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Abstract

We consider the stability of delayed feedback control (DFC) scheme for one-dimensional discrete time systems.
construct a map whose fixed points correspond to the periodic orbits of the uncontrolled system. Then the stability of
is analyzed as the stability of the corresponding equilibrium point of the constructed map. For each periodic orbit, we c
a characteristic polynomial whose Schur stability corresponds to the stability of DFC. By using Schur–Cohn criterion
find bounds on the gain of DFC to ensure stability.
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Since the seminal work of [1], the possibility o
controlling chaotic systems has received a great
of attention among scientists from various disciplin
including the physicists. In chaotic systems usua
many unstable periodic orbits are embedded in t
chaotic attractors, and as shown in [1], by using sm
external feedback input, some of these orbits m
be stabilized. Therefore, by applying small exter
forces, it may be possible to obtain some regu
behaviour in such systems. Following [1], vario
chaos control techniques have been proposed, [

E-mail address: morgul@ee.bilkent.edu.tr (Ö. Morgül).
0375-9601/$ – see front matter 2003 Elsevier B.V. All rights reserved
doi:10.1016/S0375-9601(03)00866-1
Among these, the delayed feedback control (DF
scheme first proposed in [4] and is also known
Pyragas scheme, has gained considerable atte
due to its various attractive features. In this techni
the required control input is basically the differen
between the current and one period delayed sta
multiplied by a gain. Hence if the system is alrea
in the periodic orbit, this term vanishes. Also if th
trajectories asymptotically approach to the perio
orbit, this term becomes smaller.

DFC has been successfully applied to many s
tems, including the stabilization of coherent modes
laser [5,6]; cardiac systems, [7,8], controlling frictio
[9]; chaotic electronic oscillators, [10,11]; chemic
systems, [12]. To overcome the limitations of DF
several modifications have been proposed, [13–
.
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Despite its simplicity, a detailed stability analysis
DFC is very difficult, [16,18]. For some recent stab
ity results related to DFC, see [16–21].

In this Letter, we consider the delayed feedba
control (DFC) scheme for one-dimensional discr
time systems. To analyze the stability, we constru
map whose fixed points correspond to the periodic
bits of the system to be controlled. Then the stabi
of the DFC is equivalent to the stability of the co
responding equilibrium point of the constructed m
For each periodic orbit, we construct a characteri
polynomial of a related Jacobian matrix. The Sch
stability of this polynomial could be used to analy
the stability of DFC. By using Schur–Cohn criterio
we can find bounds on the gain of DFC to ensure
bility.

This Letter is organized as follows. In Section
we present the basic form of DFC and some nota
which will be used in this Letter. In the third sectio
we will give our basic stability results. In the followin
section we will present some applications as well
some simulation results. Finally we will give som
concluding remarks.

2. Delayed feedback control

Let us consider the following one-dimension
discrete-time system

(1)x(k + 1)= f (
x(k)

) + u(k),
wherek = 0,1, . . . is the discrete time index,f : R →
R is an appropriate function, which is assumed
be differentiable wherever required, andu ∈ R is the
control input. We assume that in the uncontrolled c
(i.e., whenu ≡ 0) the system given by (1) possess
a T periodic orbit characterized by the setΣT =
{x∗

0, x
∗
1, . . . , x

∗
T−1}, i.e., for x(0)= x∗

0, the iterates of
(1) withu≡ 0 yieldsx(1)= x∗

1, . . . , x(T −1)= x∗
T−1,

x(k) = x(k − T ) for k � T . Let us call this orbit
as an uncontrolled periodic orbit (UCPO) for futu
reference.

Let S ⊂ R be a set, andy ∈ R. We define the
distanced(y,S) betweeny andS as

(2)d(y,S)= inf
z∈S

|y − z|.
We say thatΣT is asymptotically stable if for som
ε > 0, for any y ∈ R satisfying d(y,ΣT ) < ε, the
iterates of (1) withx(0) = y yields limk→∞ d(x(k),
ΣT ) = 0. We say thatΣT is exponentially stable i
this decay is exponential, i.e., the following holds
someM > 0 andρ ∈ (0,1)

(3)d
(
x(k),ΣT

)
�Mρkd(y,ΣT ).

In DFC, the following simple feedback contr
input is used to stabilizeΣT :

(4)u(k)=K(
x(k)− x(k− T )),

whereK ∈ R is a constant gain to be determine
Note that ifx(0) ∈ΣT , thenx(k) ∈ΣT andu(k)≡ 0.
Moreover, if ΣT is asymptotically stabilized, the
u(k)→ 0 ask→ ∞. In the sequel we will derive som
conditions and bounds onK for the stabilization of
periodic orbits.

3. Stability analysis

To motivate our analysis, consider the caseT = 1.
In this case we haveΣ1 = {x∗

0} wherex∗
0 = f (x∗

0),
i.e., period 1 orbits are the same as fixed points of .
By definingx1(k) = x(k − 1), x2(k) = x(k), we can
rewrite (1) and (4) as

x1(k + 1)= x2(k),

(5)x2(k + 1)= f (
x2(k)

) +K(
x2(k)− x1(k)

)
.

Let us definex̂ = (x1x2)
T ∈ R2, where superscriptT

denotes transpose, and defineF : R2 → R2 asF(x̂)=
(x2Y2)

T , whereY2 = f (x2) +K(x2 − x1). For x̂∗ =
(x∗

1x
∗
2)
T , F(x̂∗) = x̂∗ holds if and only ifx∗

1 = x∗
2 =

f (x∗
2). Hence any fixed point ofF corresponds to a

UCPOΣ1 of (1), and vice versa. Hence asympto
stability of Σ1 for (1) and (4) can be analyzed b
studying the stability of the corresponding fixed po
of F for (5). To analyze the latter, letΣ1 = {x∗

0} and
seta1 =Df (x∗

0), andJ = ∂F
∂x

∣∣
Σ1

, whereD stands for
the derivative andJ is the Jacobian ofF evaluated
at the equilibrium point. Clearly the components
J are given asJ (1,1) = 0, J (1,2) = 1, J (2,1) =
−K,J (2,2)= a1 +K. The characteristic polynomia
p1(λ) of J can easily be found as

(6)p1(λ)= det(λI − J )= λ2 − (a1 +K)λ+K.
We say that a polynomial is Schur stable if all of
eigenvalues are inside the unit disc of the comp
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plane, i.e., have magnitude less than unity. Hence
asymptotic stability of the fixed point ofF for (5),
hence the asymptotic stability ofΣ1 for (1) and (4)
could be analyzed by studying the Schur stability
p1(λ) given by (6). Moreover note that the exponen
stability of the fixed points ofF is equivalent to
Schur stability ofp1(λ), [22]. Hence we can state th
following facts:

1: The UCPOΣ1 is exponentially stable for (1
and (4) if and only ifp1(λ) given by (6) is Schur
stable. This condition is only sufficient for asympto
stability ofΣ1.

2: If p1(λ) has an unstable root, i.e., outside t
unit disc, thenΣ1 cannot be asymptotically stable f
(1) and (4).

Remark 1. We note that Schur stability of a polyno
mial can be determined by checking some inequali
in terms of its coefficients; this is known as the Ju
test, see [23]. We will apply this test to (6) later.

To motivate our approach further, let us consid
the caseT = 2. Let the period 2 UCPO of (1) b
given asΣ2 = {x∗

0, x
∗
1} and definea1 =Df (x∗

0), a2 =
Df (x∗

1). By definingx1(k)= x(k− 2), x2(k)= x(k−
1), x3(k)= x(k), we can rewrite (1) and (4) as

x1(k + 1)= x2(k), x2(k + 1)= x3(k),

(7)x3(k + 1)= f (
x3(k)

) +K(
x3(k)− x1(k)

)
.

For x̂ = (x1x2x3)
T ∈ R3, let us defineG : R3 → R3

asG(x̂) = (x2Y1Y2)
T whereY1 = x3, Y2 = f (Y1) +

K(Y1 − x1). Note that the fixed points ofG do
not correspond to the UCPOs of (1), but the fix
points ofF = G2 does. To see this, note thatF =
(Y1Y2Y3)

T where Y3 = f (Y2) + K(Y2 − x2). For
x̂∗ = (x∗

1x
∗
2x

∗
3)
T , the fixed points ofF , i.e., the so-

lutions of F(x̂∗) = x̂∗, are given asx∗
1 = x∗

3, x∗
2 =

f (x∗
1), x

∗
3 = f (x∗

2) = f 2(x∗
1). Hence for any UCPO

Σ2 = {x∗
0, x

∗
1} of (1), there corresponds a fixed poi

x̂∗ = (x∗
0x

∗
1x

∗
0)
T of F , and vice versa. Hence the a

ymptotic stability ofΣ2 for (1) and (4) is equiva
lent to the asymptotic stability of the correspondi
fixed point ofF for the systemx̂(k + 1) = F(x̂(k)).
To analyze the latter, let us define the Jacobian oF
at equilibrium asJ = ∂F

∂x

∣∣
Σ2

. The entries ofJ can

be calculated asJ (i, j) = ∂Yi
∂xj

∣∣
Σ2

, i, j = 1,2,3. Af-
ter straightforward calculations, we obtainJ (1,1) =
J (1,2)= 0, J (1,3)= 1, J (2,1)= −K, J (2,2)= 0,
J (2,3)= a1 +K, J (3,1)= −K(a2 +K), J (3,2)=
−K, J (3,3)= (a1 +K)(a2 +K). The characteristic
polynomialp2(λ) of J can be calculated as:

p2(λ)= det(λI − J )= λ3 − (a1 +K)(a2 +K)λ2

(8)+K(
(a1 +K)+ (a2 +K))λ−K2.

Hence for the stability ofΣ2 for (1) and (4), we can
study the Schur stability ofp2(λ) given above. We will
consider the Schur stability ofp2(λ) for some cases in
the sequel.

Now let us proceed to the general caseT =m. As-
sume that (1) has anm periodic UCPO given byΣm =
{x∗

0, x
∗
1, . . . , x

∗
m−1} and definea1 = Df (x∗

0), a2 =
Df (x∗

1), . . . , am = Df (x∗
m−1). In this case, by defin

ingx1(k)= x(k−m), x2(k)= x(k−m+1), . . . , xm(k)
= x(k − 1), xm+1(k) = x(k), x̂ = (x1x2 · · ·xm+1)

T ∈
Rm+1, andY2 = f (xm+1) + K(xm+1 − x1), we can
transform (1), (4) into the form̂x(k + 1) = G(x̂(k))
where G : Rm+1 → Rm+1 is defined asG(x̂) =
(x2x3 · · ·xm+1Y2)

T . As before, the UCPOΣm does
not correspond to a fixed point ofG, but it corre-
sponds to a fixed point ofF = Gm. To see this,
note thatF(x̂)= (Y1Y2 · · ·Ym+1)

T whereY1 = xm+1,
Yi+1 = f (Yi)+K(Yi − xi), i = 1,2, . . . ,m. For x̂∗ =
(x∗

1x
∗
2 · · ·x∗

m+1)
T , the fixed points ofF , i.e., the so-

lutions of F(x̂∗) = x̂∗, are given asx∗
i = Y ∗

i , i =
1, . . . ,m+ 1, which in turn impliesx∗

1 = x∗
m+1, x∗

2 =
f (x∗

1), x
∗
j+1 = f (x∗

j ), j = 1, . . . ,m. Hence the as
ymptotic stability ofΣm for (1) and (4) is equivalen
to the asymptotic stability of the corresponding fix
point ofF for the system̂x(k + 1)= F(x̂(k)). To an-
alyze the latter, let us define the Jacobian ofF at the
equilibrium asJ = ∂F

∂x

∣∣
Σm

. The entries ofJ can be

calculated asJ (i, j) = ∂Yi
∂xj

∣∣
Σm

, i, j = 1, . . . ,m + 1.
After straightforward calculations, the entries ofJ are
found as follows: fori = 1, . . . ,m+ 1, j = 1, . . . ,m
we have

(9)J (i, j)=



0, i − j < 1,
−K, i − j = 1,
−K∏i−1

l=j+1(al +K), i − j > 1.

For j =m+ 1, we have

J (1,m+ 1)= 1,

(10)J (i,m+ 1)=
i−1∏
(al +K), i = 2, . . . ,m+ 1.
l=1
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Clearly the characteristic polynomialpm(λ) of J
has the following form:

(11)pm(λ)= λm+1 + cmλm + · · · + c1λ+ c0.
By using standard determinant formulas, after leng
but straightforward calculations, the coefficients
(11) can be found as follows: (for 1< l <m)

(12)c0 = −(−1)mKm, cm = −
m∏
i=1

(ai +K),

(13)

cm−l = −(−1)lKl
m∑
i1=1

m∑
i2=i1+1

. . .

m∑
il=il−1+1

×
m∏
i=1

i �=i1,...,il

(ai +K).

Note that form= 1 andm= 2,pm(λ) given by (11)–
(13) reduces to (6) and (8), respectively.

Now we can state our main results as follow
Let an m period UCPO of (1) be given byΣm =
{x∗

0, x
∗
1, . . . , x

∗
m−1} and definea1 = Df (x∗

0), a2 =
Df (x∗

1), . . . , am =Df (x∗
m−1). Then:

(1)Σm is exponentially stable for (1) and (4) if an
only if pm(λ) given by (11)–(13) is Schur stable. Th
condition is only sufficient for asymptotic stability o
Σm.

(2) If pm(λ) has at least one unstable root, i.
magnitude strictly greater than unity, thenΣm cannot
be stabilized by (1) and (4). Hence the propo
method to test stability is not conclusive only if som
roots of pm(λ) are on the unit disc, i.e., have un
magnitude, while the rest of the roots are strictly ins
the unit disc.

Remark 2. We note that the Schur stability of
polynomial can be checked by applying the so-ca
Schur–Cohn criterion, or equivalently the Jury t
to the polynomial, see [23]. This test gives so
necessary and sufficient conditions on the coefficie
of the polynomial. These conditions are in the fo
of a finite set of inequalities, hence could be chec
easily. In our case, once the termsai are known,
these conditions become some inequalities in term
some polynomials ofK. By finding the roots of thes
polynomials, we could determine the intervals ofK
for which Schur stability holds. We will show som
examples in the sequel.
At this point, note that one necessary condition
Schur stability ofpm(λ) for anym is thatpm(1) > 0,
see [23, p. 181]. This results inpm(1)= 1+cm+· · ·+
c1+c0> 0. By using (12), (12), this condition reduc
to the following

(14)1−
m∏
i=1

ai > 0.

This condition gives an inherent limitation of DFC
the sense that when it fails (in the sense that w
> sign is replaced by<), DFC cannot stabilize th
correspondingΣm. We note that similar limitations in
terms of some Floquet multipliers have been given
the literature, see [18,21,24,25].

4. Simulation results

Now we will consider some special cases. F
m= 1, p1(λ) given by (6) is Schur stable if and on
if (i) 1 − a1 > 0 (see (14)), (ii) 1+ a1 + 2K > 0,
(iii) K < 1, see [23, p. 180–183]. Clearly these
equalities are satisfied if and only if−3< a1< 1, see
[18]. If this is the case, anyK satisfying−(1+ a1)/2<
K < 1 will result in the exponential stabilizatio
of the corresponding UCPO. WhenK > 1 or K <

−(1+ a1)/2, at least one root ofp1(λ) is unstable,
hence the corresponding UCPO cannot be stable
K = 1 or K = −(1+ a1)/2, stability cannot be de
duced by using our approach.

To elaborate further, let us consider the logis
equationf (x) = µx(1 − x). For µ = 3.7, this map
has one truly period 2 UCPOΣ2 = {x∗

0, x
∗
1} given

by x∗
0 = 0.390022,x∗

1 = 0.880248. The fixed point
xA = 0, xB = 1 − 1/µ also induce period 2 orbit
Σ2A = {xA,xA} andΣ2B = {xB, xB}. However, one
can easily show that the necessary condition (14) f
for these orbits, and hence they cannot be stabil
by DFC. ForΣ2, note thata1 = µ− 2µx∗

0 = 0.8138,
a2 = µ− 2µx∗

1 = −2.8138. The coefficients ofp2(λ)

are given by (8) as

c2 = −(a1 +K)(a2 +K),
c1 =K(

(a1 +K)+ (a2 +K)), c0 = −K2.
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From the Jury test,p2(λ) is Schur stable if and onl
if

(i) |c0 + c2|< 1+ c1,
(ii) |c1 − c0c2|< 1− c2

0,

see [23, p. 180–183]. These inequalities are equiva
to the following:

(i) 1+ 2.29> 0,

(ii) 4K2 − 4K − 1.29> 0,

(iii ) 2K4 − 2K3 − 4.29K2 + 2K − 1< 0,

(iv) 2K3 + 4.29K2 − 2K − 1< 0.

Clearly the sign conditions given above can be c
verted into some bounds onK once the roots of thes
polynomials are found. By finding these roots, we c
clude thatΣ2 can be exponentially stabilized if an
only if −0.3167< K < −0.2566. Note that the pre
cision of these bounds are related to the precisio
obtaining the related polynomials and their roots.
performed a numerical simulation for this case w
two different values ofK within the given range. Sinc
the stabilization is only local, the DFC will work whe
the actual orbit of (1) is sufficiently close toΣ2. To
evaluate the exact domain of attraction forΣ2 is very
difficult, but by extensive numerical simulations w
find that when

d(i)=

√√√√√
2∑
j=0

d
(
x(i − j),Σ2

)2
< 0.09

apparently the orbit is in the domain of attraction (n
that the system is actually has dimension 3, see
By using this idea, we simulated (1) and (4) with t
following choice of input:

(15)u(k)=
{
K

(
x(k)− x(k− 2)

)
, d(i) < 0.09,

0, d(i)� 0.09.

Clearly, since the solutions of the logistic equation
chaotic in the uncontrolled case, eventually the con
law given above will be effective and the stabilizati
of Σ2 will be achieved for anyx(0) ∈ (0,1).

In the first simulation, we chooseK = −0.257,
which is quite close to the upper bound of the ran
of K given above. The results of this simulation (w
µ = 3.7, K = −0.257, x(0) = 0.4) are shown in
Fig. 1, where we plottedu(k) and d(x(k),Σ2) vs.
k in Fig. 1(a) and (b), respectively. In the seco
simulation, we chooseK = −0.28, which is quite
close to the middle of the range ofK given above. The
results of this simulation (withµ = 3.7,K = −0.28,
x(0)= 0.4) are shown in Fig. 1, where we plottedu(k)
andd(x(k),Σ2) vs.k in Fig. 1(c) and (d), respectively
As can be seen, in both cases the decay of solut
to Σ2 is exponential, and that the required inputu is
sufficiently small and decays to zero exponentially
well. Moreover, as is evident in the Fig. 1, the deca
rather slow whenK is close to its stability boundarie
and relatively fast whenK is sufficiently away from
the stability boundaries.

To show the change of the stability range forK,
we performed similar analysis for various valu
of µ. A similar analysis shows that forµ = 3.75,
the stabilization is possible when−0.3102< K <

−0.30039, and forµ = 3.76, the stabilization is
possible when−0.3090< K < −0.3089. Similar
analysis reveals that the stabilization is not poss
for µ � 3.77. Hence we conclude that there exist
critical value 3.76� µ∗ < 3.77 such that DFC can b
used for the stabilization of period 2 orbits forµ� µ∗,
and cannot be used forµ>µ∗.

To elaborate further consider the casem = 3.
Let the UCPO be given asΣ3 = {x∗

0, x
∗
1, x

∗
2}, and

defineai = Df (x∗
i−1), i = 1,2,3. The characteristi

polynomialp3(λ) given by (11) has the coefficients

c3 = −(a1 +K)(a2 +K)(a3 +K),
c2 =K(

(a1 +K)(a2 +K)+ (a1 +K)(a3 +K)
+ (a2 +K)(a3 +K)),

c1 = −K2((a1 +K)+ (a2 +K)+ (a3 +K)),
c0 =K3.

According to the Jury test,p3(λ) is Schur stable if and
only if

(i) |c0|< 1,

(ii) |c1 + c3|< 1+ c0 + c2,
(iii )

∣∣c2(1− c0)+ c0
(
1− c2

0

) + c3(c0c3 − c1)
∣∣

< c0c2(1− c0)+
(
1− c2

0

) + c1(c0c3 − c1),
see [23, pp. 180–183]. As an example, consider
logistic map withµ = 3.85. In this case, the logisti
map has two true period 3 orbits given byΣ3+ =
{0.1725,0.5497,0.9529}andΣ3− = {0.4783,0.9606,
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Fig. 1. The caseT = 2, µ = 3.7, x(0) = 0.4. (a) u(k) vs. k for K = −0.257. (b)d(x(k),Σ2) vs. k for K = −0.257. (c)u(k) vs. k for
K = −0.28. (d)d(x(k),Σ2) vs.k for K = −0.28.
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0.1453}. The fixed pointsxA = 0 and xB = 1 −
1/µ also induce period 3 orbits in the formΣ3A =
{xA,xA, xA} andΣ3B = {xB, xB, xB}. One can easily
show that the necessary condition (14) fails forΣ3+
andΣ3A, and hence these orbits cannot be stabili
by DFC. ForΣ3B , one can show that the Jury te
i.e., the inequalities (i)–(iii) given above, cannot
simultaneously satisfied for anyK, hence DFC canno
be used for the stabilizationΣ3B as well. ForΣ3−,
by evaluating these inequalities, one can show
DFC can be used for stabilization when−0.1041<
K < −0.0315. We performed a numerical simulati
for this case with two different values ofK within
the given range. Since the stabilization is only loc
the DFC will work when the actual orbit of (1) i
sufficiently close toΣ3−. To evaluate the exact doma
of attraction forΣ3− is very difficult, but by extensive
numerical simulations we find that when

d(i)=

√√√√√
3∑
j=0

d
(
x(i − j),Σ3−

)2
< 0.09
apparently the orbit is in the domain of attraction (n
that the system is actually has dimension 4, see
By using this idea, we simulated (1) and (4) with t
following choice of input:

(16)u(k)=
{
K

(
x(k)− x(k − 3)

)
, d(i) < 0.09,

0, d(i)� 0.09.

Clearly, since the solutions of the logistic equation
chaotic in the uncontrolled case, eventually the con
law given above will be effective and the stabilizati
of Σ3− will be achieved for anyx(0) ∈ (0,1).

In the first simulation, we chooseK = −0.032,
which is quite close to the upper bound of the ran
of K given above. The results of this simulati
(with µ = 3.85,K = −0.032,x(0)= 0.7) are shown
in Fig. 2, where we plottedu(k) and d(x(k),Σ3−)
vs. k in Fig. 2(a) and (b), respectively. In this cas
apparently the trajectories enter in the domain
attraction afterk = 30, and Fig. 2(b) is plotted fork �
31. In the second simulation, we chooseK = −0.06,
which is quite close to the middle of the range ofK
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Fig. 2. The caseT = 3, µ = 3.85, x(0) = 0.7. (a)u(k) vs. k for K = −0.032. (b)d(x(k),Σ3−) vs. k for K = −0.032, plotted fork � 31.
(c) u(k) vs.k for K = −0.06. (d)d(x(k),Σ3−) vs.k for K = −0.06, plotted fork � 91.
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given above. The results of this simulation (withµ=
3.85, K = −0.06, x(0) = 0.7) are shown in Fig. 2
where we plottedu(k) and d(x(k),Σ3−) vs. k in
Fig. 2(c) and (d), respectively. In this case, appare
the trajectories enter in the domain of attraction a
k = 91, and Fig. 2(d) is plotted fork � 91. As
can be seen, in both cases the decay of solution
Σ3− is exponential, and that the required inputu is
sufficiently small and decays to zero exponentially
well. Moreover, as is evident in the Fig. 2, the deca
rather slow whenK is close to its stability boundarie
and relatively fast whenK is sufficiently away from
the stability boundaries.

To show the change of the stability range forK,
we performed similar analysis for various values ofµ.
A similar analysis shows that forµ = 3.86, the sta-
bilization is possible when−0.1024<K <−0.0615,
and forµ = 3.87, the stabilization is possible whe
−0.1008<K <−0.087. Similar analysis reveals th
the stabilization is not possible forµ � 3.88. Hence
we conclude that there exists a critical value 3.87�
µ∗ < 3.88 such that DFC can be used for the stabili
tion of period 3 orbits forµ� µ∗, and cannot be use
for µ>µ∗.

5. Conclusion

In conclusion, we analyzed the stability of DF
for one-dimensional discrete time systems. We fi
constructed a map whose fixed points corresp
to the periodic orbits of the uncontrolled chao
system. Then the stability of DFC for the origin
chaotic system is equivalent to the stability of t
corresponding fixed point of the constructed map.
derive the form of the characteristic polynomial
the Jacobian matrix of this map at the desired fix
point. Then the stability problem of DFC reduc
to determine the Schur stability of the associa
characteristic polynomial. By applying Jury test, w
can determine the bounds on the gain of DFC to en
the stability.
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The proposed methodology can also be applie
higher-dimensional discrete time chaotic systems,
this requires further research. Also extension of the
sults presented here to continuous time systems is
obvious, and this point deserves further investigati
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