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ABSTRACT

CUMULANTS ASSOCIATED WITH GEOMETRIC
PHASES AND THEIR IMPLEMENTATION IN

MODERN THEORY OF CRYSTALLINE
POLARIZATION

Sertac Cengiz

M.S. in Physics

Advisor: Balazs Hetenyi

September 2022

Many fields have been influenced by Berry’s geometric phase because of its

physical meaning and observable effects. One of the breakthroughs that stem

from geometric phases is the modern theory of polarization. The expectation

value of the position was not possible to calculate for crystalline structures be-

cause of ill-defined position operator. The modern theory of polarization showed

that the geometric phase obtained by Zak phase, integral across the Brillouin

zone, gives the first cumulants so that polarization is obtainable by the geometric

phase. This indicates that cumulants are essential for studies such as polariza-

tion, charge transport, and electron localization. In the context of the modern

theory of polarization, gauge-invariant cumulants are derived but they are not

geometric even though they are physically well defined. In order to deal with

this issue, a Binder cumulant associated with the adiabatic cycle is introduced,

so called geometric Binder cumulant. Since the definition of Binder cumulants

is based on a ratio of two cumulants, it is possible to eliminate factors that pre-

vent the quantity to become geometric. An alternative way to extract cumulants

associated with the adiabatic cycle is proposed as well. Error terms of the Cu-

mulants are improved when they are extracted in an alternative way. Distortion

around the transition points which modern theory of polarization has been re-

duced significantly. Geometric Binder cumulant is implemented to observe the

difference between gapped and gapless band structures. One-dimensional and

two-dimensional models are investigated and phase transition between metallic

and insulating states is clearly observed. SSH model is investigated to make

a comparison with the modern theory of polarization and development in the
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formalism is shown. Geometric Binder cumulant also lets us observe the cor-

related model and a method based on renormalization group theory is used to

locate transition points in the correlated model. Results are in good agreement

with each other. An alternative way to extract cumulants is also extended to

two-dimensional systems and phase transition is observed in two-dimensional sys-

tems with the usage of geometric Binder cumulant. Regardless of whether the

two-dimensional system has a zero-dimensional or one-dimensional Fermi surface,

Geometric Binder cumulant is a quantity that is sensitive for the metallic and

insulating cases. For the open gap case, geometric Binder cumulant is affected

by the system size, and the effect of the system size is distinct. An increase in

the system size improves the quantity.

Keywords: Adiabatic cycle, Binder cumulant, Cumulants, Crystalline polariza-

tion, Phase transition.



ÖZET

GEOMETRİK FAZLAR İLE İLİŞKİLİ KÜMÜLANTLAR
VE MODERN KRİSTAL POLARIZASYON

TEORİSİNDEKİ UYGULAMALARI

Sertac Cengiz

Fizik, Yüksek Lisans

Tez Danışmanı: Balazs Hetenyi

Eylül 2022

Fiziksel anlamı ve gözlemlenebilir etkileri nedeniyle birçok alan Berry’nin ge-

ometrik fazından etkilenmiştir. Geometrik fazdan kaynaklanan atılımlardan biri

modern polarizasyon teorisidir. Konumun beklenen değeri, kötü tanımlanmış

sınırlar nedeniyle kristal yapılar için hesaplamak mümkün değildi. Mod-

ern polarizasyon teorisi, adyabatik döngü ile elde edilen geometrik fazın

ilk kümülantları verdiğini, böylece polarizasyonun geometrik faz ile elde

edilebileceğini göstermiştir. Bu durum, kümülantların polarizasyon, yük taşıma,

elektron lokalizasyonu gibi çalışmalar için gerekli olduğunu göstermektedir. Mod-

ern polarizasyon teorisi bağlamında, ölçü değişmez kümülantları türetilmiştir,

ancak fiziksel olarak iyi tanımlanmış olmalarına rağmen geometrik değildirler.

Bu sorunu çözmek için, geometrik Binder kümülantı olarak adlandırılan adya-

batik döngü ile ilişkili Binder kümülantlar tanıtıldı. Binder kümülantı tanımı

iki kümülantın oranına göre yapıldığından tanımın geometrik hale gelmesini en-

gelleyen faktörleri ortadan kaldırmak mümkündür. Adyabatik döngü ile ilişkili

kümülantları elde etmenin alternatif bir yolu da önerilmiştir. Cumulantların hata

terimleri, alternatif yolla elde edildiğince iyileşir. Modern polarizasyon teorisinin

sahip olduğu geçiş noktaları etrafındaki bozukluklar önemli ölçüde azalır. Aralıklı

ve arılıksız bant yapıları arasındaki farkı gözlemlemek için Geometric Binder

kümülant uygulanmıştır. Bir boyutlu ve iki boyutlu modeller incelenmiş ve met-

alik ve yalıtkan hal arasındaki faz geçişi açıkça gözlemlenmiştir. SSH modelinde

modern polarizasyon teorisi ile karşılaştırma yapmak için araştırılmış ve formal-

izmdeki gelişme gösterilmiştir. Geometrik Bağlayıcı kümülatı ayrıca ilişkili mod-

elleri gözlemlememizi sağlar ve ilişkili modeldeki geçiş noktalarını bulmak için

renormalizasyon grubu teorisine dayalı bir yöntem de kullanılmıştır. Sonuçlar

birbirleriyle iyi bir uyum içindedir. Kümülantları çıkarmanın alternatif yolu iki
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boyutlu sistemlere de genişletilmiştir ve geometrik Binder kümülatı kullanılarak

faz geçişi iki boyutlu sistamlerde de gözlenmiştir. iki boyutlu sistemin sıfır

boyutlu veya tek boyutlu Fermi yüzeyi olduğuna bakılmaksızın geometrik Binder

kümülantı metalik ve yalıtkan duruma duyarlı bir niceliktir. Arılıklı bant duru-

munda, geometrik Binder kümülantı sistem boyutundan etkilenir ve sistem boyu-

tundan kaynaklanan etki belirgindir. Sistem boyutundaki artış niceliği geliştirir.

Anahtar sözcükler : Adyabatik döngü, Binder kümülant, Kümülantlar, Kristal

polarizasyon, Faz geçişi.
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Chapter 1

Introduction

Berry’s geometric phase [1] which was published in 1984 was very influential in

many fields. The geometric phase is a physical phenomenon and observable ef-

fect in numerous cases since it is gauge-invariant. For the crystalline systems in

thermodynamic limits, Zak defined the geometric phase over a loop across the

Brillouin zone [2]. Topological invariants are constructed based on this geometric

phase and it characterizes topological insulators’ phases [3–7]. Another develop-

ment led by Zak phase was made in electric polarization by associating it with

adiabatic charge transport [8–10]. The geometric phase is also correlated with

gauge field theories and differential geometry so this important property provides

an explanation for the quantum Hall effect whose formulation corresponds with

integer Chern numbers [11–13]. The first example of a topological insulator is

Haldane’s study on the integer quantum Hall effect which is a Chern insulator

on hexagonal lattice [7, 14]. In the study of charge transport, cumulants are

crucial because they are related to quantities such as the variance of the polar-

ization [10], shift current [15] through sum rules. Cumulants are necessary for

the modern theory of polarization [16, 17] and the geometric phase is considered

as the first members of cumulants that are extracted from the adiabatic cycle.

Souza, Wilkens, and Martin derived gauge-invariant cumulants in the context

of the modern theory of polarization [18]. Although cumulants defined by Souza,
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Wilkens, and Martin are physically well defined, they are not geometric. In

this work, a quantity is demonstrated that is physically well defined as well as

geometric. This is achieved by taking a ratio of two gauge invariant cumulants

associated with an adiabatic cycle in a particular way. This way is very similar

to the Binder cumulants [19, 20]. Binder cumulant is obtained with the ratio of

the fourth cumulant (kurtosis) by the square of the second cumulant (variance).

Because of its construction, Binder cumulant is applied to the finite size scaling

hypothesis [21]. At transition points, the size dependency of cumulants is canceled

in the ratio, and Binder cumulant becomes independent of size. In the numerical

calculations, phase transition points are affected by the finite size, and obtaining

some critical points or calculating some parameters don’t become accurate well.

Using Binder cumulant eliminates the effects stemming from the finite size at

transition points. Binder cumulant is useful in both classical [22] and quantum

[23] transition points. Binder cumulant is constructed associated with adiabatic

cycle and called geometric Binder cumulant (GBC). This method is implemented

in the modern theory of polarization.

In this thesis, extraction of cumulants from polarization amplitude Zq is stud-

ied as well. It is argued that Zq is the characteristic function for crystalline sys-

tems. In the standard way, a discrete logarithmic derivative is taken to extract

cumulants. Instead of the standard way, the original Resta-Sorella method [10,24]

is modified and an alternative way is proposed to extract cumulants. With this

alternative way, cumulants are extracted with finite difference derivatives of Zq

whose phase is removed. Construction in this work is based on this method.

This discussion is also extended to two-dimensional polarization amplitude and a

scheme is developed to distinguish transition points for two-dimensional systems.

There are many different scaling laws and several of them have been used for

ages. Besides the size scaling approach, another scaling argument is the renormal-

ization group and it was developed to scale transformations in quantum electro-

dynamics [25,26]. Recently, this method is applied to real-space renormalization

to the polarization amplitude [27]. Consider a correlated model, the system can

be renormalized and a new system can be formed. This scales the Hamiltonian

to a new one. After enough iteration, the critical point is found. This idea is

2



implemented to renormalize a correlated model and scale polarization amplitude

Z to determine the phase transition point.

In Chapter 2, the Geometric (Berry’s) phase is presented. Then modern po-

larization is explained and extraction of cumulants is given. Geometric Binder

cumulant is also defined in this chapter. Investigated models are examined in

Chapter 3. One-dimensional (SHH model with two different impurities) and two-

dimensional models (Graphene and Haldane models) are investigated. In Chapter

4, calculation methods are discussed. The Alternative way to extract cumulants

and approach for two-dimensional polarization amplitude is defined in this chap-

ter. Results are shown and analyzed in Chapter 5. The thesis is concluded with

Chapter 6.
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Chapter 2

Polarization and Cumulants

Geometric phase is very influential for many fields. Concept of modern theory

of polarization [16, 17] is crucially based on geometric phase. The idea relies

on the quantum adiabatic transport of particles. Geometric phase is derived

for a particle which acts on a Hamiltonian evolution under adiabatically chang-

ing parameters. Geometric phase is considered the first member of cumulants.

Therefore, modern theory of polarization stems from cumulants which are ex-

tracted from adiabatic cycle [9,10]. Gauge invariant cumulants are derived in the

context of modern theory of polarization [18] but they are not geometric although

they are physically well defined. This problem is overcome with geometric Binder

cumulant (GBC), which is a Binder cumulant based on adiabatic cycle.

2.1 Geometric Phase

Phase factor is obtained as a result of adiabatic approximation. During diabatic

process, conditions are changing rapidly so system cannot adapt. Therefore,

eigenstates which system start with will not end in the eigenstates of the final

Hamiltonian. In adiabatic approximation, parameters which Hamiltonian of the

system depends on are slowly changing. This slow change allows system to adapt

4



to conditions. During adiabatic process, eigenstates of the initial Hamiltonian

follow the eigenstates of Hamiltonian which we get from the Hamiltonian with

changed parameters. For example, if we start spin pointing in r0 direction parallel

to B field and gradually rotate B to direction r, according to adiabatic theorem

the spin will also point in r direction.

In order to derive adiabatic theorem, expand a state |Ψ(t)〉 in terms of the

instantaneous eigenstates {|n(t)〉} of Ĥ(t).

H(t)|n(t)〉 = En(t)|n(t)〉. (2.1)

|Ψ(t)〉 =
∑
n

cn(t)|n(t)〉. (2.2)

Schrödinger’s wave equation with this state yields,

i~
∂

∂t
|Ψ(t)〉 = H(t)|Ψ(t)〉. (2.3)

Substituting with the expansion (2.2), wave equation (2.3) becomes,

i~
∑
n

(ċn(t)|n(t)〉+ cn(t)|ṅ(t)〉) =
∑
n

cn(t)En(t)|n(t)〉. (2.4)

Projecting it with 〈k(t)| gives,

i~ċk(t) + i~
∑
n

cn(t)〈k(t)|ṅ(t)〉 = ck(t)Ek(t). (2.5)

5



We need to evaluate second term in the left sight of the equation (2.5). In

order to evaluate it, we will take time derivative of equation (2.1).

Ḣ(t)|n(t)〉+H(t)|ṅ(t)〉 = Ėn(t)|n(t)〉+ En(t)|ṅ(t)〉. (2.6)

When we project it with 〈k(t)|, then we get,

〈k(t)|Ḣ(t)|n(t)〉+ Ek(t)〈k(t)|ṅ(t)〉 = Ėn(t)δk,n + En(t)〈k(t)|ṅ(t)〉. (2.7)

For n = k, we have 〈k|Ḣ|k〉 = Ėk. It is also known as the Hellmann-Feynman

theorem. When n 6= k, we have 〈k|ṅ〉 = 〈k|Ḣ|n〉
En−Ek

. After substituting equivalent of

〈k|ṅ〉 into equation (2.5), it yields,

i~ċk(t) = ck(t)(−i~〈k(t)|k̇(t)〉+ Ek(t))− i~
∑
n6=k

cn(t)
〈k(t)|Ḣ(t)|n(t)〉
En(t)− Ek(t)

. (2.8)

First term is called adiabatic term and second term is called error term. Error

term can be neglected under adiabatic approximation. According to adiabatic

theorem, if
∣∣∣~〈k(t)|Ḣ(t)|(t)〉

∣∣∣� min
t

[En(t)−Ek(t)]2, transitions between level n

and k are suppressed. Solution of i~ċk = ck(−i~〈k|k̇〉+ Ek) gives,

ck(t) = ck(t = 0)eiθk(t)eiγk(t), (2.9)

|Ψ(t)〉 = eiθk(t)eiγk(t)|n(t = 0)〉.

where ,

θk(t) = −1

~

∫ t

0

Ek(t
′)dt′, γk(t) = i

∫ t

0

〈k(t′)| d
dt′
k(t′)〉dt′. (2.10)
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θ is the Dynamical phase and γ is the geometric phase, which is also known as

Berry phase if the process is cyclic. Dynamical phase is ordinary phase expected

for energy eigenstates. However, geometric phase is the surprising part and it is

a topological phase factor. Let’s represent time dependence of the Hamiltonian

by a vector R(t). By chain rule, time derivative of |k(t)〉 gives; d
dt
|k(R(t))〉 =∑

i
d
dRi
|k(R(t))〉dRi

dt
= ∇R|k(R(t))〉dR

dt
. Then, Berry phase γ becomes,

γk(R(t)) = i

∫ t

0

〈k(R(t′))|∇R|k(R(t′))〉dR
dt′

dt′ = i

∫ R(t)

R(t=0)

〈k(R(t′))|∇R|k(R(t′))〉dR.

(2.11)

In the case where t represents the period for one full cycle, so that R(0) = R(t)

and equation (2.11) gives the phase difference along the closed path. Otherwise,

phase is along the open path. In this closed path case, Berry phase is gauge

invariant and observable.

γk = i

∮
C

〈k(R)|∇R|k(R)〉dR. (2.12)

Phase difference can be also defined with discrete loop. In the limiting case,

total phase difference over closed path converges to closed integral, i.e.
∑

∆ϕ −→∮
C
dϕ where

∮
C
dϕ = γ. Phase difference between two state will be defined as

∆ϕs,s+1 = 〈φ(ξ)|φ(ξ+ ∆ξ)〉 with arbitrary discrete parameter ξ. Sum of the each

phase between two states along the continuous path will give the phase difference

of the path.

γ =
N∑
s=1

∆ϕs,s+1. (2.13)

The term Ak(R)dR = i〈k(R)|∇R|k(R)〉 is defined as Berry connection and

then Berry phase can be written as γk =
∮
Ak(R)dR. Using the Stokes’ theorem,

7



it can be also expressed as; γk =
∮
Ak(R)dR =

∫
(∇R×Ak(R))da where Bk(R) =

∇R × Ak(R) is called Berry curvature. Thus, Berry phase is determined by the

flux of a generalized field. Closed path Berry phase is significant observable in

many areas. Modern polarization theory is based on it so that it plays important

role for modern electronic structure theory.

2.2 Modern Theory of Polarization

Dipole moment of a finite one dimensional electron system which has wave func-

tion Ψ and the electron density function n(x) can be written as,

p = q〈x〉 = q

∫
dx xn(x) = q〈Ψ|X̂|Ψ〉. (2.14)

Dipole moment is the central quantity for very essential concepts such as po-

larization. Knowledge of the electronic distribution should be enough for macro-

scopic polarization in the thermodynamic limit and macroscopic polarization

should be insensitive to surface effects. With the classical way, dipole moment

is described within a unit cell. Consider a macroscopic solid. If we assume that

system is discrete and well separated, then using equation (2.14) will fail because

of the incorrect definitions. Suppose that we have long one dimensional lattice

which has two sub-lattices where one sub-lattice consist of anions and the other

sub-lattice consists of cations. Two different unit cells can be chosen, anion-

cation or cation-anion. Dipole moments of these two unit cell are different and

dipole moment of the system will not be obtained. Attempt fails because posi-

tion operator is ill defined. Calculation of the dipole moment by using equation

(2.14) for periodic crystal is affected by surface. The solution to the problem is

built starting by dealing with the position operator. Consider an electron in one-

dimensional system which has periodic boundary condition, i.e. Ψ(x+L) = Ψ(x)

where L is imposed periodicity. Assume that distribution has a center x0 in the

domain (0, L) then it periodically repeats. In order to deal with the position

8



operator, complex number z which consists of quantity exp(i2πx/L) is defined

as,

z = 〈Ψ(x)|ei(2π/L)x̂|Ψ(x)〉 =

∫ L

0

dx ei(2π/L)x̂|Ψ(x)|2. (2.15)

In the extreme delocalization case, we have electron density |Ψ|2 = 1/L so that

amplitude z is 0. In the extreme localization at centers case, we have following

electron density,

|Ψ(x)|2 =
∞∑

m=−∞

δ(x− x0 −mL). (2.16)

and then z becomes exp(i2πx0/L). Therefore, electron density can be written

in term of a density function nloc for general location case where function nloc

satisfies the above extreme cases.

|Ψ(x)|2 =
∞∑

m=−∞

nloc(x− x0 −mL). (2.17)

Equation (2.17) can be substituted into equation (2.15). This expression can

be considered as a Fourier transform of the nloc and then z can be considered in

terms of this Fourier transform ñloc.

z = ei(2π/L)x0ñloc

(
−2π

L

)
. (2.18)

Difference between delocalised and localised cases becomes apparent under

examination of z’s behavior. For delocalised case, z depends on L while z is inde-

pendent from L for localised case. If localization is close to extreme localization,

Fourier transform ñloc can be expanded as follows,
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ñloc

(
−2π

L

)
= 1− 1

2

(
2π

L

)2 ∫ ∞
−∞

dx x2nloc(x) +O(L−3). (2.19)

It is clear that |z| goes to 1 while L is increasing. As a result of that, expec-

tation value can be obtained by the phase of the z.

〈x〉 =
L

2π
Im ln z. (2.20)

Since system is periodic over L, expectation value is proportional to L. Now,

we have expectation value and polarization (2.14) can be calculated. Comparing

it with the equation (2.12), it is clearly seen that expectation value is multiple

of Berry phase. For a many-particle system, assume that there are N electrons

and system size is L. Thermodynamic limit is considered. N and L go to infinity

and ratio between them N/L is equal to finite density of electron n. In this case,

state obeys conditions for each particle variable separately. Many-body operator

will be defined as X =
∑N

i xi. Then z will be defined as,

zN = 〈Ψ(x)|ei(2π/L)X̂ |Ψ(x)〉. (2.21)

Expectation value becomes as follow,

〈X〉 =
L

2π
Im ln zN . (2.22)

On the other hand, equation (2.18) can be used to calculate the variance of

the electron distribution. Taylor series centered at 1 gives (z − 1) for the first

term of the summation expansion. It can be assumed that ln |z| is approximately

equal to second term of equation (2.19).
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ln |z| ' −1

2

(
2π

L

)2 ∫ ∞
−∞

dx x2nloc(x). (2.23)

Then, variance of the electron distribution can be defined as,

σ2 = 〈x2〉 − 〈x〉2 = −
(
L

2π

)2

ln |z|2. (2.24)

Equation (2.24) provides alternative way to examine localised cases. As it

was discussed above, While system is getting localised, nloc becomes more L

independent. |z| goes to constant limit and it becomes proportional to L2. As

a result, it is expected that the size-scaling exponent is two for the delocalised

system.

2.3 Cumulants

Assume that w(x) is the probability density of random variable X where w(x)dx

gives the probability of variable X which takes on the value x in the interval

[x, x+ dx]. The mean value of X is defined as,

〈X〉 =

∫ ∞
−∞

dxw(x)x. (2.25)

This is the first moment of the probability density and the mean value of X’s

powers provides other moments. The nth moment is defined as, Mn = 〈Xn〉.
Characteristic function is defined as Fourier transform of the probability density.

z(k) =

∫ ∞
−∞

dxe−ikxw(x). (2.26)

11



Consider the power series expansion of eat. nth derivative of eat with respect

to the a where a goes to zero gives nth power of t.

∂neat

∂tn
|a=0 = tn. (2.27)

Therefore, nth moment will be found by multiplying nth derivative of charac-

teristic function (2.26) by (i)n. Characteristic function which is defined in terms

of the moments can be redefined by taking the logarithm of the expansion in

moments. The expansion coefficients are called cumulants. Therefore, cumulants

can found by nth derivative of logarithm of the characteristic function. Charac-

teristic function Zq is a discrete analog of a characteristic function, at integral

values of q and is defined as,

Zq = 〈Ψ(x)|ei(2πq/L)X̂ |Ψ(x)〉. (2.28)

This characteristic function can be calculated with cyclic product in discrete

form.

Zq =
N∏
q=1

〈Ψ(x)|Ψ(x+ q)〉. (2.29)

Generating moments and cumulants with characteristic function Zq will follow

as,

Mn =

(
L

2πi

)n
[Zq]

(n)
q=0, (2.30)

Cn =

(
L

2πi

)n
[lnZq]

(n)
q=0. (2.31)

12



Due to periodicity, the domain of q is discrete so that one can only take the

discrete derivatives and the notation [fq]
(n)
q=0 means discrete derivative of order n

of the function fq at q = 0.

2.3.1 Binder Cumulant

Consider the phase calculation based on discrete cyclic product with parameter

space ξ.

Zq =
N∏
m=1

〈φ(ξm)|φ(ξm+q)〉. (2.32)

To obtain cumulants, lets expand the lnZ with above discrete definition (2.32).

First term of the expansion 1 will give the first moment, which is also equal to

first cumulant.

C1 = Im
N∑
m=1

∆ξ〈φ(ξm)|∇ξ|φ(ξm)〉. (2.33)

in continuous limit, it can be written as,

C1 = Im

∮
dξ〈φ(ξm)|∇ξ|φ(ξm)〉. (2.34)

which is geometric phase which is also called Berry phase. Second term of

the expansion lnZ1 will give the second moment and second cumulant will be

obtained as following,

C2 = −
N∑
m=1

∆ξ2
[
〈φ(ξm)|(∇ξ)

2|φ(ξm)〉 − (〈φ(ξm)|∇ξ|φ(ξm)〉)2
]
. (2.35)
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In this case, in order to take continuous limit, one factor of the ∆ξ in the

equation (2.35) has to be eliminated so that second cumulant can be written as

follow,

Γ2 = −
∫
dξ
[
〈φ(ξm)|(∇ξ)

2|φ(ξm)〉 − (〈φ(ξm)|∇ξ|φ(ξm)〉)2
]
. (2.36)

Definition (2.36) is physically well defined but it is no longer geometric since

one factor of the ∆ξ was eliminated. Same issue is valid for higher order cumu-

lants. Binder cumulant is defined as,

U = 1− C4

3C2
2

. (2.37)

Ratio of fourth cumulant and square of the second cumulant is a physically

well defined construction and it gives gauge invariant quantity as well as being

geometric. Fourth cumulant will be in term of four factor of ∆ξ. All ∆ξ factors

except one can be canceled in the ratio. Then continuous limit of cumulants will

be left. This let us to construct Binder cumulant without eliminating any factor.

Therefore, Binder cumulant based on adiabatic cycle gives possibility to obtain

geometric quantity.
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Chapter 3

Models

For one dimension, this formalism is implemented to Su-Schrieffer–Heeger (SSH)

model [28]. It is the simplest model to investigate topological behaviour. System

is localised by creating impurities with on-site potential or nearest neighbour

interaction. Besides SSH model, it is also studied with two dimensional models.

Lots of interest have been shown to graphene after it’s discovery because of it’s

fundamental properties. Therefore, in the field topological insulators, graphene

is also studied. Quantum Hall effect is shown in graphene [5] and first example

of Chern insulator is given on a hexagonal lattice [7, 14].

3.1 SSH model with on-site potential

The Su-Schrieffer–Heeger (SSH) model is the simplest model to exhibit basic

concepts of topological insulators. Model is based on one dimensional lattice

which consisting of spinless fermions. In the system, particle hopping is regarded.

System becomes trivial or topological in the way hopping strength is taken.

One dimensional lattice contain N unit cells and each unit cell contains two

sublattices, where one contains particle A and other contains particle B. No

particle interaction is considered. Adding on-site potential to the system is called
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Figure 3.1: SSH model representation. Sub-lattice A and sub-lattice B are shown
with different colour. J is the inter-cell hopping parameter and J ′ is intra-cell
hoping parameter.

the Rice-Mele model. System Hamiltonian is defined as follow,

Ĥ = J
∑
m

(c†B,mcA,m + h.c.) + J ′
∑
m

(c†A,m+1cB,m + h.c.) (3.1)

+∆
∑
m

(c†A,mcA,m − c
†
B,mcB,m).

where J and J ′ are real hopping strengths of inter-cell and intra-cells, ∆ is on-

site potential. Operator c†A,m (cA,m) creates (annihilates) particle in site m in sub-

lattice A and operator c†B,m (cB,m) creates (annihilates) particle in site m in sub-

lattice B. In the thermodynamic limit, i.e. N →∞, V →∞, N/V = constant,

fluctuations are negligible since the ratio of the size of the fluctuations to global

quantities. However, even in the thermodynamic limit there are edge states.

They appear as zero energy mode. Periodic boundary condition is implemented

so that there is no edge states. Due to translational symmetry of the system,

Bloch theorem can be applied. Bloch theorem states that eigenstates are defined

in the form of plane wave regulated by periodic function in a system with periodic

boundary conditions, |Ψ(k)〉 = |k〉 ⊗ |u(k)〉. Fourier transformation is used to

decompose into wave form. Fourier transforms of the operators follow,

ck =
1√
L

∑
m

eimkcm, cm =
1√
L

∑
k

e−imkck. (3.2)

Linear combination of operators in wave form is substituted into Hamiltonian.

And following identity is considered, c†icj = δci,cj .
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Ĥ = J
∑
m

∑
k

(
eimk√
L
c†B,k

e−imk√
L
cA,k + h.c.) (3.3)

+J ′
∑
m

∑
k

(
ei(m+1)k

√
L

c†A,k
e−imk√
L
cB,k + h.c.)

+∆
∑
m

∑
k

(
eimk√
L
c†A,k

e−imk√
L
cA,k −

eimk√
L
c†B,k

e−imk√
L
cB,k).

It yields Hamiltonian in the k-space form.

Ĥ = J
∑
k

(c†B,kcA,k + h.c.) + J ′
∑
k

(eikc†A,kcB,k + h.c.) (3.4)

+∆
∑
k

(c†A,kcA,k − c
†
B,kcB,k).

Hamiltonian can be written in matrix form as Ĥ =
∑

k c
†
kĥ(k)ck where,

ĥ(k) =

[
∆ J + J ′eik

J + J ′e−ik −∆

]
. (3.5)

This approach simplifies the calculation of the system. Matrix form of the

Hamiltonian (3.5) has two degrees of freedom. Any such two-level Hamiltonian

can be written in terms of the Pauli matrices σ.

ĥ(k) = d0(k)σ̂0 + dx(k)σ̂x + dy(k)σ̂y + dz(k)σ̂z. (3.6)

where d(k) vectors are strength of the Pauli matrices. For the Hamiltonian

(3.5), these strength vectors are,

d0 = 0, dx = J + J ′ cos(k), dy = J ′ sin(k), dz = ∆. (3.7)
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Ground state energy and its state for corresponding Hamiltonian (3.6) is

Eg = d0 + d, |Ψ(k)〉 =

[
sin(θ(k)/2)

e−iφ(k) cos(θ(k)/2)

]
. (3.8)

where d =
√
d2
x + d2

y + d2
z and angles defined as,

θ(k) = arccos(dz/d), φ(k) = arctan(dy/dx). (3.9)

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.2: Hopping strengths are; (a),(f) J = 1 and J ′ = 0. (b),(g) J = 1 and
J ′ = 0.5. (c),(h) J = 1 and J ′ = 1. (d),(i) J = 0.5 and J ′ = 1. (e),(j) J = 0 and
J ′ = 1. Band gap is shown in (a),(b),(c),(d) and (e). Winding number is seen in
(f),(g),(h),(i) and (j)

Assume that ∆ is zero, so only J and J ′ affect the system. In the case where

J = J ′, gap between energy bands is closed so system is conductor. Otherwise,

i.e. J 6= J ′, gap is open and system becomes insulator. dx and dy vectors give

idea for topology of the system by evaluating winding number, which is total

number of closed curve travels counterclockwise around a point. When J > J ′,

winding number around origin is zero so system is topologically trivial. On the

other hand, when J < J ′, winding number is one so system is topological. With

the condition J = J ′, topological transition occurs and this is the case in which

system is not insulator.
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3.2 t-V correlated model

Particle interaction is a significant phenomenon. In order to basically examine

affect of particle interaction, simple toy model is used. Nearest neighbour (n.n.)

interaction is added to SSH model. Inter-cell and intra-cell hopping strengths are

taken equal to each other. Hamiltonian of such system follows,

Ĥ = −t
∑
m

(c†m+1cm + h.c.) + V
∑
m

n†mnm+1. (3.10)

where nm = c†mcm is density operator, V is the n.n. interaction potential. If

there are two particles in nearest neighbour sites, interaction potential occurs and

second term in Hamiltonian (3.10) checks the sites whether there are neighbour

particles or not. This model is also called t−V correlated model. Bloch theorem

can be applied as a solution attempt. Fourier transform of operator cm is know,

cm = 1√
L

∑
k e
−imkck. It can be substituted in Hamiltonian (3.10) to quantize

system into wave form.

Ĥ = −t
∑
m

(c†m+1cm + h.c.) + V
∑
m

c†mcmc
†
m+1cm+1. (3.11)

Lets take interaction term in Hamiltonian into account and apply Fourier trans-

form.

Ĥ =
∑

k,k′,k′′,k′′′

1√
L
eimkc†k

1√
L
e−imk

′
ck′

1√
L
ei(m+1)k′′c†k′′

1√
L
e−i(m+1)k′′′ck′′′ . (3.12)

It is known that cic
†
j = c†icj = δci,cj . Therefore, c†kck′c

†
k′′ck′′′ term is not zero if

k = k′, k′ = k′′, k′′ = k′′′. This means k − k′ = k′′ − k′′′ = q.
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Ĥ =
1

L2

∑
k,k′′,q

e−iqc†kck−qc
†
k′′ck′′−q. (3.13)

Hamiltonian (3.13) is not diagonal. This means that Hamiltonian (3.10) is not

diagonalized by using Bloch theorem. Exact diagonalization method is used to

solve this model. Solution method will be given in section 4.2.

3.3 2D lattices

3.3.1 Graphene model with on-site potential

Hexagonal, or honeycomb, lattice is significant for both experimental observa-

tions and theoretical calculations. In experiments, it is realised that graphene

has hexagonal lattice. Graphene is an allotrope of carbon and it is thinnest

two-dimensional material. Many remarkable properties make it very useful and

valuable. Same atom arrangement is seen in several other materials. On the

other hand, theoretical calculations show many fascinating properties of graphene.

Most interesting one is the fact that graphene is semi-metal. Band gaps in the

Dirac points may not remain stable when a perturbation is added to system. So,

perturbation may not allow system to stay as a semi-metal.

In hexagonal lattice, nearest neighbour vectors are,

δ1 = a(−1, 0), δ2 = a(
1

2
,−
√

3

2
), δ3 = a(

1

2
,

√
3

2
). (3.14)

where a is distance between two sites. Lattice vectors are denoted as a1 and a2.

Lattice vectors and reciprocal lattice vectors bi satisfy the identity bi ·aj = 2πδi,j.
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(a) (b)

Figure 3.3: (a) Hexagonal lattice representation with nearest neighbour hopping.
Sub-lattice A and sub-lattice B are shown with different colours. (b) Brillouin
Zone of hexagonal lattice.

a1 = a(
3

2
,

√
3

2
), a2 = a(

3

2
,−
√

3

2
). (3.15)

In this model, n.n hopping and on-site potential are considered. Hamiltonian

of this system can be written as,

Ĥ = −J
∑
m

(c†B,mcA,m+δ1 + c†B,mcA,m+δ2 + c†B,mcA,m+δ3 + h.c.) (3.16)

+∆
∑
m

(c†A,mcA,m − c
†
B,mcB,m).

where J are n.n. hopping strength and ∆ is on-site potential. cm+δ annihilates

particle on δ neighbour of site m. Nearest neighbours can be written with lattice

vector rather than nearest neighbour vectors. Then Hamiltonian in term of lattice

vector follows,
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Ĥ = −J
∑
m

(c†B,mcA,m + c†B,mcA,m+a1 + c†B,mcA,m+a2 + h.c.) (3.17)

+∆
∑
m

(c†A,mcA,m − c
†
B,mcB,m).

Bloch states |Ψ(k)〉 = |k〉 ⊗ |u(k)〉 can be applied to solve this model as well.

Fourier transforms are,

ck =
1√
L

∑
m

eimkcm, cm =
1√
L

∑
k

e−imkck. (3.18)

After substitution Hamiltonian (3.17) becomes,

Ĥ = −J
∑
m

∑
k

(
e−imk√
L
c†B,k

eimk√
L
cA,k +

e−imk√
L
c†B,k

ei(m+a1)k

√
L

cA,k

+
e−imk√
L
c†B,k

ei(m+a2)k

√
L

cA,k + h.c.

)
(3.19)

+∆
∑
m

∑
k

(
e−imk√
L
c†A,k

eimk√
L
cA,k −

e−imk√
L
c†B,k

eimk√
L
cB,k

)
.

It yields,

Ĥ = −J
∑
k

(c†B,kcA,k + eia1kc†B,kcA,k + eia2kc†B,kcA,k + h.c.) (3.20)

+∆
∑
k

(c†A,kcA,k − c
†
B,kcB,k).

Matrix form of the Hamiltonian (3.20) follows Ĥ =
∑

k c
†
kĥ(k)ck where,

ĥ =

[
∆ −J(1 + e−ika1 + e−ika2)

−J(1 + eika1 + eika2) −∆

]
. (3.21)
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dx, dy, dz and d0 vector of Pauli matrices for this Hamiltonian (3.21) will

follow,

dx = −J(1 + cos(ka1) + cos(ka2)), dy = −J(sin(ka1) + sin(ka2)), (3.22)

dz = ∆, d0 = 0.

Hamiltonian (3.17) is reduced to two level Hamiltonian (3.21) in k-space.

Eigenvalues within corresponding eigenvectors can be obtained easily. Brillouin

zone can be formed by the parallelogram whose edges are b1 and b2. There are

two symmetry points ,which are denoted as K and K ′, in that parallelogram

and these points form hexagonal Brillouin zone. Around these two points, there

are Dirac nodes. Electronic properties stem from those two Dirac points make

graphene semi-metal.

3.3.2 Haldane model

Haldane model is an example of topological insulator. It is the first model de-

scribed as a Chern insulator. Integral of Berry curvature over Brillouin zone is

equal to Hall conductance. Filled band gives an integer for Hall conductance and

it is called Chern number. Haldane model is described on hexagonal lattice. Next

nearest neighbour (n.n.n.) hopping is considered besides on-site potential. This

n.n.n. hopping is a complex hooping and it is defined with a hopping strength

J ′ with phase amplitude φ. Adding just n.n.n. term with complex hopping to

Hamiltonian of the graphane with on-site potential gives the Hamiltonian of the

Haldane model.

ĤHaldane = ĤGraphene + Ĥ∆ + ĤNNN . (3.23)

n.n.n hopping can be taken care of separately for each sub-lattice. Therefore,

n.n.n. term can be considered as ĤNNN = ĤNNNA + ĤNNNB. Lets take care
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Figure 3.4: Hexagonal lattice representation with next nearest neighbour hopping.

of the n.n.n. hopping for sub-lattice A. In the lattice, next nearest neighbour

vectors follows,

v1 = a(
√

3, 0) v2 = a(

√
3

2
,
3

2
) v3 = a(−

√
3

2
,
3

2
). (3.24)

n.n.n. term for sub-lattice A can be written in terms of the n.n.n. vectors as

follows,

ĤNNNA = −J ′eiφ
∑
m

(c†A,mcA,m+v1 + c†A,mcA,m+v2 + c†A,mcA,m+v3) + h.c. (3.25)

By applying Fourier transform of the creation c†m and annihilation cm operators

(3.18), Hamiltonian (3.25) yields,

ĤNNNA = −J ′eiφ
∑
k

(c†A,mcA,k(e
ikv1 + eikv2 + eikv3)) + h.c. (3.26)

First term of the Hamiltonian (3.26) and its hermitian conjugate basically

consist of Euler’s formula of the cosine function. Therefore, Hamiltonian (3.26)

can be denoted with the cosines functions.
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ĤNNNA = −2J ′
∑
k

(cos(kv1 − φ) + cos(kv2 − φ) + cos(kv3 − φ)). (3.27)

When creation c†m and annihilation cm operators for sub-lattice A are changed

to sub-lattice B and then sign of the complex amplitude φ is changed, n.n.n.

term for sub-lattice B is obtained.

ĤNNNB = ĤNNNA(A→ B and φ→ −φ) (3.28)

= −2J ′
∑
k

(cos(kv1 + φ) + cos(kv2 + φ) + cos(kv3 + φ)).

So, n.n.n. term in the Hamiltonian is calculated in k-space. n.n. hopping

and on-site potential contribution to Hamiltonian have already been calculated in

previous section. Adding n.n.n. term to Hamiltonian (3.21) gives the Hamiltonian

for Haldane model and its matrix form yields,

Ĥ =

[
∆ +HNNNA −J

∑
k(1 + eika1 + eika2)

−J
∑

k(1 + eika1 + eika2) −∆ +HNNNB

]
. (3.29)

For this two level Hamiltonian (3.29), dx and dy vectors did not change. They

are same with the dx and dy vectors for Graphene. However, d0 and dz vector

become,

d0 =
HNNNA +HNNNB

2
, dz = ∆ +

HNNNA −HNNNB

2
. (3.30)

or

d0 = −2J ′
∑
k

cos(φ)(cos(kv1) + cos(kv2) + cos(kv3)), (3.31)

dz = ∆− 2J ′
∑
k

sin(φ)(sin(kv1) + sin(kv2) + sin(kv3)).
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Figure 3.5: Phase diagram of Haldane model. Numbers in the regions are Hall
conduction.

If we are on the K or K ′ points, i.e. k = K or k = K ′, dx and dy would

give no contribution as we know from Graphene. However, we would have d0 =

−3J ′ cos(φ) and dz = ∆−
√

3J ′ sin(φ). It is known that energies are E± = d0±d,

so energies are E± = d0 ± |dz|. These terms affect the gap in the Dirac points.

Band gap is equal to,

E+ − E− = 2|dz| = 2|∆−
√

3J ′ sin(φ)|. (3.32)

Therefore, if ∆ is smaller or larger than
√

3J ′ sin(φ), gap opens in Dirac point

and system becomes insulator. For a close gap, ∆ is supposed to be equal to
√

3J ′ sin(φ). This gap-closing case is topological transition point. Hall conduc-

tance takes positive or negative integer value when ∆ is smaller or bigger than
√

3J ′ sin(φ). However, Hall conductance become zero and topological transition

occurs when ∆ =
√

3J ′ sin(φ).
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Chapter 4

Methods

Definition of localization and polarization are embedded to complex number Z

(2.15) in modern theory of polarization. Resta-Sorella showed that polarization is

defined by phase of Z [10] and phase is considered the first members of cumulants.

It is imposed that x0 is the center of distribution so that
∫∞
−∞ dxxnloc(x) = 0. An

alternative way to extract cumulants is proposed. This way is based on Z whose

phase is removed. Formalism is also extended to two dimensional systems. It

was shown that Z depends on system size for specific cases. There are many

different scaling laws and among them, idea of renormalization group is taken

to consideration to develop another method to observe phase transition point.

Besides these definitions, method which is used to solve t − V correlated model

is described in this chapter.

4.1 Alternative way to extract cumulants

Extracting cumulants was shown in the chapter 2.3 and equations for cumulants

were written. In the way which is proposed to extract cumulants, firstly phase of

the Zq (2.28) is removed.
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Z̃q = Zqe
−i Im lnZq . (4.1)

This approach shifts the distribution in the way where its center becomes zero

so that it will be sure that expansion to obtain cumulants is always around zero.

Z̃q always contains the minimum error terms. In the next step, Z̃q is substituted

into equation (2.20) but before that finite difference approximation is applied.

For instance, consider cumulant generating function (2.31) with characteristic

function (4.1) where order n is two and four.

C̃2 =

(
L

2πi

)2

[ln Z̃q]
(2)
q=0, (4.2)

C̃4 =

(
L

2πi

)4

[ln Z̃q]
(4)
q=0.

Equations (4.2) give the second and fourth cumulants. When finite difference

approximation is applied, second and fourth cumulants can be written as follows,

C̃
(1)
2 =

(
L

2πi

)2

(Z̃1 − 2Z̃0 + Z̃−1), (4.3)

C̃
(2)
2 =

(
L

2πi

)2
(−Z̃2 + 16Z̃1 − 30Z̃0 + 16Z̃−1 − Z̃−2)

12
.

C̃
(1)
4 =

(
L

2πi

)4

(Z̃2 − 4Z̃1 + 6Z̃0 − 4Z̃−1 + Z̃−2), (4.4)

C̃
(2)
4 =

(
L

2πi

)4
(−Z̃3 + 12Z̃2 − 39Z̃1 + 56Z̃0 − 39Z̃−1 + 12Z̃−2 − Z̃−3)

6
.

The superscript in parentheses refers to lowest (C1) and second lowest (C2)

order accuracy of the finite difference approximation. Z0 is just a normalization
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so it is equal to one. Moreover, Zq and Z−q are equal to each other because they

have the same closed path. Then, second and fourth cumulants with first two

lowest order finite difference approximation follow as;

C̃
(1)
2 =

(
L

2πi

)2

2(Z̃1 − 1), (4.5)

C̃
(2)
2 =

(
L

2πi

)2
(−Z̃2 + 16Z̃1 − 15)

6
.

C̃
(1)
4 =

(
L

2πi

)4

2(Z̃2 − 4Z̃1 + 3), (4.6)

C̃
(2)
4 =

(
L

2πi

)4
(−Z̃3 + 12Z̃2 − 39Z̃1 + 28)

3
.

In the case of extreme localization, Zq values would take zero value except

Z0 which is always equal to one. So that, when we have an ideal conductor,

mth cumulant will be proportional to
(
L

2πi

)m
. Only error term would affect the

cumulants calculations. Result of cumulants calculation depends on a coefficient

provided by order of finite difference approximation n. In ideal conductor case,

the second cumulant (variance) will be in the form,

C
(n)
2 = An

L2

4π2
. (4.7)

Main difference between alternative cumulant expression and the Resta-Sorella

expression is the error terms which they contain. When we substitute character-

istic function into Resta-Sorella’s second cumulant expression, we obtain,

(
L

2πi

)2

2 Re lnZ1 = C2 +

(
2πi

L

)2
C4

12
+O(L−4). (4.8)
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Cumulant Order Z̃0 Z̃1 Z̃2 Z̃3 Z̃4

C̃2 1 -2 2
2 -5/2 8/3 -1/6
3 -49/18 3 -3/10 1/45
4 -205/72 16/5 -2/5 16/315 -1/280

C̃4 1 6 -8 2
2 28/3 -13 4 -1/3
3 91/8 -244/15 169/30 -4/5 7/120

C̃6 1 -20 30 -12 2
2 -75/2 58 -26 6 -1/2

Table 4.1: Table contains the coefficients of polarization amplitudes for few cu-
mulants up to several orders. They are equivalent to coefficients of the central
finite differences.

On the other hand, alternative way to express second cumulant yields,

(
L

2πi

)2

2(Z̃1 − 1) = C2 +

(
2πi

L

)2
C4

12
+

(
2πi

L

)2
C2

2

4
+O(L−4). (4.9)

In the appendix A, detailed calculations are given. It is expected that cumul-

tans extracted with alternative way give finite size scaling exponent two for an

ideal conductor like Resta-Sorella’s expression. However, when we compare the

equation (4.8) and equation (4.9), it is seen that cumulants are extracted with

alternative way have additional error terms. Therefore, it is expected that results

more accurate with alternative way because of this contributions.

4.2 Exact diagonalization for t-V model

As it is discussed in chapter 3.2, Hamiltonian of the t-V model follows as,

Ĥ = J
∑
m

(c†m+1cm + h.c.) + V
∑
m

n†mnm+1. (4.10)
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When Bloch theorem is used, Hamiltonian (3.13) is received and it is not

diagonal. It is not possible to use Bloch state and solve Hamiltonian with tight

binding model. So that, Hamiltonian is solved with exact diagonalization. Since

operator cm annihilates a particle on site m while c†m creates particle on site

m + 1, first part of the Hamiltonian has basis set {|mi〉}. On the other hand,

since operator nm is density function on site m, second part of the Hamiltonian

has basis set {|li〉 = |m1,m2,m3, ...,mL〉}. These two parts are written in same

basis set. Then, Hamiltonian is constructed and eigenvalues with corresponding

eigenvectors are obtained from the Hamiltonian by diagonalizing it. Firstly, first

part in the Hamiltonian is written in term of the basis set of the second part.

Then, two parts are combined and Hamiltonian is constructed in one basis.

As an example, suppose that L = 4 and N = 2 then {|m〉} has four basis

vector i.e. {|m1〉, |m2〉, |m3〉, |m4〉} and each basis vector represents empty |0〉
or filled |1〉 site. Number of basis vector of {|l〉 = |m1,m2,m3,m4〉} depends on

combination of filling {|m〉}. Number of all combination is calculated by L!
(L−N)!N !

so in this example it has six basis vectors. In binary representation, it follows as,

{|1, 1, 0, 0〉, |1, 0, 1, 0〉, |1, 0, 0, 1〉, |0, 1, 1, 0〉, |0, 1, 0, 1〉, |0, 0, 1, 1〉} (4.11)

Matrix form of the Hamiltonian is written with second part’s basis set as

follows,

ĤED =



〈l1|Ĥ|l1〉 〈l1|Ĥ|l2〉 〈l1|Ĥ|l3〉 · · · · · ·
〈l2|Ĥ|l1〉 〈l2|Ĥ|l2〉 〈l2|Ĥ|l3〉 · · · · · ·
〈l3|Ĥ|l1〉 〈l3|Ĥ|l2〉 〈l3|Ĥ|l3〉 · · · · · ·

...
...

...
. . .

...
...

...
. . .


. (4.12)

Therefore, matrix form of the Hamiltonian becomes,
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Ĥ =



0 J 0 0 J 0

J 0 J J 0 J

0 J 0 0 J 0

0 J 0 0 J 0

J 0 J J 0 J

0 J 0 0 J 0


+



V 0 0 0 0 0

0 0 0 0 0 0

0 0 V 0 0 0

0 0 0 V 0 0

0 0 0 0 0 0

0 0 0 0 0 V


=



V J 0 0 J 0

J 0 J J 0 J

0 J V 0 J 0

0 J 0 V J 0

J 0 J J 0 J

0 J 0 0 J V


.

(4.13)

Ground state energy and its vector of this matrix are found. During computa-

tional calculations, linear algebra package may be used and ground state energy

with its vector can be obtained with help of functions provided by package. How-

ever, direct methods are not practical to use. Increase in the system size of the

system cause huge dimensions in matrix of the Hamiltonian. therefore, the re-

quired computational storage significantly increased a lot. In the above example,

basis set has 4!
(4−2)!2!

= 6 elements so Hamiltonian matrix is 6-by-6. Suppose that,

system size L is 24 and it is half filled then dimension is 24!
(24−12)!12!

= 2704156. It

is impossible to solve such a matrix. Lanczos algorithm is used to overcome this

problem.

4.3 Lanczos algorithm

Usual eigenvalue problems are about computing smallest/largest eigenvalues,

along with corresponding eigenvectors. Direct methods are hard to use to obtain

eigenvalues and eigenvectors of large matrices. Lanczos algorithm is an iterative

method to find such eigenvalues and their eigenvectors of large matrices. It gives

good approximate answers with far less storage than direct methods.

Assume that the problem is to find largest eigenvalue of matrix A and it’s

eigenvector. Power method can be used to find them by starting with given

vector x. Inner loop follows as yi+1 = Axi, xi+1 = yi+1/|yi+1|. The vector

x converges to the expected eigenvector. Besides, problem can be finding the

32



closest eigenvalue to λ. This problem is similar to previous one. Result of this

problem can be approximated with inverse iteration. This inner loop follows as

yi+1 = (A− λI)−1xi, xi+1 = yi+1/|yi+1|. In this case, vector x converges as well.

With start with the given vector x, both methods create vector sequence such

as {x1, x2, x3, ..., xk}. These vectors span the Krylov subspace. Instead of taking

vector xk in the vector sequence as a approximated desired eigenvector, best

approximated vector in Krylov subspace can be focused. Best linear combination

of the vectors which span the Krylov subspace gives much better approximated

eigenvector then the xk. Eigenvalue of this eigenvector can be approximated by

Rayleigh-Ritz method by eigenvalue of matrix T where T = QTAQ. This best

approximated result is called Ritz value. Theorems, proofs etc. which justifies

that Ritz value is the eigenvalue approximation are not given in this section.

Reader can check the [29] for more detailed descriptions.

For symmetric matrix A, Lanczos algorithm combines building Krylov sub-

space and Rayleigh-Ritz procedure to find eigenvalues along with corresponding

eigenvectors. Convergence gives reliable result. With k iteration, Lanczos vec-

tors q construct an orthogonal matrix Qk = [q1, q2, ..., qk] and eigenvalues of A are

approximated by a eigenvalues of the symmetric triangular matrix Tk = QT
kAQk.

With given vector |v0〉 of length n, this algorithm follows the following steps;

q1 = v0/|v0|, β0 = 0, q0 = 0 (4.14)

for i = 1 to k

w = Aqi

αj = wT qj

w = w − αiqi − βi−1qi−1

βi = |w|

ifβi = 0, quit

qi+1 = w/βi

Vectors qi produce matrix Q n-by-k and matrix T k-by-k is constructed as
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T =


α1 β1

β1
. . . . . .
. . . . . . βk−1

βk−1 αk

 . (4.15)

Eigenvalue e of the matrix T is the best approximated eigenvalue of the ma-

trix A. Corresponding eigenvector ve of eigenvalue e plays role to obtain best

linear combination of the vectors q. Following Linear combination, gives the best

approximated eigenvector |v〉 of the matrix A for the corresponding eigenvalue.

|v〉 =
∑
k

ve(k)qk. (4.16)

Result for the smallest/largest eigenvalues, along with corresponding eigenvec-

tors converge very fast. Convergence slows down as obtaining the results far from

the smallest/largest values. Even if Lanczos algorithm requires much less storage

then the direct methods, Matrix A can be too huge so that it won’t be possible

to save matrix Q. In such case, Lanczos algorithm can be applied two times. In

first Lanczos run is used to construct matrix T and obtain eigenvalue with its

eigenvector from matrix T . Because matrix T is k-by-k , not like matrix Q n-by-

k, it is possible to save it. Then with second Lanczos run, obtained eigenvector

from matrix T can be used for linear combination of vectors q inside the loop.

4.4 Renormalization Group

Many different scaling laws exist and several of them have been very common

throughout ages. One of the scaling argument is renormalization group and it

was developed to scale transformations in quantum electrodynamics [25, 26]. It

is discovered that coupling parameter g with scale n can be written with group

equation G as,
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g(n) = G−1(
( n
m

)α
G(g(m))). (4.17)

where α is a constant. It follows,

G(g(n)) =
( n
m

)α
G(g(m)). (4.18)

Coupling parameter g in scale n is written in terms of coupling parameter g

in scale m but another it could be written in different scale. This transformation

continues with infinitesimally small changes in scales and a flow equation was

obtained. Stemming from this equation, renormalization group equation was

reached.

ψ(g) = β(g). (4.19)

It is also called beta function. Leo P. Kadanoff proposed the ”block-spin”

renormalization group [30]. It is one of the simple ways for a better understanding

renormalization group. Consider a block which contains correlated spins. It could

be 2D Ising model. Hamiltonian H will be in term of spins σ in each cell. For

large systems, considering all spins and correlations are not easy way to reach

a result. Some transformations can simplify the system. For instance, forming

spins with new scale may reduce the degree of freedom. Critical points which do

not rely on the degree of freedom will not be affected. Firstly, spins are divided

to groups. For example, four nearest spins can be grouped in 2D block system.

Each group’s spins is renormalized and new block is formed. Then new spin block

Hamiltonian H ′ will be in term of spins σ′. This scaled Hamiltonian H ′ will be

related Hamiltonian H with a renormalization constant.

H(σ) = RαH ′(σ′). (4.20)
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This iteration can be done again and again. After enough iteration, the critical

point is reached.

Hcritical(σ) ' H
′

critical(σ
′
) = H∗. (4.21)

Under this idea, critical point where correlated system has phase transition is

estimated. Polarization amplitude Z(L, V ) is renormalized by L/2 scale. Where

L is the system size and V is the correlation potential.

Z(L, V ) = RαZ(L/2, V
′
). (4.22)

After enough iteration, these equivalence of these polarization amplitude is

obtained. This correlated potential V which induced that equivalence is regarded

as critical point where phase transition occur.

Z(L, Vcritical) = Z(L/2, Vcritical) = Z∗. (4.23)

4.5 Two Dimensional Amplitude

This approach is based on the regarding polarization as one dimensional vector

quantity. Therefore, two dimensional models are reduced to one dimensional sub-

models to investigate. The equation (2.29) is used to calculate Zq with following

form,

Zq = 〈Ψ(r)|ei(2πq/L)R̂)|Ψ(r)〉. (4.24)
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Vector r is direction of the polarization and R̂ is the position operator along

this direction. The paths which an electron can follow are considered the direction

of the polarization. Then phase calculations are done over these directions. In

the graphene with nearest neighbour hopping, there are three neighbour vector as

shown in equation (3.14). Therefore, it is considered that there are three paths.

As it is shown in the section 3.3.1, graphene model is solved with tight binding

model. As well as lattice vectors a1 and a2 is converted to reciprocal lattice

vectors b1 and b2 in the k-space, neighbour vector is also converted to,

ζ1 =
4π

3
√

3
(0, 1) ζ2 =

4π

3
√

3
(

√
3

2
,−1

2
) ζ3 =

4π

3
√

3
(−
√

3

2
,−1

2
). (4.25)

In the Brillouin zone, a path which follows any of these directions comes across

the Dirac points. This one dimensional sub-model becomes very similar to the

SSH model. Therefore, it is expected that results give size scaling exponents

two, geometric Binder cumulants 0.5 and other properties for an ideal conductor.

Deviating from one of these paths cause distortion on results. Consider a path

which doesn’t follow the direction to nearest neighbour and follows the direction

to next nearest neighbour, i.e., one of the directions described in equation (4.25).

Even if that path also comes across the Dirac points, expected results for an

ideal conductor are not received. Adding next nearest neighbour hopping to

Hamiltonian eliminates the distortion on results obtained by this path. Adding

hopping between sites creates new paths which electrons can follow so that paths

which follow the direction between these two sites gives the expected results as

well.

Above approach is not sufficient to investigate all models. When Dirac nodes

from a line in Brillouin zone rather than points, it is not possible to reduce the two

dimensional model to one dimensional sub-model similar to SSH model. Shifting

the path, without changing the direction, cause not a random distortion. Results

is deflected by following a behaviour. This behaviour means something. By re-

garding that, this one dimensional calculations is extended to two dimensional

calculations. Polarization amplitude is calculated over nth Brillouin zone. Polar-

ization calculation is started with a path described above. Then, path is shifted

so that all nth Brillouin zone is covered. Polarization amplitude described can
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be written as,

Zq = 〈Ψ(rx, ry)|ei(2πq/L)R̂y)|Ψ(rx, ry)〉 (4.26)

=
∏
nthBZ

〈rx, ry||rx, ry + q〉.

where ry is the direction of the path and rx is the direction of the shift. While

system has nth nearest neighbour hopping, nth Brillouin zone is considered. With

this approach, whole nth Brillouin zone contribute to the polarization amplitude

calculation. This contribution improves the results and makes the formalism valid

for two dimensional models which have Dirac points or Dirac nodes.
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Chapter 5

Results

For the ideal conductor case, second cumulant (variance) is equal to the coeffi-

cient An, which depends on order of the finite difference approximation (n), times

the Ln. Increase in the order n causes an increase in coefficient An. That change

converges to an upper bound as a function of n. It is estimated that this upper

bound which An converges is 3.224. For ideal conductor case, geometric Binder

cumulant is 0.5 as we expected but there is a reduction in value of Geometric

Binder cumulant. This shows that increase in the coefficient An cause less correc-

tion in the calculation of the geometric Binder cumulant and higher orders of the

finite difference approximation distort the expected values for the ideal conductor

case.

Resta-Sorella’s definition shows the difference between insulating and metallic

states. For metallic case, phase is independent from system size L so that second

cumulant only depends on the second exponent of the system size. When on site

potential is added, phase transition occurs. In insulating case, phase becomes

dependent to system size and second cumulant exponent is one. Same behaviour

is obtained by alternative way to extract cumulants which is proposed, see figure

(5.2). However, with Resta-Serolla’s definition, figure (5.2.a), size scaling expo-

nent exceeds the lower bound after the phase transition and then get back to

it. When new formalism with finite difference approximation with lowest order
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(a)

(b)

Figure 5.1: Upper panel shows coefficient An and lower panel shows Geometric
Binder Cumulant under the change of the order of the finite difference approxi-
mation in the ideal conductor case.

accuracy is applied, figure (5.2.b), that exceeding the lower bound is substantially

reduced. After the phase transition, size scaling exponent hardly exceed the lower

bound. Moreover, size scaling exponent goes to one more smoothly during tran-

sition from metallic case to insulating state. With finite difference approximation

with second order accuracy, figure (5.2.c), behaviour of size scaling exponent is

very similar with the results obtained by Resta-Sorella’s definiton.
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(a)

(b)

(c)

Figure 5.2: Size scaling exponent γ for SSH model. (a) cumulants are obtained by
Resta-Sorella definition. (b) and (c), cumulants are obtained by alternative way
proposed. The superscript in parentheses refers order of accuracy of the finite
difference approximation. Size scaling exponent is calculated with system sizes
L =. n.n. hopping strength is set to 1.
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(a)

(b)

(c)

Figure 5.3: Geometric Binder Cumulant (U) for SSH model. Cumulants by finite
difference approximation with (a), first order, (b) second order, (c) third order.
n.n. hopping strength is set to 1.
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Geometric Binder cumulant (GBC) shows the difference between insulating

and metallic states just like size scaling exponent, see figure (5.3). When there is

no impurity and system is in metallic case, ratio of second and fourth cumulants

gives constant value and GBC take the value 0.5. When on-site potential added,

system becomes an insulator case and ratio of cumulants goes to 0. Therefore,

GBC reaches to lower bound 0 for insulating case. That transition is affected by

system size. When system size is larger, GBC goes from 0.5 to 0 after phase tran-

sition more sharply. With first order finite difference approximation, GBC does

not exceed the lower bound, figure (5.3.a). With second order finite difference

approximation, GBC exceeds the lower bound after phase transition and then get

back to it, figure (5.3.b). This aberration is larger when order of finite difference

approximation is increased, figure (5.3.c).

(a)

Figure 5.4: Geometric Binder cumulant for t-V correlated model. interaction.
Hopping strength is set to 1.
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System Sizes Fixed Points Fixed Points
L = 16-8 V = 3.00 V = -2.21
L = 20-10 V = 2.75 V = -2.13
L = 24-12 V = 2.62 V = -2.08
L = 28-14 V = 2.52 V = -2.06

Table 5.1: Critical n.n interaction potential V values which satisfies the equation
(4.20) for SSH model with n.n. interaction.

We can also observe the phase transition between metallic case and insulating

case for t-V correlated model. GBC follows the upper bound 0.5 until phase tran-

sition occurs. Transition is much more sharp when n.n. interaction is repulsive

(-V) comparing to attractive potential (V), figure (5.4). For repulsive potential,

GBC suddenly reduces from the value 0.5 at the point very close to 2.00 so that

phase transition point is almost 2J . However, for the attractive potential, it is

difficult to locate transition point and it is around 2.5J . By using the renor-

malization group method, critical n.n. interaction potential which satisfies the

equation (4.20) is found, see table (5.1). This fixed points represent the phase

transition point. With larger system sizes, fixed points converges and it is good

agreement with the GBC results.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.5: Z2 values for SSH model with n.n. interaction (t-V correlated model).
Each plot contains data for a L and L/2 variables to obtain critical Z∗ values
which renormalization group theory suggests.
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Two dimensional model graphane is reduced to one-dimensional sub-lattice

and GBC is calculated with this approach. In figure (5.6.b), GBC is calculated

with the path over n.n. direction ζ1 in equation (4.22). There is no impurities, so

system is in metallic case and GBC value is 0.5. Calculation is shifted by direc-

tion which is perpendicular to the direction where phase is calculated. In figure

(5.6.b) calculation, it is kx direction. Change of kx value distort the GBC value.

On the other hand, we can change path where GBC is calculated by changing

the direction. In figure (5.6.d), calculations are done over path in different nth

neighbour directions. Path over n.n. direction gives the 0.5 GBC value however

GBC value is again distorted for path over other nth neighbour directions.

(a)

(b)

(c) (d)

Figure 5.6: Geometric Binder cumulants for one dimensional sub-models of
graphene. (b) Paths is shifted over Brillouin zone. (d) Path is rotated and
calculation is done for nth nearest neighbours.
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GBC calculation is done with same approach under the change of the on-site

potential V . GBC is 0.5 when there is no on-site potential as it is expected for

ideal conductor case. When on-site potential is added, GBC changes. It goes to

lower bound 0 under the increase of the on site potential, see figure (5.7). Size

dependency is apparent where graphene is affected by on site potential. After

phase transition occurs, GBC reach to lower bound 0 much more suddenly. GBC

is also calculated for Haldane model. When Haldane model has ideal conductor

case i.e. |∆| = |
√

3J ′ sin(φ)|, GBC takes the value of 0.5. Rather than this

conditions, GBC dramatically reduces to the lower bound 0, see figure (5.8.a).

Similar to the graphene, size dependency is apparent while this condition is not

satisfied and GBC reach to lower bound 0 much more suddenly when phase

transition occurs, see figure (5.8.b).

(a)

Figure 5.7: GBC for hexagonal lattice with on site potential. n.n. hopping
strength set to 1.
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(a)

(b)

Figure 5.8: Geometric Binder cumulant for Haldane model. n.n. hopping strength
is set to 1 and n.n.n. hopping strength is set to 0.2.

In figure (5.9), GBC calculations are done over Brillouin zone. This allows us

to investigate square lattice whose Fermi surface is Dirac nodes like other inves-

tigated models which have Dirac points. GBC shows similar behavior compared

to Graphene. GBC takes the value 0.5 for ideal conductor case and it reduces to

lower bound 0 when system is affected by on site potential. However, transition

point does not occur immediately just after impurity is added. Phase transition

is at approximately at 0.034. Figure (5.9.b) show the same behavior of GBC for

Graphene where we can see in figure (5.7). Again, we have 0.5 GBC value for

ideal conductor case and it reduces to lower bound 0 when system is affected by

on site potential. We can also see the size dependency where there is impurity in

the system. However, it is more sensitive to system size. GBC requires more high

system size to suddenly reach to lower bound after phase transition. For Haldane

model, expected behavior is obtained but strong size dependency can be seen in

the results. GBC takes the value 0.5 for conductor case but requires high system

size to suddenly reach lower bond 0.5 after phase transition.
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(a)

(b)

(c)

Figure 5.9: Geometric Binder cumulants calculated over Brilioun zone for two
dimensional models. (a) Square model, (b) Graphene model, (c) Haldane model.
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Chapter 6

Conclusion

One can obtain gauge invariant cumulants based on geometric phase. An alter-

native way is proposed to extract cumulants associated adiabatic cycle and this

way adds corrections to the error terms. It was shown that a geometric quan-

tity is reached by ratio of these cumulants with a particular way. A well defined

geometric quantity associated with adiabatic cycle is constructed.

This alternative way is tested and compared with Resta-Sorella’s definition.

Cumulants and geometric quantities constructed by these cumulants depends on

the order of the finite difference approximation. Results obtained from Resta-

Sorella’s definition are very similar to results obtained by alternative way with

second order finite difference approximation. Results obtained by alternative

way with first order finite difference approximation is a little bit more sensitive

difference between gap closure and show transition between conductor case and

insulator case. Moreover, it eliminates the most of the distortion in the results

around transition point. Geometric Binder cumulant ,which is constructed with

cumulants extracted by alternative way, is investigated as a quantity used in the

context of modern theory of polarization. It is shown that geometric Binder cu-

mulants also procedure size scaling relations. It is size independent at gap closure

otherwise shows size dependent behavior. However, in order to observe insulating
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or conductor cases, geometric Binder cumulant does not need size scaling expo-

nent. Geometric Binder cumulants shows the transition between these two cases

and have much less distortion around phase transition point compared to size

scaling exponent. Increasing system size improves the observation. Formalism is

developed to also observe two dimensional systems. It is shown that it is possible

to calculate a geometric quantity which is sensitive to whether a given system

is gapped or not. Geometric Binder cumulants which is calculated for two di-

mensional systems provides the phase transition between metallic and insulator

case. Moreover, this quantity allows us to investigate the systems whose Fermi

surface is one or zero dimensional. For comparison, another method based on

renormalization group theory is used to locate phase transition. Determined fix

points converges to a value and it is in good agreement with phase transition

point which are provided by Geometric Binder cumulant.

51



Bibliography

[1] M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Pro-

ceedings of the Royal Society of London. A. Mathematical and Physical Sci-

ences, vol. 392, no. 1802, pp. 45–57, 1984.

[2] J. Zak, “Berry’s phase for energy bands in solids,” Physical review letters,

vol. 62, no. 23, p. 2747, 1989.

[3] B. A. Bernevig, “Topological insulators and topological superconductors,” in

Topological Insulators and Topological Superconductors, Princeton university

press, 2013.

[4] M. Franz and L. Molenkamp, Topological insulators. Elsevier, 2013.

[5] C. L. Kane and E. J. Mele, “Quantum spin hall effect in graphene,” Physical

review letters, vol. 95, no. 22, p. 226801, 2005.

[6] C. L. Kane and E. J. Mele, “Z 2 topological order and the quantum spin hall

effect,” Physical review letters, vol. 95, no. 14, p. 146802, 2005.

[7] F. D. M. Haldane, “Model for a quantum hall effect without landau lev-

els: Condensed-matter realization of the” parity anomaly”,” Physical review

letters, vol. 61, no. 18, p. 2015, 1988.

[8] R. King-Smith and D. Vanderbilt, “Theory of polarization of crystalline

solids,” Physical Review B, vol. 47, no. 3, p. 1651, 1993.

[9] R. Resta, “Macroscopic polarization in crystalline dielectrics: the geometric

phase approach,” Reviews of modern physics, vol. 66, no. 3, p. 899, 1994.

52



[10] R. Resta and S. Sorella, “Electron localization in the insulating state,” Phys-

ical Review Letters, vol. 82, no. 2, p. 370, 1999.

[11] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, “Quantized

hall conductance in a two-dimensional periodic potential,” Physical review

letters, vol. 49, no. 6, p. 405, 1982.

[12] M. Kohmoto, “Topological invariant and the quantization of the hall con-

ductance,” Annals of Physics, vol. 160, no. 2, pp. 343–354, 1985.

[13] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, “Quantum spin hall effect

and topological phase transition in hgte quantum wells,” science, vol. 314,

no. 5806, pp. 1757–1761, 2006.

[14] T. Thonhauser and D. Vanderbilt, “Insulator/chern-insulator transition in

the haldane model,” Physical Review B, vol. 74, no. 23, p. 235111, 2006.

[15] S. Patankar, L. Wu, B. Lu, M. Rai, J. D. Tran, T. Morimoto, D. E. Parker,

A. G. Grushin, N. Nair, J. Analytis, et al., “Resonance-enhanced optical

nonlinearity in the weyl semimetal taas,” Physical Review B, vol. 98, no. 16,

p. 165113, 2018.

[16] N. Marzari and D. Vanderbilt, “Maximally localized generalized wannier

functions for composite energy bands,” Physical review B, vol. 56, no. 20,

p. 12847, 1997.

[17] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Vanderbilt, “Max-

imally localized wannier functions: Theory and applications,” Reviews of

Modern Physics, vol. 84, no. 4, p. 1419, 2012.

[18] I. Souza, T. Wilkens, and R. M. Martin, “Polarization and localization in

insulators: Generating function approach,” Physical Review B, vol. 62, no. 3,

p. 1666, 2000.

[19] K. Binder, “Theory of first-order phase transitions,” Reports on progress in

physics, vol. 50, no. 7, p. 783, 1987.

[20] K. Binder, “Critical properties from monte carlo coarse graining and renor-

malization,” Physical Review Letters, vol. 47, no. 9, p. 693, 1981.

53



[21] M. E. Fisher and M. N. Barber, “Scaling theory for finite-size effects in the

critical region,” Physical Review Letters, vol. 28, no. 23, p. 1516, 1972.

[22] W. Selke, “Critical binder cumulant of two-dimensional ising models,”

The European Physical Journal B-Condensed Matter and Complex Systems,

vol. 51, no. 2, pp. 223–228, 2006.
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Appendix A

Taylor expansion of characteristic function is,

lnZ1 =
∞∑
n=1

(
2πi

L

)n
Cn
n!

(A.1)

Expansion of second cumulant definition given by Resta-Sorella follows,
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When second cumulant proposed with alternative way to express is expanded,

it yields,
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