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ABSTRACT

ITERATIVE METHODS
BASED ON SPLITTINGS
FOR STOCHASTIC AUTOMATA NETWORKS

M.S. in Computer Engineering and Information Science
Supervisor: Asst. Prof. Dr. Tugrul Dayar
June, 1997

This thesis presents iterative methods based on splittings (Jacobi, Gauss—
Seidel. Successive Over Relaxation) and their block versions for Stochastic du-
tomata Networks (SANs). These methods prove to be better than the power
method that has been used to solve SANs until recently. Through the help
of three examples we show that the time it takes to solve a system modeled
as a SAN is still substantial and it does not seem to be possible to solve sys-
tems with tens of millions of states on standard desktop workstations with the
current state of technology. However, the SAN methodology enables one to
solve much larger models than those could be solved by explicitly storing the
global generator in the core of a target architecture especially if the generator

1s reasonably dense.

Keywords: Markov processes; Stochastic automata networks; Tensor alge-

bra: Splittings; Block methods



OZET

Ertugrul Uysal
Bilgisayar ve Enformatik Mihendisligi, Yuksek Lisans
Tez Yoneticisi: Yrd. Do¢. Dr. Tugrul Dayar
Haziran, 1997
RASSAL OZDEVINIMLI AGLAR ICIN
BOLUNME TABANLI
ITERATIF YONTEMLER

Bu tezde Rassal Ozdevinimli Aglar i¢in bolinme tabanl dolayli yontemler
(Jacobi, Gauss-Seidel, Succesive Over Relaxation) ve bunlarin blok gesitleri
gelistirilmistir. Bu yontemlerin, yakin zamana kadar Rassal Ozdevinimh Aglan
¢6zmekte kullamilan power yénteminden daha iyi olduklar: gosterilmigtir. Uc
ornek yal'cllm;yla, Rassal Ozdevinimli Aglar kullanilarak geligtirilmis bir mo-
delin ¢oziilmesi igin gerekli siirenin hala oldukg¢a yiiksek oldugunu. ve su anki
teknolojik imkanlarla, on milyonlar mertebesinde duruma (state) sahip bir
modelin standart masalisti bilgisayarlarla ¢6zilmesinin pek mumkin géziikme-
digini buluyoruz. Diger taraftan Rassal Ozdevinimli Aglar yéntemi ile, tiim sis-
temi ifade eden matrisi bilgisayarin ana hafizasinda seyrek sekilde saklayarak
cozilebilecek modellerden ¢ok daha biylk modellerin ¢éziilebilecegi gérilmiis-
tur. Bu durum, ozellikle tim sistemi ifade eden matrisin yogun oldugu du-

rumda gegerlidir.

Anahtar kelimeler: Markov stirecleri, Rassal 6zdevinimli aglar, Tensér cebri,

Bolunmeler, Blok yontemler.
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Chapter 1

Introduction

Markov chains [16] are one of the most widely used modeling techniques in
the scientific community. The range of application domains is wide. including
natural sciences and engineering disciplines. The simple requirement for a
system to be modeled as a Markov chain is that the system’s next action
(transition) depend only on the current state of the system, named as the
memoryless or the Markov property [16, p. 4]. Several natural phenomena
that arise in biology, physics and chemistry can be modeled as Markov chains.
In engineering sciences Markov chains have a wide use in several branches
of industrial engineering, electronics and computer engineering. Performance
evaluation and reliability modeling is the field that Markov chains find the

most use in computer engineering.

The random behavior of a system should posses a geometric or exponential
probability distribution in order to be modeled as a Markov chain. since these
are the only probability distributions that carry the memoryless property [16,
p. 4]. Fortunately, the number of systems that show this structure is large and
we have methods for fitting the random characteristics of most systems into

exponential or geometric distributions.

After modeling a system as a Markov chain, one seeks quantitative informa-
tion from the built model. One attractive feature of Markov chain models is

that most interesting properties of a Markov model can be obtained by solving
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a linear system of equations. Much research result is available concerning the
numerical solution of Markov chain models. In addition to this, interest in
this field of research is still alive. Most methods for solving systems of linear
equations may be used for Markov chain models effectively. Direct methods
do not seem to be suitable for solving large and sparse systems which arise in
I.\'[a,rkovj chain models. Several types of iterative methods are applied to Markov
chains and their properties in the context of Markov chain models are stud-
ied. However, much research needs to be done, for understanding the behavior
of iterative methods, especially non-stationary iterative methods like GMRES
and Arnoldi[8].

In Markov chain applications. the problem size increases very quickly as
the applications get more interesting. This problem is referred to as the state
space explosion[16, 14, 4] problem and has initiated different approaches to
the Markov chain problem. Approximate solutions and bounds for the so-
lution vector[14] are studied for reducing the complexity of the problem. In
plain words the coefficient matrix, constructed for solving the linear system of
equations, becomes very large and prohibits one to solve interesting problems
bevond a certain limit. Stochastic Automata Networks (SANs) [16. 10. 11] are
developed to overcome the difficulties that accompany the state space explo-
sion problem. Although it is possible to apply SAN methodology to different
domains. performance modeling of parallel and distributed computer systems
are especially suited to this type of approach(5]. In SAN methodology, a system
is modeled as a set of components interacting with each other. Characteris-
tics of each component is captured separately from the interactions among the
components, and formulated in compact form, which leads to considerable re-
duction in the amount of storage needed for the model. Methods available for
solving Markov chain problems obtained from a SAN formalism, appear in two
forms. One might prefer to store the coeflicient matrix of the linear system
of equations in sparse format. However, this approach does not make use of
the storage reduction provided by the SAN methodology. On the other hand,
it is possible to solve the system by only referring to the compact storage of
the model. Currently, the power method and non-stationary methods of GM-
RES and Arnoldi are implemented for SANs in compact form, but there are no

results available concerning the solution of a real life problem obtained from
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these methods(17, 6].

In this thesis, we introduce the concept of a splitting for a SAN in compact
form and develop the stationary methods of Jacobi, Gauss-Seidel and SOR
based on this splitting[16, 7]. We also implement these iterative methods based
on splittings and their block versions. In addition to this, we experiment with
these methods on real life problems. We investigate the performance of these

methods and their sparse counterparts compared to the power method.

In the following chapter, we introduce several concepts related to Markov
chains and give the formulation of the problem of solving a Markov chain model
as a linear system of equations. Stationary methods for Markov chain problems

are also introduced in this chapter.

The third chapter discusses SANs. The concept of a SAN model in compact
form is explained with an example and the necessary algebraic framework for
building SAN models is also provided. This chapter ends with an algorithm
and a theorem regarding the complexity of the algorithm, that proves to be

useful for SAN models in compact form:.

The stationary iterative methods based on splittings for solving SANs in
compact form are introduced in the following chapter. The algorithms provided
for the methods are explained and a section on numerical results present the
performance of the methods on three problems. Some interesting properties of
block methods that have gone unnoticed so far are included in this chapter.
An upper bound on the number of multiplications for the Gauss-Seidel and

SOR methods are derived at the end of the chapter.

The last chapter contains conclusive remarks about the methods investi-
gated. Observations and comments about methods, the SAN methodology

and Markov chains based on our work are provided in the chapter.

We included an appendix that describes how to incorporate new models
into the Peps package[12], which is the software tool developed in France for
solving SAN models in compact form, since we implemented our methods as

an extension to Peps.



Chapter 2

Markov Chains

2.1 Preliminaries

In our attempht to understand the characteristics of natural and artificial phe-
nomena. mathematical models of systems are developed. It is possible to build
models using the concept of the system being in a number of states. Generally,
the system is thought to be in an initial state, and its behavior is modeled as
transitions from one state to another. It is also possible to classify systems
according to certain properties they might hold. One such property that the
system modeled as a process changing states might have is the memoryless
property, i.e., it only remembers its current state [16, p. 4]. In other words,
the system’s transition from one state to the other is independent from the

previous states that the system has visited.

In many of the models arising from diverse fields including natural sciences
such as physics and biology, and engineering sciences such as industrial, elec-
trical and computer engineering, the system either has or can be modeled as
having memoryless property (16, p. 3]. The systems that posses the memoryless

property may be modeled as a Markov process [16, p. 4].

A system modeled as a Markov process has a number of possible states.
The actual number of possible states can be infinite, however the system can

be at only one of the possible states at any time instant [16, p. 4]. In addition

Al
T
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to this. it is assumed that the transition time, the time it takes the system to
go from one state to the other is negligible. That is, the transitions are said to

take place instantaneously. [16, p. 3]

It is possible to have a continuous state space for a Markov process. For
instance, if the output voltage of an electric circuitry can take all values within a
range, and if the system can be modeled as a Markov process, it can be modeled
as a Markov process with a continuous state space, having the output voltage
as states of the system. If, for instance, the circuitry’s output voltage raises
from 0.6 volts to 3.7 volts, one would view the model as making a transition
[rom state 0.6 to state 3.7. On the other hand, if the output voltage can
take only certain potential values, and if the system can be modeled as a
Markov process. the system can be modeled as a discrete state space Markov
process. Note that the actual values of the voltages do not effect the discrete

or continuous character of the svstem.

Markov processes with discrete state spaces are called Markov chains [16, p. 3],

and thev are what our work is based on.

In the next section, we give the definition of a Markov chain in a formal con-
text. The following two sections introduce two different types of Markov chains
that arise in Markov chain modeling. Stationary distribution of a Markov
chain[16. p. 15] is an important quantity for determining certain characteris-
tics of the model under consideration. and is introduced in the next section.
Finally, methods developed for solving Markov chain models are discussed in

the last section.

2.2 Formal Definition of Markov Chains

A Markov chain is a special case of a Markov process and, a Markov process
1s a stochastic process satisfying certain requirements. Hence, we give the def-
initions of stochastic processes in general. then Markov processes and Markov

chains based on this.
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Definition 2.2.1 [16, p. 4] A stochastic process is defined as a family of ran-
dom variables { X (t),t € T} defined on a given probability space indezed by the

index parameter t, where t varies over some indez set (parameter space) T.

In general, ¢ takes values from the range (—oo,+c0). In applications, the
index set T is thought of as the set of time points at which observation about
the system is made. In other words, the index ¢ of the random variable is
defined as the time point that X (¢) takes the observed value. In such cases, ¢
takes values from the range [0,+o00). Depending on the characteristics of the
values ¢ takes. the process is either a continuous parameter (time) stochastic
process or a discrete parameter (time) stochastic process. If ¢ can take discrete
values only. or similarly, if observation about the system is made only certain
equidistant time points, the process is called a discrete-time parameter process.
If the range of values of t is [0, +oc) without any restrictions, or the system is
observed at time points that are not equidistant, the process is referred to as

a continuous—time stochastic process.

Definition 2.2.2 Markov property: [16. p. 4] Let {X(t),t € T} be a stochastic
process defined on a given probability space indexed by the time index parameter
t. where t varies over time index set T. Let the system be observed at time points
to,ti.,.... bty and let to <ty < ... < t,. The stochastic process {X(t).t € T}
is said to have the Markov property if and only if

Prob{X(t) < z|X(to) = 20, X(t1) =21,...,X(tn) = 2n}
= Prob{X(t) < z|X(¢t,) = zn}.

In plain words, Markov property states that the next transition of the system
from the current state X(¢,) = z, to the next state X(¢) = z, depends only on
the current state X(¢,) = ¢, and is independent of its previous state history,
i.e., it is independent of the states X (to) = zo, X(t1) = z1,..., X(tn=1) = Tn-1.
In other words, the current state of the process provides sufficient information

to make the next transition.

Definition 2.2.3 A Markov process is a stochastic process which satisfies the

Markov property.
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For any stochastic process, and hence for any Markov process, the values that
the random variables X (t) take, define the state space of the process. As with
the index set parameter t, the state space of a process can be continuous or

discrete, finite or infinite.

Definition 2.2.4 4 Markov chain is a Markov process whose state space is

discrete.

In Markov chain terminology, the state space of a chain is generally associated
with the set of natural numbers. In other words the states are referred as state

0. state 1. etc.

When a stochastic process possesses a certain condition on the random
variables and the index parameter (namely the Markov property), the process
is said to be a Markov process. Similarly, the time index set and the state
space characteristics of a Markov chain give rise to several types of Markov

chains.

In a homogeneous Markov chain, the transitions of the system are indepen-
dent of the time parameter t. The Markov property requires that the next
transition be independent of the previous state history of the process. How-
ever, it 1s possible that the process makes a transition which is dependent both
on the current state of the system and the value of the time parameter t.. Such
a Markov chain, in which the transitions out of a state are dependent on the

time parameter ¢, is called a non-homogeneous Markov Chain.

Similar to the state space of the process, the index set (the time parameter)
can be continuous or discrete. If the time parameter of a chain takes its values
from a discrete set, the Markov chain is called a Discrete Time Markov Chain
(DTMC). If the values of ¢ are are continuous, the Markov chain is called a
Continuous Time Markov Chain (CTMC).

In summary, there are four parameters that describe a stochastic process.
First, the continuous or discrete character of the state space, is a determining
property of the process. Second, the continuous or discrete character of the time

parameter introduce another classification dimension for the processes. Third,



CHAPTER 2. MARKOV CHAINS 8

the time homogeneity of the process, is also an important quantity, in capturing
the properties of a process. Finally, the characteristics of the relations between
the index set and and the random variables, i.e., the dependencies among them,
define classes of stochastic processes. The classification that is determined by
the character of the state space is important and is discussed in more detail in

the following chapters.

2.3 Discrete Time Markov Chains

[f the index set of the Markov chain 1s countable, i.e., it is in one to one cor-
respondence with the set of natural numbers, the Markov chain is called a
Discrete Time Markov Chain. In this case, the index set is in general taken to
be the set of natural numbers and the random variables are numbered accord-

ingly, i.e., as Xo, X1,...,X,.
For a non-homogeneous Discrete Time Markov chain, the Markov property
is described as [16, p. 5]

.Xo = ;L'o,.Xl =T1,... ,‘Xn = J,n}

= PI‘Ob{‘X—n.H S $n+1|Xn = CBn}

Prob{Xn+1 < zp41

The conditional probability that the process makes a transition to a new state j,
given that it is in current state 1, is called the single step transition probability.
It is expressed as [16, p. 3]

p,-j(n) = PI‘OI){.‘X—,H.l = jl‘Xn = Z}

Note that since the Markov chain is a Discrete Time Markov chain, the state

indices ¢ and j are natural numbers.

For a homogeneous Markov chain, the next transition of the process is in-
dependent of the index parameter n. The single step transition probabilities

are written as
Di; = PI‘Ob{X,H.l = ]IXn = ‘l,}

The random variables X, should be geometrically distributed in order to satisfy

the Markov property. In other words there is no other discrete probability
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0 03 0.7
0.2 04 0.4
01 09 O

Figure 2.1: A transition probability matrix

O
\« .

Figure 2.2: A time homogeneous discrete time Markov chain

distribution that satisfy the Markov property. A homogeneous Discrete Time
Markov chain’s behavior can be expressed as a transition probability matriv.
Such a matrix is also called a chain matrix and is formed by putting the
transition probability from state : to state j to the sth row and jth column of
the matrix. Since the sum of the probabilities of making a transition from a
state to all other states is one, the sum of the elements in any row is one. Such
a matrix in which the sum of elements in any row add up to one is called a
stochastic matriz. In Markov chain literature, the transition probability matrix
is labeled P. Figure 2.1 demonstrates a transition probability matrix of a
homogeneous discrete time Markov chain with three states, that is described

in Figure 2.2 with transition state diagrams.

2.4 Continuous Time Markov Chains

When the time indices of a Markov chain is continuous, the chain is called
a Continuous Time Markov Chain. Note that, as in the case of DTMC, the
state space is still discrete. In other words, the random variables describing

the process might take discrete values; however the system might be observed,
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i.e., make transitions, at any instant in time.

The Markov property for a non-homogeneous Continuous Time Markov

Chain is expressed as [16, p. 17]

Prob{X(tp+1) < @n41-| X(0) = 20, X(t1) = 21,..., X(tn) = 2.}
— Prob{X(t) < 2| X(tx) = 21}

for any sequence of time points ¢ty < t; < ... <, < tppy.
The transition probability of a non-homogeneous CTMC is given by
pij(s,t) = Prob{X(t) = j| X(s) =i}, for t > s.

In the homogeneous case, since the probabilities are independent of the ac-
tual values of s and ¢, the transition probability is expressed in terms of the

difference 7 = (t — s), i.e.,
pij(T) = Prob{X(s + 1) = j|X(s) = 1}.

In this case a single probability transition matrix is not sufficient to express
the behavior of the matrix, we need a set of matrices parameterized by 7.
Instead, a new matrix, called the transition rate matriz or the infinitesimal
generator matriz, is introduced. The matrix is constructed in a similar way
and is generally labeled Q. Yet, this time the entries are not probabilities
of making a transition from one state to another, but each element at row
¢, column j of the matrix denotes an instantaneous transition rate. That is,
the entries of the generator matrix are given by the rate of making transitions
from state ¢ to state j, when 7 is chosen to be sufficiently small so that the
probability of observing more than one transition within the observation period
7 is negligible. A more rigorous derivation of the rate matrix from the transition
probabilities can be found in (16, p. 18]. In Figure 2.4 a CTMC is shown as
a state diagram. Figure 2.3 gives the corresponding infinitesimal generator
matrix. Note that the diagonal entries in each row are equal to the negative

of the sum of the off-diagonal entries. i.e.,

gii = — Z qij-

i
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Figure 2.4: A time homogeneous continuous time Markov chain

This can easily be understood if one notices that the entries are rates repre-
senting transitions from a state to others. The transitions from one state to
itself (the rate at which the process stays at that state) will decrease as the
rates to the other states increase. In [16. p. 19] this property of an infinitesimal

generator matrix is also derived from the transition probabilities.

For a CTMC. the random variables X (¢) should be exponentially distributed
in order to satisfy the Markov property. Similar to the discrete case, this
means that no other continuous probability distribution satisfy the memoryless

property.

2.5 The Steady State Vector for a Markov
Chain

The aim of modeling a system as a Markov chain, is to obtain some quantitative
measures about the system. The information sought is mostly related to the

states of the system. We wonder the states at which the system stays the most,
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how long the system occupies certain states in the long run, etc. Depending
on the system being modeled, one might be interested in some states of the
system more than the others. Also, in general, the states of a Markov chain are
classified into several groups and determining to which group a state belongs
might be of interest, see [16, p. 8]. Specifically, a transient state is one which
the system might not return back, in the long run. A recurrent state is one
which the svstem is guaranteed to return after a number of transitions. In a
Markov chain. it is possible that the process makes a transition to one state,
and can not leave that state, i.e., there are transitions to that state but there
are not any transitions out of the state. Such states are referred to as absorbing
states. In practice, one is more interested in states that have some desirable or
undesirable properties. Thus, one might wonder the probabilities of being at
those states or the average time the system spends at those states. in the long

run.

It is suitable to express the state of a Markov model as a probability vector.
A row vector 7 is used with each entry : denoting the probability of being at
state ;. When the system’s behavior is captured as a transition rate matrix @
or a transition probability matrix P, the properties of the Markov chain can

be expressed as a simple set of linear equations.

Now we introduce two important quantities that have desirable properties
in the sense that they answer or provide the necessary information to answer

several questions sought from a Markov chain model.

Definition 2.5.1 Limiting Distribution of a DTMC :[16, p. 15] Given an ini-
tial probability distribution 7(0), if the limit
Hm, w(n)

exists, then this limit is called the limiting distribution, and we write

7 = lim 7(n)

n~—0o
Definition 2.5.2 Limiting Distribution of a CTMC :Given an initial proba-
bility distribution 7(0), if the limit

tl_l_rglo 7(t)
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exists, then this limit is called the limiting distribution, and we write

= tl_l_rglo m(t)

Definition 2.5.3 Stationary Distribution of a DTMC :[16, p. 15] Let P be the
transition probability matriz of a DTMC, and let the vector = whose elements

z; denote the probability of being in state j be a probability distribution; i.e.,

z; €ER,0< 2, <1, and Z ;=1
all ;

Then z is said to be a stationary distribution if and only if :P = 3.

Definition 2.5.4 Stationary Distribution of « CTMC : Let Q) be the transition
rate matrix of a CTMC. and let the vector = whose elements z; denote the

probability of being in state j be a probability distribution; i.e.,

5 €ER0< 2 <1, and > z;=1.
all ;

Then = is said to be a stationary distribution if and only if zQQ = 0.

For a certain class of Markov chains, (see [16, pp. 15-16]), if the limiting
distribution exists, it is equivalent to the stationary distribution. Furthermore
it 1s independent of the initial distribution, i.e., in the long run the effects of

the initial distribution disappears.

The popularity and power of the Markov chain modeling paradigm comes
from the fact that, most of the interesting properties of the system being mod-
eled can be derived from a set of simple linear equations. In the discrete case,

the equations

P =mr|7|i=1,
and in the continuous case, the equations

Q@ =0,| 7 {i=1,

let one to calculate quantitative measures about the system being modeled.
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Also the reformulation of the equation 7P = 7, as w(I — P) = 0 show that
the problem of finding the stationary distribution of a discrete-time Markov
chain, can be viewed as similar to a continuous-time problem. Conversely, a
matrix P can be obtained from @ by

P =1+ AtQ, where At < ;
max |q;]

The problem of finding the stationary distribution of a Markov chain can be
thus formulated in three ways. First, it can be seen as an eigenvalue problem.
i.e., TP = m; second, it can be formulated as a null space problem.i.e.. 7Q = 0:
and finally, it can be seen as a linear system that can be obtained in a variety

of ways, from 7@ =0, 7 |1= 1.

We conclude this section by noting that all the discussed formulations of
the problem imply that the Markov chains involved are time homogeneous.

and this will be our assumption in the rest of the thesis.

2.6 Methods for Numerically Solving Markov
Chain Problems

2.6.1 An Overview

As the problem described in the previous section can be formulated in different
ways, there are a large number of methods one may use to attack the problem.
In general terms, direct methods refer to those methods that calculate the so-
lution vector in a predetermined number of steps [16, p. 61]. Iterative methods
are provided with an initial approximation to the solution and they compute
a new approximation to the new solution using the previous approximation in
the previous iteration. The new approximation is supposed to become more

and more close to the actual solution at each step.

Direct methods applied to Markov chain problems include Gaussian elim-

ination and LU decomposition. We note that in the case of a Markov chain
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problem, a nontrivial solution other than the zero vector, to the system 7«'@ =0

is always available since it can be verified that @ is singular {16, p. 71].

[terative methods can be grouped into two. First group of methods referred
to as stationary methods include the power method, the method of Jacobi,
the method of Gauss-Seidel and Successive Overrelaxation (SOR). The second
group of methods are non-stationary methods, also referred to as Krylov sub-
space methods, include the method of Arnoldi, Generalized Minimum Residual
Method (GMRES) and the full orthogonalization method [16, pp. 117-230],
[13]. In this work we concentrate on stationary iterative methods. Here we
first give a comparison of direct and iterative methods in the context of Markov

chains [16, pp. 61-62].

The value of a Markov chain model increases as the system being modeled
becomes more and more complex. The increase in the complexity of the model
is generally reflected as an increase in the number of the states of the Markov
model. This phenomenon is referred to as the state-space explosion problem.
The increase in the number of states results in an increase in the size of the
generator matrix. Beyond a certain limit, it becomes necessary to use a sparse
storage scheme for storing the infinitesimal generator matrix. In addition to
this, the matrices arising in Markov chain models are sparse, i.e., they contain
only a few entries in each row. It is basically because of this reason that direct
methods are considered disadvantageous, when compared to iterative solution
techniques. Direct methods usually involve introducing new nonzero elements
(fill-ins) into the matrix during factorization, which makes them ineflicient and
difficult to deal with. Also, beyond a certain limit, especially for large problems,
it might not be possible to store the newly altered matrix in core memory.
In contrast, iterative methods involve only matrix—vector multiplications or
equivalent operations, which do not alter the nonzero structure of the matrix.
In addition to this, by not altering the matrix, we avoid the round-off errors

which are observed in direct methods.

In certain cases, it might not be necessary to compute the stationary vector
of a Markov chain, to high accuracy. In such uses, iterative methods allow one

to stop the computation at a predefined error term.



CHAPTER 2. MARKOV CHAINS 16

On the other hand, iterative methods are usually accompanied with a slow
convergence rate to the solution. It is this reason that one may use a direct
method for Markov chain problems whenever the method is not limited im-
practically by memory constraints. However, iterative methods are still the
dominant choice, unless a Apra.ctically implementable direct method gives the

solution in less time.

Stationary methods have been the subject of much research. Although the
non-stationary methods seem promising, much research needs to be done on
their convergence properties and to predict the number of iterations required
to find the solution of a problem. In the following sections we introduce the

power method. method of Jacobi, Gauss-Seidel and SOR.

2.6.2 Power Method

The power method is used to find the right-hand eigenvector of an ordinary
matrix corresponding to a dominant eigenvalue of the matrix. Thus. when
the Markov chain problem is formulated as one of an eigenvalue problem, i.e.,
#P = 7, power method might be used to solve the problem. Let the initial
probability distribution among the states of a Markov chain be 7(0), and let
the probability transition matrix of the same chain be P. Then after the
process makes a transition, (at the next step), the probability distribution
becomes 7(1) = (® P, At the second step the probability distribution becomes
72 = (P = 7O P2 At the kt* step, the probability distribution is found
by (¥ = 7(®Pk=1 Note that, 7(*) is the new approximation to the solution
at step k. For certain classes of Markov chains [16, p. 16], the vector =(f)

approaches to the stationary distribution, i.e.,

lim 7 = x, where 7 = 7 P.

k—oo

Power method is multiplying the approximation at each iteration by the prob-
ability transition matrix P, to obtain a new approximation. The convergence
of power method is in general slow. Further properties of the method in the

context of Markov chains can be found in [16, pp. 121-125].
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2.6.3 Methods Based on Splittings

The stationary methods based on splittings are used for solving a system of
linear equations. In the Markov chain context, when the problem is formulated
as a linear system or a null-space problem, i.e., 7Q) = 0, these methods may be
used. The methods Jacobi, Gauss-Seidel (GS) and SOR are based on splitting
the infinitesimal generator matrix ) into D — L — U where D is a strictly
diagonal matrix, L is a strictly lower triangular matrix, and Uis a strictly
upper triangular matrix. The matrix D consists of the diagonal elements of @,
and the matrices L and U consist of negative of the strictly lower and strictly

upper triangular elements of Q). respectively.

The Method of Jacobi

The problem of solving 7() = 0 can be formulated as

7@ = 0
m(D-L-U) =0
D = =w(L+7U).

From this we can obtain the iteration matrix of the Jacobi and the method of

Jacobi
7_‘_(k+1) — Tf(k)([/ + U)D-l.

Hence, the method of Jacobi is equivalent to power method with the iteration

matrix being (L + U)D™!.

The Method of Gauss-Seidel

In a similar way to the method of Jacobi, the Gauss-Seidel method can be

derived from the formulation

@ = 0
n(D-L-U) = 0
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m(D-U) = =L
r = wL(D-U)""

From this we obtain the Gauss-Seidel Method as
b)) = W L(D - U)~L.

Hence, it is equivalent to power method with the iteration matrix being
L(D — U)~'. The above formulation of the Gauss-Seidel method is referred
as a forward Gauss-Seidel, because when the equations regarding individual
entries of the vector are considered, the elements are calculated starting from

the first element to the last element of the vector =(*+1),
Another formulation is possible, which may be expressed as
w5 = My (D - )7

In this case the order of solving the equations for individual entries is from
the last element to the first element of the vector #**1). Hence the method is

called a backward Gauss-Seidel.

The Gauss-Seidel method is different from the method of Jacobi as it makes
use of the elements that have already been computed. For instance while
calculating the 7th element of the (k + 1)st approximation vector =1 it
makes use of the first : —1 elements that have been computed so far, in the case
of forward Gauss-Seidel. A backward Gauss-Seidel makes use of the previously
computed n — i elements ranging from index ¢ + 1 to n, for a vector of size n,

while calculating the ith element.

Successive Overrelaxation

The method of Successive Overrelaxation (SOR) is an extrapolation on the
solution of the Gauss-Seidel. A parameter w is introduced to weigh the solution
vector obtained from a Gauss-Seidel iteration with the previous approximation

vector. When considered in this manner, the method can be expressed as

= (1~ w)mggn + wrgs
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where ﬂg”s) is the resulting vector after applying the Gauss-Seidel algorithm to
the kth approximation vector of SOR. Note that SOR is also called a forward
SOR when the Gauss-Seidel iteration involved is a forward Gauss-Seidel, and a
backward SOR when the Gauss-Seidel iteration involved is a backward Gauss-

Seidel.
Hence forward SOR in matrix notation is

7r(k+1) =(l1— 'LU)?T(k) + 'LU(?T(k)(j(D — L)—l)v

and backward SOR in matrix notation is
bl — (1 - 'w)n‘“") + w(7r“")[,(D - )™,

Note that an SOR iteration with w = 1 is equivalent to a Gauss-Seidel itera-

tion. Sometimes SOR. is referred as Successive Under Relaxation method when

0<w<l.

In addition to forward and backward versions of SOR, a Symmetric SOR
(SSOR) has been introduced, which is simply a forward SOR followed by a
backward SOR. In the case of Markov chain problems, there is little benefit in

using a SSOR instead of SOR and this can be observed only in rare examples

[16, p. 132].

Convergence characteristics of stationary methods in a general context can
be found in [7] and references therein. In the Markov chain context, [16,
pp. 133-176], [4, pp. 125-132] and (1, pp. 26-28] [16, pp. 138-142] provide

discussions of these and other methods.

Block Versions of Iterative Methods Based on Splittings

Stationary block iterative methods are based on block partitioning of the gen-

erator matrix (). Following [16, p. 139] we can demonstrate a block partitioning
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of the vector 7 and the matrix @) as

Qll Ql? QIN
Q21 Q?Z Q‘ZN

(1, T2, TN),

| Q:Vl QNN ]
In this case, a block splitting of ) can be obtained as Q = (Dy—Ly—Uy). Dy

takes the form of a block diagonal matrix, Ly takes the form of a strictly lower

block triangular matrix and Uy is a strictly upper block triangular matrix, i.e..

Dy 0 0
Dy = 0 Dy 0
0 ‘DIVAV
r 0 0 0 U Unn
L. 0 0 i 0 0
LN = . . UN =
. . Usx_in
L Lyt Lyv-1 O 0 0

By defining 7rfk+1) as the ¢th portion of 7 as shown, we may define block
Jacobi as

a1 = ZL,A— Z U;i) D3t for all 4,

J=i+1

forward block Gauss-Seidel as

i-1
FZ(L-H) - Tz(k)( Lii)(Dy - Z U;i)~ ! for all ¢,
1

)= J=i+1
and backward block Gauss-Seidel as

i-1
aF D = Z Uii)(Dii = > L) for all i.
i=1

j=i+1

The difference between the point and the block versions of the algorithms
is that in the block versions, all elements of 7rfk+1) in a portion of 7(**+1) are

solved simultaneously. It is possible to use a direct method or another iterative
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method to solve the individual blocks. In this way, one can obtain a more
accurate approximation at each iteration, obviously with an extra cost being
introduced at each iteration. In [1, pp. 26-28] block iterative methods are

discussed within the context of Markov chains.



Chapter 3

Stochastic Automata Networks

3.1 Preliminaries

In the previous chapter we have seen that if a Markov chain model of a system

is available, quantitative measures about the system can be obtained from the

svstem of equations
Q@ =0,|| 7 L= L

There are a number of methodologies for developing a Markov chain model
of a system. Petri nets (8] are such a formalism for generating Markov chain
models of systems. Alternatively, there are special software tools for generating
Markov chain models [15]. Independent of the paradigm used, the problem of
state-space explosion is observed in almost all applications. In some cases, as
the applications become more interesting, the size of the Markov chain gets so

large that it is impractical to find a solution.

A Stochastic Automata Network (SAN) is another formalism for generating
a Markov model. They are most suitable for performance modeling of parallel
and distributed systems. The model is generated by considering an individual
automaton for each component of the system. Each individual component is
modeled by a single stochastic automaton and the interactions between the

components are incorporated into the model. The main advantage of the SAN

[
o
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methodology is that the model is stored very efficiently, i.e., the memory occu-

pied by the model is very small compared to the size of the model generated.

Before getting into the formal definitions of SANs and their properties, we

give a basic overview of tensor algebra which is a building block for SAN

methodology.

3.2 Tensor Algebra

3.2.1 Ordinary Tensor Algebra

We now list several definitions regarding tensor algebra. These and more prop-

erties of tensor algebra concepts can be found in [2].

In the following, we use A, xn for a matrix of dimension m x n, By for a

matrix of dimension k& X I, Crkxni and Dpgxn for matrices of size mk x nl.

Definition 3.2.1 Ordinary Tensor Product:(OTP) Let A,., and By be two

matrices, as

A= : : ,B=

ami Qmn

then the ordinary tensor product of A and B, Cpy, i = A @ B is given by
anB an B
C= : :
am1 B vor AmpB
and the ordinary tensor product of B and A, Dpy = B @ A is given by
[ byA ... buA

| bklA buAJ
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Notice that C' # D.

Definition 3.2.2 Ordinary Tensor Sum: The tensor sum of two square ma-

trices Apn and Bum, Cnm nm = A® B is defined as

C=AL+1,®B

Further important properties of tensor algebra as they appear in [5, pp. 4-5]

are listed below. Note that all matrices are square.

e Associativity :

A2(BoC)=(A2B)pC)and A& (B3 ()=(A=B)x ().

e Distributivity over ordinary matrix addition ;

(A+B)o(C+D)=A30+BoC+AoD+BGD.

o Compatibility with ordinary matrix multiplication :(case I)

(AxB)®(CxD)=(A®C) x(B®D).

e Compatibility with ordinary matrix multiplication :(case II)

N N
RAD = [[In®..06L_, 04901, ©...01,,
=1 =1
N .
= H Il:i-—l (59 A(‘) @ Ii+1:Na
=1

where I;; is the identity matrix of size [T/, n.

o Compatibility with ordinary matrix inversion :

(AxB)'=A"l® B

e Pseudo Commutativity :
A@B=PFP(B® A)PTT,
where P, is a permutation matrix of order ny x n,, ny is the size of matrix A

and nq is the size of matrix B.

Note that no commutativity other than the given pseudo commutativity

property holds for ordinary tensor products.
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It is straightforward to extend these properties to N term tensor products

and sums. For our purpose of illustrating several algorithms, noting that

N N
RAN =AW ®.. 0L, _ @AY, ®...0 L.,

k=1 k=1
where [, is defined to be the identity matrix of size ny which is the size of the

k** term of the tensor product , A, is sufficient.

3.2.2 Generalized Tensor Algebra

Ordinary tensor algebra is used in other fields of science as well as SAN mod-
eling. However, it does not allow one to handle certain constructs that arise
in SAN models. Since such constructs are essential for any meaningful model,
tensor algebra has been extended in order to cope with them. Generalized ten-
sor algebra refers to tensor algebra where the elements of the matrices may be
real valued functions. In SAN context. the functional elements are functions
of the states of one or more automata. We now give several definitions and
properties of generalized tensor algebra. These with more detailed discussions
and proofs can be found in (5, pp. 13-20]. We follow the conventions there
and assume that all matrices are square, which is the case for us. A matrix
of the form B[A] refers to a functional matrix B which contains entries that
are dependent on the state of automata with transition rate matrix 4. In
general an expression of the form AM[AM A  A™m-1)] denotes a matrix
Alm) that contain functional entries that depend on the states of the automata
AN A@ A=Y Note that the state of an automaton is determined by
the row of the generator matrix, i.e., elements on row i of the matrix are
transition rates out of state i, except of course the diagonal element which is
interpreted as the rate of staying in the same state. The operator @, is used

for generalized tensor products.

Definition 3.2.3 Generalized Tensor Product:(GTP Case I) Let A and B[A]
be two square matrices with sizes n, and ny respectively, and let B contain

functional entries that depend on the state of A. Then the generalized tensor
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product of A and B, C = A®, B[A] is given by

[ a1 B(ar) a2 B(ay) a1n, B(ay)
0213(02) azzB(ag) aanB(az)
L analB(ana) .ana?-B(ana) ananuB(ana) i

Definition 3.2.4 Generalized Tensor Product:(Case II) Let A[B] and B be
two square matrices with sizes n, and ny respectively, and let A contain func-
tional entries that depend on the state of B. Then the generalized tensor prod-
uct of A and B. C'= A[B] 2, B is given by

[ wn[B)lw x B aw[B|l,, x B 1| BlIn, X B |
a'.ZI[B]Inb x B (lgg[B]lnb x B (L-_),,LG[B][% x B
anal[B]Inb x B ana-z[B]Inb x B anana[B][nb x B ]

where ai;[B)ln, is defined as diag{a;;(bl),ai;(b2),...,aij(bw)} and a;;(by) is

the functional element of A with its function being evaluated at state k of B.

Definition 3.2.5 Generalized Tensor Product:(Case III) Let A[B] and B[A]
be two square matrices with sizes n, and n, respectively, and let A contain
functional entries that depend on the state of B. Let B also contain functional
entries that depend on the state of A. Then the generalized tensor product of
A and B, C = A[B]®, B[A] is given by

[ (LII[B]Inb X B((tl) a12[B]-[nb X B((tl) alna[B][nb X B(al) ]
an[B)l,, x Blas)  axn[B]l,, x B(a,) aong[B)In, x B(a2)
anal[B][nb X B(ana) anuz[B]'[nb X B(a"a) anana[B]‘[nb X B(ana) B

where a;;[B1,, and a;j(by) are defined as in case II.

Now let us see some of the properties of generalized tensor algebra that are

of interest to us.
e Associativity :

A[B,C]®, (B{A,C] 9, C[4, B]) = (A[B,C] ®, BI4,C])@, C[A, B]).



CHAPTER 3. STOCHASTIC AUTOMATA NETWORKS 27

e Distributivity over ordinary matrix addition :

(A1[B] + As[B)) @4 (Bi[A] + By[4]) =
A1[B] ©, Bi[A] + Ai[B] @, B:2[A] + As[B] @y Bi[A] + Ai[B] @, Ba[A].

e Compatibility with ordinary matrix multiplication :

A Dy A(z)[A(l)] D, A(s)[A(1)7,4(2)] Dy ... Dy A(N)[A(l)’.___,A(N—l)] _
Ly Dy AV[AD | AN-1)]
X I @y ANTILAD, AN Ty
X Tivey 9, AVTIAD AN 2 Iy oy

X Il:l Z:g 4(2)[A(1)] Og IS:N
x AW 2, @yl

e Pseudo Commutativity :

N N
® A(k)[A(l),““A(:V)] =P, ® A(T(JL'))[A(I),“_,A(-‘V)]pTT7
g k=1 g k=1
where 7 is a permutation of integers [1,2,...,N], and P, is a permutation

. . \f
matrix of order [TiZ; n;.

3.3 Stochastic Automata Networks

Let us consider two stochastic automata initially without any interaction among
them. The system being modeled has two components, each of which can be
represented by a single automaton. A Stochastic Automata Network, describ-
ing the system, is represented by two automata, A and A, If the automata
are models obtained from DTMCs, i.e., they are defined by probability tran-
sition matrices P(!) and P(®, the whole system is defined by the transition
probability matrix obtained from a tensor product, i.e., P*) @ P, On the
other hand if the automata are models obtained from a CTMC, i.e., have
transition rate matrices Q(!) and Q®), the transition rate matrix of the whole

svstem is obtained from the tensor sum of Q) and Q® as QM) @ Q. If
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the probability distribution of the states of the first automaton at time ¢, is
represented by vector 7(1(t), and similarly if the probability distribution of
the second automaton are represented by 7(?)(¢) at time ¢, the probability
distribution describing the state of the whole system at time t, is given by
7 (t) @ 73)(t). If the first automaton has n, states and the second automaton
has n, states, the whole system has n; X n, states. Each state of the global
system is a combination of the states of the two automata. The global state
of the system can be represented by a 2-tuple, i.e., if the first automaton is at
state 7, and the second automaton is at state j, the global system is at state
(1.7). It can be easily verified that each row of the global generator matrix and
the global state distribution vector corresponds to a state of the global system
represented as a 2-tuple. A consequence of these results is that the stationary
distribution of the global system can be obtained from the tensor product of
the stationary vectors of the individual automata. Hence, it is straightforward
to find the stationary vector of a SAN with noninteracting automata, i.e, first
solve for the stationary vectors of the individual automata then calculate the

tensor product of them.

In case the global system is modeled by N automata. AM. A® AM),

the global generator is obtained by
N
Q=Pqw
i=1
in the continuous case, and by
N
P = ® p)
=1

in the discrete case.

In both cases the global state distribution vector is obtained by

N .
m(t) = @ 7(t)
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3.4 Capturing the Interactions

3.4.1 Functional Transitions

In order to be able to model complex systems, especially parallel and dis-
tributed systems that have interacting components, one needs to model the
interaction between the components. One extension that enables us to incorpo-
rate such interactions between individual components is by means of functional
transitions. The stochastic automaton, modeling a component, is allowed to
have transitions whose rate is a function of the states of several automata.
Now, the entries of the transition rate matrix might be functional, i.e., the
transition rate matrix is not an ordinary real valued matrix but it is a matrix
whose entries may contain a real valued function. Note that if the rate of a
transition is dependent only on the automaton that makes the transition, the

transition is considered to be a constant transition, not a functional one.

Similar to noninteracting automata, the global generator matrix of the
global system composed of CTMC can be described as a tensor sum of the
generator matrices of the individual automata, yet this time as a generalized

tensor sum of the individual matrices, i.e.,

In the discrete case a generalized tensor product is needed, i.e.,

N

P=® PY.

=1 g

Two important points to note about functional transitions in SAN descrip-
tors is that; first, still the transitions of an automaton effect only the automaton
itself even if the transition is a functional one, second, the nonzero structure of
the generator matrix is still in a suitable form to store in sparse format, i.e., no
zero entry may become nonzero during function evaluation yet some nonzero

entries might evaluate to zero.
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3.4.2 Synchronizing Events

Another concept, introduced to extend the modeling capability of a stochastic
automata network, is one of a synchronizing event. A synchronizing event is
either a transition of one automaton that force one or more automata to spe-
cific states, or an event in which an automaton being (or not being) in a state
force some other automata to get into or stuck at certain states. The transi-
tions that are involved in a synchronizing event may also contain functional
rates. It is possible to have a synchronizing event in which a transition of an
automaton cause several or all automata to make or block transitions. Note
that, a synchronizing event causes the state of the global system to be altered.

whereas a functional transition affects only the automaton that contains the

transition.

In SAN terminology, the automaton that initiates a transition in the other
automata in a synchronizing event is called the master automaton of the syn-
chronizing event. The automata that are effected by the master automaton’s
transition are called the slave automata. Note that a transition in the master
automaton has a rate associated with it, whereas the induced transitions in

the slaves happen instantaneously with the master automaton’s transition.

3.5 Descriptor of a SAN

In this section we introduce the concept of a descriptor for a SAN. Here and
hereafter, we consider only continuous—time stochastic automata and hence all
matrices are transition rate matrices. The extension of the concepts introduced,
to discrete-time automata are possible. The effect of a synchronizing event on
a SAN is captured by introducing new tensor product expressions. If there is
a synchronizing event labeled e that appears in a SAN with .V automata, one

new tensor product of the form

N

& Q¢

=1
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and another one in the form

N —_ .

©ay

€

=1
are introduced. The last term is referred to as the diagonal corrector of the
synchronizing event and is introduced to maintain the global generator as a
transition rate matrix. In the most general case, where the transitions in-
volved in the synchronizing event, say e;, are functional, the tensor products

are generalized tensor products and the expressions introduced are in the forms
®" o
e
9 =1

and

Q" av.
3 1

=

For a SAN model with N automata, there are N matrices in the tensor
products, each of which correspond to one automaton in the SAN. For each
svnchronizing event, the order of the terms in each tensor product are explicit

as described by
QM @, QP @, ... 0, QM
and
QW @, 0P @, ..., W,
This i1s important since neither ordinary nor generalized tensor products are

commutative.

Since for each synchronizing event, two new tensor products are introduced,
for a SAN model with F synchronizing events, 2E tensor products are intro-
duced. The global generator of a SAN with NV automata and E synchronizing

events is obtained from the equation

0= @ e+3R" Q<>+ZQ

9 i=1 =l g j=1
N

= Z-[ru@ ®In. 1®Q n|+l® ®[nN+Z® Q
=1 =1 g9 ;=
N+2FE

= 1 ® o
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and the form of it as in the last line is referred to as the descriptor of the SAN.
The first set of IV tensor products are referred to as the local generator matrices,
the £ tensor products of the form Z LY, g Q () are referred as the synchro—
nizing event matrices, the final £ tensor products of the form Zf z—l g Q(‘)
are referred as the corrector matrices. The synchronizing event matrices reflect
the interaction among the automata involved in the event. The corrector ma-
trices are diagonal matrices introduced to make the global generator matrix a
transition rate matrix. Further information about the rationale behind these
matrices with the related proofs might be found in [9], [10], [11] . We now give
an example SAN to illustrate the concepts introduced in this chapter. The

example SAN appears in [16, pp. 470-472].

The SAN has two automata, one with two states and the other with three
states. It has two synchronizing events and there are also functional rates.
There is a functional transition in the second automaton A, the transition
from state 2 to state 3 occur with rate ji, if the first automaton, A1) is in state
1 and w1th fio if the first automaton is in state 2. The local generator matrix

of A1) is given by

—Ar A
(1) _ 1 A
o= ]

and the local generator matrix of A(? is given by

-k 0]
D=1 0 —f f
o 0 o]

For the second automaton, the functional transition rate f is defined by

where s A% is a function that maps automaton A® to its state.

The first synchronizing event e;, occurs by a transition of the first automa-
ton, sAM, from state 2 to state 1, which happens at a rate A, causing the
second automaton, s.AM), to state 1. The synchronizing event matrix and the

corrector matrix corresponding to the first synchronizing event ey, for the first
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automaton are given by

0 0 = 0 0
(1) = (1) —
QC]_ l: AZ 0 jl b Qel l: O _/\2 } b

and the synchronizing event matrix and the corrector matrix corresponding to

the first synchronizing event e;, for the second automaton are given by

0 0 10 0
QY = 00|,00=101 0
00 01

—_ =

el
0
The second automaton is the master of the second synchronizing event.

Whenever the second automaton makes a transition from state 3 to state 1,

which happens with rate us, it causes the first automaton to state 1. The first

11
1 :
@, [00]

as the synchronizing event matrix and has

- 1 0
1
Qe:) l: 0 1 } ’

as the corrector matrix. The second automaton has

automaton has

000
Q¥ =110 00/,
ps 0 0

as the synchronizing event matrix and has

00 0
O® =100 0o |,
0 0 — K3

as the corrector matrix.

The descriptor of the SAN may be expanded as

N  EN = EN
Q = DA+ LR+ R
i=1

e=1 =1 e=1i=1

= V20" +QV2Q?+QY 2R + QY 0 QY + Q) 0 Qf.
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and from this we obtain the global generator as

[ —(A\1+ 1) K1 0 M 0 ]
0 —(A1 + 22) f2 0 A1
K3 0 (A1 + p3) 0 0 M
Aa 0 0 (A2 + 1) H1 0
Az 0 0 0 —(A2 + fi2) fa
Ao+ 3 0 0 0 0 —( A2 + p3) |

3.6 Efficient Tensor Product Vector Multipli-

cation

The problem of finding the stationary distribution vector of a SAN with .V au-
tomata and £ synchronizing events involve solving the linear system of equa-

tions

N N

Ty ®e =0

Jj=11i=1

All iterative methods developed for solving this system of equations need to

do a tensor product vector multiplication of the form

N
7 ® Q.
=1

Note that it is possible to first expand the tensor product and then do an
ordinary vector matrix multiplication. However, in such an implementation
‘the number of multiplications for finding the matrix resulting from the ten-
sor product is Hf\il n;, and another set of Hﬁ-\;l n; multiplication operations is
necessary for carrying out the matrix vector multiplication. Obviously, this is
very inefficient both storage-wise and time-wise. Instead, in [17] Stewart et.
al., suggest an algorithm with a lower computational complexity and without
the need for expanding the tensor product, if there are no functional rates in
the matrices, i.e., the tensor product is an ordinary tensor product. We give
the theorem indicating the complexity of the multiplication operation and the
algorithm (see Table 3.1). The proof of the theorem and a detailed discussion

of the algorithm can be found in [17, pp. 516-517].
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L. Initialize: nleft = nin,...ny_1;nright = 1.
2. Fort1=N,...,2,1do
e base = 0; jump = n; X nright
e For k=1,2,...,nleft do
oForj=1,2,...,nright do
* inder = base +

* Forl =1,2....,n; do
" Z| = Tinder; tndez = index + nright
* Multiply: z" =z x QU

* index = base + j
* Forl=1,2,...,n;do
e = 211 index = index + nright
o base = base + jump
o nleft =nleft/n;_,
e nright = nright x n;
e =1

Figure 3.1: Vector multiplication with an ordinary tensor product

Theorem 3.6.1 The product

where QW) of order n;, contains only constant terms and « is a real vector of

length I, ni, may be computed in py multiplications , where

N N N
pn =ny X (py-1 + [[ni) = [T ni x 3 _na.
i=1 i=1 =1

When there are functional rates in the automata, the tensor products be-
come generalized tensor products. In this case a slightly modified version of
the algorithm is applicable with a restriction on the ordering of the automata
and their dependencies. The following theorem and algorithm in Figure 3.2
are applied in such cases. Again, more detailed information about this version

of the algorithm and the theorem are provided in [17].

Theorem 3.6.2 The multiplication

r x (QW @, QAN o, QBIAN, AP @, ... @, QM[AN, .. AN-1])
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1. Initialize: nleft = nins...ny_1;nright = 1.
2. For:=N,...,2,1do
e base = 0; jump = n; X nright
o For k=1,2,...,nleft do
oForj=1,2,...,1—1do
x by = ([(k = 1)/ Tz, ] mod (TTiZY, ne) ) + 1
oForj=1,2,...,nright do
* indexr = base + j
* Forl=1.2,...,n; do
© 2| = Tinder; tndex = index + nright
* Multiply: z' = z x Q(")[ag), Ce a,(f'::)
* index = base +
* Forl=1.2....,n; do
e = i index = index + nright
o base = base + jump
e nleft = nleft/n;_,
o nright = nright x n;

o=
Figure 3.2: Vector multiplication with a generalized tensor product

where QW) of order n; and = is a real vector of length Hﬁ\il n;, may be computed

in py multiplications , where

N N N
pnv =nn X (pyor+ [[ ) =[] ni x D_ma
=1 =1 i=1

It should be clear that the dependency list for an automaton as it appears
in the definitions and properties is not strict, i.e., actually an automaton might
depend on a subset of the automata in its parameter list. Notice the order of
dependencies among the automata for the compatibility of generalized tensor
products with ordinary matrix multiplications, the first automaton should be
independent of the rest, the second automaton may only depend on the first
one, and each automaton may depend on a subset of the automata that precede

it. The final automaton might depend on all the remaining automata.



Chapter 4

Stationary Iterative Methods
for a SAN

4.1 The splitting of a SAN descriptor

In order to use stationary iterative methods such as Jacobi, GS, and SOR for
solving a SAN, the corresponding descriptor needs to be split. Here we give a
suitable splitting for a SAN descriptor in the form D — L — U [16, p. 126]. By
a suitable splitting we mean one in which L, D, and U each consists of a sum
of tensor products so that iterative methods of interest may be implemented

in terms of the efficient vector-tensor product multiplication algorithm.

The derivations of the splittings are based on the associativity of tensor
products and distributivity of tensor product over matrix addition [2]. These
two properties are valid for both OTP and GTP [5]. In other words, the
splittings exist in both the nonfunctional (i.e., OTP) case and the functional
(i.e., GTP) case. Obviously, limitations on the applicability of the efficient

vector-descriptor multiplication algorithm still remain [5, pp. 13-24].

The descriptor of a SAN with N automata and F synchronizing events is

given by
2E+N N Q)
Q= Z ®Q; . (L)
=1 =1

37
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However we can rewrite (1) as

Q=Q1+QB+Q—8$

where
N )
Q=@
=1
E N
Qe = Z ® Q.(gt),
e=1 i=1

Assuming that the ith automaton has n; states, the global generator will have
n = [T, n; states. The generator Qfl) 1s comprised of local transitions in the

ith automaton.

First, we introduce some lemmas. Then we give a theoremi that follows from

the lemmas, for splitting the descriptor of a SAN.

Lemma 4.1.1 The tensor product of two diagonal matrices Dy and Dy is a

diagonal matriz D(= Dy @ D,).

Proof. By the definition of the ® operator, D is a block diagonal matrix where
each block is equal to D», and since D is a diagonal matrix, D is also diagonal.

a

Lemma 4.1.2 The tensor product of a diagonal matriz Dy and a strictly lower

triangular matriz Ly is a strictly lower triangular matric L(= Dy @ Ly).

Proof. By the definition of the @ operator, L is a block diagonal matrix where
each diagonal block is equal to L;. Since L; is strictly lower triangular, L is a
block diagonal matrix with strictly lower triangular blocks along the diagonal;

hence, it is a strictly lower triangular matrix. a

Lemma 4.1.3 The tensor product of a diagonal matriz Dy and a strictly upper

triangular matriz Uy is a strictly upper triangular matriz U(= D, @ Uy).
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Proof. By the definition of the @ operator, U is a block diagonal matrix where
each diagonal block is equal to U;. Since Uj is strictly upper triangular, U is a
block diagonal matrix with strictly upper triangular blocks along the diagonal;

hence, it is a strictly upper triangular matrix. a

Lemma 4.1.4 The tensor product of a strictly lower triangular matriz L, and
a matrix Ay of arbitrary nonzero structure is a strictly lower triangular matriz

L(: Ll ) Al)

Proof. By the definition of the = operator, L is a block strictly lower triangular
matrix with zero blocks of the order of A, in the diagonal and upper triangular
parts. Thus L has zero elements in the diagonal and upper triangular parts; it

is strictly lower triangular. O

Lemma 4.1.5 The tensor product of a strictly upper triangular matriz Uy and
a matriz A, of arbitrary nonzero structure is a strictly upper triangular matriz

(=172 4,).

Proof. By the definition of the © operator, U is a block strictly upper triangular
matrix with zero blocks of the order of A, in the diagonal and lower triangular
parts. Thus U has zero elements in the diagonal and lower triangular parts; it

is strictly upper triangular. a
Lemma 4.1.6 Q. is a diagonal matriz.

Proof. Since Q. = f___l ®f\il Q,(;? and each Q{9 is diagonal. Then from Lemma

4.1.1, Q. is diagonal. (m]

Lemma 4.1.7 Q; can be split as Dy — Ly — U, where D, is diagonal, L; is
strictly lower triangular, U is strictly upper triangular and each of the three

terms is in the form of a sum of tensor products.
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Proof. Let in) be split as D,(i) - L}i) - U,(i), where D,(i) is diagonal, L§"‘) 15
strictly lower triangular, and U,(i) is strictly upper triangular. We use I, , to

represent an identity matrix of size [T}_; ny when ¢ < j, else a one. Then

N B
Q = P
=1

N .
= Z[nl D I, ® ,@Ql(t) D DIy, O Iy
=1
N )
= Z[nl:nl—l &) Qll % [71;'+lmN
=1

N . . .
= Z [nl:n,_l 3 (-D[(l) - sz) - (‘r[(l)) ‘D [n,+1:n.‘,\»

N . N i

- Z([n;:n,-_l D -D[(z) ) jn,'.,.lml\r) - Z([nlzn,'_l . ['[(l) 0 ]n,.;.l:nl\')
=1 =1
_Z niin;—1 C_ O[n,+1:71N)

= .Dz L -0,

The last equality is a consequence of Lemmas 4.1.1, 4.1.2. 4.1.3, 4.1.4, and

4.1.5. a

Lemma 4.1.8 Q. can be split as D, — L. — U, where D, is diagonal. L. is
strictly lower triangular, U, is strictly upper triangular and each of the three

terms are in the form of a sum of tensor products.

Proof. Let Q1) be split as D) — L) — U where D) is diagonal. L{? is

strictly lower triangular, and U{) is strictly upper triangular. Then

E N )
Qe = Z@le)

e=1 =1

E N
- 2D - 1) - U 6 (@)
e=1 :
E

1]
Il
—_

I
Mm‘

Erege]-froger-froger]
[ E N E
D£”®(’§Q£”)J—Z[M”@(@Qﬁ”)} z[ o ( g@@ )

e=1 1=2 p 1
-y [L Q( ))J

e=1

]
1l
-

r N
DM o (D - LY - UY) () Q&“)]
=3

<
1

I
le
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Yy [Uu) ® ®Q( >)J

e=l
E N ) E N '
- > |p 1>@D§2’®(®QS’)J > [DE’@L?)@(@Qﬁ”)J
e=l =3 e=1 =3
N E
-3 [P0 v 0 @a)] - 3 |10 @a)]
e=1 i= e=1 =2
E
Z[Ul @(®Q(‘)J
e=1 =3
- E N E N k-1 N
- D@2-L L [(@no o ® of)
e=1 (=1 e=] k=1 =1 t=k+1
E N ,k_l N
L2 (@D evPe(® Qﬁ")}
e=1 k=1 =1 t=k+1
= D, —L.-U,
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The last equality is a consequence of Lemmas 4.1.1, 4.1.2. 4.1.3. 4.1.1. and

4.1.5. 0O

Theorem 4.1.9 The descriptor of a SAN given by Q(= Q1+ Q. + Q.) can be

split as Q = D — L — U, where D 1is diagonal, L is strictly lower triangular,

and U is strictly upper triangular. In particular

Q = Q+Q.+Q.
= (Dl_LI—UI,)-{_(De_Le—Ue)'_i_Qe

= (Di+De+Qc)— (Li+ L) — (U + U2).
D L U

Moreover, D, L, and U each may be written in the form of a sum of tensor

products.

Proof. The proof of Theorem 4.1.9 follows from Lemmas 4.1.6, 4.1.7,

4.1.8. a

and
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4.1.1 An Example Splitting

The following example, from Chapter 3 better illustrates the concept of split-
ting a SAN descriptor. Note that for the sake of simplicity, we replaced the
functional entries in the second automaton with constant values. It is com-
posed of two automata and two synchronizing events (i.e., N = E = 2) with

ny = 2, ny = 3. For the first automaton, we have

A1 A
(1) _ 1 A
Qi [ 0 0 }

0 0 - 0 0
QW = oW = '
“ [/\2 0]@31 {0 -—/\g]

1 1] - 10
(1) = oW = .

For the second automaton, we have

[wm)

—H1 0
QEZ): 0 —H2 M2 y
0 0 0
100 10
QP=11001,0P=|01 0],
100 00 1
0 00 00 0
(2
QP=10 001[,@%=]00 0
us 00 0 0 —pus

The global generator of the example SAN is given by

Q = Q:+Qe+Qe
EBQ; +Z®Q(’ +Z®Q(’

= oVs Qﬁ""wel Q0+ QY eQ®+ QM QP + QW o QR
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Hence @ is a matrix of order 6, i.e.,

[ — () 7 0 AL 0
0 —(A1 + pa) 2 0 A
K3 0 —(A1 + p3) 0 0 A1
A2 0 0 ~(A2 + 1) 73 0
Az 0 0 0 —(A2 + p2) K2
Az + p3 0 0 0 0 —(X2 + p3) |

43

o
S

Due to Theorem 4.1.9, we have

D—-L-U
(-Dl + De + Q_e) - (Ll + LP) - ((’/’l + ("—e)z

Q

where Dy, L;, U/; are obtained from Lemma 4.1.7 and D,., L., U/, are obtained
from Lemma 4.1.8. As before, we use I,,..,, to represent an identity matrix of
size [Ti_; nx when ¢ < 7, else a one. [, and 0 are identity and zero matrices

of order k, respectively. Then from all the lemmas, we have

Di+D.+Q.

N

, E N = EN
S Uiy @ DV ® Ly ) + o QDY + 5 R QY

e=1 i1=1 e=] i=1

D

=1

DYoL+ Le DY + DM eD® + DY@ D® 4+ QM ¢ QY
_|_Q(1) ® Q(2)
e [-53

\ —ui 0 0 100
= {01 @L+L®| 0 —py 0[+0,®[0 0 0
0 0 0 000
| 00 0
10 [0 o0
+ ® 03 + OL+L®|0 0 0
00 —Ag
0 0 — M3
(-n 0 oJooo] [-m o of0 o0 o]
0 —=XA 0 |00 0 0 —p2 0 0 0 0
~ 0 0 -MJ0O0O0 | 0 0 0/0 0 0
h 0 0 0 |00O0 0 0 O0|l-m 0 0
0 0 0 {000 0 0 0|0 —u O
0 0 0 |00 0] 0 0 0] 0 0 0]
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(000l 0 o o 00 0 loo o
0 0 6] O 0 0 00 O |00 O
0 0 0] O 0 0 0 0 —u3(0 0 O
+ +
0 0 0l=X O 0 0 0 0 |00 O
0 00 0 =X, O 00 0 0 0
000 0 =X 0 0 00 —pus |
[~ + 1) 0 0 0 0 0
0 —(AL + po) 0 0 0 0
B 0 0 —(A1 + p3) 0 0 0
N 0 0 0 (A2 + 1) 0 0
0 0 0 0 —(As + pa) 0
0 0 0 0 0 —(Aa + p3) |
For L, we have
L = L[+Le
N . E N k-1 ) N i
= S Unyinis @ LY @ Lnpyyonne) + 3. QD) @ LP 0 (R QL)
=1 e=1k=1 (=1 t=k+1
= INoL+Lol®+IVeQ? + DM erL® L) gQR
+DW L2
ey - €2
0 1 00 0 0
= 02®13+I2®03+|i O}@ 1 001 +0:®( <10
2 1 0 0 ~1 0
0 00 0 00
0 0 10
+ @10 0 0|+ @ 0 00
-1 0 00
H3 00 —H3 0 0
[0 00|00 0] [0 o0 0l0o 0 0]
0 0 0j0 0O 0 0 0J0 0 O
0 0 0|0 0O 0O 0 0j0 0 O
= 06+ 06 + + 06 +
-X 0 0|0 0 O 0 0 010 0O
-X 0 0j0 0 O 0 0 00 0 O
_—/\2 0 0/0 O OJ —us 0 040 O 0_
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0 0 o0flo o0 o0 0 0 0/00 0]
0 00/000 0 0 0[0 00
Lm0 0jo 00 —us 0 0[0 0 0
0 00/0 00 ~X, 0 0l0 0 0
0 0/0 0 0 —X, 00/0 00
_ 0 0/0 0 0 ~(Aa+ps) 0 0[0 0 0|
Finally for U, we have
U = U+,
N () N k-1
= Y Uiy 20 O Loy +ZZ QDM ® QY
=1 e=1 k=1 =1 zL+1
= UMe b+ Lot + U0+ DY o)+ U 2 QR +

DY »Uu®

0 -, 0 —uy O 1 00
= 0 :l(:ﬁ.[g-i-]gi) 0 0 —p2|+022 (|1 00
0 0 0 100
0 ,
+0,5034+0,2}1 0 0 0 ':l OJ‘E)OB
s 00 Y
(00o0l=x o o] [o - o0l]o o o0
000[ 0 =X\ 0 0 0 —m|0 0 0
_Jooo0f0o 0 -x 0 0 00 0 0
"o o00lo o0 o |70 0 o 0 —u1 0
000/ 0 0 0 0 0 0|0 0 —p
oo0o0l0 0 0 0 0 010 0 0
+06 + 0s + 0s + 0 ]
(0 - 0 =M 0 0
0 0 —ps| 0 =X O
CJooo 0o 0 -
o 0 0|0 —um O
0 0 0 0 0 —uo
00 0|0 0 0 |

The global generator matrix given in 2 may be verified by computing

D — L —U. In the next section. we present three iterative methods that follow
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from the splitting in Theorem 4.1.9.

4.2 Iterative Methods Based on Splittings

Remember that the problem of finding the stationary vector of a Markov chain
may be formulated as one of computing a nontrivial solution to a homogeneous
system of linear algebraic equations with a singular coefficient matrix under a

normalization constraint. That is, the (1 x n) unknown vector 7 in
FQZO ”7!'”1:1 (3)

is sought. The methods based on splittings amount to using the power method
with an iteration matrix that corresponds to the particular splitting until a
predetermined stopping criterion is met. We should also remark that the effi-
cient vector—(generalized) tensor product multiplication algorithm used by the
methods of interest has a time complexity of order O([T, n; SN, n;). This
complexity result assumes that all matrices in a tensor product are dense. In
reality, some of these matrices are identity and zero, some are diagonal, and

the remaining sparse. See, for instance, the matrices forming the descriptor in

the example in Subsection 4.1.1.

In the following subsections, we introduce the stationary iterative methods
of Jacobi, Gauss-Seidel and SOR that we described in Chapter 2. In Sec-

tion 4.3, we describe the block versions of the same methods.

4.2.1 Jacobi

In matrix notation, applying the Jacobi method to a homogeneous linear sys-

tem as in (3) is equivalent to applying the power method to the iteration matrix

(L + U)D™1; that is,
7r(k+1):7'('(k)(L+U)D_1, k=0,17"’7

where @ is split as D — (L 4+ U). As it can be seen from the given formulation,

each iteration may be implemented in two steps. First, postmultiply the most
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recent approximation 7*) with (L 4+ U), which is a sum of tensor products,
and obtain y*). Then postmultiply ¥ with D~!. This last step can be
implemented by multiplying the reciprocal of each diagonal element in D with

the corresponding element of y(*) to give r(F+1),

4.2.2 Gauss—Seidel

In matrix notation, applying GS to a homogeneous system as in (3) is equivalent
to applying the power method to the iteration matrix U(D — L)~!. However, in
order to employ the efficient vector-tensor product multiplication algorithm.
we propose a slightly different implementation of the method. A backward GS

iteration corresponds to the splitting Q@ = (D — L) — U and may be written as
A p 1) = Py, k=0,1,....

The right hand side of the iteration requires the use of vector-tensor product
multiplicatioﬁ. Once the right hand side is computed as 5*), the next step
involves solving the lower triangular system of equations 7(¥+1(D — L) = bk,
Similarly one can define forward GS using the splitting @ = (D —U) = L. In
order to employ the efficient vector-tensor product multiplication algorithm,

we should examine the nonzero structure of the matrix (D — L).

D is a diagonal matrix of order n = [[%, n; from which all the diagonal
elements of (D — L) come. That is, none of the nonzero elements of L, a

strictly lower triangular matrix, appear along the diagonal of (D — L).

By considering Lemmas 4.1.7, 4.1.8 and relabeling L; as L.=o, we can rewrite

L as

E N k-1 N )
L = an,nu@L, ® Inpyiny + 2 2 (DN @ LP @ (@ Q)
=1 e=1 k=1 i=1 i=k+1
E N k-1
_ S ®@mere(® Q@}
e=0 [ k=1 i=1 z_.lc+l
E N N k-1 N .
= ZLS ®Q£‘ +ZD<” (RPN LP (R QW)
=0 =2 e=0 k=2 =2 i=k+1

= ZQS,

e=0
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where all QF are strictly lower triangular matrices formed by summing similar
tensor products. For Q¥ (i.e., L;), all matrices except L((,i) in the tensor products

are identity matrices.

Similarly, using Lemmas 4.1.6, 4.1.7, 4.1.8 and relabeling Q{" as Dg’lE tor
e=12,...,F, we get

D = Z[nln.l(:)Dl Jjn,+1nw+Z®D()+Z®O£t)

e=] i=1 ex=1 =1
3 2E N )
= Zlnlzn;_l ®Dll & [n-'+1inN +Z®D£l)
i=1 e=l i=1

Next we expose the block structure of (D — L) and build the lower triangular

solution on this structure.

Each QF matrix is the sum of NV tensor products. All tensor products in
this summation introduce nonzero entries to @~ that are in mutually exclusive
locations. In other words, each nonzero element in Q% comes from a different
tensor product. To see this, partition QF into n, blocks each of order [T, n;.
Its lower triangular blocks come from the term L{V & Q) & ... = QM) and
its diagonal blocks come from the remaining terms (i.e., terms that have D{!)
as the first factor) Observe that block (z,7) ¢ > j of QF can be expressed
as le(”)\® (k)), where l 15 the (z,7)th element of L(M. Similarly, block
(j.7) of QF can be e,\plessed as di(},j) [ N (R DY 2 LW @ (RiLyis Qgi))],

where d! J)j is the jth diagonal element of D{V.

Given the above (first level) partitioning of L, our algorithm for solving =
in the system «(D — L) = b stems from the following observation. The linear
equations for the subvector of 7 corresponding to the jth diagonal block of

(D — L), denoted #;, can be expressed as
_ ny (1) N L
sy =h+ 3 [ ,@e)] o
i=j+1 e=0

or as

7;D;;j=¢, J=mn,...,2,L

Here D;; is the jth diagonal block of (D — L), b; and ¢; are respectively the
jth subvectors of b and ¢, the new right hand side.
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d",’.,d‘,”,( D" -1?)

— b

~ dt;.;(u:a@Qm)

\» ‘ - “« Un@ Qm® Qa-
r——

Figure 4.1: Lower triangular part of @1 ® @2 @ @3 partitioned into blocks.

At this point, we are left with the problem of solving 7;D;; = ¢;. Fortu-
nately, the block structure of the diagonal blocks Dj; is similar to that of the
original matrix (D — L). Each diagonal block at level 1 is a lower triangular

matrix that can be expressed as a sum of tensor products. Thus.

N 2F N
1 k g
DJ}J' = {df(j),j) © IMNIN + § :[n'zmk—x &) Dl( ) &) [nk+1=anl + § :(lgt‘;,j)(® De(e“)
e=1 k=2

k=2
E ) N k-1 0 *) N @
~ 2 by (2D @ LT ( Q) Q)
e=0 k=2 i=2 i=k+1

where df(lj)'j) is the jth diagonal element of D,(I). Note that the diagonal elements
of D;; come from the first and the second terms. The strictly lower triangular
elements come from the third term. Next we can partition each diagonal block
D;; into ny blocks each of order []%,n;. This continues recursively until we
have a system of order ny (i.e., order of the last automaton) to solve. The
first and the second terms of D;; come into play only at the deepest level and
the recursion is inherent in the third term. Hence, the algorithm we present
for point GS is a recursive one. The lower triangular solution algorithm calls
itself until the recursion ends at level .V when a single iteration over the point

equations is performed: the systems to be solved at level N are lower triangular.

The illustrative example in Figure 4.1 shows the partitioning of a three term
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tensor product. The lower triangular block structure of the tensor product
1 ® Q2 @ Q3 is emphasized. The dark grey shaded blocks of the product
on the left come from the term L) @ Q2 @ @3. The grey blocks on the left
correspond to the three diagonal blocks each of order nyn3. The partitioning
of the second diagonal block D, is shown in the middle. The smallest matrix

on the right is the second diagonal block of D ,.

Algorithm for solving #(D—-L)=1b

The algorithm discussed in this section solves the system r(D — L) = b using
the efficient vector—(generalized) tensor product multiplication algorithm when
there are no cyclic dependencies in the SAN [5, pp. 20-22]. Here. D and L are
respectively diagonal and strictly lower triangular matrices. In the absence of
cvclic dependencies, all tensor products in a SAN (see equation (1)) may be
ordered (and relabeled) such that each matrix in each tensor product has entries
with functional dependencies, if at all. only to the automata that come before
itself in the given ordering. A SAN that lacks cyclic dependencies may be
written in the form QW,QA[QM].QPIQW, Q@) .., QM[QM. . .. Q-1
Remember that the arguments in the square brackets of each matrix indicate
dependencies that may exist among automata. For instance, transitions in
automata 3 may depend only on the states of automata 1 and 2, but not on
the states of others. Before we use the algorithm, we make sure the automata

are ordered appropriately.

The initial call to the recursive algorithm is SolveD-L(1, states. n, . b). The
first parameter :d(= 1) corresponds to the level of block partitioning. It might
also be thought of as the current level automaton number. The initial call at
level 1 partitions the global descriptor into n; blocks each of order [T/, n;. The
second parameter states, an array of size N, stores the state of each automa-
ton to be used in function evaluations. For instance, if we are solving the :th
diagonal block (see equation (4)) in the first call (i.e., no recursive calls have
been made yet), the state of automaton 1 is ¢. The parameter states is also
used to determine the scalar multipliers that form the diagonal blocks. For

example, in order to solve the smallest block in Figure 4.1, we need to mul-
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SolveD-L(id, states, first, =, b)
1. nright =Nid+1Nid42 .- - N
2.if (zd = N)
e T =0
o fore=1to 7E+/V
o d= ].-[:cil1 dc(sta.tes[ i},states[]) [Sf(tte‘:]
o T =T +d(D{¥(states] — L{i¥[states])
e Solve 7_fn'st—nN+1.nN/I' = bfzrst—n_v+1.nN
e return
else
o states[id] = ny
e SolveD-L(id + 1, states, first. 7. b)
wfirst = first
bfirst = first — (ngnright) + 1
for irow = n;y downto 2
o wfirst =7 first — nright + 1
e states(id] = irow
efore=0to £
o b, = Txfirst: nrzght(®, =id+1 Q [statec])
o for k=1 to irow — 1
o Reset states[(id + 1)...., N] to the first indexed states of
automata (¢d + 1) to .V
o for ¢ = l to might
sz 1 Cl
* bbfzrst+(k—l)nrzght+z 1= bbfzrst+(k —1)nright+i-1
+(d ! uzirowk [States]b;)
* Update states[(id + 1), N]
for automata (id + 1) to N

o SolveD-L(¢d + 1, states, = first — nright + 1,7, b)

Ot =

e(states[s],states(j])

I'igure 4.2: The recursive lower triangular solution algorithm for SANs

tiply the lower triangular matrix (D) — L®)) with d(l)dg?%. See also step 2 in
the SolveD-L algorithm; if e corresponds to the corrector of a synchronizing
event, L(?¥[states] = 0. Furthermore, we represent matrices arising from lo-
cal automata by e = 2E 4+ 1,...,2E + N in step 2. We determine both the
coordinates of the scalar multipliers and the current states of lower indexed
automata using states. The initial contents of states is irrelevant since it is
updated when deemed necessary. The third parameter first(= n) is set to

the size of the unknown vector in the current call. The fourth parameter is
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the solution vector initially set to #; = 1/n Vi and overwritten with the new
approximation at each iteration. The last parameter b is the right hand side
of the lower triangular solution. The algorithm assumes the generator matri-
ces of automata are available globally. Since the algorithm implements a back
solution and computes the last unknown (subvector) first, we use 7 jirsimy tO

denote the subvector of # with first element 7;5: and length ny.

Vector-tensor product multiplications arising from the local and synchroniz-
ing event generator matrices (see the for-loop on e in step 5 of the algorithm)
may be reduced to scalar-vector multiplications (see the third statement from
the bottom in step 5). For each block in a row, a vector-tensor product mul-
tiplication possibly with functional transitions depending on the current state
of the automata at that level (see irow in step 3) is required. An efficient
approach is to loop on blocks in a row (see the for-loop on & in step 3) because
in each row all blocks below the diagonal have a common vector-tensor prod-
uct multiplication and all functional entries in these blocks use the same trow
value while being evaluated (see equation (4)). It is also observed that many
matrices encountered in the test problems are zero, have zero diagonals. have
zero strictly lower or strictly upper triangular parts. We have taken advantage
of this as well. The actual timings depend heavily on such implementation

details.

Gauss—Seidel algorithm

The algorithm given in Figure 4.3 implements Gauss-Seidel for solving a SAN
in the functional case assuming that a splitting (D — L — U) for the SAN
descriptor and an initial approximation = are available. Remember that the
triangular solution overwrites the input approximation with the new approx-
imation on return from the call. Upon termination it gives the number of

iterations performed.
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o:t=0

e Repeat until convergence
ottt =1t+1
o Compute b = U
o SolveD-L(1, states,n, 7, b)

Figure 4.3: The Gauss-Seidel algorithm using SolveD-L

4.2.3 Successive Overrelaxation

We now express the SOR method as “i0+1-%) =W (p‘;” + (1 - w)ﬁ(SIBR. where
753 s the (k + 1)st approximation of GS, 71'50)3 is the kth approximation
of SOR. and w is the relaxation parameter (i.e., a weighing factor) satisfving

0<w<?

4.3 Block Methods

We argued that one can perform a lower triangular back solution on the blocks
of order ny at the final depth of recursion: see the third bullet in step 2 of the
SolveD-L algorithm. Instead of doing this, one may choose to solve these blocks
directly, i.e., by Gaussian elimination (GE). This approach, we call block GS,
is likely to decrease the number of iterations since blocks at each iteration are
solved exactly. When doing this, the right hand side b that goes into SolveD-L
1s computed in a slightly different manner. Now one must exclude the strictly
upper triangular parts of the matrices corresponding to the last automaton

from the multiplication. That is,

N-—1
= 7S L, @ UY @ Ly yiny +

=1
E N-1 k-1 N
2 Z DN eUPe(® QY
e=1 k=1 =1 i=k+1

What has been excluded from the new right hand side must be included at
level NV in step 2 of the recursive back solution algorithm. The matrix that

corresponds to automaton N at step 2 must include the whole matrices that
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correspond to synchronizing events, their diagonal correctors and to local au-
tomata, not just the lower triangular parts. The matrices of order ny formed in
this way at the deepest level of recursion for each one of the [T ;! n; diagonal
blocks will be solved using GE. Even though the space requirement is larger, if
the decrease in the iteration count is substantial the cost of solving the blocks
directly is offset by a smaller overall solution time. Another possibility is to
terminate recursion earlier and solve larger blocks. Also one can choose to
generate and store larger blocks at the outset, then use these at each iteration

(see the concept of grouping in [6, pp. 13-14]).

In the experiments, we noticed an interesting feature of block methods.

Remark 4.3.1 For a block coefficient matriv with lower (upper) triangular
diagonal blocks in equation (3), backward (forward) block GS/SOR is equivalent
to point GS/SOR.

The remark follows from inspecting the linear equations in systems with the

described nonzero structure.

4.4 An Upper Bound on SolveD-L

In this section, we provide an upper bound on the number of multiplications
performed in the SolveD-L algorithm for point GS (see subsection 4.2.2). Re-
member that multiplying the approximate subvector 7; with block (j,2) j > i of
the descriptor at the first level partitioning can be expressed as
l((I} i)ﬁj(®;y=2 Q™). If the row index j in this expression changes, the product
7 (QN_, Q) should be reevaluated for each value of j in case there are func-
tional dependencies among automata. At worst, the value of the functional
rate remains constant for all blocks in the same row. We use the efficient
vector—(generalized) tensor product multiplication algorithm that has a time
complexity of O([TY, n; TN, n;) for a tensor product with N matrices each of
order n;. This complexity result assumes that all matrices that participate in

the multiplication are dense.
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In the following, T; represents the number of multiplications performed in

SolveD-L when the matrix to be solved is partitioned into n; blocks each of

order H;V=i+1 n;j.

N N nep N
T, = FE (n,‘—l).H_nJ‘ Z nj +1 5 H n;
J=i+1 1=i+1 J=i+1
2_ . N
n—to—n—l H n; + ni T for ¢ < \.
= J=i+1
nyin; “'1 n ny _1
Ty = E[N v )V )} v ;; )-i-ENnN+nN.

The initial call to SolveD-L views the global matrix as partitioned into n,

blocks each of order [J¥,n;. We aim at bounding T} given by

2

I, = Ejln —l)HniZni-f- 5 Hn, + 5 Hlli+l'l1T3.
=2 =2 = =2 =

=2

The last term n;T5; of 7} means in the next call we solve n; diagonal blocks of
order [Tiv, n; fecursively. The term that is inside the E parentheses arises from
the multiplication of the current approximate subvector with tensor products
corresponding to F synchronizing events. The first term (n;—1) H};Z ne Y, N
inside the parentheses is for the multiplication of the current approximate sub-
vector with all blocks below the diagonal due to a synchronizing event. Re-
member that for each row of blocks all such multiplications are the same (hence
we have n; — 1 of them), however each of the blocks below the diagonal gets
multiplied with a different scalar giving the second term (n? —n,)/2 1Y, n; in-
side the parentheses. In the first level of partitioning, (n? —n;)/2 is simply the
number of blocks below the diagonal and [T/, n; is the length of the subvector.
The second term of T3 is for the number of scalar multiplications performed in
computing the current approximate subvector-tensor product multiplication
due to local automata. Note that the actual vector-tensor product multiplica-

tions are accounted for as the first term inside the £ parentheses.

In T, we have the number of scalar multiplications due to synchronizing
events and due to local automata as the first and the second terms, respectively.
The third term is for the number of multiplications performed in computing
the diagonal corrector elements (i.e., each of the ny diagonal elements in a

block gets multiplied with the diagonal elements of the previous N — 1 levels
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and this happens for all £ synchronizing events), and the last term is for the

number of divisions made at level N to obtain the solution.

In order to find a closed form, we write

N N —n N n2_n1 N

1
T, = [nl—lHn;Zn, - }+ 1T,
7| Il

N N n2 3 o N
+ny [E[nz—l anznﬁ’) Hm] [ ni+nTs
=3 =3 =~ =3

N N ne N ny N N
< [anZn—f— H } 7Hn,~+E[Hn,~Zni+n2Hni}
= “ =1 =1 =3 =1

Ny =

+—Hn + nynaTs
' =1
N N N n no
< Hn; [E [an-l- ,)J + F [Zni—i-ng} + T-I— ';"} + ninyTs

=2

<

< F Zn +an}HnL+ [E nl—}—-n;)-i-nl-:n?}]__[n + nyna s

< P ‘
N N E N-1 P N-1 N
< F Zn—{— +Zn,]Hni+[ ZznlJHn,+ Zn,Hn,
Li=2 =N i=1
N-1 l
+ H niln.

=1

Noting that
N-1 1 N 1 N 1 N 1 N
E nly = ENny E ni+ SEN E ni+ 5nN ,1;[1 nit 3 E i,
we get the (loose) bound
N N

T, < —ENZn,Hn—I— Zn,Hn,

Similarly one can find an upper bound on the number of multiplications
performed in computing the right hand side bas (EN+1) 2N n; [T, n.. Here,
EN is due to synchronizing events and 1 is due to local automata. Each tensor
product arising from local automata has one upper triangular matrix; all others
are identity. It is not surprising to find the total number of multiplications

performed in one iteration of the GS method on a SAN descriptor for the

V

algorithm given in this paper to he O(EN TN n; [T, ni).
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Chapter 5

Numerical Results

5.1 The Problems and the Experiments

In order to make illuminating comparisons, we implemented power, Jacobi,
GS. and SOR methods. We carried out experiments using both backward and
forward versions of GS (and hence SOR) together with block versions of Jacobi.
GS, and SOR methods. In block implementations, we terminate recursion at
the deepest level and solve the blocks of order ny using Gaussian elimination as
discussed in Section 4.3. During the experiments we used a stopping criterion
of 1071° between consecutive approximations. That is, we computed a residual
vector as the difference between consecutive approximations, and used the 2-
norm of this vector as the stopping criterion. We used a uniformly distributed
probability vector as the initial approximation for all experiments. We ran
all the experiments on SUN Sparcstation 4’s each with 32 megabytes (MB)
of RAM. All the algorithms are implemented in C++ language and the new
methods are incorporated into the software package PEPS [12]. Regardless of
its size, each problem produced a smaller number of iterations in either the

backward or the forward approach; we present results of the better approach.

We experimented with three problems. The first two, resource sharing and
three queues, are explained in [5]. The third one, the model of a mass storage

system, appears in [3]. For the mass storage example, we experimented with

-1
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CHAPTER 5. NUMERICAL RESULTS

different orderings of the automata. Obviously, ordering of automata is likely
to have an effect on the iteration count. The efficient vector-tensor product
multiplication algorithm itself imposes an ordering on the automata. In order
to use other orderings, a permutation vector may need to be introduced to the
multiplication algorithm. We experimented with orderings that do not require
permutation. We also tried orderings different from the original ordering by
taking advantage of the position of identity matrices in tensor products. Such

orderings follow from Lemma 5.5 and its companion remark in [3, p. 16].

Modeling with SANs is still in its infancy, and only recently have researchers
started considering large and complex problems. Issues related to cyclic depen-
dencies are currently under investigation. Lemma 5.8 and Theorem 3.2 in [3]
show how one can handle cyclic dependencies in generalized tensor products. If
the functional dependency graph is fully connected there is not much that can
be done to improve the complexity of vector-generalized tensor product mul-
tiplication. On the other hand, if the cutset of the cycles in the dependency
graph has a small number of automata, then a more efficient vector-generalized
tensor product multiplication algorithm can be used. However, this multiplica-
tion will still take much longer than that of a vector-generalized tensor product
lacking cycles. The smaller the cutset, the better the improvement. Moreover,
at the end of Section 6 in [5], it is indicated that Theorem 5.2 needs to be
used only when routing probabilities associated with synchronizing events (i.e.,
descriptors of slave automata due to synchronizing e&ents) are functional and
result in cycles within the functional dependency graph. The occurrence of
this situation is suspected to be rare by the authors of [5]. We have not seen
such a case. However, it is still not impossible to have generalized tensor prod-
ucts with dependency cycles. We should emphasize that no attempt has been
made to avoid cyclic dependencies in the modeling phase of the mass stor-
age problem. In [6], the last paragraph of subsection 4.3 discusses the results
of some experiments with artificially created cyclic dependencies. There it is
mentioned that cycles have a detrimental effect on solution time, as expected.
As for ordering the automata in the case of non-cyclic dependencies, we think
it should not be very difficult. It is an implementation issue. However, we have

purposefully concentrated on orderings that do not require the introduction of
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Table 5.1: Storage Requirements and Generation Times for All Problems

Prob. 1 Desc. Sparse | Sparse
N P n nz nz | gtime
12 1 4,096 48 28,684 1
12 6 4,096 48 40,960 1
12 10 4,096 48 53,236 1
16 1 65,536 64 589,840 26
16 8 65,536 64 851,968 26
16 15 65,536 64 | 1,114,096 27
20 1 1,048,576 80 | 11,534,356 870
20 10 1,048,576 80 | 16,777,216 389
20 19 1,048,576 80 | 22,020,076 382

Prob. 2 Desc. Sparse | Sparse
Cy Cy O n nz nz | gtime
5 5 10 2,500 | 105 11,875 0
10 10 10 10,000 | 145 50,960 1
10 10 20 40,000 | 225 205,000 6
15 15 20 90,000 | 265 471,605 13
15 15 30 202,500 | 345 | 1,063,125 30
15 15 50 562,500 | 505 | 2,957,025 84
20 20 50 || 1,000,000 ; 545 | 5,315,100 47

Prob. 3 Desc. Sparse | Sparse
C N n nz nz | gtime
26 6 6,480 95 39,960 1
51 11 73,205 | 200 479,160 14
6 16 327,680 | 330 | 2,191,360 86
101 21 972,405 | 485 | 6,575,310 331

a permutation vector. Searching for optimal orderings and relaxation param-
eters when testing newly devised algorithms is a problem in its own right and

we have not attempted experimenting with all V! orderings of .V automata.

The main advantage of using SANs is memory efficiency as opposed to time
efficiency. We implemented power, Jacobi, GS, SOR methods and their block
versions for sparse matrices in the Harwell-Boeing format so that a compar-
ison can be made. The sparse matrices are generated using the descriptors,
which are also stored in sparse format. In Table 5.1, we present the sizes of

the problems, the number of nenzero elements stored in sparse matrices and



CHAPTER 5. NUMERICAL RESULTS 60

descriptors, and the generation times of the sparse matrices. The generation
times of the sparse matrices should be added to the solution times of the sparse
methods. In the table, nz denotes the number of nonzeros either in the de-
scriptor approach (Desc.) or the sparse matrix approach (Sparse), and gtime
denotes the global matrix generation time in sparse format. We should re-
mark that identity matrices arising in synchronizing events or local transitions
are kept in a special data structure and do not contribute to the space com-
plexity of the descriptor approach. The generation time of the descriptor in
each problem is negligible and hence not reported. Since one is limited with
a certain amount of core memory on a target architecture. we report results
with sparse methods only in problems for which we could generate and store
the global transition rate matrix. That we could solve larger problems using
the sparse matrix approach if we had used a larger core is immaterial. In this
work. we aim at investigating the “relative” worth of the SAN approach com-
pared to the sparse matrix approach for the solution methods at hand on a
target architecture. Research along other viable alternatives for handling large
numbers of nonzeros in sparse matrices is also of interest to researchers (see
(3], for instance). In the following w. refers to the optimal relaxation param-
eter, it and time denote respectively the number of iterations and the CPU
time (in seconds) to converge to the prespecified tolerance. The bold figures
in Tables 5.2-5.9 indicate the best run times for the particular problem. In
the following sections, we describe the problems and present the results of the

experiments with the descriptor methods and the sparse matrix methods.

5.2 The Resource Sharing Problem

The resource sharing problem has four parameters. The number of processes NV,
the number of processes P that can simultaneously access the critical resource,
the rate Al at which each process wakes up and tries to acquire the resource,
and the rate (¥ at which each resource using the process releases the resource
for 7 = 1,2,....N. All automata have two states implying n = 2. In our
experiments we used A() = 0.04 and ) = 0.4 for i = 1,2,..., N. This model

does not have any synchronizing events: it has functional transition rates but
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Table 5.2: Results of Desc. Experiments with the Resource Sharing Problem

Prob. 1 Power GS SOR Block GS Block SOR

N P it time | it time | w. it time | it time | w. it time
12 1| 142 83| 2 2110 2 2| 2 2110 2 2
12 6 || 222 131 | 26 23113 18 16 | 26 22 | 1.3 18 15
12 11| 222 123 | 28 25 (1.3 18 16 | 26 22113 18 15
16 1] 188 2299 | 2 39110 2 40 | 2 38 (1.0 2 38
16 8 294 3.793 | 32 613 1.3 22 420 | 32 592 | 1.3 22 402
16 15| 294  3.562 | 34 650 | 1.4 22 420 | 32 580 | 1.3 22 402
20 1] 236 63.265 2 825 | 1.0 2 826 2 740 | 1.0 2 740
20 10 || 362 94.157 [ 38 15,039 | L5 26 9,777 |38 13,764 | 1.4 24 8,734
200 19 || 364 89.126 | 40 15554 | 1.5 24 8891 |40 14,311 | 1.5 24 8.673

Table 5.3: Results of Sparse Experiments with the Resource Sharing Problem

Prob. 1 Power GS SOR Block GS Block SOR

N P i time | it time | w. it time | it time | w. it time
12 1] 142 41 2 010 2 0| 2 0|10 2 0
12 6| 222 9126 1 {13 18 1]26 2113 18 1
12 11| 222 12 | 28 213 18 126 211.3 18 2
16 1f 188 118 | 2 2110 2 21 2 311.0 2 3
16 S 294 255 | 32 301 1.3 22 22 | 32 521 1.3 22 37
16 15| 294 326 | 34 39 114 22 29 | 32 6311.3 22 44

no cyclic dependencies. Since all matrices are identical f01" the given A9 and
1. reordering the automata is futile. The resource sharing problem does not
converge for Jacobi and block Jacobi methods. As for backward block GS and
SOR methods. they are expected to give (slightly) smailer iteration counts than
their point versions when P is closer to V than to 0. This follows from Remark
4.1 and is particularly substantiated for the GS iteration. When P is small
compared to V. many of the upper diagonal elements of the 2 x 2 matrices
evaluate to zero and there is no advantage of using block methods. On the
other hand, when P is larger, many functional rates evaluate to nonzero values
and the block methods start to make a difference, however very little due to
the extremely small block size. The results of the experiments are summarized
in Table 5.2 and in Table 3.3. Observe that block SOR takes approximately
1/10th of the time power method takes for the case N = 20, P = 19, in the
descriptor approach. We were not able to solve the largest three instances of

the this problem with a sparse solver.
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Table 5.4: Results of Descriptor Experiments with the Three Queues Problem

Prob. 2 Power Jacobi GS SOR
Ci Cy C; it time it time i time | w. it time
5 5 10 696 82 450 66 | 164 271 1.6 102 17
10 10 10 912 411 590 336 | 226 154 | 1.6 142 98

10 10 20 | 1,084 1,954 26 1,658 | 270 722 | 1.6 168 455
15 15 20 | 1,548 6.215 | 1,064 5,390 | 404 2485 1.6 2356 1,577

15 15 30| 1,664 15,052 | 1,154 13,103 [ 436 6,288 | 1.6 274 3,838
15 15 50| 1,874 47,240 | 1,318 41,535 | 492 21,726 | 1.6 310 11,962
20 20 50 2,306 101.680 | 1.642 91,187 ) 618 44,002 | 1.6 390 27,123

Prob. 2 Block Jacobi

Oy Oy it time

5 5 10 412 110
10 10 10 540 357
10 10 20 668 2.568
15 15 20 998 9.235
15 15 30§ 1,074  24.246
15 15 50| 1,234 82.215
20 20 530 |1 1,540 186.781

5.3 The Three Queues Problem

The three queues problem is an open queueing network of three finite ca-
pacity queues respectively with capacities ¢, — 1, ¢y — 1, and ('3 — 1 in which
customers from queues 1 and 2 (try to) join queue 3. The customers that
come through queues | and 2 are referred to as type 1 and type 2 customers.
The arrival and service rates of queue ¢ are respectively given by A; and g, for
: = 1.2, Queue 3 has a service rate of u3, for type 1 and a service rate of u3,
for tvpe 2 customers. The network is modeled using 4 automata A1), A?)
AB | AG2) with respectively Cy, Cq, C3, and Cs states. The state space size is
given by n = C1C>C3. Other details of this queueing network may be found in
[3]. The parameters used in the experiments are \; = 0.4, A\ = 0.3, u; = 0.6,
py = 0.5, w3, = 0.7, and p3, = 0.2. This model has both synchronizing events

and functional rates; it does not have any cyclic dependencies.

For the three queues problem, the automata are ordered as A1), A?) 4G,
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Table 5.5: Results of Sparse Experiments with the Three Queues Problem

Prob. 2 Power Jacobi GS SOR
c, Cy (s it time it time | it time | w. it time
5 3 10 696 9 450 6| 164 2116 102 1

10 10 10 912 49 590 32 | 226 13116 142 9
10 10 20 || 1,084 238 726 158 | 270 65| 1.6 168 44
15 15 20| 1.548 778 | 1.064 539 | 404 220 | 1.6 256 153
15 15 30 1,664 1,916 | 1,154 1319 | 436 541 1.6 274 373

Prob. 2 Block Jacobi
'y Cy (O it time
5 5 10 412 17
10 10 10 540 91
10 20 668 654

15 15 20 998 2.186
15 15 30| 1,074 6.922

AB2) Backward SOR gives the best results. However. block versions of Gauss-
Seidel and SOR do not make any difference since the matrices that correspond
to the last automaton are all lower triangular. Block Jacobi gives smaller it-
eration counts than point Jacobi in this case as expected, vet the difference
is negligible. The results of the experiments with descriptor methods are pre-
sented 1n Table 5.4. Note that point SOR takes a quarter of the time the
power method takes for the largest problem that has 1,000,000 states, in the
descriptor approach. The results of the experiments with the sparse solvers are
presented in Table 3.5. in this problem. sparse methods could not be applied

to the largest two instances.

5.4 The Mass Storage Problem

Fortunately, we were able to try all iterative methods in the mass storage
problem (see [3]). The model is used to investigate the effects of interactive
retrieval (get) and storage (put) requests, migration workload, and purging

workload on a robotic tape library (RTL). The first (i.e, online storage) layer
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Table 5.6: Parameters for the Mass Storage Problem.

Agi arrival rate of get requests to the system

Ap: arrival rate of put requests to the disk cache

hy,: hit ratio of get requests at the disk cache

hy: hit ratio of put requests at the disk cache

% service rate of tape drives (includes robot tape mount and file seek times)

T: total number of available tape drives in the tape server

ti: number of tape drives dedicated to interactive get requests

b : number of tape drives dedicated to the migration queue (T = t; + t,,)

ny: number of requests in the interactive tape queue (including any request(s)
currently being served) (0 < ny < Ny — 1)

T, threshold of requests at the interactive tape queue above which one tape
drive from the migration tape queue is borrowed

Ny number of requests in the migration tape queue (including any request(s)
currently being served) (0 < ny < Ny - 1)

na: number of put requests written to the disk cache which have not been

migrated to the tape library vet (0 < n3 < N3 - 1)
C'—1: maximum capacity of the disk cache.

H: high water-mark for the disk cache used to activate the purging workload
L: low water-mark used to terminate the purging workload
ok current occupancy level of the disk cache ([L(C' - 1)] < C< [H(C-1])
M: inter-migration time
R: number of stages in the Erlangian approximation of the periodic migration
workload (R > 3)
¥: rate of the Erlangian approximation of the periodic migration workload
(v = 1/m)

usually consists of magnetic disks which provide fast access time but at a
relatively high cost per byte. The second (i.e., nearline storage) layer utilizes
robotic tape libraries (RTL), and the third (i.e., offline storage) layer consists
of free-standing tape drives with human operators performing the mounting
and unmounting of media from the drives. Since the interest is mainly in
the performance of RTLs. it is assumed that the system to be modeled only
consists of an online and a nearline layer. The parameters in this problem are
quite a few, and we present them in Table 5.6. The unit of time for the given
parameters is minutes. The system is modeled using five automata A(é), Al
A) - A(e) “and A of order respectively [(H-L)(C-1)]+1, Ni, N2, N3,
and R giving

n=([(H-L)(C -1)] + )N N, N3R.
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Table 5.7: Results of Descriptor Experiments with the Mass Storage Problem

“Prob. 3 Power Jacobi GS SOR
C N; it time it time it time | w. it time
26 6 178 78 | 1,522 1,064 | 254 217 | 1.7 163 144

51 11 612 3,062 | 2,084 17,765 | 334 3485 { 1.6 228 2,354

76 16| 1.146 29,432 | 2,130 92,364 | 428 21,207 | 1.5 306 14,910
101 21 |} 1.860 145.162 | 2,842 394,517 | 668 104.229 | 1.5 454 70.774

Prob. 3 Block Jacobi Block GS Block SOR

¢ N; it time ot time | w it time
260 6| > 2,700 1072 | 158 140 93 33
51 11 1.598 13.676 | 156 1.673 106 1,125
7616 {| > 3.000 1072 | 286 14.739 170 8,876
101 21 1.933 370.166 | 470 79,665 2382 46,708

X

;‘,

—_ =] — =
bt | k=2

=1

The mass storage model has both synchronizing events and functional rates; it

does not have any cyclic dependencies.

We used A, = A, = 1.5 u =061 hy = h, =03, t; = t,, = 2. L = 0.75,
H =095 M = 40, R = 5 (see [3. p. 3] for details). The automata are
ordered as Am) Al Al A(C'),A(’”). In Table 5.7, we provide results for
both block and point methods of the descriptor approach. Forward SOR gives
the best results: its block version decreases both the iteration counts and the
solution times. The information in Table 5.7 regarding block Jacobi should be
interpreted differently. The two entries with > signs in the iteration column
and 107% in the time column indicate that the methods are executed until the
2-norm of the residual vector is on the order of 107>, and the iteration counts
reach the numbers in the iteration column. The methods are not executed
until the 2-norm of the residual vector is on the order of 1071 since these runs

take quite some time.

Interestingly. an alternative ordering, namely A™) A©C) Alerh) | gm) | A(n2)
gives better results for both block GS and block SOR as shown in Table 5.9.

Note that it is possible to solve the largest system in less than two hours.

A final remark is that, for a given problem, the optimal parameter of

(block) SOR and therefore the number of iterations taken to convergence
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Table 5.8: Results of Sparse Experiments with the Mass Storage Problem

Prob. 3 Power Jacobi GS SOR
C N it time it time it time | w. it time
26 6 178 711,522 62 | 254 11 | 1.07 240 11
51 11 612 302 12,084 1018 | 334 177 | 1.06 318 182
6 16| 1,146 2,763 | 2.130 5.014 | 428 1,056 | 1.06 406 1,112

Prob. 3 Block Jacobi Block GS Block SOR

c N; it time it time | wa it time

26 6 || >2,700 107° | 158 16 { 1.09 146 16

51 11 1,598 2,388 | 136 230 | 1.10 144 219

6 16| >3.000 1077|286 2.289 | 1.07 263 2.196

Table 5.9: Results of Other Experiments with the Mass Storage Problem

Prob. 3 | Descriptor Descriptor Sparse Sparse
Block GS Block SOR Block GS Block SOR
N it time| w.e it time| it timel| w. it time
26 6 || 44 41 (1.0 44 41 | 44 5|10 44 5
51 11 || 34 370 1 1.0 34 370 | 34 50 | 1.0 34 50
1632 1,715 1.0 32 1,715 |32 255 |1.0 32 255
101 21140 6,797 (1.1 36 6,115 | - - - -

in the descriptor approach may be (significantly) different than those of the

global generator in sparse format. This is something we observed in the mass
storage problem for the ordering A(M), A(m) Alerd), A A For instance,

w. = 11,2t = 144, time = 219 for block SOR in sparse format for the given or-

dering when C' = 51, N; = 11. The cause seems to be rounding errors incurred

in generating and storing the global matrix.



Chapter 6

Conclusion

In this work, we presented iterative methods based on splitting a SAN de-
scriptor. Block versions of the same methods follow directly from considering
blocks of order ny, the order of the last automaton. in the given ordering.
Larger blocks may be considered by grouping several automata at the end of
the given ordering and terminating recursive calls of the lower triangular back

solve algorithm when the first automata in the group is encountered.

By deriving an upper bound on the Gauss-Seidel and SOR algorithms for the
number of multiplications that is in the same order with the vector-descriptor
multiplication, we show that the stationary methods are as efficient as non-
stationary methods that do only vector-descriptor multiplications. Hence, we
show that the solution times of a specific problem with different approaches

depend only on the behavior of the algorithm for the given problem.

An important and frequently overlooked drawback of Markov chain solvers
(including SAN solvers) that attempt at computing each and every stationary
probability is the memory consumed by double precision temporary storage
allocated to the current approximation. possibly the preceding one, and other
work arrays. A vector of one million elements requires 8§ MB of memory.
Although not as large as the memory taken up by double precision nonzeros in
the sparse matrix approach, these vectors may end up taking substantial space

in iterative methods.
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On a desktop workstation with 32 MB of RAM, one can compute the sta-
tionary distribution of a SAN descriptor with one million states in core on the
order of hours using block SOR. On the other hand, the largest system that
can be solved by the sparse matrix approach may be limited to less than one
tenth of that could be solved using SANs if the generator is reasonably dense
(as in the resource sharing problem: it takes roughly 176 MB to store the gen-
erator matrix in sparse format for the most difficult case). We believe the SAN
modeling methodology has its merits and drawbacks. One may easily observe
that sparse methods must be used whenever possible. The SAN formalism is
likely to gain popularity as a viable modeling and analysis tool as faster solvers

hecome available.



Appendix A

Incorporating a New Model To
Peps

A.1 Preliminaries

This section explains how to incorporate a performance model. developed as
a SAN to the software package Peps [12]. It is assumed that the model to
incorporate must be available; that is, local matrices and synchronizing event
matrices with their diagonal correctors must be available. A mathematical
formulation of functional rates should also be available, i.e.. one must know
how to evaluate the function given the state of the automata. In the remaining,
we use ‘Peps’, to mean the latest revision of the package as it is implemented at
Bilkent University. We use ‘original Peps’ to mean the version that is supplied
to Bilkent University as in [12]. There are two steps to complete the task
of adding a new model. First. one should generate a text file describing the
model; second. the necessary code for evaluating the functional rates should bhe
incorporated to the package. The two sections that follow explain these two

steps. The final section presents the text file for an example model.
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Table A.1: Matrix Types

value type meaning

0 sparse sparse matrix in HBF format
1 binary NOT USED

2 element NOT USED

3 diagonal NOT USED

4 identity identity matrix

b) Zero zero matrix

A.2 Generating the Text File

The text file. which i1s given a .dsc extension stores the descriptor of a SAN in
a predefined format. For instance. the name of a text file of the mass storage

model in [3] can be given the name mass.dsc or m~6-6-6-6.dsc.

The largest portion of the text file is used for storing the descriptor matrices
of the SAN. A few lines of other information is given in the text file. Before

going into the format of the file. we discuss how matrices are represented.

A.2.1 Format of a Single Matrix

All matrices, i.e., local generator matrices, synchronizing event matrices and
diagonal corrector matrices are represented in the same way. A matrix consists

of several consecutive lines of text in the file.

In the first line in the portion of the text file describing a matrix. there
should be a single number representing the type of the matrix. The possible

values are 0,1.2.3,4.5 as shown in Table A.1.

The first five matrix types are defined in original Peps; however, binary,
element, and diagonal types are not used in Peps and original Peps. The zero

matrix type is introduced in Peps.

In the next line there should be two integer values separated with a space.

The first integer denotes the number of nonzero elements in the matrix. Since
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Table A.2: Types of Nonzero Values

| value type meaning
0 rate a rate for continuous time MCs
1 probability NOT USED
2 function a functional entry
3 parameter NOT USED

all matrices are square, the second number specifies the order of the matrix.

For zero and identity type matrices, these two lines completely specify a
matrix. For a sparse matrix, which is neither a zero matrix nor an identity
matrix, the lines following the first two describe the nonzero elements of the
matrix. We follow the compact column format representation of sparse ma-
trices. The number of lines that specify the nonzero elements of the matrix
should be equal to the first integer given in the second line. In other words,
a separate line is reserved for each nonzero element. The nonzero elements of
the matrix are stored in a double precision array one column after the other

starting from column zero.

A nonzero element is described using three numbers separated by spaces.
The first number, an integer, defines the type of the element. There are four
types of elements (see Table A.2). All of these types are defined in original
Peps, however the probability and parameter types so far have no use in Peps
and original Peps. The second number is the real value of the corresponding
entry in the matrix for rate type elements. This entry is not currently used for
function type elements. The third number is for the ID number of the function

for functional elements in a C++ implementation file. This entry is not used

for rate type elements.

In the line following the one that contains the last nonzero element, the row
indices of all nonzero elements are written. The number of integers in this line
should be equal to the number of nonzero elements of the particular sparse

matrix. Note that row numbers start from zero in all matrices due to the C++

implementation.

In the next line, there should be d + 1 integers, where d is the order of the
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matrix. Each integer specifies the location of the first nonzero element, in the
array of nonzero elements, of a particular column. That is, the kth integer will
be the index of the first nonzero element of the kth column, in the array of
nonzero elements. The final integer should be equal to the number of nonzero
elements in the matrix. We illustrate the storage scheme on various examples

in the next section

A.2.2 Example Matrices

Zero and identity matrices are easy to specify. A zero matrix of order 6 is
written in two lines as:
5
0 6
An identity matrix of order 5 is written in two lines as:
4
5 5

The below sparse matrix containing only real entries

-04 04 O
0 -—-04 04
0 0 0

1s written as:

0 // type of matrix
4 3 // number of non-zeros and size of matrix
0 —-04 0 // first nonzero element
0 04 0 // second nonzero element
0 —-04 0 // third nonzero element
0 04 0 // fourth nonzero element
0 0 1 1 // rows of non-zeroes
0 1 3 4 // column indices for each column
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The matrix below contains both functional and real entries :

foo i 0
0 -0.5 0.5
0 O 0
It is represented as:
0
4 3
2 0 100 // functional element
2 0 101 // functional element
0 =05 0
0 0.5 0
0 0 I 1
0 1 3 4

The comments given beside some of the lines should not appear in the actual

text files. Here, they are given to elaborate certain concepts.

A.2.3 The Text File and Its Parts

The text file is organized as a set of lines. In the first line, there should be
three integers separated by spaces. The first one stands for the type of the
model. The model can be a discrete-time model or a continuous-time model.
Currently both original Peps and Peps work with continuous-time models. The

possible values are 0 and 1 (see Table A.3).

Table A.3: Model Types

value type meaning
0 discrete NOT USED
1 continuous continuous time model

The second integer is for the number of automata and the third is for the
number of synchronizing events. Sizes of automata are written in the second
line. For instance the first two lines of a text file describing a continuous-time

model with 4 automata and 2 synchronizing events is given below:
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2 // type of SAN, number of automata, number of sync. events

1 4
3 4 5 5 // sizes of the four automata

In this example, the first matrix is 3 x 3, the second is 4 x 4, the third and the

fourth are 5 x 5.

After these two lines, the local automata matrices should be written one
after the other as explained in section A.2.1. Note that the number of local
matrices should be equal to the second number in the first line of the text
file. Following the local automata, the syvnchronizing event matrices should
be written. First, all matrices of the first synchronizing event (including the
correctors) should be listed. then the second synchronizing event’s matrices.
and so on. For each synchronizing event. the synchronizing event matrix of the
first automaton should be written followed by its corrector. then the synchro-
nizing event matrix of the second automaton should be written followed by its

corrector. and so on.

After all synchronizing event matrices are written, the orderings of the rate
matrices for the synchronizing events should be written in a single line. The
rate matrix is the matrix that contains rate values for the synchronizing event.
i.e.. master of the synchronizing event. Actually these values are not used in
the stationary vector calculations, but they are used in the thruput calcula-
tions. These calculations are made in the Calculate function of the tensor.C
module. For example, in the three queues problem this line should contain the
integers I and 2. Given that the automata are ordered as AM, AR ABG) AB2)
this means automaton A(® is the master automaton for the first synchronizing
event and automaton A®V is the master automaton for the second synchroniz-
ing event. For the mass storage example. there should be three integers in the
same line. Since the generation program is capable of generating any ordering
of automata, these values will vary with the ordering. However, the three inte-
gers should be the orderings of the Erlangian server, queue three and queue one
respectively: A A(Mms) A(m) The Calculate function takes these values,
retrieves a certain element in the matrices specified by these values. and uses
the element in thruput calculations. This approach is useful in the sense that if
some parameters of the example are altered, there is no need to make changes

in the Calculate function. Currently the only use of this line is for the mass
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storage example in Peps. This line exists in original Peps, but is not used.

The next line in the text file is the last one and is intended to be used as
the ordering of the automata. The number of integers on this line should be
equal to the number of automata. In original Peps, this line does not exist. In
Peps, this line is used only for the mass storage example. For the mass storage
example. the values in this line are used only in function evaluations. Each
number tells where a specific automaton is located in the given ordering. i.e..
the first number explains where the Erlangian server is, the second where the
cache is. the third, the fourth and the fifth numbers explain where A("?) 4()
and A(M2) are. respectively. For example, 2 0 1 3 4 corresponds to the ordering

A(C).A(n-_{)‘A(ep[)fA(nl) ,A(,LQ).

A.3 Evaluating Functional Entries in Peps

In order to implement a functional entry of a matrix in Peps. there are two
things to do. First an ID number should be determined for the functional entry
and must be written into the matrix as described in section A.2.1. Second the
actual code to implement the function must be incorporated to Peps. The
code must be added to the module function.C and into the C++ function

Evaluate Function. This function’s signature is:

rp Evaluate_Function(const function_id id,

const state_id * params, const int size)

This function is called for each functional entry. The first parameter id is
the ID of the functional entry for which the function is called. The second
parameter params is an array of state_ids (basicly integers), whose elements
correspond to the state of automata. The third parameter size is the size of

the array of states. The value returned by this function determines the value

of the functional entry at the point of call.

ID numbers 0 to 99 are used in the three queues and resource sharing prob-

lems. The mass storage example uses ID numbers from 10000 to 10000+ (size of
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the third queue), 100, and 101. The remaining ID numbers can be used freely
in Evaluate Function. There are some declarations in the first few lines. Af-
ter those, one can add code for evaluating functions in a different model. The
code should be an if-block. The check for the ID range, should be made in the
it condition, and if the condition evaluates to true, the necessary calculations
should be performed. The result of the calculation should be returned. That
is, the if-block should end with a return statement. If the condition does not
evaluate to true. control should be left to the remaining part of the code. An
important point is that one must guarantee to return the result with a return

statement when the I[D is in the appropriate range.

In addition to the input parameters of the function. extra information
that might be needed in function evaluations is available. An array of inte-
gers, automata_sizes, contains the order of automata. Another integer array,
ordering, which is intended to be used as the ordering of automata, is also
available. Since the latter array is supplied in the text file, it might be used
for other purposes as well. Note that both arrays have as many elements as

the number of automata.

Below is a sample C++ code snippet for evaluating a function as it would

appear in function.C:

Ip Evaluate_Function(const function_id id, -
const state_id * params, const int size)
{
rp result;
int automata_acc = O;

automaton_id a;

// Example code starts here
// You should add your code here
if ((id >=200) && (1d<300)) {

switch (id) {
case 200 : if (params{0] > (automata_sizes[0]/2))

result = 1.0;
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else

result = 0.0;
break;
case 201 : if (params([2]==0)

result = 1.0;

else
result = 0.0;

break;

¥

return result;

by
// End of sample code

A.4 An Example Text File

~1
-3

Below is an example file generated for the three queues example. Note that

the comments (i.e., part of lines after the // characters) are added to this

document for explanation purposes and should not appear in the actual text

file.
14 2 // cont. time, 4 automata, 2 sync. events
3355 // C1 =3, C2=23,C3=25

// local automaton of queue 1, sparse type
4 3
0 -0.40
0 0.4 0

(@]
|
o
IS
(@]
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0 0.40
0011
0134
0 // local automaton of queue 2, sparse type
4 3
0 -0.30

0.30

-0.30

0.3 0

011

134
// local automaton of queue 3_1, sparse type

|

(@]
N N NN NN NN
O O O O O O O o

1223344
135738
// local automaton of queue 3_2, sparse type

a

20
21
20
21
20
21
20
2 21
11223344
013578

0
0
0
0
0
0
8
0
0
0
0
0
0
0 0.
0
1
0
0
8
2
2
2
2
2
2
2

S O O O O O O o
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// sync. event #1, matrix of queue 1
3 // sparse type
0.6 0
0.6 0

122
// sync. event #1, corrector matrix of queue 1
3 // sparse type
-0.6 0
-0.6 0

012

// sync. event #1, matrix of queue 2
3 // identity type

// sync. event #1, corrector matrix of queue 2
3 // identity type

// sync. event #1, matrix of queue 3_1

0.0 22
0.0 22
0.0 22
0.0 22
123
01234

// sync. event #1, corrector matrix of
5 // queue 3_1, sparse type
0.0 22
0.0 22
0.0 22
0.0 22
123

12344

0
2
0
0
1
0
0
2
0
0
1
0
4
3
4
3
0
45 // sparse type
2
2
2
2
0
0
0
4
2
2
2
2
0
0
4 // sync. event #1, matrix of queue 3.2
5

5 // identity type
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4 // sync. event #1, corrector matrix of
55 // queue 3_2, identity type
4 // sync. event #2, matrix of queue 1
33 // identity type

4 // sync. event #2, corrector matrix of queue 1
33 // identity type

0 // sync. event #2, matrix of queue 2
23 // sparse type

0 0.50

0 0.50

12

0122

0 // sync. event #2, corrector matrix of queue 2
23 // sparse type

0 -0.50

0 -0.50

12

0012

4 // sync. event #2, matrix of queue 3_1
55 // identity type

4 // sync. event #2, corrector matrix of
55 // queue 3_1, idéntity type

0 // sync. event #2, matrix of queue 3_2
95 // sparse type

2 0.0 23 // a functional rate with ID 23

2 0.0 22 // a functional rate with ID 22

2 0.0 23

2 0.0 22

2 0.0 23

2 0.0 22

2 0.0 23

2 0.0 22

0 1.00 // a rate with value 1.0
001122334 // row numbers of 9 nonzero elements
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4
55

12
0123
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//
//

//
//

column 2 starts with nonzero #3, 2 0 22
sync. event #2, corrector matrix of

// queue 3_2, identity type

rate matrices for synchronizing events
ordering of automata

// not used in this example
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