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Abstract— In this paper, modulation classification and symbol
decoding problems are jointly considered and optimal strategies
are proposed under various settings. In the considered frame-
work, there exist a number of candidate modulation formats
and the aim is to decode a sequence of received signals with an
unknown modulation scheme. To that aim, two different formula-
tions are proposed. In the first formulation, the prior probabilities
of the modulation schemes are assumed to be known and a
formulation is proposed under the Bayesian framework. This
formulation takes a constrained approach in which the objective
function is related to symbol decoding performance whereas the
constraint is related to modulation classification performance.
The second formulation, on the other hand, addresses the case
in which the prior probabilities of the modulation schemes are
unknown, and provides a method under the minimax framework.
In this case, a constrained approach is employed as well; however,
the introduced performance metrics differ from those in the first
formulation due to the absence of the prior probabilities of the
modulation schemes. Finally, the performance of the proposed
methods is illustrated through simulations. It is demonstrated
that the proposed techniques improve the introduced symbol
detection performance metrics via relaxing the constraint(s) on
the modulation classification performance compared with the
conventional techniques in a variety of system configurations.

Index Terms— Modulation classification, demodulation, Bayes,
minimax.

I. INTRODUCTION

A. Motivation and Related Work

RECENT years have witnessed a surge of interest in
modulation classification motivated by a variety of con-

temporary applications in which it is paramount to recognize
the modulation format of a received signal prior to decod-
ing the transmitted message [1]–[18]. In the classical signal
reception scenario, it is assumed that the characteristics of the
transmitted signal are known and the channel parameters can
be estimated reliably at the receiver. Under this setting with
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perfect information regarding the modulation format employed
by the transmitter, traditional digital receivers first perform
several tasks such as downconversion, timing synchronization,
matched filtering, sampling and channel equalization, and
then demodulate the signal samples to recover the transmitted
symbol sequence. If the modulation format employed by the
transmitter is also unknown, the receiver needs to be equipped
with a modulation classification mechanism before the symbol
decoding stage [1]. For instance, in signal monitoring, a key
topic in military electronic intelligence, there is no cooperation
between the transmitting and the intercepting nodes to obtain
information regarding the modulation format. Hence, in that
case, it is imperative to perform modulation classification in
order to convey the messages emitted by the target communi-
cations system. As another example, in cognitive and software
defined radio based civilian applications, intelligent receivers
equipped with modulation classification algorithms can be
utilized to reduce the communication overhead resulting from
the exchange of information regarding the modulation format
adapted to the varying channel conditions [1], [4], [16].1

Modulation classification techniques can be grouped
into feature-based and likelihood-based techniques [1], [3].
Feature-based techniques utilize features such as cumulants
extracted from the received signal to identify the modulation
format. Although feature-based techniques can be preferred
due to their simplicity, these techniques are developed in an
ad-hoc manner which do not guarantee optimality. On the
other hand, likelihood-based techniques are developed using a
statistical characterization of the received signal which facili-
tates the development of optimal (or near optimal in case the
analysis uses some approximations, simplifying assumptions,
etc.) techniques. In this study, in order to come up with
optimal techniques for the solution of the considered problem,
a statistical characterization of the received signal is utilized,
and hence, related literature focusing on likelihood-based
techniques are summarized in the following. In the context
of likelihood-based modulation classification techniques, three
prominent approaches are adopted based on how the unknown
channel parameters and the transmitted symbol sequence are
handled in the statistical model: the average likelihood ratio
test (ALRT) [1], [2], [5], [8], [10], [15], [18], the generalized
likelihood ratio test (GLRT) [1], [2], [5], [13], [17], [20] and
the hybrid likelihood ratio test (HLRT) [1], [2], [5], [9], [10],

1In adaptive modulation, the transmitter employs a low order modulation
scheme under low signal-to-noise ratio (SNR) in order to ensure reliable
transmission of the data whereas a high order modulation scheme is employed
to increase the data rate in the case of high SNR [19].

1536-1276 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2126-7356
https://orcid.org/0000-0002-6369-3081


2624 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 18, NO. 5, MAY 2019

[13], [14], [18], [21]. In the case of ALRT, all unknowns are
treated as random variables with known prior distributions so
that the likelihood expressions can be marginalized over the
space of channel parameters and modulation symbols. Then,
the resulting average likelihood scores are compared to decide
on the modulation format. On the other hand, GLRT treats
all unknowns as deterministic and substitutes their maximum
likelihood (ML) estimates in the corresponding likelihood
expressions to obtain a likelihood ratio based decision metric.
HLRT takes a compromise between ALRT and GLRT by
treating some parameters as random quantities with known
priors while considering the rest as deterministic.

It should be noted that the primary goal of the aforemen-
tioned techniques is to improve the modulation classification
accuracy. It is sensible to assume that better modulation
classification performance yields better symbol decoding per-
formance, the latter being the ultimate task for any receiver
equipped with a modulation classifier. However, since these
approaches have not been optimized for the subsequent symbol
decoding stage, it is also reasonable to question their opti-
mality. In this work, it is shown that by jointly designing
the modulation classification and the symbol decoding stages,
significant performance improvements for the symbol detec-
tion performance over the conventional strategy that treats two
problems separately can be achieved.

Our perspective on the problem has been motivated
by the success of joint design frameworks such as joint
detection and estimation [22]–[27] and joint detection and
decoding [28]–[30]. The work in [23] considers a binary
hypothesis testing problem in which only one of the hypothesis
is composite, i.e., it contains an unknown random parameter
whose prior distribution is assumed to be known. Under this
setting, the aim is to jointly determine the correct hypothesis
and to provide an estimate of the unknown parameter when
a decision is declared in favor of the composite hypothesis.
It is shown that the optimal decision rule depends on both
the likelihood ratio and the posterior estimation cost for the
unknown parameter while the optimal parameter estimate is
given by the classical Bayes estimator that minimizes the
posterior estimation cost. In [24], the optimal estimators
and decision rule are determined in order to minimize the
maximum of the conditional estimation costs under constraints
on the false alarm and miss detection probabilities. In this case,
unknown random parameters are assumed under both hypothe-
ses. In [25], the authors consider the average (Bayesian)
estimation cost as the objective function. Different from the
previous work, unknown parameters common to both hypothe-
ses are assumed in addition to parameters unique to each
hypothesis. The optimization problems considered in [23]–[25]
are formulated in a similar manner in the sense that the
estimation performance metric appears in the objective as a
function of both the estimators and the decision rule whereas
the constraints are related to the detection performance metric,
being solely dependent on the decision rule (i.e., uncou-
pled with the estimator), which facilitates ease of analysis.
In [28], the authors consider intermittent communication over
a noisy channel. It is assumed that the receiver acquires either
pure noise or a codeword and the aim is to determine the

presence of a codeword and to decode if declared present.
The optimal decision rule that minimizes the probability of not
correctly deciding on the true codeword transmitted subject to
constraints on the false alarm and miss detection probabilities
of rejecting pure noise hypothesis is derived. In [29], this idea
is extended to channel detection in coded communications.

In addition, modulation classification and symbol detection
problems are jointly considered for multiple-input multiple-
output (MIMO) systems in [12] and [31]–[33], which aim to
design low complexity algorithms. On the other hand, in this
paper, we focus on the development of optimal algorithms for
this joint design problem considering traditional single-input-
single-output (SISO) systems.

B. Main Contributions

The main contributions of this paper can be summarized as
follows:

• For the first time in the literature, modulation classifi-
cation and symbol decoding problems are considered in
a joint framework. Both the Bayesian and the minimax
formulations are provided depending on the availability
of the prior probabilities for the employed modulation
schemes. In the presence of prior information, the optimal
decision rule that minimizes the overall average proba-
bility of symbol error (at the subsequent stage following
modulation classification) subject to a constraint on the
average probability of erroneous modulation classification
is obtained in closed form. In the absence of such
information, the optimal decision rule that minimizes
the maximum symbol error probability given that the
modulation is correctly identified is derived under indi-
vidual constraints on the conditional correct classification
probability of each modulation scheme.

• Since the proposed modulation classification rules are
optimal with respect to each criterion, no other classifier
can achieve a lower average (or maximum) symbol error
probability while delivering equal or smaller average
(or individual) modulation classification error(s).

• The proposed framework provides an optimal tradeoff
between the probabilities of symbol error and modulation
classification error. It is general in the sense that it
covers the conventional method of performing LRT based
modulation classification followed by ML decoding of the
transmitted symbols as a special case.

C. Organization of the Paper

This paper is organized as follows. Section II presents the
system model for the problem of modulation classification and
symbol decoding as well as the conventional technique that
relies on separate treatment. Section III-A formulates the prob-
lem of joint modulation classification and symbol decoding for
the case of known prior probabilities of the modulation scheme
and derives the optimal modulation classification and symbol
decoding rules. Next, Section III-B considers a minimax
formulation of the joint problem in the absence of modulation
scheme priors. Section III-C presents some remarks on the
proposed approach. Section IV discusses the computational
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complexity of the proposed techniques as well as that of
the conventional techniques. Section V describes an extension
of the proposed framework obtained by slightly altering the
metric used to measure the symbol decoding performance.
Section VI provides numerical examples to illustrate the
performance of the proposed solutions and their comparison
with the conventional approach. Section VII concludes the
paper with some remarks.

II. PROBLEM FORMULATION

A. System Model

Consider a coherent and synchronous signal reception sce-
nario under which the discrete-time baseband signal model is
given by [34]–[37]

xk = sk + ηk, k = 1, . . . , K, (1)

where sk and ηk are the transmitted constellation symbol and
the additive noise term at time k, respectively, and K denotes
the number of observations. Suppose there are L candidate
digital amplitude-phase modulation schemes and let the set
of constellation points corresponding to the �th modulation
scheme be denoted as S(�) � {μ(�)

1 , . . . , μ
(�)

M(�)} for � =
1, . . . , L, where μ

(�)
m represents a certain amplitude and/or

phase modulated complex signal corresponding to the mth
symbol of the �th modulation scheme and M (�) denotes the
modulation order of the �th modulation scheme. It is assumed
that during the reception of K signal samples, the modulation
scheme remains the same, i.e., (sk)K

k=1 ∈ S(�) for some
fixed �. Suppose that under each modulation scheme the sym-
bols are equally likely and the symbols transmitted at distinct
time instants are independent. Furthermore, let (ηk)K

k=1 be
independent and identically distributed (i.i.d.) according to a
known probability density function (PDF) denoted by f

(�)
η (·)

when the �th modulation scheme is employed. By allowing
different PDFs for the noise term under each modulation
scheme, the effect of different channel conditions such as
that of SNR variations in an adaptive modulation system are
incorporated into the model given in (1). The conditional
PDF of the observed signal sample xk given that the
mth symbol of the �th modulation scheme is sent at time
instant k is expressed as f (�)(xk | μ

(�)
m ) � f

(�)
η (xk − μ

(�)
m ).2

Given the observed samples x � [x1, . . . , xK ]T , the aim
is to identify the modulation scheme S and to decode the
transmitted symbol sequence s � [s1, . . . , sK ]T . We consider
two types of decision functions: δ � {δ(�)(·)}L

�=1 and φ �
{φ(�)(·)}L

�=1. δ(�)(x) denotes the probability of choosing the
�th modulation scheme based on the observation x such that∑L

�=1 δ(�)(x) = 1 and δ(�)(x) ≥ 0 for every � and x. On the
other hand, φ(�)(x) represents the decision rule for decoding
transmitted symbols under the �th modulation scheme based
on the observed sample x. More specifically, φ(�)(xk) = m for
some m ∈ {1, . . . , M (�)} means that the transmitted symbol
sk is decoded as μ

(�)
m . Whenever a decision is declared in

2Although an additive noise channel is assumed in this paper, the proposed
framework generalizes in a straightforward manner to other memoryless
channel models thanks to the general form of the statistical characterization
f(�)(xk | μ

(�)
m ).

favor of the �th modulation scheme, all samples are decoded
using φ(�)(·).

Before proceeding with the proposed framework for joint
modulation classification and symbol decoding, we summarize
the conventional approach that treats two problems separately
along with their solutions.

B. Conventional Method

1) Modulation Classification: Identifying the modulation
scheme based on the samples given in (1) can be accom-
plished in two different ways depending on the availability
of the prior probabilities for the modulation schemes under
consideration. For example, in an adaptive modulation system
that employs different constellations for low and high SNR
regimes, the proportion of time that the channel spends in
each SNR regime can be employed in the assessment of prior
probabilities. If modulation type priors are known, the Bayes
classifier is optimal [20]. Since the received samples are i.i.d.,
the likelihood function (LF) of the �th modulation scheme is
written as

f (�)(x) =
K∏

k=1

f (�)(xk), (2)

where

f (�)(xk) �
M(�)
∑

m=1

1
M (�)

f (�)(xk | μ(�)
m ). (3)

Let c � [c1, . . . , cL], where c� denotes the prior probability of
the �th modulation scheme. Then, the probability of classifica-
tion error is minimized by the maximum a posteriori (MAP)
decision rule [20]:

δ
(j)
B (x) =

{
1, if j = argmax�∈{1,...,L} c�f

(�)(x)
0, otherwise.

(4)

The Bayes classifier (i.e., the MAP classifier) in (4) reduces to
the ML classifier when equal priors for modulation schemes
are assumed. On the other hand, if the prior probabilities
of the modulation schemes are unknown, Neyman Pear-
son (NP) framework can be employed for classification
between two candidate modulation schemes.3 In this case,
two types of classification errors are given by P1(δ(1), δ(2)) �∫

δ(2)(x)f (1)(x)dx and P2(δ(1), δ(2)) �
∫

δ(1)(x)f (2)(x)dx,
where δ(1)(x) ≥ 0, δ(2)(x) ≥ 0 and δ(1)(x) + δ(2)(x) = 1
are satisfied for all x. In the NP framework, the decision rule
that minimizes one type of error subject to a constraint on
the other is desired. Due to asymmetry between the objective
and the constraint, we denote by {δ(�)

NP,i(·)}2
�=1 the NP type

modulation classifier that places the constraint on the ith type
of error, i.e., Pi(δ(1), δ(2)) ≤ βi, and minimizes the other
type of error. Based on the NP lemma [20], the corresponding
modulation classifier is given by the following LRT:

δ
(2)
NP,i(x) =

⎧
⎨

⎩

1, if
f (2)(x)
f (1)(x)

> τi

0, otherwise,
(5)

3In the case of more than two modulation schemes, a generalization of
NP lemma to more than one side condition can be utilized [38, Sec. 3.6].
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with δ
(1)
NP,i(x) = 1− δ

(2)
NP,i(x) for i = 1, 2 where τi is chosen

to satisfy Pi(δ
(1)
NP,i, δ

(2)
NP,i) = βi. It should be noted that if the

likelihood ratio in (5) contains any point mass, a randomization
may be required in order to satisfy the constraint with equality.

Another alternative for modulation classification in the
absence of modulation scheme prior probabilities is to employ
the minimax hypothesis testing framework in which the
maximum of individual probabilities of classification error,
i.e., max�∈{1,...,L} 1−∫ δ(�)(x)f (�)(x)dx, is minimized [20].
Under this framework, the modulation classification rule is a
Bayes rule that corresponds to a least favorable prior.

2) Symbol Decoding: Once a decision is declared in favor of
a modulation scheme, the MAP decision rule, which selects
the symbol with the maximum a posteriori probability, can
be employed to minimize the probability of symbol error
for the corresponding constellation [19]. The a posteriori
probability that the mth symbol of the �th modulation scheme
is transmitted given the observed sample xk is computed as

p(�)(μ(�)
m | xk) � 1

M (�)

f (�)(xk | μ
(�)
m )

f (�)(xk)
(6)

and the MAP symbol decoding rule for the �th modulation
scheme is expressed as

φ
(�)
MAP(xk) = argmax

m∈{1,...,M(�)}
p(�)(μ(�)

m | xk). (7)

To sum up, in the conventional approach, the modula-
tion scheme is determined first based on either (4) or (5)
(or, the Bayes rule for least favorable prior when the minimax
framework is adopted) depending on the availability of the
prior probabilities of the modulation schemes and then sym-
bols are decoded according to (7) for the selected modulation.

III. OPTIMAL JOINT MODULATION CLASSIFICATION

AND SYMBOL DECODING

A. Known Priors for the Modulation Schemes

In this part, a joint formulation of the modulation classi-
fication and the symbol decoding problems is proposed for
the case when prior probabilities of the modulation schemes
are known or accurately estimated. A constrained optimization
framework is considered in which the objective function
reflects our desire to accurately recover as much symbols as
possible while the constraint function controls the probability
of classification error for the modulation type. In particular,
consider the following cost function related to symbol error
rate:

C(φ(�)(x), m) � 1
K

K∑

k=1

�{φ(�)(xk) �=mk} (8)

where m � [m1, . . . , mK ]T contains the indices of the actual
transmitted symbols from the �th modulation scheme with
mk ∈ {1, . . . , M (�)} and �{·} is the indicator function that
returns 1 if the condition in its argument is satisfied and
0 otherwise. Our aim is to minimize the average cost of symbol
error when the employed modulation scheme is correctly
identified while controlling the probability of modulation
classification error (and consequently, the erroneous symbol

decoding due to an incorrect modulation decision). To that
aim, the average cost of symbol error in the presence of a
correct modulation classification decision can be obtained by
taking the expectation of (8) over the joint PDF of transmitted
symbols and received samples when the employed modulation
scheme is correctly identified and averaging over all candidate
modulation schemes as follows:

Ja(δ, φ) �
L∑

�=1

c� E�[δ(�)(x)C(φ(�)(x), m)]

=
L∑

�=1

c�

∫

δ(�)(x)
M(�)
∑

m1=1

· · ·
M(�)
∑

mK=1

1
K

K∑

k=1

�{φ(�)(xk) �=mk}

(
K∏

k=1

f (�)(xk | μ
(�)
mk)

M (�)

)

dx,

(9)

where E�[·] denotes expectation with respect to (w.r.t.) the
conditional joint PDF of transmitted symbols and received
samples given that the �th modulation scheme is employed and
the subscript a in Ja(·) indicates averaging over the candidate
modulation schemes. The aim is to minimize the objective
function proposed in (9) with respect to {δ(�)(·)}L

�=1 and
{φ(�)(·)}L

�=1. Notice that the cost function given in (9) takes
into account the symbol decoding error when the modulation
is correctly recognized. On the other hand, if the modulation
is not correctly identified, the symbol decoding stage uses
the wrong set of constellation symbols while recovering the
transmitted symbol sequence, i.e., although (sk)K

k=1 ∈ S(�)

in (1), φ(�′)(·) is utilized to decode symbols for some �′ �= �.
As a result, symbol decoding performance in the case of incor-
rect modulation classification becomes significantly poor.4

In that respect, there is also a need to control the probabil-
ity of modulation classification error as it causes erroneous
symbol decoding. For fixed modulation classification rule δ,
the average probability of classification error is given by

Ha(δ) = 1 −
L∑

�=1

c�

∫

δ(�)(x)f (�)(x)dx, (10)

which is seen to be independent of the symbol decoders φ.
Subsequently, a constraint on the average probability of
modulation classification error is introduced, which, together
with (9), yields the following optimization problem:

min
δ,φ

Ja(δ, φ)

subject to Ha(δ) ≤ α, (P1)

where α is the constraint on the average probability of
modulation classification error. Let αB denote the average
probability of modulation classification error corresponding
to the Bayes rule given in (4). Since no detector can yield
lower probability of modulation classification error than that

4A modulation classification error does not always mean that all the symbols
are decoded erroneously (e.g., when some constellation points from different
modulation schemes coincide). However, since the mapping of bits onto
symbols will be different for distinct constellations, a modulation classification
error, in general, significantly degrades the decoding performance.
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of the Bayes detector, it is required that α ≥ αB is satisfied
for feasibility of the optimization problem. More generally,
α can be regarded as a design parameter that governs the
tradeoff between modulation classification performance and
symbol decoding performance.

In order to obtain the solution of the optimization problem
given in (P1), we first present the following lemma that
expresses optimality of the MAP rule based symbol decoding.

Lemma 1: For any given priors c and feasible modulation
classification rule specified by δ, the optimal symbol decoders
that minimize Ja(δ, φ) are obtained as the MAP decision rules
φMAP � {φ(�)

MAP(·)}L
�=1 given in (7).

Proof: Since the modulation classification rule δ =
{δ�(·)}L

�=1 is fixed and the constraint function does not depend
on φ = {φ(�)(·)}L

�=1, (P1) reduces to an unconstrained
problem in this case. Moreover, the problem decouples across
� since we minimize the summation of L terms each of which
depend only on φ(�)(·). The optimization problem related
to the symbol decoder under the �th modulation scheme is
expressed as

min
φ(�)

∫

δ(�)(x)
M(�)
∑

m1=1

· · ·
M(�)
∑

mK=1

(
K∑

k=1

�{φ(�)(xk) �=mk}

)

(
K∏

k=1

1
M (�)

f (�)(xk | μ(�)
mk

)

)

dx. (11)

By noting that �{φ(�)(xk) �=mk} = 1 − �{φ(�)(xk)=mk} and
using (2), (3), and (6), the optimization problem in (11) can
be written as

max
φ(�)

∫

δ(�)(x)f (�)(x)
M(�)
∑

m1=1

· · ·
M(�)
∑

mK=1

(
K∑

k=1

�{φ(�)(xk)=mk}

)

(
K∏

k=1

p(�)(μ(�)
mk

| xk)

)

dx, (12)

which after some manipulations reduces to

max
φ(�)

∫

δ(�)(x)f (�)(x)
K∑

k=1

M(�)
∑

mk=1

�{φ(�)(xk)=mk}

p(�)(μ(�)
mk

| xk)dx. (13)

From (13), it is seen that the objective function is maximized
by selecting the symbol with the maximum a posteriori
probability p(�)(μ(�)

mk | xk), which corresponds to the
MAP decoder given in (7).

Lemma 1 states that the MAP symbol decoder is optimal
irrespective of the employed modulation classification rule.
From a practical perspective, it means that there is no need to
change the existing receiver demodulator architecture. On the
other hand, as it will be shown next, the proposed joint
formulation leads to a modulation classification rule that is
different from the conventional Bayes classifier given in (4).

Substituting the optimal MAP symbol decoders into the
objective function of (P1), we get

Ja(δ, φMAP) =
L∑

�=1

c�

∫

δ(�)(x)f (�)(x)C(�)
p (x)dx. (14)

In (14), C(�)
p (x) is the posterior cost associated with the

optimal MAP based symbol decoder for the �th constellation,
which is given by

C(�)
p (x) = 1 − 1

K

K∑

k=1

max
m∈{1,...,M(�)}

p(�)(μ(�)
m | xk). (15)

Consequently, the optimization problem in (P1) is obtained as

min
δ

L∑

�=1

c�

∫

δ(�)(x)f (�)(x)C(�)
p (x)dx

subject to 1 −
L∑

�=1

c�

∫

δ(�)(x)f (�)(x)dx ≤ α. (16)

Next, the following theorem provides the optimal modu-
lation classification rule that solves (16), which together
with Lemma 1, characterize the solution to the original opti-
mization problem (P1).

Theorem 1: For α ≥ αB, and assuming that {f (�)(x)
(C(�)

p (x) − λ)}L
�=1 do not contain any nonzero probability

mass for λ ≥ 0, the optimal modulation classification rule
that solves (16) is given by

Case 1:

δ(j)(x) = 1

if j = argmin
�∈{1,...,L}

c�f
(�)(x)C(�)

p (x) (17)

and δ(j)(x) = 0 otherwise, for j = 1, . . . , L, if the
constraint on the classification error probability is
satisfied, i.e., Ha(δ) ≤ α; if not go to Case 2.

Case 2:

δ(j)(x) = 1

if j = arg min
�∈{1,...,L}

c�f
(�)(x)

(
C(�)

p (x) − λ
)

(18)

and δ(j)(x) = 0 otherwise, for j = 1, . . . , L,
where λ > 0 is selected such that the probability
of classification error is equal to α, i.e., Ha(δ) = α.

Proof: The optimization problem given in (16) is linear
and hence convex in {δ(�)(·)}L

�=1. Moreover, with the assump-
tion of α ≥ αB, the problem is feasible and Slater’s condition
is satisfied. Therefore, Karush-Kuhn-Tucker (KKT) conditions
are necessary and sufficient for optimality. We begin with
writing the Lagrangian as follows:

L(δ, λ) = λ(1 − α)

+
∫ L∑

�=1

δ(�)(x)c�f
(�)(x)

(
C(�)

p (x) − λ
)

dx (19)

Using the fact that δ(�)(x) ≥ 0 for all � and
∑

� δ(�)(x) = 1,
it is seen that (19) is minimized when modulation classifier
selects the modulation that minimizes c�f

(�)(x)(C(�)
p (x)−λ)

for each given x. Based on the remaining KKT conditions,
λ can be determined. Namely, dual feasibility, complemen-
tary slackness and primal feasibility conditions require that
λ ≥ 0, λ(1 − α − ∑L

�=1 c�

∫
δ(�)(x)f (�)(x)dx) = 0 and

1 −∑L
�=1 c�

∫
δ(�)(x)f (�)(x)dx ≤ α, respectively. First, let
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us substitute λ = 0. If the primal feasibility condition is
satisfied, then the corresponding classifier given in (17) is the
optimal solution to (16). On the other hand, if the classifier
given in (17) violates the constraint, we go to Case 2, where
λ > 0 is assumed. In this case, modulation classification con-
straint must be satisfied with equality due to complementary
slackness. As λ → ∞, it is seen from (18) that the optimal
decision rule converges to the conventional MAP decision rule
given in (4), which yields the lowest modulation classification
error, i.e., Ha(δB) = αB, among all detectors. Noting that the
probability of modulation classification error corresponding
to the detector given in (18) is a continuous function of λ,
by the intermediate value theorem, there exists λ > 0 such
that Ha(δ(λ)) = α. Hence, a solution in the form of (18) that
satisfies all KKT conditions is guaranteed.

It is seen from (17) and (18) that the optimal modulation
classification rule takes into account a posteriori probabilities
of the transmitted symbols in addition to the likelihood of the
observed samples and the prior probabilities of the modulation
schemes. As a result, symbol decoding performance is taken
into account in the proposed modulation classification mecha-
nism. For a given feasible constraint on the modulation classi-
fication error, no other mechanism can achieve better average
symbol decoding performance when the modulation type is
correctly identified. In that respect, the proposed framework
provides the flexibility of tradeoff between performances of
modulation classification and symbol decoding. Furthermore,
the conventional method, which treats two problems sepa-
rately, is obtained as a special case of the proposed method
by selecting α = αB. By relaxing the constraint on the
modulation classification performance, i.e., taking α > αB,
it is possible to improve the average symbol decoding perfor-
mance in the case of correct modulation classification. To sum
up, the solution to the proposed joint optimization problem
stated in (P1) is given by the modulation classifier specified
in (17) and (18), and the standard MAP rule based symbol
decoder corresponding to the classified modulation scheme
which is given in (7).

B. Unknown Priors for the Modulation Schemes

The approach proposed in the previous part requires
that the prior probabilities of the modulation schemes are
known or accurately estimated. In order to come up with a
robust joint scheme that can correctly identify the modulation
scheme in the absence of this information and decode the
received samples, we consider the maximum conditional sym-
bol decoding error among candidate modulation schemes given
that each is identified correctly as our performance metric.
More explicitly, the objective function is expressed as

Jm(δ, φ) � max
�∈{1,...,L}

E�[C(φ(�)(x), m) | D = S(�)]

= max
�∈{1,...,L}

E�[C(φ(�)(x), m)δ(�)(x)]
E�[δ(�)(x)]

, (20)

where the subscript m in Jm denotes that maximum is taken
over the modulation schemes, {D = S(�)} denotes the event
that a decision is declared in favor of the �th modulation

scheme, and the subscript � denotes that the �th modulation
scheme is employed. As for the constraints, since an average
probability of classification error cannot be defined in this
case, an individual constraint on each conditional probability
of classification error is employed. This results in the following
optimization problem:

min
δ,φ

Jm(δ, φ)

subject to 1 −
∫

δ(�)(x)f (�)(x)dx ≤ β�,

for � = 1, . . . , L. (P2)

The feasibility of the problem in (P2) can be verified via
the NP lemma or its generalization to more than one side
condition [38, Sec. 3.6]. As an example, consider a binary
modulation classification scenario. Let {δ(�)

NP,1(·)}2
�=1 denote

the optimal NP decision rule under type-1 error constraint β1,
i.e.,

∫
δ
(2)
NP,1(x)f (1)(x)dx = β1. If its type-2 error satisfies

∫
δ
(1)
NP,1(x)f (2)(x)dx ≤ β2, then the problem in (P2) is

feasible with the constraints β1 and β2. By relaxing the
constraints compared to the NP classifier, it is desired to
improve the worst case symbol decoding performance.

We follow a similar procedure to that in Section III-A and
first derive the optimal symbol decoder for fixed modulation
classifier, which is presented in the following lemma.

Lemma 2: For any feasible modulation classification rule
specified by δ, the optimal symbol decoders that mini-
mize Jm(δ, φ) are obtained as the MAP decision rules
{φ(�)

MAP(·)}L
�=1 given in (7).

Proof: Since the constraint functions in (P2) do not
depend on the symbol decoding rules {φ(�)(·)}L

�=1, the optimal
symbol decoders can be derived by restricting our attention to
the objective function Jm(δ, φ) in (P2). Then, the problem of
interest becomes

min
φ

Jm(δ, φ) = min
φ

max
�∈{1,...,L}

E�[C(φ(�)(x), m)δ(�)(x)]
E�[δ(�)(x)]

.

(21)

In the proof of Lemma 1, it is shown that
E�[C(φ(�)(x), m)δ(�)(x)] is minimized when MAP rule
based symbol decoders are employed under each modulation
scheme. Furthermore, for fixed modulation classification rule,
the correct classification probability of the �th modulation
scheme, i.e., E�[δ(�)(x) = 1], is constant. Consequently, for
any set of symbol decoding rules {φ(�)(·)}L

�=1 and fixed
modulation classification rule {δ(�)(·)}L

�=1, the following
holds for all � ∈ {1, . . . , L}:

E�[C(φ(�)(x), m)δ(�)(x)]
E�[δ(�)(x)]

≥ E�[C(φ(�)
MAP(x), m)δ(�)(x)]
E�[δ(�)(x)]

, (22)

where φ
(�)
MAP(·) is as given in (7). Taking the maximum overall

� ∈ {1, . . . , L} on both sides, it is seen that the solution
to (21) is given by the MAP rule based symbol
decoders.
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After inserting the optimal MAP decoders into the objective
function, the optimization problem (P2) is written as

min
δ

max
�∈{1,...,L}

{∫
δ(�)(x)f (�)(x)C(�)

p (x)dx
∫

δ(�)(x)f (�)(x)dx

}

subject to 1 −
∫

δ(�)(x)f (�)(x)dx ≤ β�,

for � = 1, . . . , L (23)

where the posterior symbol decoding cost C(�)
p (x) is as given

in (15). An optimization problem in the form of (23) is
considered by Jajamovich et al. in the context of joint detection
and estimation [24]. Based on the result in [24, Th. 7],
the globally optimal solution to (23) is given by

δ(j)(x) = 1

if j = argmin
�∈{1,...,L}

f (�)(x)
(
a1

�(C
(�)
p (x) − γ) − a2

�

)
(24)

and δ(j)(x) = 0 otherwise, for j = 1, . . . , L. In (24),
(a1

�)
L
�=1 and (a2

� )
L
�=1 are nonnegative multipliers selected to

satisfy
∑L

�=1 a1
� +

∑L
�=1 a2

� = 1 as well as the constraints
on modulation classification error probabilities and γ denotes
the optimal value of the solution to (23). The nonnegative
multipliers a = [(a1

� )
L
�=1, (a

2
�)

L
�=1] can be found along with the

optimal value γ by performing a numerical search as described
in [24, Sec. III.B]. To put it briefly, this can be accomplished
by first discretizing the standard (2L−1)-simplex and then, for
each point a in the discretized grid, computing the decision
rules in (24) for the current value of γ, checking whether the
resulting decision rules satisfy

∫
δ(�)(x)f (�)(x)C(�)

p (x)dx
∫

δ(�)(x)f (�)(x)dx
≤ γ

1 −
∫

δ(�)(x)f (�)(x)dx ≤ β� (25)

for all � = 1, . . . , L, decreasing (increasing) the value of γ via
a line or bisection search if all conditions are (not) satisfied,
and repeating these steps in an iterative manner until γ can
no further decreased. All in all, the modulation classification
rule specified by (24) together with the MAP decoders in (7)
characterize the solution to (P2). In Algorithm 1, a summary
of the proposed techniques in this part and the previous part
is provided.

It is noted that the optimal modulation classifier specified
in (24) depends on a posteriori probabilities of the transmitted
symbols through {C(�)

p (·)}L
�=1 as well as the likelihood of the

observed samples (i.e., {f (�)(·)}L
�=1) similar to the previous

part (see (17) and (18)). On the other hand, as opposed to
the previous part where there is only one Lagrange multiplier
term to be determined (based on the KKT conditions) in the
modulation classification rule, in this case, multiple coeffi-
cients appear in the classification rule. Moreover, it should
be remarked that the proposed modulation classifier is jointly
optimal in the sense that no other modulation classifier can
deliver a lower maximum symbol error probability in the case
of correct modulation classification while satisfying given con-
straints on individual modulation classification error probabil-
ities. Furthermore, if the individual modulation classification

error probabilities corresponding to the NP classifier (or its
generalization when L > 2) are used as constraints in (P2),
the conventional method of treating modulation classification
separately from the subsequent symbol decoding is optimal.
By relaxing the constraints, the symbol decoding performance
quantified by the worst case metric specified in (20) can be
improved.

Algorithm 1 Joint Modulation Classification and Symbol
Decoding

procedure JOINTMODCLASSSYMDEC(x)
for each candidate modulation � ∈ {1, 2, . . . , L} do

for k = 1, 2, . . . , K do
Compute f (�)(xk | μ

(�)
m ) = f

(�)
η (xk − μ

(�)
m )

∀m ∈ {1, 2, . . . , M (�)}
Compute p(�)(μ(�)

m | xk) using (6)
∀m ∈ {1, 2, . . . , M (�)}

Decode the symbol using (7), i.e.,
m̂

(�)
k = argmaxm∈{1,...,M(�)} p(�)(μ(�)

m | xk)
end for
Compute f (�)(x) using (2) and (3)
Compute C(�)

p (x) by inserting previously computed
p(�)(μ(�)

m̂
(�)
k

| xk) values into (15)

end for
Select the modulation format based on (17) and (18) or

based on (24), in the known or unknown modulation
scheme priors cases, respectively

Output the symbols {m̂(�̂)
k }K

k=1 where �̂ denote the index
of selected modulation format

end procedure

C. Discussion

In this part, we present some remarks about the proposed
framework. To this end, let an adaptive modulation system be
configured such that the employed modulation format can be
changed after every transmitted K symbols. Suppose that a
sequence of length N × K symbols with N > 1 is observed
according to this adaptive modulation scenario where the
received signal sequence between indices 1 + (n − 1)K and
nK for n ∈ {1, . . . , N} follows the signal model given in (1).
For convenience, each of these signal sequences of length K
is termed as a single block in the following. Suppose also that
the channel parameters and the noise levels are such that if
the conventional technique is utilized, the average probability
of symbol error in the case of correct classification is not
acceptable for the application in hand. In order to reduce the
symbol error to an acceptable level, the proposed approach
in (P1) compromises modulation classification performance.
By relaxing the constraint on the modulation classification
error w.r.t. that of the MAP based classifier, the resulting
modulation classifier is allowed to decide in favor of a
modulation scheme that delivers a lower individual symbol
error rate (even though it may not be the most probable
modulation scheme for the observed block) optimally in the
sense that the symbol error rate averaged over all candidate
constellations is minimized subject to the relaxed constraint
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TABLE I

NUMBER OF OPERATIONS REQUIRED FOR CONVENTIONAL AND PROPOSED TECHNIQUES
(FINAL EXPRESSIONS CORRESPOND TO THE NUMERICAL EXAMPLES IN SECTION VI)

on the modulation classification error. (Recall that since all
of the decoded symbols in that block will be erroneous if
the modulation scheme is not identified correctly and the
constellation points of candidate modulation schemes do not
overlap, it is necessary to constrain modulation classification
errors.) Another way to think of this is as follows: Suppose that
a block of signal samples that falls around a small neighbor-
hood of the decision boundary of the MAP based classifier is
observed at the receiver. As far as the MAP based modulation
classifier is concerned, this block can be assigned to any
modulation scheme on either side of the decision boundary
since that would not alter the performance metric of the MAP
based classifier noticeably. On the other hand, one of these
modulation schemes is likely to yield a lower symbol error
probability than the other in the case of a correct decision on
the employed modulation scheme. In that respect, the overall
symbol error performance in the case of correct classification
can be reduced by assigning the received blocks close to the
decision boundary to the modulation scheme with smaller
symbol error score while controlling the erroneous symbol
decoding due to an incorrect classification decision with the
constraint on the tolerable modulation classification error.

IV. COMPUTATIONAL COMPLEXITY

In this section, we examine the computational complex-
ity of joint modulation classification and symbol decoding.
In order to implement the proposed methods, it is required
to find λ or the pair a and γ when the prior probabilities of
the modulation formats are known or unknown, respectively.
In practice, these parameters can be determined in an offline
manner for possible system configurations (e.g., different SNR
and K values) and the corresponding receiver can directly
use these values. Therefore, in the following, we assume that
these parameters have been computed and focus on the compu-
tational complexity of the joint modulation classification and
symbol decoding scheme. Then, the complexity of computing
these parameters is explained.

In order to identify the employed modulation scheme, both
of the proposed techniques need to compute the likelihood
scores (i.e., {f (�)(·)}L

�=1) and the posterior symbol decoding
costs (i.e., {C(�)

p (·)}L
�=1) based on the observed samples for

each candidate modulation format. Since C(�)
p (·) depends on

the a posteriori probabilities of the symbols selected by
the MAP decoding rule corresponding to the �th modula-
tion scheme, the received signal sequence is first decoded
using the MAP decoding rule of the �th modulation scheme
and then a posteriori probability values achieved by the
decoded symbols are inserted into (15). With this approach,

modulation classification and symbol decoding stages are
combined. Thus, the overall computational complexity of the
proposed techniques depends on the number of operations
required to obtain {f (�)(·)}L

�=1 and {C(�)
p (·)}L

�=1. They are
given in Table I, where function evaluations represent the
computation of f

(�)
η (·), and Ms and Mmax are defined as

Ms �
∑L

�=1 M (�) and Mmax � max�∈{1,...,L} M (�), respec-
tively. In the table, the particular values corresponding to the
numerical examples in Section VI are also presented.

On the other hand, the conventional techniques decide on
the modulation format based only on the likelihood of the
observed samples and then decode the symbols according to
the MAP symbol detector of the selected modulation format.
Therefore, the main difference between the conventional and
the proposed techniques in terms of complexity arise from
the fact that the conventional techniques need to perform
symbol decoding only under the selected modulation scheme
whereas the proposed techniques perform symbol decoding
under each candidate to obtain {C(�)

p (·)}L
�=1. Yet, since the

MAP symbol decoders under each modulation format needs
to be implemented in practice, the complexity of the hardware
for the proposed techniques can be reduced by sharing the
resources for modulation classification and symbol decoding
stages.

From Table I, it is seen that the number of samples
(K) and the sum of modulation orders (Ms) determine the
complexity of the proposed techniques. On the other hand,
as the conventional techniques decode symbols only under the
selected modulation format, the total number of multiplication
and maximum operations depend on Mmax instead of Ms

considering the worst case scenario when the highest order
modulation format is selected.

Next, we examine the computational complexity of the
procedure for setting the parameters that appear in the mod-
ulation classification rules, i.e., λ, a and γ. For (P1), Monte
Carlo simulations can be performed to determine λ. Towards
this goal, we consider the discretized interval [0, λmax] where
λmax is such that Ha(δ(λmax)) ≈ αB. For a given λ in this
discretized interval, we compute the decision rule for each
Monte Carlo trial and then empirically obtain the average
probability of modulation classification error using the results
of these trials. Next, we repeat this procedure for each λ in this
discretized interval until |Ha(δ(λ))−α| ≤ ε for some small ε.
Treating each iteration as O(1), the computational complexity
of this complete procedure is given by O(NT Nλ

G) where NT

and Nλ
G denote the number of Monte Carlo trials and the

size of the discretized grid, respectively. For (P2), the optimal
values of a and γ are determined based on the algorithm
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in [24]. In this algorithm, a single iteration of the bisection
search requires O(NT Na

G) computations where Na
G denotes

the size of the discretized grid for a and a few iterations is
in practice sufficient for convergence. It should be noted that
the complexity of this procedure can be significantly higher
than the previous case since the discretization for a is on a
standard (2L− 1)-simplex whereas the discretization for λ is
simply over an interval on the real line.

V. EXTENSION

In this section, an extension to the proposed framework
is considered by utilizing a different cost function to evalu-
ate the symbol decoding performance. In Section III-A and
Section III-B, the symbol decoding performance of the pro-
posed techniques is measured by the cost function defined
in (8), which appears in the objective functions of (P1)
and (P2). The cost function in (8) essentially counts the
number of symbol errors made by the employed detector out
of K symbol transmissions that constitute the received signal
sequence in (1). In other words, the resulting performance
metric penalizes each erroneous symbol decoding separately
in a given block of length K . However, in certain applications,
rather than individual symbol errors, it may be important to
decode the whole block of symbols (e.g., codewords, frames,
etc.) correctly. In order to meet the requirements of such
applications, the following cost function is introduced:

Cb(φ(�)(x), m) = �{φ(�)(x) �=m} (26)

which yields 1 if the transmitted and decoded mes-
sages do not agree and 0 otherwise, where φ(�)(x) �
[φ(�)(x1), . . . , φ(�)(xK)]T .

In order to characterize the solution to (P1) and (P2) when
the objective function is computed using (26) instead of (8),
we begin by deriving the optimal symbol decoding rule for a
fixed modulation classifier. To that end, the optimality of the
MAP decoding is shown first in the following. Furthermore,
it is sufficient to only consider (P1) here since the optimality
in the case of (P2) is clear following a similar reasoning as
in the proof of Lemma 2.

For a fixed modulation classification rule δ, the optimization
problem in (P1) with the new cost function is written as

min
φ(�)

∫

δ(�)(x)
M(�)
∑

m1=1

· · ·
M(�)
∑

mK=1

�{φ(�)(x) �=m}
(

K∏

k=1

1
M (�)

f (�)(xk | μ(�)
mk

)

)

dx. (27)

After some manipulation, we get

max
φ(�)

∫

δ(�)(x)f (�)(x)
⎛

⎝
M(�)
∑

m1=1

�{φ(�)(x1)=m1}p
(�)(μ(�)

m1
| x1)

⎞

⎠

...⎛

⎝
M(�)
∑

mK=1

�{φ(�)(xK)=mK}p
(�)(μ(�)

mK
| xK)

⎞

⎠ dx. (28)

It is now clear from (28) that the optimal symbol decoder is
given by the MAP rule, i.e., φ

(�)
MAP(·).

Having identified the symbol decoder, we proceed with the
derivation of the modulation classification rule. By inserting
MAP based symbol decoders into the objective function (27),
the problem reduces to

min
δ

L∑

�=1

c�

∫

δ(�)(x)f (�)(x)C(�)
p,b(x)dx

subject to 1 −
L∑

�=1

c�

∫

δ(�)(x)f (�)(x)dx ≤ α (29)

where C(�)
p,b(x) denotes the posterior cost associated with the

optimal MAP based symbol decoder for the �th constellation
computed using the cost function in (26) and it is given by

C(�)
p,b(x) = 1 −

K∏

k=1

max
m∈{1,...,M(�)}

p(�)(μ(�)
m | xk). (30)

Notice that the problem in (29) is the same as that in (16)
after replacing C(�)

p (x) with C(�)
p,b(x). Therefore, the solution

to (29) is given by the modulation classification rule specified
in (17) and (18) after substituting C(�)

p,b(x) in place of C(�)
p (x).

Furthermore, a similar approach can be employed in the case
of (P2) leading to the modulation classification rule specified
by (24), where C(�)

p (x) is again replaced with C(�)
p,b(x).

Moreover, we can analyze an interesting case in which the
optimization problem does not involve any constraints. Recall
that in (P1), the objective function measures the symbol error
probability in the case of correct modulation classification
while the constraint ensures a given level of modulation
classification accuracy. Instead of such a constrained problem,
an unconstrained problem can also be formulated by combin-
ing these two performance measures into a single objective
function with equal weights. More specifically, consider the
following optimization problem

min
δ,φ

Ja,b(δ, φ) + Ha(δ) (31)

where

Ja,b(δ, φ) �
L∑

�=1

c�E�[Cb(φ(�)(x), m)δ(�)(x)] (32)

and Ha(δ) is as given in (10). Under the assumption that the
modulation classification errors automatically lead to symbol
errors (i.e., when constellation points of candidate modulation
schemes do not overlap), the solution of the optimization
problem in (31) can be viewed as a joint mechanism that
minimizes the total probability of symbol error composed of
those that occur when modulation scheme is correctly iden-
tified and those that occur when a modulation classification
error is made.

Noticing that the second term in (31) does not depend
on φ, and based on the previous discussions (see (28)), it can
be concluded that the MAP rule, i.e., φ

(�)
MAP(·), solves the

optimization problem in (31) for a fixed modulation classifi-
cation rule δ. Next, after inserting the optimal MAP decoders,



2632 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 18, NO. 5, MAY 2019

the optimization problem in (31) reduces to

min
δ

L∑

�=1

c�

∫

δ(�)(x)f (�)(x)
(
C(�)

p,b(x) − 1
)

dx. (33)

From (33), it can be seen that the optimal modulation classi-
fication rule is given by

δ(j)(x) = 1

if j = arg min
�∈{1,...,L}

c�f
(�)(x)

(
C(�)

p (x) − 1
)

(34)

and δ(j)(x) = 0 otherwise, for j = 1, . . . , L.
Note that the optimal modulation classifier in the con-

strained problem contains a Lagrange multiplier term which
essentially determines the tradeoff between the symbol decod-
ing performance in the case of correct modulation classifica-
tion and the average probability of misclassification. On the
other hand, it is observed that the optimal modulation classifier
derived in (34) is a special case of the constrained problem
when λ = 1, which means that it does not permit tradeoffs
between the considered performance measures of symbol
decoding and modulation classification.

In the following, we provide another perspective to the
unconstrained optimization problem in (31). Combining both
terms in the objective function and after some manipulation,
the optimization problem in (31) can be expressed as

max
δ,φ

L∑

�=1

c�

∫

δ(�)(x)f (�)(x)

⎛

⎝
M(�)
∑

m1=1

�{φ(�)(x1)=m1}p
(�)(μ(�)

m1
| x1)

⎞

⎠

...
⎛

⎝
M(�)
∑

mK=1

�{φ(�)(xK)=mK}p
(�)(μ(�)

mK
| xK)

⎞

⎠ dx.

(35)

Furthermore, the optimization problem in (35) can alterna-
tively be written as

max
�∈{1,...,L}

max
mk∈M(�), k=1,...,K

c�f
(�)(x)

K∏

k=1

p(�)(μ(�)
mk

| xk)

= max
�∈{1,...,L}

max
mk∈M(�), k=1,...,K

c�

K∏

k=1

1
M (�)

f (�)(xk | μ(�)
mk

)

= max
�∈{1,...,L}

max
mk∈M(�), k=1,...,K

p(D = S(�), μ(�)
m1

, . . . , μ(�)
mK

, x)
= max

�∈{1,...,L}
max

mk∈M(�), k=1,...,K

p(D = S(�), μ(�)
m1

, . . . , μ(�)
mK

| x) (36)

where M(�) � {1, . . . , M (�)}. The final expression in (36)
states that the optimal modulation classification and symbol
decoding rules need to be such that the joint a posteriori
probability of modulation format and symbol sequence are

maximized given the observed signal sequence. Due to the
fact that a maximization over the joint a posteriori probability
is performed, this technique is referred to as joint MAP. All
in all, using the cost function (26) in the objective function of
(P1) and taking λ = 1 in the modulation classification rule,
the joint MAP technique is obtained as a special case.

VI. NUMERICAL RESULTS

In this section, numerical examples are presented to examine
the performance of the proposed solutions to the joint modula-
tion classification and symbol decoding problem. In particular,
to illustrate the effectiveness of the proposed techniques,
performance comparisons are conducted against the conven-
tional techniques. Note that both the proposed techniques
and the conventional techniques decode the symbols based
on the MAP decoder for the recovered modulation scheme.
The difference between the formulations is related to the
modulation classification rules.5 Therefore, in the following,
the proposed techniques in Section III-A and Section III-B are
compared against the conventional techniques that classify the
modulation scheme based on the Bayes modulation classifier
and the minimax6 modulation classifier, respectively, which
are described in Section II-B.

The setup considered in the simulations is as follows: There
exist three possible candidate modulation schemes which are
16-QAM, 32-QAM and 64-QAM, i.e., M (1) = 16, M (2) =
32 and M (3) = 64 [9], [14], [18]. The modulation schemes
are assumed to have unit average power.7 The noise samples
ηk are taken as complex circular Gaussian random variables
with variance 2σ2

� under the �th modulation scheme leading
to an additive white Gaussian noise (AWGN) channel. Under
this setting, the SNR for the �th modulation scheme becomes
SNR� = 1/(2σ2

� ). The aim of allowing for different noise
levels under each modulation scheme is to model the behavior
of adaptive modulation systems which select the modulation
format to be employed according to the channel conditions.

A. Performance in the Case of Known Priors for the
Modulation Schemes

We first investigate the case in which the prior probabil-
ities of the modulation schemes are known by solving (P1)
for the previously described setup. In particular, under each
modulation scheme, SNR values are set to 18 dB, and each
modulation scheme is equally likely, i.e., c1 = c2 = c3 = 1/3.
For this scenario, Fig. 1a plots the average symbol decoding
performance in the case of correct modulation classification
with respect to the constraint on the average probability of
misclassification for the proposed technique for K = 1, 3, 10,

5It is important to emphasize that although the resulting joint mechanisms
of the proposed techniques lead to a change only in the modulation classifier
compared to the conventional techniques, the proposed techniques are jointly
optimal considering the introduced performance measures of both subprob-
lems.

6In the numerical examples, since equal constraints on the individual proba-
bility of classification errors are assumed, i.e., 1− �

δ(�)(x)f(�)(x)dx ≤ β
for all � ∈ {1, . . . , L}, the minimum of such β results in minimax decision
rule [20].

7Different but known power levels can also be considered as there are no
assumptions about the power levels in Section III.
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Fig. 1. Comparison of the conventional and the proposed approaches in the case of known modulation scheme priors.

together with the corresponding performances of the conven-
tional technique, which are represented by the single points (as
they yield a fixed performance for each K). It is observed that
for each value of K , the symbol decoding performance can
be improved by relaxing the constraint on the probability of
modulation classification error. Therefore, it is verified that
a tradeoff between the subproblems becomes possible via
the proposed approach. Moreover, as the proposed technique
is jointly optimal, no other method can operate below the
plotted curves. Therefore, these plots provide performance
benchmarks for any other joint mechanism. Furthermore, it is
observed that when K = 1, a small relaxation (e.g., changing
α = αB with α = 0.5) in the constraint compared to
the Bayesian classifier leads to a significant improvement in
the symbol decoding performance. On the other hand, when
further relaxation (e.g., changing α = 0.5 with α = 0.6) is
applied, no significant improvement on the symbol decoding
performance is obtained. On the other hand, when K is
increased, the relaxation required for a certain order of magni-
tude reduction in the symbol decoding performance measure
becomes larger. Therefore, if a significant improvement on
the symbol decoding performance is desired in the case of a
large K , the constraint should not be close to αB. In fact,
as can be observed from the plot, by taking the constraint
as large as 0.5, it is possible to reduce the symbol error
probability in the case of correct classification to a value lower
than 10−3, which is considered to be an acceptable level for
a variety of applications, for K = 10.

In Fig. 1b, we change the SNR values to SNR1 = 15 dB,
SNR2 = 18 dB and SNR3 = 21 dB and plot the average
symbol decoding performance when the modulation format is
correctly identified versus the constraint on the probability of
misclassification for K = 1, 3, 10. The reason for considering
a different set of SNR values is to show the effectiveness of
the proposed technique under a variety of conditions. It should
also be emphasized that under the modulation format with

a higher order, the channel is assumed to be less noisy
(i.e., higher SNR), which is consistent with the operation
of adaptive modulation systems. The first observation from
Fig. 1b is that by relaxing the constraint on the probability
of misclassification, an improvement on the symbol decoding
performance can be obtained compared to the conventional
technique for different values of K . In other words, the trade-
off between the subproblems is enabled under a variety of
conditions (i.e., for different SNR and K values). Similar
to the previous case, for K = 1, a slight relaxation is
sufficient to set the symbol decoding risk to a value that is
close to the lowest possible value. On the other hand, for a
large K , it is required to apply a further relaxation in order
to reduce the symbol decoding risk, for instance to a value
close to 10−3. Moreover, the relaxation in the constraint in this
case is not as effective as the relaxation in the previous case,
especially for low K’s. The intuition behind this observation
can be explained as follows: In the previous case, since SNR
values are the same, the symbol decoding performance under
64-QAM is worse than that under 16-QAM and 32-QAM.
Hence, the overall symbol decoding performance is mainly
dominated by the performance of 64-QAM. This provides
enhanced flexibility to reduce the overall symbol decoding risk
by making more classification errors under 64-QAM. On the
other hand, there is no such flexibility in the second case due to
the fact that each modulation scheme has comparable symbol
decoding performance.

We next investigate the performance of the proposed tech-
nique together with the conventional technique for a range of
SNR values in which each modulation scheme operates under
the same SNR condition. For a given SNR value, the con-
ventional technique yields a fixed probability of modulation
classification error, i.e., αB. In order to obtain a tradeoff
via the proposed technique, a fixed percentage of correct
modulation format decisions made by the conventional tech-
nique is allowed to be incorrect in the following simulations.
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Fig. 2. Comparison of the conventional and the proposed approaches in the case of known modulation scheme priors for SNR1 = SNR2 = SNR3 = SNR
and α = 1 − 0.85(1 − αB).

In particular, we set α as α = 1−0.85(1−αB); hence, the con-
straint in (P1) becomes (1 −Ha(δ)) ≥ 0.85(1 − αB). Under
this scenario, Fig. 2a plots symbol decoding performance in
the case of correct classification versus SNR and Fig. 2b
plots probability of correct modulation classification versus
SNR for each technique and for K = 1, 3, 10. From Fig. 2a,
it can be observed that at low SNR values both techniques
deliver similar symbol error rate, and thus relaxation is not
very effective. On the other hand, in the high SNR regime,
relaxation in the constraint becomes more effective, especially
for small K values. Furthermore, an interesting observation is
that symbol decoding performance, measured by Ja in the case
of correct classification, degrades for the conventional method
as the number of samples K increases. This can be explained
by the fact that the modulation classification performance of
the conventional method improves as K increases, and con-
sequently, noisy samples that are prone to erroneous symbol
decoding are included in the computation of Ja.

In order to illustrate the effect of number of samples K ,
Fig. 3 plots the average symbol decoding performance in
the case of correct classification with respect to K for α =
1−0.85(1−αB). It is noted that the most significant improve-
ment in the symbol decoding performance with the proposed
technique occurs when K is small and the SNR level is high.
In addition, it is seen that Ja becomes steady with respect
to K when K is large. This is due to the fact that the mod-
ulation classification performance of the conventional method
remains the same for large values of K , and consequently,
the constraint on the probability of modulation classification
error for the proposed method is kept the same.

B. Performance in the Case of Unknown Priors for the
Modulation Schemes

We next investigate the case in which prior probabilities
of the modulation schemes are unknown via solving (P2).
First, the same SNR condition (i.e., SNR1 = SNR2 =

Fig. 3. Symbol decoding performance versus K for the conventional and
the proposed approaches in the case of known modulation scheme priors for
α = 1 − 0.85(1 − αB).

SNR3 = 18 dB) is examined. In Fig. 4a, we plot the worst
case symbol decoding performance in the case of correct
classification with respect to β where β1 = β2 = β3 = β
for the proposed technique for K = 1, 3, 10, together with
the performance of the conventional technique. It is observed
that by increasing β, significant improvements on the symbol
decoding performance can be obtained for K = 1. For K = 3
and K = 10 on the contrary, the improvements on the
symbol decoding performance with respect to β become less
significant compared to K = 1 case. Next, SNR values are
set to SNR1 = 15dB, SNR2 = 18dB, and SNR3 = 21dB.
In Fig. 4b, we plot the worst case symbol error probability
when the modulation type is correctly identified with respect
to β. It is seen that for K = 1, a slight relaxation in β
improves the symbol decoding performance whereas further
relaxation does not lead to any improvement. On the other
hand, for K = 3, 10, multiple trends in the behavior of symbol
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Fig. 4. Comparison of the conventional and the proposed approaches in the case of unknown modulation scheme priors.

Fig. 5. Symbol decoding performance versus SNR for the conventional and
the proposed approaches in the case of unknown modulation scheme priors for
SNR1 = SNR2 = SNR3 = SNR and β1 = β2 = β3 = 1−0.85(1−βmm).

decoding performance with respect to β are observed. This
can intuitively be explained as follows: In this case, SNR
levels are such that each modulation scheme has comparable
symbol decoding performance. This makes it likely that the
modulation format index that achieves the worst case symbol
decoding performance, i.e., Jm, changes while relaxing the
constraints, which consequently yields multiple trends in the
plot of Jm with respect to β.

In Fig. 5, the worst case symbol decoding performance
in the case of correct modulation classification for the
conventional and the proposed techniques is illustrated by
varying the SNR value under which each modulation for-
mat operates. For the proposed technique, all constraints are
relaxed compared to the conventional technique as follows:
β1 = β2 = β3 = 1 − 0.85(1 − βmm) where βmm denotes the
smallest β delivered by the minimax modulation classification
rule. It is seen that for different K values, the conventional
technique delivers close to worst case symbol error rate in the

Fig. 6. Overall symbol decoding performance versus SNR for the con-
ventional and the proposed approaches in the case of unknown modulation
scheme priors for SNR1 = SNR2 = SNR3 = SNR and β1 = β2 = β3 =
1 − 0.85(1 − βmm).

case of correct classification. On the other hand, an improve-
ment on symbol decoding performance can be obtained with
the proposed technique especially for small K and at high
SNR values. Moreover, as SNR is increased, all individual
probability of modulation classification error terms improve
for the conventional technique since the conventional tech-
nique is optimized for modulation classification performance
only. On the other hand, for the proposed technique, there is
no such monotone behavior as the objective is to optimize for
the symbol detection performance.

In Fig. 6, we plot the overall worst case symbol decoding
performance, in which a modulation classification error is
regarded as a symbol error, versus SNR for β1 = β2 = β3 =
1− 0.85(1− βmm). This overall performance metric, which is
different from Jm in (P2), is computed as follows: We first
calculate the conditional symbol error probabilities given that
the �th modulation scheme is employed and then take the max-
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imum over � to account for the worst case scenario. It should
be emphasized that as the proposed technique optimizes the
symbol error rate when the modulation format is correctly
identified, we do not expect the proposed method to deliver the
best performance in Fig. 6. In fact, as the proposed technique
performs a tradeoff between the modulation classification
performance and the symbol decoding performance in the case
of correct classification, its overall symbol error performance
deteriorates as a result of the degraded classification perfor-
mance. However, the proposed technique reduces the symbol
error rate in the case of correct classification measured by Jm

as depicted in Fig. 5. In order to explain this phenomenon fur-
ther, consider a particular scenario in which the SNR is 18 dB
and K = 3. For the conventional technique, the conditional
symbol error rates are 8.10×10−5, 1.09×10−2 and 1.32×10−1

given that 16-QAM, 32-QAM and 64-QAM, respectively, are
identified correctly. On the other hand, the corresponding sym-
bol error rates for the proposed technique become 3.25×10−4,
7.12× 10−3 and 1.02× 10−1 considering 16-QAM, 32-QAM
and 64-QAM, respectively. Therefore, the improvement under
QAM-64 yields reduced Jm with the proposed technique.
However, the classification performance of the proposed tech-
nique is degraded, which consequently yields worse overall
symbol decoding performance compared to the conventional
technique.

Next, Fig. 7 plots the worst case symbol decoding perfor-
mance when the modulation is correctly identified versus the
number of samples for β1 = β2 = β3 = 1−0.85(1−βmm). It is
seen that the gap between the performances of the proposed
and conventional techniques diminishes as the number of
samples increases. Therefore, for the case of a high number of
samples, it is preferable to employ the conventional technique
as it guarantees to yield the best modulation classification
performance according to the minimax criterion and at the
same time its symbol decoding performance is close to the
proposed technique. The proposed technique on the other hand
is promising when the number of samples is small and the
SNR level is high.

C. Performance in the Presence of Channel Estimation
Errors

In (1), it is assumed that preprocessing tasks such as
channel estimation and equalization are already performed.
In case these preprocessing operations are not reliable,
performance of the proposed techniques degrades. In this
part, the effect of channel estimation errors is illustrated.
Towards this goal, we assume that the proposed techniques
are designed based on the signal model in (1), i.e., the
receiver presumes that there is no channel estimation error,
while the received signal is given by

xk = hsk + ηk, k = 1, . . . , K. (37)

In (37), h is used to model channel estimation errors and it
is a randomly generated complex coefficient with amplitude
(1 + ε) and phase κ where ε and κ are uniformly distributed
in the interval [−b, b]. With this model, channel estimation
errors become more significant as b increases. Moreover,

Fig. 7. Symbol decoding performance versus K for the conventional and
the proposed approaches in the case of unknown modulation scheme priors
for β1 = β2 = β3 = 1 − 0.85(1 − βmm).

a block fading scenario is considered in this model where the
channel estimation and equalization are performed once for
the complete received signal sequence.

In Fig. 8a, symbol decoding error in the case of correct
classification and average probability of modulation classi-
fication error are plotted versus b for the case when the
prior probabilities of the modulation schemes are known,
and for K = 3, SNR1 = SNR2 = SNR3 = 18 dB and
α = 1 − 0.85(1 − αB). It is observed that small channel
estimation errors do not cause significant degradation for both
symbol decoding and modulation classification performance.
However, when the channel estimation errors become more
significant, both performance measures are affected signifi-
cantly. In Fig. 8b, the effect of channel estimation errors on
the performance of the proposed technique in Section III-B
is illustrated where K and SNR values are as before and
β1 = β2 = β3 = 1 − 0.85(1 − βmm). It is seen that, similar
to the previous case, small channel estimation errors do not
cause significant degradation whereas large channel estimation
errors deteriorate each performance measure.

D. Performance Considering the Cost Function in the
Extension

In this part, performance of the conventional and the
proposed techniques is presented when the cost function to
measure symbol error rate is given by (26). More specifically,
Fig. 9a and Fig. 9b consider the formulation in Section III-A
and Section III-B, respectively, when the objective func-
tions are as in (26) instead of (8). As expected, block
symbol error performance is poorer than average symbol
error performance considered in the previous examples. From
Fig. 9a and Fig. 9b, it is verified that the proposed techniques
corresponding to this cost function yield improved symbol
decoding performance in the case of correct classification by
relaxing the constraint(s) on average (or individual) proba-
bility of classification error(s) compared to the conventional
techniques.



KAZIKLI et al.: OPTIMAL JOINT MODULATION CLASSIFICATION AND SYMBOL DECODING 2637

Fig. 8. Performance of the conventional and the proposed approaches versus channel estimation error parameter b for K = 3 and SNR1 = SNR2 =
SNR3 = 18 dB.

Fig. 9. Performance of the conventional and the proposed approaches considering the cost function in (26) versus SNR.

VII. CONCLUSION

In this paper, jointly optimal approaches for solving modu-
lation classification and symbol decoding problems have been
proposed. In particular, the scenarios with both known and
unknown prior probabilities of modulation schemes have been
addressed to provide a generic framework. In both cases,
the introduced symbol decoding performance measure has
been optimized under the constraint(s) on the modulation
classification performance. In this way, a tradeoff between
modulation classification and symbol decoding performance
has been achieved in a jointly optimal manner. Various
extensions of the results in this study can be considered.
One interesting extension is to address the uncertainty in the
prior probabilities of the modulation schemes by employing
the restricted Bayesian framework [26], [39]. In addition,

parameters such as fading coefficient, time/frequency offset
can be incorporated into the signal model to investigate a
more general scenario in which these parameters are treated
as unknown deterministic or random quantities. As another
interesting future work, it is possible to study joint modula-
tion classification and symbol detection problem considering
MIMO systems.
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