
ITERATIVE f^EÎHODS

BASED ПП SPUTTfNSS
FOR S I0 :;H ASTI€

i Γ̂ '·«Ό#3'
S-yShciTTSD TO THS &£PAhTM£í4T OF COr^PUTER

ENGiNEERîNG AND îNFORwiATJOfî SO & CE

ATO THS ;HST:Tj TS '?T‘ ,.'T: . ;Sc.'.’. !T .•.. ■:C· SC;ST:.T£;
Dir BÎLAb^îT УІЬЛѴЕЙЗПТ

.S'·., ; ' 'î ·Γ - Й-4.liv ^iïÎ^Sï·; '̂ Μ,'ώΜϊ

ІШЙ

ITERATIVE METHODS

BASED ON SPLITTINGS

FOR STOCHASTIC AUTOMATA NETWORKS

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER

ENGINEERING AND INFORMATION SCIENCE

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
MASTER OF SCIENCE

Bv

Ertugrul Uysal
June, 1997

'

СУН
^ 0 2 /'Я

^ G 3 ? 9 ? 8

I certify that I have read this thesis and that in my opin­
ion it is fully adeciuate, in scope and in quality, as a thesis
for the degree of Master of Science.

Asst. Prof. Dr. Tuğrul Dayar(Principal Advisor)

I certify that I have read this thesis and that in rny opin­
ion it is fully adequate, in scope and in quality, as a thesis
for the degree of Master of Science.

Assoc. Pi'of. /Dr. Cevdet .Avkanat

I certify that I have read this thesis and that in my opin­
ion it is fully adeciuate. in scope and in c[uality, as a thesis
tor the degree of Master of Science.

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet Baray, Director of Institut^f Engineering and Science

Ill

ABSTRACT

ITERATIVE METHODS
BASED ON SPLITTINGS

FOR STOCHASTIC AUTOMATA NETWORKS

M.S. in Computer Engineering and Information Science
Supervisor: Asst. Prof. Dr. Tuğrul Dayar

June. 1997

This thesis presents iterative methods based on splittings (Jacobi, Gauss-
Seidel. Successive Over Rela.xation) and their block versions for Stochastic Au­

tomata Networks (SANs). These methods prove to be better than the power
method that has been used to solve SANs until recently. Through the help
of three e.xamples we show that the time it takes to solve a system modeled
as a S.AN is still substantial and it does not seem to be possible to solve sys­
tems with tens of millions of states on standard desktop workstations with the
current state of technology. However, the SAN methodology enables one to
solve much larger models than those could be solved by explicitly storing the
global generator in the core of a target architecture especially if the generator
is reasonablv dense.

Keywords: Markov processes; Stochastic automata networks; Tensor alge­
bra; Splittings; Block methods

IV

ÖZET

Ertuğrul Uysal
Bilgisayar ve Enformatik Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Yrd. Doç. Dr. Tuğrul Dayar
Haziran, 1997

RASSAL ÖZDEVİNİMLİ AĞLAR İÇİN
BÖLÜNME TAB.ANLI

İTER.ATİF YÖNTEMLER

Bu tezde Rassal Özdevinimli .Ağlar için bölünme tabanlı dolaylı yöntemler
(.Jacobi, Gauss-Seidel, Succesive Over Relaxation) ve bunların blok çeşitleri
geliştirilmiştir. Bu yöntemlerin, yakın zamana kadar Rassal Özdevinimli Ağları
çözmekte kullanılan power yönteminden daha iyi oldukları gösterilmiştir. Uç
örnek yardımıyla, Rassal Özdevinimli Ağlar kullanılarak geliştirilmiş bir mo­
delin çözülmesi için gerekli sürenin hala oldukça yüksek olduğunu, ve şu anki
teknolojik imkanlarla, on milyonlar mertebesinde duruma (state) sahip bir
modelin standart masaüstü bilgisayarlarla çözülmesinin pek mümkün gözükme­
diğini buluyoruz. Diğer taraftan Rassal Özdevinimli Ağlar yöntemi ile, tüm sis­
temi ifade eden matrisi bilgisayarın ana hafızasında seyrek şekilde saklayarak
çözülebilecek modellerden çok daha büyük modellerin çözülebileceği görülmüş­
tür. Bu durum, özellikle tüm sistemi ifade eden matrisin yoğun olduğu du­
rumda geçerlidir.

Anahtar kelimeler. Markov süreçleri, Rassal özdevinimli ağlar, Tensör cebri.
Bölünmeler, Blok yöntemler.

To my parents and my sister

VI

ACKNOW LEDGM ENTS

The most I owe to my supervisor. Asst. Prof. Dr. Tuğrul Dayar for his
guidance and support during this study. I would also like to thank my family
for giving more than one can imagine, and all my friends including but not
limited to Ertugrul Mescioğlu , Halit Yddirim, Kemal Civelek and Yusuf Vefalı,
meeting whom has been and is going to be a source of happiness.

Finally. I would like to thank my committee members .Assoc. Prof. Dr.
Cevdet Aykanat and Asst. Prof. Dr. Mustafa Pınar for their valuable com­
ments on mv thesis.

Contents

1 Introduction 1

2 Markov Chains 4

2.1 Preliminaries 4

2.2 Formal Definition of Markov Chains.. 5

2.3 Discrete Time Markov C h a in s .. 8

2.4 Continuous Time Markov Chains 9

2.5 The Steady State Vector for a Markov C hain 11

2.6 Methods for Numerically Solving Markov Chain Problems 14

2.6.1 An Overview 14

2.6.2 Power M ethod.. 16

2.6.3 Methods Based on Splittings.. 17

3 Stochastic Automata Networks 22

3.1 Preliminaries 22

3.2 Tensor A lg e b r a ... 23

3.2.1 Ordinary Tensor .Algebra.. 23

vii

3.2.2 Generalized Tensor A lg e b r a .. 25

3.3 Stochastic Automata Networks 27

3.4 Capturing the Interactions... 29

3.4.1 Functional Transitions.. 29

3.4.2 Synchronizing Events...................................... 30

3.5 Descriptor of a SAN 30

3.6 Efficient Tensor Product Vector M ultiplication................................. 34

4 Stationary Iterative Methods for a SAN 37

4.1 The splitting of a S.VN descrip tor.. 37

4.1.1 An Example Splitting 42

4.2 Iterative Methods Ba.sed on Splittings... 46

4.2.1 J a c o b i ... 46

4.2.2 Gauss-Seidel 47

4.2.3 Successive Overrelaxation 53

4.3 Block Methods 53

4.4 .An Upper Bound on SolveD -L.. -54

5 Numerical Results 57

5.1 The Problems and the E.xperiments... 57

5.2 The Resource Sharing P r o b le m ... 60

5.3 The Three Queues P ro b le m .. 62

5.4 The Vlass Storage Problem... 63

CONTENTS viii

CONTENTS IX

6 Conclusion 68

A Incorporating a New Model To Peps 70

A .l Preliminaries 70

A.2 Generating the Text F i le ... 71

A.2.1 Format of a Single M a t r ix .. 71

.A.2.2 Example Matrices.. 73

.A.2.3 The Text File and Its Parts 74

.A.3 Evaluating Functional Entries in Peps.. 76

.A.4 .An Example Text File 78

List of Figures

2.1 .A transition probability matrix 9

2.2 .A time homogeneous discrete time Markov chain..................... 9

2.3 .A transition rate m a tr ix ... 11

2.4 A time homogeneous continuous time Markov c h a in 11

3.1 Vector multiplication with an ordinary tensor product............ 35

3.2 Vector multiplication with a generalized tensor p ro d u ct........ 36

4.1 Lower triangular part of Q\® Qz partitioned into blocks. . 49

4.2 The recursive lower triangular solution algorithm for SANs . . . 51

4.3 The Gaus,s-Seidel algorithm using S o lv e D -L 53

X

List of Tables

0.1 Storage Requirements and Generation Times for All Problems . .59

•0.2 Results of Desc. Experiments with the Resource Sharing Problem 61

■0.3 Results of Sparse Experiments with the Resource Sharing Problem 61

•0.4 Results of Descriptor Experiments with the Three Queues Problem 62

■0..0 Results of Sparse Experiments with the Three Queues Problem . 63

•0.6 Parameters for the Mass Storage Problem..64

•0.7 Results of Descriptor E.xperiments with the Mass Storage Problem 6-5

•5.8 Results of Sparse E.xperiments with the Mass Storage Problem . 66

•0.9 Results of Other Experiments with the Mass Storage Problem . 66

A .l Matrix Types

.A.2 Types of Nonzero V alues.. 72

•A.3 Model Types 74

XI

Chapter 1

Introduction

Markov chains [16] are one of tlie most widely' used modeling technic[ues in
the scientific community. The range of application domains is wide, including
natural sciences and engineering disciplines. The simple requirement for a
system to be modeled as a Markov chain is that the system’s next action
(transition) depend only on the current state of the system, named as the
mtmoryless or the Markov property [16, p. 4]. Several natural phenomena
that arise in biology, physics and chemistry can be modeled as Markov chains.
In engineering sciences Markov chains have a wide use in several branches

of industrial engineering, electronics and computer engineering. Performance
evaluation and reliability modeling is the field that Markov chains find the
most use in computer engineering.

The random behavior of a system should posses a geometric or exponential
probability distribution in order to be modeled as a Markov chain, since these
are the only probability distributions that carry the memoryless property [16,
p. 4]. Fortunately, the number of systems that show this structure is large and
we have methods for fitting the random characteristics of most systems into
e.xponential or geometric distributions.

After modeling a system as a Markov chain, one seeks quantitative informa­
tion from the built model. One attractive feature of Markov chain models is
that most interesting properties of a Markov model can be obtained by solving

CHAPTER 1. INTRODUCTION

a linear system of equations. Much research result is available concerning the
numerical solution of Markov chain models. In addition to this, interest in
this field of research is still alive. Most methods for solving systems of linear
equations may be used for Markov chain models effectively. Direct methods
do not seem to be suitable for solving large and sparse systems which arise in/
Markov chain models. Several types of iterative methods are applied to Markov
chains and their properties in the context of Markov chain models are stud­
ied. However, much research needs to be done, for understanding the behavior
of iterative methods, especially non-stationary iterative methods like GMRES
and .Arnoldi[8].

In Markov chain applications, the problem size increases very quickly as
the applications get more interesting. This problem is referred to as the state
space explosion[lQ, 14, 4] problem and has initiated different approaches to
the Markov chain problem. .Approximate solutions and bounds for the so­
lution vector[14] are studied for reducing the complexity of the problem. In
plain words the coefficient matrix, constructed for solving the linear system of
equations, becomes very large and prohibits one to solve interesting problems
beyond a certain limit. Stochastic Automata Networks (SANs) [16. 10. 11] are
developed to overcome the difficulties that accompany the state space explo­
sion problem. Although it is possible to apply SAN methodology to different
domains, performance modeling of parallel and distributed computer systems
are especially suited to this type of approach[5j. In SAN methodology, a system
is modeled as a set of components interacting with each other. Characteris­
tics of each component is captured separately from the interactions among the
components, and formulated in compact form, which leads to considerable re­
duction in the amount of storage needed for the model. Methods available for
solving Markov chain problems obtained from a SAN formalism, appear in two
forms. One might prefer to store the coefficient matrix of the linear system
of equations in sparse format. However, this approach does not make use of
the storage reduction provided by the SAN methodology. On the other hand,
it is possible to solve the system by only referring to the compact storage of
the model. Currently, the power method and non-stationary methods of GM­
RES and Arnoldi are implemented for SANs in compact form, but there are no
results available concerning the solution of a real life problem obtained from

CHAPTER 1. INTRODUCTION

these methods[17, 6].

In this thesis, we introduce the concept of a splitting for a SAN in compact
form and develop the stationary methods of Jacobi, Gauss-Seidel and SOR
based on this splitting[16, 7]. We also implement these iterative methods based
on splittings and their block versions. In addition to this, we e.xperiment with
these methods on real life problems. We investigate the performance of these
methods and their sparse counterparts compared to the power method.

In the following chapter, we introduce several concepts related to Markov
chains and give the formulation of the problem of solving a Markov chain model
as a linear system of equations. Stationary methods for Markov chain problems
are also introduced in this chapter.

The third chapter discusses SANs. The concept of a SAN model in compact
form is e.xplained with an example and the necessary algebraic framework for
building SAN models is also provided. This chapter ends with an algorithm
and a theorem regarding the complexity of the algorithm, that proves to be
useful for SAN models in compact form.

The stationary iterative methods based on splittings for solving S.ANs in
compact form are introduced in the following chapter. The algorithms provided
for the methods are explained and a section on numerical results present the
performance of the methods on three problems. Some interesting properties of
block methods that have gone unnoticed so far are included in this chapter.
An upper bound on the number of multiplications for the Gauss-Seidel and
SOR methods are derived at the end of the chapter.

The last chapter contains conclusive remarks about the methods investi­
gated. Observations and comments about methods, the SAN methodology
and Markov chains based on our work are provided in the chapter.

We included an appendix that describes how to incorporate new models
into the Peps package[12], which is the software tool developed in France for

solving S.AN models in compact form, since we implemented our methods as
an extension to Peps.

Chapter 2

Markov Chains

2.1 Preliminaries

In our attempt to understand the characteristics of natural and artificial phe­
nomena. mathematical models of systems are developed. It is possible to build
models using the concept of the system being in a number of states. Generally,
the system is thought to be in an initial state, and its behavior is modeled as
transitions from one state to another. It is also possible to classify systems
according to certain properties they might hold. One such property that the
system modeled as a process changing states might have is the memoryless
property, i.e., it only remembers its current state [16, p. 4]. In other words,
the system’s transition from one state to the other is independent from the
previous states that the system has visited.

In many of the models arising from diverse fields including natural sciences
such as physics and biology, and engineering sciences such as industrial, elec­
trical and computer engineering, the system either has or can be modeled as
having memoryless property [16, p. 3]. The systems that posses the memoryless
property may be modeled as a Markov process [16, p. 4].

A system modeled as a Markov process has a number of possible states.
The actual number of possible states can be infinite, however the system can
be at only one of the possible states at any time instant [16, p. 4]. In addition

to this, it is assumed that the transition time, the time it takes the system to
go from one state to the other is negligible. That is, the transitions are said to
take place instantaneously. [16, p. 3]

It is possible to have a continuous state space for a Markov process. For
instance, if the output voltage of an electric circuitry can take all values within a
range, and if the system can be modeled as a Markov process, it can be modeled
as a Markov process with a continuous state space, having the output voltage
as states of the system. If, for instance, the circuitry’s output voltage raises
from 0.6 volts to 3.7 volts, one would view the model as making a transition
from state 0.6 to state 3.7. On the other hand, if the output voltage can
take only certain potential values, and if the system can be modeled as a
Markov process, the system can be modeled as a discrete state space Markov
process. Note that the actual values of the voltages do not effect the discrete
or continuous character of the system.

Markov processes with discrete state spaces are called Markov chains [16, p. 5],
and they are what our work is based on.

In the ne.xt section, we give the definition of a Markov chain in a formal con-
te.xt. The following two sections introduce two different types of Markov chains
that arise in Markov chain modeling. Stationary distribution of a Markov
chain[16. p. 15] is an important quantity for determining certain characteris­
tics of the model under consideration, and is introduced in the ne.xt section.
Finally, methods developed for solving Markov chain models are discussed in
the last section.

CHAPTER 2. MARKOV CHAINS 5

2.2 Formal Definition of Markov Chains

.A. Markov chain is a special case of a Markov process and, a Markov process
is a stochastic process satisfying certain requirements. Hence, we give the def­
initions of stochastic processes in general, then Markov processes and Markov

chains based on this.

Definition 2.2.1 [16, p. 4] A stochastic process is defined as a family of ran­
dom variables { X { t) , t G T } defined on a given probability space indexed by the
index parameter t, where t varies over some index set (parameter space) T.

In general, t takes values from the range (—oo ,+ co). In applications, the
index set T is thought of as the set of time points at which observation about
the system is made. In other words, the index t of the random variable is
defined as the time point that X{t) takes the observed value. In such cases, t
takes values from the range [0,+oo). Depending on the characteristics of the
values t takes, the process is either a continuous parameter (time) stochastic
process or a discrete parameter (time) stochastic process. If i can take discrete
values only, or similarly, if obser^■ation about the system is made only certain
equidistant time points, the process is called a discrete-time parameter process.
If the range of values of t is [0, +cxo) without any restrictions, or the system is
observed at time points that are not equidistant, the process is referred to as
a continuous-time stochastic process.

D efinition 2.2.2 Markov property: [16. p. 4] Let {X{ t) , t G T } be a stochastic
process defined on a given probability space indexed by the time index parameter
t. where t varies over time index set T. Let the system be observed at time points
to, t i . , . . . ,tn and let to < ti < . . . < The stochastic process {A’ (f), i G T }
is said to have the Markov property if and only if

Prob{X{t) < x\X{to) = Xo,A'(ii) = X i,. .., .Y (i„) = ;i-„}

= Prob{X{t) < a;|A (̂i„) = x „}.

CHAPTER 2. MARKOV CHAINS 6

In plain words, Markov property states that the next transition of the system
from the current state X{tn) = Xn to the next state X{t) = x, depends only on
the current state X{tn) = Xn and is independent of its previous state history,
i.e., it is independent of the states A’(io) = 2:0, A ’(ti) = x \ ,... ,X (t „_ i) = .r„_i.
In other words, the current state of the process provides sufficient information
to make the next transition.

D efinition 2.2.3 A Markov process is a stochastic process which satisfies the
Alarkov property.

For any stochastic process, and hence for any Markov process, the values that
the random variables X{t) take, define the state space of the process. As with
the index set parameter t, the state space of a process can be continuous or
discrete, finite or infinite.

D efinition 2.2.4 .4 Markov chain is a Markov process whose state space is
discrete.

CHAPTER 2. MARKOV CHAINS 7

In Markov chain terminology, the state space of a chain is generally associated
with the set of natural numbers. In other words the states are referred as state
0. state 1. etc.

When a stochastic process possesses a certain condition on the random
variables and the index parameter (namely the Markov property), the process
is said to be a Markov process. Similarly, the time index set and the state
space characteristics of a Markov chain give rise to several types of Markov
chains.

In a homogeneous Markov chain, the transitions of the system are indepen­
dent of the time parameter t. The Markov property requires that the next
transition be independent of the previous state history of the process. How­
ever, it is possible that the proce.ss makes a transition which is dependent both
on the current state of the system and the value of the time parameter t. Such
a Markov chain, in which the transitions out of a state are dependent on the
time parameter i, is called a non-homogeneous Markov Chain.

Similar to the state space of the process, the index set (the time parameter)
can be continuous or discrete. If the time parameter of a chain takes its values
from a discrete set, the Markov chain is called a Discrete Time Markov Chain
(DTMC). If the values of t are are continuous, the Markov chain is called a

Continuous Time Markov Chain (CTMC).

In summary, there are four parameters that describe a stochastic process.
First, the continuous or discrete character of the state space, is a determining
property of the process. Second, the continuous or discrete character of the time
parameter introduce another classification dimension for the processes. Third,

the time homogeneity of the process, is also an important quantity, in capturing
the properties of a process. Finally, the characteristics of the relations between
the index set and and the random variables, i.e., the dependencies among them,
define classes of stochastic processes. The classification that is determined by
the character of the state space is important and is discussed in more detail in
the following chapters.

2.3 Discrete Time Markov Chains

CHAPTER 2. MARKOV CHAINS 8

If the index set of the Markov chain is countable, i.e., it is in one to one cor­
respondence with the set of natural numbers, the Markov chain is called a
Discrete Time Markov Chain. In this case, the index set is in general taken to
be the set of natural numbers and the random variables are numbered accord­
ingly, i.e., as -Yo, A 'l,. . . , A „.

For a non-homogeneous Discrete Time Markov chain, the Markov property
is described as [16, p. 5]

Prob{ An+i ^ ^n+i IAq .I’oi A j — X i , A . j i — Xn}

Prob{ A ti.)-! ^ Xn-j-ilAji — ·

The conditional probability that the process makes a transition to a new state j ,
given that it is in current state i, is called the single step transition probability.
It is expressed as [16, p. 5]

Pij{n) = Prob{A',t+i =j\Xn = i}.

Note that since the Markov chain is a Discrete Time Markov chain, the state
indices i and j are natural numbers.

For a homogeneous Markov chain, the next transition of the process is in­
dependent of the index parameter n. The single step transition probabilities
are written as

Pij ~ Prob{A,i-t-l ~ ~ }̂·

The random variables A’„ should be geometrically distributed in order to satisfy
the Markov property. In other words there is no other discrete probability

CHAPTER 2. MARKOV CHAINS

0 0.3 0.7
0.2 0.4 0.4
0.1 0.9 0

Figure 2.1: A transition probability matrix

0.2

Figure 2.2: A time homogeneous discrete time Markov chain

distribution that satisfy the Markov property. A homogeneous Discrete Time
Markov chain's behavior can be e.xpressed as a transition probability matrix.
Such a matrix is also called a chain matrix and is formed by putting the
transition probability from state i to state j to the ith row and jth column of
the matrix. Since the sum of the probabilities of making a transition from a
state to all other states is one, the sum of the elements in any row is one. Such
a matrix in which the sum of elements in any row add up to one is called a
stochastic matrix. In Markov chain literature, the transition probability matrix
is labeled P. Figure 2.1 demonstrates a transition probability matri.x of a
homogeneous discrete time Markov chain with three states, that is described
in Figure 2.2 with transition state diagrams.

2.4 Continuous Time Markov Chains

When the time indices of a Markov chain is continuous, the chain is called

a Continuous Time Markov Chain. Note that, as in the case of DTMC, the
state space is still discrete. In other words, the random variables describing
the process might take discrete values; however the system might be observed,

CHAPTER 2. MARKOV CHAINS 10

i.e., make transitions, at any instant in time.

The Markov property for a non-homogeneous Continuous Time Markov
Chain is expressed as [16, p. 17]

Prob{A '(i„+i) < Xn+i \ X{to) = xo,X{t i) = X u · . . ,X (i „) = Xn}

= Prob{A'(i) < x\X{tn) =

for any sequence of time points to < t\ < . . . < tn < tn+i-

The transition probability of a non-homogeneous CTMC is given by

= Prob{A '(0 = j\X{s) = ?}, for t > s.

Ill the homogeneous case, since the probabilities are independent of the ac­
tual values of s and t, the transition probability is expressed in terms of the
difference t = {t — s), i.e.,

p,j(r) = Prob{X(s + r) = i|A'(s) = i}.

Ill this case a single probability transition matrix is not sufficient to express
the behavior of the matrix, we need a set of matrices parameterized by r.
Instead, a new matrix, called the transition rate matrix or the infinitesimal
generator matrix, is introduced. The matrix is constructed in a similar way
and is generally labeled Q. Yet, this time the enfries are not probabilities
of making a transition from one state to another, but each element at row
i, column j of the matrix denotes an instantaneous transition rate. That is,
the entries of the generator matri.x are given by the rate of making transitions
from state i to state j , when r is chosen to be sufficiently small so that the
probability of observing more than one transition within the observation period
T is negligible. .A. more rigorous derivation of the rate matrix from the transition
probabilities can be found in [16. p. 18]. In Figure 2.4 a CTMC is shown as

a state diagram. Figure 2.3 gives the corresponding infinitesimal generator
matrix. Note that the diagonal entries in each row are equal to the negative
of the sum of the off-diagonal entries, i.e.,

<?í¡ = ~ Qij-

CHAPTER 2. MARKOV CHAINS 11

—6.5 4.0 2.5 0
3.0 -8 .9 2.2 3.7

0 1.5 -3 .7 2.2
0 3.7 3.2 -6 .9

Figure 2.3; A transition rate matrix

Figure 2.4: A time homogeneous continuous time Markov chain

This can easily be understood if one notices that the entries are rates repre­
senting transitions from a state to others. The transitions from one state to
itself (the rate at which the process stays at that state) will decrease as the
rates to the other states increase. In [16. p. 19] this property of an infinitesimal
generator matrix is also derived from the transition probabilities.

For a CTMC. the random variables X{t) should be exponentially distributed
in order to satisfy the Markov property. Similar to the discrete case, this
means that no other continuous probability distribution satisfy the memoryless
property.

2.5 The Steady State Vector for a Markov

Chain

The aim of modeling a system as a Markov chain, is to obtain some quantitative
measures about the system. The information sought is mostly related to the
states of the system. We wonder the states at which the system stays the most.

CHAPTER 2. MARKOV CHAINS 12

how long the system occupies certain states in the long run, etc. Depending
on the system being modeled, one might be interested in some states of the
system more than the others. Also, in general, the states of a Markov chain are
classified into several groups and determining to which group a state belongs
might be of interest, see [16, p. 8]. Specifically, a transient state is one which
the system might not return back, in the long run. A recurrent state is one
which the system is guaranteed to return after a number of transitions. In a
Markov chain, it is possible that the process makes a transition to one state,
and can not leave that state, i.e., there are transitions to that state but there
are not any transitions out of the state. Such states are referred to as absorbing
states. In practice, one is more interested in states that have some desirable or
undesirable properties. Thus, one might wonder the probabilities of being ¿it
those states or the average time the system spends at those states, in the long
run.

It is suitable to express the state of a Markov model as a probability vector.
A row vector tt is used with each entry i denoting the probability of being at
state i. When the system’s behavior is captured as a transition rate matrix Q
or a transition probability matrix P, the properties of the Markov chain can
be expressed as a simple set of linear ecpiations.

Now we introduce two important quantities that have desirable properties
in the sense that they answer or provide the necessary information to answer
several questions sought from a Markov chain model.

D efinition 2.5.1 Limiting Distribution of a DTAIC :[16, p. 15] Given an ini­

tial probability distribution 7t(0), if the limit

lim 7r(n)n—*co

exists, then this limit is called the limiting distribution, and we write

7T = lim 7r(n)

D efinition 2.5.2 Limiting Distribution of a CTMC iGiven an initial proba­

bility distribution 7t(0), if the limit

lim irit)
t—x>

CHAPTER 2. MARKOV CHAINS 13

exists, then this limit is called the limiting distribution, and -we write

7T = lim 7r(i)
f—CO ̂ '

D efinition 2.5.3 Stationary Distribution of a DTMC :[16, p. 15] Let P be the
transition probability matrix of a DTAIC, and let the vector z whose elements
Zj denote the probability of being in state j be a probability distribution; i.e.,

G ^ Zj ^ 1, and 'y ' Zj = 1.
all j

Then z is said to be a stationary distribution if and only if zP — z.

Definition 2.5.4 Stationary Distribution of a CTMC : Let Q be the transition
rate matrix of a CTMC. and let the vector z whose elements Zj denote the
probability of being in state j be a probability distribution; i.e.,

Zj G 7̂ , 0 < < 1, and ^ = 1.
all j

Then z is said to be a stationary distribution if and only if zQ = 0.

For a certain class of Markov chains, (see [16, pp. 15-16]), if the limiting
distribution exists, it is equivalent to the stationary distribution. Furthermore
it is independent of the initial distribution, i.e., in the long run the effects of
the initial distribution disappears.

The popularity and power of the Markov chain modeling paradigm comes
from the fact that, most of the interesting properties of the system being mod­
eled can be derived from a set of simple linear equations. In the discrete case,
the equations

wP = 7T, II 7T ||i= 1,

and in the continuous case, the equations

t Q = 0, II 7t ||i= 1,

let one to calculate quantitative measures about the system being modeled.

CHAPTER 2. MARKOV CHAINS 14

Also the reformulation of the equation ttP = tt, as 7t(J — P) = 0 show that
the problem of finding the stationary distribution of a discrete-time Markov
chain, can be viewed as similar to a continuous-time problem. Conversely, a
matrix P can be obtained from Q by

1P = / + AtQ, where At <
max I g,·,· I

The problem of finding the stationary distribution of a Markov chain can be
thus formulated in three ways. First, it can be seen as an eigenvalue problem,
i.e., 7tP = 7t; second, it can be formulated as a null space problem, i.e., kQ = 0:
and finally, it can be seen as a linear system that can be obtained in a variet\·
of ways, from ~Q = 0, || tt ||i = 1.

VVe conclude this section by noting that all the discussed formulations of
the problem imply that the Markov chains involved are time homogeneous,
and this will be our assumption in the rest of the thesis.

2.6 Methods for Numerically Solving Markov
Chain Problems

2.6.1 An Overview

-As the problem described in the previous section can be formulated in different
ways, there are a large number of methods one may use to attack the problem.
In general terms, direct methods refer to those methods that calculate the so­
lution vector in a predetermined number of steps [16, p. 61]. Iterative methods
are provided with an initial approximation to the solution and they compute
a new approximation to the new solution using the previous approximation in
the previous iteration. The new approximation is supposed to become more
and more close to the actual solution at each step.

Direct methods applied to Markov chain problems include Gaussian elim­
ination and LU decomposition. We note that in the case of a Markov chain

CHAPTER 2. MARKOV CHAINS 15

problem, a nontrivial solution other than the zero vector, to the system wQ = 0
is always available since it can be verified that Q is singular [16, p. 71].

Iterative methods can be grouped into two. First group of methods referred
to as stationary methods include the power method, the method of Jacobi,
the method of Gauss-Seidel and Successive Overrelaxation (SOR). The second
group of methods are non-stationary methods, also referred to as Krylov sub­
space methods, include the method of Arnold!, Generalized Minimum Residual
Method (GMRES) and the full orthogonalization method [16, pp. 117-230],
[13]. In this work we concentrate on stationary iterative methods. Here we
first give a comparison of direct and iterative methods in the conte.xt of Markov
chains [16, pp. 61-62].

The value of a Markov chain model increases as the system being modeled
becomes more and more complex. The increase in the complexity of the model
is generally reflected as an increase in the number of the states of the Markov-
model. This phenomenon is referred to as the state-space explosion problem.
The increase in the number of states results in an increase in the size of the
generator matrix. Beyond a certain limit, it becomes necessary to use a sparse
storage scheme for storing the infinitesimal generator matrix. In addition to
this, the matrices arising in Markov chain models are sparse, i.e., they contain
only a few entries in each row. It is basically because of this reason that direct
methods are considered disadvantageous, when compared to iterative solution
techniques. Direct methods usually involve introducing new nonzero elements
(fill-ins) into the matrix during factorization, which makes them inefficient and
diflficult to deal with. Also, beyond a certain limit, especially for large problems,
it might not be possible to store the newly altered matrix in core memory.
In contrast, iterative methods involve only matrix-vector multiplications or
equivalent operations, which do not alter the nonzero structure of the matrix.
In addition to this, by not altering the matrix, we avoid the round-off errors
which are observed in direct methods.

In certain cases, it might not be necessary to compute the stationary vector
of a Markov chain, to high accuracy. In such uses, iterative methods allow one
to stop the computation at a predefined error term.

CHAPTER 2. MARKOV CHAINS 16

On the other hand, iterative methods are usually accompanied with a slow
convergence rate to the solution. It is this reason that one may use a direct
method for Markov chain problems whenever the method is not limited im-
practically by memory constraints. However, iterative methods ai'e still the
dominant choice, unless a practically implementable direct method gives the
solution in less time.

Stationary methods have been the subject of much research. Although the
non-stationary methods seem promising, much research needs to be done on
their convergence properties and to predict the number of iterations recjuired
to find the solution of a problem. In the following sections we introduce the
power method, method of .Jacobi, Gauss-Seidel and SOR.

2.6.2 Power Method

The power method is used to find the right-hand eigenvector of an ordinary
matri.x corresponding to a dominant eigenvalue of the matrix. Thus, when
the Markov chain problem is formulated as one of an eigenvalue problem, i.e.,
irP = 7T, power method might be used to solve the problem. Let the initial
probability distribution among the states of a Markov chain be 7t(0), and let
the probability transition matrix of the same chain be P. Then after the
process makes a transition, (at the next step), the probability distribution
becomes At the second step the probability distribution becomes
7t(2) _ 7r(i)/3 = Tr̂ °'>P'̂ . At the step, the probability distribution is found
by TrP’l = Note that, is the new approximation to the solution
at step k. For certain classes of Markov chains [16, p. 16], the vector tt**·'!
approaches to the stationary distribution, i.e.,

lim = 7T, where tt --- ttP.k—roo

Power method is multiplying the approximation at each iteration by the prob­
ability transition matrix P, to obtain a new approximation. The convergence

of power method is in general slow. Further properties of the method in the

context of Markov chains can be found in [16, pp. 121-125].

CHAPTER 2. MARKOV CHAINS 17

2.6.3 Methods Based on Splittings

The stationary methods based on splittings are used for solving a system of
linear equations. In the Markov chain context, when the problem is formulated
as a linear system or a null-space problem, i.e., ttQ = 0, these methods may be
used. The methods .Jacobi, Gauss-Seidel (GS) and SOR are based on splitting
the infinitesimal generator matrix Q into D — L — U where D is a, strictly
diagonal matrix, T is a strictly lower triangular matrix, and U is a strictly
upper triangular matrix. The matrix D consists of the diagonal elements of Q,
and the matrices L and U consist of negative of the strictly lower and strictly
upper triangular elements of Q. respectively.

The Method of Jacobi

The problem of .solving nQ = 0 can be formulated as

t Q = 0

k{ D - L - U) = 0

ttD = Tr{L + U).

From this we can obtain the iteration matri.x of the Jacobi and the method of
Jacobi

Hence, the method of Jacobi is equivalent to power method with the iteration
matrix being (L + U)D~^.

The Method of Gauss-Seidel

In a similar way to the method of Jacobi, the Gauss-Seidel method can be
derived from the formulation

ttQ = 0

: { D - L - U) = 0

CHAPTER 2. MARKOV CHAINS 18

t { D - U) = ttL

7T = ttL { D - U) - K

From this we obtain the Gauss-Seidel Method as

Hence, it is eciuivalent to power method with the iteration matrix being
L(D — U)~^. The above formulation of the Gauss-Seidel method is referred
as a forward Gauss-Seidel, because when the equations regarding individual
entries of the vector are considered, the elements are calculated starting from
the first element to the last element of the vector

Another formulation is possible, which may be expressed as

In this case the order ol solving the equations for individual entries is from
the last element to the first element of the vector ttG'+i). Hence the method is
called a backward Gauss-Seidel.

The Gauss-Seidel method is different from the method of Jacobi as it makes
use of the elements that have already been computed. For instance while
calculating the ith element of the [k + l)st approximation vector it
makes use of the first ¿ — 1 elements that have been computed so far, in the case
of forward Gauss-Seidel. .A backward Gauss-Seidel makes use of the previously
computed n — i elements ranging from index f -|- 1 to n, for a vector of size n,
while calculating the ¿th element.

Successive Overrelaxation

The method of Successive Overrelaxation (SOR) is an extrapolation on the
solution of the Gauss-Seidel. A parameter w is introduced to weigh the solution
vector obtained from a Gauss-Seidel iteration with the previous approximation
vector. When considered in this manner, the method can be expressed as

^SOR “ (1 ~ '^VSOR +

CHAPTER 2. MARKOV CHAINS 19

where is the resulting vector after applying the Gauss-Seidel algorithm to
the ¿th approximation vector of SOR. Note that SOR is also called a forward
SOR when the Gauss-Seidel iteration involved is a forward Gauss-Seidel, and a
backward SOR when the Gauss-Seidel iteration involved is a backward Gauss-
Seidel.

Hence forward SOR in matrix notation is

(̂A:+l) ^ (1 - -t-U;(7r'^U (̂r> - L)~^),

and backward SOR in matrix notation IS

Note that an SOR iteration with lu = 1 is equivalent to a Gauss-Seidel itera­
tion. Sometimes SOR. is referred as Successive Under Relaxation method when
0 < IÜ < 1.

In addition to forward and backward versions of SOR, a Symmetric SOR
(SSOR) hcis been introduced, which is simply a forward SOR followed by a
backward SOR. In the case of Markov chain problems, there is little benefit in
using a SSOR instead of SOR and this can be observed only in rare examples
[16, p. 132].

Convergence characteristics of stationary methods in a general context can
be found in [7] and references therein. In the Markov chain context, [16,
pp. 133-176], [4, pp. 125-132] and [1, pp. 26-28] [16, pp. 138-142] provide
discussions of these and other methods.

Block Versions of Iterative Methods Based on Splittings

Stationary block iterative methods are based on block partitioning of the gen­
erator matrix Q. Following [16, p. 139] we can demonstrate a block partitioning

CHAPTER 2. MARKOV CHAINS 20

of the vector tt and the matrix Q as

(tTi , 7T2, · · · ? ŷv))

Qll Qi2 Qin

Q21 Q22 Q2N

Qni Qnn

In this case, a block splitting of Q can be obtained as Q = (D¡^ — — D\

takes the form of a block diagonal matrix, L¡\r takes the form of a strictly lower
block triangular matrix and I7/v is a strictly upper block triangular matrix, i.e..

D x =

Dn 0 0
0 D22 0

0

0 0 0 0 Uv2 Lxx

Lx = Lzi 0 0
• Lx =

0 0
Hx-ix

Lxi L.xv-i 0 0 0

By defining as the ith portion of tt as shown, we may define block
Jacobi as

„p + ll ^ ^
j= l j = ! + l

forward block Gauss-Seidel as

.G+l) _
N

x r “ = -, E for alH.
i = l j=i+l

and backward block Gauss-Seidel as
N i-1

7Tp+‘ l = E í-'iúiDu - E i r i) · ' for- all i.
j=i+l i = l

The difference between the point and the block versions of the algorithms
is that in the block versions, all elements of in a portion of are
solved simultaneously. It is possible to use a direct method or another iterative

CHAPTER 2. MARKOV CHAINS 21

method to solve the individual blocks. In this way, one can obtain a more
accurate approximation at each iteration, obviously with an extra cost being
introduced at each iteration. In [1 , pp. 26-28] block iterative methods are
discussed within the context of Markov chains.

Chapter 3

Stochastic Automata Networks

3.1 Preliminaries

In the previous chapter we have seen that if a Markov chain model of a system
is available, qiuintitative measures about the system can be obtained from the
system of equations

ttQ = 0, II ;r ||i= 1.

There are a number of methodologies for developing a Markov chain model
of a system. Petri nets [8] are such a formalism for generating Markov chain
models of systems. Alternatively, there are special software tools for generating
Markov chain models [15]. Independent of the paradigm used, the problem of
state-space e.xplosion is observed in almost all applications. In some cases, as
the applications become more interesting, the size of the Markov chain gets so
large that it is impractical to find a solution.

A Stochastic Automata Network (SAN) is another formalism for generating

a Markov model. They are most suitable for performance modeling of parallel
and distributed systems. The model is generated by considering an individual
automaton for each component of the system. Each individual component is
modeled by a single stochastic automaton and the interactions between the
components are incorporated into the model. The main advantage of the SAN

99

CHAPTER 3. STOCHASTIC AUTOMATA NETWORKS 23

methodology is that the model is stored very efficiently, i.e., the memory occu­
pied by the model is very small compared to the size of the model generated.

Before getting into the formal definitions of SANs and their properties, we
give a basic overview of tensor algebra which is a building block for SAN
methodology.

3.2 Tensor Algebra

3.2.1 Ordinary Tensor Algebra

We now list several definitions regarding tensor algebra. These and morere prop­
erties of tensor algebra concepts can be found in [2].

In the following, we use Amxn for a matrix of dimension m x n, B t̂ for a
matrix of dimension k x 1. Cmkxni and Dmkxni for matrices of size mk x nl.

D efinition 3.2.1 Ordinary Tensor Product:(OTP) Let A„i„ and Bki he two
matrices, as

h\\ b\i

A =

an Îr
,B =

hki hki

then the ordinary tensor product of A and B , Cmk ni = A Q B is given by

aiiB o-inB

c = \ ;

^ml-B . . . â mnB

and the ordinary tensor product of B and A, Dmk ni = B 0 A is given by

h\\A . . . hiiA

D = '

hki A ·■■ bkiA

CHAPTER 3. STOCHASTIC AUTOMATA NETWORKS 24

Notice that C ^ D.

D efin ition 3.2.2 Ordinanj Tensor Sum: The tensor sum of two square ma-
trzcei> A.JIJ2. nncl EjTiTTij Ctjiyji, titti — A. B zs defined us

C = A ® I m + I n

Further important properties of tensor algebra as they appear in [5, pp. 4-5]
are listed below. Note that all matrices are square.

• Associativity ;

.4 0 {B 0 C) = {A 0 B) 0 C) and .4 0 (B 0 C) = (.4 0 .B) 0 C).

• Distributivity over ordinary matri.x addition :

(.4 + B) 0 {C + D) = A 0 C + B 0 C + A 0 D + B e D.

• Compatibility with ordinary matrix multiplication :(case I)
(.4 X B) 0 {C X D) = { A 0 C) X {B 0 D).

• Compatibility with ordinary matrix multiplication :(case II)

N

(g) = n «̂1 ® ® n̂._. 0 0 0 . . . 0 /,
¿=1 ¿=1

N

= n 0 AS' ̂0 /¿ + 1;/V,
¿=1

where Ii-j is the identity matrix of size Y[i=ink·

• Compatibility with ordinary matrix inversion :
(A X = 4 - 1 0 B ~ \

• Pseudo Commutativity :

A 0 B = Pr{B 0 A)P^,

where Pr is a permutation matrix of order Ui x U2, nj is the size of matrix A
and rin is the size of matrix B.

Note that no commutativity other than the given pseudo commutativity
property holds for ordinary tensor products.

CHAPTER 3. STOCHASTIC AUTOMATA NETWORKS 25

It is straightforward to extend these properties to N term tensor products
and sums. For our purpose of illustrating several algorithms, noting that

N N
(g) ^ 0 . . . 0 0 Â ^̂ 0 0 . . . 0
k = l k = l

where /„^ is defined to be the identity matrix of size Uk which is the size of the
term of the ten.sor product , Â K̂ is sufficient.

3.2.2 Generalized Tensor Algebra

Ordinary tensor algebra is used in other Helds of science as well as SAN mod­
eling. However, it does not allow one to handle certain constructs that arise
in S.AN models. Since such constructs are essential for any meaningful model,
tensor algebra has been extended in order to cope with them. Generalized ten­
sor algebra refers to tensor algebra where the elements of the matrices may be
real valued functions. In SAN context, the functional elements are functions
of the states of one or more automata. We now give several definitions and
properties of generalized tensor algebra. These with more detailed discussions
and proofs can be found in [5, pp. 13-20]. VVe follow the conventions there
and assume that all matrices are square, which is the case for us. A matrix
of the form B[A] refers to a functional matrix B which contains entries that
are dependent on the state of automata with transition rate matrix A. In
general an expression of the form denotes a matrix

that contain functional entries that depend on the states of the automata
. . . , Note that the state of an automaton is determined by

the row of the generator matrix, i.e.. elements on row i of the matrix are
transition rates out of state i, except of course the diagonal element which is
interpreted as the rate of staying in the same state. The operator 0 ̂ is used
for generalized tensor products.

D efin ition 3.2.3 Generalized Tensor Product:(GTP Gase I) Let A and B[A\

he two square matrices with sizes and respectively, and let B contain
functional entries that depend on the state of A. Then the generalized tensor

CHAPTER 3. STOCHASTIC AUTOMATA NETWORKS 26

product of A and B , C — A®g B[A] is given by

ацВ{аі) ai2B{ai)

a2lB(^a2) *̂22-^(^2)

П̂а1-®(^Па) П̂а2-̂ (̂ П̂о)

α ι„„β(αι)

α2πα^(«2)

^ПаПа̂ і^Па)

Definition 3.2.4 Generalized Tensor Product:(Case II) Let A[B] and B be
two square matrices with sizes n, and ni, respectively, and let A contain func­

tional entries that depend on the state of B . Then the generalized tensor prod­

uct of A and B . C = A[B] Ag B is given by

ап[В]Іпь X B ar¿[B]Inb x B
U2i[B]Inb X B а22[В]Іпь X B

аіпа[В]Іпь X B
-̂̂ 'ína\B\In|, X B

^̂ ncil\B\Ini, X B ana2[-̂]-̂ il(, X B n̂anc\B\In,, X B

where aij[B\In ̂ is defined as diag{aij{bl),aij{b2) , . . . ,aij(bnb)} and aij{bk) is
the functional element of A with its function being evaluated at state k of B.

Definition 3.2.5 Generalized Tensor Product:(Case III) Let A[B] and B[A]
be two square matrices with sizes Па and щ respectively, and let A contain
functional entries that depend on the state of B. Let B also contain functional
entries that depend on the state of A. Then the generalized tensor product of
A and B, C = A[B\ 0 g B[A] is given by

ап[В]Іщ X B(ai) au[B]Kt, x B{ai)
й2і[В]Іщ X B{a2) а22[В]Іщ x B{a2)

^^lna[B]In^, X В{^йі)

а2па[В]Іпь X В{а2)

0'Паі\.В\Ігц, X В{апа) ^Па2[В]Іп(, X В{^СІп)̂ ^^nana\B\In ,̂ X Bi^ünf)

where aij[B]I^ and aij{bk) are defined as in case II.

Now let us see some of the properties of generalized tensor algebra that are

of interest to us.
• Associativity :
A[B, C] 0g (B[A, C] ®g C[A, B]) = {A[B, C] 0g B[A, C]) 0g C[A, B]).

CHAPTER 3. STOCHASTIC AUTOMATA NETWORKS 27

• Distributivity over ordinary matrix addition :

(Ai[5] + Ao[B]) 0 , {B,[A\ + B2[A]) =

A\[B\ ®g -6l[A] + A\[B] ®g + ^2[-5] ®g B\[A\ + A\[B] 0g B2\A\.

Compatibility with ordinary matrix multiplication :

0 , 0 , ^(2)] 0 , . . . 0 , . . . , >lbv-i)]

h : N - i ® g

I\:N--2 ®g A^ ̂ . . . , 0 j In:N

X /i:.V-3 0 , . . . , 0 ,

X

X h : l Zg A^^^[A^^^]0g K y

X .4^^* Zg Zgh- .N

• Pseudo Commutativity :

N N

j /l=1 9 ’̂=1

where r is a permutation of integers [1, 2, . . . , jV], and Pr is a permutation

matrix of order [li^i î·

3.3 Stochastic Automata Networks

Let us consider two stochastic automata initially without any interaction among
them. The system being modeled has two components, each of which can be
represented by a single automaton. A Stochastic Automata Network, describ­
ing the system, is represented by two automata, If the automata
are models obtained from DTMCs, i.e., they are defined by probability tran­

sition matrices P̂ ^̂ and the whole system is defined by the transition

probability matrix obtained from a tensor product, i.e., © P̂ ^̂ On the
other hand if the automata are models obtained from a CTMC, i.e., have
transition rate matrices and Q̂ '̂ \ the transition rate matrix of the whole
system is obtained from the tensor sum of and as If

CHAPTER 3. STOCHASTIC AUTOMATA NETWORKS 28

the probability distribution of the states of the first automaton at time i, is
represented by vector 7r(^^(i), and similarly if the probability distribution of
the second automaton are represented by 7г(^)(í) at time i, the probability
distribution describing the state of the whole system at time t, is given by

0 7гf^^(í). If the first automaton has rii states and the second automaton
has U2 states, the whole system has rii x ri2 states. Each state of the global
system is a combination of the states of the two automata. The global state
of the system can be represented by a 2-tuple, i.e., if the first automtiton is at
state i. and the second automaton is at state j , the global system is at state
(i. j)· It easily verified that each row of the global generator matri.x and
the global state distribution vector corresponds to a state of the global system
represented as a 2-tuple. A consequence of these results is that the stationary
distribution of the global system can be obtained from the tensor product of
the stationary vectors of the individual automata. Hence, it is straightforward
to find the stationary vector of a SAN with noninteracting automata, i.e, first
solve for the stationary vectors of the individual automata then calculate the
tensor product ol them.

In case the global system is modeled by N automata.
the global generator is obtained by

N

0 = ©«''■>
¿=1

in the continuous case, and by

P =
t=l

in the discrete case.

In both cases the global state distribution vector is obtained by

7r(t) =
¿=1

CHAPTER 3. STOCHASTIC AUTOMATA NETWORKS 29

3.4 Capturing the Interactions

3.4.1 Functional Transitions

In order to be able to model complex systems, especially parallel and dis­
tributed systems that have interacting components, one needs to model the
intei'ciction between the components. One extension that enables us to incorpo­
rate such interactions between individual components is by means of functional
transitions. The stochastic automaton, modeling a component, is allowed to
have transitions whose rate is a function of the states of several automata.
Now, the entries of the transition rate matrix might be functional, i.e., the
transition rate matrix is not an ordinary real valued matrix but it is a matrix
whose entries may contain a real valued function. Note that if the rate of a
transition is dependent only on the automaton that makes the transition, the
transition is considered to be a constant transition, not a functional one.

Similar to noninteracting automata, the global generator matrix of the
global system composed of CTiVtC can be described as a tensor sum of the
generator matrices of the individual automata, yet this time as a generalized
tensor sum of the individual matrices, i.e.,

<?= Ф
i'=l g

In the discrete case a generalized tensor product is needed, i.e.,

N
P = p(i)

!=1 g

Two important points to note about functional transitions in SAN descrip­
tors is that; first, still the transitions of an automaton effect only the automaton
itself even if the transition is a functional one, second, the nonzero structure of
the generator matrix is still in a suitable form to store in sparse format, i.e., no
zero entry may become nonzero during function evaluation yet some nonzero

entries might evaluate to zero.

CHAPTER 3. STOCHASTIC AUTOMATA NETWORKS 30

3.4.2 Synchronizing Events

Another concept, introduced to extend the modeling capability of a stochastic
automata network, is one of a synchronizing event. A synchronizing event is
either a transition of one automaton that force one or more automata to spe­
cific states, or an event in which an automaton being (or not being) in a state
force some other automata to get into or stuck at certain states. The transi­
tions that are involved in a synchronizing event may also contain functional
rates. It is possible to have a synchronizing event in which a transition of an
automaton cause several or all automata to make or block transitions. Note
that, a synchronizing event causes the state of the global system to be altered,
whereas a functional transition affects only the automaton that contains the
transition.

In .SAN terminology, the automaton that initiates a transition in the other
automata in a synchronizing event is called the master automaton of the syn­
chronizing event. The automata that are effected by the master automaton’s
transition are called the slave automata. Note that a transition in the master
automaton has a rate associated with it, whereas the induced transitions in
the slaves happen instantaneously with the master automaton's trcinsition.

3.5 Descriptor of a SAN

In this section we introduce the concept of a descriptor for a SAN. Plere and
hereafter, we consider only continuous-time stochastic automata and hence all
matrices are transition rate matrices. The extension of the concepts introduced,
to discrete-time automata are possible. The effect of a synchronizing event on
a SAN is captured by introducing new tensor product expressions. If there is

a synchronizing event labeled e that appears in a SAN with N automata, one
new tensor product of the form

N

1=1
0

CHAPTER 3. STOCHASTIC AUTOMATA NETWORKS 31

and another one in the form

0 Q i ‘ >
2 = 1

are introduced. The last term is referred to as the diagonal corrector of the
synchronizing event and is introduced to maintain the global generator as a
transition rate matri.x:. In the most general case, where the transitions in­
volved in the synchronizing event, say e,·, are functional, the tensor products
are generalized tensor products and the expressions introduced are in the forms

 ̂ ¿=1

and
N

■7 1=1

For a SAN model with N automata, there are N matrices in the tensor
products, each of which correspond to one automaton in the SAN. For each
synchronizing event, the order of the terms in each tensor product are explicit
as described bv

and

Q i" 0 , 0 , . . . 0 , e r >

0 , Ql"’ 0 j . . . 0 j O f* .

This is important since neither ordinary nor generalized tensor products are
commutative.

Since for each synchronizing event, two new tensor products are introduced,
for a SAN model with E synchronizing events, 2E tensor products are intro­
duced. The global generator of a SAN with iV automata and E synchronizing
events is obtained from the equation

N ^ ^
Q = © « « + E © Of+ E<J?

9 i=i 1=1 9 i=l j = l
N 2E

= E -̂1 ® ® ^«.-1 ® ® ^".+1
1=1
N+2E

• · 0 iriN + ^ (g) Qj
(¿)

= E ® <55
J=1 9 i=i

CHAPTER 3. STOCHASTIC AUTOMATA NETWORKS 32

and the form of it as in the last line is referred to as the descriptor of the SAN.
The first set of N tensor products are referred to as the local generator matrices,
the E tensor products of the form are referred as the synchro-
nizing event matrices, the final tensor products of the form J2 f - i g

are referred as the corrector matrices. The synchronizing event matrices reflect
the interaction among the automata involved in the event. The corrector ma­
trices are diagonal matrices introduced to make the global generator matrix a
transition rate matrix. Further information about the rationale behind these
matrices with the related proofs might be found in [9], [10], [11] . We now give
an example SAN to illustrate the concepts introduced in this chapter. The
example SAN appears in [16, pp. 470-472].

The SAN has two automata, one with two states and the other with three
states. It has two synchronizing events and there are also functional rates.
There is a functional transition in the second automaton the transition
from state 2 to state 3 occur with rate /¿2 if the first automaton, ^^^l,is in state
1 and with ¡j.2 if the first automaton is in state 2. The local generator matrix
of .4*̂ * is given by

—Ai Ai
0 0

- /A Ml 0

0 - / /
0 0 0

and the local generator matrix of is given by

For the second automaton, the functional transition rate / is defined by

i ¡x-2 if = 1

I ¡i-2 if = 2

where is a function that maps automaton 4.̂ '̂ to its state.

The first synchronizing event ei, occurs by a transition of the first automa­

ton, from state 2 to state 1, which happens at a rate A2, causing the
second automaton, to state 1. The synchronizing event matrix and the
corrector matrix corresponding to the first synchronizing event ei, for the first

CHAPTER 3. STOCHASTIC AUTOMATA NETWORKS 33

automaton are given by

oi:’ = 0 0

A2 0
. 0 1 :’ =

0 0

0 — A 2

and the synchronizing event matrix and the corrector matrix corresponding to
the first synchronizing event ei, for the second automaton are given by

Q ?N

’ 1 0 0 '
1 0 0 , O' f =

' 1 0 0 ‘
0 1 0

1 0 0 0 0 1

The second automaton is the master of the second synchronizing event.
Whenever the second automaton makes a transition from state 3 to state 1.
which happens with rate /H3 , it causes the first automaton to state 1. The first
automaton has

1 1

0 0

as the synchronizing event matrix and has

1 0

0 1

as the corrector matrix. The second automaton has

' 0 0 0 ‘

= 0 0 0

_ /«3 0 0 _

as the synchronizing event matrix and has

' 0 0 0

Q^e^= 0 0 0

0 0 -pLz

as the corrector matrix.

The descriptor of the SAN may be expanded as

N E N E N

= ei" ® ei"+eii’ 0 eii’ + eii’ ® ei?+eii’ ® eif + eii’ 0 Q'S~

CHAPTER 3. STOCHASTIC AUTOMATA NETWORKS 34

and from this we obtain the global generator as

+ / J ' l) Ml 0 Ai 0 0
0 - (Ai + M2) M2 0 Ai 0

0 —(Ai + ^3) 0 0 Ai
^ 2 0 0 -(A2 + Ml) Ml 0
A 2 0 0 0 ~(A2 + M2) M2

A2 + Â.3 0 0 0 0 - (A2 + M3)

3.6 Efficient Tensor Product Vector Multipli­

cation

The problem of finding the stationary distribution vector of a SAN with N au­
tomata and E synchronizing events involve solving the linear system of equa­
tions

N N

i= l ¿=1

All iterative methods developed for solving this system of equations need to
do a tensor product vector multiplication of the form

1=1

Note that it is possible to first expand the tensor product and then do an
ordinary vector matrix multiplication. However, in such an implementation

■the number of multiplications for finding the matrix resulting from the ten­
sor product is rii=i another set of [f ill multiplication operations is
necessary for carrying out the matrix vector multiplication. Obviously, this is
very inefficient both storage-wise and time-wise. Instead, in [17] Stewart et.
ah, suggest an algorithm with a lower computational complexity and without
the need for expanding the tensor product, if there are no functional rates in

the matrices, i.e., the tensor product is an ordinary tensor product. We give
the theorem indicating the complexity of the multiplication operation and the
algorithm (see Table 3.1). The proof of the theorem and a detailed discussion
of the algorithm can be found in [17, pp. 516-517].

CHAPTER 3. STOCHASTIC AUTOMATA NETWORKS 35

1. Initialize: nlef t = nin2 . . . n^v-i; nright = 1.
2. For i = iV,. . . , 2,1 do

• base = T,jump = Ui x nright
• For ¿ = 1, 2, . . . , n left do

o For j = 1 ,2 , . . . , nright do
* index = base + j
* For/ = 1 ,2 , Tii do

• •s/ = T̂ index\ index - index + nright
* Multiply: z — z X
■k index = base + j
* For / = 1 ,2 , . . . , n,· do

■ i n d e x — index = index + nright
o base = base + jump

• nleft = nleft frii^i
• nright = nright x n,·
• K = it'

Figure 3.1: Vector multiplication with an ordinary tensor product

T h eorem 3.6.1 The product

1=1

where Q ‘̂\ of order ni, contains only constant terms and w is a real vector of
length niay be computed in p/v multiplications , where

N N N

Pn = n.M X (p i v - i + n = n ^ X !
1=1 ¿=1 1=1

When there are functional rates in the automata, the tensor products be­
come generalized tensor products. In this case a slightly modified version of
the algorithm is applicable with a restriction on the ordering of the automata
and their dependencies. The following theorem and algorithm in Figure 3.2

are applied in such cases. Again, more detailed information about this version
of the algorithm and the theorem are provided in [17].

T h eorem 3 .6.2 The multiplication

X ((?<“' 0 , 0 , 0 , . . . 0 »

CHAPTER 3. STOCHASTIC AUTOMATA NETWORKS 36

1. Initialize: nlef t = nin? . . . n,v_i; nriqht = 1.
2. For z = 7V,. . . , 2,1 do

• base = 0] jump = rii x nright
• For ¿ = 1 ,2 , . . . , n le ft do

0 For _?’ = 1, 2 , . . . , i — 1 do
* ¿j = ([(¿' - l) / n 3 +i ni] mod (n|=i+i ni)) + 1

o For j = 1, 2, . . . , nright do
★ index = base + j

Fold = 1 ,2 , . . . , n,· do
• zi = ~index\ index = index + nright

-k Multiply: r' = ·: X . . . ,
k index = base + j
k For / = 1, 2 , n,· do

■ index ~ ~l'·· Mdtx — index + nright
o base = base + jump

• nleft — nleft ftii-i
• nright = nright x n,·

/
• 7T = 7T

Figure 3.2: Vector multiplication with a generalized tensor product

where Q ‘̂\ of order ni and ~ is a real vector of length computed

in p s multiplications , where

N N N

PN - riM X [p N - l + n " î) = n ^
!=1 t= l (=1

It should be clear that the dependency list for an automaton as it appears
in the definitions and properties is not strict, i.e., actually an automaton might
depend on a subset of the automata in its parameter list. Notice the order of
dependencies among the automata for the compatibility of generalized tensor
products with ordinary matrix multiplications, the first automaton should be
independent of the rest, the second automaton may only depend on the first
one, and each automaton may depend on a subset of the automata that precede

it. The final automaton might depend on all the remaining automata.

Chapter 4

Stationary Iterative Methods
for a SAN

4.1 The splitting of a SAN descriptor

111 order to use stationary iterative methods such as Jacobi, GS. and SOR for
solving a SAN, the corresponding descriptor needs to be split. Here we give a
suitable splitting for a SAN descriptor in the form D — L — U [16, p. 126]. By
a suitable splitting we mean one in which L, D, and U each consists of a sum
of tensor products so that iterative methods of interest may be implemented
in terms of the efficient vector-tensor product multiplication algorithm.

The derivations of the splittings are based on the associativity of tensor
products and distributivity of tensor product over matrix addition [2]. These
two properties are valid for both OTP and GTP [5]. In other words, the
splittings exist in both the nonfunctional (i.e., OTP) case and the functional
(i.e., GTP) case. Obviously, limitations on the applicability of the efficient
vector-descriptor multiplication algorithm still remain [5, pp. 13-24].

The descriptor of a SAN with N automata and E synchronizing events is

given by
2E+N N

(1)
2 E + A N

j=l i=l

37

CHAPTER 4. STATIONARY ITERATIVE METHODS FOR A SAN 38

However we can rewrite (1) as

Q — Ql A Qe A Qei

where

N

0 / = © < ?,“ ’ .
1=1

e= l ¿=1
E N _

0. =
e= l i= l

Assuming that the ¿th automaton has ni states, the global generator will have

n = rii^i states. The generator <5/'̂ is comprised of local transitions in the
¿th automaton.

First, we introduce some lemmas. Then we give a theorem that follows from
the lemmas, for splitting the descriptor of a SAN.

L em m a 4.1.1 The tensor product of two diagonal matrices Di and Do is a
diagonal matrix D {— D\ ® D 2).

Proof. By the definition of the 0 operator, D is a block diagonal matrix where
each block is equal to D 2 , and since D2 is a diagonal matrix, D is also diagonal.
□

L em m a 4.1.2 The tensor product of a diagonal matrix D\ and a strictly lower
triangular matrix Li is a strictly lower triangular matrix L {— D\ © Li).

Proof. By the definition of the 0 operator, T is a block diagonal matrix where
each diagonal block is equal to Ly. Since Li is strictly lower triangular, T is a
block diagonal matrix with strictly lower triangular blocks along the diagonal;

hence, it is a strictly lower triangular matrix. □

L em m a 4 .1 . 3 The tensor product of a diagonal matrix D\ and a strictly upper
triangular matrix Ui is a strictly upper triangular matrix U{= D i 0 Li).

CHAPTER 4. STATIONARY ITERATIVE METHODS EOR A SAN 39

Proof. By the definition of the 0 operator, U is a block diagonal matrix where
each diagonal block is equal to U\. Since U\ is strictly upper triangular, /7 is a
block diagonal matrix with strictly upper triangular blocks along the diagonal;
hence, it is a strictly upper triangular matrix. □

Lemma 4.1.4 The tensor product of a strictly lower triangular matrix L\ and
a matrix A\ of arbitrary nonzero structure is a strictly lo wer triangular matrix

L { = L , 0 AC-

Proof. By the definition of the 0 operator, ¿ is a block strictly lower triangular
matri.x with zero blocks of the order of _4i in the diagonal and upper triangular
parts. Thus L has zero elements in the diagonal and upper triangular parts; it
is strictly lower triangular. □

Lemma 4.1.5 The tensor product of a strictly upper triangular matrix U\ and
a matrix Ai of arbitrary nonzero structure is a strictly upper triangular matrix

L (= f 1 0 .41).

Proof. By the definition of the 0 operator, 17 is a block strictly upper triangular
matri.x with zero blocks of the order of A\ in the diagonal and lower triangular
parts. Thus U has zero elements in the diagonal and lower triangular parts; it
is strictly upper triangular. □

Lemma 4.1.6 Qg is a diagonal matrix.

Proof. Since Qe = Qi‘ ̂ ^ach is diagonal. Then from Lemma
4.1.1, Qe is diagonal. □

Lemma 4.1.7 Q¡ can be split as Di — L¡ — Ui, where D¡ is diagonal, L¡ is
strictly lower triangular, Ui is strictly upper triangular and each of the three

terms is in the form of a sum of tensor products.

Proof. Let Q\‘'* be split as — U¡‘\ where is diagonal, is
strictly lower triangular, and is strictly upper triangular. We use Im-.nj, to
represent an identity matrix of size n i—¿ î.· when i < j , else a one. Then

Qi = 0 ^/'^
i=l
N

CHAPTER 4. STATIONARY ITERATIVE METHODS FOR A SAN 40

= 0 I n ,0 - - - 0 Q r 0 · · · 0 0 Iny
¿ = 1
N

— Ini'.TLi-i 0 Ql 0 n̂¿ + i:n.v
¿= 1

= E /
¿ = 1

= o D\·̂ 0 - [}p z :
¿=1 ¿=1

N

¿■=1
= Di — Li — Vi

The last equality is a consequence of Lemmas 4.1.1, 4.1.2. 4.1.3, 4.1.4, and
4.1.5. □

Lem m a 4.1.8 Qg can be split as Dg — Lg — Ug where Dg is diagonal. Lg is
strictly lower triangular, Ug is strictly upper triangular and each of the three
terms are in the form o f a sum of tensor products.

Proof. Let Q[‘'> be split as where is diagonal. L[‘ ̂ is
strictly lower triangular, and f/ 0 jg strictly upper triangular. Then

0 . = E ® « ?
e=l ¿=1

e=l ¿=2
E

= E
e=l L .
E

= E
e=l L
E

= E
e=l .

¿=2

Z)W ® (0 Q<·')
i = 2

i = 2

-E
e=l

N

i < " 0 (0 C ?)
i = 2

N

U¡'>0 (0 Qi‘ l)
i = 2

r>i'> 0 0 ((® <?P)
i = 3

E

-E
e=l L

E

-E
e=l L

1=2
N

i = 2

CHAPTER 4. STATIONARY ITERATIVE METHODS FOR A SAN 41

- E
e = l L

E r

= E
e= l -

E

- E
e= l L
E

- E
e = l .

1=3
N

Di'>0 Di^>0 (i ^ Q i ‘>)
{ = 3

N

i = 3

E r

- E
e= l

E

- E
e= l L

t=3

4 ‘’ 0(i|h3í‘’)
1=2

N

i = 3

E N E N

= E « S) " i ' ’) - E E
e=l^=1;̂ = 1 i = l

£· yV
- E E

e= l k=i

k-l N

(g) g (‘>)
¿=i ¿ — /j 1

(S) OS'’)
1 = 1 z = A; +1

— ŷ e — ŷ e — Ue

The last equality is a consequence of Lemmas 4.1.1, 4.1.2. 4.1.S3. 4.1.4. and
4.1.5. □

T heorem 4.1.9 The descriptor o f a SAN given by Q (= Qi + + QN can he

split as Q = D — L — U, where D is diagonal, L is strictly lower triangular,
and U is strictly upper triangular. In particular

Q — Qt A- Qe + Qe

= [Di - L i - Ui) + [D, - Le - U,y+

= [Di A De A Qe) — {Li A Lg) — {U¡ A Og) ■
D U

Moreover, D,L, and U each may be written in the form of a sum of tensor
products.

Proof. The proof of Theorem 4.1.9 follows from Lemmas 4.1.6, 4.1.7, and

4.1.8. □

CHAPTER 4. STATIONARY ITERATIVE METHODS FOR A SAN 42

4.1.1 An Example Splitting

The following example, from Chapter 3 better illustrates the concept of split­
ting a SAN descriptor. Note that for the sake of simplicity, we replaced the
functional entries in the second automaton with constant values. It is com­
posed of two automata and two synchronizing events (i.e., N = E = 2) with
ni = 2, n-2 = 3. For the first automaton, we have

q ! " =
—Ai Ai

0 0

’ 0 o ' ’ 0 o '
A2 0 . 0 ' : ’ = 0 — A2

1 1

0 0

1 0

0 · 1

For the second automaton, we have

Q f =

-Hi Hi 0

0 —H2 fj'2
0 0 0

a i? =

' 1 0 0 ' ' 1 0 0 '

1 0 0 0 1 0
1 0 0 0 0 . 1

' 0 0 0 ' ' 0 0 o '
Q ?:= 0 0 0

Hs 0 0
0 0 0
0 0 —Hz

The global generator of the example SAN is given by

Q ■■= Ql Qe P Qe

= © o i ” + E 0 «''> + E ® o P

= q!" ® Q ?'' + c?i;’ ® Q 'S + ® '5« + N ' ® + Oil’ ® Oil’·

E N

CHAPTER 4. STATIONARY ITERATIVE METHODS EOR A SAN 43

Hence Q is a. matrix of order 6, i.e.,

— (Ai + 0 -̂ 1 0 0
0 —(Ai + 2̂) 0 0

Ai3 0 —(Ai + /is) 0 0 Ai
A2 0 0 " * (- ^ 2 + Pi) /^1 0
Ao 0 0 0 “"(A2 + Â2) Â2

Ao + /^ 3 0 0 0 0 —(A2 + /̂ 3) .

• (2)

Due to Theorem 4.1.9, we have

Q = D - L - U

— {Dt + De, + Qe) ~ (Ll + Z'e) ~ {I'l + f'e),

where Di, Li, Ui are obtained from Lemma 4.1.7 and Dg, Lg, Ug are obtained
from Lemma 4.1.8. As before, we use to represent an identity matrix of
size nl—i when i < j , else a one. R and Ot are identity and zero matrices
of order A:, respectively. Then from all the lemmas, we have

(<)

D — Di Dg + Qe

= 0 a “ ’ 0 A , + E ® A '· + E ®
¿=1 e=l ¿=1 e=l ¿ = 1

= 0 h + h & o f ' + £><;' 0 A f + A ! ’ 0 A ? + OS!' 0 OS!'

+0S !' 0 OS!’

—Ai
0

0
0

® /3 + /2 0 0
0

0 0

~H2 0

0 0

’ 1 0 0 ‘
+ 0.2 0 0 0 0

_ 0 0 0 _

+
’ 1 o' ' 0 o '

' 0 0 0
0 0.3 + 0 /3 + /2 0 0 0 0

0 0 _ 0 -A 2 _
_ 0 0 -/¿3 .

—Ai 0 0 0 0 0 ' -Ml 0 0 0 0 0
0 —Ai 0 0 0 0 0 -M2 0 0 0 0
0 0 -A i 0 0 0

+
0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 -Ml 0 0
0 0 0 0 0 0 0 0 0 0 -M2 0

0 0 0 0 0 0 0 0 0 0 0 0
+ 0e + Og

CHAPTER 4. STATIONARY ITERATIVE METHODS FOR A SAN 44

+

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0

+
0 0 -^3 0 0 0

0 0 0 -Ao 0 0 0 0 0 0 0 0
0 0 0 0 —A2 0 0 0 0 0 0 0
0 0 0 0 0 — A2 0 0 0 0 0 -fi-i

-(A1 + Âi) 0 0 0 0 0
0 —(Ai + H2) 0 0 0 0
0 0 —(Ai -l· fi's) 0 0 0
0 0 0 -(A2 + Âl) 0 0
0 0 0 0 -(A;2 + Ps) 0
0 0 0 0 0 — (A2+/i:3)

For L, we have

Zi = Li 4“ jZf
N

‘ rii+i '-nN) + E E (® ^ f ’) 0 Z ‘ ’ 0(® Q f)
e = \ k = \ ¿=1 i= k -\ - ii=i

= £ i ‘ > 0 / , + / 2 0 ip> + £<;> 0 + £)<;' 0 £i;> + l h > 0 e g '

— 0 - 2 0 / 3 + - ^ 2 0 O3 +

’ 1 0 0 ‘ ' 0 0 0 '
0 0

0 1 0 0 + O2 0 - 1 0 0
-A2 0

_ 1 0 0 _ -1 0 0 _

+
0 0

- 1 0
0

0 0 0
0 0 0

/2 3 0 0

+
1 0

0 0
0

0 0 0
0 0 0

- ^ 3 0 0

— Oe + Oe +

0 0 0 0 0 0 ' 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0
+ Oe +

0 0 0 0 0 0

—A2 0 0 0 0 0 0 0 0 0 0 0

—A2 0 0 0 0 0 0 0 0 0 0 0

— A2 0 0 0 0 0 _ - / ¿ 3 0 0 0 0 0

CHAPTER 4. STATIONARY ITERATIVE METHODS FOR A SAN 45

+

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

-Ai.3 0 0 0 0 0 - M 3 0 0 0 0 0

0 0 0 0 0 0 — A2 0 0 0 0 0

0 0 0 0 0 0 — A2 0 0 0 0 0

0 0 0 0 0 0 — (A 2 + Ms) 0 0 0 0 0

Finally for 1/, we have

U = Ui + U,
N

= E (i Ml :m,_i 7, f f V TJ UI vj 1 ,
¿=i

(g) (?<■>)
e= l ¿=1 ¿ = A:+1

= e /3 + /2 0 0 + D[\̂ 0 + u!;lj 0 +
Dll̂ 0 Fl')

0
0

-A i
0

0 -Ml 0 1 0 0
3 + I 2 0 0 0 -M2 + O2 0 1 0 0

0 0 0 1 0 0

0 0 0
-02 '<JO3 + O2 0 0 0 0

. /̂ 3 0 0 _

0 0 0 -Ai 0 0
0 0 0 0 —Ai 0
0 0 0 0 0 -Ai
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

+
1 0

0 0
0 O3

+

0 -Ml 0 0 0 0
0 0 -M2 0 0 0
0 0 0 0 0 0
0 0 0 0 -Ml 0
0 0 0 0 0 -M2
0 0 0 0 0 0

+ 0e + Oe + Oe + 0$
0 -Ml 0 —Ax 0 0
0 0 -M2 0 -Ax 0
0 0 0 0 0 —Ax
0 0 0 0 -Ml 0
0 0 0 0 0 -M2
0 0 0 0 0 0

The global generator matrix given in 2 may be verified by computing
D — L — U. In the next section, we present three iterative methods that follow

CHAPTER 4. STATIONARY ITERATIVE METHODS EOR A SAN 46

from the splitting in Theorem 4.1.9.

4.2 Iterative Methods Based on Splittings

Remember that the problem of finding the stationary vector of a Markov chain
may be formulated as one of computing a nontrivial solution to a homogeneous
system of linear algebraic ecfuations with a singular coefficient matrix under a
normalization constraint. That is, the (1 x n) unknown vector tt in

■Q = 0. ||7r||i = 1 (3)

is sought. The methods based on splittings amount to using the power method
with an iteration matrix that corresponds to the particular splitting until a
predetermined stopping criterion is met. VVe should also remark thiit the effi­
cient vector-(generalized) tensor product multiplication algorithm used by the
methods of interest has a time complexity of order 0 (ni=i
complexity result assumes that all matrices in a tensor product are dense. In
reality, some of these matrices are identity and zero, some are diagonal, and
the remaining sparse. .See, for instance, the matrices forming the descriptor in
the example in Subsection 4.1.1.

In the following subsections, we introduce the stationary iterative methods
of .Jacobi, Gauss-Seidel and SOR that we described in Chapter 2. In Sec­
tion 4.3. we describe the block versions of the same methods.

4.2.1 Jacobi

In matrix notation, applying the .Jacobi method to a homogeneous linear sys­

tem as in (3) is equivalent to applying the power method to the iteration matrix

(L 4- U)D~^] that is,

(̂A.-+i) ^ + U)D~\ À: = 0 ,1 , . . . ,

where Q is split as D — U). As it can be seen from the given formulation,
each iteration may be implemented in two steps. First, postmultiply the most

CHAPTER 4. STATIONARY ITERATIVE METHODS EOR A SAN 47

recent approximation with (L + f/), which is a sum of tensor products,
and obtain Then postmultiply with D~^. This last step can be
implemented by multiplying the reciprocal of each diagonal element in D with
the corresponding element of to give

4.2.2 Gauss-Seidel

In matrix notation, applying GS to a homogeneous system as in (3) is equivalent
to applying the power method to the iteration matrix U{D — L)~^. However, in
order to employ the efficient vector-tensor product multiplication algorithm,
we propose a slightly different implementation of the method. ,A. backward GS
iteration corresponds to the splitting Q — [D — L) — U and may be written as

The right hand side of the iteration requires the use of vector-tensor product
multiplication. Once the right hand side is computed as bC\ the next step
involves solving the lower triangular system of equations
Similarly one can define forward GS using the splitting Q = {D — U) — L. In
order to employ the efficient vector-tensor product multiplication algorithm,
we should examine the nonzero structure of the matrix [D — L).

is a diagonal matrix of order n = flili from which all the diagonal
elements of [D — L) come. That is, none of the nonzero elements of L, a
strictly lower -triangular matrix, appear along the diagonal of [D — L).

By considering Lemmas 4.1.7, 4.1.8 and relabeling Li as Te=o, we can rewrite
L as

L· = + E E (® o f ’) 0 d ‘ ’ ® (<8) c f ’)
i=l
E

= E
e=0

N k-1

e= l k=l 1 = 1

N

i=k+l

E « 8) i> f ') 0 4 ‘ ’ 0 { ® < ?f)
k=l 1=1 ¿=¿+1

= Ed''((g)<3<'>) + Ei>S''
e=0 i= 2 e=0

E (® £ ' «) 0 i<‘ >0 ((g) O P)
k= 2 i= 2 i=k+l

e=0

where all are strictly lower triangular matrices formed by summing similar
tensor products. For Qq (i.e., Li), all matrices except Lq ̂ in the tensor products
are identity matrices.

Similarly, using Lemmas 4.1.6, 4.1.7, 4.1.8 and relabeling QC as D[‘I e for
e = 1, 2, . . . , FI, we get

D = f ; + + ¿ (8 (3 ; ' '
¿=1 e= l ¿ = 1 e= l ¿=1
N 2E N

= E i . . » - , 0 A “ ’ 0 + E <8) D[·’ ·
i=l e= l1=1

Next we expose the block structure of {D — L) and build the lower triangular
solution on this structure.

Each matrix is the sum of N tensor products. All tensor products in
this summation introduce nonzero entries to that are in mutually exclusive
locations. In other words, each nonzero element in comes from a different
tensor product. To see this, partition into rii blocks each of order n|I:2 '̂ t·
Its lower triangular blocks come from the term pH q 0 . . . t and
its diagonal blocks come from the remaining terms (i.e., terms that have
as the first factor). Observe that block { i , j) * > j of can be expressed
as ê(,· Qê)̂·’ where is the (i, j) th element of Similarly, block
(j . j) of can be expressed as [E [~ 2(® f=2 '2> © (<8 >;=r-+i >
where is the jth. diagonal element of

Given the above (first level) partitioning of F, our algorithm for solving tt
in the system Tr{D — P) = b stems from the following observation. The linear
equations for the subvector of ~ corresponding to the jth diagonal block of
[D — P), denoted Itj, can be expressed as

E N

CHAPTER 4. STATIONARY ITERATIVE METHODS FOR A SAN 48

7T, ~ S' 7T,:
¿ = j+ l Le=0 k=2

('i)

or as

j ̂ j,j G 5 7 77-1, . . . , 2, 1.

Here Dj j is the jth diagonal block of (F> - F), bj and Cj are respectively the

yth subvectors of b and c, the new right hand side.

CHAPTER 4. STATIONARY ITERATIVE METHODS FOR A SAN 49

Q"

Figure 4.1; Lower triangular part of Q\ © Q 2 0 Q3 partitioned into blocks.

.A.t this point, we are left with the problem of solving I^jDjj — Cj. Fortu­
nately, the block structure of the diagonal blocks Djj is similar to that of the
original matrix (D — L). Each diagonal block at level 1 is a lower triangular
matrix that can be expressed as a sum of tensor products. Thus.

411,> ®
N

no'.71 TIN

-E 4Ü
e=0

j)

where is the j/'th diagonal element of D\ '̂. Note that the diagonal elements
of Djj come from the first and the second terms. The strictly lower triangular-
elements come from the third term. Next we can partition each diagonal block
Djj into ri2 blocks each of order This continues recursively until we
have a system of order n̂ v (i.e., order of the last automaton) to solve. The

first and the second terms of Djj come into play only at the deepest level and
the recursion is inherent in the third term. Hence, the algorithm we present

for point GS is a recursive one. The lower triangular solution algorithm calls
itself until the recursion ends at level N when a single iteration over the point
equations is performed: the systems to be solved at level N are lower triangular.

k=2

(gi 0 S'<)
k—2 1—2

2E N

e=l k = 2

The illustrative example in Figure 4.1 shows the partitioning of a three term

CHAPTER 4. STATIONARY ITERATIVE METHODS EOR A SAN 50

tensor product. The lower triangular block structure of the tensor product
Qi ® Q 2 Qz is emphasized. The dark grey shaded blocks of the product
on the left come from the term L\ @ Q 2 ® Qz- The grey blocks on the left
correspond to the three diagonal blocks each of order n2nz· The partitioning
of the second diagonal block D 2.2 is shown in the middle. The smallest matrix
on the right is the second diagonal block of 1)2,2·

A lgorith m for solving - { D — L) = b

The algorithm discussed in this section solves the system 7r(Z) — L) = h using
the efficient vector-(generalized) tensor product multiplication algorithm when
there are no cyclic dependencies in the S.A.N [5, pp. 20- 22]. Here. D and L are
respectively diagonal and strictly lower triangular matrices. In the absence of
cyclic dependencies, all tensor products in a SAN (see ecjuation (1)) may be
ordered (and relabeled) such that each matrix in each tensor product has entries
with functional dependencies, if at all. only to the automata that come before
itself in the given ordering. .A. SAN that lacks cyclic dependencies may be

written in the form · ·;
Remember that the arguments in the square brackets of each matrix indicate
dependencies that may exist among automata. For instance, transitions in
automata 3 may depend only on the states of automata 1 and 2, but not on
the states of others. Before we use the algorithm, we make sure the automata
are ordered appropriately.

The initial call to the recursive algorithm is SolveD-L(l, states, n, it, b). The
first parameter id[= 1) corresponds to the level of block partitioning. It might
also be thought of as the current level automaton number. The initial call at

level 1 partitions the global descriptor into rii blocks each of order n|I:2 ^1'· The
second parameter states, an array of size N, stores the state of each automa­
ton to be used in function evaluations. For instance, if we are solving the ¿th
diagonal block (see equation (4)) in the first call (i.e., no recursive calls have
been made yet), the state of automaton 1 is i. The parameter states is also
used to determine the scalar multipliers that form the diagonal blocks. For

example, in order to solve the smallest block in Figure 4.1, we need to mul-

CHAPTER 4. STATIONARY ITERATIVE METHODS FOR A SAN 51

SolveD-L(z(/, states, f irs t , tt, b)
1. nright = nid+iTiid+ 2 ■ --riM
2. if {id = N)

• T = 0

• for e = 1 to 2E + iV

o T = T + diD^^^^^states] — [states])
• Solve TTfirst —n,\/ + l:n r̂T = bf¡rst—ny+l:nM
• return

else
• states[id\ = Uid
• SolveD-L(ic/ + 1, states, first, r, b)

3. - f i r s t = fir s t
4. hfirst = f ir s t — [nidiiright) + 1
5. for trow = Uid dovvnto 2

• 7T f ir s t = TT firs t — nright + 1
• states[id\ — irotu
• for e = 0 to £■

O b = T^Trfirst:nrighti î=id+lQe‘ [̂''̂ ^̂ ^̂ ^̂]̂
0 for A; = 1 to irow — 1

o Reset states[{id + 1 iV] to the first indexed states of
automata {id + 1) to N

o for i = 1 to nright
. j — Jl¥-^ rl̂ T

i l j= l e[states[j]^states[j\)

^hfiTst-\-(k — \)nright-\-i—\ ^hJirst-{-[k — l)nTight-\-i—\

* Update siaies[('ic/+ 1) , iV]
for automata {id + 1) to iV

• SolveD-L(fd + I, states, kf irst — nright + 1, tt, b)

Figure 4.2: The recursive lower triangular solution algorithm for SANs

tiply the lower triangular matrix with d̂2,2^ ,̂l· See also step 2 in
the SolveD-L algorithm; if e corresponds to the corrector of a synchronizing

event, [states] = 0. Furthermore, we represent matrices arising from lo­
cal automata by e = 2E + 1 , . . . ,2E + N m step 2. We determine both the
coordinates of the scalar multipliers and the current states of lower indexed
automata using states. The initial contents of .states is irrelevant since it is
updated when deemed necessary. The third parameter f ir s t {= n) is set to
the size of the unknown vector in the current call. The fourth parameter is

CHAPTER 4. STATIONARY ITERATIVE METHODS FOR A SAN 52

the solution vector initially set to tt,· = 1/n Vi and overwritten with the new
approximation at each iteration. The last parameter b is the right hand side
of the lower triangular solution. The algorithm assumes the generator matri­
ces of automata are available globally. Since the algorithm implements a back
solution and computes the last unknown (subvector) first, we use T̂’/irst-.n̂ to
denote the subvector of x with first element xfirst and length n¡\f.

Vector-tensor product multiplications arising from the local and synchroniz­
ing event generator matrices (see the for-loop on e in step 5 of the algorithm)
may be reduced to scalar-vector multiplications (see the third statement from
the bottom in step 5). For each block in a row, a vector-tensor product mul­
tiplication possibly with functional transitions depending on the current state
of the automata at that level (see iroic in step 5) is recpiired. .An efficient
approach is to loop on blocks in a row (see the for-loop on k in step 5) because
in each row all blocks below the diagonal have a common vector-tensor prod­
uct multiplication and all functional entries in these blocks use the same irotu
value while being evaluated (see ecpiation (4)). It is also observed that many
matrices encountered in the test problems are zero, have zero diagonals, have
zero strictly lower or strictly upper triangular parts. We have taken advantage
of this as well. The actual timings depend heavily on such implementation
details.

Gauss—Seidel algorithm

The algorithm given in Figure 4.3 implements Gauss-Seidel for solving a SAN
in the functional case assuming that a splitting {D — L — U) for the S.AN
descriptor and an initial approximation x are available. Remember that the
triangular solution overwrites the input approximation with the new approx­

imation on return from the call. Upon termination it gives the number of

iterations performed.

CHAPTER 4. STATIONARY ITERATIVE METHODS FOR A SAN 53

• it = 0
• Repeat until convergence

o it = it A 1
o Compute b = irU
o SolveD-L(l, n, 7T, 6)

Figure 4.3: The Gauss-Seidel algorithm using SolveD-L

4.2.3 Successive Overrelaxation

We now express the SOR method as := + (1 — w)
AO

A O ■ . where>''SOR·
is the (k + l)st approximation of GS, t̂ ŝor approximation

of SOR. and lu is the relaxation parameter (i.e., a weighing factor) satisfying
0 < w < 2.

4.3 Block Methods

We argued that one can perform a lower triangular back solution on the blocks
of order at the final depth of recursion: see the third bullet in step 2 of the
SolveD-L algorithm. Instead of doing this, one may choose to solve these blocks
directly, i.e., by Gaussian elimination (GE). This approach, we call block GS,
is likely to decrease the number of iterations since blocks at each iteration are
solved exactly. When doing this, the right hand side b that goes into SolveD-L
is computed in a slightly different manner. Now one must exclude the strictly
upper triangular parts of the matrices corresponding to the last automaton
from the multiplication. That is,

V /‘> 06 « =
- ¿=1

Q A)
e=l k = l i = l i = k + l

What has been excluded from the new right hand side must be included at
level N in step 2 of the recursive back solution algorithm. The matrix that
corresponds to automaton N at step 2 must include the whole matrices that

correspond to synchronizing events, their diagonal correctors and to local au­
tomata, not just the lower triangular parts. The matrices of order n.A/· formed in
this way at the deepest level of recursion for each one of the diagonal
blocks will be solved using GE. Even though the space requirement is larger, if
the decrease in the iteration count is substantial the cost of solving the blocks
directly is offset by a smaller overall solution time. Another possibility is to
terminate recursion earlier and solve larger blocks. Also one can choose to
generate and store larger blocks at the outset, then use these at each iteration
(see the concept of grouping in [6, pp. 13-14]).

In the e.xperiments, we noticed an interesting feature of block methods.

R em ark 4.3.1 For a block coefficient matrix with lower (upper) triangular
diagonal blocks in equation (S), backward (forward) block GS/SOR is equivalent
to point GS/SOR.

The remark follows from inspecting the linear equations in systems with the
described nonzero structure.

CHAPTER 4. STATIONARY ITERATIVE METHODS FOR A SAN 54

4.4 An Upper Bound on SolveD-L

In this section, we provide an upper bound on the number of multiplications
performed in the SolveD-L algorithm for point GS (see subsection 4.2.2). Re­
member that multiplying the approximate subvector f j with block (j, i) j > i of
the descriptor at the first level partitioning can be e.xpressed as
ê(] Qe^)̂· index j in this expression changes, the product

Qe^̂) should be reevaluated for each value of j in case there are func­
tional dependencies among automata. At worst, the value of the functional

rate remains constant for all blocks in the same row. We use the efficient
vector-(generalized) tensor product multiplication algorithm that has a time

comple.xity of 0(111=1 ̂ tensor product with N matrices each of
order n,·. This complexity result assumes that all matrices that participate in
the multiplication are dense.

CHAPTER 4. STATIONARY ITERATIVE METHODS FOR A SAN 55

In the following, T,· represents the number of multiplications performed in
SolveD-L when the matrix to be solved is partitioned into n,· blocks each of

order riiLi+i nj.

T i = E (n¿ - 1) n . nj n j + i —
j=¿+l i=¿+l

9 N
I TT I 'TH------------- I I rij +

2 Nnr - Ui
n n,

j=i+l

Ty = E N

j-i+l
n y {n y — 1)

for i <

, n ;v (n .v - l) , ^H-------------------l· ENni ;̂ + TlA¡.

The initial call to SolveD-L views the globed matrix as partitioned into ni
blocks each of order ni=2 «̂· bounding Ti given by

Ti = E
N N

(«1 - 1) n S ” < + o n ««· +
9 A'n\ — ri\

JJ u, -1- UiTi.
i—'2 i—2 i—2

The last term niT2 of T\ means in the next call we solve n\ diagonal blocks of
order rii^2 recursively. The term that is inside the E parentheses arises from
the multiplication of the current approximate subvector with tensor products
corresponding to E synchronizing events. The first term (?2i — 1) 01^2 ^^^2

inside the parentheses is for the multiplication of the current approximate sub­
vector with all blocks below the diagonal due to a synchronizing event. Re­
member that for each row of blocks all such multiplications are the same (hence
we have ni — 1 of them), however each of the blocks below the diagonal gets

multiplied with a different scalar giving the second term {n\ — n i) /2 n !^2

side the parentheses. In the first level of partitioning, (nl — n i)/2 is simply the
number of blocks below the diagonal and n ¡^2 length of the subvector.
The second term of Ti is for the number of scalar multiplications performed in
computing the current approximate subvector-tensor product multiplication
due to local automata. Note that the actual vector-tensor product multiplica­

tions are accounted for as the first term inside the E parentheses.

In T(v, we have the number of scalar multiplications due to synchronizing
events and due to local automata as the first and the second terms, respectively.
The third term is for the number of multiplications performed in computing
the diagonal corrector elements (i.e., each of the n/v diagonal elements in a

block gets multiplied with the diagonal elements of the previous N — I levels

CHAPTER 4. STATIONARY ITERATIVE METHODS FOR A SAN 56

and this happens for all E synchronizing events), and the last term is for the
number of divisions made at level N to obtain the solution.

In order to find a closed form, vve write

Ti = E (ni - 1) +

+ ni E

i=2 i=2
N N

n j — Til
9 n

1=2

2 N
. '^1 “ TT ^

+ ;; 11

N

(n 2 - 1) H X] H Hi

r -V N
< E

¿■=3 ¿=3
N

t=3
+

¿=2
2 Nnf, — Tl2 ‘

1 3 rii + n-iTz
¿=3

n - ' . - E ’-. + T H ·n;
.¿=1 ¿=2

.V
1 = 1

N

i= l

■ N N N

n XI + 2̂ n
.¿ = 1 1=3 ¿=1

 ̂ T—r
+ — n « + «1^ 2 7:2 3̂

1 = 1
N

<
i=i

< E

< · ·

< E

■ N
I

¿=2
.V N

Y^rii + Y^ m
Lz = 2 ¿=3

+ E
■ N

Y ^ i
,z=3

no
Ui U2

+ — + — ^ 9 9 Hi/2973

N

i=l

E
n "^('^^1 ”1" 2^ 2) +

ni TI2

9

-I
JJ n, + ni'/iors
z = l

r :V N
Y r i i + ■■■ + Y r i i
1 = 2 ¿=N

N-l
+ JJ n,iTj\[.

i = l

N

J][̂i
z = l

N - l

t E >г7г;
z=l

N N - l N

n + o XI nz=l z=i ¿=1

Noting that
N - l ̂ ̂ N

3 3 UiTy = - E N um 13 + :^EN 33 '2.· + 13 ”'' + 9 II
i= l ¿=1 i= l ¿=1 z = l

vve get the (loose) bound
o N N 1 iV .V

Ti < + 9
¿=1 ¿=1 i= l 1=1

Similarly one can find an upper bound on the number of multiplications

performed in computing the right hand side b as (EN+1) HjXi n,· n l l i ^1· Here,
E N is due to synchronizing events and 1 is due to local automata. Each tensor
product arising from local automata has one upper triangular matrix; all others
are identity. It is not surprising to find the total number of multiplications

performed in one iteration of the GS method on a SAN descriptor for the

algorithm given in this paper to be 0 { E N ni ni)·

Chapter 5

Numerical Results

5.1 The Problems and the Experiments

In order to make illuminating comparisons, we implemented power, Jacobi,
GS. and SOR methods. We carried out experiments using both backward and
forward versions of GS (and hence SOR) together with block versions of Jacobi.
GS, and SOR methods. In block implementations, we terminate recursion at
the deepest level and solve the blocks of order n/v using Gaussian elimination as
discussed in Section 4.3. During the experiments we used a stopping criterion
of between consecutive approximations. That is, we computed a residual
vector as the difference between consecutive approximations, and used the 2-
norm of this vector as the stopping criterion. We used a uniformly distributed
probability vector as the initial approximation for all experiments. We ran
all the experiments on SUN Sparcstation 4’s each with 32 megabytes (MB)
of RAM. All the algorithms are implemented in C + + language and the new
methods are incorporated into the software package PEPS [12]. Regardless of
its size, each problem produced a smaller number of iterations in either the
backward or the forward approach; we present results of the better approach.

We experimented with three problems. The first two, resource sharing and
three queues, are explained in [5]. The third one, the model of a mass storage
system, appears in [3]. For the mass storage example, we experimented with

ot

CHAPTER -5. NUMERICAL RESULTS 58

different orderings of the automata. Obviously, ordering of automata is likely
to have an effect on the iteration count. The efficient vector-tensor product
multiplication algorithm itself imposes an ordering on the automata. In order
to use other orderings, a permutation vector may need to be introduced to the
multiplication algorithm. We experimented with orderings that do not require
permutation. We also tried orderings different from the original ordering by
taking advantage of the position of identity matrices in tensor products. Such
orderings follow from Lemma 5.5 and its companion remark in [5, p. 16].

Modeling with SANs is still in its infancy, and only recently have researchers
started considering large and comple.x problems. Issues related to cyclic depen­
dencies are currently under investigation. Lemma 5.8 and Theorem 5.2 in [5]
show how one can handle cyclic dependencies in generalized tensor products. If
the functional dependency graph is fully connected there is not much that can
be done to improve the complexity of vector-generalized tensor product mul­
tiplication. On the other hand, if the cutset of the cycles in the dependency
graph has a small number of automata, then a more efficient vector-generalized
tensor product multiplication algorithm can be used. However, this multiplica­
tion will still take much longer than that of a vector-generalized tensor product
lacking cycles. The smaller the cutset, the better the improvement. Moreover,
at the end of Section 6 in [5], it is indicated that Theorem 5.2 needs to be
used only when routing probabilities associated with synchronizing events (i.e.,
descriptors of slave automata due to synchronizing events) are functional and
result in cycles within the functional dependency graph. The occurrence of
this situation is suspected to be rare by the authors of [5]. We have not seen
such a case. However, it is still not impossible to have generalized tensor prod­
ucts with dependency cycles. We should emphasize that no attempt has been
made to avoid cyclic dependencies in the modeling phase of the mass stor­
age problem. In [6], the last paragraph of subsection 4.3 discusses the results
of some e.xperiments with artificially created cyclic dependencies. There it is

mentioned that cycles have a detrimental effect on solution time, as expected.

As for ordering the automata in the case of non-cyclic dependencies, we think
it should not be very difficult. It is an implementation issue. However, we have
purposefully concentrated on orderings that do not require the introduction of

CHAPTER 0. NUMERICAL RESULTS 59

Table 5.1: Storage Requirements and Generation Times for All Problems

Prob. 1 Desc. Sparse Sparse
N P n nz nz gtime
12 1 4,096 48 28,684 1
12 6 4,096 48 40,960 1
12 10 4,096 48 53,236 1
16 1 65,536 64 589,840 26
16 8 65,536 64 851,968 26
16 15 65,536 64 1,114,096 27
20 1 1,048,576 80 11,534,.356 870
20 10 1,048,576 80 16,777,216 889
20 19 1,048,576 80 22,020,076 882

Prob. 2 Desc. Sparse Sparse
c\ C‘2 C3 n nz nz gtime

5 5 10 2,500 105 11,875 0
10 10 10 10,000 145 50,960 1
10 10 20 40,000 225 205,000 6
15 15 20 90,000 265 471,605 13
15 15 .30 202,500 345 1,063,125 30
15 15 50 562,500 505 2,957,025 84
20 20 50 1,000,000 545 5,315,100 147

Prob. 3 Desc. Sparse Sparse
C iV, n nz nz gtime
26 6 6,480 95 39,960 1
51 11 73,205 200 479,160 14
76 16 327,680 330 2,191,360 86

101 21 972,405 485 6,575,310 331

a permutation vector. Searching for optimal orderings and relaxation param­
eters when testing newly devised algorithms is a problem in its own right and
we have not attempted experimenting with all N1 orderings of automata.

The main advantage of using SANs is memory efficiency as opposed to time
efficiency. We implemented power, Jacobi, GS, SOR methods and their block

versions for sparse matrices in the Harwell-Boeing format so that a compar­

ison can be made. The sparse matrices are generated using the descriptors,
which are also stored in sparse format. In Table 5.1, we present the sizes of
the problems, the number of nonzero elements stored in sparse matrices and

CHAPTER 0. NUMERICAL RESULTS 60

descriptors, and the generation times of the sparse matrices. The generation
times of the sparse matrices should be added to the solution times of the sparse
methods. In the table, nz denotes the number of nonzeros either in the de­
scriptor approach (Desc.) or the sparse matrix approach (Sparse), and gtime
denotes the global matrix generation time in sparse format. We should re­
mark that identity matrices arising in synchronizing events or local transitions
are kept in a special data structure and do not contribute to the space com­
plexity of the descriptor approach. The generation time of the descriptor in
each problem is negligible and hence not reported. Since one is limited with
a certain amount of core memory on a target architecture, we report results
with sparse methods only in problems for which we could generate and store
the global transition rate matrix. That we could solve larger problems using
the sparse matrix approach if we had used a larger core is immaterial. In this
work, we aim at investigating the 'h'elative” worth of the SAN approach com­
pared to the sparse matrix approach for the solution methods at hand on a
target architecture. Research along other viable alternatives for handling large
numbers of nonzeros in sparse matrices is also of interest to researchers (see
[S], for instimce). In the following re« refers to the optimal reUixation param­
eter, it and time denote respectively the number of iterations and the CPU
time (in seconds) to converge to the prespecihed tolerance. The bold figures
in Tables 5.2-5.9 indicate the best run times for the particular problem. In
the following sections, we describe the problems and present the results of the
experiments with the descriptor methods and the sparse matrix methods.

5.2 The Resource Sharing Problem

The resource sharing problem has four parameters. The number of processes N,
the number of processes P that can simultaneously access the critical resource,

the rate NP at which each process wakes up and tries to acquire the resource,
and the rate at which each resource using the process releases the resource
for i - 1 , 2 , N . All automata have two states implying n = 2‘^. In our
experiments we used = 0.04 and = 0.4 for f = 1 ,2 , . . . , N. This model
does not have any synchronizing events: it has functional transition rates but

CHAPTER 5. NUMERICAL RESULTS 61

Table 0.2: Results of Desc. Experiments with the Resource Sharing Problem

Prob. 1 Power GS SOR Block GS Block SOR
N P it tim e it t irrte it tim e it tim e it tim.e

12 1 142 83 2 2 1.0 2 2 2 2 1.0 2 2
12 6 222 131 26 23 1.3 18 16 26 22 1.3 18 15
12 11 222 123 28 25 1.3 18 16 26 22 1.3 18 15
16 1 188 2.299 2 39 1.0 2 40 2 38 1.0 2 38
16 8 294 3.793 32 613 1.3 22 420 32 -592 1.3 22 402
16 1-5 294 3.-562 34 650 1.4 22 420 32 589 1.3 22 402
20 1 236 63.265 2 825 1.0 2 826 2 740 1.0 2 740
20 10 362 94.157 38 15.0-39 1.5 26 9,777 38 13,764 1.4 24 8,734
20 19 364 89.126 40 15.554 1.5 24 8,891 40 14,311 1.5 24 8.673

Table 0.·): Results of Sparse eriments with the Resource Sharing ProblemO

Prol) . 1 Power GS SOR B lock GS Block SOR
.V P it t im e it t im e it t im e it t im e it t im e

12 1 142 4 2 0 1.0 2 0 . 2 0 1.0 2 0
12 6 222 9 26 1 1.3 18 1 26 2 1.3 18 1
12 11 222 12 28 2 1.3 18 1 26 2 1.3 18 2
16 1 188 118 2 2 1.0 2 2 2 3 1.0 2 3
16 8 294 255 32 30 1.3 22 22 32 52 1.3 22 37
16 15 294 326 34 39 1.4 22 29 32 63 1.3 22 44

no cyclic dependencies. Since all matrices are identical for the given and
fCK reordering the automata is futile. The resource sharing problem does not
converge for .Jacobi and block .Jacobi methods. .As for backward block GS and

SOR methods, they are expected to give (slightly) smaller iteration counts than
their point versions when P is closer to /V than to 0. This follows from Remark
4.1 and is particularly substantiated for the GS iteration. When P is small
compared to .V. many of the upper diagonal elements of the 2 x 2 matrices
evaluate to zero and there is no advantage of using block methods. On the
other hand, when P is larger, many functional rates evaluate to nonzero values
and the block methods start to make a diiference, however very little due to
the extremely small block size. The results of the experiments are summarized
in Table 5.2 and in Table 5.3. Observe that block SOR takes approximately
1/lOth of the time power method takes for the case N = 20, P = 19, in the
descriptor approach. We were not able to solve the largest three instances of
the this problem with a sparse solver.

CHAPTER 0. NUMERICAL RESULTS 62

Table 5.4: Results of Descriptor Experiments with the Three Queues Problem

Prob. 2 Power Jacobi GS SOR
Cl C2 C3 i t t im e it t im e it t i m e it t im e

5 5 10 696 82 450 66 164 ■21 1.6 102 17
10 10 10 912 411 590 .336 226 1.54 1.6 142 98
10 10 20 1,084 1,954 726 1,658 270 722 1.6 168 455
15 15 20 1,548 6.215 1,064 5,.390 404 2,485 1.6 256 1,577
15 15 30 1,664 15.052 1.154 13,103 436 6,288 1.6 274 3,838
15 15 50 l ’874 47,240 1,318 41,.535 492 21,726 1.6 310 11,962
20 20 50 2,306 101.680 1.642 91,187 618 44,002 1.6 390 27,123

Prob. 2 Block .Jacobi
Cl C2 C3 it time

5 5 10 412 110
10 10 10 540 557
10 10 20 668 2.868
15 15 20 998 9.235
15 15 30 1,074 24.246
15 15 50 1,234 82.215
20 20 50 1,540 186.781

5.3 The Three Queues Problem

The three cpieues problem is an open cjueueing network of three finite Cci-

pacity queues respectively with capacities C\ — 1, CL — 1, and C3 — 1 in which
customers from queues 1 and 2 (try to) join cpieue 3. The customers that
come through queues 1 and 2 are referred to as type 1 and type 2 customers.
The arrival and service rates of queue i are respectively given by A,· and /q for
i = 1.2. Queue 3 has a service rate of for type 1 cind a service rate of /¿3.̂
for type 2 customers. The network is modeled using 4 automata A '̂K
^(3i) ^ (32) with respectively Ci, C2, C3, and C3 states. The state space size is

given by n = CiC-iCl- Other details of this queueing network may be found in
[5]. The parameters used in the experiments are Ai = 0.4, A2 — 0.3, ¡jL]_ - 0.6,
l-i2 = 0.5, /[¿3, = 0.7, and /¿3, = 0.2. This model has both synchronizing events
and functional rates; it does not have any cyclic dependencies.

For the three queues problem, the automata are ordered as

CHAPTER 5. NUMERICAL RESULTS 63

Table 0.5 : Results of Sparse Experiments with the Three Queues Problem

Cx
Prob.

C-2
2
С.з

Power
it time

Jacobi
it time it

GS
time

SOR
it time

5 5 10 696 9 450 6 164 2 1.6 102 1
10 10 10 912 49 590 32 226 13 1.6 142 9
10 10 20 1,084 238 726 1-58 270 6-5 1.6 168 44
15 15 20 1,-548 778 1.064 -539 404 220 1.6 256 153
15 15 30 1,664 1,916 1,1-54 1319 436 -541 1.6 274 373

Prob.
c \ C l

2

Сз
Block

it
.Jacobi

time
5 5 10 412 17

10 10 10 540 91
10 10 20 668 654
15 15 20 998 2.186
15 15 30 1,074 6.922

. Backward SOR gives the best results. However, block versions of Gauss-
Seidel and SOR do not make any difference since the matrices that correspond
to the last automaton are all lower triangular. Block .Jacobi gives smaller it­
eration counts than point .Jacobi in this case as expected, yet the difference
is negligible. The results of the experiments with descriptor methods are pre­
sented in Table 5.4. Note that point SOR takes a ciuarter of the time the
power method takes for the largest problem that has 1,000,000 states, in the
descriptor approach. The results of the experiments with the sparse solvers are
presented in Table 5.5. in this problem, sparse methods could not be applied
to the largest two instances.

5.4 The Mass Storage Problem

Fortunately, we were able to try all iterative methods in the mass storage
problem (see [3]). The model is used to investigate the effects of interactive
retrieval (get) and storage (put) requests, migration workload, and purging
workload on a robotic tape library (RTL). The first (i.e, online storage) layer

CHAPTER 5. NUMERICAL RESULTS 64

Table 5.6: Parameters for the Mass Storage Problem.

hp.
¡.t:
T:
t't’
Cl ·
iii:

n·)·

n'y.

C - 1:
// :
L:
C:
M:
R:

7·

arrival rate of get requests to the system
arrival rate of put requests to the disk cache
hit ratio of get requests at the disk cache
hit ratio of put requests at the disk cache
service rate of tape drives (includes robot tape mount and file seek times)
total number of available tape drives in the tape server
number of tape drives dedicated to interactive get requests
number of tape drives dedicated to the migration queue (T = ti + tm)
number of requests in the interactive tape queue (including any request(s)
currently being served) (0 < rii < jVi - 1)
threshold of requests at the interactive tape queue above which one tape
drive from the migration tape queue is borrowed
number of requests in the migration tape queue (including any request(s)
currently being served) (0 < n-2 < N2 - 1)
number of put requests written to the disk cache which have not been
migrated to the tape library yet (0 < ^3 < .V3 — 1)
maximum capacity of the disk cache.
high water-mark for the disk cache used to activate the purging workload
low water-mark used to terminate the purging workload
current occupancy level of the disk cache (\L{C - 1)] < C < \H(C - 1)])
inter-migration time
number of stages in the Erlangian approximation of the periodic migration
workload (i2 > 0)
rate of the Erlangian approximation of the periodic migration workload
(7 = l/m)

usually consists of magnetic disks which provide fast access time but at a
relatively high cost per byte. The second (i.e., nearline storage) layer utilizes
robotic tape libraries (RTL), and the third (i.e., offline storage) layer consists
of free-standing tape drives with human operators performing the mounting
and unmounting of media from the drives. Since the interest is mainly in
the performance of RTLs, it is assumed that the system to be modeled only
consists of an online and a nearline layer. The parameters in this problem are

ciuite a few, and we present them in Table 5.6. The unit of time for the given
parameters is minutes. The system is modeled using five automata

^ ("3)̂ and of order respectively — L)(C — 1)] + 1, Ni, No·, A3,
and R giving

n = L)(C - 1)1 + l)/ViyV2iVsR.

CHAPTER 5. NUMERICAL RESULTS 65

Table 5.7: Re.sults of Descriptor Experiments with the Mass Storage Problem

Prob.. 3 Power Jacobi GS SOR
C Ah it time it time it time it time

26 6 178 78 1,522 1,064 254 217 1.7 168 144
51 11 612 3,062 2,084 17,765 334 3,485 1.6 228 2.354
76 16 1.146 29,432 2,130 92,364 428 21,207 1.5 306 14,910

101 21 1.860 145,162 2,842 394,517 668 104.229 1.0 454 70.774

Prob. 3 Block Jacobi Block GS Block SOR
C N\ it time it time гСх it time
26 6 > 2,700 10“ ’ 158 140 1.7 98 88
51 11 1.-598 18.676 156 1.673 1.6 106 1,125
76 16 > 3.000 10“ ’ 286 14.759 1.7 170 8,876

101 21 1,935 370.166 470 79,665 1.7 282 46,708

The mass storage model has both synchronizing events and functional rates; it
does not have any cyclic dependencies.

We used = \p = 1.5. f.i = 0.61. = hp = 0.3, ti — t,n = 2. L = 0.75,
/■/ = 0.05. M = 40, R = 0 (see [3. p. 5] for details). The automata are
ordered as In Table 5.7, we provide results for
both block and point methods of the descriptor approach. Forward SOR gives
the best results: its block version decreases both the iteration counts and the
solution times. The information in Table 5.7 regarding block .Jacobi should be
interpreted differently. The two entries with > signs in the iteration column
and 10“ ’ in the time column indicate that the methods are executed until the
2-norm of the residual vector is on the order of 10“ ’ , and the iteration counts
reach the numbers in the iteration column. The methods are not executed
until the 2-norm of the residual vector is on the order of 10“ °̂ since these runs
take cpiite some time.

Interestingly, an alternative ordering, namely \
gives better results for both block GS and block SOR as shown in Table 5.9.
Note that it is possible to solve the largest system in less than two hours.

A final remark is that, for a given problem, the optimal parameter of

(block) SOR and therefore the number of iterations taken to convergence

CHAPTER 5. NUMERICAL RESULTS 66

Table 5.8: Results of Sparse Experiments with the Mass Storage Problem

Prob. 3 Power .Jacobi GS SOR
C Ni it time it time it time lÛ it time
26 6 178 7 1.Ô22 62 254 11 1.07 240 11
51 11 612 302 2,084 1018 334 177 1.06 318 182
76 16 1,146 2,763 2.130 5.014 428 1,056 1.06 406 1,112

Prob. 3 Block Jacobi Block GS Block SOR
C Ni it time it time it time

26 6 > 2,700 10-’ 158 16 1.09 146 16
51 11 1,598 2.388 156 230 1.10 144 219
76 16 > 3.000 10-’ 286 2.289 1.07 268 2.196

Table 5.9: Results of Other Experiments with the Mass Storage Problem

Prob.

C

. 3

■

Descriptor
Block GS
it time

Descriptor
Block SOR

u;« it time

Sparse
Block GS
it time

Sparse
Block SOR

7.0, it time
26 6 44 41 1.0 44 41 44 5 1.0 44 5
51 11 34 370 1.0 34 370 34 50 1.0 34 50
76 16 32 1,715 1.0 32 1,715 32 255 1.0 32 255

101 21 40 6,797 1.1 36 6,115 - - - -

in the descriptor approach may be (significantly) different than those of the
global generator in sparse format. This is something we observed in the mass
storage problem for the ordering For instance,
uv - i .l , it - 144, time = 219 for block SOR in sparse format for the given or­

dering when C = 51, iVi = 11. The cause seems to be rounding errors incurred
in generating and storing the global matrix.

Chapter 6

Conclusion

In this work, we presented iterative methods based on splitting a SAN de­
scriptor. Block versions of the same methods follow directly from considering
blocks of order n,v, the order of the last automaton, in the given ordering.
Larger blocks may be considered by grouping several automata at the end of
the given ordering and terminating recursive calls of the lower triangular back
solve algorithm when the first automata in the group is encountered.

By deriving cin upper bound on the Gauss-Seidel and SOR algorithms for the
number of multiplications that is in the same order with the vector-descriptor
multiplication, we show that the stationary methods are as efficient as non-
stationary methods that do only vector-descriptor multiplications. Hence, we
show that the solution times of a specific problem with different approaches
depend only on the behavior of the algorithm for the given problem.

An important and frec[uently overlooked drawback of Markov chain solvers
(including SAN solvers) that attempt at computing each and every stationary

probability is the memory consumed by double precision temporary storage
allocated to the current approximation, possibly the preceding one, and other
work arrays. A vector of one million elements requires 8 MB of memory.
.Although not as large as the memory taken up by double precision nonzeros in
the sparse matrix approach, these vectors may end up taking substantial space

in iterative methods.

CHAPTER 6. CONCLUSION 68

On a desktop workstation with 32 MB of RAM, one can compute the sta­
tionary distribution of a SAN descriptor with one million states in core on the
order of hours using block SOR. On the other hand, the largest system that
can be solved by the sparse matrix approach may be limited to less than one
tenth of that could be solved using SANs if the generator is reasonably dense
(as in the resource sharing problem; it takes roughly 176 MB to store the gen­
erator matrix in sparse format for the most difficult case). We believe the S.AN
modeling methodology has its merits and drawbacks. One may easily observe
that sparse methods must be used whenever possible. The .S.A.N formalism is
likely to gain popularity as a viable modeling and analysis tool as faster solvers
become available.

Appendix A

Incorporating a New Model To
Peps

A .l Preliminaries

This section expiains how to incorporate a performance mociei. cieveioped as
a SAN to the software package Peps [12]. It is assumeci that the mociei to
incorporate must be avaiiabie; that is, iocai matrices anci synchronizing event
matrices with their diagonai correctors must be avaiiabie. A mathematicai
formuiation of functional rates should also be available, i.e.. one must know

how to evaluate the function given the state of the automata. In the remaining,
we use ’Peps', to mean the latest revision of the package as it is implemented at
Bilkent University. We use ‘original Peps’ to mean the version that is supplied
to Bilkent University as in [12]. There are two steps to complete the task
of adding a new model. First, one should generate a text file describing the
model; second, the necessary code for evaluating the functional rates should be
incorporated to the package. The two sections that follow explain these two

steps. The final section presents the text file for an example model.

69

APPENDIX A. INCORPORATING A NEW MODEL TO PEPS 70

Table A .l: Matrix Types
value type meaning
0 sparse sparse matrix in HBF format
1 binary NOT USED
2 element NOT USED
3 diagonal NOT USED
4 identity identity matrix
0 zero zero matrix

A .2 Generating the Text File

The text file, which is given a .dsc extension stores the descriptor of a .SAN in
a predefined format. For instance, the name of a text file of the mass storage
model in [3] can be given the name mass .dsc or m -6 -6 -6 -6 .dsc.

The largest portion of the text file is used for storing the descriptor matrices
of the S.AN. A few lines of other information is given in the text file. Before
going into the format of the file, we discuss how matrices are represented.

A .2.1 Format of a Single Matrix

All matrices, i.e., local generator matrices, synchronizing event matrices and
diagonal corrector matrices are represented in the same way. .A matrix consists
of several consecutive lines of text in the file.

In the first line in the portion of the text file describing a matrix, there
should be a single number representing the type of the matrix. The possible

values are 0,1.2,3,4.5 as shown in Table .A.l.

The first five matrix types are defined in original Peps; however, binary,
element, and diagonal types are not used in Peps and original Peps. The zero

matrix type is introduced in Peps.

In the next line there should be two integer values separated with a space.
The first integer denotes the number of nonzero elements in the matrix. Since

APPENDIX A. INCORPORATING A NEW MODEL TO PEPS 71

Table A.2: Types of Nonzero Values
value type meaning
0 rate a rate for continuous time MCs
1 probability NOT USED
2 function a functional entry
.3 parameter NOT USED

all matrices are square, the second number specifies the order of the matrix.

For zero and identity type matrices, these two lines completely specify a
matrix. For a sparse matrix, which is neither a zero matrix nor an identity
matrix, the lines following the first two describe the nonzero elements of the
matrix. We follow the compact column format representation of sparse ma­
trices. The number of lines that specify the nonzero elements of the matrix
should be equal to the first integer given in the second line. In other words,
a separate line is reserved for each nonzero element. The nonzero elements of
the matrix are stored in a double precision array one column after the other
starting from column zero.

A nonzero element is described using three numbers separated by spaces.
The first number, an integer, defines the type of the element. There are four
types of elements (see Table A.2). All of these types are defined in original
Peps, however the probability and parameter types so far have no use in Peps
and original Peps. The second number is the real value of the corresponding
entry in the matrix for rate type elements. This entry is not currently used for
function type elements. The third number is for the ID number of the function
for functional elements in a C + + implementation file. This entry is not used
for rate type elements.

In the line following the one that contains the last nonzero element, the row
indices of all nonzero elements are written. The number of integers in this line
should be equal to the number of nonzero elements of the particular sparse
matrix. Note that row numbers start from zero in all matrices due to the C + +
implementation.

In the next line, there should be d + 1 integers, where d is the order of the

APPENDIX A. INCORPORATING A NEW MODEL TO PEPS 72

matrix. Each integer specifies the location of the first nonzero element, in the
array of nonzero elements, of a particular column. That is, the kth integer will
be the index of the first nonzero element of the A:th column, in the array of
nonzero elements. The final integer should be equal to the number of nonzero
elements in the matrix. We illustrate the storage scheme on various e.xamples
in the next section

A .2.2 Example Matrices

Zero and identity matrices are easy to specify. A zero matrix of order 6 is
written in two lines as:

0

0 6

An identity matrix of order 5 is written in two lines as:

4
5 5

The below sparse matrix containing only real entries

-0 .4 0.4 0
0 -0 .4 0.4
0 0 0

is written as:

0 / / type of matrix
4 3 / / number of non-zeros and size of matrix

0 -0 .4 0 / / first nonzero element

0 0.4 0 / / second nonzero element

0 -0 .4 0 / / third nonzero element

0 0.4 0 / / fourth nonzero element

0 0 1 1 / / rows of non-zeroes

0 1 3 4 / / column indices for each column

APPENDIX A. INCORPORATING A NEW MODEL TO PEPS 73

The matrix below contains both functional and real entries

fo / l 0
0 -0 .5 0.5
0 0 0

It is represented as:

0
4 3
2 0 100 / / functional element
2 0 101 / / functional element
0 -0 .5 0
0 0.5 0
0 0 1 1
0 1 3 4

The comments given beside some of the lines should not appear in the actual
text files. Here, they are given to elaborate certain concepts.

A .2.3 The Text File and Its Parts

The text file is organized as a set of lines. In the first line, there should be
three integers separated by spaces. The first one stands for the type of the
model. The model can be a discrete-time model or a continuous-time model.
Currently both original Peps and Peps work with continuous-time models. The
possible values are 0 and 1 (see Table A.3).

Table A.3: Model Types
value type meaning
0 discrete NOT USED
1 continuous continuous time model

The second integer is for the number of automata and the third is for the
number of synchronizing events. Sizes of automata are written in the second
line. For instance the first two lines of a text file describing a continuous-time
model with 4 automata and 2 synchronizing events is given below:

APPENDIX A. INCORPORATING A NEW MODEL TO PEPS 74

1 4 2 / / type of SAN, number of automata, number of sync, events
3 4 5 5 / / sizes of the four automata

In this example, the first matrix is 3 x 3, the second is 4 x 4, the third and the
fourth are 5 x 5.

After these two lines, the local automata matrices should be written one
after the other as explained in section A.2.1. Note that the number of local
matrices should be ecpial to the second number in the first line of the text
file. Following the local automata, the synchronizing event matrices should
be written. First, all matrices of the first synchronizing event (including the
correctors) should be listed, then the second synchronizing event's matrices,
and so on. For each synchronizing event, the synchronizing event matrix of the
first automaton should be written followed by its corrector, then the synchro­
nizing event matrix of the second automaton should be written followed by its
corrector, and so on.

After all synchronizing event matrices are written, the orderings of the rate
matrices for the synchronizing e\'ents should be written in a single line. The
rate matrix is the matrix that contains rate values for the synchronizing event,
i.e.. master of the synchronizing event. Actually these values are not used in
the stationary vector calculations, but they are used in the thruput calcula­
tions. These calculations are made in the C alcu late function of the tensor. C
module. For example, in the three C[ueues problem this line should contain the
integers 1· and 2. Given that the automata are ordered as
this means automaton is the master automaton for the first synchronizing
event and automaton is the master automaton for the second synchroniz­
ing event. For the mass storage example, there should be three integers in the
same line. Since the generation program is capable of generating any ordering
of automata, these values will vary with the ordering. However, the three inte­

gers should be the orderings of the Erlangian server, queue three and queue one
respectively: The C alcu late function takes these values,
retrieves a certain element in the matrices specified by these values, and uses
the element in thruput calculations. This approach is useful in the sense that il
some parameters of the example are altered, there is no need to make changes
in the C alcu late function. Currentlv the onlv use of this line is lor the mass

APPENDIX A. INCORPORATING A NEW MODEL TO PEPS /0

storage example in Peps. This line exists in original Peps, but is not used.

The next line in the text file is the last one and is intended to be used as
the ordering of the automata. The number of integers on this line should be
equal to the number of automata. In original Peps, this line does not e.xist. In
Peps, this line is used only for the mass storage example. For the mass storage
example, the values in this line are used only in function evaluations. Each
number tells where a specific automaton is located in the given ordering, i.e..
the first number explains where the Erlangian server is, the second where the
cache is. the third, the fourth and the fifth numbers explain where >1*"**.
and >lb‘2) respectively. For example, 2 0 1 3 4 corresponds to the ordering

,4 0 m) _

A.3 Evaluating Functional Entries in Peps

In order to implement a functional entry of a matrix in Peps, there are two
things to do. First an ID number should be determined for the functional entry
and must be written into the matrix as described in section .A..2.1. Second the
actual code to implement the function must be incorporated to Peps. The
code must be added to the module fu n ction .C and into the C + + function
Evaluate_Function. This function’s signature is:

rp Evaluât e_Funct ion (const fu n ction _ id id ,
const sta te_ id * params, const in t s iz e)

This function is called for each functional entry. The first parameter id is
the ID of the functional entry for which the function is called. The second
parameter paraias is an array of state_ids (basicly integers), whose elements

correspond to the state of automata. The third parameter s iz e is the size of
the array of states. The value returned by this function determines the value
of the functional entry at the point of call.

ID numbers 0 to 99 are used in the three queues and resource sharing prob­
lems. The mass storage example uses ID numbers from 10000 to 10000+(size of

APPENDIX A. INCORPORATING A NEW MODEL TO PEPS 76

the third queue), 100, and 101. The remaining ID numbers can be used freely
in Evaluâte_Function. There are some declarations in the first few lines. Af­
ter those, one can add code for evaluating functions in a different model. The
code should be an if-block. The check for the ID range, should be made in the
if condition, and if the condition evaluates to true, the necessary calculations
should be performed. The result of the calculation should be returned. That
is, the if-block should end with a return statement. If the condition does not
evaluate to true, control should be left to the remaining part of the code. An
important point is that one must guarantee to return the result with a return
statement when the ID is in the appropriate range.

In addition to the input parameters of the function, e.xtra information
that might be needed in function evaluations is available. An array of inte­
gers, automata_sizes, contains the Order of automata. Another integer array,
ordering, which is intended to be used as the ordering of automata, is also
available. Since the latter array is supplied in the te.xt file, it might be used
for other purposes as well. Note that both arrays have as many elements as
the number of automata.

Below is a sample C-b+ code snippet for evaluating a function as it would
appear in function .C ;

rp Evaluate_Function(const function_id id,
const state_id * params, const int size)

{
rp result ;
int automata_acc = 0;
automaton_id a;

// Example code starts here
// You should add your code here
if ((id >=200) && (idOOO)) {

switch (id) {
case 200 : if (params[0] > (automata_sizes[0]/2))

result = 1.0;

APPENDIX A. INCORPORATING A NEW MODEL TO PEPS I I

else
result = 0.0;

break;
case 201 : if (params[2]==0)

result = 1.0;
else

result = 0.0;
break;
}
return result;

>
// End of sample code

A .4 An Example Text File

Below is an example file generated for the three queues example. Note that
the comments (i.e., part of lines after the / / characters) are added to this
document for explanation purposes and should not appear in the actual text
file.

1 4 2
3 3 5 5

// cont. time, 4 automata, 2 sync, events
// Cl = 3, C2 = 3, C3 = 5

0

4 3
0 -0.4 0
0 0.4 0
0 -0.4 0

// local automaton of queue 1, sparse type

APPENDIX A. INCORPORATING A NEW MODEL TO PEPS 78

0 0.4 0
0 0 1 1

0 1 3 4
0
4 3
0 -0.3 0
0 0.3 0
0 -0.3 0
0 0.3 0
0 0 1 1

0 1 3 4
0
8 5
0 0.7 0
0 -0.7 0
0 0.7 0
0 -0.7 0
0 0.7 0
0 -0.7 0
0 0.7 0
0 -0.7 0
1 1 2 2 3 3 4 4
0 1 3 5 7 8
0
8 5
2 0.0 20
2 0. 0 21

2 0.0 20
2 0. 0 21

2 0.0 20
2 0. 0 21

2 0.0 20
2 0. 0 21

1 1 2 2 3 3 4 4
0 1 3 5 7 8

// local automaton of queue 2, sparse type

// local automaton of queue 3_1, sparse type

// local automaton of queue 3_2, sparse type

APPENDIX A. INCORPORATING A NEW MODEL TO PEPS 79

0

2 3
0 0. 6 0

0 0.6 0

1 2

0 1 2 2

0

2 3
0 -0.6 0
0 -0.6 0
1 2

0 0 1 2

4
3 3
4
3 3
0
4 5
2 0.0 22
2 0.0 22
2 0.0 22
2 0.0 22
0 1 2 3
0 0 1 2 3 4
0

4 5
2 0.0 22
2 0.0 22
2 0.0 22

2 0.0 22
0 1 2 3
0 1 2 3 4 4
4
5 5

// sync, event #1, matrix of queue 1
// sparse type

// sync, event #1, corrector matrix of queue 1
// sparse type

// sync, event #1, matrix of queue 2
// identity type

// sync, event #1, corrector matrix of queue 2
// identity type

// sync, event #1, matrix of queue 3_1
// sparse type

// sync, event #1, corrector matrix of
// queue 3_1, sparse type

// sync, event #1, matrix of queue 3_2
// identity type

APPENDIX A. INCORPORATING A NEW MODEL TO PEPS 80

4 // sync, event #1, corrector matrix of
5 5 // queue 3_2, identity type

4 // sync, event #2, matrix of queue 1
3 3 // identity type
4 // sync, event #2, corrector matrix of
3 3 // identity type
0 // sync, event #2, matrix of queue 2
2 3 // sparse type
0 0.5 0
0 0.5 0
1 2
0 1 2 2
0 // sync, event #2, corrector matrix of
2 3 // sparse type
0 -0.5 0
0 -0.5 0
1 2
0 0 1 2
4 // sync, event #2, matrix of queue 3_1
5 5 // identity type
4 // sync, event #2, corrector matrix of
5 5 // queue 3_1, identity type
0 // sync, event #2, matrix of queue 3_2
9 5 // sparse type
2 0.0 23 //a functional rate with ID 23
2 0.0 22 // a functional rate with ID 22
2 0.0 23
2 0.0 22
2 0.0 23
2 0.0 22
2 0.0 23
2 0.0 22
0 1.0 0 // a rate with value 1.0
0 0 1 1 2 2 3 3 4 / / row numbers of 9 nonzero elements

APPENDIX A. INCORPORATING A NEW MODEL TO PEPS 81

0 1 3 5 7 9
4
5 5

// column 2 starts with nonzero #3, 2 0 22
// sync, event #2, corrector matrix of

// queue 3_2, identity type

1 2

0 1 2 3
// rate matrices for synchronizing events
// ordering of automata

// not used in this example

Bibliography

[1] Benzi, M., and Dayar, T., “The arithmetic mean method for finding the
stationary vector of Markov chains. ’ Parallel Algorithms and Applications.
6 (1995) 25-37.

[2] Davio, M., “Kronecker products and shuffle algebra." IEEE Transactions
on Computers., C-30/2 (1981), 116-125.

[3] Dayar, T., Pentakalos, 0 . I., and Stephens, A. B., “ .Analytical modeling of
robotic tape libraries using stochastic automata.” Technical Report TR-
.97-1.98, CESDIS, NASA/GSFC (1997).

[4] Dianne, 0 . P., “Iterative methods for finding the stationary vector for
Markov chains,” in: Linear Algebra, Markov Chains, and Queueing Mod­

els. Springer-Verlag, Meyer, C., D., Plemmons, R.. .J.. eels.. New York,
NY, (1993) 125-136.

[5] Fernandes, P., Plateau, B., and Stewart, W. .J., “Efficient descriptor-
vector multiplications in stochastic automata networks.” INRIA Report
2935. -Anonymous ftp ftp.inria.fr/INRI.A/Publication/RR.

[6] Fernandes, P., Plateau, B., and Stewart, W. .J.. “Numerical issues for
stochastic automata networks,” in: PAPM 96, Eourth Process Algebras
and Performance Modelling Workshop, Torino, Italy, .July 1996.

[7] Hageman, L., and Young, D., Applied Iterative Methods. Academic Press,
New York, NY, 1981.

[8] Malhis, L. M., and Sanders, W. H., “An efficient two-stage iterative
method for the steady-state analysis of Markov regenerative stochastic

Petri net models,” Performance Evaluation, '2̂ L·'28 (1996), 583-601.

82

ftp://ftp.inria.fr/INRI.A/Publication/RR

BIBLIOGRAPHY 83

[9] Plateau, B., “On the stochastic structure of parallelism and synchroniza­
tion models for distributed algorithms,” in: Proceedings of the SIGMET-
RICS Conference on Measurement and Modelling o f Computer Systems,
Austin, TX, August 1985, 147-154.

[10] Plateau, B., and Atif, K., “Stochastic automata network for modeling par­
allel systems,” IEEE Transactions on Software Engineering, 17/10 (1991)

1093-1108.

[11] Plateau, B., and Fourneau, .J. M., “A methodology for solving Markov
models of parallel systems” , Journal of Parallel and Distributed Comput­

ing, 12 (1991) 370-387

[12] Plateau, B., Fourneau, J. M., and K.-H. Lee, “PEPS: A package for solving
complex Markov models of parallel systems,” in: Modeling Techniques and
Tools for Computer Performance Evaluation, R. Puigjaner and D. Potier.
eds., Spain, September 1988, 291-305.

[13] Saad, Y., and Schultz, M., H., “Conjugate gradient like algorithms for
solving nonsymmetric linear systems,” Mathematics of Computation, 170
(1985) 417-424

[14] Semal, P., “Refinable Bounds for large Markov chains,” IEEE Transac­

tions On Computers, 10 (1995) 1216-1222.

[15] Stewart, VV. J., MARCA: Markov Chain Analyzer, IEEE Computer Repos­

itory No. R76 232, 1976.

[16] Stewart, W. introduction to the Numerical Solutions of Markov Chains,
Princeton University Press, Princeton, N.J, 1994.

[17] Stewart, W. .J., Atif, K., and Plateau, B., “The numerical solution

of stochastic automata networks,” European Journal of Operational Re­

search, 86 (1995) 503-525

