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We present a first-principles study of the atomic, electronic, and magnetic properties of two-dimensional
(2D), single and bilayer ZnO in honeycomb structure and its armchair and zigzag nanoribbons. In order to
reveal the dimensionality effects, our study includes also bulk ZnO in wurtzite, zincblende, and hexagonal
structures. The stability of 2D ZnO, its nanoribbons and flakes are analyzed by phonon frequency, as well as
by finite temperature ab initio molecular-dynamics calculations. 2D ZnO in honeycomb structure and its
armchair nanoribbons are nonmagnetic semiconductors but acquire net magnetic moment upon the creation of
zinc-vacancy defect. Zigzag ZnO nanoribbons are ferromagnetic metals with spins localized at the oxygen
atoms at the edges and have high spin polarization at the Fermi level. However, they change to nonmagnetic
metal upon termination of their edges with hydrogen atoms. From the phonon calculations, the fourth acous-
tical mode specified as twisting mode is also revealed for armchair nanoribbon. Under tensile stress the
nanoribbons are deformed elastically maintaining honeycomblike structure but yield at high strains. Beyond
yielding point honeycomblike structure undergo a structural change and deform plastically by forming large
polygons. The variation in the electronic and magnetic properties of these nanoribbons have been examined
under strain. It appears that plastically deformed nanoribbons may offer a new class of materials with diverse

properties.
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I. INTRODUCTION

Graphene, a monolayer layer of carbon atoms in honey-
comb structure, is offering exceptional properties' which
may lead to important applications in various fields. Nor-
mally, two-dimensional (2D) graphene is semimetallic and
its electrons and holes behave like a massless Dirac fermion.
Whereas 2D boron nitride (BN),* Group III-V analog of
graphene, in ionic honeycomb structure is a wide band-gap
semiconductor. Unusual properties of graphene and BN na-
noribbons have been revealed extensively in recent
papers.>™!! More recently, based on state-of-the-art first-
principles calculations it was predicted that Si and Ge,'? even
binary compounds of Group IV elements and III-V
compounds'? can form 2D stable monolayer honeycomb
structures. Earlier studies on ZnO and its nanowires gave
first indications that graphitic ZnO can exists.'*!> Very thin
nanosheets,'® nanobelts,!” nanotubes,'® and nanowires!® of
ZnO have already been synthesized. Two-monolayer-thick
Zn0O(0001) films grown on Ag(111) were reported.?’

Because of its wide band gap of ~3.3 eV and large ex-
citon binding energy of 60 meV leading to vast optoelec-
tronic applications including light-emitting diodes and solar
cells,?!?> ZnO has been the subject of various researches. It
was reported that the vacancy defects can be intentionally
created by electron-irradiation method.?? It has been also re-
ported that Zn vacancy induces ferromagnetism in ZnO thin
films and nanowires without any need of doping with
transition-metal atoms.>* These magnetic properties might
provide superior advantages in biomedical applications be-
cause of nontoxic nature of ZnO as opposed to transition-
metal ions.

In this paper a comprehensive study of the atomic, elec-
tronic, and magnetic properties of monolayer, bilayer, and
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nanoribbons of II-VI ionic ZnO compound in honeycomb
structures are carried out using first-principles calculations.
In order to reveal the dimensionality effects, we started with
the energetics and electronic energy bands of ZnO in differ-
ent three-dimensional (3D) bulk crystalline structures and
compared them with those of 2D ZnO honeycomb structure.
Our analysis based on phonon dispersions and finite-
temperature ab initio molecular-dynamics calculations pro-
vides evidence for the stability of free-standing 2D mono-
layer, bilayer, and quasi-one-dimensional (quasi-1D)
nanoribbons of ZnO honeycomb structures. These structures
can be in different local minima on the Born-Oppenheimer
surface, in spite of the fact that they are not synthesized yet.
We found that 2D monolayer and bilayer ZnO are nonmag-
netic semiconductors but attain magnetic properties upon
creation of Zn-vacancy defect. ZnO nanoribbons exhibit in-
teresting electronic and magnetic properties depending on
their orientation. While armchair ZnO nanoribbons are non-
magnetic semiconductors with band gaps varying with their
widths, bare zigzag nanoribbons are ferromagnetic metals.
These electronic and magnetic properties show dramatic
changes under elastic and plastic deformation. Hence, ZnO
nanoribbons can be functionalized by plastic deformation.
Results obtained in this study indicates that 2D monolayer
and bilayer ZnO honeycomb structures and quasi-1D arm-
chair and zigzag nanoribbons display unusual electronic,
magnetic, and mechanical properties, which hold the promise
of interesting technological applications.

II. MODEL AND METHODOLOGY

We have performed first-principles plane-wave calcula-
tions within density-functional theory (DFT) using projector
augmented wave potentials.”> The exchange-correlation po-
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tential has been approximated by generalized gradient ap-
proximation (GGA) using PW91 (Ref. 26) functional both
for spin-polarized and spin-unpolarized cases. Recently,
spin-polarized calculations within DFT have been used suc-
cessfully to investigate magnetic properties of vacancy de-
fects in 2D honeycomb structures. Also interesting spintronic
properties of nanoribbons have been revealed using spin-
polarized DFT.® The success of spin-polarized DFT calcula-
tions has been discussed in Ref. 27.

All structures have been treated within supercell geometry
using the periodic boundary conditions. A plane-wave-basis
set with kinetic-energy cutoff of 500 eV has been used. The
interaction between ZnO monolayers in adjacent supercells
is examined as a function of their spacing. Since the total
energy per cell has changed less than 1 meV upon increasing
the spacing from 10 to 15 A, we used the spacing of ~10 A
in the calculations. In the self-consistent potential and total-
energy calculations the Brillouin zone (BZ) is sampled by,
respectively, (15X 15X 15), (25X25X 1), and (25X 1X 1)
special k points for 3D bulk, 2D honeycomb, and 1D (nan-
oribbons) ZnO. This sampling is scaled according to the size
of superlattices. For example, BZ was sampled by (3 X3
X 1) special k points for defect calculations using (7 X 7)
supercell of 2D ZnO honeycomb structure. All atomic posi-
tions and lattice constants are optimized by using the conju-
gate gradient method, where the total energy and atomic
forces are minimized. The convergence for energy is chosen
as 107 eV between two steps and the maximum Hellmann-
Feynman forces acting on each atom is less than 0.02 eV/A
upon ionic relaxation. The pseudopotentials having 12 and 6
valence electrons for the Zn (Zn:4s5*3d'%) and O ions
(0:25?2p*) are used. Numerical plane-wave calculations are
performed by using VASP package.?®?° While all numerical
calculations of structure optimization, electronic energy, and
phonon dispersions are carried out within GGA using
VASP,?82% some of the calculations are checked also by using
PWSCF (Ref. 30) and SIESTA (Ref. 31) softwares. Therefore
all pertaining discussions are based on the results obtained
by using VASP software unless it is stated otherwise.

Since DFT within GGA underestimates the band gap,
frequency-dependent GW, calculations are carried out.’
Screened Coulomb potential, W, is kept fixed to initial DFT
value W, and Green’s function, G, is iterated five times. Vari-
ous tests regarding vacuum separation, kinetic-energy cut-off
potential, number of bands, k points and grid points are
made. Final results of GW,, corrections are obtained using
(12X 12X 1) k points in BZ, 20 A vacuum separation, 400
eV cut-off potential, 160 bands, and 64 grid points. In addi-
tion to GW,, we performed also GW calculations in order to
make comparison with earlier available studies. While GW,,
corrections are successfully applied to 3D and 2D ZnO, its
application to quasi-1D nanoribbons is hindered by large
number of atoms.

II1. 3D BULK AND 2D HONEYCOMB ZnO CRYSTAL

We first consider 3D bulk ZnO, which are in wurtzite
(wz-Zn0O), zincblende (zb-ZnO), and hexagonal (h-ZnO, or
graphitelike) crystals. Atoms in wz-ZnO and zb-ZnO struc-
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tures are fourfold coordinated through tetrahedrally directed
sp® orbitals whereas the atoms in h-ZnO crystal are threefold
coordinated through sp? orbitals. Wurtzite structure is found
to be the thermodynamically most stable phase of ZnO. The
cohesive energy per Zn-O pair is calculated by using the
expression

E¢=E[Zn0] - E;[Zn] - E[{O] (1)

in terms of the total energy of the optimized crystal structure
of ZnO, E;{Zn0O] per Zn-O pair, the total energies of free Zn
and O atoms E;{Zn] and E;{O]. The equilibrium cohesive
energies of wz-ZnO, zb-ZnO, and h-ZnO structures are
found to be 8.934, 8.919, and 8.802 eV per Zn-O pair, re-
spectively. For wz-ZnO crystal, the hexagonal lattice con-
stants of the optimized structure in equilibrium are a
=3280 A and c¢/a=1.616. The deviation of c/a from the
ideal value of 1.633 imposes a slight anisotropy in the
lengths of tetrahedrally directed Zn-O bonds. While the
length of three short bonds is 2.001 A, the fourth bond is
slightly longer and has the length of 2.007 A. The
zincblende structure in 7, symmetry has cubic lattice con-
stant a=3.266 A and four tetrahedrally coordinated Zn-O
bonds having uniform length, d=2.001 A. The h-ZnO struc-
ture has hexagonal lattice constants a=3.448 A, c/a
=1.336, and d=1.990. The structural parameters of these
three bulk ZnO crystals are shown in Fig. 1. The lattice con-
stant of wz-ZnO, a(c/a) is measured between 3.247
(1.6035) A and 3.250 (1.602) A using different methods.>?
The calculations based on ab initio linear combination of
atomic orbitals method with all-electron Gaussian-type basis
set predict a=3.286 A and c/a=1.595.3* All our results re-
lated with the structural parameters are in good agreement
with the experimental and theoretical values within the aver-
age error of ~19%.3334

The optimized atomic structure and corresponding elec-
tronic band structure of 3D ZnO crystals are presented in
Fig. 1. All wz-ZnO, zb-ZnO, and h-ZnO crystals are direct
band-gap semiconductors with calculated band gaps being
E;=0.75, 0.65, and 0.96 eV, respectively. Highest valence
band has O-2p character; the states of the lowest conduction
band is formed from Zn-4p and Zn-4s orbitals. Valence band
consists of two parts separated by a wide intra-band gap. The
lower part at ~—18 eV is projected mainly to O-2s orbitals.
The upper part is due to mainly Zn-3d and O-2s orbitals. The
differences in the band structure of different three 3D crys-
tals become pronounced in the lower part of the conduction
band. It should be noted that the band gaps of bulk ZnO is
highly underestimated by DFT calculations.®> The experi-
mentally measured band gap of wz-ZnO is ~3.37 eV at
room temperature.’> We performed GW,, calculations to cor-
rect the band gaps calculated within GGA. Our results for
wz-ZnO, zb-ZnO, and h-ZnO are, respectively, 3.29, 3.04,
and 3.32 eV. As for earlier studies, calculations with GW
corrections reported a band gap of 3.59 eV for zb-Zn0.3¢ All
electron linearized augmented planewave (LAPW) calcula-
tions predicted the band gap of wz-ZnO 0.77 eV using local-
density approximation (LDA), which is corrected by GW
calculations to 2.44 eV.>’
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FIG. 1. (Color online) Cohesive energies E per Zn-O pair, band
gaps Eg, Zn-O bonds, atomic and energy band structures of 3D (a)
waurtzite, (b) zincblende, and (c) hexagonal crystals of bulk ZnO.
Red-small and blue-large balls correspond to O and Zn atoms, re-
spectively. The gap between valence and conduction bands are
shaded and the zero of energy is set at the Fermi level Er. All
structures including lattice constants are fully optimized.

Charge transfer from Zn atoms to O atoms is a measure of
the ionicity of ZnO crystal. We calculated the amount of
charge on constituent Zn and O atoms in 3D crystals by
performing the Lowdin analysis3® in terms of the projection
of plane waves into atomic orbitals. By subtracting the va-
lencies of free Zn and O atoms from the calculated charge
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FIG. 2. (Color online) Phonon-dispersion curves calculated by
force-constant method for 2D monolayer ZnO. Atomic structure
and hexagonal lattice vectors are shown by inset.

values on the same atoms in 3D crystals we obtain the charge
transfer dg from Zn to O. The calculated value of charge
transfer for wz-ZnO, zb-ZnO, and h-ZnO is found to be 1.41
electrons. The values of charge transfer calculated with the
Bader analysis® are 8g=1.22, 8g=1.17, and 8g=1.20 elec-
trons for wz-ZnO, zb-ZnO, and h-ZnO, respectively. Same
analysis performed with local basis set using SIESTA (Ref.
31) yields significantly lower values of charge transfer, &g
=0.90, 64=0.88, and 6g=0.91 electrons for wz-ZnO, zb-
Zn0O, and h-ZnO, respectively. This analysis clearly indicates
that a significant amount of charge is transferred from low
electronegative Zn atom to high electronegative O atom.
However the values of dg may scatter owing to the ambigu-
ities in placing boundary between Zn and O in crystalline
structure.

IV. 2D ZnO HONEYCOMB STRUCTURE

The structure of monolayer ZnO is optimized using peri-
odically repeating supercell having hexagonal lattice in 2D
and the spacing of 10 A between ZnO planes. The optimized
structure was planar and the magnitudes of the Bravais vec-
tors of the hexagonal lattice are found to be a;=a,
=3.283 A, and the Zn-O bond, d=1.895 A (see Fig. 2). In
contrast to 2D puckered honeycomb structures of Si, Ge, and
compounds of IIT and V group elements both lying below the
first row, any honeycomb structure including one element
from the first row form planar honeycomb structure such as
graphene, BN, and SiC.'* 2D monolayer of ZnO forming
planar honeycomb structure is not an exception. The calcu-
lated structural parameters are significantly larger than those
of graphene and BN honeycomb structure due to fact that Zn
has larger radius*® than that of B, C, N, and O atoms. The
planar structure of 2D ZnO is tested by displacing Zn and O
atoms arbitrarily from their equilibrium positions by 0.5 A
and subsequently by reoptimizing the structure. Upon opti-
mization the displaced atoms have recovered their original
positions in the same plane. It should be noted that the length
of Zn-O bonds of 2D ZnO honeycomb structure is smaller
than that in the 3D bulk (wz, zb) crystals since sp? bonding
in the former is stronger than the tetrahedrally coordinated
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sp® bonding in the latter. Similar trend is also found in C,
BN, and SiC honeycomb structures. The interaction between
ZnO planes appears to slightly weaken the Zn-O bonds of
h-ZnO crystal. As a result the length of the Zn-O bonds
becomes larger than that of 2D ZnO honeycomb structure.
The cohesive energy of 2D monolayer of ZnO is calculated
to be 8.419 eV per Zn-O pair. This energy is 0.5 eV smaller
than that of 3D wz-ZnO.

A. Atomic structure and stability analysis

It should be noted that 2D honeycomb structure deter-
mined by the structure optimization using conjugate gradient
method may not be necessarily stable. One needs more strin-
gent tests to assure the stability of this truly 2D structure. As
a matter of fact, it was argued earlier that any crystal struc-
tures consisting of a truly 2D monolayer crystals cannot be
stable.*!*> Here, we summarize our analysis on the stability
of planar 2D hexagonal structure of ZnO using calculation of
phonon-dispersion curves as well as ab initio finite-
temperature molecular-dynamics calculations.

We calculated optical and acoustical branches of phonon
frequency using the density-functional perturbation theory
with plane-wave method as implemented in PWSCF software
and the force-constant method*® with forces calculated using
VASP. The former method includes the polarization effects so
that the splitting of longitudinal- and transverse-optical
modes at the I" point (namely, LO-TO splitting) is obtained.
The force-constant method cannot yield the LO-TO splitting
and is also very sensitive to the mesh size in calculating
forces under atomic displacements and hence in setting up
the dynamical matrix. In fact, the imaginary frequencies of
ZA branch (so-called out-of-plane acoustical branch) occur
around the I" point as an artifact of insufficient mesh size.
However, all imaginary frequencies around the I" point (cor-
responding to an instability to be induced by acoustical
waves with large \) are removed by using very fine mesh.
Earlier, imaginary frequencies of ZA modes near the I point
calculated for 2D honeycomb structures of Ge and III-V
compounds inducing similar fortuitous instabilities for large
\ were also removed by using finer mesh. '3

In Fig. 2 we present phonon-dispersion calculated for 2D
monolayer of ZnO honeycomb structure using force-constant
method, where atomic forces are calculated by VASP. Calcu-
lated phonon modes all being positive across the BZ strongly
support that 2D monolayer of ZnO is a stable structure cor-
responding to a local minimum on the Born-Oppenheimer
surface. Our phonon-dispersion curves are in agreement with
those calculated in Ref. 44.

Furthermore, we have tested the stability of 2D ZnO
monolayer using finite temperature ab initio molecular-
dynamics (MD) calculations with time steps of 2 X 10713 .
To lift the constraints to be imposed by a small unit cell, we
considered a (7 X 7) supercell of the 2D hexagonal ZnO and
raised its temperature from 0 to 750 K in 0.1 ps. Then, we
have kept the temperature of the system around 750 K for
2.5 ps. While all these calculations resulted in minor defor-
mations, the honeycomb structure was not destroyed. It
should be noted that these calculations may not be conclu-
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FIG. 3. (Color online) Electronic structure of the 2D monolayer
of ZnO. (a) Brillouin zone corresponding to 2D hexagonal lattice
and difference charge density, Ap. (b) Energy band structure and
density of states projected to the selected orbitals (PDOS) of con-
stituent atoms. The band gap is shaded (painted in yellow) and the
zero of energy is set at the Fermi level. Band edges corrected by
GW, are indicated by small (light blue) circles. The band gap en-
larged after GW,, correction is shaded (painted light blue).

sive since 2.5 ps cannot be sufficient to represent all the
statistics but this picture is the best one can see from the
exiguous window limited by the computational cost imposed
by ab initio MD method. In the following sections we will
present additional arguments related with electronic struc-
ture, which further corroborate the stability of 2D ZnO struc-
tures.

B. Electronic structure

The difference charge density and the electronic energy
bands together with the partial density of states (PDOS) are
presented in Fig. 3. Contour plots of total charge indicate
high density around O atoms. The difference charge density
is calculated by subtracting charge densities of free Zn and O
atoms from the total charge density of 2D ZnO, i.e., Ap
=pzno—Pzn— Po- High-density contour plots around O atoms
protruding toward the Zn-O bonds indicate charge transfer
from Zn to O atoms. This way the Zn-O bond acquires an
ionic character. The charge transfer from Zn to O, dq is
analyzed by using different schemes. The charge-transfer
values calculated by Lowdin method using PWSCF, Bader®
analysis using VASP, and local basis set analysis using SIESTA
are, respectively, og=1.35, 1.18, and 0.87 electrons. Interest-
ingly, as compared to 3D bulk h-ZnO crystal, the charge
transfer from cation to anion of 2D monolayer ZnO is
slightly decreased. This is due to the change from sp? hybrid
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orbital in h-ZnO to sp> hybrid orbital in honeycomb
structure.

Two dimensional ZnO is a direct band-gap semiconductor
with a gap value of 1.68 eV. However, the actual band gap is
expected to be larger. The bands are corrected using GW,
method? and the direct band gap at the I' point of BZ is
found to be 5.64 eV. Much recently, it has been reported that
the band gap of 2D-ZnO is calculated to be 3.57 eV with GW
corrections.** Similar to the bands of 3D bulk ZnO crystals,
the upper part of the upper valance band are derived mainly
from O-2p orbitals whereas the lower part has Zn-3d char-
acter. The bands at the edges of conduction and valence
bands along the I"-K direction are derived from bonding and
antibonding combination of O-2p_ and Zn-4p, orbitals form-
ing 7 and 7 states. The highest valence band along the I'-K
direction has mainly O-2p, but small Zn-4p, orbital contri-
bution while the lowest conduction band is composed mainly
from Zn-4p_ but small O-2p, orbitals. Small Zn-4p, contri-
bution is also confirmed by PDOS. Consequently, planar ge-
ometry of 2D monolayer of ZnO is expected to be attained
by the bonding combination of p, states. The same situation
occurs for 2D monolayer of BN honeycomb structure, which
is an ionic III-V compound with wide band gap between m
and 7" states. The planar stability graphene is also main-
tained by 7 bonds.

C. Vacancy defects and antisite

It was shown that vacancies have remarkable effects on
electronic and magnetic properties of 2D graphene and
graphene nanoribbons.*->° The effects of vacancies in
monolayer of ZnO have not been treated yet. It was reported
that the vacancy defects can be intentionally created by
electron-irradiation method?} on ZnO thin films. We investi-
gated the effects of Zn, O, Zn+O divacancy and O+Zn an-
tisite in a periodically repeating (5% 5) as well as (7 X7)
supercells. The vacancy-vacancy coupling in the larger (7
X 7) supercell was reduced significantly. Flat bands in the
band gap have charge density localized at the defect site. The
width of these flat bands can be taken as the measure of the
strength of the direct and indirect (via the hopping through
the orbitals in the lattice) vacancy-vacancy coupling. The
largest width of such a band is already small (less than 50
meV). The average energy of these flat bands from the top of
the valence band can be taken as the localized states of an
individual vacancy defect. Our results obtained using a (7
X 7) supercell are presented in Fig. 4 and discussed in the
rest of the section.

The GGA band gap of a defect-free, 2D monolayer ZnO
increases by ~0.08 eV in a (7X7) supercell including a
vacancy defect. This is an artifact of the model, which mim-
ics an individual vacancy in supercell having limited size.
First we generated a Zn vacancy by removing a single Zn
atom from the monolayer of ZnO in honeycomb structure as
shown in Fig. 4(a). Upon the structure optimization, two O
atoms around vacancy are departed from the plane. Similar
to the vacancies in graphene and BN, Zn vacancy induces a
local magnetization in the system. Isovalue surfaces of spin-
density difference Ap clearly reveals the magnetism around
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(a) Zn - vacancy  (b) O - vacancy

E=0.36, E=0.54,
E=0.60,E=0.74 eV

E=0.13,E=0.59 eV

FIG. 4. (Color online) Vacancy defects in a (7 X 7) supercell of
the monolayer of ZnO. (a) Relaxed atomic structure around the Zn
vacancy with isosurfaces of the difference charge density of spin-up
and spin-down states, Ap=p(1)=p(]). Energies E; of localized
states measured from the top of the valance band and the net mag-
netic moment per supercell in Bohr Magneton . Blue-large and
red-small balls indicate Zn and O atoms indicated by arrows. (b) O
vacancy. (¢) Zn+0 divacancy. (d) O+Zn antisite where neighbor-
ing O and Zn atoms are exchanged. The (7 X7) supercells each
including one type of various vacancy defects are delineated by
solid lines.

vacancy. The calculated total magnetic moment is 2up per
unit cell. Note that similar Zn vacancy in the 3D bulk ZnO
crystal induces a magnetic moment of ~1up. It should be
noted that the magnetic moment of Zn vacancy arises from
the unpaired electrons of oxygen atoms around the Zn va-
cancy. Therefore it is important to determine precisely
whether the vacancy-induced localized states are occupied.
The positions of these localized states of 2D ZnO calculated
for the (7 X 7) supercell and their occupancy unambiguously
comply with the calculated magnetic moment. The Zn va-
cancy in a repeating (7 X 7) supercell also modifies the elec-
tronic structure. The value of the band gap of defect-free
ZnO changes from 1.68 to 1.75 eV and a spin-up localized
state appear 0.25 eV above the top of the valence band. Fig-
ure 4(b) presents our results for O vacancy. Unlike the case
of Zn vacancy, the monolayer of ZnO containing an O va-
cancy is nonmagnetic. Zn atoms around vacancy with coor-
dination number 2 prefer to stay in the same plane of the
other atoms and do not induce any magnetization. The band
gap is slightly modified to 1.80 eV. As for Zn+0O divacancy
in Fig. 4(c), it is again nonmagnetic. The band gap is also
modified to 1.46 eV. Four occupied states associated with
divacancy occur as localized states in the band gap. Finally,
we consider the antisite defect. The resulting relaxed struc-
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ture is given in Fig. 4(d). The antisite O is pushed away from
Zn atoms and makes bonds with a nearby O atom. The sys-
tem does not show any magnetization. The energy of final
structure with antisite defect is =5 eV higher (i.e., energeti-
cally less favorable) that of the defect-free 2D monolayer of
ZnO. The antisite induces two localized states in the band
indicated in the figure. Also it is noted that the magnetic
moments calculated for single Zn and O vacancy do not
agree with Lieb’s theorem,’! which predicts the amount of
magnetic moments for carbon vacancies in 2D graphene. Ac-
cording to Lieb’s theorem, the net magnetic moment per cell
is expected to be u=1up for Zn and O vacancies in Fig. 4.
This might be related with the ionic bonding which is differ-
ent from graphene or the existence of d orbitals in Zn. On the
other hand, zero magnetization for Zn+O divacancy in Fig.
4(c) is in agreement with the theorem.

D. 2D ZnO bilayer

Recently, Tusche et al.? revealed two monolayer of ZnO

grown on Ag(111) substrate using surface x-ray diffraction
and scanning-tunneling microscopy. They also showed that
the transition to the bulk wz-ZnO structure occurs in the 3—4
monolayer coverage. The Zn-O bond length of the planar
hexagonal structure measured 1.93 A is slightly larger than
the value of 1.895 A calculated for the bond length of the
monolayer of ZnO. This situation implies that the effect of
the Ag(111) substrate may be negligible.?”

We investigated the atomic structure and stability of bi-
layer ZnO honeycomb structure. To determine the minimum-
energy configuration we used periodic supercell geometry
and considered five different stacking types which are T, 75,
H,, H,, and H;. In T, configuration, Zn (O) atoms of the
second layer are on top of the Zn (O) atoms of the first layer.
T, is similar to T except that Zn atoms are above O atoms.
H,, H,, and H5 configurations are obtained by shifting one of
the layers of 7, and 7, on the other layer so that Zn or O
atoms of the second layer are placed above the center of the
hexagons in the first layer. It is H; (H,) if O (Zn) atoms of
both layers face the centers of hexagons. H; corresponds to
the configuration where O (Zn) atom of the first(second)-
layer face the center of second (first) layer.

Among these five configurations we found that 7} is en-
ergetically most favorable. H3, H,, H;, and T, configurations
have respectively 0.213, 0.312, 0.320, and 0.321 eV (per
primitive cell) higher energies than T, configuration. The
length of Zn-O bonds as well as the charge transfer from Zn
to O in 7, configuration is slightly larger than the value of
1.895 A calculated for the bond length of the monolayer of
ZnO. This trend complies with the above discussion that the
bond length increases by going from 2D monolayer to 3D
bulk and implies that the effect of the Ag(111) substrate may
be negligible.?”

The bilayer binding energy among two ZnO layers is cal-
culated to be 0.162 eV (per Zn-O pair) by subtracting the
total energies of two individual monolayers from the total
energy of bilayer ZnO in T, configuration. Furthermore the
layer-layer separations are calculated as 4.02, 2.36, 3.80,
3.78, and 2.68 A for T,, T,, H,, H,, and Hj, respectively.
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Hence, bilayer formation is exothermic. The calculations
with LDA, which accommodate van der Waals interaction
between layers better, yields 0.297 eV (per Zn-O pair) bind-
ing energy between two ZnO layers and 2.267 A layer-layer
separation in T, structure. The layer-layer separation for 7, is
experimentally reported as 2.314 A.20 The difference be-
tween the lattice constants of the monolayer 2D ZnO honey-
comb structure and the ZnO bilayer is small. Owing to the
relatively weak coupling between two ZnO monolayers, the
calculated electronic structure is similar to that of single-
layer ZnO honeycomb structure, except that the band gap
decreases to 1.44 eV for T,. This band gap increases to 5.10
eV after the GW,, correction, which is still smaller than the
GW, corrected band gap of 2D monolayer ZnO.

We next address the question whether the structure of 2D
bilayer formed by the 7, stacking of the ZnO bilayer is stable
is examined by the finite temperature ab initio molecular-
dynamics and phonon-frequency calculations. Ab initio
molecular-dynamics calculations at 750 K are performed
with the same parameters as done for the monolayer ZnO in
previous section indicate that the bilayer remains stable at
750 K after 3.0 ps.

V. DIMENSIONALITY EFFECTS

A comparison of Zn-O bond length, cohesive energy,
GGA bad gap, GW, corrected band gap calculated for 3D
wz-Zn0O, zb-ZnO, and h-ZnO, and 2D bilayer and monolayer
of ZnO are presented in Table I, where interesting dimen-
sionality effects are deduced. These dimensionality effects
are believed to be crucial for better understanding of 2D
crystals. Quasi-1D nanoribbons are not included to this dis-
cussion because of edge effects of the ribbon.

Three dimensional crystals have larger number of nearest
neighbors and also posses larger Madelung energy as com-
pared to 2D crystals. wz-ZnO appears to correspond to the
global minimum of ZnO II-VI compound. However the en-
ergy difference between wz-ZnO and 2D monolayer of ZnO
is only ~0.5 eV and is smaller than one expects. It appears
that sp?-like bonding which is stronger than sp>-like bonding
and the 7 bonding between adjacent p, orbitals, which con-
tributes to stability by maintaining the planar geometry gives
rise to the relatively smaller energy difference between 3D
bulk and 2D monolayers of ZnO. In the absence of signifi-
cant 7 bonding one expects that 2D planar ZnO would be
buckled (puckered) for stability as found in 2D Si and GaAs
honeycomb structure.'>!3 Through puckered planar sp? or-
bital is dehybridized and is transformed to sp-like hybrid
orbitals. Here we note that population of oxygen sp? and p,
orbitals is larger than that of corresponding Zn orbitals since
the former significantly higher electronegativity.

Interestingly, while GGA bad gaps of 3D ZnO occurs
0.75-0.96 eV, the band gaps of in 2D is 1.68-1.44 eV. The
band gap in 2D is larger than 3D since the energy difference
between sp>-like orbitals of Zn and O ions is smaller than the
energy difference in sp® orbitals. The latter gives rise to
larger energy difference between bonding and antibonding
orbitals. These band gaps are, however, underestimated by
GGA since they increase approximately three times upon
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TABLE 1. A comparison of bonding (or type of hybrid orbitals), the length of Zn-O bond dy,_o, cohesive
energy per Zn-O pair E, band gap E calculated with GGA and corrected by GoW,, and GW,, in the present
study, earlier GW calculations, and experimental value.

E
ZnO Bonding dzn0 (eV/afom) GGA GyW, GW, GW Experiment
3D wz sp? 2.001-2.007 8.934 075 276 329 244° 3.37¢
3D zb sp? 2.001 8.919 0.65 253 3.09 359
3D h sp2+pz+ Vdaw  1.999 8.802 0.96 2.84 332
2D bilayer sp>+p. +VAW 1,932 8.640 144 445 510
2D monolayer sp2+p, 1.895 8.478 1.68 487 564 357°

4Reference 37.
PReference 36.
‘Reference 44.
dReference 33.

GW, corrections. It appears that band-gap values corrected
by GW, is closer to experimental value and hence superior to
GW correction. As for as d,.o, Ec and E; are concerned, 3D
h-ZnO is intermediate between 3D and 2D structures. Also
calculated values of bilayer ZnO are slightly closer to 3D
than those of 2D monolayer of ZnO.

Charge transfer from Zn to O is crucial for dimensionality
effects but difficult to calculate precisely. Charge transfer,
dq, calculated using three different schemes, namely, Low-
din, Bader, and Siesta, yield different but consistent values.
For example, the Lowdin values occur around 1.4 electrons
for 3D but relatively smaller value of 1.35 electrons for 2D.
Bader analysis yields 1.22—1.20 electrons for 3D and rela-
tively smaller value of 1.18 electrons for 2D. As for Siesta,
3D values, they are 0.90 electrons for 3D but 0.87 electrons
for 2D. Excluding the paradoxical situation with charge-
transfer values of zb-ZnO occurring close to those of 2D
ZnO, the charge transfer between Zn and O is slightly
smaller in 2D than 3D.

VI. ZnO NANORIBBONS

In this section, we consider bare and hydrogen-passivated
armchair (a-ZnO) and zigzag (z-ZnO) ZnO nanoribbons.
These nanoribbons are specified according to their width
given in terms of n number of Zn-O pairs in their unit cells.
Hence, z-ZnO(n) indicates a zigzag ZnO nanoribbons having
n Zn-O pairs in their unit cell. We investigate their elec-
tronic, magnetic, and mechanical properties. First, we start
with the stability analysis of these nanoribbons.

A. Stability analysis

We have analyzed the stability of the bare armchair ZnO
nanoribbons having n=9 Zn-O atom pairs in the unit cell
using the force-constant method and the finite-temperature
molecular-dynamics calculations. The dynamical matrix was
generated using the forces calculated in seven unit cells of
a-Zn0(9). Results of this calculation were presented in Fig.
5(a). Phonon-dispersion curves of quasi-1D nanoribbons, in
general, show profiles expected from the folding of 2D
phonon-dispersion  curves. Modes appearing above

700 cm™!, however, are not expected from this folding. They
were attributed to edge effects and reconstructions.

Right panel of Fig. 5(a) presents the acoustic region in ten
times magnified scale. There are four acoustic modes, disper-
sion curves of which go to zero as k— 0. To get exactly zero
value, we have imposed the symmetries originating from
translational and rotational invariance on the dynamical ma-
trix. To impose these symmetries we have tuned the force-
constant matrix elements so that all forces on all atoms are
zero when the whole structure is shifted in three dimensions
or slightly rotated along the axis passing through the middle
of the nanoribbon.

Both the longitudinal and transverse-acoustic modes have
linear dispersions near the I' point. Group velocity of LA
mode is slightly higher than that of TA mode. Out of plane
ZA and twisting acoustical TW modes>? have quadratic dis-
persion near the I' point, which is attributed to the rapid
decay of the force constants with increasing neighbor dis-
tance. In fact there are some imaginary frequencies in ZA
mode near the I" point. The absolute value of these frequen-
cies do not exceed 0.5 cm™' and they are purely an artifact
of the precision of the numerical calculation. Using a finer
mesh makes these imaginary frequencies disappear.

We also have calculated vibrational modes of the finite
patch of ZnO having the length of five unit cells and the
width of n=9. Zigzag edges of this flake were saturated by
hydrogen atoms to eliminate the magnetism and to simplify
the numerical computations. Vibrational spectrum of this
structure had no imaginary frequencies implying the fact that
finite-size flakes of 2D ZnO honeycomb structure is stable.
The DOS of calculated phonon frequencies are presented in
Fig. 5(b). Note that, DOS calculated for three different hon-
eycomb systems are similar. Owing to the edge effects the
gap between the acoustical and optical branches of the rib-
bon is reduced. Similar effect as well as broadening of
discrete-mode frequencies cause DOS of the flake to deviate
significantly from that of 2D honeycomb structure in the gap.
The vibrational modes attributed to strong Zn-H and O-H
bonds are centered, respectively, at 1830 and 3700 cm™'.
These modes are not shown since these frequencies are be-
yond the range of Fig. 5(b).

Ab initio molecular dynamic calculations were also car-
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FIG. 5. (Color online) (a) Phonon-dispersion curves of a-ZnO(9)
calculated by force-constant method. Right panel presents the mag-
nified view of the low-lying modes. Here the well-known out-of-
plane, transverse, and longitudinal acoustical modes are labeled,
respectively, as ZA, TA, and LA. The fourth acoustical twisting
mode, which is indigenous to quasi-1D nanoribbons, is labeled as
TW, because this mode corresponds to the twisting of the nanorib-
bon along the axis passing through the middle of the ribbon in the
infinite direction. (b)DOS calculated for 2D planar ZnO (shown by
solid lines); armchair a-ZnO(9) (shown by dashed lines); and a
finite-size flake, i.e., a 5 unit cell long a-ZnO(9) (shown by dotted
lines). The discrete frequencies due to finite-size structure are
Gaussian broaden with =8 cm™! in order to compare with con-
tinuous DOS of 2D layer and quasi-1D ribbon. Quasi-1D (nanorib-
bon) and 0D (flake) honeycomb structures are shown by inset.

ried out for a-ZnO(9) and a finite-size patch of it. To elimi-
nate constraints to be imposed by small unit cell, the infinite
nanoribbon is treated by a supercell composed of five unit
cells. Both nanoribbons are kept at 750 K for 3.5 ps. As a
result, infinite, periodic structure of a-ZnO(9) composed of
five unit cells had minor reconstructions at the edges while
its honeycomb structure was preserved. Finite structure had
the similar pattern at the armchair edges but the reconstruc-
tions at the hydrogen-saturated zigzag edges were more pro-
nounced. These reconstructions made the whole system bend
but again the honeycomb structure was preserved around the
central region of the nanoribbon. The results of this analysis
are interpreted that finite-size ZnO nanoribbons are stable.

PHYSICAL REVIEW B 80, 235119 (2009)
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FIG. 6. (Color online) Atomic and electronic structure of bare
and hydrogen-terminated armchair nanoribbons a-ZnO(9). (a)
Atomic structure with unit cell comprising n=9 Zn-O atom pairs,
energy band structure and charge-density isosurfaces of selected
states of bare nanoribbons. The charge of the bands of edge states
are localized at the edge atoms. (b) Same as (a) but for hydrogen-
passivated nanoribbon. Large, medium, and small balls indicate Zn,
O, and H atoms, respectively. Unit cells are delineated by dashed
lines.

B. Electronic and magnetic properties

Bare and hydrogen-terminated a-ZnO nanoribbons are
nonmagnetic semiconductors with direct band gaps which
are relatively larger than that of the monolayer ZnO. Figures
6(a) and 6(b) show the atomic and electronic structure of
bare and hydrogen-terminated a-ZnO(n) with n=9. The at-
oms at the edges of the bare a-ZnO are reconstructed; while
one edge atom, Zn is lowering, adjacent edge atom, O is
raised. The energy band gap calculated with GGA is direct
and 1.92 eV wide and is larger than the band gap of 2D
monolayer ZnO. Band-decomposed charge-density analysis
of a-ZnO(9) is presented in Fig. 6. The highest valance bands
are degenerate and their charge accumulates on oxygen edge
atoms for bare ribbon. The third band from the top of valence
band is also associated with edge states. On the other hand,
the charge of the lowest conduction band is distributed uni-
formly in the ribbon. The charge of the second conduction
band is mostly distributed at the dangling bonds on the edges
of the ribbon.

The passivation of Zn and O atoms at the edges by hy-
drogen atoms gives rise to changes in the electronic band
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FIG. 7. (Color online) Variation in the calculated band gaps of
bare and hydrogen-passivated ZnO armchair nanoribbons with their
widths n. Dashed line indicates the band gap of the infinite 2D ZnO.

structure. The bond lengths Zn-H and O-H bonds are calcu-
lated to be 1.53 and 0.97 A. As seen in Fig. 6(b), upon
passivation with hydrogen atoms, the reconstruction of edge
atoms are weakened. At the end the edge state bands are
discarded from the band gap and replaced by dispersive
bands having charge distributed uniformly in the ribbon. The
band gap of H-passivated a-ZnO(9) slightly increases to
~1.98 eV.

The variation in the band gap E for the bare and hydro-
gen saturated armchair nanoribbons as a function of n is
given in Fig. 7. The band gaps are large for small n but
approaches to those of 2D honeycomb structure as the width
n— 0. This is an indication of the quantum-size effect. For
n<9, the value of the band gap of hydrogen-passivated
a-ZnO is significantly larger than that of bare ribbons; the
difference practically disappears for n>20. In contrast to
graphene and BN nanoribbons, family-dependent variations
in band gap®? is absent in Fig. 7. The variation in the band
gap with n is an important property, which may lead to for-
mation of quantum dot or multiple quantum wells through
the size modulation.®

Earlier it has been reported®* that all a-ZnO nanorib-
bons are semiconductors with a constant band gap of 2 eV. In
our case, however, the band gaps of nanoribbons, especially
for n<10, display apparent dependency on n. The tendency
of the decrease in the band gaps to the 2D ZnO band gap is
also observed when n is increased.

In contrast to a-ZnO nanoribbons, all zigzag nanoribbons
(z-ZnO) we investigated in this work (namely, n=5,7,9)
show metallic character regardless of their widths. On the
other hand, while all a-ZnO nanoribbons are nonmagnetic,
bare z-ZnO nanoribbons are magnetic due to edge states. The
magnetic properties of z-ZnO depend on whether the edge
atoms are passivated with hydrogen. Our results regarding
with the bare and hydrogen-passivated z-ZnO(n) nanorib-
bons for n=9 are presented in Figs. 8(a)-8(c). In Fig. 8(a),
while the upper edge of the ribbon is made by O atoms, the
lower edge terminates with Zn atoms. The bare z-ZnO nan-
oribbon is magnetic since the spin-polarized calculations
yield the total energy, which is energetically 34 meV favor-
able than that obtained from spin-unpolarized calculations.

PHYSICAL REVIEW B 80, 235119 (2009)

The total magnetic moment of the system was calculated as
0.57 up per unit cell. Figure 8(b) shows total DOS and band
structure of bare z-ZnO(9) together with isosurface charge
densities of selected bands. Bare z-ZnO(9) have isosurfaces
of difference charge density Ap occur around O edge atoms
due to unpaired O-2p orbitals. Clearly, bare z-ZnO is a fer-
romagnetic metal. These results are in agreement with those
predicting that the ferromagnetic behavior of ZnO nanorib-
bons due to unpaired spins at the edges is dominated by
oxygen atoms.>*

The band structure of the nanoribbon gives us further in-
formation about the magnetism of the system. When we plot
the spin-up and spin-down bands we observe the splitting of
these bands around Fermi level. The conduction and lower
valance bands are degenerate for spin-up and spin-down
states, some of which are shown with yellow isosurface
charge densities in the figure. We also plotted charge density
of two states of spin-split nondegenerate bands. Spin-down
state is half filled while spin-up state is totally filled. Further-
more, their charges are confined to the O edge of the ribbon.
The spin polarization at the Fermi level is calculated in terms
of density of spin-up and spin-down states, D(T, | ,Ep),
namely, P(Ep)=|D(1.Er)—-D(|.Ep)|/[D(1.Ep)+D(|,Ep)]
and is around 80% for spin-down states although the spin-up
states are majority spins. This suggests z-ZnO(n) with high
spin polarization at Er can operate as spin-valve device.

As we discussed in Sec. IV C, the magnetism of Zn va-
cancy in the monolayer ZnO is directly related with O atoms
having unpaired 2p orbitals. Similarly, bare z-ZnO nanorib-
bons have also magnetic states on O terminated edge of the
ribbon. The splitting of spin-up and spin-down bands around
Fermi level is removed when the edges of bare z-ZnO(9) in
Fig. 8(a) is passivated by hydrogen. The resulting structure is
again metallic but nonmagnetic. The electronic properties of
the z-ZnO(9) ribbon passivated with hydrogen is presented
in Fig. 8(c). Two bands just below the Fermi level are local-
ized on the Zn edge of the ribbon and lowest conduction
band is localized on the O edge of the ribbon. Similar results
are also obtained for n=5 and n=7. The situation regarding
the magnetism of bare z-ZnO is somewhat different from
that of the bare zigzag graphene nanoribbons, which have
ferromagnetic coupling along the edges but antiferromag-
netic coupling between the edges.’ Moreover, unlike the case
in z-ZnO nanoribbons, the magnetism of zigzag graphene
nanoribbons are not destroyed upon termination of edges
with hydrogen atom.

An important feature of zigzag ZnO nanoribbons is that
charged Zn and O atoms terminate different edges and thus
induce sizable electric-dipole moments. For the bare
z-Zn0O(9) the dipole moment is calculated to be
0.78(electron X A) per cell. Upon H termination of Zn and O
edge atoms the dipole moment increases to 1.07(electron
X A) per cell and its direction is reversed. While the dipole
effects are included in the electronic-structure calculations of
H-terminated z-ZnO(9) nanoribbons, the band gap underes-
timated by GGA may effect its metallicity. Unfortunately,
GW, corrections cannot be applied due to large number of
atoms.
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FIG. 8. (Color online) Bare zigzag nanoribbon z-ZnO(n) with n=9: (a) honeycomb structure with primitive unit cell delineated and
difference charge density Ap of spin-up and spin-down states. (b) Total density of spin-up and spin-down states (DOS), energy band
structure, and isosurface charge density of selected spin states. Large, medium, and small filled balls indicate Zn, O, and H atoms,
respectively. (c) and (d) are same as (a) and (b). Yellow-light and blue-dark densities are for spin-up and spin-down states. Similarly
red-continuous and blue-dashed curves are spin-up and spin-down spin bands. Black lines are for nonmagnetic (spin-paired) bands.

C. Mechanical properties of ZnO nanoribbons

The response of the nanoribbons to the applied uniaxial
stress is crucial and provides information on the strength of
the nanoribbons. More recently, the response of graphene to
strain (or to tension) in the elastic deformation range has
been an active field of study. For example, recent works>®
indicated the effect of deformation on the electronic proper-
ties for band-gap engineering. Moreover theoretical studies’’
have shown that carbon atomic chain can be derived from
graphene under tension. Jin et al>® showed that carbon
atomic chains can be derived from graphene by electron ir-
radiation inside a transmission electron microscope. There-
fore, the response of ZnO nanoribbons to tension is of crucial
importance.

Owing to ambiguities in defining the cross section of the
ribbon one cannot determine the Young’s modulus rigor-
ously. We examined the variation in the strain energy, E(€)
=FE;(€)—E;(€=0) with respect to the applied uniaxial strain,
e=Ac/c, c being the lattice constant along the ribbon axis.
The variation in E (€) includes information regarding the
mechanical properties of the ribbon. For example, force con-
stant, k=”E/ dc* is obtained from the variation in E,. k is
an observable and can specify the strengths of ribbons un-
ambiguously. The effects of two edges due to incomplete
hexagons becomes important for narrow nanoribbons but de-
crease with increasing width. In-plane stiffness C, which is
independent of the thickness, can also be used instead of

Young’s modulus. Defining A, as the equilibrium area of the
system, C can be given as

1 [ PE,
=A_0< aé)' @

By choosing a reasonable thickness “A,* Young’s modulus
can be recalled as Y=C/h. The thickness value around
3.34 A was used in order to evaluate the elastic properties of
SWNTs and graphene by some works in literature.>*-°! We
note that while C is unique for 2D infinite (periodic) honey-
comb structure of ZnO, for nanoribbons it depends on how
the width of the ribbon is taken in determining A,. In fact,
the width of the a-ZnO nanoribbon cannot be determined
straightforwardly. It is not clear whether the distance is from
Zn at one edge to Zn at the other edge or from O at one edge
to other O. One can also take the average of these two or
consider charge spill over from these edge atoms. Hence the
value of C is subject to small changes depending on how the
width of the nanoribbon is taken. This uncertainty, however,
diminish as the width increases; eventually the value of C
converges to a fixed value. In this respect, once the width is
fixed C, can be determined from «.

We considered three nanoribbons, a-ZnO(9), a-ZnO(15),
and z-ZnO(9). In order to eliminate the constraints imposed
by the periodic boundary conditions of small unit cell, cal-
culations are performed using a supercell composed of four
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FIG. 9. (Color online) (a) Variation in the strain energy E, and
band gap E of the bare a-ZnO(n) (n=9) with the applied uniaxial
strain, € are shown by a curve with squares. Calculated tension
shown by tin (red) curve is initially linear but deviates from linear-
ity for large e. Atomic structure for three different values of strain.
The boundaries of the supercells comprising four unit cells and
corresponding lattice constants ¢ are indicated by vertical lines. (b)
Same as (a) but for bare a-ZnO(n) (n=15). (¢) Variation in force
constant, k and in-plane stiffness, C of a-ZnO with the width w of
the nanoribbons.

primitive unit cells for a-ZnO and five unit cells for z-ZnO.
The size of supercells is determined based on certain tests.
Figures 9(a) and 9(b) show the variation in the strain energy
E(€) and band gap E;(€) with the applied strain, € for both
ribbons, a-ZnO(9) and a-ZnO(15). They display a parabolic
E vs € curves up to the strains €~ 0.13. Beyond these strain
values, energy vs strain variation becomes elastic but anhar-
monic. In the elastic range, the ribbons preserve their honey-
comblike structure but the hexagons are elongated uniformly
along the direction of the strain. Zones of harmonic and an-
harmonic variation in E (€) can be better deduced by calcu-
lating the tension force, Fp(€)=—dE (€)/dc. Fy(€) is linear
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for 0= €= ~0.13 in the elastic-harmonic range but becomes
nonlinear for ~0.13 < € as seen in Figs. 9(a) and 9(b). If the
applied tension is released, the elastic deformation in both
harmonic and anharmonic ranges disappears and the ribbon
returns to its original equilibrium geometry.

The elastic deformation range of a-ZnO(9) and a-ZnO(15)
ends with a sharp fall of the total energy. This point is iden-
tified as the yielding point of the ribbon occurring at e
=(.20. The yielding points are followed with structural
transformation, where honeycomb cage structure starts to un-
dergo a change and part of the strain energy is relieved. Once
the yielding point is passed the ribbon can stretch under sig-
nificantly low tension and some fraction of the deformation
will be permanent and irreversible if the tension is released.
Similar behavior occurs when a nanowire of metals, such as
Au or Cu; following an order-disorder transformation the
elastic deformation ends and the wire is elongated by one
lattice constant (or it deforms plastically). However, in con-
trast to the present case, the nanowire attains again the or-
dered state and start to deform elastically.®?

The force constant is calculated to be «=2.05 and
3.88 eV/A? for a-ZnO(9) and a-ZnO(15), respectively. The
increase in « from 2.05 to 3.88 eV/A? is due to the increase
in the width from n=9 (~12.81 A) to n=15(~22.65 A).
Note that if the Hooke’s law were valid for these nanorib-
bons, the ratio «(15)/k(9) would be equal to the ratio of
widths, namely, 22.65/12.81=~1.77. The calculated value
(3.88/2.05=1.89) is slightly higher. The discrepancy arises
from the edges of the ribbons, which respond to tension dif-
ferently from the central region. Therefore, deviation from
the Hooke’s law becomes more serious as n decreases but
diminish as n— 0. k values of a-ZnO(9) and a-ZnO(15) cal-
culated for primitive unit cell are 7.92 eV/A? (instead of 4
X 2.05=8.20 due to numerical calculations performed in a
large supercell) and 15.04 eV/A? (instead of 4 X3.88
=15.52), respectively. These values are smaller than those
corresponding to graphene (40.96 and 72.52 eV/A?) and
BN (34.02 and 60.46 eV/A?) nanoribbons.

The calculated in-plane stiffness values C for a-ZnO(9)
and a-ZnO(15) are 3.75 and 3.71 eV/AZ2, respectively.®® The
calculated C values of armchair graphene (BN) nanoribbons
for n=9 and n=15 are 18.45 (14.55) and 18.85
(14.66) eV/A?, respectively. Graphene and BN nanoribbons
have significantly higher in-plane stiffness as compared to
a-ZnO nanoribbons. The difference mainly originates from
the fact that a-ZnO honeycomb structure has larger unit cell
than that of graphene and BN honeycomb structures. In view
of the calculated « and C values, both graphene and BN
nanoribbons are stiffer than ZnO nanoribbons.

Figure 9 illustrates also the atomic structure of a-ZnO(9)
and a-ZnO(15) nanoribbons for three different values of ap-
plied strain. After the yielding point, the honeycomb struc-
ture is destroyed and the polygons being smaller and larger
than hexagons form. In some cases, a net magnetic moment
can develop in those polygons. The onset of plastic range
and variation in atomic structures can depend on the periodic
boundary conditions. These artifacts of periodic boundary
conditions are eliminated to some extent by using larger su-
percells comprising several unit cells. Nonetheless, the plas-
tic deformations shown in Figs. 9(a) and 9(b) have still large
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FIG. 10. (Color online) Variation in the strain energy E,, ten-
sion, and magnetic moment u per supercell of the bare z-ZnO(n)
(n=9) with the applied uniaxial strain. Atomic structures of the bare
z-Zn0(9) for three different uniaxial strains. The supercells consist
of five unit cells.

repeat periodicity. Even if the size and forms of polygons
appear to be hysteric, their further investigation is of funda-
mental interest. The order-disorder structural transformation
as well as dislocation generation appear to be absent in this
study. The latter may require a treatment of deformation by
taking into account very large n and c. Moreover, as pre-
dicted for graphene nanoribbons, one expects that the onset
of yielding in the presence of vacancy defects and also at
high temperature can occur at small strain.’ Nevertheless,
the plastic deformation in the present work is carried out
under ideal conditions hence its stochastic nature is not taken
into account. The energy gap of the nanoribbon undergoes a
significant change under uniaxial tension. It decreases as €
increases and becomes very small at the yielding point. Be-
yond the yielding point the band gap increases again.

In Fig. 9(c) we plot the calculated values of force con-
stant, x relative to the width w of a-ZnO(n) taken as the
distance between outermost atoms of both edges. As ex-
pected « is proportional to w and x(w) can be considered as
linear except small deviations from linearity due to edge ef-
fects. In fact, dx(w)/dw increases slightly with w. Whether
a-ZnO(n) has even or odd n also causes to a small deviation
from single linear variation. As expected, the variation in the
in-plane stiffness C with w is not significant. However, C
changes significantly between two subsequent values of n.

The zigzag z-ZnO(9) nanoribbon displays a variation
E,(€) similar to those of a-ZnO. The calculated value of « is
4.27 eV/Az, which is larger than that calculated for
a-ZnO(9) having relatively smaller width. Similarly, in-plane
stiffness value of z-ZnO(9) is slightly smaller than that of
a-ZnO(9) and a-ZnO(15). C is calculated as 3.24 eV/AZ2.
The zigzag ZnO(9) remains to be ferromagnetic metal in the
elastic deformation range but their magnetic moment de-
creases with increasing e. However, beyond the yielding
point it shows a sharp fall and diminish with increasing € in
the plastic range as seen in Fig. 10. In contrast to a-ZnO,
long polygons are aligned along the axis of the z-ZnO(9) in
Fig. 10.
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VII. DISCUSSION AND CONCLUSIONS

This work presents an extensive study on 2D monolayer
and bilayer ZnO, and ZnO nanoribbons together with their
stability analysis. The monolayer of ZnO is an ionic and
nonmagnetic, wide band-gap semiconductor with significant
charge transfer from zinc atoms to nearest oxygen atoms.
Since DFT normally underestimates the calculated band
gaps, the calculated band gap of specific structures are cor-
rected by GW,, self-energy calculations. ZnO has 2D hexago-
nal lattice forming a planar honeycomb structure. Our pre-
dictions, which contribute to a better understanding of this
material, are emphasized by way of conclusions: (i) we have
shown that, 2D ZnO monolayer and bilayer, quasi-1D bare
nanoribbons of ZnO and 0D patch of ZnO correspond to
local minima on the Born-Openheimer surface and thus are
predicted to be stable. (ii) Ab initio molecular-dynamics cal-
culations performed at high temperature corroborate our
analysis obtained from the calculation of phonon frequen-
cies. (iii) We performed calculations of phonon modes and
density of states of phonon frequencies of 2D monolayer,
quasi-1D armchair nanoribbon and a finite flake using force-
constant method. In particular, we revealed the acoustical
twisting mode of armchair nanoribbon. (iv) Our study of Zn,
O, Zn-O vacancies, and O-Zn antisite indicates that local
magnetic moments can be generated only by Zn vacancies.
(v) We provided an extensive analysis of the electronic struc-
ture of hydrogen terminated as well as bare armchair and
zigzag nanoribbons. Armchair ZnO nanoribbons are found to
be nonmagnetic semiconductors. The band gaps vary with
their widths. The narrow nanoribbons have relatively larger
band gap due to the quantum-confinement effect. Bare zig-
zag ZnO nanoribbons are ferromagnetic metals. The atoms
near the oxygen-terminated edge of the ribbons acquire mag-
netic moments. The spin polarization at the Fermi level may
attain high values for specific zigzag nanoribbons. However,
once O- and Zn-terminated edges are passivated with hydro-
gen atoms, the zigzag nanoribbon becomes nonmagnetic
metal. These electronic and magnetic properties might be
useful for spintronic applications. (vi) We found the
minimum-energy stacking of the ZnO bilayer and provided
energetics and energy band structure corresponding to this
stacking. Accordingly, bilayer ZnO is also a nonmagnetic,
wide band-gap semiconductor with slightly smaller band gap
as compared to that of monolayer. (vii) We provided an
analysis of mechanical properties. ZnO nanoribbons under
uniaxial strain show harmonic and anharmonic elastic defor-
mation ranges and a yielding point. After yielding, the strain
energy exhibits a sharp fall and the nanoribbon deform plas-
tically. In the elastic range, hexagons are uniformly deformed
but honeycomblike atomic structure is maintained. After
yielding point some of the hexagons are modified and recon-
struct to different polygons which may be smaller or larger
than hexagons. Variation in electronic and magnetic proper-
ties with deformation and formation of polygons in the
plastic-deformation range are of fundamental interest. Calcu-
lation of force constants and in-plane stiffness indicate that
the stiffness of ZnO nanoribbons is smaller than those of
graphene and BN honeycomb structures.
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In summary, it is shown that single and bilayer ZnO and
its nanoribbons in different orientations provide us for a va-
riety of electronic and magnetic properties which may be
interesting for further applications. Even if they have honey-
comb structure common to monolayer graphene and BN,
their properties exhibit important differences.
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