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ABSTRACT

FIRST-PRINCIPLES STUDY OF BINARY GROUP IV-V
POLYMORPHS IN 2D TETRAHEX STRUCTURE

Soheil Ershadrad

M.S. in Materials Science and Nanotechnology

Advisor: Dr. Seymur Jahangirov

August 2021

Tetrahex materials are a novel family of 2D materials, made of an ordered se-

quence of tetragons and hexagons, with exotic electronic, optical and mechanical

properties. Motivated by the promising photocatalytic and auxetic properties

found in the Tetrahex-carbon, we investigate the behavior of binary group IV-

V polymorphs in this structure (denoted by th-XY2 where X = C and Si, and

Y = N, P, As, and Sb), through first-principles methods. We demonstrate that

these compounds exhibit robust energetic, dynamical, thermal, and mechanical

stabilities. Our calculations show that the intrinsic structural anisotropy within

this family induces strongly anisotropic mechanical, electronic, and optical behav-

ior. These materials offer high ultimate strain, comparable to that of graphene.

The majority are semiconductors in nature, where th-CAs2 and th-CP2 possess

direct and quasi-direct band gaps, respectively, and the rest have indirect band

gaps. Besides, an indirect-to-direct band gap transition can be induced in th-CSb2

through strain engineering. Studied compounds have good optical absorption in

the visible and ultraviolet regions of the light spectrum, suitable for optoelectron-

ics applications. Their band gaps are wide enough to provide the photogenerated

energy required for the splitting of water. In th-CAs2 and th-CP2, the positions

of band edges are perfectly compatible with the water oxidation and reduction

potentials. Besides, they offer anisotropic high charge carrier mobilities, which

prolongs the average lifetime of charge carrier drift. Having all these features in

one package, these compounds, especially th-CAs2 and th-CP2, can be consid-

ered promising candidates for high-performance photocatalytic water splitting.

Moreover, we found auxetic behavior in th-CN2 and th-SiN2 around their equilib-

rium structure. Having this rare feature endows these compounds with potential

applicability in numerous areas, from biotechnology to defense.

Keywords: density functional theory, 2D Semiconductor, Photocatalyst, Auxetic.
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ÖZET

TETRAHEX YAPSNDAKI GRUP IV-V IKILI
POLIMORFLARN ILK ILKELER YÖNTEMI ILE

INCELENMESI

Soheil Ershadrad

Malzeme Bilimi ve Nanoteknoloji, Yüksek Lisans

Tez Danışmanı: Dr. Seymur Jahangirov

Augustus 2021

Tetrahex malzemeleri, düzenli bir dörtgen ve altıgen dizisinden oluşan yeni bir iki-

boyutlu (2B) malzeme ailesidir ve ilginç elektronik, optik ve mekanik özelliklere

sahiptir. Bu çalışmada Tetrahex-karbonda bulunan umut verici fotokatalitik ve

auxetic (negatif Poisson oranına sahip) özellikleri göz önünde bulundurarak, bu

yapıdaki ikili grup IV V polimorflarının (th-XY2 ile gösterilir, burada X = C, Si ve

Y = N, P, As, Sb) özellikleri yoğunluk fonksiyoneli teorisi kullanarak araştırılmış

ve bu bileşiklerin önemli ölçüde enerjik, dinamik, termal ve mekanik kararlılık

sergilediği gösterilmiştir. Yaptığımız çalışma bu ailede bulunan yapısal ani-

zotropinin güçlü bir şekilde anizotropik mekanik, elektronik ve optik davranışı

tetiklediği göstermektedir. Bu malzemeler, grafen ile karşılaştırılabilecek yüksek

nihai gerilme göstermektedir ve çoğunluğu yarı iletkendir. th-CAs2’de doğrudan

bant boşluğu ve th-CP2’de neredeyse doğrudan bant boşluğu görülmektedir.

Ailenin bunlar dışındaki üyeleri dolaylı bant boşluklarına sahiptir. Ayrıca, th-

CSb2’de dolaylı-doğrudan bant aralığı geçişi gerinim mühendisliği ile ulaşılabilir.

İncelenen bileşikler görünür ve mor ötesi ışık spektrumunu soğuran özelliğine

sahiptir ve optoelektronik uygulamalar için uygundur. Bant aralıkları, suyun

ayrışması için gerekli olan fotojenere edilmiş enerjiyi sağlayacak kadar geniştir.

th-CAs2 ve th-CP2’de bant kenarlarının konumları su oksidasyonu ve redüksiyonu

ile mükemmel uyumludur. Ayrıca, yüksek anizotropik yük hareketliliği yük

taşınımı ortalama yaşam süresini uzatmaktadır. Tüm bu özellikler sayesinde

bu bileşikler, özellikle th-CAs2 ve th-CP2, yüksek performanslı fotokatalitik su

ayırma için umut verici adaylar olarak kabul edilebilir. Ayrıca, th-CN2 ve th-

SiN2 bileşiklerinin auxetic davranış sergilediği görülmektedir. Bu nadir özellik,

bu bileşiklere biyoteknolojiden savunmaya kadar birçok alanda potansiyel kul-

lanım alanı kazandırabilir.
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Chapter 1

Introduction

The advent of graphene [1, 2, 3, 4], in 2004, can be considered as the genesis of the

era of 2D materials. In graphene, the presence of two inequivalent Dirac cones at

the K and K′ corners of the Brillouin zone (BZ) induces defectless ballistic charge

transport, making graphene more conductive than copper [5, 6]. However, the

gapless nature of graphene is an obstacle in its functionality in semiconducting

and optical absorption applications [7]. Carbon-based 2D compounds, however,

can simultaneously offer outstanding electrical and mechanical properties, inher-

ited from their graphene parent, and an energy band gap in the semiconducting

region. Thus, in the quest for superior 2D materials, carbon-based compounds

gained special popularity. Since carbon offers different hybridization states, in-

cluding sp, sp2, and sp3; not only formation of different carbon-based allotropes

are possible but also this feature can be utilized in the design of new carbon-based

compounds with different chemical and physical properties [8]. Penta-graphene

(PG) [9] and its Stone-Wales defect, tetrahex-carbon (th-C) [10], are two recently

designed carbon allotropes with sp2-sp3 orbital hybridization, which exhibit out-

standing electronic, mechanical, and optical properties. PG is the counterpart of

graphene with pentagons as its building blocks, offering negative Poisson’s ratio

and ultrahigh strength [11]. Under the Stone-Wales transformation [12, 13], PG

undergoes a structural transition into a more energetically favorable th-C phase.

The th-C shows a direct band gap, high charge carrier mobility, and anisotropic
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electronic and optical properties, promising for optoelectronic devices [14, 15].

Although these allotropes of carbon offer some desirable properties in pristine

conditions, extra functional features can be induced in them through compound-

ing. Recently, Kilic et al. [16] studied the compounds of th-C with other group-

IV elements, known as th-CX (where X = Si, Ge, and alloys). They showed that

these compounds are highly stable, satisfying all the requirements needed for

synthesizing. th-CX compounds offer highly anisotropic mechanical, electronic,

and optical properties, and significant potential for photocatalytic water split-

ting applications. Similarly, upon compounding PG with group-V elements, a

metastable family of materials, known as penta-CX2 (where X = N, P, As, and

Sb), can be created which offer negative Poisson’s ratio, high charge mobilities,

and strain-tunable properties, suitable for photocatalysis applications [17, 18, 19].

These are only a few examples, accentuating the promising prospect for the re-

alization of superior and unprecedented properties, through the compounding of

2D carbon allotropes with other chemical elements.

In the family of 2D materials, the out-of-plane quantum confinement provokes

special electronic, mechanical, and optical properties, unprecedented in their bulk

counterparts [20, 21]. Among these unique features, the extremely high surface-

to-volume ratio combined with shorter charge carrier migration distance has made

some of the 2D crystals promising for performance enhancement in Hydrogen

generation from photocatalytic water splitting [22, 23, 24]. Several studies have

indicated that 2D materials can outperform their bulk parents in photocatalysis.

For instance, it was shown that photocurrent density produced in 2D SnS2 [25]

and ZnSe [26] crystals are 70 and 200 times greater than their bulk form, re-

spectively. Similar efficiency enhancements were also observed in 2D WS2 [27]

and CdS [28], relative to their bulk forms. Although these results are promising,

there is a long road ahead of 2D materials to achieve the desirable photocatalytic

efficiency, and superior candidates should be proposed through experimental and

theoretical studies.

Materials with a negative Poisson’s ratio (PR), known as auxetic, are very

rare. In an auxetic crystal, in contrast to a conventional crystal, the thickness

increases upon tensile stress and decreases under compressive stress. Among the

2



few auxetic materials known to this day, the majority have a negative PR only

under extreme applied strain. Materials with auxetic behavior around their equi-

librium state are even harder to come by [29]. Auxetic materials have promising

potential as alignment apparatus and dilator to open up blood vessels in biomedi-

cal applications [30], bulletproof armor and vests in defense [31], molecular sieves

[32], sensors [33], etc. The appearance of auxetic behavior is reported in both PG

and th−C structures [9, 16]. However, in th−C, negative PR appears only under

intensive strain, and not near its equilibrium state. Considering the fact that the

configurational prerequisites of auxetic behavior preexist in tetrahex structures,

the possibility arises that the compounds formed in this form offer negative PR

even in their pristine condition.

Motivated by these possibilities, using first-principles methods, we study th-

CX2 (where X = N, P, As, and Sb) and th-SiN2. Tetrahex structures are a novel

family of 2D materials, formed by the structural transition from their pentagonal

counterparts, upon Stone-Wales transformation. Overall, this thesis is divided

into two sections, discussing the properties of th-CX2 (where X = N, P, As, and

Sb) compounds in the first part and th-XN2 (where X = C and Si) in the second

part. In each section, at first, we discuss the structural properties of the tetra-

hex compounds, then we investigate their energetic, vibrational, thermal, and

mechanical stability. Later, mechanical properties of these materials are investi-

gated, including Young’s modulus, Poisson’s ratio, and ultimate strain. We show

that th-XN2 (where X = C and Si) compounds are among the rare materials that

offer auxetic behavior in pristine conditions. Next, electronic band structure and

orbitally decomposed projected density of states are discussed. After that, we

inspect if these materials have the prerequisites for efficient photocatalytic water

splitting. We show that at least two members of this family, namely th-CP2 and

th-CAs2 satisfy all the essential requirements for this process, including proper

band gap width and band alignment with the redox potential of water splitting,

prolonged charge carrier lifetime due to anisotropic carrier mobilities, and suitable

solar light absorption coefficient. We also investigate the effect of strain engineer-

ing on the electronic and photocatalytic behavior of these materials. Finally, the

optical absorption behavior of these compounds is investigated.
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Chapter 2

Theoretical Background

In principle, as a quantum mechanical equivalent of Newton’s equations of motion,

all information about a quantum system can be extracted from the many-body

Schrodinger equation [34]:

HΨi(r, R) = EiΨi(r, R) (2.1)

where the Hamiltonian is,

Ĥ = −1

2

N∑
i=1

52
i−

1

2

M∑
A=1

1

MA

52
A−

N∑
i=1

M∑
A=1

ZA
rjA

+
N∑
i=1

N∑
j>i

1

rij
+

M∑
A=1

M∑
B>A

ZAZB
RAB

(2.2)

Here, the first two terms are related to the kinetic energy of electrons and

nuclei, respectively, and the rest are related to the Coulomb interaction among

nuclei, electrons, and nuclei-electrons, respectively. However, in realistic cases

except for some simple systems such as He or H, this equation is too complicated

to offer a calculable solution. To solve this equation, we face 3N + 3M degrees

of freedom,
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ĤΨi(~r1, ~r2, ..., ~rN , ~R1, ~R2, ... ~RM) = EiΨi(~r1, ~r2, ..., ~rN , ~R1, ~R2, ... ~RM) (2.3)

where N is the number of electrons and M is the number of nuclei. There-

fore, various approximations are employed to simplify this complex equation and

through numerical methods, achieve a solution closer to the exact one.

2.1 Born-Oppenheimer Approximation

The first approximation to these kinds of many-body systems is to separate the

motion of electrons and nuclei. Considering the fact that the mass of an ion

is more than a thousand times higher than the mass of an electron, and conse-

quently, its velocity is at least a thousand times lower, we can assume that elec-

trons will be arranged according to the coordinates of ions before ions positions

are changed. This assumption, known as the Born-Oppenheimer approximation,

helps to solve the electronic problem, independent of the ionic movements, by

assuming a system of fixed ionic coordinates,

Ĥelect = −1

2

N∑
i=1

52
i −

N∑
i=1

M∑
A=1

ZA
rjA

+
N∑
i=1

N∑
j>i

1

rij
(2.4)

Although promising, this approach leads to an electronic problem that has 3N

degrees of freedom and is still hard to solve.

2.2 Hartree-Fock Approximation

Hartree approximation [35] can be employed to simplify the complicated elec-

tronic problem. According to this approximation, a many-electron wave function

can be written as the product of one-electron wave functions, where each of these
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electrons drifts in a potential field which is constructed by the rest of them. Thus,

the effect of all electrons can be defined as an effective mean-field one-electron

potential νi:

N∑
i=1

N∑
j>1

1

rij
≈

N∑
i=1

νi(ri) (2.5)

Thus, by employing the Hartree method, after determining an initial effective

potential, iterative calculations should be performed until a self-consistent solu-

tion is reached that minimizes the total energy. The drawback of this method

is that the effect of the Pauli exclusion principle (exchange) is not considered in

the approximation. To include the exchange effect, the total wave function can

be written as Slater determinants [36], known as the Hartree-Fock method,

ΦSD =
1√
N !
det {χ1( ~x1)χ2( ~x2)...χN( ~xN)} (2.6)

where, 1√
N !

is normalization factor, and χi are orbital wave function. In this

way, 3N degrees of freedom reduce to 3, and numerical calculations will be simpli-

fied. Although this approximation considers the exchange effect, the correlation

between the many-body electron system is completely neglected [37].

2.3 Density Functional Theory

The first attempts to use the full electron density as the fundamental variable of

the electronic many-body problem were done by Thomas and Fermi [38, 39]. Al-

though this approximation failed to include exchange-correlation terms, it created

a cornerstone for the rise of Density Functional Theory (DFT).

Hohenberg and Kohn [40], in 1964, introduced the principles of DFT. They pro-

posed that all information regarding the ground state properties of a many-body

electronic system is determined by the ground-state electron density. Based on
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the first Hohenberg-Kohn theorem, the external potential is a unique functional

electron density,

E0 [ρ0] =

∫
ρ0(~r)Vexd~r + T [ρ0] + Eee [ρ0] (2.7)

where, ρ0 is the ground-state electron density, Vex is the external potential, T

and Eee are the kinetic and exchange-correlation terms, respectively. According

to the second Hohenberg-Kohn theorem, only the true ground state density gives

the minimum energy, which paves the path to use the variational principle to find

the ground state. In other words, they proved that instead of dealing with the

complicated electronic wave functions, the simpler total electron density can be

utilized to minimize the total energy of a system,

E0 ≤ E [ρ̃] = T [ρ̃] + Eext [ρ̃] + Eee [ρ̃] (2.8)

Later, in 1965, Kohn and Sham [41] proposed that the kinetic energy of the

interacting electrons can be replaced by that of an equivalent non-interacting

system to minimize the kinetic energy under predetermined density constraints.

After determining the solution to the kinetic term of the equation, the remaining

exchange and correlation terms can be also defined as a functional of the full

electron density. However, the exact expression is still not derived.

DFT calculations should be performed self-consistently. As it is schematically

presented in Fig. 2.1, we start with an initial guess of electron density, for a

predefined configuration of ionic coordinates. Then, we calculate the effective

potential corresponding to this guessed density. Next, the Kohn-Sham orbitals

are calculated by inserting the calculated effective potential into Kohn-Sham

equations. From these orbitals, a new electron density is calculated. In the next

step, the obtained new electron density gets compared with the initial electron

density. Based on Kohn-Sham ansatz, for the ground state, the new and old

electron densities should be the same. Thus, if the difference is less than a

predefined limit, the required precision is achieved, and the self-consistency loop

7



will stop. If the difference is more than the acceptable limit, the loop will continue

up to a point that the self-consistency is obtained.

2.4 Exchange and Correlation

There are two conventional approximations in order to deal with these two terms.

First, the local density approximation (LDA), and second, the generalized gra-

dient approximation (GGA). The main idea behind LDA is to consider the in-

homogeneous electronic systems as locally homogeneous ones and then employ

the exchange-correlation that corresponds to the homogeneous electron gas for

calculations. Thus, LDA gives better approximations in systems with higher

degrees of homogeneity. This approximation tends to over bind molecules and

solids, but the trends are mostly correct [42]. In the GGA approximation, the

inhomogeneities of the density are introduced semi-locally, through expansion of

the exchange-correlation functional as a series, including terms of the density and

its gradients. In this manner, GGA shows an improvement in binding energies,

bond lengths, atomic energies, and bond angles compared to the results obtained

from the LDA approximation [43].
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Figure 2.1: The schematic procedure for self-consistent DFT calculations
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Chapter 3

Results and discussion

3.1 Methods of calculations

We performed first-principles calculations based on the density functional theory

(DFT), using projector-augmented wave potentials [44] and a plane-wave basis set

with an energy cutoff of 520 eV. All calculations were performed using the Vienna

Ab initio Simulation Package (VASP) [45, 46]. The exchange-correlation potential

is approximated by the generalized gradient approximation (GGA) with Perdew,

Burke, and Ernzerhof (PBE) functional [47]. For BZ integration, a 18×18×1

k-point grid in the Monkhorst-Pack scheme [48] was used. The equilibrium con-

figuration of atoms, and lattice constants were determined by minimizing the total

energy of the system using the conjugate gradient method until force components

on each atom were decreased below 0.01 eV/Å. To avoid interaction between pe-

riodic images in adjacent cells along the z-axis, a vacuum spacing of at least 20 Å

was inserted, and periodic boundary conditions were applied along the x- and

y-axis. The energy band gap underestimation, in the PBE scheme, was corrected

by the Heyd-Scuseria-Ernzerhof hybrid functional (HSE06), constructed by mix-

ing 25% of nonlocal Fock exchange with 75% of PBE exchange and 100% of PBE

correlation energy [49, 50]. To examine the dynamical stability of the structures,

phonon dispersion calculations were performed using the Phonopy package [51].
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A 4×4×1 supercell with 4×4×1 k-mesh was adopted to calculate the atomic force

and the dynamical matrix, with very high accuracy (the convergence criterion of

the total energy was set as 10−8 eV). To check the thermal stability of the 2D

carbides, the ab-initio molecular dynamics calculations (AIMD) were performed

under constant temperature (T ) and volume (V ), where the temperature was

controlled by a Nose-Hoover thermostat [52, 53, 54]. The total simulation time

for the AIMD simulations was taken 20 ps with a time step of 1 fs. For optical

response calculations, we employed GW0 approximation and the Beth-Salpeter

equation (BSE) to include electron-hole interactions [55, 56, 57]. Due to the com-

putational limit, k-point sampling was limited to 8×8×1 for the GW0, and the

plane-wave cutoff energy was reduced to 480 eV. The total number of bands was

increased to 144 for the GW0 calculations.

3.2 Tetrahex carbides

3.2.1 Structural properties

The atomic structure of 2D tetrahex carbides with the formula of th-XC2 (X = N,

P, As, Sb) is presented in Fig. 3.1. This structure has an orthorhombic unitcell

with two unequal lattice constants of a and b, forming a Cmme symmetry (space

group no 67). The structure is made of two inequivalent atomic sites, with dif-

ferent coordination numbers, where the 4-fold coordinated positions are occupied

by carbon atoms and the 3-fold coordinated locations are filled by the group-V

elements, denoted by C and X, respectively. Accordingly, the structure is made of

three atomic layers, where a layer made of carbon atoms is sandwiched between

two layers of X atoms, and the distance between the top and bottom layer defines

the thickness, symbolized by h. To identify the atomic bonds, the bond between

C−X and X−X are indicated by d1 and d2, respectively. The combination of the

tetragonal and hexagonal building blocks in the th-XC structure induces peculiar

mechanical, electronic, and optical properties, which can be exploited in various

applications, especially in photocatalytic water splitting.
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The structural properties of th-XC2 compounds are summarized in Table 3.1,

and for the sake of comparison, properties of graphene, PG [9], penta-XC2 (X = N,

P, As, Sb) [17, 18, 19], th-C [10], and th-CX (X = Si, Ge) [16] are presented in

Table 3.2 As the atomic radius of the group-V elements increases, the lattice

constants in both directions expand, in a way that the ratio between them re-

mains almost constant. For the same reason, the bond lengths show a similar

increasing trend. For th-CN2, the obtained lattice constants are a= 4.17Å and

b= 5.78 Å, and the layer thickness is found to be 1.48 Å. The calculated bond

length of C−N (d1 = 1.42 Å) is compatible with that of penta-CN2 (d1 = 1.47 Å),

and the N−N bond length was found to be d2 = 1.47 Å, which is exactly the av-

erage bond length of single-bonded N−N, and explicitly shows the single bond

nature of N−N dimer. In the case of th-CP2, the elongation in the structure ex-

pands the lattice constants into a= 5.31 Å, b= 7.20 Å, and h= 2.32 Å. The C−P

bond length (d1 = 1.88 Å) is exactly the same as its counterpart in penta-CP2

(1.88 Å). For th-CAs2, the elongation continues with a= 5.60 Å, b= 8.00 Å, and

h= 2.52 Å. Similarly, the bond length of C−As (d1 = 2.02 Å) is precisely equal to

its counterpart in penta-CAs2. The same rules apply to th-CSb2 with a= 6.10 Å,

b= 9.10 Å, and h= 2.81 Å, where C−Sb bond length (d1 = 2.22 Å) is compatible

with C−Sb bond length (d1 = 2.21 Å) in penta-CSb2. In group-V of the periodic

table, electrons of d-orbital in As and Sb have a weak shielding effect, and cannot

cancel out the nucleus attraction force (resulted by their corresponding protons)

on the electron cloud effectively. Therefore, the increase in the atomic radius is

not linear along the group, and the jump in the bond length between C−N and

C−P is more notable compared to C−P and C−As, or C−As and C−Sb. This

phenomenon affects the inter-bonding angles too. Thus, although all of the mem-

bers of th-CX2 family have an overall similar structure, the angles of th-CN2 show

a deviation from the rest (th-CP2, th-CAs2, and th-CSb2 have very close bonding

angles). In the th-CX2 structures, the thickness is equal to the two times the

projection of C−X bonds along the out-of-plane axis. Accordingly, the thickness

also increases as we go down in the group, with a notable jump between th-CP2

and th-CN2. These structural properties show that carbon atoms exhibit an sp3

orbital hybridization, and participate in four σ bonds with surrounding X atoms.

To verify this claim, the electron localization function (ELF) plots of the th-CX2

12



Figure 3.1: Optimized atomic structure of th-CX2 (X = N, P, As, and Sb) from
the top and side views. The unit cell is depicted in red line. Blue and gray balls
represent X and C atoms, respectively.

compounds are provided in Fig. 3.2. It can be seen that the charge distribution

along the bonds is localized in the center, which confirms that all bonds are σ

type. Based on the electronegativity difference between carbon and group-V el-

ements, the bonds have covalent nature. In th-CP2, th-CAs2, and th-Sb2, the

electronegativity of carbon outweighs that of X atom, consequently, the X−X

bonds are slightly longer than their average value for a single bond. In the case

of th-CN2, however, the ratio is reversed, and higher electronegativity of nitrogen

atoms provides enough charge density to create an N−N bond exactly equal to

the length of the average singly bonded N−N dimer (d= 1.47 Å).
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Figure 3.2: The electron localization function (ELF) plots of th-CX2 compounds,
indicating the sigma nature of C−X and X−X bonds.

3.2.2 Stability

3.2.2.1 Energetic stability

To examine the synthesizability of the 2D th-CX2 compounds, at the first step,

we evaluate their relative cohesive energies (Ecoh) compared to similar structures

that have already been shown to be stable. Cohesive energy is the amount of

energy, required to be supplied into a crystal to break the bonds and decompose

the structure into its constitutional elements. Cohesive energy can be extracted

from the following expression;
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Table 3.1: The structural, energetic and electronic properties of the th-CX2 com-
pounds, where a and b are lattice parameters, h is the thickness, d(1−2) are bond
lengths in unit of Å, θ(1−4) are inter-bond angles, Ecoh is the cohesive energy
in unit of eV/atom, EPBE

g and EHSE
g are the band gap energies in unit of eV

obtained based on PBE and HSE06 methods, respectively, VBM and CBM are
valence band maximum and conduction band minimum in unit of eV calculated
using HSE06 functional.

Structure a b h d1 d2 θ1 θ2 θ3 θ4 Ecoh EPBE
g EHSE

g VBM CBM

th-CN2 4.17 5.78 1.48 1.46 1.46 122 119 89 91 5.19 3.05 4.57 -6.49 -1.92
th-CP2 5.31 7.20 2.32 1.88 2.28 139 110 90 90 4.61 1.26 2.12 -6.00 -3.88
th-CAs2 5.60 8.00 2.52 2.02 2.55 138 111 92 88 4.56 1.52 2.31 -5.82 -3.51
th-CSb2 6.10 9.10 2.81 2.22 2.96 138 111 93 87 3.76 0.60 1.15 -5.05 -3.90

Ecoh =
4EC + 8EX − ET

12
(3.1)

where EC and EX are the energy of carbon and group-V element, respectively,

and ET is the total energy of one unitcell of the crystalline structure. It can

be inferred that a high enough Ecoh implies the relative energetic stability of the

system. The cohesive energies of 2D th-CX2 compounds are listed in Table 3.1. It

can be seen that th-CN2 with Ecoh = 5.19 eV/atom has the highest cohesive energy

among this group, and as the atomic number increases, Ecoh values decline. This

decreasing manner is directly related to the energy of the C−X bonds which are

dominant in numbers (12 to 4) within a unitcell. For instance, although the P−P

bonds have higher energy compared to N−N bonds (0.35 eV/atom difference in

favor of P−P), the 0.42 eV/atom difference in bond energies of C−N and C−P

(with 3.16 and 2.55 eV/atom, respectively) is responsible for the 0.58 eV/atom

increase in the cohesive energy of th-CN2 compared to th-CP2 [58]. By com-

paring the cohesive energies of 2D th-CX2 compounds with that of graphene

(7.94 eV/atom) [1], th-C (7.12 eV/atom) [10], PG (7.09 eV/atom) [9], and penta-

CN2 (5.51 eV/atom) [17], we can see that th-CX2 structures have less favorable

cohesive energies. However, the cohesive energies of th-CX2 surpass that of al-

ready synthesized silicene (4.70 eV/atom) [59], germanene (4.15 eV/atom) [60],

and phosphorene (3.48 eV/atom) [61]. Although the cohesive energy cannot di-

rectly verify the stability of crystals, the fact that th-CX2 cohesive energy values

lie in the range of synthesized structures is a sign that th-CX2 structures are

strongly bonded and are synthesizable.
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Table 3.2: The structural, energetic and electronic properties of structures com-
parable to th-CX2, where a and b are lattice parameters, h is the thickness, d(1−2)

are bond lengths in unit of Å, Eg is the band gap energy in unit of eV, and Y is
the Young’s modulus in unit of N/m (references are introduced in the text).
Structure a b h d1 d2 Eg Gap type Y
Graphene 2.46 2.46 0.00 1.42 1.42 0.00 - 340
Penta-Graphene 3.64 3.64 1.20 1.34 1.54 6.53 indirect 264
Penta-CN2 3.31 3.31 1.52 1.47 1.47 6.53 indirect 315
Penta-CP2 4.09 4.09 - 1.88 1.88 2.64 indirect 60
Penta-CAs2 4.36 3.36 - 2.02 2.02 2.09 indirect 37
Penta-CSb2 4.79 4.79 - 2.21 2.21 1.35 indirect 9
Tetrahex-C 4.53 6.10 1.16 1.34 1.53 2.64 direct 286
Tetrahex-SiC 5.53 7.63 1.60 1.71 1.88 1.78 indirect 143
Tetrahex-GeC 5.89 8.07 1.60 1.82 1.98 1.34 indirect 119

Figure 3.3: The phonon spectrum of the th-CX2 compounds, where the vibra-
tional frequencies in the unit of THz are depicted vs the wavenumber (k) along
the high symmetry lines of the BZ.

We further calculated the formation energy of the th-CX2 compounds. We

found the formation energy of these compounds to be 870, 100, 140, and 190

meV/atom for X = N, P, As, and Sb, respectively. These positive values of for-

mation energy show that the th-CX2 are metastable phases of CX compounds.

However, similar to many metastable CX structures that have already been syn-

thesized such as graphitic-C3N4, the th-CX2 compounds have the energetic sta-

bility to be synthesized in the lab.

3.2.2.2 Dynamic stability and phonon properties

In the second step, the dynamic stability of the th-CX2 monolayers were stud-

ied based on their phonon dispersions, calculated via ab-initio lattice dynamics.
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The dispersions of phonon modes are depicted in Fig. 3.3 (a-d). The 12 atoms

presented in a unitcell of th-CX2, each has 3 vibrational degrees of freedom,

constituting a total of 36 phonon modes, of which 3 are acoustic branches with

zero-frequency at Γ point. In all 2D materials, the transverse acoustic (TA)

and longitudinal acoustic (LA) branches exhibit a linear dispersion around the

Γ point, while the out-of-plane acoustic (ZA) branch has a quadratic dispersion

when the wave number approaches zero near the Γ point. Based on the harmonic

approximation, since imaginary vibrational frequencies manifest a disassembling

harmonic force between atoms, the prerequisite of vibrational stability is that all

phonon modes must have real (positive) frequencies. The marginal imaginary

frequencies that can be found in the phonon spectrum of the th-CX2 structures

around the Γ point stem from the numerical errors in the calculation of force

constants, which can be neglected. Thus, the lack of any disassembling force

between atoms of the th-CX2 structures guarantees their dynamical stability.

3.2.2.3 Thermal stability

To verify the thermal stability of the th-CX2 compounds, ab-initio molecular

dynamics simulations (AIMD) were performed at the high temperature for a

duration of 20 ps. To reduce the periodic boundary condition constraints on

the structure and provide a suitable condition for any possible reconstruction,

a relatively large supercell of 4×3×1 times the original unitcell was employed.

Snapshots of the final atomic configuration of the structures after 20 ps and the

diagrams of potential energy variation vs time are provided in Fig. 3.4. We found

that th-CN2 and th-CP2 lose their structural integrity at T = 1400 K, and

textitth-CAs2 and th-CSb2 become fragmented at T = 1200 K. Thus, in our sim-

ulation, we considered T = 1200 K for th-CN2 and th-CP2, and T = 1000 K for

th-CAs2 and th-CSb2. It can be seen that the potential energies only fluctuate

during the simulation without any considerable deviation, which implies that no

reconstruction takes place. These fluctuations are the result of the thermal oscil-

lations of the atoms around their equilibrium positions. From the snapshots of

the ultimate arrangement of the atoms, it can be inferred that none of the bonds
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Table 3.3: The mechanical properties of the th-CX2 structures, where Cij are the
elastic constants in the unit of N/m, Yx and Yy are Young’s modulus in zigzag
and armchair directions in the unit of N/m, νx and νy are the Poisson’s ratios
along zigzag and armchair directions, USx, y, xy are the ultimate strain in %
under zigzag, armchair and equi-biaxial strain, respectively.

Mechanical Constants Young’s modulus Poisson’s Ratio Ultimate Strain

C11 C22 C12 C66 Yx Yy νx νy USx USy USxy

th-CN2 338.36 195.27 -1.54 87.14 338.35 195.26 -0.004 0.008 26 15 22
th-CP2 170.14 54.00 15.42 21.61 168.75 49.60 0.09 0.28 17 27 18
th-CAs2 121.80 38.70 17.30 14.63 119.34 30.96 0.14 0.45 18 27 17
th-CSb2 86.44 27.49 13.33 7.59 84.38 21.02 0.15 0.48 17 24 16

are broken in the elevated temperatures, and the original skeleton of the struc-

tures is preserved. It should be mentioned that the computational considerations

limit the AIMD simulations to a few ps, which is a short interval in real condi-

tions, but it can provide an insight into the system’s thermal stability, especially

structural response to thermal shock.

3.2.2.4 Mechanical stability

According to the Born-Huang elastic stability criteria [62], the prerequisites of

the mechanical stability of a system are C11C22-C2
12 > 0 and C66 > 0, where

C11, C22, C12, and C66 are the elastic stiffness constants. These constants can be

calculated by fitting the second derivative of the strain energy per unit area into

a function of the in-plane strains using the following equation,

Es(ε) =
1

2
C11ε

2
x +

1

2
C22ε

2
y + C22εxεy + 2C66ε

2
xy (3.2)

in case of uniaxial strain along x-direction (where εy = εxy = 0),

Es(ε) =
1

2
C11ε

2
x (3.3)

for uniaxial strain along y-direction (where εx=εxy=0),

Es(ε) =
1

2
C22ε

2
y (3.4)

if we apply biaxial strain (where εx=εy and εxy = 0),

Es(ε) = (
1

2
C11 +

1

2
C22 + C12)ε2

x (3.5)
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Figure 3.4: Variation of the total potential energy of th-CX2 compounds (X = N,
P, As and Sb) during the AIMD simulations at elevated temperature for a period
of 20 ps. The insets are snapshots of the atomic structures at the end of simula-
tions. The gray, green, blue, pink, and orange balls represent C, N, P, As, and
Sb atoms, respectively.
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and finally in case of shear strain (where εx=εy=0),

Es(ε) = 2C66ε
2
xy (3.6)

where Es is the strain energy per unit area, εxy is the infinitesimal shear stress,

and εx and εy are the infinitesimal uniaxial strains along a and b lattice vectors,

respectively. Therefore, from Eq. (3), C11 can be obtained by applying strain

along lattice vector a (where εx=
a−a0

a0
and εy=0). Similarly, from Eq. (4), C22 can

be calculated by applying uniaxial strain along lattice vector b (where εy=
b−b0
b0

and εx = 0). Having C11 and C22, to find C12 from Eq. (5) biaxial strain can be

employed (where εx = εy). Finally, the value of C66 can be achieved in the shear

strain condition. To extract the elastic stiffness constants, uniaxial, biaxial, and

shear strains were applied in a range of -2% to 2% with an increment of 0.5%.

In the case of uniaxial strains, a perpendicular stress component will appear

in the system due to Poisson’s effect. This stress was relieved by structural

relaxation along its axis. Variation in the strain energy vs strain is demonstrated

in Fig. 3.5, and the extracted constants are listed in Table 3.3. It can be seen that

the mechanical stability criteria are satisfied for every member of the th-CX2

family.

3.2.3 Mechanical properties

Having secured that all members of th-CX2 family have energetic, dynamical,

thermal, and mechanical stability, we investigated the most important strain-

dependent mechanical properties of these materials, including in-plane Young’s

modulus (Y ), Poisson’s ratio (ν), and ultimate strain (US). As it is shown in the

following sections, the intrinsic anisotropy in the geometric structure of th-CX2

gives rise to direction-dependent mechanical properties.
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Figure 3.5: Calculated strain energy of th-CX2 compounds (X = N, P, As and
Sb) with respect to various applied strains: uniaxial strain along the zigzag and
armchair directions, equi-biaxial strain, and shear strains.

3.2.3.1 Young’s modulus

Young’s modulus is the slope of the stress-strain curve in the elastic region which

defines the stiffness of the material. In other words, a material with high stiff-

ness deforms slightly under stress. Since structural deformation can dramatically

change the electronic and optical properties, stiffness is of great importance in

the study of 2D materials. The intrinsic anisotropy in the geometric structure of

th-CX2 gives rise to direction-dependent Young’s modulus. Here, through the fol-

lowing expression, we represent the angle-dependent Young’s modulus of th-CX2

compounds,
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Figure 3.6: The angle-dependent evolution of (a) Young’s modulus (Yθ) and (b)
Poisson’s ratio (νθ) in th-CX2 compounds.

Yθ =
C11C22 − C2

12

C11A4 + (
C11C22−C2

12

C66
− 2C12)A2B2

(3.7)

where A and B stand for sin(θ) and cos(θ), respectively. In Fig. 3.6 (a), Young’s

modulus of th-CX2 compounds vs in-plane angle (θ) is presented. Other than the

intrinsic asymmetry of the structure, the unsimilarity between the strength of

the dominant bonds in the armchair and zigzag directions directly affects the

stiffness anisotropy. This difference stems from the variation in bond length

and hybridization of states. In the th-CX2 structures, along the zigzag direction

(θ= 0◦ and due to reflection symmetry θ= 180◦), where C−X bonds are dom-

inant, materials exhibit superior stiffness compared to the armchair direction

(θ= 90◦ and due to reflection symmetry θ= 270◦), where X−X bonds are domi-

nant. The numerical value of Young’s modulus of th-CX2 along θ= 0◦ (denoted

as Yx) and θ= 90◦ (denoted as Yy) directions are listed in Table 3.3. For sake of

comparison, Young’s moduli of similar structures are summarized in Table 3.2.

It can be seen that Young’s modulus of the th-CN2 (338 N/m) is comparable

with that of graphene (345 N/m) [63], and outweighs that of PG (264 N/m) [9],

and penta-CN2 (264 N/m) [17]. Moreover, the maximum Young’s modulus of

th-CP2 (169 N/m), th-CAs2 (119 N/m), and th-CSb2 (84 N/m) are almost three,

three, and ten times of Young’s moduli of their penta counterparts (60, 37, and

9 N/m [18], respectively).
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3.2.3.2 Poisson’s ratio

Poisson’s ratio (PR) defines a material’s strain behavior along a direction per-

pendicular to that of the applied stress, and thus it plays an important role

in the strain engineering of the properties of a material. Generally, materials

possess positive PR, getting thinner upon tensile and thicker under compres-

sive stresses. On contrary, materials with negative PR (known as auxetic) are

very rare, which can offer exotic mechanical properties [64, 65]. Similar to other

mechanical properties of the th-CX2 compounds, Poisson’s ratio also exhibits

a direction-dependent behavior due to the intrinsic anisotropy of the structure.

Here, the angle-dependent Poisson’s ratio of the th-CX2 compounds was investi-

gated through the following equation,

ν(θ) =
C12(A4 +B4)− (C11 + C22 − (C11C22−C2

12)

C66
− 2C12)A2B2

C11A4 + C22B4 + (
(C11C22−C2

12)

C66
− 2C12)A2B2

(3.8)

where A and B stand for sin(θ) and cos(θ), respectively. The resulted graph of ν

vs θ is presented in Fig. 3.6 (b), and the numerical value of Poisson’s ratio along

θ= 0◦ (denoted as νx) and θ= 90◦ (denoted as νy) directions are listed in Table 3.3.

It can be seen that the minimum value of ν takes place along the armchair

direction (θ= 90◦), and the maximum locates within the range of 0◦ < θ < 45◦.

The PR variation of the system is also dependent on the atomic species. As

the atomic number increases, the average value of PR shows an increasing trend.

Along zigzag direction, th-CN2 has a negative PR, categorizing this 2D material

as one of the rare auxetic materials with applications in biomedical and aerospace

industries [66]. Recently, Q. Wei et al. [67] studied mechanical properties of th-

CN2, where detailed information about its auxetic behavior can be found.

3.2.3.3 Ultimate strain

Another mechanical feature of a 2D material, which is of great importance is

ultimate tensile strength (UTS), and its corresponding strain, known as ultimate
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strain (US). During the strain engineering of a 2D material, extreme strains can

be imposed into the system. If the material lacks the proper US, its structural

integrity can be damaged, and the desired performance cannot be achieved. To

investigate the US of th-CX2, we employed a 2×2×1 supercell and measured

the stress imposed into the system upon various axial tensile strains (zigzag,

armchair, and equi-biaxial). The stress-strain curve for th-CX2 compounds is

depicted in Fig. 3.7 (a-d), where UTS is the maximum strength that the system

tolerates right before the failure. The percentage of strain at the US is indicated

by the vertical dashed line, and for sake of comparison, the obtained US values

for zigzag, armchair, and equi-biaxial strains (denoted by USx, USx, and USxy,

respectively) are summarized in Table 3.3. From the stress-strain curves, it can be

noted that th-CP2, th-CAs2, and th-CSb2 compounds undergo plastic deformation

upon tensile strain along the armchair direction before reaching the UTS point.

We further probed the atomic origin of this plastic behavior. By comparing

the bond lengths in the elastic and plastic regions of curves (Fig. 3.8), we found

that the main reason behind the plastic behavior of the th−CX2 compounds

under armchair strain is the capability of X−X bonds, which are oriented along

the armchair direction, for tolerating significant elongations without detaching.

In the case of strain along the zigzag direction, C−X bonds elongation mainly

compensate the strain applied to the structure. These bonds elongate linearly up

to the UTS point and after this point, the slope of the curve decreases, showing

the bond-breaking mechanism at the UTS point. In the case of armchair strain,

the X−X bonds elongation is not linear up to UTS point, and between yield

strength point and UTS, their expansion accelerates, indicating a plastic behavior.

Finally, after the UTS point, the rate of elongation changes which shows their

detachment. In the case of equi-biaxial strain, we have a combination of the

previous mechanisms, where the change in the ratio of bond elongation clearly

specifies the UTS point. The US of graphene, PG, and th-C was reported to

be 27% [68], 21% [9], and 32% [16], respectively. It can be seen that th-CX2

compounds exhibit ultrahigh ultimate strain, comparable with that of graphene,

and outweighing that of PG, satisfying the prerequisite for strain engineering of

electronic and optical properties, which will be discussed in the following sections.
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Figure 3.7: The th-CX2 compounds stress-strain curves for uniaxial tensile strain
along zigzag and armchair directions, and equi-biaxial tensile strain.

3.2.4 Electronic properties

Since the PBE approach underestimates the band gap energies, the electronic

band structures of the th-CX2 compounds were calculated through HSE06 func-

tional along high symmetry lines of the BZ, and the results are represented along-

side their corresponding orbital decomposed projected density of states (PDOS)

in Fig. 3.9 (a-d), where band structure without including the spin-orbit coupling

(SOC) effect is shown by dashed lines, and colored lines are related to SOC in-

cluded band structure. For comparison purposes, the band gap energies for both

PBE and HSE06 methods are listed in Table 3.1. It can be seen that except for

th-CN2 which has an insulating nature with a band gap of 4.57 eV, all the band

gaps lie within the semiconducting range, promising potential for applications

in solar-cell and photocatalysis. Although all the band gaps are indirect, in the

case of th-CP2 and th-CAs2 the energy difference between direct and indirect

gaps are so narrow (0.04 and 0.005 eV, respectively) that their band gap nature

can be considered quasi-direct and direct, respectively. Besides, their 2.12 and

2.31 eV band gaps are comparable with that of th-C (2.64 eV), making them a

competitive alternative of the th-C, as one of the best options for photocatalysis

applications. It can also be seen that in SOC included calculations, although

band splitting takes place due to degeneracy lift, the band gap width and band

edge alignments only change marginally (in the order of meV). Based on PDOS

plots, it can be inferred that in the th-CN2, the valance band states mainly belong
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Figure 3.8: The variation of X−X and C−X bond lengths in the th-CX2 structures
under zigzag, armchair, and equi-biaxial strains. X−X and C−X bond lengths
are shown by red and blue lines, respectively. The UTS points are specified by
dashed black line.
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Figure 3.9: Electronic band structure of th-CX2 compounds obtained from the
HSE06 functional. The band gap energies between valence band maximum
(VBM) and conduction band minimum (CBM) are depicted in the black arrows.
The fundamental band gap between VBM and CBM is shaded in blue. The Fermi
level is set to zero, and demonstrated by the dashed black line Dashed bands are
calculated without including SOC effect, and colored bands are SOC included.
The orbitally decomposed projected density of states (PDOS) plots are depicted
next to their corresponding band structure.

to pz orbitals of N atoms, and both pz of C atoms and sp3 orbitals of N contribute

to the valance band. The orbitals’ contribution to valence and conduction bands

in th-CP2 and th-CAs2 show similarities, where the valence band is mostly made

of both C and X atoms pz states, and the conduction band is a combination of s

orbital of C and px of X. In the case of th-CSb2, the valence band is mostly made

of py orbital states of Sb, and the conduction band mainly consists of s orbital of

C and px orbital of Sb.
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Figure 3.10: (a) Location of the band-edges in th-CP2, th-CAs2, and th-CSb2

with respect to vacuum level obtained from HSE06 functional. The dashed lines
are aligned to the oxidation/reduction potentials of water splitting, where black
denotes pH = 0 and red shows pH = 7 cases. (b) The minimum band gap energy,
required to provide enough photo-generated energy for the splitting of the water
molecules.

3.2.4.1 Photocatalytic properties

To have an efficient photocatalyst for water splitting, a semiconductor needs to

satisfy several prerequisites simultaneously. Firstly, the band gap energy should

be less than 3 eV to have the optimum solar light absorption. Secondly, to be able

to provide enough energy to break covalent bonds of water, the band gap energy

must exceed 1.23 eV (the free energy of water splitting)(see Fig. 3.10 (b)). The

third crucial requirement is the suitable location of band edges with respect to

the oxidation/reduction potential of water splitting. In other words, the valence

band edge location in the energy spectrum needs to be lower than the oxida-

tion potential of O2/H2O (-5.67 eV + pH × 0.059 eV), and the conduction band

edge position must exceed the reduction potential of H+/H2 (-4.44 eV + pH ×
0.059 eV). Photo-induced electron/hole pair will drift for an average lifetime of τ

before being annihilated by an exciton pair. To secure an efficient photocatalysis

process, the fourth essential feature is a prolonged average lifetime of the charge

carriers. To achieve this last requirement, the photo-generated electron/hole pairs

should get separated to prevent quick recombination of them, and it is the dif-

ference in the relative drift velocities (υd) of electron and hole that induces this

separation. Mobility, which itself is a function of effective mass, has a direct
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relation with drift velocity (υd =µE, where E is the electric field). Accordingly,

semiconductors that have inequivalent electron and hole mobilities offer a longer

charge carrier lifetime. Moreover, a system with direction-dependent mobility can

also further facilitate charge carrier separation. Here, we propose the 2D th-CP2

and th-CAs2 as two suitable candidates that ideally satisfy all of the above men-

tioned requirements. The 2.12 (quasi-direct) and 2.31 eV (direct) energy band

gaps of th-CP2 and th-CAs2, respectively, settle perfectly within the 1.23 < Egap

< 3 eV range, which offers the optimum solar light absorption and fulfill the en-

ergy demand for splitting water molecules, simultaneously. As it is summarized

in Table 3.1 and demonstrated in Fig. 3.10 (a), the VBM band edge of th-CP2 and

th-CAs2 with energies of -6.00 and -5.81 eV, respectively, are accurately settled

below the oxidation potential of water (for a whole range of pH = 0 to pH = 7).

Concomitantly, the CBM band edge of both candidates is situated above the re-

duction potential of water (for a whole range of pH = 0 to pH = 7). In addition to

these desired features, th-CP2 and th-CAs2 both offer direction-dependent charge

carrier mobility, where hole mobilities exhibit over 1000 and 690% anisotropy,

and electron mobilities show over 1800 and 2700% anisotropy between zigzag and

armchair directions for th-CP2 and th-CAs2, respectively. Moreover, a notable

divergence is also detectable between the electron and hole mobilities, where for

instance, over 4100 and 720% differences exist between the electron and hole mo-

bilities of th-CP2 and th-CAs2, respectively, along zigzag direction. Thus, we can

firmly claim that th-CP2 and th-CAs2 are excellent candidates for photocatalytic

water splitting applications. In the case of th-CSb2, although the CBM has a

proper alignment, the VBM position is above the oxidation potential of water

splitting, reducing the photocatalytic efficiency of this material for water split-

ting (see Fig.3.10 (a)). Finally, it should be mentioned that since th-CN2 does

not have the proper band alignment with the redox potential of water, it is not

a suitable candidate for the splitting of water.
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3.2.4.2 Effective mass and carrier mobility

To achieve a better insight into the charge carrier migration properties, the ef-

fective mass (m∗) and carrier mobility (µ) of the th-CX2 compounds are investi-

gated. The effective mass was obtained through fitting a parabolic function into

the electronic band structure via the following equation,

m∗ = ~2(
d2E(k)

dk2
)−1 (3.9)

where ~ is the reduced Planck constant, k is the wave-vector, and d2E(k)
dk2 is the

second derivative of the energy with respect to wave vector in the minimum of

the conduction band (for electrons) or the maximum of the valence band (for

holes). The electron and hole effective masses with respect to free-electron mass

(m0) along the Γ-X (denoted by m∗x) and Γ-Y (denoted by m∗y) are listed in

Table 3.4. It can be seen that in all th-CX2 compounds the effective masses are

inequivalent and direction-dependent. This anisotropy is also manifested in the

unequal curvature of band dispersion around the VBM and CBM points. This

anisotropy reaches its apex in the hole effective mass of the th-CAs2 and with a

755% difference between its values along the zigzag and armchair directions. The

th-CP2 also exhibits significant anisotropy of 673% in its hole effective mass along

the zigzag and armchair directions. Moreover, in both of these two structures, the

effective masses of electrons are significantly higher than that of holes. We further

investigated the charge carrier mobilities along the Γ-X (symbolized by µ2D
x )

and Γ-Y (symbolized by µ2D
y ) directions, using the modified Bardeen-Shockley’s

formula for anisotropic 2D semiconductors [69],

µi =
e~3Ci

KBTm∗imdE2
1i

(3.10)

where i determines the transport direction (x and y stand for zigzag and armchair,

respectively), m∗i is the effective mass along i direction, and md is the geometric

mean of effective masses along x- and y-direction (
√
m∗xm

∗
y). Temperature is

considered to be T = 300 K. The E1i is the deformation potential constant of the
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carrier, obtainable from the following equation,

E1i =
∆E

(∆l
l0

)
(3.11)

where ∆E is the variation in the energy of the CBM and VBM bands under small

strains (0.5% in our calculations) (see Fig. A(1-4) in Appendix). The Ci in Eq. 10

is the in-plane stiffness constant, calculated based on the following formula, and

reported in Table 3.4,

Ci = 2(
Ei − E0

A0

)(
∆l

l0
)−2 (3.12)

where Ei is the total energy of the unitcell after deformation, E0 and A0 are the

total energy and area of the unitcell, respectively. Since charge carrier mobility

depends on anisotropic factors, such as effective mass, one can see that the th-CX2

compounds have highly direction-dependent carrier mobilities.

In Eq. 10, it was assumed that mobility is only dependent on the deformation

potential and in-plane stiffness constant along the migration direction. In real

2D anisotropic materials, however, mobility is under influence of scattering events

from all directions. This oversimplification can lead to an overestimation of the

anisotropic behavior of 2D materials. An improved version of the mobility formula

was proposed by Lang et al. [70] as follows,

µi =
e~3(

5Ci+3Cj
8

)

KBTm∗imd(
9E2

1i+7E1iE1j+4E2
1j

20
)

(3.13)

For sake of comparison, the results obtained from the Eq. 13 are also presented

in Table 3.4. It can be noted that the results obtained using Lang et al.’s formula

(Eq. 13) have two main differences compared to their corresponding values found

from modified Bardeen-Shockley’s formula (Eq. 10). Firstly, all mobility values

resulted from Eq. 13 are lower than their counterparts obtained from Eq. 10.

Secondly, the anisotropy of the mobilities obtained from Eq. 13 is lower than

their counterparts calculated based on Eq. 10. These deviations stem from

the consideration of the effect of electron-phonon scattering events in transpose

direction, perpendicular to that of mobility measurement, implemented in Lang

et al.’s formula (Eq. 13). Previous studies have shown that Eq. 10 overestimates

both the carrier mobility and anisotropic ratio. Eq. 13, however, underestimates
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Table 3.4: Charge carrier properties, where m∗x/m0 and m∗y/m0 are the carrier
effective masses with respect to a static electron mass (m0) along zigzag and
armchair directions, C2D is the elastic constant in the unit of N/m, and µ2D is
the carrier mobility in the unit of cm2V−1s−1 at T = 300 K.

Effective mass In-plane stiffness Mob. (Eq. 3.10) Mob. (Eq. 3.13)

Structure Carrier type m∗
x/m0 m∗

y/m0 Cx
2D C

y
2D

µ2D
x ×103 µ2D

y ×103 µ2D
x µ2D

y

th-CN2

Hole 0.22 0.33 338.36 195.27 55.97 6.96 1323.45 582.38

Electron 0.44 1.09 338.36 195.27 2.42 0.05 25.16 5.40

th-CP2

Hole 9.22 1.37 170.15 54.00 0.01 1.13 0.37 3.87

Electron 0.89 0.69 170.15 54.00 3.02 0.05 15.30 8.34

th-CAs2
Hole 0.54 4.08 121.80 38.70 0.31 0.06 16.24 2.34

Electron 0.58 0.88 121.80 38.70 6.79 0.33 117.89 42.51

th-CSb2

Hole 0.19 0.71 86.44 27.49 0.59 0.28 32.38 9.97

Electron 0.25 1.12 86.44 27.49 68.12 0.37 544.44 55.23

the carrier mobility while the anisotropy ratios obtained from this formula are in

good agreement with experimental results [69]. Thus, we can predict that the

experimental carrier mobility of the th-CX2 compounds settle between the two

reported values, and the anisotropy is close to the values obtained by Lang et

al.’s method.

3.2.4.3 Strain-engineering of the band gap and band edge positions

of th-CX2 compounds

Numerous studies showed that tuning the electronic properties through strain-

engineering can significantly increase the efficiency of the 2D semiconduc-

tors [16, 71]. Here, we investigate the effect of strain on the th-CX2 compounds,

and we indicate that the band gap type and energy, and the band edge locations

can be systematically tailored under strain. The calculated results, using the

HSE06 functional, are represented in Fig. 3.11 (a-d), for armchair, zigzag, and

equi-biaxial strains within -4% and 10% range with the increments of 2%. A

structural relaxation was performed at each step of straining, and the electronic

properties were calculated for the relaxed structure. It can be seen that within

this strain range, although band gap energies vary significantly, the semiconduct-

ing nature of the compounds is preserved and no gap closure is observed. In the

case of th-CN2, compressive strain tends to increase the band gap energy and ten-

sile strain reduces this value, but even 10% tensile strain cannot bring the band
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Figure 3.11: Strain engineering of the band gap and band edges alignment (with
respect to the redox potential of water splitting) of th-CX2 compounds, calculated
via HSE06 functional, for zigzag, armchair, and equi-biaxial strains in the range of
-4% to 10% (negative/positive numbers refer to as the compressive/tensile strain),
with increments of 2%. The dark blue markers depict the band gap values. The
valence band maximum (VBM) and conduction band minimum (CBM) positions
with respect to the redox potential of water splitting are accentuated with purple
and orange tints, respectively. The bright blue shadow demonstrates an indirect
to direct transition of the band gaps.
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gap energy to less than 3 eV, in the efficient region for the optical absorption.

Besides, no indirect to direct band gap transition can be induced in this struc-

ture via strain engineering. Also, the alignment of the band edges with the redox

potential of water cannot be improved under strain. Therefore, th-CN2 cannot

be the best candidate for the photo-induced splitting of water even in strained

conditions. Previously, we demonstrated that th-CP2 and th-CAs2, both offer

suitable features for photocatalytic water splitting in pristine conditions. These

promising properties in th-CP2 only miss one element to become perfect, that is

the lack of a direct band gap. Although in this compound, in pristine conditions,

the band gap nature can be considered quasi-direct, which guarantees their ap-

plicability in the photocatalysis process, a quasi-direct to direct transition can be

induced through strain-engineering to further boost its photocatalytic efficiency.

This transition occurs upon 2% zigzag and biaxial tensile strain. According to

Fig. 3.11 (b), under intense biaxial tensile strain, the CBM alignment of th-CP2

with reduction potential of water deteriorates. A similar trend can also be ob-

served in the CBM alignment of th-CAs2, if the armchair tensile strain exceeds

6% (see Fig. 3.11 (c)). Fortunately, band gap tunings via tensile strain along

zigzag direction do not ruin the alignment of band edges with water decompo-

sition potentials in both of these compounds. Therefore, alongside th-CAs2 in

pristine conditions, we can consider the strain-engineered versions of th-CP2 as

the optimum candidates for photocatalytic water splitting. Finally, in th-CSb2,

where an efficient band alignment is not achievable in pristine conditions, small

tensile strains can enhance the position of the band edges with respect to redox

potentials of water, and increase the band gap energy to near 1.23 eV threshold

to provide enough energy for water decomposition. Besides, under tensile strains,

an indirect to direct band gap transition can also be induced. Thus, a significant

improvement can be achieved in photocatalytic efficiency of th-CSb2 for water

splitting purposes.
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Figure 3.12: Optical absorption coefficient of th-CX2 compounds along zigzag (x)
and armchair (y) directions, as a function of photon energy, calculated based on
the GW0+BSE method.

3.2.5 Optical properties

To enhance photocatalytic performance, optical absorption is another factor that

plays a crucial role in the photocatalytic capacity of a material. From an energetic

point of view, ultraviolet light can facilitate photocatalytic activities better than

visible light, since its high photonic energy is enough to overcome large energy

barriers in a catalysis process. On the other hand, the ultraviolet part of the solar

spectrum is only limited to 4%. Thus, a photocatalyst material needs to be also

able to absorb a significant fraction of the visible light (which covers around 43%

of the solar incident beams, reaching the earth’s surface). As it was mentioned,

a suitable semiconductor for application in photocatalytic water splitting should

have a band gap of more than 1.23 eV, which shifts the absorption peaks towards

the ultraviolet region of the light spectrum. Thus, candidates with partial light
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absorption in the visible range, such as TiO2, are the best viable options for this

purpose [72]. The light-harvesting performance of the th-CX2 compounds was

evaluated through the state-of-the-art GW0+BSE method, and the resulted op-

tical absorption spectrum vs the light energy are presented in Fig. 3.12. Here,

the polarization vectors are considered parallel to the layer plane (x is along the

zigzag edge and y is along the armchair edge). It can be seen that all of the

2D th-CX2 compounds exhibit an anisotropic optical absorption, which can be

exploited in optoelectronic devices to manipulate the polarization of the incident

light. This anisotropic optical behavior stems from the intrinsic anisotropy of

the structure, where the distribution of the charge density is direction-dependent

(See Fig. 3.2). In th-CN2, the absorption peaks lie out of the visible region, within

the ultraviolet zone, with a strong absorption along the armchair and a weak ab-

sorption coefficient along the zigzag direction. As the atomic number of the X

component increases, the absorption peaks shift towards the visible region. In

th-CP2 and th-CAs2, the absorption graph spreads all over the ultraviolet and

visible region of the light spectrum. These ideal spreads of the light absorptions,

combined with the proper band gap and band alignment of these two mono-

layers, make them promising candidates as photocatalysts in the water-splitting

process. Finally, although th-CSb2 in pristine conditions is not the optimum

candidate for photocatalytic water splitting due to improper band alignment, it

exhibits an anisotropic absorption covering the whole spectrum from infrared to

ultraviolet, where the absorption peaks are located in the visible region. Thus,

the intrinsic semiconducting nature of th-CSb2, combined with its wide-range

optical absorption, makes this material a suitable option to be utilized in many

areas of optoelectronic applications, including the photocatalytic decomposition

of toxic gases.

3.3 Tetrahex Nitrides

Motivated by the exotic properties found in the th-CN2, especially its auxetic

behavior, we furthur investigate the properties of th-SiN2. For ease of comparison,

the properties of th-CN2 is presented alongside th-SiN2.

36



Figure 3.13: (a) Ball and stick model of the th-XN2 compounds (X = Si and C)
from the top, side, and tilted views, where the unitcell is depicted in the red
line. Blue and gray balls represent X and N atoms, respectively. (b) The electron
localization function (ELF) plots of th-SiN2 from top and side views, showing the
sigma nature of X−N and N−N bonds.

3.3.1 Structural properties

The structural configuration of the th-XN2 compounds (where X = Si and C) is

presented in Fig. 3.13 (a). Similar to the tetrahex carbides, the unitcell has an

orthorhombic form, with two perpendicular and unequal lattice constants of a

and b. The sequence of tetragonal and hexagonal building blocks forms a Cmme

symmetry (space group number 67), where X atoms occupy the 4-fold coordinated

positions, and N atoms fill the 3-fold coordinated locations. As seen, from the side

view, the structure is made of three layers; one layer of X atoms is sandwiched
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Table 3.5: The structural, energetic and electronic properties of the th-XN2 com-
pounds, where a and b are lattice parameters, h is the thickness, d(1−2) are bond
lengths in unit of Å, θ(1−4) are interbond angles, Ecoh is the cohesive energy in
unit of eV/atom, EPBE

g and EHSE
g are the band gap energies in unit of eV obtained

from PBE and HSE06 functionals, respectively.

Structure a b h d1 d2 θ1 θ2 θ3 θ4 Ecoh EPBE
g EHSE

g

th-SiN2 5.10 6.91 1.30 1.75 1.45 110 125 86 93 5.05 3.26 4.53

th-CN2 4.17 5.78 1.48 1.46 1.46 122 119 89 91 5.19 3.05 4.57

between two layers made of N atoms, and the distance between these top and

bottom layers defines the thickness (h). The X−N and N−N bond lengths are

denoted by d1 and d2, respectively. The numerical values of these structural

properties are listed in Table 3.5. It can be seen that both structures have an

overall similarity in their structures, with minor differences which stem from the

larger atomic radius of Si compared to C. The lattice constants (a and b) in th-

SiN2 show an elongation in comparison to th-CN2, and the Si−N bond length

shows an increase compared to C−N bond. The N−N bond length, however, is

almost equivalent in both compounds, which shows that the type of X atoms does

not affect the nature of N−N bonds. It can be inferred that N−N has a single bond

nature, since its length has compatibility with the average length of the single-

bonded N−N dimers (d=1.45). The electron localization function (ELF) plots of

th-SiN2 are shown in Fig. 3.13 (b). Each plot (labeled by Roman numeral symbols

I, II and III) is related to a crystalographic plane, specified by the same symbol

in Fig. 3.13 (a). It can be seen that between bonded pairs, the electronic charge

is localized in the middle zone. This form of charge localization shows the sigma

nature of bonds between atoms, which is also compatible with the sp3 orbital

hybridization of X elements. A comparison between the structural properties

of th-XN2 compounds, and their penta−XN2 counterparts reveals compatibility

among their bond lengths [73, 17], where Si−N bond length is 1.75 and 1.74 Å in

th-SiN2 and penta−SiN2, respectively, and C−N bond length is 1.46 and 1.47 Å in

th-SiN2 and penta−SiN2, respectively. This resemblance implies similar bonding

natures and suggests that th-XN2 compounds can form from their penta−XN2

counterparts through Stone-Wales transformation.
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3.3.2 Stability

To investigate the stability of the th-XN2 compounds, in the first step, we eval-

uated their dynamical stability based on their phonon dispersions. The phonon

spectrum of th-SiN2 and th-CN2 are presented in the left panels of Fig. 3.14. Ac-

cording to harmonic approximation, imaginary vibrational frequencies indicate a

disassembling tendency. Thus, to secure vibrational stability, all phonon modes

must have real frequencies. One can see that no imaginary frequencies can be

found in the phonon spectrum of the th-XN2 structures, guaranteeing the dy-

namical stability of these compounds. Next to the phonon spectrum, we plotted

the atom projected phonon density of states (PhDOS). The fact that highest

frequency in th-CN2 exceeds that of th-SiN2 is a signature of robustness of C−N

bonds compared to Si−N. Moreover, the maximum vibrational frequencies in

th-SiN2 (37 THz) and th-CN2 (40 THz) is higher than penta−SiN2 (33 THz)

and penta−CN2 (37.5 THz) [17], showing a better strength in X−N bonds of the

th-XN2 compounds.

In the second step, we studied the thermal stability of the th-XN2 structures

via ab− initio molecular dynamics simulations (AIMD), performed at T=800 K

for a duration of 6 ps. A relatively large supercell (4×3×1 times of the primitive

cell) was employed to alleviate the periodic boundary condition constraints. The

variation of potential energy vs time, alongside the snapshots of the ultimate

structural configuration, is provided in the middle panel of Fig. 3.14. It can

be seen that in both compounds potential energies only fluctuate during the

simulation, and no significant deviation occurs, which implies that no structural

transformation is energetically favorable even at elevated temperatures. Besides,

no broken bonds or deformation can be seen in the final atomic arrangements,

and the skeleton of the structures remains intact.

In the third step, the cohesive energy of the th-XN2 compounds was investi-

gated, using Eq. 3.1. The obtained cohesive energies are reported in Table 3.5.

The favorable cohesive energy of th-CN2 compared to th-SiN2 stems from the

higher bonding strength of C−N with respect to Si−N bonds [74]. A comparison
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Figure 3.14: The left panels are the phonon spectrum and their corresponding
PhDOS, verifying the dynamical (vibrational) stability of the th-XN2 compounds.
The middle panels are the evolution of the total potential energies during the
AIMD simulation at T=800 K, and the insets are the snapshots of the structural
configurations at the end of simulations. The right panels are the calculated
strain energies with respect to various applied strains.

between the cohesive energies of these compounds with that of phosphorene (3.48

eV/atom) [61], germanene (4.15 eV/atom) [60], and silicene (4.70 eV/atom) [59]

illustrates the superior bonding strength in the th-XN2 structures. Although the

cohesive energy value cannot verify the stability of a crystal, the fact that the

th-XN2 compounds have favorable cohesive energies compared to several already

synthesized 2D materials is a promising sign of their stability and synthesizability.

Finally, we ensured that the th-XN2 compounds have proper mechanical sta-

bility. A crystal has mechanical stability if its elastic stiffness constants fulfil

Born-Huang elastic stability criteria, i.e. C11C22 − C2
12 > 0 and C66 > 0, where

Cij are elastic stiffness constants. The evolution of the strain energy under strain

is demonstrated in the right panel of Fig. 3.14, and the extracted elastic stiffness

constants are listed in Table 3.6. It can be seen that the Born-Huang stability

criteria are satisfied by both the th-SiN2 and th-CN2 compounds.
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Table 3.6: The mechanical properties of th-XN2 structures, where Cij are the
elastic constants in the unit of N/m, Yx and Yy are Young’s modulus along the
zigzag and armchair directions in the unit of N/m, νx and νy are the Poisson’s
ratios along zigzag and armchair edges, respectively.

Mechanical Constants Young’s modulus Poisson’s Ratio Ultimate Strain

C11 C22 C12 C66 Yx Yy νx νy USx USy USxy

th-SiN2 182.20 184.28 -17.48 46.40 180.52 182.62 -0.096 -0.095 18 16 20

th-CN2 338.36 195.27 -1.54 87.14 338.35 195.26 -0.004 -0.008 26 15 22

3.3.3 Mechanical properties

After assuring that both th-SiN2 and th-CN2 are dynamically, thermally, ener-

getically, and mechanically stable, we studied their in-plane Young’s modulus

(Y ), Poisson’s ratio (ν), and ultimate Strain (US), as the most important strain-

dependent mechanical properties. As it is shown in the following sections, the

intrinsic structural anisotropy of the th-XN2 compounds gives rise to direction-

dependent mechanical properties.

3.3.3.1 Young’s modulus

The angle-dependent Young’s modulus was investigated through Eq. 3.7. The

calculated Young’s modulus vs in-plane angle is depicted in Fig. 3.15 (a), and

Young’s modulus numerical values along zigzag (Yx) and armchair (Yy) directions

are listed in Table 3.6. It can be noted that the Young’s modulus of th-CN2 is

greater than that of th-SiN2 in all directions. This higher stiffness of th-CN2 is

caused by the presence of the C−N bonds, which have higher formation energy

and thus a better strength compared to Si−N bonds. Moreover, in both com-

pounds, Young’s modulus is highly direction-dependent. th-SiN2 has equivalently

high stiffness along both zigzag and armchair edges, and a low stiffness along di-

agonal directions. In the case of th-CN2, Young’s modulus maximum lies along

the zigzag direction, and minimum appears in diagonal orientations. The maxi-

mum of Young’s modulus in both the th-SiN2 (182.62 N/m) and th-CN2 (338.35

N/m) compounds exceeds that of their penta counterparts (152 and 315 N/m for

penta−SiN2 and penta−CN2, respectively [17]), and in the case of th-CN2 this
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Figure 3.15: The angle-dependent evolution of (a) Young’s modulus (Yθ) and (b)
Poisson’s ratio (νθ) in the th−XN2 compounds.

value is comparable to that of graphene (345 N/m [63]).

3.3.3.2 Poisson’s ratio

Poisson’s ratio (PR) explains a material’s strain response along a direction per-

pendicular to that of the applied stress. In general, a crystal possesses positive

PR. In this section we studied the PR response of th-SiN2 and th-CN2. Our

calculations reveal that these compounds are among the members of the small

family of materials that exhibit auxetic behavior around their equilibrium struc-

ture. Poisson’s ratio (PR) along zigzag and armchair directions can be defined as

νx = C12/C11 and νy = C12/C22, respectively. According to Table 3.6, the elastic

constat C12 has a negative value for both th-SiN2 and th-CN2, which indicates the

auxetic behavior of both compounds. To examine the effect of orientation on the

PR response of the th-XN2 structures, the angle-dependent Poisson’s ratio was

calculated via Eq. 3.8. The behavior of ν vs θ is visualized in Fig. 3.15 (b), and

the numerical value of Poisson’s ratio along θ=0◦ (symbolized by νx) and θ=90◦

(symbolized by νy) directions are reported in Table 3.6. The plot, presented in

Fig. 3.15 (b), reveals not only the auxetic nature of the th-XN2 compounds but

also the anisotropy of the Poisson’s ratio response. It can be seen that both

compounds have positive PR values in diagonal directions, where the maximum

precisely lies along the θ=45◦ and θ=135◦. In contrast, along zigzag (θ=0◦) and

armchair (θ=90◦) directions both compounds exhibit auxetic behavior. The scope
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of auxetic response, in th-SiN2, with νx=-0.096 and νy=-0.095 , is significantly

higher compared to that of th-CN2, with νx=-0.004 and νy=-0.008 (Recently,

Wei et al. reported ν=-0.02 for th-CN2 [67]). These highly negavite PR values

of th-SiN2 surpasses that of most of well known 2D auxetic materials such as PG

(ν=-0.07 [9]), black phosphorus (ν=-0.03 [75]), borophene (ν=-0.04 [76]), and

penta-B2N4 (ν=-0.04 [77]), making this compound highly desirable for auxetic

applications. To further confirm the auxetic nature of the th-XN2 structures, the

evolution of bond lengths (d1 and d2) and thickness (h) upon uniaxial strain along

zigzag and armchair edges are shown in Fig. 3.16. In an ordinary material with a

positive PR value, lattice elongation along direction i will be accompanied by an

expansion of the bonds oriented parallel to i and shrinkage of the bonds, oriented

perpendicular to i. In the th-XN2 compounds, however, independent of the direc-

tion of the lattice expansion, both the X−N and N−N bonds show an increasing

trend in their lengths, which exhibits the auxetic nature of these materials. On

the other hand, lattice elongation in both directions decreases the thickness of

the crystals, which clears that their out-of-plane Poisson’s ratio is positive. Due

to the notably strong auxetic behavior of th-SiN2, we further studied the effect

of strain engineering on the evolution of Poisson’s ratio value in this compound.

Uniaxial strains along zigzag and armchair edges were applied to th-SiN2 within

the range of -4≤ε≤10%, with increments of 1%, and the results are presented in

Fig. 3.17. In the left panels of Fig. 3.17, the total energy of structure vs the per-

pendicular lattice constant (with respect to the direction of strain) can be found.

It can be seen that upon structural elongation in both zigzag and armchair di-

rections, the optimized transversed lattice constant (b perpendicular to zigzag

and a perpendicular to armchair) shows an increase under tensile strain and de-

crease under compressive strain. This counter-intuitive behavior clearly proves

the auxetic nature of th-SiN2 under any strain within the above-mentioned range.

In the right panels of Fig. 3.17, the transverse strain (magnified by 1000 times)

is depicted with respect to the applied strain. By definition, the slope of these

curves is equal to the minus of the PR value (ν = −εi/εj), where j is the direc-

tion of applied strain and i is the direction transverse to that of applied strain.

Therefore, based on the plots presented in the right panels of Fig. 3.17, it can be

inferred that the slopes of the curves are in agreement with the predicted auxetic
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Figure 3.16: The left panels show the direction of the applied strain. The middle
panels exhibit the evolution of the bond lengths under strain, where X−N and
N−N correspond to d1 and d2, respectively. The right panels demonstrate the
variation of the thickness (h) under strain.

nature of the th-SiN2 compound.

3.3.3.3 Ultimate Strain

We investigated the US by employing a 2×2×1 supercell and calculating the

stress imposed into the system upon various tensile strains. The obtained stress-

strain curves are presented in Fig. 3.18, where the UTS point is the maximum

stress that the crystal experiences right before the failure, and the percentage

of strain tolerated by the system at the UTS point is US. The US under zigzag

(USx), armchair (USy), and biaxial (USxy) strains are listed in Table 3.7. It can

be noted that the th-XN2 compounds offer high US in all straining conditions,
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Figure 3.17: The left panels show the evolution of the lattice constant, transverse
to the direction of applied strain for various strain intensities. The right panels
are plots of εi versus εj, where j is the direction of applied strain and i is the
direction transverse to that of applied strain.

where the maximum US appears under biaxial and zigzag strains for th-SiN2 and

th-CN2, with 20 and 26%, respectively. These values are comparable to that

of graphene (27% [68]), penta-graphene (21% [9]), and th−C (32% [16]). The

superior US achieved in the th-CN2 structure can be attributed to the higher

strength of C−N compared to Si−N bonds. Moreover, the fact that none of

the bonds are oriented directly along the zigzag direction, combined with the

flexibility of θ1 and θ4 angles under strain contributes to the higher US upon

strain in zigzag direction compared to armchair direction.
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Figure 3.18: The stress-strain curves for uniaxial tensile strain along zigzag and
armchair directions, and equi-biaxial tensile strain in the th−XN2 compounds,
where the ultimate strain (US) points are denoted by dashed lines.

3.3.4 Electronic band structures

To avoid the underestimation of the band gap energies, resulting from the PBE

method, we employed HSE06 functional to study the electronic properties of the

th-XN2 compounds along high symmetry lines of the BZ. The calculated band

structures alongside their corresponding projected density of states (pDOS) are

presented in Fig. 3.19 (a) and (b) for th-SiN2 and th-CN2, respectively, and the

band gap energies are reported in Table 3.5 It can be seen that both structures

have wide indirect band gaps, categorizing them as insulators. In both compounds

the band gap is decreased compared to their penta−XN2 counterparts (5.19 and

6.53 eV for penta−SiN2 and penta−CN2, respectively [17]). pDOS plots reveal

that in both compounds the majority of the valence band states are made of

pz orbitals of N atoms. In the case of the conduction band, however, s orbitals

play important roles. While in th-SiN2, the conduction band mostly consists of

s orbitals of both Si and N atoms, in th-CN2, the valence states are constituted
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Figure 3.19: Electronic band structure of th−XN2 compounds obtained from the
HSE06 functional. Double-headed arrows show the position of indirect band gaps
between valence band maximum (VBM) and conduction band minimum (CBM).
The Fermi level is set to zero, and demonstrated by the dashed black line. The
projected density of states (pDOS) plots are presented next to their corresponding
band structure.

by pz orbitals of C alongside the s orbitals of N.

3.3.5 Strain-engineering of electronic properties

Due to the high ductility of the th-XN2 compounds, strain-engineering can be em-

ployed to tune their electronic properties. In Fig. 3.20, the evolution of electronic

properties under various types of strain is demonstrated. It can be seen that in

general, compressive strains tend to widen the band gap (except for compressive

strain along the armchair direction in th-SiN2), and tensile strains tend to narrow

the band gap energies, generating a semiconducting nature in these compounds.

The position of the valence band maximum (VBM) (blue bars) and conduction

band minimum (CBM) (pink bars) with respect to the reduction/oxidation po-

tentials of water (black and red lines for pH=0 and pH=7, respectively) are also

presented in Fig. 3.20. One can see that in pristine conditions both compounds

have a proper band edge alignment with redox potentials of water, and under

strain, these alignments are preserved, manifesting a potential for application in

the photocatalytic splitting of water. However, to have an efficient photocatalyst,
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Figure 3.20: Strain engineering of the electronic properties (band gap and band
edges alignment with respect to the redox potential of water splitting) of the
th−XN2 compounds, calculated from HSE06 functional, for zigzag, armchair,
and biaxial strains within the range of -4% to 10% (negative/positive numbers
correspond to the compressive/tensile strain), with increments of 2%. The dark
blue markers depict the band gap values. The valence band maximum (VBM)
and conduction band minimum (CBM) positions are shown with purple and blue
bars, respectively. The redox potentials of water splitting are accentuated by red
and black dashed lines for pH=7 and pH=0, respectively.
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the band gap energy of the crystal should be sufficiently low to provide a proper

absorption in the visible region of the light spectrum which covers around 43% of

the solar incident beams. Therefore, a tensile strain can be employed to increase

the light absorption efficiency of the th-XN2 compounds.

3.3.6 Effective mass and carrier mobility

The effective mass and carrier mobility of the th-XN2 compounds were studied to

achieve a better insight into the migration characteristics of the charge carriers.

The effective mass was calculated, using Eq. 3.9. We found that in the th-XN2

compounds, the effective mass is highly direction-dependent. The calculated val-

ues of effective mass along the zigzag (x) and armchair (y) directions are reported

in Table 3.7. In the case of th-SiN2, the effective mass of electrons along the zigzag

direction is 22 times higher than the armchair direction. In contrast, the effective

mass of holes is 3.46 times higher along the armchair direction. Moreover, the

type of charge carrier has a significant effect on the effective mass; in a way that

along the zigzag direction the effective mass of electrons is 46 times higher than

that of holes. The charge carriers of th-CN2 also exhibit a similar direction and

type-dependent effective mass. To visualize the scope of this anisotropy, we pre-

sented the angle dependence of the electron and hole effective masses of th-SiN2

in Fig. 3.21 (a). It can be seen that electrons and holes have their maximum

effective mass along the armchair and zigzag directions, respectively. In the next

step, we investigated the charge carrier mobilities along the ΓX (denoted by µ2D
x )

and ΓY (denoted by µ2D
y ) directions through Eq. 3.10. One can see that mo-

bility depends on anisotropic factors, such as effective mass. Consequently, the

th-XN2 compounds have highly direction-dependent carrier mobilities (see Ta-

ble 3.7). Since electrons and holes play a key role in the photocatalysis process,

an efficient photocatalyst needs to have a prolonged charge carrier drift time.

To achieve this requirement, the photo-generated electron/hole pairs should get

separated to prevent quick recombination of them and it is the difference in the

mobilities of the electron and hole that induces this separation. Accordingly, the

th-XN2 compounds, which offer inequivalent and direction-dependent electron
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Table 3.7: Charge carrier properties, where m∗x/m0 and m∗y/m0 are the effective
masses with respect to a static electron mass (m0) along the zigzag and armchair
edges, C2D is the elastic constant in the unit of N/m, E1 is the deformation
potential constant in the unit of eV, and µ2D is the charge carrier mobility in the
unit of cm2V−1s−1 at T=300 K.

Effective mass In-plane stifness Deformation pot. Mobility × 103

Structure Carrier type m∗
x/m0 m∗

y/m0 Cx
2D C

y
2D

Ex
1 E

y
1 µ2D

x µ2D
y

th-SiN2

Hole 0.28 0.97 182.20 184.28 9.80 1.57 0.28 3.14

Electron 13.00 0.59 182.20 184.28 0.59 1.06 0.31 2.13

th-CN2

Hole 0.44 1.09 338.36 195.27 3.12 10.34 2.42 0.05

Electron 0.22 0.33 338.36 195.27 1.50 2.62 55.97 6.96

Figure 3.21: (a) The evolution of effective mass vs in-plane angle for electrons
(top panel) and holes (bottom panel) in th−SiN2. (b) Dependence of total energy
(calculated by the HSE06 functional) of band edges (CBM and VBM positions)
with respect to the vacuum level as a function of applied uniaxial strains along
the transport direction for th−SiN2.

and hole mobilities, are promising candidates for application in photocatalysis

processes.

3.3.7 Optical properties

The light-harvesting performance of the th-XN2 compounds was investigated, us-

ing GW0+BSE method. The resulted optical absorption coefficient vs the light

energy plots are provided in Fig. 3.22, where x and y symbolize simulation along
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Figure 3.22: The optical absorption coefficient of the th−XN2 compounds along
zigzag (x) and armchair (y) edges as a function of photon energy, calculated based
on the GW0+BSE method.

zigzag and armchair edge, respectively. In both compounds, the absorption co-

efficient is highly direction-dependent, where the absorption strength along the

armchair edge outweighs the zigzag edge. This highly anisotropic optical behav-

ior of the th-XN2 compounds stems from their anisotropic charge distribution,

and can be exploited to manipulate the polarization of the incident light. In both

compounds, a heavy absorption occurs in the ultraviolet region of the light spec-

trum, where the absorption coefficient is in the order of 106 cm−1. In th-SiN2,

and along the armchair direction, a great absorption peak appears around 6 eV,

and a smaller peak emerges around 8.1 eV. Along the zigzag edge, however, a

weak absorption occurs between 6 and 8 eV. In general, similar light absorption

behavior can be found in th-CN2. Along the armchair direction, however, peaks

are slightly shifted towards lower energies, where two nearly equivalent peaks

arise around 5 and 8 eV. In this material, the weak absorption along the zigzag

edge is broken into two peaks, one lies near 5.5 eV and the other one appears

around 8.6 eV. From an energetic point of view, an ultraviolet beam can facilitate

photocatalytic activities better than visible light, since its high photonic energy

is enough to overcome large energy barriers in a catalysis process. Therefore,

the th-XN2 compounds can be utilized as photocatalysts where a broad energy

barrier exists.
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Chapter 4

Conclusion

In this last chapter, briefly, we present our conclusions drawn from this thesis.

Our first-principles calculations revealed that a plethora of exotic properties can

be found in the Tetrahex compounds. In the first step, based on cohesive energy,

phonon spectrum, AIMD simulations, and Born-Huang elastic stability crite-

ria, we revealed that these materials are energetically, dynamically, thermally,

and mechanically stable, respectively. We found that the intrinsic structural

anisotropy of these compounds creates unique direction-dependent mechanical,

electronic, and optical properties, such as angle-dependent high Young modu-

lus, negative Poisson’s ratio, and excellent ultimate strain comparable to that of

graphene, making them suitable for strain engineering of electronic and optical

properties. Auxetic materials are rare, and materials with auxetic behavior in

their equilibrium state are far more scarce. The appearance of these unconven-

tional properties in the th-CN2 and th-SiN2 compounds makes them promising

for numerous applications in industry. Among these compounds, we can find

natural semiconductors, with direct, quasi-direct, and indirect band gaps. More-

over, the majority have a band gap that lies perfectly in the suitable region of

the solar spectrum for optimum light absorption, which is simultaneously wide

enough to provide sufficient photo-generated energy to overcome the potential

barrier of water splitting. They also have highly anisotropic charge carrier mo-

bility, which provides a suitable condition for exciton separation, and prolongs
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the average lifetime of electron-hole pairs. Among these 2D materials, in pristine

condition, th-CP2 and th-CAs2 have the proper band alignment with the oxida-

tion/reduction potential of water splitting. Moreover, this alignment can be im-

proved in th-CAs2 through strain manipulation of the electronic properties. Thus,

these compounds can be considered as suitable candidates for high-performance

photo-induced catalysis of the water-splitting process. Finally, due to the ver-

satility of the sp3 orbital hybridization found in the Tetrahex compounds, we

predict that other binary and ternary compounds from the block p of the peri-

odic table can be materialized in this skeleton, each of which can probably possess

a plethora of exotic properties. Thus, fruitful studies can be conducted on this

family of 2D materials in the recent future.
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Figure A.1: Dependence of total energy (calculated by the HSE06 functional) of
band edges (CBM and VBM positions) versus the vacuum level as a function of
applied uniaxial strains along the transport direction for th-CN2. (a) VBM along
the zigzag direction. (b) VBM along the armchair direction. (c) CBM along the
zigzag direction. and (d) CBM along the armchair direction.
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Figure A.2: Dependence of total energy (calculated by the HSE06 functional) of
band edges (CBM and VBM positions) versus the vacuum level as a function of
applied uniaxial strains along the transport direction for th-CP2. (a) VBM along
the zigzag direction. (b) VBM along the armchair direction. (c) CBM along the
zigzag direction. and (d) CBM along the armchair direction.
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Figure A.3: Dependence of total energy (calculated by the HSE06 functional) of
band edges (CBM and VBM positions) versus the vacuum level as a function of
applied uniaxial strains along the transport direction for th-CAs2. (a) VBM along
the zigzag direction. (b) VBM along the armchair direction. (c) CBM along the
zigzag direction. and (d) CBM along the armchair direction.
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Figure A.4: Dependence of total energy (calculated by the HSE06 functional) of
band edges (CBM and VBM positions) versus the vacuum level as a function of
applied uniaxial strains along the transport direction for th-CSb2. (a) VBM along
the zigzag direction. (b) VBM along the armchair direction. (c) CBM along the
zigzag direction. and (d) CBM along the armchair direction.
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POSCAR of relaxed structure of th-CN2:

th-CN2
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C N

4 8

Direct
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0.0000000000000000 0.7499999220000007 0.4999999806327082

0.5000000000000000 0.7499999220000007 0.4999999806327082

0.5000000000000000 0.2500000000000000 0.4999999806327082

0.7499999650000007 0.6266447485786273 0.4654842730274709

0.7499999650000007 0.3733552774213749 0.4654842730274709

0.2500000000000000 0.1266447485786273 0.4654842730274709
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0.2500000000000000 0.6266447485786273 0.5345157269725291

0.7499999650000007 0.8733553034213770 0.5345157269725291

0.7499999650000007 0.1266447485786273 0.5345157269725291
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