
Ш̂Ѣ ЩМ W f 1 fр^Г 4Т 10М IM д
s Y . r p e T W â Ç T i ^ M c , î - W ï f

c T ̂ í г Ϊ■;?■. i .-·*·'5'-"syV l Λ U ti iSta. Vir ·· •‘.#

?4 -̂ ; 'V, ,1«! -O 3rai!ted Î0 Tfei Шьвartisüin Ш ъ Ш Ш Ш
й| àïsd

Ь г Ь іЛ 'й ,і= ; '^ ! 'Э · ? ?ííía · W · — w‘-¿.
v'.·̂ v i * /̂ '. Λ; «U ,1̂ -Г:
'■j0 ':¿> C'ô- ûifi;' i;·

j d T b g Si .gins'^rmg й‘!-á Sc!§iic$
Í'Y J ΐ^ ; ζ ^ ι. · : , i!···?

l i i P áftliS i «(Sb’ :.. J‘1; •'5? 4!·̂ '«.

Г 0 Г
ji*"' '-il ■>' Л f · ' “ <·̂
-.'Л· i ci

J W M •‘“'■»5- ■“ ■ •. rw ^

Uiärtr-. ·3 2?·5ί«ή ¿ÍÍÍJ-ΐ .-vvC

KNOWLEDGE BASE VERIFICATION IN AN
EXPERT SYSTEM SHELL

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER

ENGINEERING AND

INFORMATION SCIENCES

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
MASTER OF SCIENCE

By
Faruk Polat
June 1989 tarafl idan ba îi^Lnaiistir.

Q A

.0 ^ 6

W

6Î863

I certify that I have I’ead this thesis and that in my
opinion it is fully adequate, in scope and in quality, as
a thesis for the degree of Master of Science.

. J aimu
Asst. Prof. Dr. Halili Altay GÜVENİR (Principal Advisor)

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as
a thesis for the degree of Master of Science.

Prof. Dr. Mehmet Bai^y

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as
a thesis for the degree of Master of Science.

Prof. Dr. iVavid Davenport

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet Baray, Director of Institirfe of Engineering and Science

11

ABSTRACT

KNOWLEDGE BASE VERIFICATION IN AN EXPERT
SYSTEM SHELL

Faruk Polat
M.S. in Computer Engineering and

Information Sciences
Supervisor: Asst. Prof. Dr. Halil Altay GÜVENİR

June 1989

An important part of an expert system is its knowledge base which con­
tains domain dei^endent knowledge. Knowledge base verification is one of the
important ¡problems of knowledge acquisition. It is the process of checking
that a knowledge base is complete and consistent. An analysis of the rules
can detect many potential problems that may exist in a knowledge base. The
knowledge base may be incomplete, inconsistent, or even partly erroneous.
Those problems unless identified and corrected may cause the inference engine
to produce inconsistent results such as conflicting conclusions and sometimes
to enter infinite loops. In order to be general, rules with certainty factors are
preferred for knowledge representation. This is partly because rules are used
in many applications and certainty factors are necessary when knowledge has
probabilistic characteristics. Our approacli is to develop a knowledge base
verification tool that can be used as a part of a rule-based expert system
shell.

Keywords : expert system, expert system shell, certainty factor, inference
engine, knowledge acquisition, knowledge base, knowledge base verification.

ni

ÖZET

U ZM AN s i s t e m k a b u ğ u n d a BİLGİ TABAN I
DOĞRULANM ASI

Faruk Polat
Bilgisayar Mühendisliği ve Enformatik Bilimleri Yüksek Lisans

Tez Yöneticisi: Yrd. Doç. Dr. Halil Altay GÜVENİR
Haziran 1989

Uzman sistemlerin önemli bir parçası da uygulamaya bağımlı bilgilerin
saklandığı bilgi tabanıdır. Bilgi tabanının doğruluğunun kontrol edilmesi de
bilgi toplama işleminin önemli bir bölümünü oluşturmaktadır. En basit de­
yimiyle bilgi tabanının bütünlük ve tutarlılık içinde olması kontrol edilmesi
işlemidir. Verilen kuralların analizi bilgi tabanında bulunabilecek bir çok ha­
tanın önceden belirlenmesine yardımcı olacaktır. Uzman bilgi tabam eksik,
tutarsız, ve hatta yanlış olabilir. Bu problemler çılcarım makinasının tutarsız
sonuçlar, örneğin çelişkili çılcarımlar, üretmesine ve hatta sonsuz döngülere
girmesine neden olabilmektedir. Bu işlemin genel olması için bilgi kurallar
şeklinde olup, her kural belli bir kesinlik değeri taşıyabilmektedir. Bunun
nedeni ise bir çok uygulamada kurallar kullanılması ve bilginin doğruluğunun
kesin olmayıp belli bir olasılık taşımasıdır. Doğruluk kontrolü sırasında sistem
tarafından türetilen kurallar da gözönüne alınmaktadır. Bizim bu konuya
yaklaşımımız uzman sistem kabuğuna herhangi bir bilgi tabımının doğruluk
kontrolünü yapabilecek bir alt sistem eklemektir.

Anahtar Kelimeler : bilgi tabanı, bilgi tabanı doğrulanması, bilgi toplama,
çıkarım rnakinası, kesinlik değeri, uzman sistem, uzman sistem kabuğu.

IV

ACKNOWLEDGEMENT

I would like to thank my thesis advisor, Asst. Prof. Dr. H. Altay Güvenir
for his guidance and support during the development of this study.

I would also like to thank Prof. Dr. Mehmet Baray, Asst. Prof. Dr.
David Davenport and the research assistant Ahmet Coşar for their valuable
discussions and comments.

TABLE OF CONTENTS

1 INTRODUCTION 1

1.1 Previous W o r k .. 2

2 EXPERT SYSTEMS 4

2.1 Components of an Expert System.. 4

2.1.1 Knowledge base.. 5

2.1.2 Inference E n gin e ... 6

2.1.3 User Interface............................... .̂................................. 7

2.2 Types of Expert Systems .. 8

2.3 Advantages and Limitations of Expert System s..................... 8

3 KNOW LEDGE BASE CONSTRUCTION 10

3.1 Knowledge Acquisition.. 10

3.2 Knowledge Representation.. 13

3.2.1 Semantic Networks... 14

3.2.2 Frames .. 15

3.2.3 Production Rules... 17

3.2.4 Predicate Calculus... 18

vi

4 KNOW LEDGE BASE VERIFICATION TOOL 20

4.1 Knowledge Base Verification... 20

4.1.1 Rules for Knowledge Representation............................ 21

4.1.2 U nification.. 22

4.1.3 Inferred Rules... 26

4.2 The Knowledge Base Problems Detectable by our Tool 30

4.2.1 Redundant R ules... 30

4.2.2 Conflicting R u les... 32

4.2.3 Subsumed R u le s ... 33

4.2.4 Redundant If Conditions... 34

4.2.5 Circular R u le s .. 36

4.2.6 Dead-End R u le s ... 36

4.2.7 Cycles and Contradictions in a R u le 37

4.3 Dependencies Between R u le s .. 38

4.4 Implementation of the Veriflcation T o o l 40

5 CONCLUSION 45

REFERENCES 47

APPENDICES 50

A BNF DESCRIPTION OF RULES AND FACTS 50

B A SAMPLE KNOWLEDGE BASE VERIFICATION 52

vn

LIST OF FIGURES

2.1 Components of an expert system... 5

3.1 Knowledge acquisition in an expert system............. 11

3.2 The stages in the development of a typical expert system. . . 12

3.3 Examples for semantic nets. .. 14

4.1 Data structure of the rules to be used by the algorithm to find
inferred rules... 27

4.2 Rules in the knowledge base after adding the inferred ones. . 30

4.3 Dependencies among rules... 40

vni

1. INTRODUCTION

As a subarea of Artificial Intelligence, expert systems offer a new opportunity
in computing and lead to the development of high-performance programs in
some specialized professional domains and to the use of domain dependent
methods for problem solving [4,13].

One of the important components of an expert system is its knowledge
base which contains domain dejaendent knowledge. The knowledge base con­
tent is built by the process called knowledge acquisition whose purpose is to
extract knowledge from an expert and to transform it into a form that can
be processed by a computer. This iterative process may cause inconsistencies
and gaps in the knowledge base [13,22].

Expert systems are supposed to give its users accurate advice or correct
solutions to the problems. This requii’ement brings the concept of validation
in expert systems. Expert systems are said to be valid if [22]

• Their judgments are free from the contradictions (consistency),

• They can handle any prolilcm within their domains (completeness),

• They can deliver the right answers (soundness),

• The strength of their convictions are commensurate with the data (pre­
cision) and knowledge provided, and

• Finally they can be used with reasonable facility by those for whom
they were designed (usability).

Knowledge base verification, a part of validation process, is one of the
important problems of knowledge acquisition. It is the process of checking
that a knowledge base is complete and consistent. The issue of verification

1

of the knowledge base in expert systems has been largely ignored which led
to experts systems with knowledge base errors and no safety factors for cor­
rectness. The knowledge base may be incomplete, inconsistent, or partly
erroneous. Those problems unless identified and corrected may cause the in­
ference engine to produce inconsistent results such as conflicting conclusions
and sometimes to enter infinite loops [5]. An overall analysis of the rules can
detect many potential problems that may exist in a knowledge base.

The consistency checking means testing to see whether the system pro­
duces similar answers to similar questions. This is necessary because an
expert system’s conclusions must not vary according to some circumstances
unless one of its components, knowledge base content or iixference mechanism
has been changed. It includes the checking for discrepancies, ambiguities, and
redundancies in the rules of the knowledge base.

Completeness means that a knowledge base is prepared to answer all pos­
sible situations that could arise within its domain. The purpose of complete­
ness checking is to find the knowledge gaps, in other words missing rules
[18,19,20,23].

In our study, the aim is to develop a knowledge base verification tool
that can be used as a part of a rule-based expert system shell. Rules with
certainty factors are preferred for knowledge representation. This is partly
because rules are suitable for use in many applications and certainty factors
are necessary when knowledge has probabilistic characteristics. In that case,
a threshold which may be set depending on the application is used as a
limiting criteria during verification.

1.1 Previous Work

There have been studies on the verification of knowledge base in expert sys­
tems previously. In the context of MYCIN [4], an infectious disease consulta­
tion system, TEIRESIAS program was developed to automate the knowledge
base debugging process [19]. It did not check the rules as they were initially
entered into knowledge base. Rather, it assumed the knowledge transfer
occurred in the setting of a problem solving session. In other words, TEIRE­
SIAS allows an expert to judge whether or not MYCIN’s diagnosis is correct,
to track down the errors in the knowledge base that led to inconsistent con­
clusions, and to alter, delete, or add rules in the order to fix these errors.

Suwa, Scott and ShortlifFe [23] wrote a program for verifying consistency
and completeness for use with ONCOCIN, a rule-based system for clinical
oncology. ONCOCIN requires each pariimeter to be designated with a context
initially. It determines completeness and missing rules through combinatorial
enumeration. If all context are complete, then the overall knowledge base
is complete. ONCOCIN uses both data-driven and goal-driven inferencing.
Although, the rule checker is written for use with ONCOCIN system, its
design is general so that it can be adapted to other rule-based systems. It
first considers rules related by “context,” second within context, creating a
table displaying all possible combinations for condition parameters; and third
displaying a table with conflicts, redundancies, subsumptions and missing
rules.

Nguyen, Perkins [19] developed a knowledge base verification tool, CHECK
which works with Lockheed Expert System (LES). CHECK assumes that
rules are naturally separated by sul ĵcct categories, a group of related rules
kept together for documentation. CHECK combines logical principles as well
as specific information about the knowledge representation formalism of LES.
It checks the rules against all others in the same subject category and all oth­
ers have the same goal for consistency and completeness. This check is done
by enumeration.

Expert System Checker (ESC) [5], written by Cragun, is a decision-table
based checker for rule-based expert systems. ESC first constructs a master
decision table for the entire knowledge base, then automatically splits it into
subtables, checks each subtable for completeness and consistency and reports
any missing rules. It uses numerical checking methods facilitated by decision
tables to si êed completeness checking within context.

2. EXPERT SYSTEMS

An expert system is a knowledge-intensive program that emulates expert
thought to solve significant problems in a particular domain of expertise.
Expertise consists of knowledge about a particular domain, understanding of
domain problems and skills at solving some of these problems [22,25].

Expert systems differ from the broad class of AI in several respects. First,
they perforin difficult tasks at expert levels of performance. Second, they
emphasize domain specific problem solving strategies over the more general
weaker models of AI. Third, they employ self-knowledge to reason about their
own inference processes and provide explanations or justifications for conclu­
sions reached [13]. Furthermore, they can say something about reliability.

Expert systems are also different from the conventional software programs.
They handle the problems requiring human expertise by using domain de­
pendent knowledge and reasoning techniques. In other words, they attempt
to use not only the computational power of the computer, but also typical
human reasoning techniques such as rules of thumb and shortcuts to solve
problems [25].

2.1 Components of an Expert System

Expert systems have three basic components (Fig. 2.1):

1. Knowledge base

2. Inference engine

3. User interface

USER

Figure 2.1: Components of an expert system.

An expert system resembles a conventional software program in its struc­
ture. The knowledge base of an expert system that contains facts and rela­
tionships between them matches the program code (written in a high-level
programming language) of a software program. In the same way, inference
engine in an expert system which executes the statements in the knowledge
base by using its control and reasoning mechanisms matches the interpreter,
or compiler in a software program [7,8,14].

2.1.1 Knowledge base

The knowledge base contains all the information necessary for solving prob­
lems on any chosen domain. This information which is specific to the par­
ticular application holds the domain facts and heuristics representing hu­
man expert domain knowledge. Facts encompass the given and unchanging
knowledge about the problem and domain. They actually represent data and
formulas related to an application. Heuristics are the representation of the

data of the problem and domain. Production rules, the basis of most expert
systems, are commonly used to denote the expert knowledge [25]. Knowledge
content is built by the process called knowledge acquisition whose purpose is
to extract, to render, and to record the knowledge in a symbolic form.

Uncertainty

Knowledge obtained from human experts is sometimes uncertain. Facts and
rules can be described as “maybe,” “sometimes,” “often,” etc. Further, ex­
pert systems, like human experts, may have to draw inferences based on
incomplete, unavailable, unknown, or uncertain knowledge. Uncertainty can
be represented by the use of probability judgment such as classical and sub­
jective probability techniques, Bayes’ rule, and sometimes statistics. The
issues of certainty factors and fuzzy logic have been used in many expert
systems to represent uncertain knowledge [24].

2.1.2 Inference Engine

It contains the processes that work on the knowledge base, do analyses, form
hypotheses, and audit the process according to some strategy that emulates
the expert’s reasoning. The inference process actually involves several differ­
ent processes that must work together these CcUi be grouped as:

• Rule Retrieval: Identification of the rule as relevant to the conditions
of the problem situation. ^

• Conflict Resolution: Resolving the conflict among competing rules, the
result being the selection of one rule.

• Execution: Reaching the conclusion implied by the premise part of the
rule that had been selected.

The inference engine takes new information, combines it with the knowl­
edge base, and proceeds to solve the problem in working memory using its
established reasoning and search strategies [16,25].

There are two major recisoning strategies, namely forward and backward
chaining to control the infcrencing process of the expert systems.

6

Forward Chaining

The system begins with a set of facts and proceeds to search for a rule whose
premise is verified by those facts. The new facts are then added to the working
memory and process continues until the requested conclusion is reached, or
no applicable rules cxre left. Since it starts with what is known, with facts,
it is sometimes called data-driven (antecedent) reasoning. With this kind of
reasoning, we talk about what we can conclude from the given data.

Backward Chaining

It is a goal directed search that starts at the goal state and proceeds backward
towards the initial conditions. The task is to see whether the necessary and
sufficient antecedents that satisfy the goal exist in the domain by applying
inverse operations. When there are no rules to establish the current goal (or
subgoal) the program asks the user for necessary facts and enters them into
the knowledge base. Since it selects a goal and scans the rules backward to
achieve that goal, it is sometimes called goal-driven (consequent) reasoning.
Here we try to answer whether it is possible to prove the hypothesis from the
given data [14,22,25].

2.1.3 User Interface

It provides the communication between the expert system and the user. Cur­
rent expert .systems may be equipped with templates (menus), or natural
language to facilitate their use, and an exphmation module to allow the user
to challenge and examine the reasoning process underlying the system’s an­
swer. A natural language interface allows computer systems to accept inputs
and produces outputs in a language close to a conventional language such as
English.

The interface is at botli the front and end of the development process. In­
terfaces to expert systems arc usually done in two ways: development engine
and the end interface. By using the development engine, knowledge engineer
or the expert can construct, maintain and debug the expert system through
an editor, monitor, or vtilidator. The end interface provides communication
with the user after the expert system has been constructed.

2.2 Typ es of Expert Systems

Expert Systems are not general because they utilize domain-dependent knowl­
edge for their applications. According to their application areas, they can be
grouped into the following categories [13].

• Predicting
Inferring likely consequences of given situations (e.g., PLAND/CD is
used for predicting crop damage, developed by University of Illinois)

• Diagnosing
Inferring system malfunctions from observed data (e.g., MYCIN is used
for diagnosing infectious disease, developed by Stanford University)

• Designing
Configuring objects under constraints (e.g., XCON is used for config­
uring computer systems, developed by DEC & Carnegie-Melon Univer­
sity)

• Planning
Designing actions (e.g., TATR is used to plan bombing mission)

• Monitoring
Comparing observations to plan vulnerabilities (e.g., REACTOR is de­
veloped for monitoring nuclear reactors)

• Testing and Debugging
Identifying reasons for malfunctions (e.g., developed by Texas Instru­
ments to test electronic circuit boards)

• Interpretation
Inferring situation description from sensor data (e.g., PROSPECTOR
developed for interpreting geological structures)

• Controlling
Interpreting, predicting, repairing, and monitoring system behavior
(e.g., VM is developed by Stanford University to control the treatment
of patieiats in intensive care)

2.3 Advantages and Limitations of Expert Systems

There are some limitations of expert systems [6,11]:

8

• Domains of expert systems are narrow. Because building and maintain­
ing a large knowledge base is difficult, only a few expert systems cover
a significant range of knowledge.

• Certain knowledge can be quite difficult to represent efficiently if the
knowledge lacks immediate if-then consequences. Knowledge represen­
tation techniques may sometimes limit the user in describing facts and
relationships.

• The necessity for users to descrilie their problems in a strictly definite
formal language is also a limitation.

• Most of the expert systems do not have a knowledge acquisition tool
to allow the domain expert to describe his knowledge and update the
knowledge directly. Instead, a knowledge engineer must successfully
take the knowledge from the domain expert and operate the system.

• Due to the characteristics of knowledge, reasoning qualitatively and
reasoning causally are both important in human reasoning, but it is
difficult with expert systems to capture.

• The representation and utilization problem of inexact knowledge is also
a major limitation.

The advantages of expert systems come from the separation of the expert
knowledge from the general reasoning mechanism and the partitioning of
general knowledge into separate rules. Some of the advantages of expert
systems are given below [0,8]:

• The iibility for the developers to refine old rules and add new ones
during the incremental development of the knowledge base.

• By changing set of rules the same general system can be used for variety
of applications.

• By changing the reasoning mechanism the same knowledge can be put
to use in different ways.

• The ability of explaining its reasoning through rules to the users.

3. KNOWLEDGE BASE CONSTRUCTION

An expert’s knowledge must undergo a number of transformations before it
can be used by a computer. First, expertise in some domain through study,
research cind experience must be acquired. Next, the expert attempts to
formalize this expertise and expresses it in the internal representation of an
expert system. Finally, knowledge is entered to the computer.

3.1 Knowledge Acquisition

Knowledge acquisition is defined as the process of extracting, structuring,
and organizing knowledge from several sources, usually human experts, so
that it can be used in a program. This process (Fig. 3.1) is difficult and takes
long time because knowledge in the real word is expressed in a different form
than that required by the machine [9,12].

Knowledge acquisition is a bottleneck in the development of expert sys­
tems; it typically involves months or years of discussion between domain
expert and knowledge engineer. During the extraction and translation of
the expert’s knowledge, there must be feedback from domain expert, and the
knowledge engineer repeatedly refining the system until it achieves something
close to expert’s level of performance in problem solving [2,17].

Knowledge for an expert system can be acquired in several ways, all of
which involve transferring the expertise needed for high performance problem
solving in a domain from a source program. The source is generally a human
expert but could also be the empirical data, case studies, or other sources
from which a human expert’s own knowledge has been acquired [3]. There
are five major classes of techniques to acquire knowledge from the domain
expert [25]. These are:

10

Data, Text, etc.

Figure 3.1: Knowledge acquisition in an expert system.

• Interviews,

• Protocols,

• Walkthroughs,

• Questionnaires,

• Expert Reports, and

• Induction.

Knowledge acquisition is carried out through several steps (Fig. 3.2):

• Identification Stage
This stage characterizes the important aspects of the problem by iden­
tifying the participants, the range of the problems the system must
handle, the characteristics of the domain, the bounds of the domain
and the user expectations. It also identifies the goals or objectives of
building the expert system in the course of identifying the problem.

• Conceptualization Stage
The key concepts and relations are made explicit dm-ing this stage.
Once the key concepts and relations are written down, much can be

11

Reformulation

IDENTIFICATION CONCEPTUALIZATION FORMALIZATION IMPLEMENTATION TESTING

Figure 3.2: The stages in the development of a typical expert system.

gained from formalizing them and working towards an initial imple­
mentation.

• Formalization Stage
At this stage, the key concepts, subproblepis, and information flow
characteristics isolated during conceptualization are mapped into more
formal representations. The result of formalizing the conceptual in­
formation flow and subproblem elements is a partial specification for
building a prototype knowledge base.

• Implementation Stage
The formalized knowledge is mapped into the representational frame­
work associated with the tool chosen for the problem. A useful represen­
tation for the knowledge is chosen and a prototype system is developed
using it.

• Testing Stage
The prototype system is tested with a variety of examples to determine
weaknesses in the knowledge base and inference structure [3].

A number of tools have been developed to ease the knowledge acquisition
process. By using these tools, the expert interacts with the computer directly
to define the knowledge base and control strategies minimizing the interme­
diate step of interacting with the knowledge engineer. These tools acquire

12

knowledge directly from the expert in two ways:

• Induction by Example
Rules are logically induced from the solutions to examples px-ovided by
the domiiin expert.

• Knowledge Elicitation
The tool interacts with the domain expert to elicit and structure the
knowledge base without induction [25].

Various methods and tools, from structured human interviewing tech­
niques to knowledge base editing tools, have been developed to facilitate the
task of knowledge acquisition. The variety of methods in existence reflects
the fact that knowledge acquisition is a multi-dimensional process; it can oc­
cur at different stages in the development of an expert .system, and involve
many types of knowledge [2].

3.2 Knowledge Representation

Knowledge Representation models describe the various architectures used to
represent the expert’s knowledge in an organized and consistent manner [25].
The representation of knowledge is a coml:>ination of data structures and
interpretive procedures that, if used iix the right way in a program, will lead

'I
to knowledgeable behavior. Work on knowledge representation in Artificial
Intelligence has evolved the design of several classes of data structures for
storing information in computer programs, and development of procedures
that allow iixtelligent manipuhvtion of these data structures to make infei-ences
[1,15,17].

Techniques used for knowledge repi’esentation have uixdergone rapid change
and development in recent years. There are several techixiques for knowledge
representation. Four frequently used techniques are:

• Semantic Networks

• Frames

• Production Rules

• Predicate Calculus

13

(A) (B)

Figure 3.3: Examples for semantic nets.

Depending on the application of the expert systems, each knowledge rep­
resentation model has its advantages and disadvantages. The selection of
the most suitable technique in an expert system application depends on two
major criteria:

• Domain of the problem

• Selection of the inference mechanism.

3.2.1 Semantic Networks

Although Semantic Networks, sometimes called Semantic Nets, are the most
general representational structures and the basis for other knowledge repre­
sentations, they are not directly used to model the knowledge. This is because
they do not have formal definitive structural rules.

A semantic net consists of nodes and links between the nodes. Nodes are
shown graphically by dots, circles, or boxes. They represent objects, concepts,
and events in the domain. Links, or arcs, represent the relationships between
the nodes and are shown graphically with arrows.

Consider, for example, the simple nets in Fig. 3.3. BIRD and WINGS are
nodes representing sets or concepts, and HAS-PART is the name of the link
specifying their possible relationship. Among the many possible interpreta­
tions of this net fragment is the statement “All birds have wings.”

Some advantages of semantic nets:

14

• This representation scheme is flexible. In other words, it is easy to add,
delete, or modify nodes and arcs when necessary.

• The other advantage of semantic net representation is that important
associations can be made explicitly and succinctly; relevant facts about
an object or concept can be inferred from the nodes to which they are
directly linked, without a search through a large database.

The semantic net representation provides the ability to inherit relation­
ships from other nodes. Two kinds of inheritances are possible:

• Inheritance hierarchies where the relationship can be determined by
tracing through several arcs.

• Property inheritance that describes the representation of knowledge
about properties (attributes) of objects (commonly represented by
IS-A arc).

As an example of the first type of inheritance, consider the example in
Fig. 3.3. It does not only represent the two facts initially intended, but a
third fact, “Pilot is a person” simply by following the IS-A links: “Pilot is
an employee,” “An employee is a person” so “Pilot is a person.”

Disadvantages of the semantic nets:

• No formal representation structure

• Difficulties in distinguishing an individual inheritance and a class in­
heritance

3.2.2 Frames

A frame is a data structuie that includes declarative and procedural informa­
tion in predefined interniil relations and consists of a collection of slots that
contains attributes to describe an object, a class of objects, an action, or an
event [25].

They provide a structure in which new data is interpreted in terms of
concepts acquired through previous experience. This organization facilitates
expectation driven processing, looking at things on the context one thinks in.

15

One of the characteristics of frame-based processing is its ability to deter­
mine whether it is applicable in a given situation. The idea is that a likely
frame is selected to aid in the process of understanding the current situation
and this frame in turn tries to match itself to the data it discovers. If it finds
that it is not applicable, it could transfer control to a more appropriate frame
[1]·

Consider, as an example, the following frame:

DOG Prsune
Self : an ANIMAL ; a PET
Breed :
Owner : a PERSON

(If-Needed : find a PERSON
with pet = myself)

Name : a PROPER NAME (DEFAULT = Rover)

DOG-NEXT-DOOR Frame
Self : a DOG
Breed : mutt
Owner : Jimmy
Ncime : Fido

“Self” slot is used to establish a property inheritance hierarchy among
the frames, which allows information about the parent frame to be inherited
by its children. Slots can have of their own. “If-Needed” slot in the example
contains an attached procedure which can be used to determine the slot’s
value when necessary. The slur “Default” suggests a value for the slot unless
there is contradictory evidence.

The most important advantage of the frames is that they spend less
amount of time for searching specific information, and allows for layers of
abstraction to separate out low-level details from high-level abstracts.

16

3.2.3 Production Rules

Production Rules, which are also called rules, are conditional descriptions
of given situations or context of a problem. There are two types of rule
constructs, if-then and if-then-else constructs:

• if premise(s) then action(s)

• premise(s) then action(s) else action(s)

The if-then construct is the most frequently used representation model.
The premise part of the rule, called the condition part, states that the con­
ditions that must occur for the production to be applicable and the action
part is the appropriate action to take. Premise part of the rule is evaluated
with reference to the knowledge base, and if succeeds, the action specified by
the action part is performed [4]. Below is an example of a rule in MYCIN:

1) The identity of the organism is not known
with certainty, and

2) The stain of the organism is grammef, and
3) The morphology of the organism is rod, and
4) The aerobicity of the organism is aerobic

then ^
There is strongly suggestive evidence (.8) that
the class of the organism

Uniformity and modularity are two important advantages of the rule-
based systems. They are uniform because it is possible to add, delete, or
change the rules without affecting the other rules. Production rules allow the
user to model his knowledge in the way they think about solving a problem.
They also replicate the reasoning statements used in human-problem solving
task [25].

The organization and accessing of the rule set is also an important issue.
The simple scheme is fixed, total ordering, but elaborations quickly grow
more complex. Conflict resolution is used to select a rule.

The concept of the production rules comes from the production systems,
also known as rule-based systtmis. A production system consists of a rule-
base (a set of rules), a context data structure describing a specific problem

17

area in the knowledge base and an inference mechanism. Production systems
have been found useful as a mechanism for controlling the interaction between
statements of declarative and procedural knowledge. They facilitate human
understanding and modification of systems with large amount of knowledge
[1,4,25].

3.2.4 Predicate Calculus

As an extension of the notions of the propositional calculus, predicate calculus
represent the symbols and their relationships to each other using the truth
and rules of inferences such as Modus Ponen. Instead of looking at sentences
that are of interest merely for their truth values, predicate calculus is u.sed to
represent statements about specific objects, or individuals. These statements
are called predicates.

A predicate has a name and arguments. For example, the predicate
likes(john,kaie) hcis two arguments and states the fact that “John likes Kate.”
Arguments can be constants (what is known), or variables (what is unknown).
Upon application of a set of values on arguments, a predicate returns a value
of either TRUE or FALSE.

Sentential connectives are used to make complex statements (a sequence
of predicates describing a situation). Below are five most commonly used
sentential(logical) connectives:

• anJ, A

• or, V

• not, ~

• implies, —>

• equivalent, =

Truth Table for Predicate Logic

X y X A y X V y X y X X = y
T T T T T F T

T F F T F F F
F T F T T T F

F F F F T T T

18

Combining the predicates with these logical connectives, it is possible to
obtain complex statements. Truth Table for Predicate Logic is given above.
Consider the following example in Predicate Logic:

grandfather(X,Y) equivalent
father(Z,Y) and
father(X,Z)

The statement states that Person X is grand-father of person Y if and only
if Person X is father of person Z and person Z is father of person Y.

The most important characteristic of the predicate C2dculus and related
formal systems is that deductions are guaranteed to be correct to an extend
that other representation schemes have not reached yet and the derivation of
new facts from old can be mechanized. Predicate calculus provides modular­
ity just in case of production rules. Additions, deletions, or modifications of
statements can be made without having to worry about the context in which
they will be used [1,25].

The disadvantage of the predicate logic can be seen when the number of
facts become large. In that case, there is a combinatorial explosion in the
possibilities of which rules to apply to which facts at each step of the proof.

19

4. KNOWLEDGE BASE VERIFICATION
TOOL

4.1 Knowledge Base Verification

As mentioned previously, the expert systems must find correct solutions to
the problems in their domain of expertise. Knowledge Base Verification, a
part of the validation process, includes checking the knowledge base for com­
pleteness and consistency to discover a variety of errors that can arise during
the process of transferring expertise from a human expert to a computer
system [18,19,20].

An expert system cannot be tested, even on simple cases, until much
of knowledgebase is encoded. Regardless of how an expert system is devel­
oped, its developers can profit from a systematic check of the knowledge base
without gathering extensive data for test runs, even before the full reasoning
mechanism is functioning. This purpose can be achieved by developing a
program to check the knowledge base (assuming rules are used for knowledge
representation) for consistency and completeness [18,19,20,23].

• Consistency Checking
Checking whether the system produces similar answers to similar ques­
tions. Inconsistencies in the knowledge base may appear as

— Conflict: two rules succeed in the same situation but with conflict­
ing results.

— Redundancy: two rules succeed in the same situation but with the
same results.

— Subsumption: two rules have the same results, but one contains
additioncil restrictions

20

Completeness Checking
Checking whether the system answers all reasonable situations within
its domain. Whenever such completeness can be obtained, everything
derivable in the domain from the given data will be derived. This can
be achieved by identifying knowledge gaps in the knowledge base.

4.1.1 Rules for Knowledge Representation

During development of expert systems, it is necessary to decide on a knowl­
edge representation scheme that is most suitable to the apjjlication. Since our
aim is to develop a knowledge base verification tool for an expert system shell,
which itself is a tool to develop expert systems, rules with certainty factors
are used for knowledge representation. The basic advantage of the rule-based
representation scheme is the modularity it provides and the simple uniform
interpretive procedure that is often sufficient in rule-based systems. It is also
easy to learn and use. Within the rule-based paradigm, the probabilistic
approach has been commonly used for uncertain knowledge [7].

In our verification tool the knowledge base consists of rules and facts
which are composed of predicates as shown below (See Appendix A).

Rule : "

if predicate.! &
predicate_2 &

predicate.i
then

predicate.j [Certainty.factor] ;

Fact ;

predicate.k [Certainty.factor] ;

Predicate :

predicate.name.1 (arg.l, arg.2, ... ,arg.n)

21

A predicate has a name, and finite number of arguments. Arguments
can be variables, constants, or predicates. In this work, we will represent
variables as .strings that start with capital letters. Pi'edicate names start
with lower case letters. Constants may be of type integer, real, or string.
Certainty factor is a real number between 0 and 1. It denotes the probability
for occurance of some events. The symbol denotes the “logical and”
operation. Below is an example of a fact in our system.

e.g.

temperature (john.walker,high) [1.0] ;

The above fact, “temperature,” has two arguments, “john_walker” and “high.”
It states that temperature of the patient “john.walker” is high with certainty
1.0, that is it is certain that he has high temperature. As an example of a
rule in our system, consider the following example:

e.g.

If temperature (Person,normal) &
state (Person,in_severe_pain)

then
ailment (Person,shingles) [0.75] ;

wheie “Person” is a variable, “normal,” “in.severe_pain” and “shingles”
are constants, “temperature,” “state” and “ailment” are predicate names and
0.75 is the certainty factor associated with this rule. It states that whenever
the first and second predicates in the action part hold with certainty 1.0, the
predicate in the action part is asserted with certainty 0.75. In other words,
if there is a person whose temperature is normal and is in the state of severe
pain then it can be concluded with this rule that his ailment is shingles. If
the predicates in the premise part of the rule hold with certainties 0.3 and
0.8 respectively and minimum certainty among the premises is chosen, then
the certainty of the conclusion will be 0.3 * 0.75.

4.1.2 Unification

During verification process, predicates are compared to each other to de­
termine the relationship between them. Rules in the knowledge base may

22

be interrelated, if they have common predicates. These common predicates
rnay/may not be equivalent. For deciding equivalence of these common pred­
icates, unification is used.

Unification is defined as finding substitutions of terms for variables to
make expressions, in our case predicates, identical. There are some rules for
substitution. A variable can be replaced with a constant (this is called in­
stantiation), with a variable, or with an expression (as long as that expression
does not contain the original variable). Two clauses are said to be unifiable,
if a substitution that resolves them can be found.

In our ap2:>lication, we use a simple unification algorithm that unifies vari­
ables with variables, or constants only. Below are some examples of predicates
to be unified.

predicate-1 predicate-2 unifier unifiable

temperature (X,Y) temperature (A,B) {A /X , B /Y } Yes
temperature (john,high) temperature (John,low) {} No
temperature (X,high) temperature (Y,high) (Y /X) Yes
temperatm-e (john,Y) temperature (X,high) {high/Y,john/X} Yes
prel (X,pre2 (Y,X),12) prel (Z,pre2 (A,2),12) {2 /X ,A /Y ,2 /Z) Yes
prel (X,pre2 (a,Y),10) prel (b,pre2 (b,Z),10) « No 1

Conjunctions of jDredicates are also needed to be compared to decide
whether one is superset or subset of the other, or they are equivalent. Order
of the predicates in the conjunctions may be different. There might be some
restrictions imposed by a substitution list. The part of the tool to find rela­
tionships between two conjunctions of predicates utilizes the unification and
takes care of the restriction imiDOsed with a substitution list.

For example, consider the following cases:

exajnple-1 :
predicatel (X,20) & predicate2 (X)
predicatel (janet,20) & predicate2 (Janet)

example-2 :
predicatel (X,20) & predicate2 (X)
predicatel (Y,20) & predicate2 (Y)

23

example_3 :
predicatel (X,20) & predicate2 (X)
predicate2 (Y) & predicatel (Y,20)

example_4 :
predicatel (X,20) & predicate2 (Y)
predicate2 (Z) & predicatel (T,20)

Consider the first example. Suppose that there is no restriction given by
a substitution list. That is, the variable X in the first conjunction had not
been instantiated previously. It is easily seen that if variable X takes the
value “Janet” then these two conjunctions are equivalent. However we can
not be sure whether the iiuference engine will instantiate the variable X to
constant “Janet,” or not.

In the second example, the system's judgment about the equivalence of the
conjunctions is definite. Because the variable X can be unified with variable
Y assuming both of them are uninstantiated before the matching begins. In
the third example, the conjunctions are not definitely equivalent because the
order of predicates is different and the constants that will be provided by the
inference for variables X and Y can not be equai every time.

Consider the fourth example. Although the order of predicates is different
the system’s conclusion about the equivalence of the conjunctions is however
definite assuming the variables X, Y in the first conjunction and variables Z,
T in the second conjunction are uninstantiated before matching begins.

In order to see why the tool cannot be sure about its decision on the
equivalence of two conjunctions of predicates, consider the following two dif­
ferent sets of facts in typical sample knowledge bases. Note that the inference
engine matches the predicates with the facts in the knowledge base from top
to bottom.

Facts in the first sample knowledge base :

predicatel(j anet,20) [1 .0]
predicate2(janet) [1 .0]
predicatel(j ohn,20) [1..0]
predicate2(j ohn) Cl..0]

24

The relationships between the conjunctions taking into account the above
facts:

Example No Conjunction-1 Conjunction-2 Equivalent
example-1 X=janet - Yes
example-2 X=janet Y=janet Yes
example-3 X=janet Y=janet Yes
example-4 X=janet,Y =janet T=janet,Z=janet Yes

Facts in the second sajnple knowledge base

predicatel(john,20) [1.0]
predicatel(janet,20) [1.0]
predicate2(janet) [1.0]
predicate2(john) [1.0]

The relationships between the conjunctions taking into account the above
new facts:

Example No Conjunction-1 Conjunction-2 Equivalent

example-1 X=john - No
example-2 X=john Y =john Yes
example-3 X=john Y=janpt No
example-4 X=john, Y =janet T=john,Z=janet Yes

Our tool assumes that the inference engine uses backward chaining. There­
fore, a rule to be fired is considered to be matched starting from its conse­
quent. The px’edicate in the consequent can be asserted if and only if the
predicates in the antecedent can be satisfied starting from the leftmost pred­
icate to the rightmost one. Consider the following rule:

if appearance (Patient,blistery_spots) &
temperature (Patient.feverish)

then
ailment (Patient, chickenpox) [l.O] ;

if our goal is to ask whether ailment of ¡jatient “john” is chickenpox (i.e.,
Goal: ailment (john,chickcnpox)) the inference engine will match the con­
sequent of the rule first instantiating the variable “Patient” to the constant

25

“john.” It then tries to satisfy whether appearance of patient “John” is blis-
tery spots (i.e., Sub-goal: appearance (john,blistery_spots)) If this succeeds
then it tries to satisfy whether the temperature of patient “john” is feverish
(i.e., Sub-goal: temperature (john,feverish)). If this also succeeds then the
inference engine will be able to assert that the ailment of patient “john” is
chickenpox.

4.1.3 Inferred Rules

Before going into the details of the work, it is necessary to find out those
rules which are inferred by the knowledge base. This can be done by finding
transitive closure of the rules in the knowledge base. However, every inferred
rule may not be valid, because its certainty may be under the threshold.
Finding the inferred rules is necessary because an inferred rule may contradict
to another, or may cause circular chains.

For example, given the set of rules as follows:

R1 : If prel (X,john) then pre2 (X,2) [0.8]
R2 : if pre2 (Y,2) then pre3 (Z,Y) [1.0]
R3 : If pre3 (A,B) then pre4 (B,C) ̂ [0.7]
R4 : If prel (V,john) then ~pre4 (V,Z) [0.5]

In the example the symbol ~ is used to denote “logical not.” By using
transitivity property, it is possible to infer the following rules (after unifying
necessary predicates and applying unification list on the rest of predicates in
the rules and assuming Threshold = 0.1):

Inferred Rules Source Rules
R ll if prel (X,john) then pre3 (Z,X) [0.8] ; R l, R2
R22 if pre2 (Y,2) then pre4 (Y,C) [0.7] ; R2, R3
R33 if prel (X,john) then pre4 (X,C) [0.56] ; R l, R2, R3

The certainty factors for inf<‘rred rules are calculated by multiplying the
certainties of their source rules. For example, the certatinty factor of rule
R33, 0.56, is obtained by multiplying the certainty factors of rules R l, R2
and R3, 0.8, 1.0 and 0.7 respectively.

There seems to be nothing wrong with the original set of rules if inferred

26

Figure 4.1: Data structure of the rules to be used by the algorithm to find
inferred rules.

rules are not taken into consideration. However, it is clear that rule R4 and
the inferred rule R33 conflict with each other.

In the example given above, it is seen that inferred rules may sometimes
cause inconsistencies during the execution of the system. In order to ease the
process of finding inferred rules, the tool converts the rules that are related
to each other into a data structure that can be manipulated efficiently.

Consider the following related rules in a typical knowledge base:

R1 : if prel
R2 : if prel
R3 : if pre2
R4 : if pre4

(X) then pre2 (X,a) [0.8]
(Y) then pre3 (b,Y) [0.6]
(Z,a) then pre4 (Z,Z) [0.6]

The converted data structure is shown in Fig. 4.1. The leftmost boxes,
called “nodes” in the algorithm, represent the premise parts of the rules.
Boxes next to these “nodes” are called “cells” and show the alternative actions
to take. Each “node” and “cell” pair denotes a rule. A “node” contains a
predicate, a pointer to the next “node” which is called “row” in the algorithm,
a pointer to its first alternative action (i.e., “cell”) which is called “col” in

27

the algorithm and a flag to keep whether the closure for this “node” has been
found, or not. A “cell” contains a predicate, a pointer to the next alternative
action (i.e., “cell”) and a certainty factor.

Below is the algorithm used to find inferred rules using the previously
constructed data structure:

procedure find_inferred_rules(<head>)
begin
Initialize <node> to <head>
while <node> is not equal to NIL do

begin
Insert <node> to the list of nodes pointed
by <list_of_nodes>

if closure of <node> had not been found then
append_closure_of_node(<node>.col, <list_of_nodes>)

Mark that the closure of node pointed by
<node> has been found

Get next <node>
end

end

procedure append_closure_of_node(<cell>, <list_of_nodes>)
begin

while <cell> is not equal to NIL do
begin
add_cell_to_front_nodes(<cell>,<list_of_nodes>)
Assign the pointer of the node which has the same

predicate cell pointed by <cell> to <node>
if <node> is not equal to NIL and

<node>.col is not equal to NIL then
if the closure of <node> had been found then

begin
Initialize <new_cell> to <node>.col
While <new_cell> is not equal to NIL do
begin
Append <node> to the list of the pointers

of nodes pointed by <list_of_nodes>
add_cell_to_front_of_nodes(<new_cell>, <list_of_nodes>)

28

Delete <node> from the list of the pointers
of nodes pointed by <list_of_nodes>

get new <new_cell>
end

end
else
begin

Append <node> to the list of the pointers
of nodes pointed by <list_of_nodes>

append_closure_of_node(<node>.col, <list_of_nodes>)
Delete <node> from the list of the pointers

of nodes pointed by <list_of_nodes>
Mark that the closure of node pointed by <node>

has been found
end

Get next <cell>
end

end

add_cell_to_front_of_nodes(<cell>,<list_of_nodes>)
begin

Add the cell pointed by <cell> to the front
of cells of nodes in the list pointed
by <list_of_nodes> if certainty is greater
than the threshold (after unifying the
predicates, unification list is applied on
the predicate to be added. Variable neimes
are created when variable najne conflict arises.)

end

The above algorithm takes each node in turn to find its closure. If the
closure of a node had been found previously, the next node is considered. The
node taken is put into a node list (initially empty) which is used to keep the
nodes for which the new inferred cells are to be appended. Then, each cell of
that node is checked whether a node equivalent to it exists, or not. If a cell
matches a node and the closure of that node had been found previously, then
all cells of that new node are appended to the front of the nodes in the node
list. If the closui'e of that new node had not been found, finding its closure
becomes a new subproblem. In the same way, the new node is added to the
node list and then its cells are checked whether tliey match some nodes,or

29

Figure 4.2: Rules in the knowledge base after adding the inferred ones.

not. This processes is repeated recursively. During the recursion, whenever
the closure of a node is found (i.e., all the cells of that node is processed), it
is extracted from the node list.

After executing the part of the tool to find the closure of the rules for
above example, by using previously defined algorithm, the rules (including
the inferred ones) in the knowledge base is shown in the Fig. 4.2.

4.2 The Knowledge Base Problems Detectable by our
Tool

After finding and appending the inferred rules to the knowledge base, rules are
checked against two requirements: consistency and completeness. Our tool
is designed to identify knowledge base problems by performing an analysis of
goal-driven rules.

In the following sections, potential problems that may occur in a knowl­
edge base are defined and the ways our tool identifies these problems are
explained in details.

30

4.2.1 Redundant Rules

Redundant rules are the ones that succeed in the same situation and have the
same result. In other words, when the antecedents (if parts) of two rules are
equivalent, their consequents (then parts) are also equivalent. Equivalence
of two if parts holds when they can be unified and there are equal number
of predicates in each part. Equivalence of two consequents holds if they are
unifiable (Then parts of all rules have single predicate in this implementa­
tion).

For example consider the following two rules:

Rule 1 : if predicatel (X,Y) &
predicate2 (Z,john)

then
predicates (X,Z) [0.6] ;

Rule 2 : if predicate2 (A,John) &
predicatel (C,D)

then
predicates (C,A) [0.6] ;

The above two rules are redundant no matter which inference mechanism
(backward or forward chaining) is used. Because there is an equal number
of predicates in the antecedents of two rules and they are unifiable with
substitutions { С /Х , D /Y , A /Z } to the first rule.

Consider the following rules for redundancy:

Rule 1 : if predicatel (X,5) &
predicate2 (X,Y)

then
predicates (john.Y) [0.2] ;

Rule 2 : if predicatel (A,5) &
predicate2 (B,Z)

then
predicates (john,Z) [0.2] ;

31

In the above example, rules may be redundant. The reason for this un­
certainty comes from the fact that the values that will be provided for the
variable X in the first rule and the variable B in the second rule may not
be same. In other words, the facts that the inference engine provide for the
satisfactions of the second predicates of the rules may not be the same.

In many cases redundancies may cause serious problems. They might
cause the same information to be accounted twice, leading to erroneous in­
creases in the weight of their conclusions. Redundancies may not cause prob­
lems in the systems where certainty factors are not involved and the first
successful rule is the one to succeed [18,23]. Note that if two rules are re­
dundant, they are not required to have the same certainty factors. In other
words, rules having different certainty factors may be redundant. This is valid
for conflicting rules, subsumed rules and rules having redundant if conditions
too.

4.2.2 Conflicting Rules

The conflicting rules are the ones that succeed in the same situation and
produce conflicting results. If antecedents of two rules are unifiable and their
consequents conflict with each other, we say that those rules are conflicting.

For example, consider the following two rules:

Rule 1 : if predicatel (X,l) &
predicate2 (Y,Z)

then
predicates (X,Z) [0.5] ;

Rule 2 : if predicate2 (A,B) &
predicatel (Y,l)

then
"predicates (Y,B) [0.5] ;

The above two rules definitely conflict with etich other because two rules
are unifiable and their conclusions are conflicting. Note that although the
order of predicates in the antecedents of the rules are not same there are no
dependencies among pi'edicates due to the instantiations of the variables.

Consider these two rules:

32

then
predicates (Z,Y) [0.5] ;

Rule 2 : if predicate2 (A,B) &
predicatel (A,l)

then
"predicates (A,B) [0.5] ;

The above two rules may conflict with each other, that is we cannot say
that these rules deflnitely conflict with each other, because variables T and Z
in the first rule and variable A in the second rule may not take same values.

Rule 1 : if predicatel (T,l) &
predicate2 (T,Y)

4.2.3 Subsumed Rules

A clause can be defined as an expression of variables and constants. We say
that a clause £-,· subsumes another clause M, if there exists a substitution s,
such that the clause Li after applying substitution s, is a subset of the clause
Mi [21]. Subsumption of rules occurs when two rules have the same results,
but one contains at least one additional constraint on the situation in which
it will succeed. When the more restrictive rule succeeds, the less restrictive
one will also succeed which is a redundancy.

In our system, this is defined as follows: if consequents of two rules are
equivalent, and antecedent of one rule has some additional predicates we
say that the more restrictive rule (the one having more predicates in its
antecedent) is subsumed by the other one.

For example, consider th(‘ following two rules:

Rule 1 : if predicatel (X,computer) &
predicate2 (X,Y)

then
predicates (X,printer) [0.8] ;

Rule 2 : if predicatel (Y,computer)
then

predicates (Y,printer) [0.8] ;

33

Rule 1 is subsumed by Rule 2, because Rule 2 needs less information
to conclude predicates. In other words, when Rule 1 succeeds Rule 2 also
succeeds.

For example, consider the following two rules:

Rule 1 : if predicatel (X,computer) &
predicate2 (Y,cable) &
predicates (printer,Y)

then
predicate4 (Z,X) [0.8] ;

Rule 2 : if predicatel (A,computer)
then

predicates (B,C) [0.8] ;

In the above example the subsumption of the rules is only possible if the
variables A and C in the second rules and variable X in the first rule are
instantiated to the same value.

4.2.4 Redundant If Conditions

Sometimes rules contain unnecessary if conditions which cause the inference
engine to do extra work which does not affect the result if they are extracted
from the rules. Unnecessary if conditions occur when one of the predicates
in the antecedent of one rule conflicts with one of the predicates in the an­
tecedent of the other rule and all the remaining predicates in the antecedents
and consequents of the rules are equivalent. Two types of subsumption can
be identified by our tool.

As an example of the first type, consider the following two rules:

Rule 1 : if predicatel (X,l) & predicate2 (Y,Z)
then predicates (X,Z) [0.6] ;

Rule 2 : if predicatel (A,l) & ~predicate2 (B,C)
then predicates (A,C) [0.6] ;

34

The predicate “i)redicatc2” in the first and second rules is unnecessary
because it cannot affect the conclusions of Rule 1 and Rule 2. In this case,
user may discard the above rules and add the following rule:

Rule N : if predicatel (X,l)
then predicates (X,Z) [0.6] ;

As an example of the second type, consider the following case:

Rule 1 : if predicatel (X) & predicate2 (Y)
then predicates (Z) [0.6] ;

Rule 2 : if "predicatel (A)
then predicates (C) [0.6] ;

It is possible to combine these two rules with “logical oi·” operation after
unification:

Rule X : if "predicatel (X) or
predicatel (X) and predicate2 (Y)

then predicates (Z) [0.6] ;

Using the distribution property in logic, if P, Q, and It are predicates
then P V (Q A R) = (P V Q) A (F V R).

Rule X : if ("predicatel (X) or predicatel (X)) eind
("predicatel (X) or predicate2 (Y))

then predicates (Z) [0.6] ;

This can be further simplified as:

Rule X : if ("predicatel (X) or predicate2 (Y))
then predicates (Z) [0.6] ;

If we separate this rule into two rules, we see that first predicate of Rule
1 is unnecessary:

35

Rule X2 : if "predicatel (X)
then predicates (Z) [0.6] ;

Rule XI : if predicate2 (Y)
then predicates (Z) [0.6] ;

4.2.5 Circular Rules

Some of the rules in the knowledge base may cause infinite loops during the
execution of the expert system. The check against the circularity ensures
that there is no rule such that it recpiires its own action to establish its own
condition, whether directly or through the exercise of other rules.

For example, consider the following two rules:

Rule 1 : if predicatel (Y)
then predicate2 (Y,Z) [0.5] ;

Rule 2 : if predicate2 (X,Y)
then predicates (X) [0.2]

Rule S : if predicates (A)
then predicatel (A) [0.5] ;

The above set of rules would go into an infinite loop if one attempted to
backward chain with a goal matching the action part of any rule.

4.2.6 Dead-End Rules

In backward chaining, the goal(s) must match a fact, or consequent of some
rule in the knowledge base. Otherwise, it is not possible to reach the goal(s).
Suppose that our goal is “predicates (Y,john,1.170).” If there are no facts
to satisfy “predicates (Y,john,170)” and no rules whose action part matches
this predicate, then this goal Ccinnot be scitisfied.

Dead-end rules are the ones whose premise parts cannot match any fact,
or consequents of any rules. Consider the following case:

SC

If there are no facts to match the premise part of Rule 1, “predicatel
(Y),” and consequents of no rules match this predicate, Rule 1 will have no
effect during the execution of the expert system because its conclusion is
unrcachal^le.

Rule 1 : if predicatel (Y)
then predicate2 (Y,computer) [0.5] ;

4.2.7 Cycles and Contradictions in a Rule

A Cycle within a rule can be detected when a predicate occurs in both an­
tecedent and conseciucnt i^arts. Bcdow are two examples to show potential
cycles within a rule. Note that in the first example cycle is unavoidable
whereas in the second example there might be a cycle depending on the val­
ues provided for the variables.

Example-1 :

if predicatel (A,B) & ''
predicate2 (john.D) &
predicates (A,D) &
predicate4 (john.C)

then
predicate2 (john.D) [0.6] ;

Example-2 :

if predicatel (A,B) &
predicate2 (john,C) &
predicates (B,D) &

predicate4 (john,D)
then

predicates (A,D) [0.6] ;

Contradictions in a rule occur when one of the predicates conflicts with
another predicate in the same rule. This may happen in two ways:

37

• Conflicting predicates may be both in the premise part of the rule

Below is an example of this type of contradiction. The first and third
predicate of the rule might contradict with each other. Because the
instantiation of variable Z which is used in the satisfaction of third
predicate is done beforeluind which may not be the same as the instan­
tiation of the variable Y used in first predicate.

Rule 1 : if

then

predicate! (Y) &
predicate2 (Z,Y) &
"predicate! (Z)

predicate4 (Y,Z) [0.5]

• One of the conflicting predicates occurs in the premise part and the
other one in the action part of the rule

Below is an example of this type of contradiction. The first predicate
of the premise part and the action ¡predicate definitely contradict with
each other. Note that some systems may use this kinds of rules in order
to switch from one situation to another.

Rule ! : if

then

predicate! (Y) &
predicateZ (Z,Y) &

predicates (Z)

'predicate! (Y) [0.5] ;

4.3 Dependencies Between Rules

When the rules have some common predicates in their antecedents and conse­
quents they may be natuially interrelated. As a result of these dependencies,
some cycle problems may arise. Detecting this kind of cycles is very difficult
with a static verification tool. These cycles can only be detected during the
execution of the expert system wliich requires dynamic checking. Since the
purpose in our approach is to find the problems in the rule set before the
expert system can be used, not to write a debugger, the tool only give the
possibility of independent cycles that may occur.

Consider the following rules in a rule base:

38

R1 : if predicatel (X.high) &
predicate2 (Y,feverish) &

predicates (38,X,Y)
then

predicates (X,low) [0.7] ;

R2 : if predicates (cold,Z) &

predicatelO (Z,take_asp)
then

predicatel (Z,high) [0.3] ;

R3 : if predicate? (hot,T) &

predicatell (T.high)
then

predicate2 (T,feverish) [0.9] ;

R4 : if predicates (low,20,C) &
predicates (A,low) &

predicate9 (A,B,C)
then ^

predicates (38,B,C) [0.7] ;

In order to show how dependencies cause cycles, suppose that our goal is
to satisfy predicates (X,low) using the above rules (See Fig. 4.3). Since the
inference engine works backward, it will follow the following series of steps:

• Tiy to fire the rule R1 to conclude our goal

— Try to fire the rule R2 to satisfy the first predicate of Rule Rl.
Suppose that first and second pi’edicates in the antecedent of the
rule R2 succeed. Therefore, first predicate of rule R l succeeds.

— Try to fire the rule R3 to satisfy the second predicate of Rule
R l. Suppose that both predicates in the antecedent of rule R3
succeed.Therefore, second predicate of rule R l succeeds.

— Try to fire the rule R4 to satisfy the third predicate of Rule Rl.
Suppose that first predicate in the antecedent of rule R3 succeeds.
Next comes the satisfaction of second predicate of rule R4.

* Try to fire the rule R1 to satisfy the second predicate of rule
R4 which was our initial goal which is a CYCLE.

39

Figure 4.3: Dependencies among rules.

40

4.4 Implementation of the Verification Tool

Our knowledge base verification tool is designed and implemented in UNIX
environment using C language. The tool first takes the rules and facts, and
parses them. It stores all user defined data (variables and constants) in a
symbol table and uses the pointers to that symbol table in order to access data
when necessary. During the execution, only pointers are compared avoiding
long string comparisons. Second, it finds all the inferred rules in order to use
them during the verification process. All facts and rules that have certainty
factors below a predefined threshold are ignored.

Third, relationsliips among rules are found and stored in two different two
dimensional tables. The first table contains the relational information ob­
tained by comparing consequents and then antecedents of the rules pairwise.
The tool starts comparing consequents first, since it assumes that inference
engine uses backward chaining. Comparison is done using unification. The
result of comparing consequents of rules is whether they are same, conflict­
ing, or different. In case they are same or conflicting, a substitution list is
kept. Later, the antecedents of the rules are compared taking into account
the substitution list coming from previous comparison of their consequents.
After this comparison, number of equivalent predicates, number of conflicting
predicates, whether the possible relationship is definite or not, and a substi­
tution list are found. The tool identifies the possible relationship as definite
between rules if

• all variables in the substitution list is unified with variables and

• all variable jjairs in the substitution list are not instantiated until the
predicates they are unified.

Each entry of this tables, Rule-relation[i,j], contains a record keeping the
following information about Rule, and Rule :̂

• Whether the predicates in their consequents are equivalent, conflicting
or different

• Number of equiviilent predicates in their antecedents

• Number of conflicting predicates in their antecedents

• Whether the possible relationship between them is definite, or not.

41

• A substitution list.

The following data structure is used for keeping the relationship between
Rule, and Rulej:

Rule_relation[i,j] :

c o n s e q u e n t _ r e l a t i o n (SAME, CONFLICTING, DIFFERENT)
n o _ o f _ S 2 u n e (i n t e g e r)

n o _ o f „ c o n f l i c t (i n t e g e r)

j u d g m e n t (DEFINITE, MAY.BE)

The second table is iised for finding the potential cycles due to the de­
pendencies among rules. Each entry of this table, If_then[i,j], keeps the infor­
mation whether the consequent of Rule,· occurx'ed in the antecedent of Rulej,
or not. The tool examines each entry of first table, Rule-relation[i,j] ; where
1 ^ ^ i ^ is number of rules, to find redundant rules, conflicting
rules, subsumed rules and rules having redundant if conditions. If the tool
identifies a problem for some Rule, and Rulej, it gives a message related to
that problem as warning if Rule_relation[i,j].judgment = MAY.BE otherwise
as a definite error.

Rule,· and Rulcj are identified as redundant if '·

• Rule_relation[i,j].consequent-relation = SAME and

• Number of predicates in antecedents of Rule,· =
Number of predicates in antecedents of Rule ̂ =
Rule-relation [i ,j]. no-oLsame

Rule,· and Rulej are identified as conflicting if

• Rule-relation[i,j].conseciuent.relation = CONFLICTING and

• Number of predicates in antecedents of Rule,· =
Number of predicates in antecedents of Ruley =
Rule.relation[i ,j]. no.of-same

42

Rule,· and Rulej are identified as subsumed rules if

• Rule-relation [i,j]. consequent-relation = SAME and

• Number of predicates in antecedents of Rule,· ^
Number of predicates in antecedents of Rulej and

• Number of predicates in the antecedent of the rule having less predicates
in its antecedent = Rule-relation[i,j].no-of_same

Rule,· and Rulej are identified as having redundant (first type of redun­
dancy) if conditions if

• Rule-relation[i,j].consequent-relation = SAME and

• Number of predicates in antecedents of Rule,· =
Number of predicates in antecedents of Rulej and

• Rule-relation[i,j].no-of-conflicting = 1 and

• Number of predicates in the antecedent of Rule,· =
Rule-relation[i,j].no-of-same + 1

Rule,· and Rulcj are identified as having redundant (second type of redun­
dancy) if conditions if

• Rule-relation[i,j].consequent-relation = SAME and

• Number of predicates in antecedents of Rule,· = 1 and
Numl:)er of predicates in antecedents of Rulej > 1 or
Number of predicates in antecedents of Rule ̂ = 1 and
Number of predicates in antecedents of Rule, > 1 and

• Rule-relation[i,j].iio-of-conflicting = 1

The checks for circular rules are done during the generation of the inferred
rules. Every time a new inferred rule is produced, it is checked whether the
predicate in its antecedent part is same as the ¡predicate in its consequent
part. If tins happens and the certainty factor of the new rule is above the
threshold, the system detects the circular chain.

In order to find the problems within a rule, each rule is examined in turn.
To detect self cycles within a rule, each predicate in the antecedent part is

43

compared to the predicate in the consequent part. If they are the same, the
cycle is reported. To detect contradiction within a rule the predicates in
the antecedent part are compared to each other and to the predicate in the
consequent part. If the compared predicates are conflicting, the contradiction
is reported. In order to detect whether a rule is a dead-end or not, all the
predicates in the antecedent part are checked whether there exist facts and
rules to match all of them. If this matching does not occur for a predicate,
the rule is identified as dead-end.

In order to detect cycles due to the dependencies among rules, the second
table is used. It contains the relationshi]) between antecedents and conse­
quents of the rule pairs. Using this table, the possible cycles are reported by
listing the sequences of rules causing the cycles.

In a knowledge base verification using our tool, most of the time is spend
to find the inferred rules. The larger the number of interrelated rules (rules
having same antecedents and consequents), the longer it takes to find inferred
rules. During the construction of the relationship tables, eacli rule is com­
pared with others. The time spent on this depends on the average number
of predicates in the antecedents of the rules. The part of the algorithm to
detect problems using previouslj' ̂ constructed tables have complexity O(N^)
where N is the number of rules including the inferred ones.

In order to reach conclusions, the tool takes into account the dependencies
between predicates in a rule, the relationships between rules and the way in
which the unification occurs. For this reason, two types of messages are
generated, the first one being warnings and the second one being errors. The
word “may” is used in the warnings when the tool cannot identify problems
definitely. Dependencies between rules are also found and examined to find
the cycles. Our tool is designed to handle goal-driven (backward chaining)
rules only.

A sample knowledge l)ase verification using our tool is given in the Ap­
pendix B. The input knowledge base contains 29 rules and 12 facts in it.
On successful completion of compilation, the tool generates 19 inferred rules
together with their certainty factors using the original set of rules. In this
example, the threshold is given as 0.0001. The tool ignores all the rules and
facts with certainty factors under the thi'eshold . Later, it finds the rela­
tionships and dependencies among all rules (including the inferred ones) and
then reports all potential prolilems that exist in the knowledge base, such as
redundant rules, conflicting rules, etc.

44

5. CONCLUSION

The verification of knowledge base l^ecoines increasingly important as expert
systems become more frequently used and their conclusions become more
trusted. During the construction of knowledge bases in expert systems, many
changes and additions to the rule set occur. In order to help knowledge
engineers to develop expert systems rapidly and accurately, problems in the
knowledge bases must be identified and corrected. This is because expert
system’s users expect answers to be unfailingly consistent and correct.

In this study, a knowledge base verification tool is developed to be used as
a part of an expert system shell which supports rules with certainty factors
as the knowledge representation scheme and backward chaining as inference
mechanism. The verification tool identifies problems in a knowledge base
taking into account the inferred rules as well. It checks the knowledge bases
against two requirements, consistency and completeness, identifying redun­
dant rules, conflicting rules, subsumed rules, rules having unnecessary if con­
ditions, circular rules, cycles and contradictions within rules and the possible
potential cycles due to the dependencies among rules.

Our tool can be used to detect many potential problems and gaps in
the knowledge base helping knowledge engineer in the development of an
expert system rapidly and accurately. Two important characteristics of our
tool which do not exist in many knowledge base verification tools, such as
CHECK [19] and ESC [5], are

• the generation of inferred rules and the inclusion of them in the knowl­
edge base verification process and

• the use of certainty fa<rtors to model uncertain knowledge.

Finding and considering inferred rules in the verification process is nec­
essary, since an inferred ride could cause serious problems. For exam2:>le, it

45

may contradict to another rule in the knowledge base. The certainty factors
are used for representing uncertain knowledge, because some expert system
applications need to handle knowledge having probabilistic characteristics.

As a further research, soundness, precision and usability requirements for
validation of expert systems bases [22] may be carried out. These are neces­
sary because the expert system must produce right conclusions (soundness)
and present this conclusion with a certainty ai^propriate to what is given (pre­
cision) and the interaction between the user and the expert system should
proceed as intended by the designer (usability).

46

REFERENCES

[1] Barr, A., Davidson, J.,“Representation of Knowledge,” Technical Report
STAN-CS-80-793, Stanford Universty, 1980.

[2] Becker S., Selman B., “An Overview of Knowledge Acquisition Methods
for Expert Systems,” Technical Report CSRI-1S4, 1986.

[3] Buchanan, B.G, et al, “Constructing an Expert System,” Building Ex­
pert Systems, F. Hayes-Roth, D. A. Waterman, D. B. Lenat, Addison-
Wesley Inc., Massachusetts, pp 3-29, 1983.

[4] Buchanan, B. G., Shortliffe E. H., Rule-Based Expert Systems, Addison-
Wesley Inc., Massachusetts, 1985.

[5] Cragun, B., Steudel, H. J., “A Decision-Table-Based Processor for
Checking Completeness and Consistency in̂ Rule-Based Expert Sys­
tems,” Int. J. Man-Machine Studies, pp 633-648, 1987.

[6] Davis, R., “Knowledge-Based Systems: The View in 1986,” AI in the
1980s and Beyond, W.Eric, L.Crimson, R.S.Patil, MIT Press, Mas­
sachusetts, pp 13-41, 1987.

[7] Dhar, V., Pople H. E., “Rule-Based Versus Structure-Based Models for
Exi^laining and Generating Expert Behavior,” Communications of ACM,
Vol. 30, No. 6, pp 542-555, June 1987.

[8] Duda, R. O., Gaschnig, J. G., “Knowledge-Based Expert Systems Come
of Age,” Applications in Artificial Intelligence, Stephen J. Andriole,
Petrocelli Books Inc., Princeton, pp 45-86, 1985.

[9] Fellers, J. W., “Key Factors in Knowledge Acquisition,” Comput. Pers.,
USA, Vol.11, no.l, pp.10-24, May 1987.

[10] Francioni, J. M., Kandel.A., “A Software Engineering Tool for Expert
System Design,” IEEE Expert, pp 33-41, 1988.

47

[11] Gevarter, W. B., “Expert Sytems: Limited But Powerful,” Applica-
Hons in Artificial Intelligence, Stephen J. Andriole, Petrocelli Books
Inc., Princeton, pp 125-139, 1985.

[12] Gruber, T., Chon, P., “Principles of Design for Knowledge Acquisition,”
IEEE Proceeding, pp 9-15, 1987.

[13] Hayes-Roth F., Waterman D. A., Lenat D. B., “An Overview of Expert
Systems” , Building Expert Systems, F. Hayes-Roth, D. A. Waterman,
D. B. Lenat, Addison-Wesley Inc., Massachusetts, pp 3-29, 1983.

[14] Hu, D., Programmer’s Reference Guide to Expert Systems, Howard W.
Sams Sz Company, Indianapolis, 1987.

[15] Jackson, P., “Review of Knowledge Representation Tools and Tech­
niques,” lEE Proceedings, Vol.134, No.4, pp 224-230, July 1987.

[16] Keller R., Expert System Technology, Development & Applications,
Prentice-Hall Inc., Englewood Cliffs, 1987.

[17] Metterey, W., “An Assessment of Tools for Building Large Knowledge-
Based Systems,” AI Magazine, pp 81-89, Winter 1987.

[18] Nguyen, T. A., “Verifying Consistency of Production Systems,” Proceed­
ings of the Third Conference on Artificial Intelligence Applications, pp
4-8, 1987.

[19] Nguyen, T. A., Perkins, W. A., et al,“Knowledge Base Verification,” AI
Magazine, pp 69-75, Summer 1987.

[20] Nguyen, T. A., Perkins, W. A., “Checking an Expert System’s Knowl­
edge Base for Consistency and Completeness,” Proceedings of the Ninth
International Joint Conference on AI, Menlo Park, CA ; Amex-ican As­
sociation for AI, pp 374-378, 1985.

[21] Nilsson, N. J., Principles of Artificial Intelligence, Tioga Publishing
Company, 1980.

[22] Sell, P. S., Expert Systems-A Practical Introduction, Mxicmillan,
Southampton, 1985.

[23] Suwa M., Scott A. C., Shortliffe E. H., “An Approach To Verifying
Completeness and Consistency in a Rule Based Expert System,” AI
Magazine 3(4), pp 16-21, 1982.

48

[24] Szolovits, P., “Expert Systems Tools and Techniques: Past , Present and
Future,” AI in the 1980s and Beyond, W.Eric, L.Crimson, R.S.Patil,
MIT Press, Massachusetts, pp 43-74, 1987.

[25] Wolfgram D., Dear T. J., Galbraith C. S., Expert Systems for the Tech­
nical Professional, John Wiley Sons Inc., New York, 1987.

49

A. BNF DESCRIPTION OF RULES AND
FACTS

<Rule> ::= if < Condition_part>
then <Action.part> [<Certainty_Factor>] ;

<Fact> ::= <Predicate> [<Cortainty_Factor>] ;

<Condition-part> <PredicateJist>

<Action_part> <Predicate>

<PredicateJist> ::= [~]<Predicate> L· <Predicate_list> | [~]<Predicate>

<Predicate> ::= <Predicate-name> (< Argument-list >)

<Argument_list> ::= <ParameterJist> | <Epsilon>

<Parameter_list> ::= <Argument> , < Parameter-list> | <Argument>

<Argument> <Predicate> | <Variable> | <Constant>

<Predicate_name> ::= < Lower_case-lettcr> {<Digit> | <Letter>}'’

<Variable> ::= < Upper .case Jetter> {<Digit> | <Letter>}*

<Constant> ::= <Lower_casc-letter> {<Digit> | <Letter>}* | <Digit>
{<Digit> I <Lettcr>}· I ” <String> ” | <ReaLnumber>

<Certainty_Factor> ::= 0. <Digit>·^ | 1.0

<ReaLnumber> :: = <Digit>·*· . <Digit>·*·

<String> ::= <Ascii-character> +

<Digit> ::= 0 I 1

50

<Lower_caseJetter> ::= a | b | ... | z

<Upper_case_letter> A | B | ... | Z

<Letter> ::= <Lower_ca,se_lcttcr> | <Upper_caseJetter>

<Epsilon> is used to denote enij t̂y string

where <Condition_part> is conjunction of predicates

<Action_part> is a single i:>redicate

<Certainty.Factor> is a real number between 0 and 1 which indicates
the probability for the occurance of < Action part> if the condition part is
known with certcvinty.

51

B. A SAMPLE KNOWLEDGE BASE
VERIFICATION

THE INITIAL KNOWLEDGE BASE

Rule 1 : if predicate40 (A,predicate41 (C) ,A,"fast computer")
then

predicate42 (A,C) [0.9] ;

Rule 2 : if predicate42 (D,B)
then

predicate43 (D,a,b) [0.9] ;

Rule 3 : if predicate43 (K,a,b)
then

predicate44 (K,predicate45 (K,K,A) ,A) [0.9] ;

Rule 4 : if predicate40 (B,predicate41 (D) ,B,"fast computer")
then

~predicate44 (B,predicate45 (B,B,Z) ,Z) [0.4] ;

Rule 5 : if predicateSO (X,C) &
predicateSl (B,X,a)

then
predicate52 (X) [0.9] ;

Rule 6 : if predicateSl (A,Y,a)
then predicate52 (Y) [0.8]

52

then
predicates (X,B) [0.9] ;

Rule 8 : if predicate2 (X,X) k

predicates (X,B)
then

predicatel (A) [0.8] ;

Rule 9 : if "predicates (A,B) k

predicate2 (Y,Y)
then

predicatel (C) [0.5] ;

Rule 10 : if predicates (CC,D) k

predicate2 (E,E)
then

predicatel (C) [0.5] ;

Rule 11 : if predicate4 (X,Y) k

predicate4 (Y,Z)
then

predicate5 (X,a) [0.8] ;

Rule 12 : if predicate4 (b,Y) k

predicate4 (Y,Z)
then

"predicates (a) [0.6] ;

Rule IS : if predicates (Y,C)
then

predicatel (S) [0.6] ;

Rule 14 : if predicates (b,Y)
then

predicates (Y) [0.5] ;

Rule 15 : if predicates (c,X)

Rule 7 : if predicatel (B) &
predicate2 (X,N)

53

then

Rule 16 : if predicates (b,Z)
then

predicates (Xi) [0.8] ;

Rule 17 : if predicate6 (Y)
then

predicates (Y) [0.6] ;

Rule 18 : if predicates (a)
then

predicateO (b,A,Y) [0.8] ;

Rule 19 : if predicates (b,a,T)
then

predicatelO (a,T,T,X) [0.4] ;

Rule 20 : if predicates (Z)
then

predicatell (Y,X,B,Z,Y) [0.6] ;

Rule 21 : if predicate25 (A,C) &

predicate26 (a,B)
then

predicate27 (C,a) [0.9] ;

Rule 22 : if predicate28 (D) &

predicate29 (B)
then

predicate25 (D,B) [0.7] ;

Rule 23 : if predicateSO (a,E) &
• predicate27 (F,a)

then
predicate29 (E) [0.5] ;

Rule 24 : if predicate30 (b,B)
then

predicate? (Z) [0.6] ;

54

Rule 25 : if predicateSl (joe,X) &
predicate32 (Y,X,10) &
predicate32 (Y,20,Z)

then
~predicate32 (T,20,Z) [0.9] ;

Rule 26 : if predicate31 (joe,X) k

predicate32 (Z,Y,jane) &
~predicate31 (joe,Y)

then
predicate33 (Y.high) [0.45] ;

Rule 27 : if predicate31 (joe,X) k

predicate31 (jane,Z) k

predicate32 (Y,20,Z)
then

~predicate32 (T,20,Z) [0.9] ;

Rule 28 : if predicate31 (joe,X) k

predicate32 (Z,joe,Y) k

predicate31 (joe,Y)
then

predicate33 (Y,T) [0.9] ;

Rule 29 : if predicate31 (joe,X) k

predicate31 (Y,X) k

predicate34 (Y,T)
then predicate34 (Z,X) [0.9] ;

Fact 1 : predicatel (a) [0.8] ;

Fact 2 : predicate5 (ali,A) [0.5] ;

Fact 3 : predicate30 (b,T) [0.8] ;

Fact 4 : predicate30 (a,T) [0.9] ;

predicate26 (B) [0.4] ;

Fact 5 : predicate28 (D) [l.O] ;

Fact 6 : predicateSl (joe,X) [1.0] ;

Fact 7 : predicate32 (A.B.C) [1.0] ;

Fact 8 : predicate40 (13,predicate41 (X),13,"fast computer") [1.0,1.0]

Fact 9 : predicate42 (a,b) [0.9] ;

Fact 10 : predicate43 (c,a,b) [0.9] ;

Fact 11 : predicateSO (T,c) [1.0] ;

Fact 12 : predicateSl (X,c,a) [1.0] ;

THRESHOLD : 0.0001

START COMPILATION

Compilation OKAY

END COMPILATION

THE INFERRED RULES

Rule 30 : if predicate42 (D,B)
then

predicate44 (D,predicate45 (D,D,A) ,A) [0.81] ;

Rule 31 : if predicates (b,Y)
then

predicate8 (Y) [0.3] ;

Rule 32 : if predicates (Y)
then

predicatell (Var_l,X,B,Y,Var_l) [0.36] ;

56

Rule 33 : if predicates (b,Y)
then

predicatell (Var_l,X,B,Y,Var_l) [0.18] ;

Rule 34 : if predicates (b,Y)
then

predicatell (Var_2,X,B,Xi,Var_2) [0.48] ;

Rule 3S : if predicates (b,a)
then

predicates (b,A,Var_3) [0.4] ;

Rule 36 : if predicates (a)
then

predicatelO (a,Y,Y,X) [0.32] ;

Rule 37 : if predicate40 (A,predicate41 (C) ,A,"fast computer")
then

predicate43 (A,a,b) [0.81]

Rule 38 : if predicate40 (A,predicate41 (C) ,A,"fast computer")
then

predicate44 (A,predicate4S (A,A,Var_4) ,Var_4) [0.729]

Rule 39 : if predicatel (B) Sc

predicate2 (X,N)
then

predicatel (S) [0.S4] ;

Rule 40 : if predicate4 (b,Y) &

predicate4 (Y,Z)
then

predicates (a) [0.4] ;

Rule 41 : if predicate4 (c,Y) &

predicate4 (Y,Z)
then

predicate7 (Var_4) [0.48] ;

57

Rule 42 : if predicate4 (b,Y) &
predicate4 (Y,Z)

then
predicates (Xi) [0.64] ;

Rule 43 : if predicate^ (b,Y) &
predicate4 (Y,Z)

then
predicates (a) [0.24] ;

Rule 44 : if predicate4 (b,Y) &
predicate4 (Y,Z)

then
predicatell (Var_l,Var_6,B,a,Var_l) [0.144] ;

Rule 45 : if predicate4 (b,Y) &
predicate4 (Y,Z)

then
predicatell (Var_2,Var_7,B,Xi,Var_2) [0.3S4] ;

Rule 46 : if predicate4 (b,Y) &
predicate4 (Y,Z)

then
predicateD (b,A,Var_3) [0.32] ;

Rule 47 : if predicates (b,a)
then

predicatelO (a,Var_3,Var_3,X) [0.16] ;

Rule 48 : if predicate4 (b,Y) &
predicate4 (Y,Z)

then
predicatelO (a,Var_10,Var_10,X) [0.128] ;

Rules with ID numbers > 29 are inferred rules

58

CYCLES and CONTRADICTIONS CHECKS WITHIN RULES

The 2nd condition and then part of rule 25 may contradict to each
other

The 3rd condition euid then part of rule 25 may contradict to each
other

The 1st and 3rd conditions of rule 26 may contradict to each other

The 3rd condition and then part of rule 27 contradict to each other

There may be a self cycle in rule 29

There is a self cycle in rule 39

REDUNDANT RULES

Rule 8 and rule 10 may be redundant

Rule 16 and rule 31 (an inferred one) may be redundant

Rule 33 (an inferred one) and rule 34 (an inferred one)
may be redundant

Rule 42 (an inferred one) and rule 43 (an inferred one)
may be redundant

Rule 44 (an inferred one) and rule 45 (an inferred one)
may be redundant

59

CONFLICTING RULES

Rule 4 and rule 38 (an inferred one) are conflicting

Rule 12 and rule 40 (an inferred one) are conflicting

SUBSUMED RULES

Rule 5 is sumsumed by rule 6

Rule 8 may be sumsumed by rule 13

Rule 10 is sumsumed by rule 13

THE RULES HAVING UNNECESSARY IF CONDITIONS

Rule 8 and rule 9 may have unnecessary if conditions

Rule 9 and rule 10 have unnecessary if conditions

Rule 9 and rule 13 have unnecessary if conditions

Rule 26 and rule 28 may have unnecessary if conditions

DEAD-END RULES

Rule 7 cannot be satisfied

Rule 8 cannot be satisfied

Rule 9 cannot be satisfied

Rule 10 cannot be satisfied

60

Rule 11 cannot be satisfied

Rule 12 cannot be satisfied

Rule 21 cannot be satisfied

Rule 27 cannot be satisfied

Rule 39 cannot be satisfied

Rule 40 cannot be satisfied

Rule 41 cannot be satisfied

Rule 42 cannot be satisfied

Rule 43 cannot be satisfied

Rule 44 cannot be satisfied

Rule 45 cannot be satisfied

Rule 46 cannot be satisfied

Rule 48 cannot be satisfied

CYCLES DUE TO DEPENDENCIES

The following series, of rules may cause circulation
7 8 7

The following series of rules may cause circulation
21 22 23 21

END OF CONSULTATION

61

