32 48.97 43, 44, 71 39.81
0.1 72.29 43, 46, 60 66.39 59.40 19, 43, 80 96.78 50.92 44, 54, 68 86.03 48.07 43, 44, 71 35.37
0.05 72.00 43, 46, 60 67.18 58.84 19, 43, 80 87.48 50.16 44, 54, 68 92.06 47.53 6, 43, 44 33.87
0.01 71.84 43, 46, 60 64.76 57.71 19, 43, 80 100.47 49.38 41, 44, 68 92.09 46.24 6, 43, 44 40.70

4 1 88.34 12, 38, 54, 64 177.55 74.45 41, 46, 60, 64 190.56 64.34 1, 3, 41, 60 94.08 57.94 1, 3, 54, 58 33.01
0.5 87.40 12, 38, 54, 64 169.76 73.29 41, 46, 60, 64 210.88 62.72 1, 3, 41, 60 100.39 56.51 1, 3, 54, 58 44.13
0.3 86.83 12, 38, 54, 64 129.39 72.69 41, 46, 60, 64 189.59 61.92 1, 3, 41, 60 102.65 55.79 1, 3, 54, 58 46.09
0.1 85.88 12, 38, 54, 64 205.18 71.36 41, 46, 60, 64 224.08 60.61 1, 3, 41, 60 116.35 54.59 1, 3, 54, 58 51.49
0.05 85.46 12, 38, 54, 64 167.74 70.77 41, 46, 60, 64 210.39 59.96 1, 3, 41, 60 128.52 53.92 1, 3, 54, 58 65.64
0.01 84.89 12, 38, 54, 64 202.97 70.04 41, 46, 60, 64 225.26 58.79 1, 3, 41, 60 130.54 52.52 3, 21, 38, 54 65.26

5 1 95.66 38, 41, 64, 69, 72 397.43 83.91 21, 41, 60, 64, 80 321.21 69.90 1, 3, 21, 41, 60 249.58 61.95 1, 3, 21, 41, 60 59.64
0.5 95.20 12, 41, 60, 64, 80 452.20 83.00 21, 41, 60, 64, 80 353.83 68.76 1, 3, 21, 41, 60 271.51 60.82 1, 3, 21, 41, 60 65.96
0.3 95.02 12, 41, 60, 64, 80 482.56 82.54 21, 41, 60, 64, 80 367.60 68.17 1, 3, 21, 41, 60 277.97 60.23 1, 3, 21, 41, 60 70.55
0.1 94.66 12, 54, 60, 64, 80 601.08 81.79 21, 41, 60, 64, 80 382.50 67.18 1, 3, 21, 41, 60 426.80 59.28 1, 3, 21, 41, 60 87.73
0.05 94.46 3, 12, 41, 46, 55 478.51 81.45 21, 41, 60, 64, 80 436.11 66.59 1, 3, 21, 41, 60 301.39 58.64 1, 3, 21, 41, 60 84.96
0.01 94.22 3, 12, 41, 46, 55 500.24 80.80 21, 41, 60, 64, 80 367.67 65.16 1, 3, 21, 41, 60 393.50 57.01 1, 3, 12, 41, 60 91.23

Average 188.80 174.11 131.26 43.24

Table 9
Results for the RA𝑝HMCP with the AP data set.
𝑝 𝛽 𝛼 = 0.2 𝛼 = 0.4 𝛼 = 0.6 𝛼 = 0.8

Opt. CPU (s) Opt. CPU (s) Opt. CPU (s) Opt. CPU (s)

OF (%) Hubs BD OF (%) Hubs BD OF (%) Hubs BD OF (%) Hubs BD

2 1 59.41 57, 139 346.86 55.74 56, 137 303.09 53.31 56, 138 222.44 52.13 56, 138 102.08
0.5 58.82 57, 139 302.06 55.08 57, 137 272.40 52.72 56, 138 198.10 51.51 56, 138 91.91
0.3 58.56 57, 139 276.03 54.78 57, 137 244.43 52.39 56, 138 196.17 51.20 56, 138 88.23
0.1 58.16 56, 139 191.80 54.15 57, 137 183.63 51.79 56, 138 125.19 50.65 56, 138 71.87
0.05 57.92 56, 139 147.73 53.80 56, 137 140.87 51.40 56, 138 114.62 50.19 56, 138 62.28
0.01 57.50 56, 139 91.20 53.04 57, 137 94.87 50.00 56, 138 78.08 48.59 56, 138 53.22

3 1 71.49 53, 74, 137 1343.45 66.05 56, 112, 137 1169.54 60.98 57, 106, 130 1392.11 58.97 56, 128, 147 592.14
0.5 70.94 53, 74, 137 1312.18 65.46 57, 113, 137 1176.50 60.40 56, 106, 130 1291.56 58.41 56, 128, 147 503.61
0.3 70.72 53, 74, 137 1086.59 65.18 56, 112, 137 1025.00 60.11 56, 106, 130 1132.36 58.14 57, 128, 147 456.14
0.1 70.31 53, 74, 137 829.49 64.67 57, 112, 137 647.44 59.47 56, 106, 130 902.17 57.55 57, 128, 147 342.00
0.05 70.08 53, 74, 137 630.48 64.41 57, 113, 137 572.44 59.05 56, 106, 130 748.46 57.03 56, 128, 147 302.31
0.01 69.75 53, 74, 137 433.11 64.09 57, 113, 137 337.20 58.17 56, 128, 147 595.47 56.33 57, 126, 147 173.85

4 1 79.24 22, 89, 110, 141 8406.49 73.10 57, 110, 128, 144 5458.36 66.93 56, 90, 111, 140 5006.17 63.21 57, 107, 128, 149 2442.25
0.5 78.64 22, 89, 110, 141 11 322.62 72.51 57, 110, 128, 144 5532.94 66.30 56, 90, 111, 140 5132.57 62.61 57, 107, 128, 149 2327.49
0.3 78.39 22, 89, 110, 141 8488.20 72.18 57, 110, 128, 145 5104.56 65.95 56, 90, 111, 140 5264.97 62.33 56, 107, 128, 149 2250.40
0.1 77.95 22, 89, 110, 141 12 182.43 71.61 57, 110, 125, 145 6425.17 65.34 56, 90, 111, 140 4547.97 61.80 57, 107, 128, 149 1642.41
0.05 77.73 22, 89, 110, 141 8986.99 71.31 57, 89, 110, 144 5106.71 65.07 56, 90, 111, 141 4033.30 61.36 56, 107, 128, 149 1715.03
0.01 77.35 53, 74, 125, 184 13 347.39 71.06 57, 110, 125, 145 3719.78 64.60 56, 111, 128, 140 2834.80 60.79 56, 107, 126, 149 1079.03

5 1 84.18 19, 53, 74, 125, 144 5 h(4.11%) 77.14 14, 62, 88, 113, 139 5 h(4.65%) 70.49 14, 61, 113, 126, 140 5 h(4.15%) 65.47 57, 69, 125, 140, 155 5 h(3.30%)
0.5 83.69 19, 53, 74, 125, 144 5 h(5.00%) 76.59 14, 62, 88, 113, 139 5 h(4.77%) 69.83 14, 61, 113, 126, 140 5 h(3.99%) 64.87 57, 69, 125, 140, 155 5 h(3.02%)
0.3 83.48 19, 53, 74, 125, 144 5 h(5.36%) 76.35 14, 62, 88, 113, 139 5 h(4.67%) 69.56 14, 61, 113, 126, 140 5 h(3.64%) 64.59 57, 69, 125, 140, 155 5 h(3.25%)
0.1 83.10 19, 53, 74, 125, 144 5 h(4.89%) 75.87 14, 62, 88, 113, 139 5 h(4.68%) 69.11 21, 67, 90, 113, 141 5 h(3.55%) 64.09 14, 61, 89, 111, 140 5 h(2.94%)
0.05 82.86 19, 53, 74, 125, 144 5 h(5.65%) 75.35 14, 62, 113, 125, 139 5 h(4.54%) 68.92 14, 61, 113, 126, 140 5 h(3.39%) 63.80 14, 61, 89, 111, 140 5 h(2.61%)
0.01 82.52 19, 22, 86, 110, 141 5 h(4.95%) 75.17 14, 62, 90, 114, 184 5 h(4.23%) 68.62 14, 61, 90, 113, 140 5 h(3.00%) 63.37 14, 61, 89, 111, 140 5 h(2.15%)

Average >7405.21 >6063.12 >5909.02 >5095.68

decline in the total coverage percentage is sharper when the value of 𝛽 gets closer to zero. Moreover, as the value of 𝛽 increases,
the curves corresponding to the AP data set are growing with a smaller rate as compared to those of the CAB and TR data sets.

5.4. Results for the risk-averse weighted 𝑝-hub center problem

Results for the RAW𝑝HCP with the CAB data set are presented in Table 10. It is shown that the BD algorithm solves all the CAB
instances in small fraction of a second. However, the average time taken by CPLEX to solve the MILP model for the same instances
is around 230 s. Similar to results obtained by solving the other versions of the risk-averse HLP presented earlier, variations in the
optimal location of hubs are noticeable in different instances of the RAW𝑝HCP.

Table 11 shows the results obtained by solving the RAW𝑝HCP with the TR data set. The changes in the objective function value
with respect to different values of the input parameters (𝑝, 𝛼, and 𝛽) show a similar pattern with those of the CAB data set. Also,
changes in the optimal set of hub locations can be observed under different problem settings. Regarding the solution times, the
results show that the proposed BD algorithm solves the instances in very short computational times. The average time spent by the
BD algorithm is less than 3 for the TR data set seconds which indicates the high efficiency of the proposed solution algorithm for
18

the center version of the problem.
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Fig. 3. Changes in the objective value with respect to 𝛽 for the RA𝑝HMCP.

Table 10
Results for the RAW𝑝HCP with the CAB data set.
𝑝 𝛽 𝛼 = 0.2 𝛼 = 0.4 𝛼 = 0.6 𝛼 = 0.8

Opt. CPU (s) Opt. CPU (s) Opt. CPU (s) Opt. CPU (s)

OF Hubs MILP BD OF Hubs MILP BD OF Hubs MILP BD OF Hubs MILP BD

2 1 22.15 12, 17 188.37 0.30 22.71 12, 17 179.89 0.04 23.60 12, 17 79.81 0.02 26.35 12, 17 85.93 0.01
0.5 26.76 12, 17 124.84 0.11 27.10 12, 17 179.39 0.03 27.64 12, 17 83.84 0.02 30.94 12, 17 74.85 0.02
0.3 29.58 12, 17 176.959 0.07 29.59 12, 17 182.26 0.03 29.75 12, 17 85.97 0.02 33.44 12, 17 82.30 0.02
0.1 33.22 12, 17 146.49 0.06 33.22 12, 17 221.32 0.02 33.22 12, 17 107.39 0.01 36.49 12, 17 71.63 0.01
0.05 35.18 12, 17 164.52 0.02 35.18 12, 17 183.86 0.02 35.18 12, 17 110.30 0.01 37.10 12, 17 70.81 0.01
0.01 37.36 12, 17 137.40 0.04 37.36 12, 17 193.94 0.01 37.36 12, 17 141.00 0.01 37.36 12, 17 76.78 0.01

3 1 15.63 12, 17, 24 243.60 0.03 17.57 12, 14, 17 139.00 0.03 20.41 12, 14, 17 126.92 0.03 25.19 12, 14, 17 87.39 0.02
0.5 19.04 12, 17, 24 269.39 0.03 20.68 12, 14, 17 164.58 0.03 23.69 12, 14, 17 109.67 0.02 29.72 12, 14, 17 88.30 0.01
0.3 20.83 12, 14, 17 239.70 0.02 22.21 12, 14, 17 257.91 0.02 25.28 12, 14, 17 105.40 0.02 32.30 12, 14, 17 76.14 0.01
0.1 23.88 12, 14, 17 233.89 0.02 24.84 12, 14, 17 218.02 0.03 27.55 12, 14, 17 88.42 0.02 35.91 12, 14, 17 171.82 0.01
0.05 25.56 12, 14, 17 245.29 0.02 26.28 12, 14, 17 193.51 0.03 28.02 12, 14, 17 135.05 0.01 36.97 12, 14, 17 112.77 0.01
0.01 28.72 12, 14, 17 172.30 0.02 28.72 12, 14, 17 219.11 0.02 28.72 12, 14, 17 385.66 0.01 37.24 12, 17, 18 81.69 0.01

4 1 9.27 4, 12, 14, 17 233.26 0.03 13.23 4, 12, 14, 17 132.31 0.02 18.85 4, 12, 14, 17 90.90 0.01 24.75 12, 14, 17, 22 100.50 0.02
0.5 10.96 4, 12, 14, 17 242.54 0.03 15.53 4, 12, 14, 17 81.26 0.02 22.48 4, 12, 14, 17 86.58 0.01 29.28 12, 14, 17, 22 71.18 0.02
0.3 11.94 4, 12, 14, 17 291.19 0.03 16.70 4, 12, 14, 17 83.29 0.03 24.39 4, 12, 14, 17 79.08 0.02 31.99 12, 14, 17, 22 71.28 0.01
0.1 13.24 4, 12, 14, 17 198.01 0.03 18.51 4, 12, 14, 17 75.33 0.01 27.07 4, 12, 14, 17 431.50 0.01 35.84 12, 14, 17, 22 158.80 0.01
0.05 13.88 4, 12, 14, 17 209.35 0.02 18.78 4, 12, 14, 17 158.52 0.01 27.72 4, 12, 14, 17 182.63 0.01 36.97 12, 14, 17, 18 100.13 0.01
0.01 14.04 4, 12, 17, 24 223.88 0.02 19.50 4, 12, 14, 17 273.25 0.01 27.93 6, 12, 14, 17 250.12 0.01 37.24 12, 17, 18, 20 114.76 0.01

5 1 8.02 4, 7, 12, 14, 17 225.50 0.03 12.51 4, 12, 14, 17, 22 126.30 0.03 18.29 4, 12, 14, 17, 22 77.15 0.02 24.37 4, 12, 14, 17, 22 69.40 0.01
0.5 9.61 4, 12, 14, 16, 17 153.27 0.02 14.76 4, 12, 14, 17, 22 95.44 0.02 21.86 4, 12, 14, 17, 22 64.45 0.01 29.14 4, 12, 14, 17, 22 73.04 0.01
0.3 10.44 4, 7, 12, 14, 17 168.74 0.02 16.01 4, 12, 14, 17, 22 154.19 0.02 23.98 4, 12, 14, 17, 22 68.11 0.03 31.97 4, 12, 14, 17, 22 69.92 0.01
0.1 12.03 4, 7, 12, 14, 17 298.79 0.02 17.92 4, 12, 14, 17, 22 92.88 0.02 26.88 9, 12, 14, 17, 22 98.14 0.02 35.84 8, 12, 14, 17, 22 124.76 0.01
0.05 12.68 4, 7, 12, 14, 17 341.57 0.02 18.48 4, 12, 14, 17, 22 80.43 0.01 27.72 4, 9, 12, 14, 17 177.74 0.01 36.97 12, 14, 17, 18, 24 128.16 0.01
0.01 14.03 9, 12, 17, 22, 24 434.96 0.02 18.62 4, 12, 14, 17, 22 88.16 0.02 27.93 4, 12, 14, 17, 24 169.56 0.01 37.24 4, 12, 17, 18, 20 67.63 0.01

Average 223.49 0.04 157.26 0.02 138.97 0.02 92.91 0.01

Results obtained by solving the RAW𝑝HCP with the AP data set are presented in Table 12. Note that all the large-scale instances
of the AP data set are solved within very small computational times. The average CPU time is less than 20 s which shows the BD
algorithm for solving the center problem is highly efficient.

The curves of objective function value for the RAW𝑝HCP with respect to different values of 𝛽 and 𝑝 for the three data sets are
shown in Fig. 4. The objective function value grows substantially as the value of the risk parameter decreases. Note that the growth
19

in the objective value as 𝛽 decreases is steeper for the AP data set as compared with those of the CAB and TR data sets.
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Table 11
Results for the RAW𝑝HCP with the TR data set.
𝑝 𝛽 𝛼 = 0.2 𝛼 = 0.4 𝛼 = 0.6 𝛼 = 0.8

Opt. CPU (s) Opt. CPU (s) Opt. CPU (s) Opt. CPU (s)

OF Hubs BD OF Hubs BD OF Hubs BD OF Hubs BD

2 1 4.98 3, 34 2.09 5.41 34, 71 1.60 5.62 6, 34 1.34 5.88 6, 34 1.37
0.5 6.00 3, 34 1.38 6.60 34, 71 1.58 6.82 6, 34 1.51 7.09 6, 34 1.40
0.3 6.43 3, 34 1.27 7.25 34, 71 1.95 7.43 6, 34 1.64 7.67 6, 34 1.67
0.1 6.92 3, 34 1.62 7.89 34, 41 1.98 8.13 34, 41 1.83 8.32 35, 41 1.43
0.05 7.27 3, 34 1.38 8.07 3, 34 1.57 8.28 34, 41 1.44 8.49 34, 41 1.20
0.01 7.46 3, 34 1.19 8.19 34, 41 1.13 8.38 34, 41 1.44 8.61 34, 35 0.84

3 1 3.84 34, 40, 45 1.46 4.50 34, 45, 71 1.51 5.01 6, 34, 35 1.58 5.56 6, 34, 35 1.77
0.5 4.64 34, 40, 45 1.42 5.38 34, 45, 71 1.41 6.02 6, 34, 35 1.66 6.67 6, 34, 35 1.74
0.3 5.01 34, 35, 40 1.04 5.76 34, 35, 71 1.11 6.48 6, 34, 35 1.05 7.12 6, 34, 35 1.28
0.1 5.49 34, 35, 40 1.15 6.23 34, 35, 71 1.03 7.04 6, 34, 35 1.18 7.61 6, 34, 35 1.70
0.05 5.61 34, 35, 40 1.14 6.49 34, 35, 71 0.86 7.25 34, 45, 71 0.99 7.89 6, 34, 45 1.35
0.01 5.77 34, 35, 40 1.05 6.63 34, 45, 71 0.83 7.30 34, 45, 71 0.82 8.03 6, 34, 35 1.27

4 1 2.89 6, 34, 45, 46 2.56 3.67 6, 34, 45, 80 1.98 4.45 6, 34, 35, 63 1.77 5.31 6, 34, 35, 63 1.25
0.5 3.45 6, 34, 45, 46 2.11 4.38 6, 34, 45, 80 1.99 5.28 6, 34, 35, 63 1.43 6.35 6, 34, 35, 63 2.12
0.3 3.66 6, 34, 45, 46 1.99 4.65 6, 34, 45, 80 2.11 5.59 2, 6, 34, 35 1.77 6.72 6, 34, 35, 63 1.40
0.1 3.99 6, 27, 34, 45 1.77 5.05 6, 34, 45, 46 1.60 5.98 2, 6, 34, 35 1.81 7.18 2, 6, 34, 35 1.57
0.05 4.12 6, 27, 34, 45 1.58 5.14 6, 34, 45, 46 1.81 6.21 2, 6, 34, 35 1.30 7.33 2, 6, 34, 35 1.21
0.01 4.21 6, 34, 45, 46 1.20 5.32 6, 34, 35, 46 1.01 6.49 6, 21, 34, 35 1.16 7.40 2, 6, 34, 35 1.54

5 1 2.62 6, 12, 34, 45, 80 4.47 3.37 1, 6, 34, 45, 63 3.34 4.17 1, 6, 34, 35, 63 2.74 5.22 1, 6, 21, 34, 35 2.34
0.5 3.15 6, 12, 34, 45, 80 6.25 4.04 1, 6, 34, 45, 63 2.96 4.97 1, 6, 34, 35, 63 2.04 6.25 6, 21, 34, 35, 63 2.16
0.3 3.40 6, 34, 45, 62, 80 4.39 4.29 6, 21, 34, 45, 80 3.38 5.27 1, 6, 34, 35, 63 1.83 6.62 6, 21, 34, 35, 63 2.52
0.1 3.77 34, 44, 45, 68, 71 3.95 4.65 6, 23, 34, 45, 80 2.08 5.65 1, 6, 21, 34, 35 1.57 6.97 1, 6, 21, 34, 35 2.30
0.05 3.94 27, 34, 42, 45, 71 3.91 4.81 6, 34, 44, 45, 68 2.15 5.74 1, 6, 21, 34, 35 1.36 7.06 1, 6, 21, 34, 35 1.08
0.01 4.08 27, 34, 35, 42, 71 2.65 5.04 1, 6, 21, 34, 45 1.46 5.87 1, 6, 21, 34, 35 1.14 7.28 6, 21, 27, 34, 35 1.42

Average 2.21 1.77 1.52 1.58

Table 12
Results for the RAW𝑝HCP with the AP data set.
𝑝 𝛽 𝛼 = 0.2 𝛼 = 0.4 𝛼 = 0.6 𝛼 = 0.8

Opt. CPU (s) Opt. CPU (s) Opt. CPU (s) Opt. CPU (s)

OF Hubs BD OF Hubs BD OF Hubs BD OF Hubs BD

2 1 201.27 22, 140 4.76 224.75 22, 140 5.69 249.29 22, 140 3.91 279.72 22, 140 4.79
0.5 226.79 25, 141 4.36 252.78 25, 140 5.49 282.21 22, 140 3.27 324.48 22, 140 4.58
0.3 240.96 25, 141 4.13 265.36 25, 140 4.87 298.24 22, 140 3.51 344.48 22, 140 3.03
0.1 261.18 21, 140 4.38 291.65 22, 140 5.07 329.35 21, 140 3.05 376.77 20, 140 2.17
0.05 267.46 21, 140 4.44 306.85 14, 140 5.11 345.77 14, 140 3.26 395.76 20, 140 2.23
0.01 274.51 21, 140 2.26 328.49 13, 140 3.61 373.29 12, 140 2.27 426.57 20, 140 0.88

3 1 169.71 13, 79, 140 8.73 203.02 21, 114, 140 16.02 230.56 20, 60, 140 6.52 267.30 20, 57, 140 4.31
0.5 188.04 14, 79, 140 8.69 229.57 20, 60, 140 13.91 259.50 20, 60, 140 4.21 306.41 20, 58, 140 4.06
0.3 197.97 14, 79, 140 10.49 241.89 20, 60, 140 12.73 270.85 20, 60, 140 4.47 325.56 20, 60, 140 4.07
0.1 215.62 13, 77, 140 7.67 261.15 10, 62, 140 8.15 295.57 20, 60, 140 3.63 357.68 20, 57, 140 2.95
0.05 227.29 14, 77, 140 7.14 266.89 10, 62, 140 5.81 313.16 20, 60, 140 4.16 380.35 20, 57, 140 4.16
0.01 235.09 13, 79, 140 3.93 274.51 10, 58, 140 3.80 339.25 14, 20, 140 3.41 426.57 20, 140, 141 1.04

4 1 155.11 12, 26, 120, 140 29.83 185.87 20, 22, 112, 140 26.71 221.83 20, 28, 53, 140 15.01 259.83 14, 20, 25, 140 4.48
0.5 170.77 12, 62, 79, 140 23.78 206.99 20, 22, 112, 140 13.58 250.58 15, 20, 26, 140 12.56 297.69 14, 20, 25, 140 3.81
0.3 179.41 12, 62, 79, 140 21.95 217.51 20, 22, 112, 140 12.47 262.08 20, 22, 26, 140 7.70 315.38 14, 20, 25, 140 3.04
0.1 195.01 12, 62, 79, 140 16.01 235.32 20, 22, 112, 140 7.85 283.68 15, 20, 26, 140 6.42 350.63 14, 20, 25, 140 4.92
0.05 206.04 10, 58, 79, 140 15.08 251.13 10, 60, 79, 140 10.64 296.75 4, 20, 60, 140 4.77 366.93 4, 20, 58, 140 3.24
0.01 217.06 10, 26, 79, 140 6.96 268.70 10, 62, 140, 199 5.07 319.93 4, 20, 60, 140 3.77 426.57 20, 139, 140, 141 1.30

5 1 141.11 15, 20, 29, 115, 140 100.18 171.19 20, 22, 28, 117, 140 24.08 213.36 20, 26, 53, 117, 140 22.43 255.74 14, 20, 25, 31, 140 6.92
0.5 155.26 15, 20, 29, 115, 140 55.74 191.39 20, 22, 28, 117, 140 19.17 242.57 20, 26, 53, 115, 140 21.46 294.78 14, 20, 25, 31, 140 5.40
0.3 162.66 15, 20, 29, 115, 140 52.72 201.60 20, 22, 28, 116, 140 15.72 255.05 20, 22, 25, 111, 140 16.77 312.81 14, 20, 25, 31, 140 5.61
0.1 176.82 10, 11, 29, 116, 140 38.54 217.54 20, 22, 28, 116, 140 9.03 274.75 4, 20, 22, 26, 140 10.54 345.41 4, 14, 20, 25, 140 3.58
0.05 185.86 10, 11, 29, 115, 140 33.26 232.62 15, 20, 28, 140, 159 13.27 283.85 4, 20, 22, 26, 140 5.40 365.76 4, 14, 20, 25, 140 2.29
0.01 204.23 10, 31, 53, 140, 159 12.07 244.45 4, 20, 60, 79, 140 5.47 319.93 4, 20, 25, 62, 140 2.44 426.57 12, 13, 20, 140, 141 1.36

Average 19.88 10.56 7.29 3.51

5.5. Comparison with robust optimization models

Robust optimization (RO) is a conservative approach for dealing with uncertainty in optimization problems. In some RO
rameworks such as the one developed by Bertsimas and Sim (2003), the level of conservatism can be adjusted by the decision
aker. From this perspective, we can compare the RO approach with the conditional 𝛽-mean approach that uses a similar concept

to control the level of risk-averseness. Therefore, in this section we compare the results obtained by our proposed conditional 𝛽-mean
odel with those of a robust optimization model developed by Ghaffarinasab (2021). Since the proposed RO model is based on the
ncapacitated 𝑝-hub median problem, we compare it with our risk-averse 𝑝-hub median problem (RA𝑝HMP). The RO model proposed
y Ghaffarinasab (2021) assumes that for every (𝑖, 𝑗) ∈ 𝐴, the corresponding O/D traffic volume, denoted by �̃�𝑖𝑗 , is uncertain and it
s realized within the interval [𝑤 − �̄� , 𝑤 + �̄� ] where 𝑤 and �̄� denote the center (the nominal value) and the radius of that
20
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Fig. 4. Changes in the objective value with respect to 𝛽 for the RAW𝑝HCP.

interval, respectively. The integer parameter 𝛤 , known as the budget of uncertainty, represents the maximum number of O/D flow
parameters that can deviate from their nominal values at the same time. Therefore, 𝛤 can take its values from the set {0,… , |𝐴|}
and it is used for adjusting the degree of decision maker’s conservatism in the RO model. If 𝛤 = 0 the problem reduces to the
risk-neutral deterministic problem. In contrast, when 𝛤 = |𝐴| we deal with “extreme risk-averseness” where all the flow parameters
are assumed to take their most undesirable (worst-case) values from the corresponding intervals of uncertainty. An intermediate
value such as 𝛤 = 0.5 × |𝐴| correspond to “mild risk-averseness” in which only half of the flow parameters take their worst values.
In the conditional 𝛽-mean model, the mild and extreme risk-averseness can be achieved by setting the risk parameter as 𝛽 = 0.5
and 0.01, respectively.

Table 13 shows the results obtained by solving the RO and conditional 𝛽-mean models with the CAB data set. In order to have a
fair comparison between the models, we judiciously select the value of the uncertainty interval radius (�̄�𝑖𝑗) for the robust model in
such a way that the objective function values of the two models be close to each other. Based on preliminary experiments, the radius
of the uncertainty interval is set as �̄�𝑖𝑗 = 0.1 ×𝑤𝑖𝑗 . The problems are solved under mild and extreme risk-averseness conditions and
the objective function values as well as the optimal sets of opened hubs are presented.

As can be observed from Table 13, the optimal objective values for the two models are very close to each other as a result
of the selected value for the uncertainty interval radius. However, from a network configuration perspective, the picture is quite
different, as in several cases the optimal hub sets obtained by the two models are not the same. In seven out of 16 instances under
the mild risk-averseness case, the optimal set of hubs for the robust model is different from that of the 𝛽-mean model. For the
extreme risk-averseness, on the other hand, in eleven out of 16 instances the optimal hub sets for the two models are different.
These findings show that although the two modeling approaches are similar in terms of adjustable conservatism (risk-averseness),
the network configuration rendered by the two approaches might be very dissimilar.

5.6. Managerial insights

The numerical experiments yield several managerial insights, which can be used as guidelines in the design of hub networks for
the many-to-many transportation and distribution systems in the presence of risk:

• Studying risk is critical to the hub network design problem in all of the three variants studied in this research in the sense
that it leads to solutions with a completely different network configuration (i.e., the location of hubs) than the case where the
21
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Table 13
Results for the RO and conditional 𝛽-mean models for the 𝑝-hub median problem with the CAB data set.
𝑝 𝛼 Mild risk-averseness Extreme risk-averseness

Robust model (𝛤 = 0.5 × |𝐴|) 𝛽-mean model (𝛽 = 0.5) Robust model (𝛤 = |𝐴|) 𝛽-mean model (𝛽 = 0.01)

OF Hubs OF Hubs OF Hubs OF Hubs

2 0.2 1081.25 12, 20 1030.10 12, 20 1095.62 12, 20 1082.59 12, 20
0.4 1164.26 12, 20 1107.48 12, 20 1179.74 12, 20 1164.51 12, 20
0.6 1234.80 12, 20 1173.14 12, 20 1250.79 12, 20 1231.05 12, 20
0.8 1281.92 12, 20 1216.81 12, 20 1298.02 12, 20 1271.81 12, 20

3 0.2 815.50 4, 12, 17 790.10 12, 18, 21 828.20 12, 17, 21 841.80 18, 21, 22
0.4 931.17 4, 12, 17 897.31 12, 18, 21 945.60 4, 12, 17 953.25 12, 18, 21
0.6 1028.92 4, 12, 17 987.50 12, 18, 21 1044.15 4, 12, 17 1039.91 2, 12, 21
0.8 1106.57 4, 12, 17 1057.68 12, 18, 21 1122.04 4, 12, 17 1107.69 2, 12, 21

4 0.2 669.11 4, 12, 17, 24 653.18 4, 12, 17, 24 680.33 4, 12, 17, 24 716.17 4, 12, 16, 17
0.4 816.98 4, 12, 17, 24 790.47 4, 12, 17, 24 829.94 4, 12, 17, 24 846.75 1, 4, 12, 18
0.6 939.70 1, 4, 12, 17 904.89 4, 7, 12, 18 953.09 1, 4, 12, 17 954.54 1, 4, 12, 17
0.8 1033.16 1, 4, 12, 17 991.53 1, 4, 12, 17 1046.93 1, 4, 12, 17 1042.20 1, 4, 12, 18

5 0.2 573.20 4, 7, 12, 14, 17 555.38 4, 7, 12, 14, 17 583.00 4, 7, 12, 14, 17 610.98 4, 7, 12, 17, 24
0.4 732.08 4, 7, 12, 14, 17 704.10 4, 7, 12, 14, 17 743.97 4, 7, 12, 14, 17 762.43 4, 7, 12, 18, 24
0.6 871.94 4, 7, 12, 14, 17 836.03 4, 7, 12, 14, 18 885.18 4, 7, 12, 14, 17 893.92 2, 4, 7, 12, 24
0.8 987.82 4, 7, 12, 14, 17 945.03 4, 7, 12, 17, 24 1001.39 4, 7, 12, 17, 24 1003.30 1, 4, 12, 17, 22

decision maker is risk-neutral. The changes in the location of hubs compared to the risk-neutral case is more significant when
the level of risk-averseness increases (i.e., the value of 𝛽 decreases).

• The efficiency of the hub network substantially diminishes by increasing the level of risk-averseness. In particular, by
decreasing the value of 𝛽, the total cost is increases in the 𝑝-hub median problem, the percentage covered demand decreases
in the 𝑝-hub maximal covering problem, and the weighted maximum cost increases in the weighted 𝑝-hub center problem. For
this reason, one needs to make a careful trade-off between the network’s efficiency and the riskiness.

• The effect of discount factor value on the configuration of hub networks cannot be neglected, and most obviously, the optimal
locations of hubs are sensitive to the discount factor value.

. Conclusions

This paper proposes three variants of the risk-averse multiple allocation hub location problems under demand uncertainty using
-mean risk measure. The uncertainty was captured using a set of finite scenarios and the average performance over the 100×𝛽% of

the worst scenarios was used as the objective function in the three problems, namely the 𝑝-hub median, the 𝑝-hub maximal covering,
and the weighted 𝑝-hub center problems. MILP formulations were developed and efficient Benders decomposition procedures were
proposed for solving them. A large set of computational experiments were designed and performed to demonstrate the efficiency of
the solution procedures and to study the effect of various input parameters on the optimal solutions using three well-known data
sets from the HLP literature with up to 200 nodes and 100 scenarios. Results indicate that the optimal set of hub locations varies
significantly as the value of the risk parameter alters. In other words, depending on the decision maker’s level of conservatism,
different network configurations are obtained by the proposed models. Results also demonstrate that large-scale instances of the
problems can be solved by the developed BD algorithms in quite short computational times.

An interesting direction for further research is to study the same problems under the single allocation setting. Moreover, one can
relax some of the classical HLP assumptions such as complete network between the installed hubs or flow-independent discount on
transportation costs on the inter-hub network so that the problems better reflect the real-world situations.
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