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Ladder approximation in coupled quantum-well systems
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We study the contact values of the interlayer pair-correlation function in electron-electron and electron-hole
double-layer systems. For this purpose the ladder approximation as generalized to multicomponent systems is
used. The ladder approximation yields positive values for the interlayergee(0) andgeh(0) for all values of the
density parameterr s and layer spacingd. This allows us to infer possible instabilities in the system more
reliably compared to other approaches. We also investigate the effects of quantum-well width and screening on
the interlayer pair-correlation functions.
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I. INTRODUCTION

Double-layer electron-electron and electron-hole syste
are under extensive theoretical and experimental study in
cent years.1 Advances in growth techniques in semicondu
tors have led to the detailed investigations of multilay
structures. It is generally believed that in these systems
effects of interparticle interactions are enhanced becaus
reduced dimensionality and an extra degree of freedom
vided by the layer index. Study of manybody effects2 in low-
dimensional electronic systems, thus, became amenab
experimental observations.

In this work we apply the ladder theory to double-lay
electron-electron and electron-hole systems. Our broad
is to see how the effective interactions treated within
ladder approximation compare with other theoretical
proaches, such as the self-consistent field approach. In
ticular, we are motivated by the recent work of Li
Świerkowski, and Neilson3 who studied the exciton forma
tion in spatially separated electron-hole liquids based on
Singwi, Tosi, Land, and Sjo¨lander~STLS! formalism.4 It has
been known that the self-consistent field method of ST
applied to multicomponent systems yields pair-correlat
functions that are at quantitative and qualitative varian
with other theoretical approaches.5,6 Therefore, our aim is to
study the interlayer pair-correlation functions at cont
gee(0) and geh(0) for electron-electron and electron-ho
double-layer systems.

The ladder approximation was introduced for the purp
of studying the pair-correlation function in electron g
systems.7 There has been many detailed studies in a var
of contexts and dimensionalities making use of the partic
particle ladder vertex function in the past.8–13 Freeman14

studied the correlation energy and antiparallel spin p
correlation function of the two-dimensional electron g
within the particle-particle approximation of the couple
cluster equations making contact to the ladder approxi
tion. Recently, an extension of the ladder theory to mu
component systems were given in a series of papers
Vericat and Melgarejo,15 Pugnaloni, Melgarejo, and
Vericat16 and Melgarejoet al.17 in connection with photoex-
cited electron-hole systems in quantum wells and quan
wires. We employ the multicomponent generalization of
ladder theory in application to double-layer electron-elect
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and electron-hole systems and particularly calculate the c
tact values of the pair-correlation function for these syste
The divergence in the interlayergeh(0) may be used to un
derstand the excitonic instability building in a spatially sep
rated electron-hole system.

The rest of this paper is organized as follows. In Sec
we introduce the formalism of ladder approximation f
double-layer systems. In Sec. III we present our results
electron-electron and electron-hole double-layers consi
ing also the effects of screening. Our results are discusse
relation to other theoretical approaches in the same sec
Finally, we conclude with a brief summary in Sec. IV.

II. MODEL AND THEORY

We choose a simple model of double-layer system in
form of a pair of quantum-wells separated by an infinite b
rier. The intra- and inter-layer Coulomb interactions a
given by Vab(q)52pe2e2qd(12dab)/(e0q), in which e0 is
the background dielectric constant,a,b51,2 are the layer
indices, andd is the distance between the quantum we
The effective interaction between two charge carriers wit
the ladder approximation is given by

I ab~k1 ,k2 ;q!5Vab~q!1(
k

Vab~q2k!

3
@12 f a~k11k!#@12 f b~k22k!#

ek1 ,a2ek11k,a1ek2 ,b2ek22k,b

3I ab~k1 ,k2 ;k!, ~1!

wheref a(k) is the zero-temperature Fermi distribution fun
tion andek,a5k2/2ma is the single-particle energy for spe
ciesa. When the short-range correlations are assumed to
most important, we can neglect the dependence
I ab(k1 ,k2 ;q) on k1 and k2, and consider I ab(q)
5I ab(0,0;q), which is a large momentum transferq ap-
proximation. Such an approximation was shown to be r
sonable by full numerical solutions10,18 of the integral equa-
tion given in Eq.~1!. Within this short-range approximatio
and for a double-layer system, the above integral equa
simplifies to
©2001 The American Physical Society20-1
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I ab~q!/V11~kF!5
e2A2qd(12dab)/aB* r s

q
2A2r s

2p

3E
1

`

dk
Fab~q,k!

k~q1k!
I ab~k!/V11~kF!,

~2!

where

Fab~q,k!5E
0

p/2

du
e2A2d[124kq sin2u/(q1k)2] 1/2(12dab)/aB* r s

@124kq sin2u/~q1k!2#1/2
.

~3!

In the case of intralayer correlations (a5b), Faa(q,k) re-
duces toK(2Aqk/(q1k)), whereK(x) is the complete el-
liptic integral of the first kind. In the above expression w
have scaled wave vectors with the Fermi wave vectorkF

5A2p2n, wheren is the layer density. A convenient way o
expressing the density is through the dimensionless par
eter r s51/ApnaB*

2, where the effective Bohr radius is de
fined asaB* 5\2/mabe2. In the definition ofaB* we have used
the reduced mass 1/mab51/ma11/mb .

The quantity of interest in detecting exciton formation
electron-hole systems is the interlayer contact p
correlation functiongeh(0). In aparamagnetic systemgeh(r )
is an arithmetic average of the spin-parallelgeh

↑↑(r ) and spin-
antiparallelgeh

↑↓(r ) pair-distribution functions. For the inter
layer pair-correlation function at contact we havegeh(0)
5geh

↑↓(0). The expression forgeh
↑↓(0) is obtained from the

Goldstone formula for the energy shift, and within our a
proximation scheme it is given by

gab
↑↓ ~r 50!5F12

mab

p E d2q
I ab~q!

q2

3u~q2kFa!u~q2kFb!G 2

. ~4!

The pair-correlation functions also satisfy the the multico
ponent version~applied to double-layer systems! of the Kim-
ball relation19

lim
r→0

gab
↑↓ ~r !52 lim

q→q

q3eqd(12dab)

4pe2mab~nanb!1/2
@Sab

↑↓ ~q!2dab#.

~5!

III. RESULTS AND DISCUSSION

The integral equation for the interlayer effective intera
tion I ab(q) can be classified as the Fredholm equation of
second kind. We solve Eq.~2! for electron-electron and
electron-hole double-layer systems at equal density u
matrix inversion techniques. In the previou
applications7,10,16 the bare Coulomb interaction appearing
the kernel was further approximated to obtain an analyt
solution to the integral equation. Using the scaled quantit
our results will appear as independent of the electron-h
12532
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mass ratiome /mh . All physical parameters are embodied
the definition of the effective Bohr radiusaB* . We also note
that in the examples given below, equal carrier densities
assumed for the layers.

A. Electron-electron and electron-hole double layers

In Fig. 1 we display the value of interlayer pai
correlation function at contactgee(0) for a double-layer elec-
tron system as a function of the density parameterr s . We
observe that for a given interlayer separationgee(0) de-
creases as the interaction strength~measured byr s) in-
creases. Unlike some other approximate theories, the la
approximation results forgee(0) always remains positive
Another noteworthy point here is that interlayer pa
correlation functiongee(0) is practically unaffected by the
finite width of the layers. We have modeled the finite exte
of the quantum wells using infinite square well model yie
ing a form factor

F12~q!5
64p4sinh2~x/2!

x2~x214p2!2
, ~6!

wherex5qL, L being the width of the quantum wells. Thu
the bare Coulomb interactions are modified so thatV12(q)
→V12(q)F12(q), and similarly for the intralayer interaction
with corresponding form factor. In the case of intralayer
teractions, finite width effects reduce the correlation effe
andg(0) increases13 with quantum-well widthL. It turns out
that the exponential factore2qd in the interlayer interaction
already limits theq-integration in Eq.~3! so that the finite
width effects embodied inF12(q) are not very important. We
shall see below that the situation somewhat changes w
screening effects are considered.

Figure 2 shows the inverse of interlayer pair-correlati
function at contactgeh

21(0), for double-layer electron-hole

FIG. 1. The interlayer pair-correlation function at contactgee(0)
as a function of the layer density parameterr s for a double-layer
electron system. The distance between the layersd, and the
quantum-well thicknessL are indicated in the legend.
0-2
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systems as a function ofr s . We find thatgeh(0) diverges at
larger s for a given layer separationd. It is interesting, how-
ever, to note thatgeh

21(0) vanishes at some criticalr S in a
smooth way within the ladder approximation. In the es
mates given by Liu, S´wierkowski, and Neilson,3 the critical
value of r s at which geh

21 goes to zero was determined b
extrapolation, and the density indicating an excitonic ins
bility is sharply defined. In the ladder approximation, on t
other hand, we are able to calculategeh

21(0) for any value of
d and r s for a more reliable prediction. We also find th
geh(0) is slightly affected by the finite thickness of the qua
tum wells, as indicated in Fig. 2. To better understand
transition to the excitonic state within the ladder approxim
tion, we plot in Fig. 3 theq dependence of the effectiv
interlayer interactionI eh(q) around the criticalr s . For a

FIG. 2. The inverse of the interlayer pair-correlation function
contactgeh

21(0) as a function of the layer density parameterr s for a
double-layer electron-hole system. The distance between the la
d, and the quantum-well thicknessL are indicated in the legend.

FIG. 3. The effective interactionI eh(q) as a function ofq for a
double-layer electron-hole system at layer separationd5aB* and
various values ofr s .
12532
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layer separationd5aB* , we observe that the vanishing o
geh

21(0) arises from a smallq divergence inI eh(q) at a criti-
cal density~i.e. r s'2.75). Figure 3 also shows thatI eh(q)
changes its sign beyond the criticalr s . The critical behavior
of geh(0) is also seen in Fig. 4 where we displaygeh

21(0) as
a function ofd for various values ofr s . The results shown in
Fig. 4 verify that for a fixed carrier density, the electron-ho
pair-correlation function diverges as the layer separation
decreased.

B. Effects of screening

We have seen in the previous section thatgee(0) and
geh(0) are hardly affected by the finite size of the quantu
wells. When static screening effects are taken into effect
situation changes considerably. This is because in the scr
ing function both the intralayer and interlayer bare Coulom
interactions come into play. Since the intralayer interactio
are affected more by the finite width effects, we obse
noticeable differences. Even in the case of zero-thickn
layers because of the presence of intralayer interactio
screening effects modify the pair-correlation functions
contact. This was noted by Pugnaloni, Melgarejo, a
Vericat16 where they replace the bare interactionV12(q) by
V12(q)/«(q) in the kernel of the integral equation. In fac
they introduce a phenomenological momentum cutoff
modify the integral equation to account for screening. In t
work we treat the screening effects within the static rando
phase approximation and replaceV12(q) by V12(q)/«(q) in
both the kernel and the inhomogeneous term in Eq.~1!. Here
«(q) is the static screening function of a double-lay
electron-electron or electron-hole system given by

«~q!5@12x01~q!V11~q!#@12x02~q!V22~q!#

2V12
2 ~q!x01~q!x02~q!, ~7!

t

ers

FIG. 4. The inverse of the contact pair-correlation functi
geh

21(0) for a double-layer electron-hole system as a function of
layer separationd. The values of the density parameterr s are indi-
cated in the legend.
0-3
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wherex0a(q) are the static response functions for the no
interacting system in the layera.

In Fig. 5 we show the interlayer pair-correlation functio
in a double-layer electron systemgee(0) at contact for vari-
ous approximations as a function ofr s . When the static
screening effects are only introduced in the kernel of
integral equation@Eq. ~1!# gee(0) shows some departur
from the unscreened case. In particular, ther s value at which
gee(0) becomes zero decreases. On the other hand, whe
screening is taken into account in both the kernel and
inhomogeneous term in the integral equation the interla
pair-correlation functiongee(0) shows a markedly differen
behavior. This latter way of including the screening effects
similar to the Lippmann-Schwinger equation treatment
the T-matrix in which the screened Coulomb interacti
enters.20,21 Similar results are displayed in Fig. 6 for the in
terlayer pair-correlation functiongeh

21(0) in a double-layer
electron-hole system. The inclusion of screening effects
the kernel mainly affectsgeh

21(0) at larger s values and a
sharp divergence ingeh(0) at a criticalr s is blurred. When a
statically screened interaction in both the kernel and the
homogeneous term is used, the resultinggeh(0) does not
appear to show any instability in the range ofr s values we
investigate. Including the finite width effects only slight
lowers the curvegeh

21(0), as can beseen in Fig. 6.
Multicomponent generalization of the ladder approxim

tion @in its local-approximation variant, i.e.,I ab(q)# has
found useful applications. For instance, the enhancement
tor in the recombination rate of electron-hole plasmas as
cur in photoexcited semiconductors is given in terms of
contact pair-correlation functiongeh(0). Sincegeh(0) within
the ladder approximation can be reliably calculated, the
sults agree quite well with the experimental data.16,17 Simi-
larly, the annihilation rate of positrons in an electro
positron two-component plasma is proportional to t

FIG. 5. The interlayer pair-correlation functiongee(0) as a func-
tion of r s , at d55aB* . Thin solid and thick solid lines are fo
unscreened and screened ladder approximation results, respec
If the screening is introduced only in the kernel the dot-dashed
results.
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contact pair-correlation functiongep(0). Although the self-
consistent field method of STLS has been analyzed20,22 to
include multiple scattering effects and therefore, leading t
bound state instability, the positivity condition for the pa
correlation functions within this formalism is usually hard
fulfill. In the various applications of the ladder theory~in-
cluding the multicomponent generalizations! the pair-
correlation function remains positive for a large range
densities. We thus believe that the determination of instab
ties such as exciton formation may be more reliably achie
within the ladder approximation.

IV. SUMMARY

In summary, we have used the multicomponent gener
zation of the ladder approximation to study the correlat
effects in double-layer electron-electron and electron-h
systems. Our short-range approximation regarding the ef
tive interaction to be a local function of the momentu
yields positive interlayer pair-correlation functionsgee(0)
and geh(0). This is an improvement over certain other a
proximate theories. Using the density dependence ofgeh(0),
we have estimated the stability of the system against exc
formation. We have found that the static screening effe
significantly modify the contact values of interlayer pa
correlation functions in the ladder approximation.
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FIG. 6. The inverse of interlayer pair-correlation functio
geh

21(0) as a function ofr s , at d55aB* . Thin solid and thick solid
lines are for unscreened and screened ladder approximation re
respectively. If the screening is introduced only in the kernel
dot-dashed line results. Dotted line indicates screened result
quantum-well widthL5aB* .
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