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ABSTRACT

ITERATIVE METHODS 
BASED ON SPLITTINGS 

FOR STOCHASTIC AUTOMATA NETWORKS

M.S. in Computer Engineering and Information Science 
Supervisor: Asst. Prof. Dr. Tuğrul Dayar 

June. 1997

This thesis presents iterative methods based on splittings (Jacobi, Gauss- 
Seidel. Successive Over Rela.xation) and their block versions for Stochastic Au­

tomata Networks (SANs). These methods prove to be better than the power 
method that has been used to solve SANs until recently. Through the help 
of three e.xamples we show that the time it takes to solve a system modeled 
as a S.AN is still substantial and it does not seem to be possible to solve sys­
tems with tens of millions of states on standard desktop workstations with the 
current state of technology. However, the SAN methodology enables one to 
solve much larger models than those could be solved by explicitly storing the 
global generator in the core of a target architecture especially if the generator 
is reasonablv dense.

Keywords: Markov processes; Stochastic automata networks; Tensor alge­
bra; Splittings; Block methods
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RASSAL ÖZDEVİNİMLİ AĞLAR İÇİN 
BÖLÜNME TAB.ANLI 

İTER.ATİF YÖNTEMLER

Bu tezde Rassal Özdevinimli .Ağlar için bölünme tabanlı dolaylı yöntemler 
(.Jacobi, Gauss-Seidel, Succesive Over Relaxation) ve bunların blok çeşitleri 
geliştirilmiştir. Bu yöntemlerin, yakın zamana kadar Rassal Özdevinimli Ağları 
çözmekte kullanılan power yönteminden daha iyi oldukları gösterilmiştir. Uç 
örnek yardımıyla, Rassal Özdevinimli Ağlar kullanılarak geliştirilmiş bir mo­
delin çözülmesi için gerekli sürenin hala oldukça yüksek olduğunu, ve şu anki 
teknolojik imkanlarla, on milyonlar mertebesinde duruma (state) sahip bir 
modelin standart masaüstü bilgisayarlarla çözülmesinin pek mümkün gözükme­
diğini buluyoruz. Diğer taraftan Rassal Özdevinimli Ağlar yöntemi ile, tüm sis­
temi ifade eden matrisi bilgisayarın ana hafızasında seyrek şekilde saklayarak 
çözülebilecek modellerden çok daha büyük modellerin çözülebileceği görülmüş­
tür. Bu durum, özellikle tüm sistemi ifade eden matrisin yoğun olduğu du­
rumda geçerlidir.

Anahtar kelimeler. Markov süreçleri, Rassal özdevinimli ağlar, Tensör cebri. 
Bölünmeler, Blok yöntemler.
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Chapter 1

Introduction

Markov chains [16] are one of tlie most widely' used modeling technic[ues in 
the scientific community. The range of application domains is wide, including 
natural sciences and engineering disciplines. The simple requirement for a 
system to be modeled as a Markov chain is that the system’s next action 
(transition) depend only on the current state of the system, named as the 
mtmoryless or the Markov property [16, p. 4]. Several natural phenomena 
that arise in biology, physics and chemistry can be modeled as Markov chains. 
In engineering sciences Markov chains have a wide use in several branches 

of industrial engineering, electronics and computer engineering. Performance 
evaluation and reliability modeling is the field that Markov chains find the 
most use in computer engineering.

The random behavior of a system should posses a geometric or exponential 
probability distribution in order to be modeled as a Markov chain, since these 
are the only probability distributions that carry the memoryless property [16, 
p. 4]. Fortunately, the number of systems that show this structure is large and 
we have methods for fitting the random characteristics of most systems into 
e.xponential or geometric distributions.

After modeling a system as a Markov chain, one seeks quantitative informa­
tion from the built model. One attractive feature of Markov chain models is 
that most interesting properties of a Markov model can be obtained by solving
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a linear system of equations. Much research result is available concerning the 
numerical solution of Markov chain models. In addition to this, interest in 
this field of research is still alive. Most methods for solving systems of linear 
equations may be used for Markov chain models effectively. Direct methods
do not seem to be suitable for solving large and sparse systems which arise in/
Markov chain models. Several types of iterative methods are applied to Markov 
chains and their properties in the context of Markov chain models are stud­
ied. However, much research needs to be done, for understanding the behavior 
of iterative methods, especially non-stationary iterative methods like GMRES 
and .Arnoldi[8].

In Markov chain applications, the problem size increases very quickly as 
the applications get more interesting. This problem is referred to as the state 
space explosion[lQ, 14, 4] problem and has initiated different approaches to 
the Markov chain problem. .Approximate solutions and bounds for the so­
lution vector[14] are studied for reducing the complexity of the problem. In 
plain words the coefficient matrix, constructed for solving the linear system of 
equations, becomes very large and prohibits one to solve interesting problems 
beyond a certain limit. Stochastic Automata Networks (SANs) [16. 10. 11] are 
developed to overcome the difficulties that accompany the state space explo­
sion problem. Although it is possible to apply SAN methodology to different 
domains, performance modeling of parallel and distributed computer systems 
are especially suited to this type of approach[5j. In SAN methodology, a system 
is modeled as a set of components interacting with each other. Characteris­
tics of each component is captured separately from the interactions among the 
components, and formulated in compact form, which leads to considerable re­
duction in the amount of storage needed for the model. Methods available for 
solving Markov chain problems obtained from a SAN formalism, appear in two 
forms. One might prefer to store the coefficient matrix of the linear system 
of equations in sparse format. However, this approach does not make use of 
the storage reduction provided by the SAN methodology. On the other hand, 
it is possible to solve the system by only referring to the compact storage of 
the model. Currently, the power method and non-stationary methods of GM­
RES and Arnoldi are implemented for SANs in compact form, but there are no 
results available concerning the solution of a real life problem obtained from
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these methods[17, 6].

In this thesis, we introduce the concept of a splitting for a SAN in compact 
form and develop the stationary methods of Jacobi, Gauss-Seidel and SOR 
based on this splitting[16, 7]. We also implement these iterative methods based 
on splittings and their block versions. In addition to this, we e.xperiment with 
these methods on real life problems. We investigate the performance of these 
methods and their sparse counterparts compared to the power method.

In the following chapter, we introduce several concepts related to Markov 
chains and give the formulation of the problem of solving a Markov chain model 
as a linear system of equations. Stationary methods for Markov chain problems 
are also introduced in this chapter.

The third chapter discusses SANs. The concept of a SAN model in compact 
form is e.xplained with an example and the necessary algebraic framework for 
building SAN models is also provided. This chapter ends with an algorithm 
and a theorem regarding the complexity of the algorithm, that proves to be 
useful for SAN models in compact form.

The stationary iterative methods based on splittings for solving S.ANs in 
compact form are introduced in the following chapter. The algorithms provided 
for the methods are explained and a section on numerical results present the 
performance of the methods on three problems. Some interesting properties of 
block methods that have gone unnoticed so far are included in this chapter. 
An upper bound on the number of multiplications for the Gauss-Seidel and 
SOR methods are derived at the end of the chapter.

The last chapter contains conclusive remarks about the methods investi­
gated. Observations and comments about methods, the SAN methodology 
and Markov chains based on our work are provided in the chapter.

We included an appendix that describes how to incorporate new models 
into the Peps package[12], which is the software tool developed in France for 

solving S.AN models in compact form, since we implemented our methods as 
an extension to Peps.



Chapter 2

Markov Chains

2.1 Preliminaries

In our attempt to understand the characteristics of natural and artificial phe­
nomena. mathematical models of systems are developed. It is possible to build 
models using the concept of the system being in a number of states. Generally, 
the system is thought to be in an initial state, and its behavior is modeled as 
transitions from one state to another. It is also possible to classify systems 
according to certain properties they might hold. One such property that the 
system modeled as a process changing states might have is the memoryless 
property, i.e., it only remembers its current state [16, p. 4]. In other words, 
the system’s transition from one state to the other is independent from the 
previous states that the system has visited.

In many of the models arising from diverse fields including natural sciences 
such as physics and biology, and engineering sciences such as industrial, elec­
trical and computer engineering, the system either has or can be modeled as 
having memoryless property [16, p. 3]. The systems that posses the memoryless 
property may be modeled as a Markov process [16, p. 4].

A system modeled as a Markov process has a number of possible states. 
The actual number of possible states can be infinite, however the system can 
be at only one of the possible states at any time instant [16, p. 4]. In addition



to this, it is assumed that the transition time, the time it takes the system to 
go from one state to the other is negligible. That is, the transitions are said to 
take place instantaneously. [16, p. 3]

It is possible to have a continuous state space for a Markov process. For 
instance, if the output voltage of an electric circuitry can take all values within a 
range, and if the system can be modeled as a Markov process, it can be modeled 
as a Markov process with a continuous state space, having the output voltage 
as states of the system. If, for instance, the circuitry’s output voltage raises 
from 0.6 volts to 3.7 volts, one would view the model as making a transition 
from state 0.6 to state 3.7. On the other hand, if the output voltage can 
take only certain potential values, and if the system can be modeled as a 
Markov process, the system can be modeled as a discrete state space Markov 
process. Note that the actual values of the voltages do not effect the discrete 
or continuous character of the system.

Markov processes with discrete state spaces are called Markov chains [16, p. 5], 
and they are what our work is based on.

In the ne.xt section, we give the definition of a Markov chain in a formal con- 
te.xt. The following two sections introduce two different types of Markov chains 
that arise in Markov chain modeling. Stationary distribution of a Markov 
chain[16. p. 15] is an important quantity for determining certain characteris­
tics of the model under consideration, and is introduced in the ne.xt section. 
Finally, methods developed for solving Markov chain models are discussed in 
the last section.
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2.2 Formal Definition of Markov Chains

.A. Markov chain is a special case of a Markov process and, a Markov process 
is a stochastic process satisfying certain requirements. Hence, we give the def­
initions of stochastic processes in general, then Markov processes and Markov 

chains based on this.



Definition 2.2.1 [16, p. 4] A stochastic process is defined as a family of ran­
dom variables { X { t ) , t  G T } defined on a given probability space indexed by the 
index parameter t, where t varies over some index set (parameter space) T.

In general, t takes values from the range (—oo ,+ co ). In applications, the 
index set T is thought of as the set of time points at which observation about 
the system is made. In other words, the index t of the random variable is 
defined as the time point that X{t)  takes the observed value. In such cases, t 
takes values from the range [0,+oo). Depending on the characteristics of the 
values t takes, the process is either a continuous parameter (time) stochastic 
process or a discrete parameter (time) stochastic process. If i can take discrete 
values only, or similarly, if obser^■ation about the system is made only certain 
equidistant time points, the process is called a discrete-time parameter process. 
If the range of values of t is [0, +cxo) without any restrictions, or the system is 
observed at time points that are not equidistant, the process is referred to as 
a continuous-time stochastic process.

D efinition 2.2.2 Markov property: [16. p. 4] Let {X{ t ) , t  G T } be a stochastic 
process defined on a given probability space indexed by the time index parameter 
t. where t varies over time index set T. Let the system be observed at time points 
to, t i . , . . .  ,tn and let to < ti < . . .  < The stochastic process {A’ (f), i G T } 
is said to have the Markov property if and only if

Prob{X{t)  < x\X{to) =  Xo,A'(ii) =  X i,. .., .Y (i„ )  =  ;i-„}

= Prob{X{t)  <  a;|A (̂i„) =  x „}.

CHAPTER 2. MARKOV CHAINS 6

In plain words, Markov property states that the next transition of the system 
from the current state X{tn)  =  Xn to the next state X{t)  =  x, depends only on 
the current state X{tn) =  Xn and is independent of its previous state history, 
i.e., it is independent of the states A’(io) =  2:0, A ’(ti) = x \ ,... ,X (t „_ i)  =  .r„_i. 
In other words, the current state of the process provides sufficient information 
to make the next transition.

D efinition 2.2.3 A Markov process is a stochastic process which satisfies the 
Alarkov property.



For any stochastic process, and hence for any Markov process, the values that 
the random variables X{t)  take, define the state space of the process. As with 
the index set parameter t, the state space of a process can be continuous or 
discrete, finite or infinite.

D efinition 2.2.4 .4 Markov chain is a Markov process whose state space is 
discrete.

CHAPTER 2. MARKOV CHAINS 7

In Markov chain terminology, the state space of a chain is generally associated 
with the set of natural numbers. In other words the states are referred as state 
0. state 1. etc.

When a stochastic process possesses a certain condition on the random 
variables and the index parameter (namely the Markov property), the process 
is said to be a Markov process. Similarly, the time index set and the state 
space characteristics of a Markov chain give rise to several types of Markov 
chains.

In a homogeneous Markov chain, the transitions of the system are indepen­
dent of the time parameter t. The Markov property requires that the next 
transition be independent of the previous state history of the process. How­
ever, it is possible that the proce.ss makes a transition which is dependent both 
on the current state of the system and the value of the time parameter t. Such 
a Markov chain, in which the transitions out of a state are dependent on the 
time parameter i, is called a non-homogeneous Markov Chain.

Similar to the state space of the process, the index set (the time parameter) 
can be continuous or discrete. If the time parameter of a chain takes its values 
from a discrete set, the Markov chain is called a Discrete Time Markov Chain 
(DTMC). If the values of t are are continuous, the Markov chain is called a 

Continuous Time Markov Chain (CTMC).

In summary, there are four parameters that describe a stochastic process. 
First, the continuous or discrete character of the state space, is a determining 
property of the process. Second, the continuous or discrete character of the time 
parameter introduce another classification dimension for the processes. Third,



the time homogeneity of the process, is also an important quantity, in capturing 
the properties of a process. Finally, the characteristics of the relations between 
the index set and and the random variables, i.e., the dependencies among them, 
define classes of stochastic processes. The classification that is determined by 
the character of the state space is important and is discussed in more detail in 
the following chapters.

2.3 Discrete Time Markov Chains

CHAPTER 2. MARKOV CHAINS 8

If the index set of the Markov chain is countable, i.e., it is in one to one cor­
respondence with the set of natural numbers, the Markov chain is called a 
Discrete Time Markov Chain. In this case, the index set is in general taken to 
be the set of natural numbers and the random variables are numbered accord­
ingly, i.e., as -Yo, A 'l,. . . ,  A „.

For a non-homogeneous Discrete Time Markov chain, the Markov property 
is described as [16, p. 5]

Prob{ An+i ^ ^n+i IAq .I’oi A j — X i , A . j i  — Xn}

Prob{ A ti.)-! ^ Xn-j-ilAji — ·

The conditional probability that the process makes a transition to a new state j ,  
given that it is in current state i, is called the single step transition probability. 
It is expressed as [16, p. 5]

Pij{n) =  Prob{A',t+i =j\Xn = i}.

Note that since the Markov chain is a Discrete Time Markov chain, the state 
indices i and j  are natural numbers.

For a homogeneous Markov chain, the next transition of the process is in­
dependent of the index parameter n. The single step transition probabilities 
are written as

Pij ~  Prob{A,i-t-l ~  ~ }̂·

The random variables A’„ should be geometrically distributed in order to satisfy 
the Markov property. In other words there is no other discrete probability
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0 0.3 0.7
0.2 0.4 0.4
0.1 0.9 0

Figure 2.1: A transition probability matrix

0.2

Figure 2.2: A time homogeneous discrete time Markov chain

distribution that satisfy the Markov property. A homogeneous Discrete Time 
Markov chain's behavior can be e.xpressed as a transition probability matrix. 
Such a matrix is also called a chain matrix and is formed by putting the 
transition probability from state i to state j  to the ith row and jth  column of 
the matrix. Since the sum of the probabilities of making a transition from a 
state to all other states is one, the sum of the elements in any row is one. Such 
a matrix in which the sum of elements in any row add up to one is called a 
stochastic matrix. In Markov chain literature, the transition probability matrix 
is labeled P. Figure 2.1 demonstrates a transition probability matri.x of a 
homogeneous discrete time Markov chain with three states, that is described 
in Figure 2.2 with transition state diagrams.

2.4 Continuous Time Markov Chains

When the time indices of a Markov chain is continuous, the chain is called 

a Continuous Time Markov Chain. Note that, as in the case of DTMC, the 
state space is still discrete. In other words, the random variables describing 
the process might take discrete values; however the system might be observed,
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i.e., make transitions, at any instant in time.

The Markov property for a non-homogeneous Continuous Time Markov 
Chain is expressed as [16, p. 17]

Prob{A '(i„+i) < Xn+i \ X{to) =  xo,X{t i )  =  X u · . . ,X ( i „ )  =  Xn}

=  Prob{A'(i) < x\X{tn) =

for any sequence of time points to < t\ < . . .  < tn < tn+i-

The transition probability of a non-homogeneous CTMC is given by 

=  Prob{A '(0 =  j\X{s)  =  ?}, for t > s.

Ill the homogeneous case, since the probabilities are independent of the ac­
tual values of s and t, the transition probability is expressed in terms of the 
difference t =  {t — s), i.e.,

p,j(r) =  Prob{X(s  +  r) =  i|A'(s) =  i}.

Ill this case a single probability transition matrix is not sufficient to express 
the behavior of the matrix, we need a set of matrices parameterized by r. 
Instead, a new matrix, called the transition rate matrix or the infinitesimal 
generator matrix, is introduced. The matrix is constructed in a similar way 
and is generally labeled Q. Yet, this time the enfries are not probabilities 
of making a transition from one state to another, but each element at row 
i, column j  of the matrix denotes an instantaneous transition rate. That is, 
the entries of the generator matri.x are given by the rate of making transitions 
from state i to state j ,  when r is chosen to be sufficiently small so that the 
probability of observing more than one transition within the observation period 
T is negligible. .A. more rigorous derivation of the rate matrix from the transition 
probabilities can be found in [16. p. 18]. In Figure 2.4 a CTMC is shown as 

a state diagram. Figure 2.3 gives the corresponding infinitesimal generator 
matrix. Note that the diagonal entries in each row are equal to the negative 
of the sum of the off-diagonal entries, i.e.,

<?í¡ =  ~  Qij-



CHAPTER 2. MARKOV CHAINS 11

—6.5 4.0 2.5 0
3.0 -8 .9 2.2 3.7

0 1.5 -3 .7 2.2
0 3.7 3.2 -6 .9

Figure 2.3; A transition rate matrix

Figure 2.4: A time homogeneous continuous time Markov chain

This can easily be understood if one notices that the entries are rates repre­
senting transitions from a state to others. The transitions from one state to 
itself (the rate at which the process stays at that state) will decrease as the 
rates to the other states increase. In [16. p. 19] this property of an infinitesimal 
generator matrix is also derived from the transition probabilities.

For a CTMC. the random variables X{t)  should be exponentially distributed 
in order to satisfy the Markov property. Similar to the discrete case, this 
means that no other continuous probability distribution satisfy the memoryless 
property.

2.5 The Steady State Vector for a Markov 

Chain

The aim of modeling a system as a Markov chain, is to obtain some quantitative 
measures about the system. The information sought is mostly related to the 
states of the system. We wonder the states at which the system stays the most.
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how long the system occupies certain states in the long run, etc. Depending 
on the system being modeled, one might be interested in some states of the 
system more than the others. Also, in general, the states of a Markov chain are 
classified into several groups and determining to which group a state belongs 
might be of interest, see [16, p. 8]. Specifically, a transient state is one which 
the system might not return back, in the long run. A recurrent state is one 
which the system is guaranteed to return after a number of transitions. In a 
Markov chain, it is possible that the process makes a transition to one state, 
and can not leave that state, i.e., there are transitions to that state but there 
are not any transitions out of the state. Such states are referred to as absorbing 
states. In practice, one is more interested in states that have some desirable or 
undesirable properties. Thus, one might wonder the probabilities of being ¿it 
those states or the average time the system spends at those states, in the long 
run.

It is suitable to express the state of a Markov model as a probability vector. 
A row vector tt is used with each entry i denoting the probability of being at 
state i. When the system’s behavior is captured as a transition rate matrix Q 
or a transition probability matrix P, the properties of the Markov chain can 
be expressed as a simple set of linear ecpiations.

Now we introduce two important quantities that have desirable properties 
in the sense that they answer or provide the necessary information to answer 
several questions sought from a Markov chain model.

D efinition 2.5.1 Limiting Distribution of a DTAIC :[16, p. 15] Given an ini­

tial probability distribution 7t(0), if the limit

lim 7r(n)n—*co

exists, then this limit is called the limiting distribution, and we write

7T =  lim 7r(n)

D efinition 2.5.2 Limiting Distribution of a CTMC iGiven an initial proba­

bility distribution 7t(0), if the limit

lim irit)
t—x>



CHAPTER 2. MARKOV CHAINS 13

exists, then this limit is called the limiting distribution, and -we write

7T =  lim 7r(i)
f—CO  ̂ '

D efinition 2.5.3 Stationary Distribution of a DTMC :[16, p. 15] Let P be the 
transition probability matrix of a DTAIC, and let the vector z whose elements 
Zj denote the probability of being in state j  be a probability distribution; i.e.,

G ^ Zj ^ 1, and 'y ' Zj =  1.
all j

Then z is said to be a stationary distribution if and only if zP — z.

Definition 2.5.4 Stationary Distribution of a CTMC : Let Q be the transition 
rate matrix of a CTMC. and let the vector z whose elements Zj denote the 
probability of being in state j  be a probability distribution; i.e.,

Zj G 7̂ , 0 < < 1, and ^  =  1.
all j

Then z is said to be a stationary distribution if and only if zQ = 0.

For a certain class of Markov chains, (see [16, pp. 15-16]), if the limiting 
distribution exists, it is equivalent to the stationary distribution. Furthermore 
it is independent of the initial distribution, i.e., in the long run the effects of 
the initial distribution disappears.

The popularity and power of the Markov chain modeling paradigm comes 
from the fact that, most of the interesting properties of the system being mod­
eled can be derived from a set of simple linear equations. In the discrete case, 
the equations

wP =  7T, II 7T ||i= 1,

and in the continuous case, the equations

t Q =  0, II 7t ||i=  1,

let one to calculate quantitative measures about the system being modeled.
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Also the reformulation of the equation ttP = tt, as 7t( J — P) =  0 show that 
the problem of finding the stationary distribution of a discrete-time Markov 
chain, can be viewed as similar to a continuous-time problem. Conversely, a 
matrix P can be obtained from Q by

1P =  /  +  AtQ, where At <
max I g,·,· I

The problem of finding the stationary distribution of a Markov chain can be 
thus formulated in three ways. First, it can be seen as an eigenvalue problem, 
i.e., 7tP =  7t; second, it can be formulated as a null space problem, i.e., kQ =  0: 
and finally, it can be seen as a linear system that can be obtained in a variet\· 
of ways, from ~Q =  0, || tt ||i = 1.

VVe conclude this section by noting that all the discussed formulations of 
the problem imply that the Markov chains involved are time homogeneous, 
and this will be our assumption in the rest of the thesis.

2.6 Methods for Numerically Solving Markov 
Chain Problems

2.6.1 An Overview

-As the problem described in the previous section can be formulated in different 
ways, there are a large number of methods one may use to attack the problem. 
In general terms, direct methods refer to those methods that calculate the so­
lution vector in a predetermined number of steps [16, p. 61]. Iterative methods 
are provided with an initial approximation to the solution and they compute 
a new approximation to the new solution using the previous approximation in 
the previous iteration. The new approximation is supposed to become more 
and more close to the actual solution at each step.

Direct methods applied to Markov chain problems include Gaussian elim­
ination and LU decomposition. We note that in the case of a Markov chain
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problem, a nontrivial solution other than the zero vector, to the system wQ =  0 
is always available since it can be verified that Q is singular [16, p. 71].

Iterative methods can be grouped into two. First group of methods referred 
to as stationary methods include the power method, the method of Jacobi, 
the method of Gauss-Seidel and Successive Overrelaxation (SOR). The second 
group of methods are non-stationary methods, also referred to as Krylov sub­
space methods, include the method of Arnold!, Generalized Minimum Residual 
Method (GMRES) and the full orthogonalization method [16, pp. 117-230], 
[13]. In this work we concentrate on stationary iterative methods. Here we 
first give a comparison of direct and iterative methods in the conte.xt of Markov 
chains [16, pp. 61-62].

The value of a Markov chain model increases as the system being modeled 
becomes more and more complex. The increase in the complexity of the model 
is generally reflected as an increase in the number of the states of the Markov- 
model. This phenomenon is referred to as the state-space explosion problem. 
The increase in the number of states results in an increase in the size of the 
generator matrix. Beyond a certain limit, it becomes necessary to use a sparse 
storage scheme for storing the infinitesimal generator matrix. In addition to 
this, the matrices arising in Markov chain models are sparse, i.e., they contain 
only a few entries in each row. It is basically because of this reason that direct 
methods are considered disadvantageous, when compared to iterative solution 
techniques. Direct methods usually involve introducing new nonzero elements 
(fill-ins) into the matrix during factorization, which makes them inefficient and 
diflficult to deal with. Also, beyond a certain limit, especially for large problems, 
it might not be possible to store the newly altered matrix in core memory. 
In contrast, iterative methods involve only matrix-vector multiplications or 
equivalent operations, which do not alter the nonzero structure of the matrix. 
In addition to this, by not altering the matrix, we avoid the round-off errors 
which are observed in direct methods.

In certain cases, it might not be necessary to compute the stationary vector 
of a Markov chain, to high accuracy. In such uses, iterative methods allow one 
to stop the computation at a predefined error term.
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On the other hand, iterative methods are usually accompanied with a slow 
convergence rate to the solution. It is this reason that one may use a direct 
method for Markov chain problems whenever the method is not limited im- 
practically by memory constraints. However, iterative methods ai'e still the 
dominant choice, unless a practically implementable direct method gives the 
solution in less time.

Stationary methods have been the subject of much research. Although the 
non-stationary methods seem promising, much research needs to be done on 
their convergence properties and to predict the number of iterations recjuired 
to find the solution of a problem. In the following sections we introduce the 
power method, method of .Jacobi, Gauss-Seidel and SOR.

2.6.2 Power Method

The power method is used to find the right-hand eigenvector of an ordinary 
matri.x corresponding to a dominant eigenvalue of the matrix. Thus, when 
the Markov chain problem is formulated as one of an eigenvalue problem, i.e., 
irP =  7T, power method might be used to solve the problem. Let the initial 
probability distribution among the states of a Markov chain be 7t(0), and let 
the probability transition matrix of the same chain be P. Then after the 
process makes a transition, (at the next step), the probability distribution 
becomes At the second step the probability distribution becomes
7t(2) _  7r(i)/3 =  Tr̂ °'>P'̂ . At the step, the probability distribution is found 
by TrP’l = Note that, is the new approximation to the solution
at step k. For certain classes of Markov chains [16, p. 16], the vector tt**·'! 
approaches to the stationary distribution, i.e.,

lim =  7T, where tt --- ttP.k—roo

Power method is multiplying the approximation at each iteration by the prob­
ability transition matrix P, to obtain a new approximation. The convergence 

of power method is in general slow. Further properties of the method in the 

context of Markov chains can be found in [16, pp. 121-125].
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2.6.3 Methods Based on Splittings

The stationary methods based on splittings are used for solving a system of 
linear equations. In the Markov chain context, when the problem is formulated 
as a linear system or a null-space problem, i.e., ttQ =  0, these methods may be 
used. The methods .Jacobi, Gauss-Seidel (GS) and SOR are based on splitting 
the infinitesimal generator matrix Q into D — L — U where D is a, strictly 
diagonal matrix, T is a strictly lower triangular matrix, and U is a strictly 
upper triangular matrix. The matrix D consists of the diagonal elements of Q, 
and the matrices L and U consist of negative of the strictly lower and strictly 
upper triangular elements of Q. respectively.

The Method of Jacobi

The problem of .solving nQ =  0 can be formulated as

t Q =  0

k{ D - L - U )  =  0

ttD =  Tr{L + U).

From this we can obtain the iteration matri.x of the Jacobi and the method of 
Jacobi

Hence, the method of Jacobi is equivalent to power method with the iteration 
matrix being (L +  U)D~^.

The Method of Gauss-Seidel

In a similar way to the method of Jacobi, the Gauss-Seidel method can be 
derived from the formulation

ttQ =  0 

: { D - L - U )  =  0
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t { D - U )  =  ttL

7T =  ttL { D - U ) - K

From this we obtain the Gauss-Seidel Method as

Hence, it is eciuivalent to power method with the iteration matrix being 
L(D — U)~^. The above formulation of the Gauss-Seidel method is referred 
as a forward Gauss-Seidel, because when the equations regarding individual 
entries of the vector are considered, the elements are calculated starting from 
the first element to the last element of the vector

Another formulation is possible, which may be expressed as

In this case the order ol solving the equations for individual entries is from 
the last element to the first element of the vector ttG'+i ). Hence the method is 
called a backward Gauss-Seidel.

The Gauss-Seidel method is different from the method of Jacobi as it makes 
use of the elements that have already been computed. For instance while 
calculating the ith element of the [k +  l)st approximation vector it
makes use of the first ¿ — 1 elements that have been computed so far, in the case 
of forward Gauss-Seidel. .A backward Gauss-Seidel makes use of the previously 
computed n — i elements ranging from index f -|- 1 to n, for a vector of size n, 
while calculating the ¿th element.

Successive Overrelaxation

The method of Successive Overrelaxation (SOR) is an extrapolation on the 
solution of the Gauss-Seidel. A parameter w is introduced to weigh the solution 
vector obtained from a Gauss-Seidel iteration with the previous approximation 
vector. When considered in this manner, the method can be expressed as

^SOR “  (1 ~  '^VSOR +
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where is the resulting vector after applying the Gauss-Seidel algorithm to 
the ¿th approximation vector of SOR. Note that SOR is also called a forward 
SOR when the Gauss-Seidel iteration involved is a forward Gauss-Seidel, and a 
backward SOR when the Gauss-Seidel iteration involved is a backward Gauss- 
Seidel.

Hence forward SOR in matrix notation is

(̂A:+l) ^  (1 -  -t-U;(7r'^U (̂r> -  L)~^),

and backward SOR in matrix notation IS

Note that an SOR iteration with lu =  1 is equivalent to a Gauss-Seidel itera­
tion. Sometimes SOR. is referred as Successive Under Relaxation method when
0 < IÜ < 1.

In addition to forward and backward versions of SOR, a Symmetric SOR 
(SSOR) hcis been introduced, which is simply a forward SOR followed by a 
backward SOR. In the case of Markov chain problems, there is little benefit in 
using a SSOR instead of SOR and this can be observed only in rare examples 
[16, p. 132].

Convergence characteristics of stationary methods in a general context can 
be found in [7] and references therein. In the Markov chain context, [16, 
pp. 133-176], [4, pp. 125-132] and [1, pp. 26-28] [16, pp. 138-142] provide 
discussions of these and other methods.

Block Versions of Iterative Methods Based on Splittings

Stationary block iterative methods are based on block partitioning of the gen­
erator matrix Q. Following [16, p. 139] we can demonstrate a block partitioning
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of the vector tt and the matrix Q as

(tTi , 7T2, · · · ? ŷv) )

Qll Qi2 Qin

Q21 Q22 Q2N

Qni Qnn

In this case, a block splitting of Q can be obtained as Q = (D¡^ — — D\

takes the form of a block diagonal matrix, L¡\r takes the form of a strictly lower 
block triangular matrix and I7/v is a strictly upper block triangular matrix, i.e..

D x  =

Dn 0 0
0 D22 0

0

0 0 0 0 Uv2 Lxx

Lx = Lzi 0 0
• Lx =

0 0
Hx-ix

Lxi L.xv-i 0 0 0

By defining as the ith portion of tt as shown, we may define block
Jacobi as

„p + ll ^  ^
j= l  j  =  ! +  l

forward block Gauss-Seidel as

.G+l) _
N

x r “  =  -, E  for alH.
i = l  j=i+l

and backward block Gauss-Seidel as
N i-1

7Tp+‘ l =  E  í-'iúiDu -  E i r i ) · '  for- all i.
j=i+l i = l

The difference between the point and the block versions of the algorithms 
is that in the block versions, all elements of in a portion of are
solved simultaneously. It is possible to use a direct method or another iterative
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method to solve the individual blocks. In this way, one can obtain a more 
accurate approximation at each iteration, obviously with an extra cost being 
introduced at each iteration. In [1 , pp. 26-28] block iterative methods are 
discussed within the context of Markov chains.



Chapter 3

Stochastic Automata Networks

3.1 Preliminaries

In the previous chapter we have seen that if a Markov chain model of a system 
is available, qiuintitative measures about the system can be obtained from the 
system of equations

ttQ = 0, II ;r ||i= 1.

There are a number of methodologies for developing a Markov chain model 
of a system. Petri nets [8] are such a formalism for generating Markov chain 
models of systems. Alternatively, there are special software tools for generating 
Markov chain models [15]. Independent of the paradigm used, the problem of 
state-space e.xplosion is observed in almost all applications. In some cases, as 
the applications become more interesting, the size of the Markov chain gets so 
large that it is impractical to find a solution.

A Stochastic Automata Network (SAN) is another formalism for generating 

a Markov model. They are most suitable for performance modeling of parallel 
and distributed systems. The model is generated by considering an individual 
automaton for each component of the system. Each individual component is 
modeled by a single stochastic automaton and the interactions between the 
components are incorporated into the model. The main advantage of the SAN

99
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methodology is that the model is stored very efficiently, i.e., the memory occu­
pied by the model is very small compared to the size of the model generated.

Before getting into the formal definitions of SANs and their properties, we 
give a basic overview of tensor algebra which is a building block for SAN 
methodology.

3.2 Tensor Algebra

3.2.1 Ordinary Tensor Algebra

We now list several definitions regarding tensor algebra. These and morere prop­
erties of tensor algebra concepts can be found in [2].

In the following, we use Amxn for a matrix of dimension m x n, B t̂ for a 
matrix of dimension k x 1. Cmkxni and Dmkxni for matrices of size mk x nl.

D efinition 3.2.1 Ordinary Tensor Product:(OTP) Let A„i„ and Bki he two 
matrices, as

h\\ b\i

A =

an Îr
,B  =

hki hki

then the ordinary tensor product of A and B , Cmk ni =  A Q  B is given by

aiiB o-inB

c =  \ ;

^ml-B . . . â mnB

and the ordinary tensor product of B and A, Dmk ni =  B 0  A is given by

h\\A . . .  hiiA

D =  '

hki A ·■■ bkiA
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Notice that C ^  D.

D efin ition  3.2.2 Ordinanj Tensor Sum: The tensor sum of two square ma- 
trzcei> A.JIJ2. nncl EjTiTTij Ctjiyji, titti — A. B zs defined us

C =  A ® I m + I n

Further important properties of tensor algebra as they appear in [5, pp. 4-5] 
are listed below. Note that all matrices are square.

• Associativity ;

.4 0  {B 0 C) =  {A 0  B)  0  C)  and .4 0  (B 0  C)  =  (.4 0  .B) 0  C).

• Distributivity over ordinary matri.x addition :

(.4 + B ) 0 {C +  D) =  A 0 C +  B 0 C + A 0 D + B e  D.

• Compatibility with ordinary matrix multiplication :(case I)
(.4 X B ) 0  {C X D) =  { A 0  C) X {B 0  D).

• Compatibility with ordinary matrix multiplication :(case II)

N

(g) =  n  «̂1 ® ® n̂._. 0  0  0  . . . 0  /,
¿=1 ¿=1 

N

= n  0  AS'  ̂0  /¿ + 1;/V,
¿=1

where Ii-j is the identity matrix of size Y[i=ink·

• Compatibility with ordinary matrix inversion :
(A X =  4 - 1  0 B ~ \

• Pseudo Commutativity :

A 0  B =  Pr{B  0  A)P^,

where Pr is a permutation matrix of order Ui x U2, nj is the size of matrix A 
and rin is the size of matrix B.

Note that no commutativity other than the given pseudo commutativity 
property holds for ordinary tensor products.
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It is straightforward to extend these properties to N  term tensor products 
and sums. For our purpose of illustrating several algorithms, noting that 

N N
(g) ^  0  . . .  0  0  Â ^̂  0  0  . . .  0
k = l  k = l

where /„^ is defined to be the identity matrix of size Uk which is the size of the
term of the ten.sor product , Â K̂ is sufficient.

3.2.2 Generalized Tensor Algebra

Ordinary tensor algebra is used in other Helds of science as well as SAN mod­
eling. However, it does not allow one to handle certain constructs that arise 
in S.AN models. Since such constructs are essential for any meaningful model, 
tensor algebra has been extended in order to cope with them. Generalized ten­
sor algebra refers to tensor algebra where the elements of the matrices may be 
real valued functions. In SAN context, the functional elements are functions 
of the states of one or more automata. We now give several definitions and 
properties of generalized tensor algebra. These with more detailed discussions 
and proofs can be found in [5, pp. 13-20]. VVe follow the conventions there 
and assume that all matrices are square, which is the case for us. A matrix 
of the form B[A] refers to a functional matrix B which contains entries that 
are dependent on the state of automata with transition rate matrix A. In 
general an expression of the form denotes a matrix

that contain functional entries that depend on the states of the automata 
. . . ,  Note that the state of an automaton is determined by

the row of the generator matrix, i.e.. elements on row i of the matrix are 
transition rates out of state i, except of course the diagonal element which is 
interpreted as the rate of staying in the same state. The operator 0  ̂ is used 
for generalized tensor products.

D efin ition  3.2.3 Generalized Tensor Product:(GTP Gase I) Let A and B[A\ 

he two square matrices with sizes and respectively, and let B contain 
functional entries that depend on the state of A. Then the generalized tensor
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product of A and B , C — A®g B[A] is given by

ацВ{аі)  ai2B{ai)

a2lB(^a2 ) *̂22-^(^2)

П̂а1-®(^Па) П̂а2-̂ (̂ П̂о)

α ι„„β(αι)

α2πα^(«2)

^ПаПа̂ і^Па )

Definition 3.2.4 Generalized Tensor Product:(Case II) Let A[B] and B be 
two square matrices with sizes n, and ni, respectively, and let A contain func­

tional entries that depend on the state of B . Then the generalized tensor prod­

uct of A and B . C = A[B] Ag B is given by

ап[В]Іпь X B ar¿[B]Inb x B 
U2i[B]Inb X B а22[В]Іпь X B

аіпа[В]Іпь X B 
-̂̂ 'ína\B\In|, X B

^̂ ncil\B\Ini, X B ana2[-̂ ]-̂ il(, X B n̂anc\B\In,, X B

where aij[B\In  ̂ is defined as diag{aij{bl),aij{b2 ) , . . .  ,aij(bnb)} and aij{bk) is 
the functional element of A with its function being evaluated at state k of B.

Definition 3.2.5 Generalized Tensor Product:(Case III) Let A[B] and B[A] 
be two square matrices with sizes Па and щ respectively, and let A contain 
functional entries that depend on the state of B. Let B also contain functional 
entries that depend on the state of A. Then the generalized tensor product of 
A and B, C =  A[B\ 0 g B[A] is given by

ап[В]Іщ X B(ai) au[B]Kt, x B{ai)  
й2і[В]Іщ X B{a2) а22[В]Іщ x B{a2)

^^lna[B]In^, X В{^йі) 

а2па[В]Іпь X В{а2)

0'Паі\.В\Ігц, X В{апа) ^Па2[В]Іп(, X В{^СІп )̂ ^^nana\B\In ,̂ X Bi^ünf)

where aij[B]I^ and aij{bk) are defined as in case II.

Now let us see some of the properties of generalized tensor algebra that are 

of interest to us.
• Associativity :
A[B, C] 0g (B[A, C] ®g C[A, B]) = {A[B, C] 0g B[A, C]) 0g C[A, B]).
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• Distributivity over ordinary matrix addition :

(Ai[5] +  Ao[B]) 0 ,  {B,[A\ +  B2[A]) =  

A\[B\ ®g -6l[A] +  A\[B] ®g +  ^2[-5] ®g B\[A\ +  A\[B] 0g B2\A\.

Compatibility with ordinary matrix multiplication :

0 ,  0 ,  ^(2)] 0 ,  . . .  0 ,  . . . ,  >lbv-i)]

h : N - i ® g

I\:N--2 ®g A^  ̂ . . . , 0 j  In:N

X /i:.V-3 0 ,  . . . , 0 ,

X

X h : l  Zg A^^^[A^^^]0g K y

X .4^^* Zg Zgh- .N

• Pseudo Commutativity :

N N

j /l=1 9 ’̂=1

where r is a permutation of integers [1, 2, . . . ,  jV], and Pr is a permutation 

matrix of order [li^i î·

3.3 Stochastic Automata Networks

Let us consider two stochastic automata initially without any interaction among 
them. The system being modeled has two components, each of which can be 
represented by a single automaton. A Stochastic Automata Network, describ­
ing the system, is represented by two automata, If the automata
are models obtained from DTMCs, i.e., they are defined by probability tran­

sition matrices P̂ ^̂  and the whole system is defined by the transition 

probability matrix obtained from a tensor product, i.e., © P̂ ^̂  On the
other hand if the automata are models obtained from a CTMC, i.e., have 
transition rate matrices and Q̂ '̂ \ the transition rate matrix of the whole 
system is obtained from the tensor sum of and as If
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the probability distribution of the states of the first automaton at time i, is 
represented by vector 7r(^^(i), and similarly if the probability distribution of 
the second automaton are represented by 7г(^)(í) at time i, the probability 
distribution describing the state of the whole system at time t, is given by 

0  7гf^^(í). If the first automaton has rii states and the second automaton 
has U2 states, the whole system has rii x ri2 states. Each state of the global 
system is a combination of the states of the two automata. The global state 
of the system can be represented by a 2-tuple, i.e., if the first automtiton is at 
state i. and the second automaton is at state j ,  the global system is at state 
(i. j)·  It easily verified that each row of the global generator matri.x and
the global state distribution vector corresponds to a state of the global system 
represented as a 2-tuple. A consequence of these results is that the stationary 
distribution of the global system can be obtained from the tensor product of 
the stationary vectors of the individual automata. Hence, it is straightforward 
to find the stationary vector of a SAN with noninteracting automata, i.e, first 
solve for the stationary vectors of the individual automata then calculate the 
tensor product ol them.

In case the global system is modeled by N  automata. 
the global generator is obtained by

N

0  =  ©«''■>
¿=1

in the continuous case, and by

P =
t=l

in the discrete case.

In both cases the global state distribution vector is obtained by

7r(t) =
¿=1
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3.4 Capturing the Interactions

3.4.1 Functional Transitions

In order to be able to model complex systems, especially parallel and dis­
tributed systems that have interacting components, one needs to model the 
intei'ciction between the components. One extension that enables us to incorpo­
rate such interactions between individual components is by means of functional 
transitions. The stochastic automaton, modeling a component, is allowed to 
have transitions whose rate is a function of the states of several automata. 
Now, the entries of the transition rate matrix might be functional, i.e., the 
transition rate matrix is not an ordinary real valued matrix but it is a matrix 
whose entries may contain a real valued function. Note that if the rate of a 
transition is dependent only on the automaton that makes the transition, the 
transition is considered to be a constant transition, not a functional one.

Similar to noninteracting automata, the global generator matrix of the 
global system composed of CTiVtC can be described as a tensor sum of the 
generator matrices of the individual automata, yet this time as a generalized 
tensor sum of the individual matrices, i.e.,

<?= Ф
i'=l g

In the discrete case a generalized tensor product is needed, i.e.,

N
P  = p(i)

!=1 g

Two important points to note about functional transitions in SAN descrip­
tors is that; first, still the transitions of an automaton effect only the automaton 
itself even if the transition is a functional one, second, the nonzero structure of 
the generator matrix is still in a suitable form to store in sparse format, i.e., no 
zero entry may become nonzero during function evaluation yet some nonzero 

entries might evaluate to zero.
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3.4.2 Synchronizing Events

Another concept, introduced to extend the modeling capability of a stochastic 
automata network, is one of a synchronizing event. A synchronizing event is 
either a transition of one automaton that force one or more automata to spe­
cific states, or an event in which an automaton being (or not being) in a state 
force some other automata to get into or stuck at certain states. The transi­
tions that are involved in a synchronizing event may also contain functional 
rates. It is possible to have a synchronizing event in which a transition of an 
automaton cause several or all automata to make or block transitions. Note 
that, a synchronizing event causes the state of the global system to be altered, 
whereas a functional transition affects only the automaton that contains the 
transition.

In .SAN terminology, the automaton that initiates a transition in the other 
automata in a synchronizing event is called the master automaton of the syn­
chronizing event. The automata that are effected by the master automaton’s 
transition are called the slave automata. Note that a transition in the master 
automaton has a rate associated with it, whereas the induced transitions in 
the slaves happen instantaneously with the master automaton's trcinsition.

3.5 Descriptor of a SAN

In this section we introduce the concept of a descriptor for a SAN. Plere and 
hereafter, we consider only continuous-time stochastic automata and hence all 
matrices are transition rate matrices. The extension of the concepts introduced, 
to discrete-time automata are possible. The effect of a synchronizing event on 
a SAN is captured by introducing new tensor product expressions. If there is 

a synchronizing event labeled e that appears in a SAN with N  automata, one 
new tensor product of the form

N

1=1
0
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and another one in the form

0 Q i ‘ >
2 =  1

are introduced. The last term is referred to as the diagonal corrector of the 
synchronizing event and is introduced to maintain the global generator as a 
transition rate matri.x:. In the most general case, where the transitions in­
volved in the synchronizing event, say e,·, are functional, the tensor products 
are generalized tensor products and the expressions introduced are in the forms

 ̂ ¿=1

and
N

■7 1=1

For a SAN model with N  automata, there are N  matrices in the tensor 
products, each of which correspond to one automaton in the SAN. For each 
synchronizing event, the order of the terms in each tensor product are explicit 
as described bv

and

Q i" 0 ,  0 , . . .  0 ,  e r >

0 ,  Ql"’ 0 j . . .  0 j O f* .

This is important since neither ordinary nor generalized tensor products are 
commutative.

Since for each synchronizing event, two new tensor products are introduced, 
for a SAN model with E  synchronizing events, 2E tensor products are intro­
duced. The global generator of a SAN with iV automata and E  synchronizing 
events is obtained from the equation

N ^  ^
Q = ©  « «  + E ©  Of+ E<J?

9 i=i 1=1 9 i=l j = l
N 2E

=  E  -̂1 ® ® ^«.-1 ® ® ^".+1
1=1 
N+2E

• · 0  iriN +  ^  (g) Qj
(¿)

= E  ®  <55
J=1 9 i=i
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and the form of it as in the last line is referred to as the descriptor of the SAN. 
The first set of N  tensor products are referred to as the local generator matrices, 
the E  tensor products of the form are referred as the synchro-
nizing event matrices, the final tensor products of the form J2 f - i  g

are referred as the corrector matrices. The synchronizing event matrices reflect 
the interaction among the automata involved in the event. The corrector ma­
trices are diagonal matrices introduced to make the global generator matrix a 
transition rate matrix. Further information about the rationale behind these 
matrices with the related proofs might be found in [9], [10], [11] . We now give 
an example SAN to illustrate the concepts introduced in this chapter. The 
example SAN appears in [16, pp. 470-472].

The SAN has two automata, one with two states and the other with three 
states. It has two synchronizing events and there are also functional rates. 
There is a functional transition in the second automaton the transition
from state 2 to state 3 occur with rate /¿2 if the first automaton, ^^^l,is in state 
1 and with ¡j.2 if the first automaton is in state 2. The local generator matrix 
of .4*̂ * is given by

—Ai Ai
0 0

- /A Ml 0

0 - / /
0 0 0

and the local generator matrix of is given by

For the second automaton, the functional transition rate /  is defined by

i ¡x-2 if =  1

I  ¡i-2 if =  2

where is a function that maps automaton 4.̂ '̂  to its state.

The first synchronizing event ei, occurs by a transition of the first automa­

ton, from state 2 to state 1, which happens at a rate A2, causing the
second automaton, to state 1. The synchronizing event matrix and the
corrector matrix corresponding to the first synchronizing event ei, for the first
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automaton are given by

oi:’ = 0 0

A2 0
. 0 1 :’ =

0 0

0 — A 2

and the synchronizing event matrix and the corrector matrix corresponding to 
the first synchronizing event ei, for the second automaton are given by

Q ?N

’ 1 0 0 '  
1 0 0 , O' f  =

' 1 0 0 ‘
0 1 0

1 0 0 0 0 1

The second automaton is the master of the second synchronizing event. 
Whenever the second automaton makes a transition from state 3 to state 1. 
which happens with rate /H3 , it causes the first automaton to state 1. The first
automaton has

1 1 

0 0

as the synchronizing event matrix and has

1 0 

0 1

as the corrector matrix. The second automaton has

'  0 0 0 ‘  

= 0 0 0  

_ /«3 0 0 _

as the synchronizing event matrix and has

' 0 0  0

Q^e^= 0 0 0

0 0 -pLz

as the corrector matrix.

The descriptor of the SAN may be expanded as 

N E N E N

= ei" ® ei"+eii’ 0  eii’ + eii’ ® ei?+eii’ ® eif + eii’ 0  Q'S~
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and from this we obtain the global generator as

+  / J ' l ) Ml 0 Ai 0 0
0 - ( Ai +  M2) M2 0 Ai 0

0 —(Ai +  ^3) 0 0 Ai
^ 2 0 0 -(A2 + Ml) Ml 0
A 2 0 0 0 ~(A2 + M2) M2

A2 + Â.3 0 0 0 0 - ( A2 + M3 )

3.6 Efficient Tensor Product Vector Multipli­

cation

The problem of finding the stationary distribution vector of a SAN with N  au­
tomata and E  synchronizing events involve solving the linear system of equa­
tions

N N 

i= l ¿=1

All iterative methods developed for solving this system of equations need to 
do a tensor product vector multiplication of the form

1=1

Note that it is possible to first expand the tensor product and then do an 
ordinary vector matrix multiplication. However, in such an implementation 

■the number of multiplications for finding the matrix resulting from the ten­
sor product is rii=i another set of [f ill  multiplication operations is
necessary for carrying out the matrix vector multiplication. Obviously, this is 
very inefficient both storage-wise and time-wise. Instead, in [17] Stewart et. 
ah, suggest an algorithm with a lower computational complexity and without 
the need for expanding the tensor product, if there are no functional rates in 

the matrices, i.e., the tensor product is an ordinary tensor product. We give 
the theorem indicating the complexity of the multiplication operation and the 
algorithm (see Table 3.1). The proof of the theorem and a detailed discussion 
of the algorithm can be found in [17, pp. 516-517].
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1. Initialize: nlef t  =  nin2 . . .  n^v-i; nright =  1.
2. For i =  iV,. . . ,  2,1 do

• base =  T,jump =  Ui x nright
• For ¿ =  1, 2, . . . ,  n left  do

o For j  =  1 ,2 , . . . ,  nright do
* index =  base +  j
* For/ =  1 ,2 . . . . ,  Tii do

• •s/ =  T̂ index\ index - index +  nright
* Multiply: z — z X 
■k index = base +  j
* For / =  1 ,2 , . . . ,  n,· do

■ i n d e x  — index =  index +  nright 
o base =  base +  jump

• nleft  =  nleft  frii^i
• nright =  nright x n,·
• K =  it'

Figure 3.1: Vector multiplication with an ordinary tensor product

T h eorem  3.6.1 The product

1=1

where Q ‘̂\ of order ni, contains only constant terms and w is a real vector of 
length niay be computed in p/v multiplications , where

N N N

Pn  =  n.M X ( p i v - i  +  n  =  n  ^  X !
1=1 ¿=1 1=1

When there are functional rates in the automata, the tensor products be­
come generalized tensor products. In this case a slightly modified version of 
the algorithm is applicable with a restriction on the ordering of the automata 
and their dependencies. The following theorem and algorithm in Figure 3.2 

are applied in such cases. Again, more detailed information about this version 
of the algorithm and the theorem are provided in [17].

T h eorem  3 .6.2 The multiplication

X ((?<“' 0 ,  0 ,  0 , . . .  0 » . . . .
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1. Initialize: nlef t  =  nin? . . .  n,v_i; nriqht =  1.
2. For z =  7V,. . . ,  2,1 do

• base =  0 ] jump =  rii x nright
• For ¿ =  1 ,2 , . . . ,  n le ft  do

0 For _?’ =  1, 2 , . . . ,  i — 1 do
* ¿j =  ([(¿' -  l ) / n 3 +i ni] mod (n|=i+i ni))  +  1 

o For j  =  1, 2, . . . ,  nright do
★  index =  base +  j  

Fold =  1 ,2 , . . . ,  n,· do
• zi =  ~index\ index =  index +  nright 

-k Multiply: r' =  ·: X . . . ,
k index =  base +  j  
k For / =  1, 2 . . . . ,  n,· do

■ index ~ ~l'·· Mdtx — index + nright 
o base =  base +  jump

• nleft  — nleft  ftii-i
• nright =  nright x n,·

/
• 7T =  7T

Figure 3.2: Vector multiplication with a generalized tensor product

where Q ‘̂\ of order ni and ~ is a real vector of length computed

in p s multiplications , where

N N N

PN - riM X [ p N - l  +  n  " î) =  n  ^
!=1 t= l  (=1

It should be clear that the dependency list for an automaton as it appears 
in the definitions and properties is not strict, i.e., actually an automaton might 
depend on a subset of the automata in its parameter list. Notice the order of 
dependencies among the automata for the compatibility of generalized tensor 
products with ordinary matrix multiplications, the first automaton should be 
independent of the rest, the second automaton may only depend on the first 
one, and each automaton may depend on a subset of the automata that precede 

it. The final automaton might depend on all the remaining automata.



Chapter 4

Stationary Iterative Methods 
for a SAN

4.1 The splitting of a SAN descriptor

111 order to use stationary iterative methods such as Jacobi, GS. and SOR for 
solving a SAN, the corresponding descriptor needs to be split. Here we give a 
suitable splitting for a SAN descriptor in the form D — L — U [16, p. 126]. By 
a suitable splitting we mean one in which L, D, and U each consists of a sum 
of tensor products so that iterative methods of interest may be implemented 
in terms of the efficient vector-tensor product multiplication algorithm.

The derivations of the splittings are based on the associativity of tensor 
products and distributivity of tensor product over matrix addition [2]. These 
two properties are valid for both OTP and GTP [5]. In other words, the 
splittings exist in both the nonfunctional (i.e., OTP) case and the functional 
(i.e., GTP) case. Obviously, limitations on the applicability of the efficient 
vector-descriptor multiplication algorithm still remain [5, pp. 13-24].

The descriptor of a SAN with N  automata and E  synchronizing events is 

given by
2E+N N

(1)
2 E + A  N 

j=l i=l

37
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However we can rewrite ( 1) as

Q — Ql A Qe A Qei

where

N

0 / =  © < ?,“ ’ .
1=1

e= l ¿=1 
E N _

0. =
e= l i= l

Assuming that the ¿th automaton has ni states, the global generator will have 

n =  rii^i states. The generator <5/'̂  is comprised of local transitions in the 
¿th automaton.

First, we introduce some lemmas. Then we give a theorem that follows from 
the lemmas, for splitting the descriptor of a SAN.

L em m a 4.1.1 The tensor product of two diagonal matrices Di and Do is a 
diagonal matrix D {— D\ ® D 2 ).

Proof. By the definition of the 0  operator, D is a block diagonal matrix where 
each block is equal to D 2 , and since D2 is a diagonal matrix, D is also diagonal. 
□

L em m a 4.1.2 The tensor product of a diagonal matrix D\ and a strictly lower 
triangular matrix Li is a strictly lower triangular matrix L {— D\ © Li).

Proof. By the definition of the 0  operator, T is a block diagonal matrix where 
each diagonal block is equal to Ly. Since Li is strictly lower triangular, T is a 
block diagonal matrix with strictly lower triangular blocks along the diagonal; 

hence, it is a strictly lower triangular matrix. □

L em m a 4 .1 . 3  The tensor product of a diagonal matrix D\ and a strictly upper 
triangular matrix Ui is a strictly upper triangular matrix U{= D i 0  Li).
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Proof. By the definition of the 0  operator, U is a block diagonal matrix where 
each diagonal block is equal to U\. Since U\ is strictly upper triangular, /7 is a 
block diagonal matrix with strictly upper triangular blocks along the diagonal; 
hence, it is a strictly upper triangular matrix. □

Lemma 4.1.4 The tensor product of a strictly lower triangular matrix L\ and 
a matrix A\ of arbitrary nonzero structure is a strictly lo wer triangular matrix

L { = L ,  0  AC-

Proof. By the definition of the 0  operator, ¿  is a block strictly lower triangular 
matri.x with zero blocks of the order of _4i in the diagonal and upper triangular 
parts. Thus L has zero elements in the diagonal and upper triangular parts; it 
is strictly lower triangular. □

Lemma 4.1.5 The tensor product of a strictly upper triangular matrix U\ and 
a matrix Ai of arbitrary nonzero structure is a strictly upper triangular matrix

L (=  f 1 0  .41).

Proof. By the definition of the 0  operator, 17 is a block strictly upper triangular 
matri.x with zero blocks of the order of A\ in the diagonal and lower triangular 
parts. Thus U has zero elements in the diagonal and lower triangular parts; it 
is strictly upper triangular. □

Lemma 4.1.6 Qg is a diagonal matrix.

Proof. Since Qe =  Qi‘  ̂ ^ach is diagonal. Then from Lemma
4.1.1, Qe is diagonal. □

Lemma 4.1.7 Q¡ can be split as Di — L¡ — Ui, where D¡ is diagonal, L¡ is 
strictly lower triangular, Ui is strictly upper triangular and each of the three 

terms is in the form of a sum of tensor products.



Proof. Let Q\‘'* be split as — U¡‘\ where is diagonal, is
strictly lower triangular, and is strictly upper triangular. We use Im-.nj, to 
represent an identity matrix of size n i—¿ î.· when i < j ,  else a one. Then

Qi =  0 ^/'^
i=l
N
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=  0  I n ,0 - - - 0  Q r  0  · · · 0  0  Iny
¿ = 1
N

— Ini'.TLi-i 0  Ql 0  n̂¿ + i:n.v
¿= 1

= E / . . .....
¿ = 1

= o  D\·̂  0  - [}p  z  :
¿=1 ¿=1

N

¿■=1
= Di — Li — Vi

The last equality is a consequence of Lemmas 4.1.1, 4.1.2. 4.1.3, 4.1.4, and 
4.1.5. □

Lem m a 4.1.8 Qg can be split as Dg — Lg — Ug where Dg is diagonal. Lg is 
strictly lower triangular, Ug is strictly upper triangular and each of the three 
terms are in the form o f a sum of tensor products.

Proof. Let Q[‘'> be split as where is diagonal. L[‘  ̂ is
strictly lower triangular, and f/ 0  jg strictly upper triangular. Then

0 . =  E ® « ?
e=l ¿=1

e=l ¿=2
E

= E
e=l L . 
E

= E
e=l L 
E

= E
e=l .

¿=2

Z )W ® (0 Q<·')
i = 2

i = 2

-E
e=l

N

i < " 0 (0 C ? )
i = 2

N

U¡'>0 (0 Qi‘ l)
i = 2

r>i'> 0  0  ((® <?P )
i = 3

E

-E
e=l L 

E

-E
e=l L

1=2
N

i = 2
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- E
e = l  L 

E r

=  E
e= l -

E

- E
e= l  L
E

- E
e = l  .

1=3
N

Di'>0 Di^>0 ( i ^ Q i ‘>)
{ = 3

N

i = 3

E r

- E
e= l

E

- E
e= l L

t=3

4 ‘’ 0(i|h3í‘’)
1=2

N

i = 3

E N E N

=  E « S ) " i ' ’ ) - E E
e=l^=1;̂ = 1 i =  l

£· yV
- E E

e= l k=i

k-l N

(g) g ( ‘>)
¿=i ¿ — /j 1

(S) OS'’ )
1 = 1 z = A; +1

— ŷ e — ŷ e — Ue

The last equality is a consequence of Lemmas 4.1.1, 4.1.2. 4.1.S3. 4.1.4. and 
4.1.5. □

T heorem  4.1.9 The descriptor o f a SAN given by Q (=  Qi + +  QN can he

split as Q = D — L — U, where D is diagonal, L is strictly lower triangular, 
and U is strictly upper triangular. In particular

Q — Qt A- Qe + Qe

= [Di - L i -  Ui) + [D, -  Le -  U,y+

= [Di A De A Qe) — {Li A Lg) — {U¡ A Og) ■
D U

Moreover, D,L,  and U each may be written in the form of a sum of tensor 
products.

Proof. The proof of Theorem 4.1.9 follows from Lemmas 4.1.6, 4.1.7, and 

4.1.8. □
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4.1.1 An Example Splitting

The following example, from Chapter 3 better illustrates the concept of split­
ting a SAN descriptor. Note that for the sake of simplicity, we replaced the 
functional entries in the second automaton with constant values. It is com­
posed of two automata and two synchronizing events (i.e., N =  E =  2) with 
ni =  2, n-2 =  3. For the first automaton, we have

q ! "  =
—Ai Ai

0 0

’ 0 o ' ’ 0 o '
A2 0 . 0 ' : ’ = 0 — A2

1 1 

0 0

1 0 

0 · 1

For the second automaton, we have

Q f  =

-Hi Hi 0

0 —H2 fj'2
0 0 0

a i?  =

'  1 0 0 ' '  1 0 0 '

1 0 0 0 1 0
1 0 0 0 0 . 1

' 0 0 0 ' ' 0 0  o '
Q ?:= 0 0 0

Hs 0 0
0 0 0 
0 0 —Hz

The global generator of the example SAN is given by

Q ■■= Ql Qe P Qe

=  © o i ”  +  E 0 «''>  +  E ® o P  

= q!" ® Q ?'' + c?i;’ ® Q 'S  + ® '5« + N '  ® + Oil’ ® Oil’·

E N
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Hence Q is a. matrix of order 6, i.e.,

— (Ai + 0 -̂ 1 0 0
0 —(Ai + 2̂) 0 0

Ai3 0 —(Ai + /is) 0 0 Ai
A2 0 0 " * ( - ^ 2  + Pi) /^1 0
Ao 0 0 0 “"(A2 + Â2 ) Â2

Ao + /^ 3 0 0 0 0 —(A2 + /̂ 3) .

• ( 2 )

Due to Theorem 4.1.9, we have

Q =  D - L - U

— {Dt +  De, +  Qe) ~ (Ll +  Z'e) ~ {I'l +  f'e),

where Di, Li, Ui are obtained from Lemma 4.1.7 and Dg, Lg, Ug are obtained 
from Lemma 4.1.8. As before, we use to represent an identity matrix of 
size nl—i when i < j ,  else a one. R  and Ot are identity and zero matrices
of order A:, respectively. Then from all the lemmas, we have

(<)

D — Di Dg + Qe

=  0  a “ ’ 0  A , + E ®  A '·  +  E  ®
¿=1 e=l ¿=1 e=l ¿ = 1

= 0  h  +  h &  o f '  +  £><;' 0  A f  +  A ! ’ 0  A ?  + OS!' 0  OS!'

+0S !' 0  OS!’

—Ai 
0

0
0

® /3 +  /2 0 0
0

0 0 

~H2 0

0 0

’ 1 0 0 ‘
+ 0.2 0 0 0 0

_ 0 0 0 _

+
’ 1 o' ' 0 o '

' 0 0 0
0 0.3 + 0  /3 +  /2 0 0 0 0

0 0 _ 0 -A 2 _
_ 0 0 -/¿3 .

—Ai 0 0 0 0 0 ' -Ml 0 0 0 0 0
0 —Ai 0 0 0 0 0 -M2 0 0 0 0
0 0 -A i 0 0 0

+
0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 -Ml 0 0
0 0 0 0 0 0 0 0 0 0 -M2 0

0 0 0 0 0 0 0 0 0 0 0 0
+ 0e +  Og
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+

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0

+
0 0 -^3 0 0 0

0 0 0 -Ao 0 0 0 0 0 0 0 0
0 0 0 0 —A2 0 0 0 0 0 0 0
0 0 0 0 0 — A2 0 0 0 0 0 -fi-i

-(A1 + Âi) 0 0 0 0 0
0 —(Ai + H2) 0 0 0 0
0 0 —(Ai -l· fi's) 0 0 0
0 0 0 -(A2 + Âl) 0 0
0 0 0 0 -(A;2 + Ps) 0
0 0 0 0 0 — (A2+/i:3)

For L, we have

Zi =  Li 4“ jZf
N

‘ rii+i '-nN) + E E ( ® ^ f ’ ) 0 Z ‘ ’ 0( ®  Q f )
e = \ k = \  ¿=1 i= k -\ - ii=i

=  £ i ‘ > 0  / , + / 2  0  ip> +  £<;> 0  +  £)<;' 0  £i;> + l h > 0  e g '

— 0 - 2  0  / 3  +  - ^ 2  0  O3  +

’ 1 0 0 ‘ ' 0 0 0 '
0 0

0 1 0 0 + O2 0 - 1 0  0
-A2 0

_ 1 0 0 _ -1 0 0 _

+
0 0

- 1  0
0

0 0 0
0 0 0

/2 3 0 0

+
1 0 

0 0
0

0 0 0
0 0 0

- ^ 3  0 0

— Oe +  Oe +

0 0 0 0 0 0 ' 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0
+  Oe +

0 0 0 0 0 0

—A2 0 0 0 0 0 0 0 0 0 0 0

—A2 0 0 0 0 0 0 0 0 0 0 0

— A2 0 0 0 0 0 _ - / ¿ 3 0 0 0 0 0
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+

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

-Ai.3 0 0 0 0 0 - M 3 0 0 0 0 0

0 0 0 0 0 0 — A2 0 0 0 0 0

0 0 0 0 0 0 — A2 0 0 0 0 0

0 0 0 0 0 0 — ( A 2 +  Ms) 0 0 0 0 0

Finally for 1/, we have

U = Ui + U,
N

=  E ( i Ml :m,_i 7, f f V  TJ UI vj 1 ,
¿=i

(g) (?<■>)
e= l ¿=1 ¿ = A:+1

= e  /3 + /2 0  0  + D[\̂  0  + u!;lj 0  +
Dll̂  0 Fl')

0
0

-A i
0

0 -Ml 0 1 0 0
3 + I 2  0 0 0 -M2 + O2 0 1 0 0

0 0 0 1 0 0

0 0 0
-02 '<JO3 + O2 0 0 0 0

. /̂  3 0 0 _

0 0 0 -Ai 0 0
0 0 0 0 —Ai 0
0 0 0 0 0 -Ai
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

+
1 0 

0 0
0  O3

+

0 -Ml 0 0 0 0
0 0 -M2 0 0 0
0 0 0 0 0 0
0 0 0 0 -Ml 0
0 0 0 0 0 -M2
0 0 0 0 0 0

+ 0e +  Oe +  Oe +  0$
0 -Ml 0 —Ax 0 0
0 0 -M2 0 -Ax 0
0 0 0 0 0 —Ax
0 0 0 0 -Ml 0
0 0 0 0 0 -M2
0 0 0 0 0 0

The global generator matrix given in 2 may be verified by computing 
D — L — U. In the next section, we present three iterative methods that follow
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from the splitting in Theorem 4.1.9.

4.2 Iterative Methods Based on Splittings

Remember that the problem of finding the stationary vector of a Markov chain 
may be formulated as one of computing a nontrivial solution to a homogeneous 
system of linear algebraic ecfuations with a singular coefficient matrix under a 
normalization constraint. That is, the (1 x n) unknown vector tt in

■Q =  0. ||7r||i =  1 (3)

is sought. The methods based on splittings amount to using the power method 
with an iteration matrix that corresponds to the particular splitting until a 
predetermined stopping criterion is met. VVe should also remark thiit the effi­
cient vector-(generalized) tensor product multiplication algorithm used by the 
methods of interest has a time complexity of order 0 (ni=i 
complexity result assumes that all matrices in a tensor product are dense. In 
reality, some of these matrices are identity and zero, some are diagonal, and 
the remaining sparse. .See, for instance, the matrices forming the descriptor in 
the example in Subsection 4.1.1.

In the following subsections, we introduce the stationary iterative methods 
of .Jacobi, Gauss-Seidel and SOR that we described in Chapter 2. In Sec­
tion 4.3. we describe the block versions of the same methods.

4.2.1 Jacobi

In matrix notation, applying the .Jacobi method to a homogeneous linear sys­

tem as in (3 ) is equivalent to applying the power method to the iteration matrix 

(L 4- U)D~^] that is,

(̂A.-+i) ^  +  U)D~\  À: =  0 ,1 , . . . ,

where Q is split as D — U). As it can be seen from the given formulation,
each iteration may be implemented in two steps. First, postmultiply the most
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recent approximation with (L +  f/), which is a sum of tensor products, 
and obtain Then postmultiply with D~^. This last step can be
implemented by multiplying the reciprocal of each diagonal element in D with 
the corresponding element of to give

4.2.2 Gauss-Seidel

In matrix notation, applying GS to a homogeneous system as in (3) is equivalent 
to applying the power method to the iteration matrix U{D — L)~^. However, in 
order to employ the efficient vector-tensor product multiplication algorithm, 
we propose a slightly different implementation of the method. ,A. backward GS 
iteration corresponds to the splitting Q — [D — L) — U and may be written as

The right hand side of the iteration requires the use of vector-tensor product 
multiplication. Once the right hand side is computed as bC\ the next step 
involves solving the lower triangular system of equations 
Similarly one can define forward GS using the splitting Q =  {D — U) — L. In 
order to employ the efficient vector-tensor product multiplication algorithm, 
we should examine the nonzero structure of the matrix [D — L).

is a diagonal matrix of order n =  flili  from which all the diagonal 
elements of [D — L) come. That is, none of the nonzero elements of L, a 
strictly lower -triangular matrix, appear along the diagonal of [D — L).

By considering Lemmas 4.1.7, 4.1.8 and relabeling Li as Te=o, we can rewrite 
L as

L· =  +  E E ( ® o f ’ ) 0 d ‘ ’ ® (  <8 ) c f ’ )
i=l
E

=  E
e=0

N k-1

e= l k=l 1 = 1

N

i=k+l

E « 8 ) i> f ' ) 0  4 ‘ ’ 0 {  ®  < ?f)
k=l 1=1 ¿=¿+1

= Ed''((g)<3<'>) + Ei>S''
e=0 i= 2  e=0

E ( ® £ ' « ) 0 i<‘ >0 ( (g) O P )
k= 2  i= 2  i=k+l

e=0



where all are strictly lower triangular matrices formed by summing similar 
tensor products. For Qq (i.e., Li), all matrices except Lq  ̂ in the tensor products 
are identity matrices.

Similarly, using Lemmas 4.1.6, 4.1.7, 4.1.8 and relabeling QC  as D[‘I e for 
e =  1, 2, . . . ,  FI, we get

D =  f ; +  +  ¿ ( 8 ( 3 ; ' '
¿=1 e= l  ¿ =  1 e= l  ¿=1
N 2E N

=  E  i . . » - ,  0  A “ ’ 0  +  E  <8 ) D[·’ ·
i=l e= l1=1

Next we expose the block structure of {D  — L) and build the lower triangular 
solution on this structure.

Each matrix is the sum of N  tensor products. All tensor products in 
this summation introduce nonzero entries to that are in mutually exclusive 
locations. In other words, each nonzero element in comes from a different 
tensor product. To see this, partition into rii blocks each of order n|I:2 '̂ t· 
Its lower triangular blocks come from the term pH  q  0  . . .  t and
its diagonal blocks come from the remaining terms (i.e., terms that have 
as the first factor). Observe that block { i , j )  * > j  of can be expressed 
as ê(,· Qê )̂·’ where is the (i, j ) th element of Similarly, block
( j . j )  of can be expressed as [E [~ 2(® f=2 '2> © (<8 >;=r-+i >
where is the jth. diagonal element of

Given the above (first level) partitioning of F, our algorithm for solving tt 
in the system Tr{D — P) =  b stems from the following observation. The linear 
equations for the subvector of ~ corresponding to the jth  diagonal block of 
[D — P), denoted Itj, can be expressed as

E N

CHAPTER 4. STATIONARY ITERATIVE METHODS FOR A SAN 48

7T, ~  S' 7T,:
¿ = j+ l  Le=0 k=2

('i)

or as

j ̂ j,j G 5 7 77-1, . . . ,  2, 1.

Here Dj j  is the jth  diagonal block of (F> -  F), bj and Cj are respectively the 

yth subvectors of b and c, the new right hand side.
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Q"

Figure 4.1; Lower triangular part of Q\ © Q 2 0  Q3 partitioned into blocks.

.A.t this point, we are left with the problem of solving I^jDjj — Cj. Fortu­
nately, the block structure of the diagonal blocks Djj  is similar to that of the 
original matrix (D — L). Each diagonal block at level 1 is a lower triangular 
matrix that can be expressed as a sum of tensor products. Thus.

411,> ®
N

no'.71 TIN

-E 4Ü
e=0

j)

where is the j/'th diagonal element of D\ '̂. Note that the diagonal elements 
of Djj  come from the first and the second terms. The strictly lower triangular- 
elements come from the third term. Next we can partition each diagonal block 
Djj  into ri2 blocks each of order This continues recursively until we
have a system of order n̂ v (i.e., order of the last automaton) to solve. The 

first and the second terms of Djj  come into play only at the deepest level and 
the recursion is inherent in the third term. Hence, the algorithm we present 

for point GS is a recursive one. The lower triangular solution algorithm calls 
itself until the recursion ends at level N  when a single iteration over the point 
equations is performed: the systems to be solved at level N  are lower triangular.

k=2

(gi 0 S'<)
k—2 1—2

2E N

e=l k = 2

The illustrative example in Figure 4.1 shows the partitioning of a three term
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tensor product. The lower triangular block structure of the tensor product 
Qi ® Q 2 Qz is emphasized. The dark grey shaded blocks of the product 
on the left come from the term L\ @ Q 2 ® Qz- The grey blocks on the left 
correspond to the three diagonal blocks each of order n2nz· The partitioning 
of the second diagonal block D 2.2 is shown in the middle. The smallest matrix 
on the right is the second diagonal block of 1)2,2·

A lgorith m  for solving - { D  — L) =  b

The algorithm discussed in this section solves the system 7r(Z) — L) =  h using 
the efficient vector-(generalized) tensor product multiplication algorithm when 
there are no cyclic dependencies in the S.A.N [5, pp. 20- 22]. Here. D and L are 
respectively diagonal and strictly lower triangular matrices. In the absence of 
cyclic dependencies, all tensor products in a SAN (see ecjuation (1 )) may be 
ordered (and relabeled) such that each matrix in each tensor product has entries 
with functional dependencies, if at all. only to the automata that come before 
itself in the given ordering. .A. SAN that lacks cyclic dependencies may be

written in the form · ·; ........
Remember that the arguments in the square brackets of each matrix indicate 
dependencies that may exist among automata. For instance, transitions in 
automata 3 may depend only on the states of automata 1 and 2, but not on 
the states of others. Before we use the algorithm, we make sure the automata 
are ordered appropriately.

The initial call to the recursive algorithm is SolveD-L(l, states, n, it, b). The 
first parameter id[= 1) corresponds to the level of block partitioning. It might 
also be thought of as the current level automaton number. The initial call at 

level 1 partitions the global descriptor into rii blocks each of order n|I:2 ^1'· The 
second parameter states, an array of size N, stores the state of each automa­
ton to be used in function evaluations. For instance, if we are solving the ¿th 
diagonal block (see equation (4)) in the first call (i.e., no recursive calls have 
been made yet), the state of automaton 1 is i. The parameter states is also 
used to determine the scalar multipliers that form the diagonal blocks. For 

example, in order to solve the smallest block in Figure 4.1, we need to mul-
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SolveD-L(z(/, states, f irs t , tt, b)
1. nright =  nid+iTiid+ 2  ■ --riM
2. if {id =  N)

• T =  0

• for e =  1 to 2E +  iV

o T =  T +  diD^^^^^states] — [states])
• Solve TTfirst —n,\/ + l:n r̂T =  bf¡rst—ny+l:nM
• return 

else
• states[id\ =  Uid
• SolveD-L(ic/ +  1, states, first,  r, b)

3. - f i r s t  =  fir s t
4. hfirst =  f ir s t  — [nidiiright) +  1
5. for trow =  Uid dovvnto 2

• 7T f ir s t  =  TT firs t — nright +  1
• states[id\ — irotu
• for e =  0 to £■

O b =  T^Trfirst:nrighti î=id+lQe‘ [̂''̂ ^̂ ^̂ ^̂ ]̂
0 for A; =  1 to irow — 1

o Reset states[{id +  1 iV] to the first indexed states of 
automata {id + 1 ) to N  

o for i =  1 to nright
. j  — Jl¥-^ rl̂ T

i l j= l  e[states[j]^states[j\)

^hfiTst-\-(k — \)nright-\-i—\ ^hJirst-{-[k — l)nTight-\-i—\

* Update siaies[('ic/+  1) , iV]
for automata {id +  1) to iV

• SolveD-L(fd +  I, states, kf  irst — nright +  1, tt, b)

Figure 4.2: The recursive lower triangular solution algorithm for SANs

tiply the lower triangular matrix with d̂2,2^ ,̂l· See also step 2 in
the SolveD-L algorithm; if e corresponds to the corrector of a synchronizing 

event, [states] =  0. Furthermore, we represent matrices arising from lo­
cal automata by e =  2E +  1 , . . .  ,2E +  N m step 2. We determine both the 
coordinates of the scalar multipliers and the current states of lower indexed 
automata using states. The initial contents of .states is irrelevant since it is 
updated when deemed necessary. The third parameter f ir s t {=  n) is set to 
the size of the unknown vector in the current call. The fourth parameter is
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the solution vector initially set to tt,· =  1/n Vi and overwritten with the new 
approximation at each iteration. The last parameter b is the right hand side 
of the lower triangular solution. The algorithm assumes the generator matri­
ces of automata are available globally. Since the algorithm implements a back 
solution and computes the last unknown (subvector) first, we use T̂’/irst-.n̂  to 
denote the subvector of x with first element xfirst and length n¡\f.

Vector-tensor product multiplications arising from the local and synchroniz­
ing event generator matrices (see the for-loop on e in step 5 of the algorithm) 
may be reduced to scalar-vector multiplications (see the third statement from 
the bottom in step 5). For each block in a row, a vector-tensor product mul­
tiplication possibly with functional transitions depending on the current state 
of the automata at that level (see iroic in step 5) is recpiired. .An efficient 
approach is to loop on blocks in a row (see the for-loop on k in step 5) because 
in each row all blocks below the diagonal have a common vector-tensor prod­
uct multiplication and all functional entries in these blocks use the same irotu 
value while being evaluated (see ecpiation (4)). It is also observed that many 
matrices encountered in the test problems are zero, have zero diagonals, have 
zero strictly lower or strictly upper triangular parts. We have taken advantage 
of this as well. The actual timings depend heavily on such implementation 
details.

Gauss—Seidel algorithm

The algorithm given in Figure 4.3 implements Gauss-Seidel for solving a SAN 
in the functional case assuming that a splitting {D — L — U) for the S.AN 
descriptor and an initial approximation x  are available. Remember that the 
triangular solution overwrites the input approximation with the new approx­

imation on return from the call. Upon termination it gives the number of 

iterations performed.
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• it =  0
• Repeat until convergence 

o it =  it A 1
o Compute b =  irU 
o SolveD-L(l, n, 7T, 6)

Figure 4.3: The Gauss-Seidel algorithm using SolveD-L

4.2.3 Successive Overrelaxation

We now express the SOR method as := +  (1 — w)
AO

A O ■ . where>''SOR·
is the (k +  l)st approximation of GS, t̂ ŝor approximation

of SOR. and lu is the relaxation parameter (i.e., a weighing factor) satisfying
0 < w < 2.

4.3 Block Methods

We argued that one can perform a lower triangular back solution on the blocks 
of order at the final depth of recursion: see the third bullet in step 2 of the 
SolveD-L algorithm. Instead of doing this, one may choose to solve these blocks 
directly, i.e., by Gaussian elimination (GE). This approach, we call block GS, 
is likely to decrease the number of iterations since blocks at each iteration are 
solved exactly. When doing this, the right hand side b that goes into SolveD-L 
is computed in a slightly different manner. Now one must exclude the strictly 
upper triangular parts of the matrices corresponding to the last automaton 
from the multiplication. That is,

V /‘> 06 «  =
- ¿=1

Q A )
e=l k = l  i = l  i = k + l

What has been excluded from the new right hand side must be included at 
level N  in step 2 of the recursive back solution algorithm. The matrix that 
corresponds to automaton N  at step 2 must include the whole matrices that



correspond to synchronizing events, their diagonal correctors and to local au­
tomata, not just the lower triangular parts. The matrices of order n.A/· formed in 
this way at the deepest level of recursion for each one of the diagonal
blocks will be solved using GE. Even though the space requirement is larger, if 
the decrease in the iteration count is substantial the cost of solving the blocks 
directly is offset by a smaller overall solution time. Another possibility is to 
terminate recursion earlier and solve larger blocks. Also one can choose to 
generate and store larger blocks at the outset, then use these at each iteration 
(see the concept of grouping in [6, pp. 13-14]).

In the e.xperiments, we noticed an interesting feature of block methods.

R em ark  4.3.1 For a block coefficient matrix with lower (upper) triangular 
diagonal blocks in equation (S), backward (forward) block GS/SOR is equivalent 
to point GS/SOR.

The remark follows from inspecting the linear equations in systems with the 
described nonzero structure.
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4.4 An Upper Bound on SolveD-L

In this section, we provide an upper bound on the number of multiplications 
performed in the SolveD-L algorithm for point GS (see subsection 4.2.2). Re­
member that multiplying the approximate subvector f j  with block (j, i) j  > i of 
the descriptor at the first level partitioning can be e.xpressed as 
ê(] Qe^ )̂· index j  in this expression changes, the product

Qe^̂ ) should be reevaluated for each value of j  in case there are func­
tional dependencies among automata. At worst, the value of the functional 

rate remains constant for all blocks in the same row. We use the efficient 
vector-(generalized) tensor product multiplication algorithm that has a time 

comple.xity of 0(111=1  ̂ tensor product with N  matrices each of
order n,·. This complexity result assumes that all matrices that participate in 
the multiplication are dense.
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In the following, T,· represents the number of multiplications performed in 
SolveD-L when the matrix to be solved is partitioned into n,· blocks each of 

order riiLi+i nj.

T i =  E  (n¿ - 1 )  n  . nj n j  +  i —
j=¿+l i=¿+l

9 N
I TT I 'TH------------- I I  rij +

2 Nnr -  Ui
n  n,

j=i+l

Ty =  E N

j-i+l
n y {n y  — 1)

for i <

, n ;v (n .v - l )  , ^H-------------------l· ENni ;̂ + TlA¡.

The initial call to SolveD-L views the globed matrix as partitioned into ni 
blocks each of order ni=2 «̂· bounding Ti given by

Ti =  E
N N

(«1 -  1) n  S  ” < + o n  ««· +
9 A'n\ — ri\

JJ u, -1- UiTi.
i—'2 i—2 i—2

The last term niT2 of T\ means in the next call we solve n\ diagonal blocks of 
order rii^2 recursively. The term that is inside the E  parentheses arises from 
the multiplication of the current approximate subvector with tensor products 
corresponding to E synchronizing events. The first term (?2i — 1) 01^2 ^^^2

inside the parentheses is for the multiplication of the current approximate sub­
vector with all blocks below the diagonal due to a synchronizing event. Re­
member that for each row of blocks all such multiplications are the same (hence 
we have ni — 1 of them), however each of the blocks below the diagonal gets 

multiplied with a different scalar giving the second term {n\ — n i ) /2 n !^2 

side the parentheses. In the first level of partitioning, (nl — n i)/2  is simply the 
number of blocks below the diagonal and n ¡^2 length of the subvector.
The second term of Ti is for the number of scalar multiplications performed in 
computing the current approximate subvector-tensor product multiplication 
due to local automata. Note that the actual vector-tensor product multiplica­

tions are accounted for as the first term inside the E  parentheses.

In T(v, we have the number of scalar multiplications due to synchronizing 
events and due to local automata as the first and the second terms, respectively. 
The third term is for the number of multiplications performed in computing 
the diagonal corrector elements (i.e., each of the n/v diagonal elements in a 

block gets multiplied with the diagonal elements of the previous N — I levels
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and this happens for all E synchronizing events), and the last term is for the 
number of divisions made at level N  to obtain the solution.

In order to find a closed form, vve write

Ti =  E (ni -  1) +

+  ni E

i=2 i=2
N N

n j  — Til 
9 n

1=2

2 N
. '^1 “  TT ^

+  ;; 11

N

(n 2  -  1 ) H  X ]  H  Hi

r -V N
< E

¿■=3 ¿=3
N

t=3
+

¿=2
2 Nnf, — Tl2 ‘

1 3  rii +  n-iTz
¿=3

n - ' . - E ’-. +  T H ·n;
.¿=1 ¿=2 

.V
1 = 1

N

i= l

■ N N N

n  XI +  2̂ n
.¿ =  1 1=3 ¿=1

 ̂ T—r
+ —  n  « +  «1^ 2 7:2 3̂

1 =  1
N

<
i=i

< E

< · ·

< E

■ N
I

¿=2 
.V N

Y^rii +  Y^ m
Lz = 2 ¿=3

+ E
■ N

Y ^ i
,z=3

no
Ui U2

+ — +  —  ^ 9 9 Hi/2973

N

i=l

E
n  "^('^^1 ”1" 2^ 2) +

ni TI2 

9

-I
JJ n, + ni'/iors
z =  l

r :V N
Y r i i  + ■■■ + Y r i i
1 = 2 ¿=N

N-l
+ JJ n,iTj\[.

i =  l

N

J][  ̂i
z = l

N - l

t E >г7г;
z=l

N N - l  N

n  + o XI nz=l z=i ¿=1

Noting that
N - l   ̂  ̂ N

3 3  UiTy =  - E N um 13 + :^EN 33 '2.· + 13 ”'' + 9 II
i= l  ¿=1 i= l ¿=1 z =  l

vve get the (loose) bound
o N N 1 iV .V

Ti < +  9
¿=1 ¿=1 i= l 1=1

Similarly one can find an upper bound on the number of multiplications 

performed in computing the right hand side b as ( EN+1 )  HjXi n,· n l l i  ^1· Here, 
E N  is due to synchronizing events and 1 is due to local automata. Each tensor 
product arising from local automata has one upper triangular matrix; all others 
are identity. It is not surprising to find the total number of multiplications 

performed in one iteration of the GS method on a SAN descriptor for the 

algorithm given in this paper to be 0 { E N  ni ni)·



Chapter 5

Numerical Results

5.1 The Problems and the Experiments

In order to make illuminating comparisons, we implemented power, Jacobi, 
GS. and SOR methods. We carried out experiments using both backward and 
forward versions of GS (and hence SOR) together with block versions of Jacobi. 
GS, and SOR methods. In block implementations, we terminate recursion at 
the deepest level and solve the blocks of order n/v using Gaussian elimination as 
discussed in Section 4.3. During the experiments we used a stopping criterion 
of between consecutive approximations. That is, we computed a residual
vector as the difference between consecutive approximations, and used the 2- 
norm of this vector as the stopping criterion. We used a uniformly distributed 
probability vector as the initial approximation for all experiments. We ran 
all the experiments on SUN Sparcstation 4’s each with 32 megabytes (MB) 
of RAM. All the algorithms are implemented in C + +  language and the new 
methods are incorporated into the software package PEPS [12]. Regardless of 
its size, each problem produced a smaller number of iterations in either the 
backward or the forward approach; we present results of the better approach.

We experimented with three problems. The first two, resource sharing and 
three queues, are explained in [5]. The third one, the model of a mass storage 
system, appears in [3]. For the mass storage example, we experimented with

ot
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different orderings of the automata. Obviously, ordering of automata is likely 
to have an effect on the iteration count. The efficient vector-tensor product 
multiplication algorithm itself imposes an ordering on the automata. In order 
to use other orderings, a permutation vector may need to be introduced to the 
multiplication algorithm. We experimented with orderings that do not require 
permutation. We also tried orderings different from the original ordering by 
taking advantage of the position of identity matrices in tensor products. Such 
orderings follow from Lemma 5.5 and its companion remark in [5, p. 16].

Modeling with SANs is still in its infancy, and only recently have researchers 
started considering large and comple.x problems. Issues related to cyclic depen­
dencies are currently under investigation. Lemma 5.8 and Theorem 5.2 in [5] 
show how one can handle cyclic dependencies in generalized tensor products. If 
the functional dependency graph is fully connected there is not much that can 
be done to improve the complexity of vector-generalized tensor product mul­
tiplication. On the other hand, if the cutset of the cycles in the dependency 
graph has a small number of automata, then a more efficient vector-generalized 
tensor product multiplication algorithm can be used. However, this multiplica­
tion will still take much longer than that of a vector-generalized tensor product 
lacking cycles. The smaller the cutset, the better the improvement. Moreover, 
at the end of Section 6 in [5], it is indicated that Theorem 5.2 needs to be 
used only when routing probabilities associated with synchronizing events (i.e., 
descriptors of slave automata due to synchronizing events) are functional and 
result in cycles within the functional dependency graph. The occurrence of 
this situation is suspected to be rare by the authors of [5]. We have not seen 
such a case. However, it is still not impossible to have generalized tensor prod­
ucts with dependency cycles. We should emphasize that no attempt has been 
made to avoid cyclic dependencies in the modeling phase of the mass stor­
age problem. In [6], the last paragraph of subsection 4.3 discusses the results 
of some e.xperiments with artificially created cyclic dependencies. There it is 

mentioned that cycles have a detrimental effect on solution time, as expected. 

As for ordering the automata in the case of non-cyclic dependencies, we think 
it should not be very difficult. It is an implementation issue. However, we have 
purposefully concentrated on orderings that do not require the introduction of
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Table 5.1: Storage Requirements and Generation Times for All Problems

Prob. 1 Desc. Sparse Sparse
N P n nz nz gtime
12 1 4,096 48 28,684 1
12 6 4,096 48 40,960 1
12 10 4,096 48 53,236 1
16 1 65,536 64 589,840 26
16 8 65,536 64 851,968 26
16 15 65,536 64 1,114,096 27
20 1 1,048,576 80 11,534,.356 870
20 10 1,048,576 80 16,777,216 889
20 19 1,048,576 80 22,020,076 882

Prob. 2 Desc. Sparse Sparse
c\ C‘2 C3 n nz nz gtime

5 5 10 2,500 105 11,875 0
10 10 10 10,000 145 50,960 1
10 10 20 40,000 225 205,000 6
15 15 20 90,000 265 471,605 13
15 15 .30 202,500 345 1,063,125 30
15 15 50 562,500 505 2,957,025 84
20 20 50 1,000,000 545 5,315,100 147

Prob. 3 Desc. Sparse Sparse
C iV, n nz nz gtime
26 6 6,480 95 39,960 1
51 11 73,205 200 479,160 14
76 16 327,680 330 2,191,360 86

101 21 972,405 485 6,575,310 331

a permutation vector. Searching for optimal orderings and relaxation param­
eters when testing newly devised algorithms is a problem in its own right and 
we have not attempted experimenting with all N1 orderings of automata.

The main advantage of using SANs is memory efficiency as opposed to time 
efficiency. We implemented power, Jacobi, GS, SOR methods and their block 

versions for sparse matrices in the Harwell-Boeing format so that a compar­

ison can be made. The sparse matrices are generated using the descriptors, 
which are also stored in sparse format. In Table 5.1, we present the sizes of 
the problems, the number of nonzero elements stored in sparse matrices and
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descriptors, and the generation times of the sparse matrices. The generation 
times of the sparse matrices should be added to the solution times of the sparse 
methods. In the table, nz denotes the number of nonzeros either in the de­
scriptor approach (Desc.) or the sparse matrix approach (Sparse), and gtime 
denotes the global matrix generation time in sparse format. We should re­
mark that identity matrices arising in synchronizing events or local transitions 
are kept in a special data structure and do not contribute to the space com­
plexity of the descriptor approach. The generation time of the descriptor in 
each problem is negligible and hence not reported. Since one is limited with 
a certain amount of core memory on a target architecture, we report results 
with sparse methods only in problems for which we could generate and store 
the global transition rate matrix. That we could solve larger problems using 
the sparse matrix approach if we had used a larger core is immaterial. In this 
work, we aim at investigating the 'h'elative” worth of the SAN approach com­
pared to the sparse matrix approach for the solution methods at hand on a 
target architecture. Research along other viable alternatives for handling large 
numbers of nonzeros in sparse matrices is also of interest to researchers (see 
[S], for instimce). In the following re« refers to the optimal reUixation param­
eter, it and time denote respectively the number of iterations and the CPU 
time (in seconds) to converge to the prespecihed tolerance. The bold figures 
in Tables 5.2-5.9 indicate the best run times for the particular problem. In 
the following sections, we describe the problems and present the results of the 
experiments with the descriptor methods and the sparse matrix methods.

5.2 The Resource Sharing Problem

The resource sharing problem has four parameters. The number of processes N, 
the number of processes P  that can simultaneously access the critical resource, 

the rate NP at which each process wakes up and tries to acquire the resource, 
and the rate at which each resource using the process releases the resource 
for i - 1 , 2 , . . . . N .  All automata have two states implying n =  2‘^. In our 
experiments we used =  0.04 and =  0.4 for f =  1 ,2 , . . . ,  N.  This model 
does not have any synchronizing events: it has functional transition rates but
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Table 0.2: Results of Desc. Experiments with the Resource Sharing Problem

Prob. 1 Power GS SOR Block GS Block SOR
N P it tim e it t irrte it tim e it tim e it tim.e

12 1 142 83 2 2 1.0 2 2 2 2 1.0 2 2
12 6 222 131 26 23 1.3 18 16 26 22 1.3 18 15
12 11 222 123 28 25 1.3 18 16 26 22 1.3 18 15
16 1 188 2.299 2 39 1.0 2 40 2 38 1.0 2 38
16 8 294 3.793 32 613 1.3 22 420 32 -592 1.3 22 402
16 1-5 294 3.-562 34 650 1.4 22 420 32 589 1.3 22 402
20 1 236 63.265 2 825 1.0 2 826 2 740 1.0 2 740
20 10 362 94.157 38 15.0-39 1.5 26 9,777 38 13,764 1.4 24 8,734
20 19 364 89.126 40 15.554 1.5 24 8,891 40 14,311 1.5 24 8.673

Table 0.·): Results of Sparse eriments with the Resource Sharing ProblemO

Prol) . 1 Power GS SOR B lock GS Block SOR
.V P it t im e it t im e it t im e it t im e it t im e

12 1 142 4 2 0 1.0 2 0 . 2 0 1.0 2 0
12 6 222 9 26 1 1.3 18 1 26 2 1.3 18 1
12 11 222 12 28 2 1.3 18 1 26 2 1.3 18 2
16 1 188 118 2 2 1.0 2 2 2 3 1.0 2 3
16 8 294 255 32 30 1.3 22 22 32 52 1.3 22 37
16 15 294 326 34 39 1.4 22 29 32 63 1.3 22 44

no cyclic dependencies. Since all matrices are identical for the given and 
fCK reordering the automata is futile. The resource sharing problem does not 
converge for .Jacobi and block .Jacobi methods. .As for backward block GS and 

SOR methods, they are expected to give (slightly) smaller iteration counts than 
their point versions when P  is closer to /V than to 0. This follows from Remark 
4.1 and is particularly substantiated for the GS iteration. When P is small 
compared to .V. many of the upper diagonal elements of the 2 x 2 matrices 
evaluate to zero and there is no advantage of using block methods. On the 
other hand, when P is larger, many functional rates evaluate to nonzero values 
and the block methods start to make a diiference, however very little due to 
the extremely small block size. The results of the experiments are summarized 
in Table 5.2 and in Table 5.3. Observe that block SOR takes approximately 
1/lOth of the time power method takes for the case N =  20, P  =  19, in the 
descriptor approach. We were not able to solve the largest three instances of 
the this problem with a sparse solver.
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Table 5.4: Results of Descriptor Experiments with the Three Queues Problem

Prob. 2 Power Jacobi GS SOR
Cl C2 C3 i t t im e it t im e it t i m e it t im e

5 5 10 696 82 450 66 164 ■21 1.6 102 17
10 10 10 912 411 590 .336 226 1.54 1.6 142 98
10 10 20 1,084 1,954 726 1,658 270 722 1.6 168 455
15 15 20 1,548 6.215 1,064 5,.390 404 2,485 1.6 256 1,577
15 15 30 1,664 15.052 1.154 13,103 436 6,288 1.6 274 3,838
15 15 50 l ’874 47,240 1,318 41,.535 492 21,726 1.6 310 11,962
20 20 50 2,306 101.680 1.642 91,187 618 44,002 1.6 390 27,123

Prob. 2 Block .Jacobi
Cl C2 C3 it time

5 5 10 412 110
10 10 10 540 557
10 10 20 668 2.868
15 15 20 998 9.235
15 15 30 1,074 24.246
15 15 50 1,234 82.215
20 20 50 1,540 186.781

5.3 The Three Queues Problem

The three cpieues problem is an open cjueueing network of three finite Cci- 

pacity queues respectively with capacities C\ — 1, CL — 1, and C3 — 1 in which 
customers from queues 1 and 2 (try to) join cpieue 3. The customers that 
come through queues 1 and 2 are referred to as type 1 and type 2 customers. 
The arrival and service rates of queue i are respectively given by A,· and /q for 
i =  1.2. Queue 3 has a service rate of for type 1 cind a service rate of /¿3.̂ 
for type 2 customers. The network is modeled using 4 automata A '̂K
^(3i) ^ (32) with respectively Ci, C2, C3, and C3 states. The state space size is 

given by n =  CiC-iCl- Other details of this queueing network may be found in 
[5]. The parameters used in the experiments are Ai =  0.4, A2 — 0.3, ¡jL]_ -  0.6, 
l-i2 =  0.5, /[¿3, =  0.7, and /¿3, =  0.2. This model has both synchronizing events 
and functional rates; it does not have any cyclic dependencies.

For the three queues problem, the automata are ordered as
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Table 0.5 : Results of Sparse Experiments with the Three Queues Problem

Cx
Prob.

C-2
2
С.з

Power 
it time

Jacobi 
it time it

GS
time

SOR
it time

5 5 10 696 9 450 6 164 2 1.6 102 1
10 10 10 912 49 590 32 226 13 1.6 142 9
10 10 20 1,084 238 726 1-58 270 6-5 1.6 168 44
15 15 20 1,-548 778 1.064 -539 404 220 1.6 256 153
15 15 30 1,664 1,916 1,1-54 1319 436 -541 1.6 274 373

Prob.
c \ C l

2

Сз
Block

it
.Jacobi

time
5 5 10 412 17

10 10 10 540 91
10 10 20 668 654
15 15 20 998 2.186
15 15 30 1,074 6.922

. Backward SOR gives the best results. However, block versions of Gauss- 
Seidel and SOR do not make any difference since the matrices that correspond 
to the last automaton are all lower triangular. Block .Jacobi gives smaller it­
eration counts than point .Jacobi in this case as expected, yet the difference 
is negligible. The results of the experiments with descriptor methods are pre­
sented in Table 5.4. Note that point SOR takes a ciuarter of the time the 
power method takes for the largest problem that has 1,000,000 states, in the 
descriptor approach. The results of the experiments with the sparse solvers are 
presented in Table 5.5. in this problem, sparse methods could not be applied 
to the largest two instances.

5.4 The Mass Storage Problem

Fortunately, we were able to try all iterative methods in the mass storage 
problem (see [3]). The model is used to investigate the effects of interactive 
retrieval (get) and storage (put) requests, migration workload, and purging 
workload on a robotic tape library (RTL). The first (i.e, online storage) layer
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Table 5.6: Parameters for the Mass Storage Problem.

hp. 
¡.t:
T:
t't’ 
Cl ·
iii:

n·)·

n'y.

C -  1: 
// :
L:
C:
M:
R:

7·

arrival rate of get requests to the system 
arrival rate of put requests to the disk cache 
hit ratio of get requests at the disk cache 
hit ratio of put requests at the disk cache
service rate of tape drives (includes robot tape mount and file seek times)
total number of available tape drives in the tape server
number of tape drives dedicated to interactive get requests
number of tape drives dedicated to the migration queue (T = ti + tm)
number of requests in the interactive tape queue (including any request(s)
currently being served) (0 < rii < jVi -  1)
threshold of requests at the interactive tape queue above which one tape 
drive from the migration tape queue is borrowed
number of requests in the migration tape queue (including any request(s) 
currently being served) (0 < n-2 < N2 -  1 )
number of put requests written to the disk cache which have not been 
migrated to the tape library yet (0 < ^3 < .V3 — 1) 
maximum capacity of the disk cache.
high water-mark for the disk cache used to activate the purging workload 
low water-mark used to terminate the purging workload 
current occupancy level of the disk cache (\L{C -  1)] < C < \H(C -  1)]) 
inter-migration time
number of stages in the Erlangian approximation of the periodic migration 
workload (i2 > 0 )
rate of the Erlangian approximation of the periodic migration workload
(7 = l/m)

usually consists of magnetic disks which provide fast access time but at a 
relatively high cost per byte. The second (i.e., nearline storage) layer utilizes 
robotic tape libraries (RTL), and the third (i.e., offline storage) layer consists 
of free-standing tape drives with human operators performing the mounting 
and unmounting of media from the drives. Since the interest is mainly in 
the performance of RTLs, it is assumed that the system to be modeled only 
consists of an online and a nearline layer. The parameters in this problem are 

ciuite a few, and we present them in Table 5.6. The unit of time for the given 
parameters is minutes. The system is modeled using five automata

^ ("3)̂  and of order respectively — L)(C — 1)] +  1, Ni, No·, A3,
and R giving

n =  L)(C -  1)1 +  l)/ViyV2iVsR.
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Table 5.7: Re.sults of Descriptor Experiments with the Mass Storage Problem

Prob.. 3 Power Jacobi GS SOR
C Ah it time it time it time it time

26 6 178 78 1,522 1,064 254 217 1.7 168 144
51 11 612 3,062 2,084 17,765 334 3,485 1.6 228 2.354
76 16 1.146 29,432 2,130 92,364 428 21,207 1.5 306 14,910

101 21 1.860 145,162 2,842 394,517 668 104.229 1.0 454 70.774

Prob. 3 Block Jacobi Block GS Block SOR
C N\ it time it time гСх it time
26 6 >  2,700 10“ ’ 158 140 1.7 98 88
51 11 1.-598 18.676 156 1.673 1.6 106 1,125
76 16 > 3.000 10“ ’ 286 14.759 1.7 170 8,876

101 21 1,935 370.166 470 79,665 1.7 282 46,708

The mass storage model has both synchronizing events and functional rates; it 
does not have any cyclic dependencies.

We used =  \p =  1.5. f.i =  0.61. =  hp =  0.3, ti — t,n =  2. L =  0.75,
/■/ =  0.05. M  =  40, R = 0 (see [3. p. 5] for details). The automata are 
ordered as In Table 5.7, we provide results for
both block and point methods of the descriptor approach. Forward SOR gives 
the best results: its block version decreases both the iteration counts and the 
solution times. The information in Table 5.7 regarding block .Jacobi should be 
interpreted differently. The two entries with > signs in the iteration column 
and 10“ ’ in the time column indicate that the methods are executed until the 
2-norm of the residual vector is on the order of 10“ ’ , and the iteration counts 
reach the numbers in the iteration column. The methods are not executed 
until the 2-norm of the residual vector is on the order of 10“ °̂ since these runs 
take cpiite some time.

Interestingly, an alternative ordering, namely \ 
gives better results for both block GS and block SOR as shown in Table 5.9. 
Note that it is possible to solve the largest system in less than two hours.

A final remark is that, for a given problem, the optimal parameter of 

(block) SOR and therefore the number of iterations taken to convergence
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Table 5.8: Results of Sparse Experiments with the Mass Storage Problem

Prob. 3 Power .Jacobi GS SOR
C Ni it time it time it time lÛ it time
26 6 178 7 1.Ô22 62 254 11 1.07 240 11
51 11 612 302 2,084 1018 334 177 1.06 318 182
76 16 1,146 2,763 2.130 5.014 428 1,056 1.06 406 1,112

Prob. 3 Block Jacobi Block GS Block SOR
C Ni it time it time it time

26 6 > 2,700 10-’ 158 16 1.09 146 16
51 11 1,598 2.388 156 230 1.10 144 219
76 16 > 3.000 10-’ 286 2.289 1.07 268 2.196

Table 5.9: Results of Other Experiments with the Mass Storage Problem

Prob.

C

. 3

■

Descriptor 
Block GS
it time

Descriptor 
Block SOR 

u;« it time

Sparse 
Block GS 
it time

Sparse 
Block SOR 

7.0, it time
26 6 44 41 1.0 44 41 44 5 1.0 44 5
51 11 34 370 1.0 34 370 34 50 1.0 34 50
76 16 32 1,715 1.0 32 1,715 32 255 1.0 32 255

101 21 40 6,797 1.1 36 6,115 - - - -

in the descriptor approach may be (significantly) different than those of the 
global generator in sparse format. This is something we observed in the mass 
storage problem for the ordering For instance,
uv - i .l ,  it - 144, time =  219 for block SOR in sparse format for the given or­

dering when C =  51, iVi = 11. The cause seems to be rounding errors incurred 
in generating and storing the global matrix.
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Conclusion

In this work, we presented iterative methods based on splitting a SAN de­
scriptor. Block versions of the same methods follow directly from considering 
blocks of order n,v, the order of the last automaton, in the given ordering. 
Larger blocks may be considered by grouping several automata at the end of 
the given ordering and terminating recursive calls of the lower triangular back 
solve algorithm when the first automata in the group is encountered.

By deriving cin upper bound on the Gauss-Seidel and SOR algorithms for the 
number of multiplications that is in the same order with the vector-descriptor 
multiplication, we show that the stationary methods are as efficient as non- 
stationary methods that do only vector-descriptor multiplications. Hence, we 
show that the solution times of a specific problem with different approaches 
depend only on the behavior of the algorithm for the given problem.

An important and frec[uently overlooked drawback of Markov chain solvers 
(including SAN solvers) that attempt at computing each and every stationary 

probability is the memory consumed by double precision temporary storage 
allocated to the current approximation, possibly the preceding one, and other 
work arrays. A vector of one million elements requires 8 MB of memory. 
.Although not as large as the memory taken up by double precision nonzeros in 
the sparse matrix approach, these vectors may end up taking substantial space 

in iterative methods.



CHAPTER 6. CONCLUSION 68

On a desktop workstation with 32 MB of RAM, one can compute the sta­
tionary distribution of a SAN descriptor with one million states in core on the 
order of hours using block SOR. On the other hand, the largest system that 
can be solved by the sparse matrix approach may be limited to less than one 
tenth of that could be solved using SANs if the generator is reasonably dense 
(as in the resource sharing problem; it takes roughly 176 MB to store the gen­
erator matrix in sparse format for the most difficult case). We believe the S.AN 
modeling methodology has its merits and drawbacks. One may easily observe 
that sparse methods must be used whenever possible. The .S.A.N formalism is 
likely to gain popularity as a viable modeling and analysis tool as faster solvers 
become available.



Appendix A

Incorporating a New Model To 
Peps

A .l Preliminaries

This section expiains how to incorporate a performance mociei. cieveioped as 
a SAN to the software package Peps [12]. It is assumeci that the mociei to 
incorporate must be avaiiabie; that is, iocai matrices anci synchronizing event 
matrices with their diagonai correctors must be avaiiabie. A mathematicai 
formuiation of functional rates should also be available, i.e.. one must know 

how to evaluate the function given the state of the automata. In the remaining, 
we use ’Peps', to mean the latest revision of the package as it is implemented at 
Bilkent University. We use ‘original Peps’ to mean the version that is supplied 
to Bilkent University as in [12]. There are two steps to complete the task 
of adding a new model. First, one should generate a text file describing the 
model; second, the necessary code for evaluating the functional rates should be 
incorporated to the package. The two sections that follow explain these two 

steps. The final section presents the text file for an example model.

69
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Table A .l: Matrix Types
value type meaning
0 sparse sparse matrix in HBF format
1 binary NOT USED
2 element NOT USED
3 diagonal NOT USED
4 identity identity matrix
0 zero zero matrix

A .2 Generating the Text File

The text file, which is given a .dsc extension stores the descriptor of a .SAN in 
a predefined format. For instance, the name of a text file of the mass storage 
model in [3] can be given the name mass .dsc or m -6 -6 -6 -6 .dsc.

The largest portion of the text file is used for storing the descriptor matrices 
of the S.AN. A few lines of other information is given in the text file. Before 
going into the format of the file, we discuss how matrices are represented.

A .2.1 Format of a Single Matrix

All matrices, i.e., local generator matrices, synchronizing event matrices and 
diagonal corrector matrices are represented in the same way. .A matrix consists 
of several consecutive lines of text in the file.

In the first line in the portion of the text file describing a matrix, there 
should be a single number representing the type of the matrix. The possible 

values are 0,1.2,3,4.5 as shown in Table .A.l.

The first five matrix types are defined in original Peps; however, binary, 
element, and diagonal types are not used in Peps and original Peps. The zero 

matrix type is introduced in Peps.

In the next line there should be two integer values separated with a space. 
The first integer denotes the number of nonzero elements in the matrix. Since
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Table A.2: Types of Nonzero Values
value type meaning
0 rate a rate for continuous time MCs
1 probability NOT USED
2 function a functional entry
.3 parameter NOT USED

all matrices are square, the second number specifies the order of the matrix.

For zero and identity type matrices, these two lines completely specify a 
matrix. For a sparse matrix, which is neither a zero matrix nor an identity 
matrix, the lines following the first two describe the nonzero elements of the 
matrix. We follow the compact column format representation of sparse ma­
trices. The number of lines that specify the nonzero elements of the matrix 
should be equal to the first integer given in the second line. In other words, 
a separate line is reserved for each nonzero element. The nonzero elements of 
the matrix are stored in a double precision array one column after the other 
starting from column zero.

A nonzero element is described using three numbers separated by spaces. 
The first number, an integer, defines the type of the element. There are four 
types of elements (see Table A.2). All of these types are defined in original 
Peps, however the probability and parameter types so far have no use in Peps 
and original Peps. The second number is the real value of the corresponding 
entry in the matrix for rate type elements. This entry is not currently used for 
function type elements. The third number is for the ID number of the function 
for functional elements in a C + +  implementation file. This entry is not used 
for rate type elements.

In the line following the one that contains the last nonzero element, the row 
indices of all nonzero elements are written. The number of integers in this line 
should be equal to the number of nonzero elements of the particular sparse 
matrix. Note that row numbers start from zero in all matrices due to the C + +  
implementation.

In the next line, there should be d + 1 integers, where d is the order of the
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matrix. Each integer specifies the location of the first nonzero element, in the 
array of nonzero elements, of a particular column. That is, the kth integer will 
be the index of the first nonzero element of the A:th column, in the array of 
nonzero elements. The final integer should be equal to the number of nonzero 
elements in the matrix. We illustrate the storage scheme on various e.xamples 
in the next section

A .2.2 Example Matrices

Zero and identity matrices are easy to specify. A zero matrix of order 6 is
written in two lines as:

0

0 6

An identity matrix of order 5 is written in two lines as:

4
5 5

The below sparse matrix containing only real entries

-0 .4 0.4 0
0 -0 .4 0.4
0 0 0

is written as:

0 / /  type of matrix
4 3 / /  number of non-zeros and size of matrix

0 -0 .4 0 / /  first nonzero element

0 0.4 0 /  /  second nonzero element

0 -0 .4 0 / /  third nonzero element

0 0.4 0 / /  fourth nonzero element

0 0 1 1 /  /  rows of non-zeroes

0 1 3 4 / /  column indices for each column
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The matrix below contains both functional and real entries

fo / l 0
0 -0 .5 0.5
0 0 0

It is represented as:

0
4 3
2 0 100 / /  functional element
2 0 101 / /  functional element
0 -0 .5 0
0 0.5 0
0 0 1 1
0 1 3 4

The comments given beside some of the lines should not appear in the actual 
text files. Here, they are given to elaborate certain concepts.

A .2.3 The Text File and Its Parts

The text file is organized as a set of lines. In the first line, there should be 
three integers separated by spaces. The first one stands for the type of the 
model. The model can be a discrete-time model or a continuous-time model. 
Currently both original Peps and Peps work with continuous-time models. The 
possible values are 0 and 1 (see Table A.3).

Table A.3: Model Types
value type meaning
0 discrete NOT USED
1 continuous continuous time model

The second integer is for the number of automata and the third is for the 
number of synchronizing events. Sizes of automata are written in the second 
line. For instance the first two lines of a text file describing a continuous-time 
model with 4 automata and 2 synchronizing events is given below:
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1 4  2 / /  type of SAN, number of automata, number of sync, events
3 4 5 5 / /  sizes of the four automata

In this example, the first matrix is 3 x 3, the second is 4 x 4, the third and the 
fourth are 5 x 5.

After these two lines, the local automata matrices should be written one 
after the other as explained in section A.2.1. Note that the number of local 
matrices should be ecpial to the second number in the first line of the text 
file. Following the local automata, the synchronizing event matrices should 
be written. First, all matrices of the first synchronizing event (including the 
correctors) should be listed, then the second synchronizing event's matrices, 
and so on. For each synchronizing event, the synchronizing event matrix of the 
first automaton should be written followed by its corrector, then the synchro­
nizing event matrix of the second automaton should be written followed by its 
corrector, and so on.

After all synchronizing event matrices are written, the orderings of the rate 
matrices for the synchronizing e\'ents should be written in a single line. The 
rate matrix is the matrix that contains rate values for the synchronizing event, 
i.e.. master of the synchronizing event. Actually these values are not used in 
the stationary vector calculations, but they are used in the thruput calcula­
tions. These calculations are made in the C alcu late function of the tensor. C 
module. For example, in the three C[ueues problem this line should contain the 
integers 1· and 2. Given that the automata are ordered as
this means automaton is the master automaton for the first synchronizing
event and automaton is the master automaton for the second synchroniz­
ing event. For the mass storage example, there should be three integers in the 
same line. Since the generation program is capable of generating any ordering 
of automata, these values will vary with the ordering. However, the three inte­

gers should be the orderings of the Erlangian server, queue three and queue one 
respectively: The C alcu late function takes these values,
retrieves a certain element in the matrices specified by these values, and uses 
the element in thruput calculations. This approach is useful in the sense that il 
some parameters of the example are altered, there is no need to make changes 
in the C alcu late function. Currentlv the onlv use of this line is lor the mass
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storage example in Peps. This line exists in original Peps, but is not used.

The next line in the text file is the last one and is intended to be used as 
the ordering of the automata. The number of integers on this line should be 
equal to the number of automata. In original Peps, this line does not e.xist. In 
Peps, this line is used only for the mass storage example. For the mass storage 
example, the values in this line are used only in function evaluations. Each 
number tells where a specific automaton is located in the given ordering, i.e.. 
the first number explains where the Erlangian server is, the second where the 
cache is. the third, the fourth and the fifth numbers explain where >1*"**. 
and >lb‘2) respectively. For example, 2 0 1 3 4 corresponds to the ordering 

,4 0 m) _

A.3 Evaluating Functional Entries in Peps

In order to implement a functional entry of a matrix in Peps, there are two 
things to do. First an ID number should be determined for the functional entry 
and must be written into the matrix as described in section .A..2.1. Second the 
actual code to implement the function must be incorporated to Peps. The 
code must be added to the module fu n ction .C  and into the C + +  function 
Evaluate_Function. This function’s signature is:

rp Evaluât e_Funct ion (const fu n ction _ id  id ,
const sta te_ id  * params, const in t s iz e )

This function is called for each functional entry. The first parameter id is 
the ID of the functional entry for which the function is called. The second 
parameter paraias is an array of state_ids (basicly integers), whose elements 

correspond to the state of automata. The third parameter s iz e  is the size of 
the array of states. The value returned by this function determines the value 
of the functional entry at the point of call.

ID numbers 0 to 99 are used in the three queues and resource sharing prob­
lems. The mass storage example uses ID numbers from 10000 to 10000+(size of
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the third queue), 100, and 101. The remaining ID numbers can be used freely 
in Evaluâte_Function. There are some declarations in the first few lines. Af­
ter those, one can add code for evaluating functions in a different model. The 
code should be an if-block. The check for the ID range, should be made in the 
if condition, and if the condition evaluates to true, the necessary calculations 
should be performed. The result of the calculation should be returned. That 
is, the if-block should end with a return statement. If the condition does not 
evaluate to true, control should be left to the remaining part of the code. An 
important point is that one must guarantee to return the result with a return 
statement when the ID is in the appropriate range.

In addition to the input parameters of the function, e.xtra information 
that might be needed in function evaluations is available. An array of inte­
gers, automata_sizes, contains the Order of automata. Another integer array, 
ordering, which is intended to be used as the ordering of automata, is also 
available. Since the latter array is supplied in the te.xt file, it might be used 
for other purposes as well. Note that both arrays have as many elements as 
the number of automata.

Below is a sample C-b+ code snippet for evaluating a function as it would 
appear in function .C ;

rp Evaluate_Function(const function_id id,
const state_id * params, const int size)

{
rp result ;
int automata_acc = 0;
automaton_id a;

// Example code starts here 
// You should add your code here 
if ((id >=200) && (idOOO)) { 

switch (id) {
case 200 : if (params[0] > (automata_sizes[0]/2)) 

result = 1.0;
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else
result = 0.0;

break;
case 201 : if (params[2]==0) 

result = 1.0;
else

result = 0.0;
break;
}
return result;

>
// End of sample code

A .4 An Example Text File

Below is an example file generated for the three queues example. Note that 
the comments (i.e., part of lines after the / /  characters) are added to this 
document for explanation purposes and should not appear in the actual text 
file.

1 4 2 
3 3 5 5

// cont. time, 4 automata, 2 sync, events 
// Cl = 3, C2 = 3, C3 = 5

0

4 3
0 -0.4 0 
0 0.4 0
0 -0.4 0

// local automaton of queue 1, sparse type
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0 0.4 0
0 0 1 1  

0 1 3  4 
0
4 3
0 -0.3 0 
0 0.3 0
0 -0.3 0 
0 0.3 0
0 0 1 1  

0 1 3  4 
0
8 5
0 0.7 0
0 -0.7 0 
0 0.7 0
0 -0.7 0 
0 0.7 0
0 -0.7 0 
0 0.7 0
0 -0.7 0 
1 1 2 2 3 3 4 4
0 1 3 5 7 8 
0
8 5
2 0.0 20 
2 0. 0  21 

2 0.0 20 
2 0. 0  21 

2 0.0 20 
2 0. 0  21 

2 0.0 20 
2 0. 0  21

1 1 2 2 3 3 4 4 
0 1 3 5 7 8

// local automaton of queue 2, sparse type

// local automaton of queue 3_1, sparse type

// local automaton of queue 3_2, sparse type
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0

2 3
0 0. 6 0 

0 0.6 0 

1 2

0 1 2  2 

0

2 3
0 -0.6 0 
0 -0.6 0 
1 2

0 0 1 2  

4
3 3
4
3 3 
0
4 5
2 0.0 22
2 0.0 22
2 0.0 22
2 0.0 22
0 1 2  3 
0 0 1 2 3 4
0

4 5
2 0.0 22
2 0.0 22
2 0.0  22

2 0.0 22
0 1 2  3 
0 1 2 3 4 4
4
5 5

// sync, event #1, matrix of queue 1 
// sparse type

// sync, event #1, corrector matrix of queue 1 
// sparse type

// sync, event #1, matrix of queue 2 
// identity type

// sync, event #1, corrector matrix of queue 2 
// identity type

// sync, event #1, matrix of queue 3_1 
// sparse type

// sync, event #1, corrector matrix of 
// queue 3_1, sparse type

// sync, event #1, matrix of queue 3_2 
// identity type
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4 // sync, event #1, corrector matrix of
5 5 // queue 3_2, identity type

4 // sync, event #2, matrix of queue 1
3 3 // identity type
4 // sync, event #2, corrector matrix of
3 3 // identity type
0 // sync, event #2, matrix of queue 2
2 3 // sparse type
0 0.5 0
0 0.5 0
1 2
0 1 2 2
0 // sync, event #2, corrector matrix of
2 3 // sparse type
0 -0.5 0
0 -0.5 0
1 2
0 0 1 2
4 // sync, event #2, matrix of queue 3_1
5 5 // identity type
4 // sync, event #2, corrector matrix of
5 5 // queue 3_1, identity type
0 // sync, event #2, matrix of queue 3_2
9 5 // sparse type
2 0.0 23 //a functional rate with ID 23
2 0.0 22 // a functional rate with ID 22
2 0.0 23
2 0.0 22
2 0.0 23
2 0.0 22
2 0.0 23
2 0.0 22
0 1.0 0 // a rate with value 1.0
0 0 1 1 2  2 3 3 4 / /  row numbers of 9 nonzero elements
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0 1 3 5 7 9
4
5 5

// column 2 starts with nonzero #3, 2 0 22 
// sync, event #2, corrector matrix of 

// queue 3_2, identity type

1 2

0 1 2  3
// rate matrices for synchronizing events 
// ordering of automata

// not used in this example
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