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We have performed a first principles study of the  struc-
tural, elastic and electronic properties of orthorhombic 
SnS and GeS compounds using the density functional 
theory within the local density approximation. The sec-
ond-order elastic constants have been calculated, and the 
other related quantities such as the Young’s modulus, 
shear modulus, Poisson’s ratio, anisotropy factor, sound 
velocities, Debye temperature, and hardness have also 
been estimated in the present work. All of the calculated 
modulus and Poisson’s ratio for SnS were less than the 
same parameters for GeS. Our calculations have discov-
ered the large anisotropy of elastic parameters in the 
(100) and (010)-planes for both compounds. The band 

structures of orthorhombic SnS and GeS have been cal-
culated along high symmetry directions in the first Bril-
louin zone (BZ). The calculation results for the band gap 
of Sn(Ge)S gave Eg=0.256 eV (0.852 eV) and has an in-
direct character for an interband transition. The real and 
imaginary parts of dielectric functions and (by using 
these results) the optical constant such as energy-loss 
function, the effective number of valance electrons and 
the effective optical dielectric constant were calculated. 
All of the principal features and singularities of the di-
electric functions for both compounds were found in the 
energy region between 2 eV and 20 eV. 

 

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim  

1 Introduction SnS and GeS, the members of compounds 
with the general formula  A4B6 (A=Ge, Sn, Pb and B=S, Se, 
Te), are the metal chalcogenide structures with an ortho-
rhombic layered crystal structure. SnS and GeS structures 
consist of double layers of atoms, with each Ge (Sn) atom 
coordinated by two S atoms in the plane of the layer [1]. 
These compounds possess an orthorhombic crystal struc-
ture with eight atoms per unit cell belonging to the space 
group Pnma. These layered semiconductors have been at-
tracting the attention of scientists because of their potential 
application in optoelectronic devices [2]. 
  In the past, some detailed works [1-7] have been carried 
out on the structural and electronic properties of these 
compounds. Rathor et al. [3] presented the bands and den-
sity of states (DOS) using the Hartree-Fock, density func-
tional and pseudopotential schemes. Gashimzade et al. [4] 

calculated the phonon modes of IV-VI semiconductor crys-
tals (GeS, GeSe, SnS, and SnS) using the density func-
tional perturbation theory (DEPT). Waghmare et al. [5] 
calculated the phonon frequencies, electron localization 
lengths, Born effective charges, dielectric response, and 
conventional electronic structures of the IV-VI chalco-
genide series using the first principle density functional 
theory. Wiedemeier et al. [6] refined the structures of GeS, 
GeSe, SnS, and SnSe using the X-ray diffractometer.  
Malone et al. [7] performed the electronic structures of 
SnS and GeS materials using the density functional theory 
calculation. Band gap corrections of these materials are 
computed within the GW approximation. Rajagopalan et al. 
[2] investigated the structural behaviour of SnS under pres-
sure using the first principle density functional calculations.  
Ettoma et al. [1] presented the electronic band structure of 
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SnS using the ab initio band structure calculation and pho-
toelectron spectroscopy methods. 
  As far as we know, no ab initio general potential calcula-
tions of the mechanical properties and detail optical prop-
erties such as the energy-loss function, the effective num-
ber of valance electrons and the effective optical dielectric 
constant along the main crystallographic axes of the SnS 
and GeS have been reported. The main purpose of this 
work is to provide some additional information on the ex-
isting features of SnS and GeS by using the density func-
tional theory. Therefore, in this work, we have investigated 
the structural, electronic, mechanical, and photon energy-
dependent optical properties of the SnS and GeS crystals. 
The method of calculation is given in Section 2; the results 
are discussed in Section 3. Finally, the summary and con-
clusion are given in Section 4. 

2 Model and method 
Our calculations have been performed using the density 
functional formalism and local density approximation 
(LDA) [8] through the Ceperley and Alder functional [9] 
as parameterized by Perdew and Zunger [10] for the ex-
change-correlation energy in the SIESTA code [11, 12]. 
This code calculates the total energies and atomic forces 
using a linear combination of atomic orbitals as the basis 
set. The basis set is based on the finite range pseudoatomic 
orbitals (PAOs) of the Sankey-Niklewsky type [13], gener-
alized to include multiple-zeta decays. 
 The interactions between electrons and core ions are simu-
lated with separable Troullier-Martins norm-conserving 
pseudopotentials [14]. We have generated atomic pseudo-
potentials separately for atoms, Sn, Ge and S by using the 
5s25p2, 4s24p2 and 3s23p4 configurations, respectively. For 
present atomic pseudopotentials, the cut-off radii are taken 
as s: 2.40 au, p: 2.46 au, 2.79 au for the d and f channels of 
Sn, s: 2.06 au, p: 2.85 au, 2.58 au for the d and f channels 
of Ge and s: 1.60 au, p: 1.73 au, 1.90 au for the d and f 
channels of S. Siesta calculates the self-consistent potential 
on a grid in real space. The fineness of this grid is deter-
mined in terms of an energy cut-off Ec in analogy to the 
energy cut-off when the basis set involves plane waves. 
Here, by using a double-zeta plus polarization (DZP) orbi-
tals basis and the cut-off energies between 100 and 500 R 
with various basis sets, we found an optimal value of 
around 350 R for SnS and GeS. 75 k-points for SnS and 
GeS were enough to obtain the converged total energies. 
 
3 Results and discussion  
3.1 Structural properties The structures of SnS and 
GeS are considered as an orthorhombic structure. These 
crystals have four molecules (8 atoms) in the unit cell. The 
equilibrium lattice parameters were obtained by minimiz-
ing the total energy for the different values of the lattice 
parameters by means of Murnaghan’s equation of states 
(EOS) [15]. The results are shown in Table 1. The obtained 

lattice parameters are in good agreement with the experi-
mental and theoretical values. 
 
Table 1 The calculated equilibrium lattice parameters (a, b, and 
c), with the theoretical and experimental values for SnS and GeS 
in fractional coordinates. 

Material Reference              a  (Å)    b  (Å) c  (Å)    
SnS 
 
 
 
 

Present  
Exp. [6] 

Exp. [15] 
Theory [7]  
 

Present 
Exp. [6] 

Exp. [15] 
Theory [7]  

4.309 
4.388 
4.34 
4.334 
 
4.268 
4.299 
4.30 
4.29 

11.136 
11.200 
11.20 
10.91 
 
10.406 
10.481 
10.47 
10.22 

3.964 
3.987 
3.99 
3.88 
 
3.619 
3.646 
3.64 
3.51 

 
3.2 Elastic properties The elastic constant ijC  of 

solids provides a link between the mechanical and dynami-
cal behavior of crystals, and some of the most important 
information that can be obtained from ground state total 
energy calculations. The ijC  determine the response of the 
crystal to external forces characterized by the bulk 
modulus, Young's modulus, shear modulus, and Poisson's 
ratio, and, therefore, play an important part in determining 
the stability and stiffness of the materials [16-18]. The pre-
sent elastic constants are computed by using the "volume-
conserving" technique [19]. The obtained ijC  calculations 
are summarized in Table 2. Unfortunately, there are no 
theoretical results for comparing them with the present 
work. However, our results can serve as a prediction for 
future investigations.  
     Nine independent strains are necessary to compute the 
elastic constants of orthorhombic GeS and SnS compounds. 
Mechanical stability leads to restrictions on the elastic con-
stants, which for orthorhombic crystals [19-21] are 

0)2( 122211 >−+ CCC , 0)2( 133311 >−+ CCC , 
0)2( 233322 >−+ CCC , 0,0 2211 >> CC ,  (1) 

33 44 55 660, 0, 0, 0,C C C C> > > >  
0)222( 231312332211 >+++++ CCCCCC . 

The present elastic constants in Table 2 obey these stability 
conditions for orthorhombic SnS and GeS. The elastic con-
stants 11C , 22C , and 33C  measure the a-, b-, and c-
direction resistance to linear compression, respectively. 
The 11C  for SnS and GeS compounds are lower than the 

22C  and 33C . Thus, SnS and GeS compounds are more 
compressible along the a-axis. It is known that the elastic 
constant 44C  is the most important parameter indirectly 
governing the indentation hardness of a material. The large 

44C  means a strong ability of resisting the monoclinic 
shear distortion in (100) plane, and 66C  relates to the resis-
tance to shear in the <110> direction. In the present case, 

44C  and 66C  for GeS are higher than the SnS compound.  
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Table 2 The calculated elastic constants (in GPa) for SnS and GeS 

Material Reference    11C  22C  33C  12C  13C  23C  44C  55C  66C  

SnS 

 
GeS 

Present    
        
Present        

99.34 
 
122.9 

137.58 
 
169.08 

106.62 
 
145.80 

26.23 
 
34.78 

52.17 
 
54.0 

21.86 
 
34.04 

36.27 
 
48.81 

77.48 
 
93.0 

38.53 
 
50.79 

 

Table 3 The calculated isotropic bulk modulus (B, in GPa), shear modulus (G, in GPa), Young’s modulus (E, in GPa) and Poisson’s 
ratio  for SnS and GeS compounds. 

Material Reference    RB  VB  B  RG  VG  G  E  υ 

SnS 

 
GeS 

Present 
        
Present  

60.41 
 
75.65 

60.45 
 
75.93 

60.43 
 
75.79 

40.33 
 
54.58 

46.67 
 
59.52 

43.50 
 
57.05 

105.3 
 
136.8 

0.2097 
 
0.1991 

 
A problem arises when single crystal samples are not 
available, since it is then not possible to measure the indi-
vidual elastic constants. Instead, the polycrystalline bulk 
modulus ( B ) and shear modulus ( G ) may be determined. 
There are two approximation methods to calculate the po- 
lycrystalline modulus, namely, the Voigt method [22] and 
the Reuss method [23]. For specific cases of orthorhombic 
lattices, the Reuss shear modulus ( RG ) and the Voigt shear 
modulus ( VG ) are   

1

6655

44231323
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13332223332211
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and the Reuss bulk modulus ( RB ) and Voigt bulk modulus 
)( VB  are defined as 

1
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231312332211 CCCCCCBV +++++= .            (5) 

 
In Eq. (2) and (4),  

)()()( 2
1222113311231312232213231213 CCCCCCCCCCCCCC −+−+−=Δ is 

the elastic compliance constant. Using energy considera-
tions Hill [24] proved that the Voigt and Reuss equations 
represent the upper and lower limits of the true polycrystal- 
 
 

 
line constants, and recommended that a practical estimate 
of the bulk and shear moduli were the arithmetic means of 
the extremes. Hence, the elastic moduli of the polycrystal-
line material can be approximated by Hill’s average. The 
shear moduli can, therefore, be expressed as 

)(
2
1

VR GGG += ,                                                             (6) 

and in a similar manner  the  bulk moduli  can be written as 
1 ( ).
2 R VB B B= +                                                               (7) 

Young’s modulus, ,E  and Poisson’s ratio, v , for an iso-
tropic material are given by  

GB
BGE
+

=
3
9  ,                                                        (8)  

)3(2
23

GB
GBv

+
−

=  ,                                                                (9) 

respectively [25, 26]. The Hill average [24] was used to 
calculate the polycrystalline modulus in a manner similar 
to our recent works [17, 18].Using the relations given 
above, the calculated bulk modulus, shear modulus, 
Young’s modulus, and Poisson’s ratio for SnS and GeS are 
given in Table 3. The bulk modulus is a measure of resis-
tance to volume change by an applied pressure, whereas 
the shear modulus is a measure of resistance to reversible 
deformations upon shear stress [27]. Hence, shear modulus 
exhibits better correlations with hardness than the bulk 
modulus. The calculated bulk modulus and shear modulus 
for SnS and GeS are 60.43, 43.50 GPa and 75.79, 57.05 
GPa, respectively. The values of the bulk moduli indicate 
that GeS is a less compressible material than the SnS com-
pound. The calculated shear modulus for SnS is lower than 
GeS compound.  
   The criterion in Refs. [27, 28] for ductility or brittleness 
is the value of the GB / . If the GB /  ratio is higher (less) 
than, 1.75, then a material is ductile (brittle). The GB /  ra-
tio calculated for SnS and GeS compounds are lower than 
1.75. Hence, both compounds behave in a brittle manner.  
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Young’s modulus, which is defined as the ratio of stress to 
strain for a given material, is used to provide for the meas-
urement of the stiffness of the solid. The higher the value 
of Young's modulus, the stiffer the materials will be. Here, 
the value of Young’s modulus (105.3 GPa) of the SnS 
compound is higher than GeS (136.8 GPa). Therefore, the 
GeS compound is relatively stiffer than SnS. If the value of 
E , which has an impact on the ductile, increases, then the 
covalent nature of the material also increases. In Table 3, it 
is shown that E increases as you move from SnS to GeS. 
The value of Poisson’s ratio is indicative of the degree of 
directionality of the covalent bonds. The value of the Pois-
son’s ratio is small ( υ =0.1) for covalent materials, 
whereas for ionic materials a typical value of υ  is 0.25 
[29]. The calculated Poisson’s ratios are approx. 0.210 and 
0.199 for SnS and GeS, respectively. Therefore, the ionic 
contribution to inter atomic bonding for these compounds 
is dominant. The υ=0.25 and 0.5 are the lower and upper 
limits, respectively, for central force solids [30]. For SnS 
and GeS, the values of υ are close to 0.25, indicating that 
interatomic forces are central forces.  
    In the crystal structures, elastic anisotropy is important 
in understanding the elastic properties [31]. The shear ani-
sotropic factors on different crystallographic planes pro-
vide a measure of the degree of anisotropy in atomic bond-
ing in different planes. The shear anisotropic factors are 
given by 

133311

44
1 2

4
CCC

CA
−+

=   for the {100} plane,                  (10) 

233322

55
2 2

4
CCC

CA
−+

=  for the {010}plane,                   (11) 

122211

66
3 2

4
CCC

CA
−+

=   for the {001}plane.                   (12) 

    The calculated values of 21, AA  and 3A  for SnS and GeS 

are given in Table 4. A value of unity means that the crys-
tal exhibits isotropic properties while values other than 
unity represent varying degrees of anisotropy. From Table 
4, it can be seen that SnS and GeS exhibit larger anisotropy 
in the {100} and {010} planes and these compounds ex-
hibit almost isotropic properties for the {001} plane ac-
cording to other planes. Another way of measuring the 
elastic anisotropy is given by the percentage of anisotropy 
in the compression and shear [29, 30, 32]. 
 

100V R
comp

V R

B BA
B B

-= ¥
+

,                                                  (13) 

100V R
shear

V R

G GA
G G

-= ¥
+

.                                                  (14) 

 
 For crystals, these values can range from zero (iso-
tropic) to 100% representing the maximum anisotropy. The 
percentage anisotropy values have been computed for SnS 
and GeS, and are shown in Table 4. It can be also seen that 

the anisotropy of SnS in compression is small and its ani-
sotropy in shear exhibits relatively high shear compared to 
GeS. 
Table 4 The shear anisotropic factors A1, A2, A3, and Acomp(%), 
Ashear(%). 

Material Reference 1A  2A  3A  compA  shearA  

SnS 

 
GeS 

Present 
       
Present 

1.43 
 
1.06 

1.55 
 
1.51 

0.84 
 
0.91 

0.03 
 
0.18 

7.29 
 
4.33 

 
Table 5 The longitudinal, transverse, average elastic wave ve-
locities, and hardness together with the Debye temperature for 
SnS and GeS. 

Material Reference )/(| smv  )/( smvt  )/( smvm  )(KDθ  

SnS 

 
GeS 

Present 
 
Present 
 

4745 
 
5928 

2875 
 
3634 

3178 
 
4011 

414 
 
553 

 
One of the standard methods for calculating the Debye 
temperature is to use elastic constant data since Dθ  [33] 
may be estimated from the average sound velocity ( mv ). 

m
A

D v
M

Nn
k

3/1

4
3

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛=

ρ
π

θ ,                                            (15) 

where is Planck's constants, k  is Boltzmann's constant, 

AN  is Avogadro's number, n is the number of atoms per 
formula unit, M  is the molecular mass per formula unit, 

)/( VM=ρ  is the density, and mv  is given [34] as 
3/1

33
12

3
1

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

lt
m vv

v ,                                                  (16) 

where lv  and tv , are the longitudinal and transverse elas-
tic wave velocities, respectively, which are obtained from 
Navier's equation [35] 

ρ3
43 GBvl

+
= ,                                                             (17) 

and 

ρ
Gvt = .                                                                         (18) 

   At low temperatures, we have calculated the sound ve-
locities and the Debye temperature by using the common 
relation given herein above for SnS and GeS, and the re-
sults are listed in Table 5. For materials, usually, the higher 
Debye temperature, the larger microhardness. The calcu-
lated Debye temperature for GeS is higher than SnS. Un-
fortunately, there are no theoretical and experimental re-
sults to compare with the calculated lv , tv , mv  , and 

Dθ values. 

 Table 6 Energy band gap for SnS and GeS
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Table 6 Energy band gap for SnS and GeS Debye temperature for GeS is higher than SnS. Unfortunately, there are no theoretical and 
experimental results to compare with the calculated lv , tv , mv  , and Dθ values.  
Material Reference )(eVEg  

SnS 
 
 
 
GeS 

Present 
Theory (DFT-LDA) [7] 

Experimental [6] 

 

Present 
Theory (DFT-LDA) [3] 

Theory (DFT-GGA) [3] 

Theory (FP-LAPW with GGA) [3] 

Theory (FP-LAPW with GGA) [36] 

Theory (FP-LAPW with GGA) [15] 

Experimental [37] 

Experimental [38] 

Experimental [39] 

0.256 indirect 
0.4 indirect 
0.72 
 
0.852 indirect 
0.73 direct, 0.83 indirect 
0.83 direct, 0.89 indirect 
1.051 direct, 1.053 indirect 
1.10 indirect, 1.12 direct 
1.52  indirect 
1.65 direct 
1.65 direct 
1.54 indirect 

 
3.3 Electronic properties The investigation of the elec-
tronic band structure for understanding the electronic and 
optical properties of SnS and GeS  is very useful. The band 
structures of the orthorhombic SnS and GeS were calcu-
lated using LDA approximation. The electronic band struc-
tures were calculated along the special lines connecting the 
high-symmetry points Γ (0,0,0), X (½,0,0), S (½,½,0), Y 
(0,½,0), Z (0,0, ½), R (½,½,½) for SnS and GeS  in the k-
space.  
 

 
Figure 1 Energy band structure  for a) SnS and  b) GeS 

   The energy band structures calculated for SnS and GeS  
are shown in Fig. 1. As can be seen in Fig. 1a, the SnS 
compound is an indirect band gap semiconductor with the 
value 0.256 eV (see Table 6). The top of the valance band 
positioned at the nearly X point between Γ  and X point of 
BZ, the bottom of the conduction band is located at the 
nearly Z point between Γ  and Z point of BZ. The band 
gap with the value 0.852 eV (see Table 6) of GeS com-
pound has the same character of that of SnS. Similarly, the 
top of the valance band is located at the nearly midway 
point between Γ and X point of the BZ, and the bottom of 
the conduction band is located at the Γ  point of BZ. The  

 
band gap value obtained for GeS is in good agreement with 
the theoretical results, but is less than the estimated ex-
perimental results. The present band and the density of 
states (DOS) profiles for GeS agree with the earlier work 
[1, 7]. The total and partial densities of states correspond-
ing to the band structures of SnS and GeS were calculated 
and the results are indicated in Fig. 2 and Fig. 3 along with 
the Fermi energy level, respectively. In these figures, the 
lowest valence bands that occur between approximately  
-16 and -12 eV  are dominated by S 3s states while the va-
lence bands that occur between approximately -10 and -6 
eV  are dominated by Sn 5s and Ge 4s states. The highest 
occupied valance bands are essentially dominated by S 3p 
states. The 5p and 4p states of Sn and Ge atoms, respec-
tively are also contributing to the valance bands, but the 
values of the densities of these states are rather small com-
pared to S 3p states. The lowest unoccupied conduction 
bands just above Fermi energy level is also dominated by 
the 5p and 4p states of Sn and Ge atoms, respectively. 
 
3.4 Optical properties It is well known that the effect of 
the electric field vector, E ( )w , of the incoming light is to 
polarize the material. At the level of linear response, this 
polarization can be calculated using the following relation 
[40, 41]: 

(1)( ) ( , ) ( ),i j
ijP Ew c w w w= -                                    (19) 

where )1(
ijχ  is the linear optical susceptibility tensor and it 

is given by [42] 

π
δωε

ωω
ωωχ

4
)(

)(
)()()(),(

2
)1( ijij

knm mn

i
mn

i
nm

nmij k
krkrkfe −

=∑
−Ω

=−  (20) 

where mn,  denote energy bands, )()()( kfkfkf nmmn −≡  
is the Fermi occupation factor, Ω  is the normalization 
volume, )()()( kkk mmn ωωω −≡  are the frequency dif-

ferences, )(knω  is the energy of band n  at wave vector 
k. The nmr  are the matrix elements of the position operator 
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Figure 2 The total and projected density of states for SnS. 

 

Figure 3 The total and projected  density of states for GeS. 

[42].  As can be seen from Eq. (20),  the dielectric  func- 
tion ),(41)( )1( ωωπχωε −+= ijij and the imaginary part of 

)(),( 2 ωεωε ij
ij , is given by 

)).(()()()()( 2

2

2 kkvkvkfkdew mn
nm mn

j
nm

i
nm

nm
ij ωωδ

ωπ
ε −∑ ∫=     (21) 

The real part of ( )ijε ω and 1 ( )ijε ω  can be obtained by us-
ing the Kramers-Kroning transformation [42]. Because the 

Kohn-Sham equations determine the ground state proper-
ties, the unoccupied conduction bands as calculated have 
no physical significance. If they are used as single-particle 
states in a calculation of the optical properties for semi-
conductors, a band gap problem comes included in the cal-
culations of response.  
   The known sum rules [43] can be used to determine 
some quantitative parameters, particularly the effective 
number of the valence electrons per unit cell effN , as well 

as the effective optical dielectric constant effε , which 
make a contribution to the optical constants of a crystal at 
the energy 0E . One can obtain an estimate of the distribu-
tion of oscillator strengths for both intraband and interband 
transitions by computing the )( 0ENeff defined according to  

∫=
∞

0
222

0 ,)(2)( EdEE
Nae

mENeff ε
π

ε                              (22) 

where aN  is the density of atoms in a crystal, e  and m  
are the charge and mass of the electron, respectively and 

)( 0ENeff is the effective number of electrons contributing 
to optical transitions below an energy of 0E . 
 Further information on the role of the core and semi-
core bands may be obtained by computing the contribution 
that  the various bands make to the static dielectric con-
stant, .0ε  According to the Kramers-Kronig relations, 

0ε can be written in the form 

∫=−
∞

−

0

1
20 .)(21)( dEEEE ε

π
ε                                           (23) 

One can, therefore, define an ‘effective’ dielectric constant, 
which represents a different mean of the interband transi-
tions from that represented by the sum rule, Eq. (23), ac-
cording to the relation 

∫=− −0

0

1
2 .)(21)(

E

eff dEEEE ε
π

ε                                     (24) 

The physical meaning of effε  is quite clear: effε  is the ef-
fective optical dielectric constant governed by the inter-
band transitions in the energy range from zero to 0E , i.e. 
by the polarizition of the electron shells.  In order to calcu-
late the optical response by using the calculated band struc-
ture, we have chosen a photon-energy range of 0-25 eV  
and  have  seen that a 0-15 eV  photon-energy range is suf-
ficient for most optical functions. 
   The SnS and GeS  single  crystals have an orthorhombic 
structure that is optically a biaxial system. For this reason, 
the linear dielectric tensor  of  the SnS and GeS com-
pounds have  three  independent  components  that are the 
diagonal elements of the linear dielectric tensor. We first 
calculated the real and imaginary parts of the linear dielec-
tric function of the  SnS  and GeS compounds along the x- 
and z-directions (Fig. 4 and Fig. 5). All of the SnS and GeS  
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Figure 4 Energy spectra of dielectric function 21 εεε i−= and 
energy-loss function (L) along the x- and z-axes for SnS. 

 
compounds studied so far have ( )zx

11 εε  and are equal to 
zero in the energy region between 2 eV  and 19 eV  for 
decreasing ( 01 <dEdε ) and increasing ( 01 >dEdε ) of 

)(1 eVε  (see Table 7). In addition, the values of 1ε  versus 
photon energy have main peaks in the energy region be-
tween 0.5 eV  and 6 eV . Some of the principal features 
and singularities of the ijε  for both investigated co pounds 

are shown in Table 7. The peaks of the x
2ε  and 2

ze  corre-
spond to the optical transitions from the valence band to 
the conduction band and are in an agreement with the pre-
vious result [36, 37] for GeS. The maximum peak values 
of x

2ε  and z
2ε  for SnS are around 2.37 eV  and  

1.88 eV, respectively, whereas the maximum values of x
2ε  

and z
2ε  for GeS are around 3.18 eV  and 2.69 eV, respec-

tively. In general, there are various contributions to the di-
electric function, but Fig. 4 and Fig. 5 show only the con-
tribution of the electronic polarizability to the dielectric 
function. In the range between 1 eV and 5 eV, zε1  decrease 
with increasing photon-energy, which is characteristic of 
an anomalous dispersion. In this energy range, the transi-
tions between occupied and unoccupied states mainly oc-
cur between occupied and unoccupied S 3p states that can 
be seen in the DOS and PDOS shown in Fig. 2 and Fig. 3. 
 
Table 7 Some of principal features and singularities of the linear 
optical responses for SnS and GeS. 

Material ( )eV1ε 01 <dEdε  01 >dEdε  ( )eV2ε   
SnS x

1ε  3.84  - 17.88  - x
max,2ε  2.37 

 z
1ε  2.41   4.49 3.27 18.04 z

max,2ε  1.88 

        
 
GeS 

x
1ε  4.41 - 19.47 - x

max,2ε  3.18 

 z
1ε  5.02 - 19.27 - z

max,2ε  2.69 

 
 
 

 
 

Figure 5 Energy spectra of dielectric function 21 εεε i−= and 
energy-loss function (L) along the x- and z-axes for GeS. 
 
The corresponding energy-loss functions, )(ωL , are also 
presented in Fig. 4 and Fig. 5. In this figure, xL  and 

zL correspond to the energy-loss functions along the x- 
and z-directions. The function )(ωL  describes the energy 
loss of fast electrons traversing the material. The sharp 
maxima in the energy-loss function are associated with the 
existence of plasma oscillations [44]. The curves of xL  
and zL  in Fig. 4 and Fig. 5 have a maximum near 18.77 
and 18.16 eV  for SnS, respectively, and 19.96 and 19.35 
eV  for GeS, respectively.  
 

 
 

Figure 6 Energy spectra of  effN  and effε  along the x- and z- 
axes.  
 
    The calculated effective number of valence electrons 

effN  and the effective dielectric constant effε  are given 
in Fig. 6. The effective number of valence electron per unit 
cell, effN , contributing in the interband transitions, 
reaches saturation value at about 25 eV. This means that 
deep-lying valence orbitals participate in the interband 
transitions as well (see Fig. 1). The effective optical dielec-
tric constant, effε ,as shown in Fig. 6, reaches a saturation 
value at about 10 eV. This means that the greatest contribu-
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tion to effε  arises from interband transitions between 0 
and 10 eV. 

 
4 Conclusion We studied the structural, electronic, me-
chanical, and optical properties of the SnS and GeS com-
pounds using first principle DFT methods. The calculated 
lattice parameters are in agreement with the experimental 
and theoretical results. The elastic constants obtained using 
the “volume-conserving” technique and strain-stress rela-
tionship. Our results indicate that these compounds are 
mechanically stable. Due to the higher value of Young's 
modulus, GeS compound is relatively stiffer than SnS. In 
addition, the calculated bulk modulus, shear modulus, De-
bye temperature and wave velocity for GeS are higher than 
SnS. Moreover, B/G calculations for both compounds are 
classified as being brittle. The ionic contribution to inter 
atomic bonding for these compounds is dominant. We have 
revealed that the band structures of these compounds are a 
semiconductor in nature. We have examined the photon-
energy dependent dielectric functions, some optical proper-
ties such as the energy-loss function, the effective number 
of valance electrons, and the effective optical dielectric 
constant along the x- and z- axes. 
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