EQUILIBRIUM CANTOR-TYPE SETS
ALEXANDER P. GONCHAROV

ABSTRACT. Equilibrium Cantor-type sets are suggested. This allows to obtain
Green functions with various moduli of continuity and compact sets with preas-
signed growth of Markov’s factors.

1. Introduction

If a compact set K C C is regular with respect to the Dirichlet problem then the
Green function gc\x of C\ K with pole at infinity is continuous throughout C. We are
interested in analysis of a character of smoothness of g¢\ x near the boundary of K. For
example, if K C R then the monotonicity of the Green function with respect to the set
K implies that the best possible behavior of gc\x is Lip% smoothness. An important
characterization for general compact sets with geo\x € Lip% was found in [17] by
V.Totik. The monograph [17] revives interest in the problem of boundary behavior of
Green functions. Various conditions for optimal smoothness of gc\ i in terms of metric
properties of the set K are suggested in [7], and in papers by V.Andrievskii [2]-[3].
On the other hand, compact sets are considered in [1], [8] such that the corresponding
Green functions have moduli of continuity equal to some degrees of h, where the
function () = (log $)™* defines the logarithmic measure of sets. For a recent result
on smoothness of gc\k,, where Kj is the classical Cantor set, see [13].

Here the Cantor-type set K () is constructed as the intersection of the level domains
for a certain sequence of polynomials depending on the parameter v = (,,)7°; (Section
2). In favor of K(v), in comparison to usual Cantor-type sets, it is equilibrium in the
following sense.

Let A\ denote the normalized Lebesgue measure on the closed set Ey, where K () =
N2, Es. Then A converges in the weak* topology to the equilibrium measure of K ()
(Section 5). This is not valid for geometrically symmetric, though very small Cantor-
type sets with positive capacity.

Different values of v provide a variety of the Green functions with diverse moduli
of continuity (Section 7).

In Section 8 we estimate Markov’s factors for the set K () and construct a set with
preassigned growth of subsequence of Markov’s factors.

In Section 9 a set K () is presented such that the Markov inequality on K (v) does
not hold with the best Markov’s exponent m (K (7)). This gives an affirmative answer
to the problem (5.1) in [4].

For basic notions of logarithmic potential theory we refer the reader to [10], [12],
and [15].
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We use the notation | - |k for the supremum norm on K, log denotes the natural
logarithm, 0 - log 0 := 0.

2. Construction of K(v)

Suppose we are given a sequence v = (75)32; with 0 < v, < 1/4. Let ry = 1 and
re = s>, for s € N. We define inductively a sequence of real polynomials: let
Py(z) = z(x — 1) and Past1 = Pas(Pys +15) for s € N. It is easy to check by induction
that the polynomial Pps has 27! points of minimum with equal values Pps = —r2_, /4.
By that we have a geometric procedure to define new (with respect to Pss) zeros of
Pys+1: they are abscissas of points of intersection of the line y = —r, with the graph
y = Py. Let FE, denote the set {x € R : Pyri(z) < 0}. Since ry < r2,/4, the
set I consists of 2° disjoint closed basic intervals I;. In general, the lengths [; ; of
intervals of the same level are different, however, by the construction of K(v), we have
maxi<;<as l;s — 0 as s — oo. Clearly, E,y1 C E. Set K(v) = N2 E;.

Let us show that the sequence of level domains Dy = {z € C : |Pas(2) + 15/2| <
rs/2}, s =1,2,---,is a nested family.

Lemma 1. Given z € C and s € N, let wy = 21, Pys(2) + 1. Suppose |ws| =1+ ¢
for some € > 0. Then |wsy1| > 1+ 4e.

Proof: We have wsi1 = (27541) ' (w? — 1 + 27,,1). Therefore, |w,, | attains its

minimal value if wy € R, 50 |wyy1]| > (279541) ' (26 +24+279511) > 1+ %EH >1+4e.
O

Theorem 1. We have D, \, K (7).
Proof: The embedding D, C D, is equivalent to the implication
|P25(Z) + T5/2| > TS/Q — ‘P25+1(Z) + T5+1| > T5+1/2,

which we have by Lemma 1.

For each j < 2° the real polynomial Ps is monotone on /; s and takes values 0 and
—r, at its endpoints. Therefore, E, C D, and K (y) C N, D,.

For the inverse embedding, let us fix z ¢ K (7). We need to find s with z ¢ D,.
Suppose first z € R. Since D, "R = E, the condition z ¢ E, gives the desired s.

Let z = x + iy with y # 0,2 ¢ K(v). By the above, 2 ¢ D, for some s. All
7€eros (:1;])3;1 of the polynomial Pss + 75/2 are real. Therefore, |Pys(2) + r5/2| >
|Pys(2) +15/2| > rs/2 and 2 ¢ D.

[t remains to consider the case z = x + iy with y # 0,2 € K(v). There is no loss
of generality in assuming |y| < 2. Let us fix s with maxj<j<os l;s < ¥*/2 and k with
x € Ixs = [a,b]. Here, |Pas(a) + rs/2| = r5/2. Let us show that |Pas(2) + rs/2| >
| Pas(a) 4+ 75/2| by comparison the distances from z and from a to the zero z;.

If j <k then |a — z;| < |a — z|, which is less than the hypotenuse |z — ;.

If j =k then |a — zx] <lps < y?/2 < |y| < |2 — 2]

If j > k then |a — ;| = x; — b+ Iy Therefore, |[a — z;]* < |z; — b]* + 215 <
|2 = 0] + 9 < |z — 2. O

2



Corollary 1. The set K(7) is polar if and only if lims_ .., 27° log % = oo. If this limit
is finite and z ¢ K (), then

govk(y(2) = lim 27 log [ Pys (2) /7.

Proof: Clearly, g¢\p,(2) = 27° log |2 rt PQ@( ) + 1]. The sequence of the corre-
sponding Robin constants Rob(D,) = 27° 1og increases. If its limit is finite, then,
by the Harnack Principle (see e.g. [15], Th. 0 1. 10), 9o\p, /" go\k(y) uniformly on
compact subsets of C\ K (7). Suppose z ¢ K(7). Then for some ¢ € N and € > 0 we
have |w,| = 1+¢. By Lemma 1, |ws| > 1+ 45" %¢, so, for large s, the value | Pys(2)/rs]
dominates 1. This gives the desired representation of gc\g(). O

The next corollary is a consequence of the Kolmogorov criterion (see e.g. [9],
T.3.2.1). Recall that a monic polynomial @), is a Chebyshev polynomial for a compact
set K if the value |@Q,|k is minimal among all monic polynomials of degree n.

Corollary 2. The polynomial Pys+14/2 is the Chebyshev polynomial for the set K (7).

Example 1. Let us consider the limit case, when v, = 1/4 for all s, so r, = 4172",
Since here K (v) = [0, 1], the n—th Chebyshev polynomial is Q,(z) = 27" T,(2z — 1),
where T, is the monic Chebyshev polynomial for [—1, 1], that is T, (¢) = 2' " cos(n arccos t)
for n € N. Therefore, in this case, Pos(z) +r,/2 = 272 Tys(2x — 1) for s € N.

3. Location of zeros

We decompose all zeros of Pys into s groups. Let Xo = {zy, 22} = {0,1},
X1 = {ZL‘37 1’4} = {ll,la ]_—lg,l}, R ,Xk = {ZEQk_H, s ,I2k+1} = {ll,ka l17k_1—l27k, ety 1—
lor 1}, 50 Xj, = {x : Pa(x)+r, = 0} contains all zeros of Pyr+1 that are not zeros of Pa.
Set Yy = Uj_qXg. Then Pos(z) =[], ey._, (* — a1). Since Po. = Pl 1 (2 Pps—1 +75-1)
for s > 2, we have

Pyo(y) =151 Paeci (), y € Yooy Pao(2) = =151 Py (2), © € Xy (1)
After iteration this gives
|Pys(z)| =15 1752 + -1y |Paq(x)| for =€ X, with ¢<s. (2)

From here, for example, |Ps.(0)] = rs_1 752 -+ 71.
The identity Pos+1(y) = Pos(y) [1,, ex.(y—2r) = Pos(y) (Pos(y)+75) implies Pas (y)+
7s = [y, ex,(y — zx). Thus,

[[w-—w)=r for yevi.. 3)

TEEXs

Our next goal is to express the values of x; € X, in terms of the function u(t) =
3 —3V1—4t with 0 < ¢ < 7. Clearly, u(t) and 1 — u(t) are the solutions of the
equation Py(z) +t = 0. Let us consider the expression

= fily - fa(ya - fom1 (Yoot - fo(s ), (4)

)

where fk =wuor fp =1—uforl <k < s, so0 fk(t)(l fx(t)) = t. We have

Py(z) = =1 - fa(y2 - -+ ) with 1 = rq. Hence, P4( ) = Pay(x)(Po(z) +1r1) = —7"1f2(1 —
3



f2) = —1r2vafs = —ry f3(y3--+). We continue in this fashion to obtain eventually
Pys(z) = =127, = —75, which gives z € Xj.

The formula (4) provides 2° possible values z. Let us show that they are all dif-
ferent, so any z; € X, can be represented by means of (4). Since u increases
and u(a) < 1 —wu(b) for a,b € (0,7), we have u(y, - u(y2 - Ymu(a))--+) < u(y -
u(yy - Ym(1—=u(b)) -+ ). In general, let 2; = u(yr-u(ya - - - Yoy (1= w(Yry 1 u(- - - o, (1
Uy 1 Yo (1 — (@) -+ ) and @5 = u(yr - w(yz2 -+ Yay (L — w(ym1 - (-, (1 —
W(Yhgt1 "+ " Vi, - w(b)) -+ +), that is the first k,, functions fi for both points are identi-
cal, whereas fj,,+1 = 1 —u for x; and u for x;. The straightforward comparison shows
that z; > x; for odd m and z; < x; otherwise.

Lemma 2. Let s€ N and 1 < j <2° Thenl; s <lj,.

Proof: Assume without loss of generality that j is odd. Then [, = [y, x] with
r € Xg,y € X, where 1 < m < s — 1. The case m = 0 can be excluded, since
then y = 0 and 7 = 1. Consider the function F(t) = fi(v - fo(v2 -+ frno1(Ym—1 -
fm(t))--+), where fi € {u,1 —u} are chosen in a such way that y = F(7,,). Then
T = F(ym - (I — u(Yms1 - w(Yma2 - u(7s)) - -+ ). By the Mean Value Theorem, [;, =
r—y= |F,(£)| fymu(’ym-l—lu(')/s))) with /ym_/}/m'u(7m+1"'u(78))"') < 5 <
Ym  UW(Yma1 - u(s)) - -+ ). To simplify notations, we write tx = Vi * fea1(Vew1 -+ Ym—1-
fm(&) ) and 7 = Y - u(Ver1 - Yme1 - w())--+) for 1 < k < m — 1. By the

above, 7, < ti. Therefore, |f(tx)] = \/lim > \/1i47,€ = u} (7). On the other hand,

u(t) /T —4t < t for 0 < t < 1, asis easy to check. This gives |F'(¢)| = |f, (t1)] -

1
u(re) . uw(Tm-1) |

M et ()] Yot [ (O] > 71 Yt - u(:;> T p—
Vi - w(Tre1) for b <m —2 and 71 = Y1 - u(§), we obtain [F'(£)] > @ and

Taking into account the representation u(t) = #ﬁ, we have u(at) < awu(t) for

%. Since 7, =

*Ym u(7m+1 o 'U(’Ys)) T )

0 < a < 1. The value a = % “Ym * UW(Yma1 - u(7ys)) -+ ) satisfies this condition.
Therefore, l1s = u(y1 - u(y2- - Ym-1 - u())--) < au(n), that is I, < I, for
j€{3,5,--+,2° — 1}, which is the desired conclusion. O

4. Auxiliary results

From now on we make the assumption
vs <1/32  for seN. (5)

Each I, contains two adjacent basic subintervals Ip;_; ;41 and Iyj 1. Let hj, =
ljs — laj—1,6+1 — l2j s+1 be the distance between them.

Lemma 3. Suppose v satisfies (5). Then the polynomial Pys is convex on I;s_; and
loj_1s+1lojs <47sljs—1 forl1<j< 2571 Thus, hjs > %lm for s>0,1 <75 <2%

Proof: We proceed by induction. If s = 1 then P, is convex on ;o = [0,1]. Let

us show that I;1 +loy < 4. The triangle A with the vertices (0,0), (1,0), (3, —7) is

entirely situated in the epigraph {(z,y) € R? : Py(x) < y}. The line y = —r; intersects
A along the segment [A, B]. By convexity of P, we have hyg =1—11 1 —ls1 > |B—A|.
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The triangle A; with the vertices A, B, (3, —3) is similar to A. Therefore, 1 [B—A| =
}l — r1. Here, 71 = 1, and the result follows.

Suppose we have convexity of Py|r,, , and the desired inequalities for
k=1,2,---,s—1.Fixj <2 landz € [;,; = [a,b]. Then Py:(x) = (z — a)(z —
b) g(z), where g(x) = [[,_,(z — z) with n = 2° — 2. Hence,

2x—a—b = (x —a)(z —b)
1 o
Py (@) = g(@) 2+ZZ a2 Z R T

k=1 i=1,i#k

Clearly, the polynomial g is positive on [ ;_1, |2z—a—b| <11, and [(z—a)(z—b)| <

102, 1. For convexity of Py|;,, , we only need to check that 8 > 81,1 ) | |z —

1, 72 1 .
Z’“’ + ZJ,S—l Zkz:l Zz;ék ‘55 - Zk’ ’-75 - zl| .

Let us consider the basic intervals containing « : I -1 C Iy -2 C Igs-3 C -+ C
I o. The interval I, s— 2 contains two zeros of g. For them |z — 2| > Ry >

(1 — 47y5-1) Ly s—2 and |; §Z1| < 141;*1 by inductive hypothesis. The last fraction
] s—1

does not exceed 1 / 7. Similarly, [, s_s contains another four zeros of g with e <

dys—14ys—2 1 . _ 1
o = < =z 8. We continue in this fashion to obtain ;1> |z zk| <

sl ok l.(l)k—1<§
k=1 8 21"
In the same way, 151 >3y 2o [v—2] 7 Ho—z] ™" < (2)%, which gives PJ|, .

0. Arguing as above, by means of convexity of Pys|; it is easy to show the second

statement of Lemma. O

jS 12

Let 05 = 7172+ Vs, SO 71T+ - 751 05 = T.

Lemma 4. If v satisfies (5) then for any x) € Ys_1 with s € N

exp(—16 Y k) - 7s/6s < |Ph ()| < |Phli

k=1

=1g/0s

s

and

ds < l;s < exp(16 Z%) s for 1 <0<28
k=1

Proof: From (2) it follows that |Pj|g, > |P5:(0)] = rs/ds. In order to get the
corresponding lower bound, let us fix I; s C E,. Without loss of generality we can
assume that ¢ = 2j — 1 is odd. Then [;; C [j ;1 and I, s = [y, 2] with y € Y1, . =
y+ 1l s € Xs. By Lemma 3, |Pj.| decreases on [y, z], so |P.(x)| < |Pj:(y)|. We will
estimate | Py (x)| from below in terms of | Ps. (y)].

The point = is a zero of Pys+1. Therefore, Py.ii(z) = (z —y) - [1,, v

(@ = 9)  [evs v — wil - B, where Y/ = Yo\ {z,5}, 8 = [],,cy,(1 + 522). Here,
(@ =y)  [yeevs v =l = Tapex, [¥ = 26l Tievs 1y 19 — Ukl = 75 [P3:(y)], by (3).
On the other hand, by (1), Py...(x) = rs|Ps:(y)|. Hence, |Pj.(x)| = B |Ps:(y)|. Let us
estimate § from below. We can take into account only y, € Y. with y, > y, since
otherwise the corresponding term in [ exceeds 1. The interval I; s—1 contains two

% 4y,

points y, with y, —y > h; ;. Lemma 3 yields 1 + oo > -
5

l 1,5—1



For the next four points (let I; 51 C Iy s—2) we have yp —y > hyy -2 and 1+ yl—yk -
li,s
1_% , >1_§.4fys-4’ys_121—%'4’757bY(5)'

’ lm,s—Q
We continue in this fashion obtaining log > >~;_; 2% log(1 — 2 - 827 F~,). If 0 <
a < }l then log(1 —a) > 4a log% > —1.16 a. A straightforward calculation shows that
log 3 > —16,. Thus,

exp(—16s) [Py (y)] < [Pe ()] < [Pos(y)]- (6)

Combining this inequality with (2) yields the first statement of Lemma. Indeed, let
T =liy iy —ligmyt iy mg_y Tligm, With 1 <my <--- <mg=s.Theny € X, _,.
We use (6), then (2) for y, then (6) with y instead of x and z = l;, yn, — ligme + -+ +
liy_smg_s € Xm,_, instead of y, then (2) for z, etc. Finally,

eXp(_16(’ym1 +oe At Pqu» rire s < |P/S(x)| < Tro - Ts—1.

If mp =k for 1 <k < s, then all 4, are presented in the corresponding sum. Mono-
tonicity of |Ps.| on [y, x| gives the desired conclusion.

The second statement of Lemma can be obtained by the Mean Value Theorem,
since Pys(y) =0, Pys(y + l;s) = —rs. In particular, (6) with x = {1 5,y = 0 yields

§s < l1s < 0y-e'%7 <26, (7)

|

A.F.Beardon and Ch.Pommerenke introduced in [6] the concept of uniformly perfect
sets. A dozen of equivalent descriptions of such sets are suggested in [10, p. 343]. We
use the following: a compact set K C C is uniformly perfect it K has at least two
points and there exists g9 > 0 such that for any zp € K and 0 < r < diam(K) the set
Kn{z: eor <|z— 2| <r} is not empty.

Theorem 2. The set K(v), provided (5), is uniformly perfect if and only if inf ~, > 0.

Proof: Suppose K () is uniformly perfect. The values zp = 0 and 7 = l; 1 — lo
in the definition above imply 1 s + lo s > €01 5-1. By Lemma 3, we have 4, > ¢, so
inf, 75 > £0/4, which is our claim.

For the converse, assume s > vy > 0 for all s. Let us show that [, s > %")/0 lis—1
for any intervals I, ; C I; 1, which clearly gives uniform perfectness of K(v). Fix
Iis CIjs-1. Let z,y be the endpoints of I; ; with = € X, y € Y,_;.

Suppose first that y € X,_;. By the Mean Value Theorem, [; ;| Py (§)| = 75 for
some £ € I; ;. By the monotonicity of |Pj.| on I; 5, we have |Ps. ()| < | Pj«(y)|, which
is 751 |Pys—1(y)|, by (1). Here, |Pp_i(y)| < |Py-1(2)|, where z € Y,_5 is another
endpoint of I;,_;. Therefore, ;s > vs7rs_1/|Py-1(2)|. On the other hand, [;, 1 =
Ts—1/|Pys-i(n)| with n € Ijs_1, so |Py,_1(n)] > |Py-i(2)]/€'7=1, by (6). Hence,
li,s > Vs lj,s—l/€16%71 Z %’YO lj,s—l-

The case y € Ys 5 is very similar. Here at once y plays the role of z. O
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5. K(7v) is equilibrium

Here and in the sequel we consider 7, in the form r, = 2exp(—R; - 2%). Recall that
R, is the Robin constant for D, and R, T R, which is finite if K(v) is not a polar
set. In this case, let p; = R — R,. Since 19 = 1, we have py = R — log2. Clearly,
vs = 3 exp[2°(ps — ps—1)] and &5 = 27 exp(2°p, — S 1 2%p — 2 pp). From this,

27%log 0s — 0 as s — oo. (8)

Given s € N, let us uniformly distribute the mass 27% on each I, for 1 < 5 < 2%
We will denote by Ay the normalized (in this sense) Lebesgue measure on the set E,
S0 d\s = (2°1;5) 7 dt on I .

If 14 is a finite Borel measure of compact support then its logarithmic potential is
defined by U#(z) = [ log ﬁd,u(t). We will denote by ux the equilibrium measure of

K, 5 means convergence in the weak* topology.
Let I = [a,b] with b—a <1, z € I. By partial integration,

/Ilog‘zit’ dt =b—a— (z—a)log(z —a) — (b—z)log(b— z).

It follows that

1 2e
1 —a)l .
</10g]z—t|dt<(b a) g — (9)

Lemma 5. Let v satisfy (5) and R < oco. Then U*(z) — R for z € K(v) as s — oo.

Proof: Fix z € K(v). Given s, let z € I;5 for 1 < j < 2° From (9) we have
ij,s log |z — t[~1 dAs(t) < 27% (2 + log ), which is o(1) as s — oo, by Lemma 4 and
(8)- 9 g

To estimate Zi;lﬁ#j f]k log |z — t| 71 d\s(t) we use Py (z) = [[i_;(z — yx) with
Yr € Iys. As above, let I3 C I, s-1 C Ij5-92 C -+ C I . Suppose k corresponds
to the adjacent to [, subinterval I s of I,;, s—1. Then hy,, 1 < |2 —t| < |y; — yi| <
|z —t| + 15 + ls. Hence, 1 < % <1+ &g, where gy = % < %, by Lemma 3.
For this k£ we get

27 log ly; — ysl ™" <[5, loglz — |71 dAs(t) <27 (log |y; — ys| ™" + o).

In its turn, I, 59 O Ly s-1 U I, 51, where I, ;1 contains other two intervals of
the s—th level. Let k correspond to any of them. Then |z — ¢ — ;s — lps < |y; —

el < |z —t| + s+ lgs with |2 — ¢ > hys9. Here, 1 — g < izl <1 4 ¢, with

[z—1|
_ lj,s+lk,s 8 lj,s lm,sfl lk:,s ln,sfl 8 1 1
e = 52 < 7(lm,571 el lq’572) < = -2-4vy,4y,1 < -7, by Lemma 3.

Repeating this argument leads to the representation

25 25
Z log [z —t| 1 dA,(t) =27° log H ly; — k| ' + e,
k=1,k#j  Tk.s k=1k#j

where |e] <275 (gg+2e1 +---+25 e, q) with g, < 2-87F for k > 1. Here we used
the estimate |log(1l + z)| < 2|z| for || < 1/2. We see that |e| < 27°.
7



The main term above is 27 log | Py. (y;)] !, which is 27¢ log(ds/rs)+0(1), by Lemma
4. Thus,

/log |z — |71 dA(t) = 27° log(ds/7s) +o(1) as s — oo.
Finally, 27¢ log(ds/rs) = Rs +27% log & — R as s — oo, by (8). O
Theorem 3. Suppose v satisfies (5) and Cap(K (7)) > 0. Then Ay — px(y)-

Proof: All measures \; have unit mass. By Helly’s Selection Theorem (see for
instance [15, Th.0.1.3]), we can select a subsequence (A, )52, weak® convergent to
some measure y. Approximating the function log|z — -|~! by the truncated contin-
uous kernels (see for instance [15, Th.1.6.9]), we get liminfy .., U (2) = UH(2) for
quasi-every z € C. In particular, by Lemma 5, we have U*(z) = R for quasi-every
z € K(v). This means that 1 = pg(, (see e.g. [15, Th.1.3.3]). The same proof re-

mains valid for any subsequence (A;;)32,. Therefore, A, 5 [k (). O

Remark. Clearly, any compact set K with nonempty interior cannot be equilib-
rium in our sense since supp pur C OK. Neither geometrically symmetric Cantor-type
sets of positive capacity are equilibrium. Let us consider the set K(®) from [1] which
is constructed by means of the Cantor procedure with l;1; = [$ for 1 < a < 2. The
values o > 2 give polar sets K. As above, let A\, be the normalized Lebesgue
measure on Ey = Ui, [;,. Given s € N, let z, = Iy — Iy 4 --- + (—1)**'l,. Estimat-
ing distances |z — | for z = 0 and z = z,, as in Lemma 5, it can be checked that
U (0) — UM (2,) > S22 27% 1 log ( (e~ )by 1) ;- 1t is easily seen that all frac-

le—1—2lk ) (-1~ 1k~ 11
tions here exceed 1. Therefore, for each s there exists a point z, € K@ such that

U*(0) — U™ (z,) exceeds the constant § log % and the limit logarithmic

potential is not equilibrium. Indeed, if K (®) is not polar, then it is regular with respect
to the Dirichlet problem (see [11]) and U*x must be continuous in C and constant
on K@,

6. Smoothness of gc\ k()

We proceed to evaluate the modulus of continuity of the Green function corresponding
to the set K(7). Recall that a modulus of continuity is a continuous non-decreasing
subadditive function w : Ry, — R, with w(0) = 0. Given function f, its modulus of
continuity is w(f,d) = supy,_, <5 [f(z) = f(v)|.

In what follows the symbol ~ denotes the strong equivalence: a, ~ by means that
as = bs(1+ 0(1)) for s — oco. This gives a natural interpretation of the relation < .

Let v be as in the preceding theorem. Then, we are given two monotone sequences
(05)32, and (ps)22, where, as above, 0 = 71 Vs, ps = D po oy 27" log ﬁ We define
the function w by the following conditions: w(0) = 0, w(d) = py for § > §;. If s > 2
then w(d) = ps + 27° log% for s < 6 < 65-1/16 and w(d) = ps—1 — ks(ds—1 — ) for
0s-1/16 < 6 < 8,1 with kg = 182761, log8.

Lemma 6. The function w is a concave modulus of continuity. If v5 — O then for
any positive constant C' we have w(d) ~ ps + 27° log %_55 as 6 — 0 with §s < 0§ < 05_1.
8



Proof: The function w is continuous due to the choice of k,. In addition, w'(ds_1 +
0) < ks < W'(d5-1/16 — 0), which provides concavity of w.

If s = % exp(2°(ps — ps—1)] — 0 then 2°p; — oo and we have the desired equivalence
in the case 5 < 6 < d5_1/16. Suppose d5_1/16 < § < d5_1. The identity

O
Po1 = ps +27° log (10)

25
yields |ps +27° logg—j —w(0)] < 27°[|log 505| + 12log8 - (1 — 5%1)] < 27%[|log C| +
8log 2|, which is o(w) since here w(d) > ps_3 —27° log 8. 0O

Lemma 7. Suppose ~y satisfies (5) and Cap(K(v)) > 0. Let z € C, zy € K(v) with
dist(z, K(v)) = |z — 2| = 0 < 1. Choose s € N such that 2y € 1;5 C I, s—1 with
lis <0<l s-1. Then ge\ky)(2) < ps +27° log 165.

On the other hand, if 1; s < <l 1 then gC\K(W)( 0) > ps +27° log %.

Proof: Consider the chain of basic intervals containing zy: 2y € I;s C I;, -1 C
Ii,s0C- - ClIj,0=1[0,1]. Here, I;, i \ I;,_, s—i+1 contains 2! basic intervals of
the s—th level. Each of them has certain endpoints x,y with = € X, y € Y;_;. Recall
that Y, is the set of zeros of Ps. Distinguish y; € I, ;. Now for a fixed large n we
will express the value |Pon (2)| = Hiil |z — x| in terms of Hilljk# |y; — yx| (compare
to Lemma 5). Clearly, each interval of the s—th level contains 2% zeros of Pan, so
we will replace these 2"7° points with the corresponding yy.

Let us first consider the product 7y := [] |z—xy|. Here, |z —x| < 0+1;5 < 20,
so my < (20)

Let m := kaelm,s
|Yj — Ym|, since y; and y,, are the endpoints of the interval I, s_;. Therefore, |z — x| <
2 |y] ym| and m < (2 |yj - ym|>2n |

In the general case, given 2 < i < s, let m; denote the product of all |z — x| for
xk € Ji=1;, i\ 1j, | s—it1. Suppose x € I, . Then, |z —xp| <+ 15+ |y; — gl +

5+ s +lg.s
lgs < |y] — yql(1 + B f )

(s =i+ 1)—th level for I, o Here, —— < & byt % 817" by Lemma 3. As in

Y . .
hjzs % 7 lj,L',S—Z

Ljstla,s —1 :
the proof of Lemma 5, we obtain o < £.2.87" From this, [Ler,. |2 — ] <

[y; — ygl (1 + 22879)]2" ", Since J; contains 2°~! basic intervals of the s—th level,
—i i—1 n—s

<[+ 28 Tles v qu2 :

The product []7_,(1 + % 8_1)22 is smaller than 2, as is easy to check.

Therefore, |Pyn(2)] = [[1_ym < [8-6 - Hi;l’k#j ly; — yk|]*" . The last product in
the square brackets is |Py.(y;)|, which does not exceed r,/ds, by Lemma 4. Hence,
27" log | Pan(2)] < 27° log 288 — R,

Finally, by Corollary 1, gC\K(V)(z) = R+ lim, o 27" log | Pon(z)], which yields the
desired upper bound of the Green function.

Similar, but simpler calculations establish the sharpness of the bound. We have
govk((—0) = R+ lim, .o 27" log Pon(—6). Now, Pon(—06) = [[_,m with my =
[L,er (6 + i) > 62" and m; = [Ler, ., (0 +ak) for i > 1. Suppose xy, € Iy C

9
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z — x|, where I,,, s is adjacent to [ ;. Then |zg — zx| <1, 521 =

, since y; and y, belong to different subintervals of the




Iy iv1. Then 04xp > y,—1,ys. Since y, > hy i > %ll’s,,-, we have 0+x), > yq(l 87%)
and m; > [(1=387)2"[[, ., .., 4g]*" " Therefore, Pyn(=6) > [3 [T;_ 1yk]2n =
[$|P5(0)]1*"" = [8/6s - 75/2]*" ", by (2). Thus, 27" log Pyn(—0) > —R, 4 27* log &
and ge\k(y)(—0) > ps+27* log £. O

Theorem 4. Suppose 7 satisfies (5) and Cap(K(y)) > 0. If 6 < § < d5—1 then
ps +27° log% <w(ge\k(y),0) < ps +27° log %5. If 75 — 0 then w(ge\k(y),0) ~ w(0)
as § — 0.

Proof: Fix § and s with §5 <0 < d5-1. By (7), 05 < l1s < 2d5 < 0s-1.

If I, <6 < 851 then w(ge\k(y),9) = ge\k(y)(—0), so Lemma 7 yields the desired
lower bound. If §; < § < [, then go\k(y)(—0) > pop1 + 275! log 531 = ps +
275! log 55, by (10). Here, 27571 log%—f > 27° log %, as is easy to check.

In order to get the upper bound, without loss of generality we can assume that
w(ge\k(1):0) = go\k(y)(2) where z € C is such that dist(z, K(v)) = |z — 20| = ¢ for
some zy € K (7).

Fix m such that zy € I;,, C I;, ;—1 for some j with [;,, < <, j—1. Then m > s,
since otherwise Lemma 4 gives a contradiction 0 < ds_1 < 9, < Iy < 0.

If m = s then, by Lemma 7, the result is immediate.

If m > s+1 then go\k()(2) < pm+27" log 182 that does not exceed ps+2~* log 165.
Indeed, the function f(0) = ps — pm + (27° - ") log 169 — 27°logds + 2~ m10g5
attains its minimal value on [ds,0,_1) at the left endpoint. Here, f(d5) = (27° —
27" log8 + 374 1 (27F = 27™) log =~ > 0.

The last statement of the theorem is a corollary of Lemma 6. O

7. Model types of smoothness

Let us consider some model examples with different rates of decrease of (ps)2°,. Recall
that for non-polar sets K(y) with R = Rob(K (7)) we have ps | 0 and Ry — Rs—1 =
pPs—1— ps = 2 °log % with pg = R — log 2. Therefore, R = log2 — Y 77, 2 ¥ log 2.
In addition, (5) implies ps > 27*log 16 and R > log 32, so Cap(K(v)) < 1/32.

If a set K is uniformly perfect, then the function gc\x is Hélder continuous (see
e.g. [10], p. 119), which means the existence of constants C, «a such that

govk(2) < O (dist(z,K))* forall zeC.

In this case we write gc\x € Lip a.
By Theorem 2, gc\k(+) is Holder continuous provided ~, = const. Now we can con-

trol the exponent « in the definition above. In the following examples we suppose
that dist(z, K(v)) = 0 with d; < 0 < 51 for large s.

Example 2. Let 75 = 11 < % for all s. Then 0, = ¥{,r, = 7% ', R = log %,
and p, = 27%log Q—il Here, p, +27° logd% > ps > 27° =0 with a = — 1°g21. Since
ds = 71 05—1 > 71 6, we have, by Theorem 4, gc\k()(—6) > 7§ d%. On the other hand,
ps +27° log 3= 163 - g IOg%
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1/a

Suppose we are given a with 0 < a < 1/5. Then the value v, = 27"/ for all s

provides ge\k(y) € Lip a and ge\k(y) ¢ Lip 5 for 5 > a.

The next example is related to the function h(d) = (log$)~" that defines the log-
arithmic measure of sets. Let us write gc\x € Lipp, o if for some constants C' we
have

gok (2) < Ch*(dist(z,K)) forall zeC.

Example 3. Given 1/2 < p <1, let ps = p® for s > so, where £ log 16 < (2p)™.

This condition provides 75 < 1/32 for s > so. Suppose 75 = 1/32 for s < 59, so we

can use Theorem 4. For large s we have §; = C27°u(?)" with u = exp(gl’j—:f) and
some constant C. Let us take a = ll‘j)gg(é/pp)), so (2p)® = 1/p. Then h*(§) > h*(ds) >

€0(2p)7°* =¢€gp - ps—1 for some gy. From this we conclude that gec\x(,) € Lipy o for
given a. Evaluation ge\ k(1) (—6s) from below yields gc\k(y) ¢ Lipy 8 for 3 > a. Now,
given o > 0, the value p = 2" Tre provides the corresponding Green function of the
exact class Lip, a (compare this to [1], [8]).

Example 4. Let p, = 1/s. Then v, = exp(5%) < 1/32 for s > 8. As above,

52—
all previous values of v, are 1/32. Here, 0, = C'2 *exp[2 — - %] Summation

by parts (see e.g.[14],T.3.41) yields §, = C'27° exp[—2°T'(s72 + 0(s72))]. From this,
log 2
w(ge\k(y):0) ~ 5 ~ Iog Tog 173,

Example 5. Given N € N, let Fy(t) = loglog---logt be the N—th iteration of
the logarithmic function. Let p, = (Fy(s))™! for large enough s. Here, pp_1 — pp ~
[k -loghk - Fy(k)--- Fx_1(k) - F&(k)]7. Since s = C 27 exp[— > 1_, 2"(pr—1 — p)],
we have, as above, s ~ %. Thus, w(ge\k(y),0) ~ [Fni2(1/8)] 71

We see that a more slow decrease of (p,) implies a less smooth gc\ k() and con-
versely. If, in examples above, we take v, = 1/32 for s < sy with rather large sq, then
the set K () will have logarithmic capacity as closed to 1/32, as we wish.

Problem. Given modulus of continuity w, to find (v,)22, such that w(gc\k(), )
coincides with w at least on some null sequence.

8. Markov’s factors

Let P,, denote the set of all holomorphic polynomials of degree at most n. For any
infinite compact set K C C we consider the sequence of Markov’s factors M, (K) =
inf{M : |P'|x < M |P|g forall P € P,}, n € N. We see that M,(K) is the norm
of the operator of differentiation in the space (P, | - |k). In the case of non-polar K,
the knowledge about smoothness of the Green function near the boundary of K may
help to estimate M, (K) from above. The application of the Cauchy formula for P’
and the Bernstein-Walsh inequality yields the estimate

My (K) < i{;lf5_lexp[n'w(9<:\f<;5)]- (11)
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This approach gives an effective bound of M, (K) for the cases of temperate growth
of w(ge\k, -). For instance, the Holder continuity of gc\x implies Markov’s property
of the set K, which means that there are constants C, m such that M, (K) < Cn™
for all n. In this case, the infimum m(K) of all positive exponents m in the inequality
above is called the best Markov’s exponent of K.

Lemma 8. Suppose v satisfies (5) and Cap(K (7)) > 0. Given fized s € N, let f(0) =

6 Lexp[2°(pr + 27% log %‘5)] for 0 < 0 < Op—1 with k > 2. Then infocs<s5, f() =

f(6s —0) = 4v/26; L exp(2° ps).

Proof: Let us fix the interval Iy = [0k, x_1). In view of the representation f(4) =
Cs.k (5237’6_1, the function f increases for k < s, decreases for £ > s, and is constant
for k = s on I;. An easy computation shows that f(dxy1) < f(dx) for £ < s — 1 and
f(6k—1—0) < f(dx —0) for k > s+ 1. Thus, it remains to compare f(d; —0) and f(Js).
Here, f(ds) =16 55_1 exp(QS ps) exceeds f(ds - O) = 55_1(16/’75-&-1)1/2 eXp(QSpS_H) =
43/2 57  exp(2° py). O

Example 6. Let v, = v < 3% for s € N. Then, by Lemma 8 and Example 2,

Mys (K (7)) < V80, = V8~ 2%/, where a is the same as in Example 2.

On the other hand, let Q = Ps 4+ 7,/2. Then |Q|x(,) = r5/2 and |Q'(0)| = r5/ds, so
Mo (K (7)) > 2671 =225/ Now, for each n we choose s with 2° < n < 257! Since
the sequence of Markov’s factors increases,

cn'® < My (K(7)) € Mu(K(7)) € Maenr (K (7)) < Cn/®

with ¢ = 217V O = 47123241/ Given m € [5,00), the value 7, = 27™ for all s
provides the set K(vy) with m(K(y)) =m =1/a.

However, the estimate (11) may be rather rough for compact sets with less smooth
moduli of continuity of the corresponding Green’s functions. For instance, in the case
of K(v) with > ;7 v < oo (then 2° p; — 00) and n = 2%, the exact value of the right
side in (11) is 4v/26; " exp(2° ps), whereas Mo (K (7)) ~ 207", which will be shown

below by means of the Lagrange interpolation. It should be noted that the set K (7)
may be polar here.

Let us interpolate P € Pys at zeros (zj)7_; of Pys and at one extra point [; ;. Then

the fundamental Lagrange interpolating polynomials are L.(x) = —Pss(z)/rs and
Ly(x) = (m_xiﬁ(_xli_)lfz)%)m) for k =1,2,---,2° Let Ay denote sup,ex )l L (z)] +

S22 |Li(2)]]. For convenience we enumerate (z)2, in increasing way, so zj € I
for 1 < k < 2%

Lemma 9. Suppose v satisfies (5) and Y o yx < 00. Then Ag ~ 26,7 .

Proof: We use the following representation:

P, Py Z 1
A1 2:(7) = Ay + By

T — o) Pos () (20— a3) Phe (1) itk T T (12)

Liy(x) = (
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In particular, L;(0) = —I;} — ZjSkal By (2), |L.(0)| = 071, so A, > |L(0)] +
|LL(0)| > 071 + 17 > 671 (1 + e719%), by (7). Thus, A, > 26,

We proceed to estimate A, from above. Lemma 4 gives the uniform bound |L,(x)| <
6t

Let us examine separately the sum Y7, |Ay|, where Ay are defined by (12). Let
Co = exp(16 > 72, 7). Then, by Lemma 4, |P.(x)| < |P(0)| = r5/ds < Co|Pys(x1)]
for # € K(y). Therefore, |A;] < I} < ;" and S22 NA < Co S (w — lg) 7"
Here, 30 (2 — L)1 < 2 l1+_1, as is easy to check. Thus, S A < 0 +
2006, .

In order to estimate the sum of the addends By, let us fix x € K(y) and 1 <m < 2°
such that x € I,,, . Suppose first that k£ # m. Then

i PQS(.Z')
r—x;

=157k

< 2|P4.(¢)| (13)

with a certain { € I,,,. Indeed, if + = x,, then this sum is exactly |Pj.(Z.m)|, so
¢ = x,,. Otherwise we take the main term out of the brackets:
1+ >

PQS (.CE) ]
j=Ljkggm | C

T — Ty
Here the sum in the square brackets can be handled in the same way as in the proof
of Lemma 3. Let I, C g1 C Lysa C -+ . Then [-++] < 1+l o(hg iy +2h 1o+
) S+ Bl (i 20 ) <1+ By 4+ 2 dydyer + 1) < 2.
On the other hand, by Taylor’s formula, Py:(x) = Ph.(§)(x — x,,) with £ € I, 4,
which establishes (13).

28
T — T

Therefore,
28 28 e
0
Z |Bi| < Z |z — x|
k=1,k#m k=1,k#m k
As above, Y0 |Bil < 2Co(hgt g +2h ) 4+ ) <4Cohgt y <5Col ) .
It remains to consider B, = = x]:fs T Z i=Litm 7oz . Let us take the interval
I, s adjacent to I, s, so I, s UL, s C [ _1. Then as above, Z?;#m |z — x|t

2|z — z,|7! and \B | <2Co |z — z,| 7" < 3Col 1y, since | — x| > hgs1.
This gives Zk L 1Be] < 8Ch lqs L <8Cy0, Y, by Lemma 4. Finally, A, < 26, +
10Cy 6, Y = 0,12+ 10Cyv,) ~ 2671 O

Theorem 5. With the assumptions of Lemma 8, Mas(K(v)) ~ 24,

Proof: On the one hand, |Pas+75/2| k() = 7s/2 and | Py, (0)| = 75/85, 50 Mas (K (7)) >
20,1

On the other hand, for each polynomial P € Py and = € K(vy) we have |P'(z)| <
|P|k(+) As, and the theorem follows. O
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We are now in a position to construct a compact set with preassigned growth of
subsequence of Markov’s factors. Suppose we are given a sequence of positive terms
(Mas)22y with Y00 ) Mss /Mys+1 < oo. The case of polynomial growth of (M,) was
considered before, so let us assume that C'n™ M, ' — 0 as n — oo for fixed C' and m.
Fix so such that Mys /Mys1 < 1/32 for s > sg and Mysy > 2 - 25%,

Let us take v, = Mas1/Mas for s > sy and 7, = (2/Maso)/*0 for s < sg. Then
vs < 1/32 for all s and we can use Theorem 5. Here, 65 = 2/Mas, s0 Mas (K (7)) ~ Mas.

It should be noted that the growth of (M, (K)) is restricted for a non-polar compact
set K ([5], Pr.3.1). It is also interesting to compare Theorem 5 with Theorem 2 in
[16].

9. The best Markov’s exponent

If a compact set K has Markov’s property, then the Markov inequality is not neces-
sarily valid on K with the best Markov’s exponent m(K'). An example of such compact
set in CV, N > 2 was presented in [4], where the authors posed the problem (5.1):
is the same true in C? The compact set K () with a suitable choice of v gives the
answer in the affirmative.

Example 7. Fix m > 5. Let ¢, = Vk— vk — 1 and v, = 27" for k € N. Then,
§s = 27(mstV5) and p, = D hestl 27% log 2m~1*ek Since g, < 1, we have exp(2° p,) <
2™, By Lemma 8 and (11), Mays(K (7)) < Cy 07" with Cy = 4v/2 - 2™,

On the other hand, as in Example 6, Mos (K (7)) > 26,

Let us show that for each k£ > 2 the value my == m + k\ﬁ is the Markov exponent
for K (). We want to find a constant Cy such that M, (K (7)) < Cxn™ holds for all
n € N. Let 271 < n < 2% Then M,(K(y)) < Mas(K(7)) < Co2™n™s. If s > k then
ms < my. If s <k then M, < M. Therefore, Cy, = max{Cy 2™, My} satisfies the
desired condition.

However, the Markov inequality on K () does not hold with the exponent m(K(v)) =
inf my = m. Indeed, Mys(K (7)) > 26,1 = 2-2™5.2V5 Therefore, given constant C,

the inequality Mss (K (7)) < C 2™ is impossible for large s.
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