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Abstract

We consider the stability of delayed feedback control (DFC) scheme for one-dimensional discrete time systems. We first
construct a map whose fixed points correspond to the periodic orbits of the uncontrolled system. Then the stability of the DFC
is analyzed as the stability of the corresponding equilibrium point of the constructed map. For each periodic orbit, we construct
a characteristic polynomial whose Schur stability corresponds to the stability of DFC. By using Schur—Cohn criterion, we can
find bounds on the gain of DFC to ensure stability.
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1. Introduction Among these, the delayed feedback control (DFC)
scheme first proposed in [4] and is also known as

Since the seminal work of [1], the possibility of Pyragas scheme, has gained considerable attention

controlling chaotic systems has received a great deg|due to it; various attr.active. features. In this t.echnique
of attention among scientists from various disciplines e required control input is basically the difference
including the physicists. In chaotic systems usually Petween the current and one period delayed states,
many unstable periodic orbits are embedded in their Multiplied by a gain. Hence if the system is already
chaotic attractors, and as shown in [1], by using small N the periodic orbit, this term vanishes. Also if the
external feedback input, some of these orbits may rjectories asymptotically approach to the periodic
be stabilized. Therefore, by applying small external ©rbit, this term becomes smaller.
forces, it may be possible to obtain some regular ~DPFC has been successfully applied to many sys-
behaviour in such systems. Following [1], various tems, including _the stabilization of cohere_nt mc_)dc_es of
]_Iaser [5,6]; cardiac systems, [7,8], controlling friction,
[9]; chaotic electronic oscillators, [10,11]; chemical
systems, [12]. To overcome the limitations of DFC,

E-mail address: morgul@ee.bilkent.edu.tr (O. Morgiil). several modifications have been proposed, [13-17].

chaos control techniques have been proposed, [2,3
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Despite its simplicity, a detailed stability analysis of iterates of (1) withx(0) = y yields limy_, oo d(x(k),
DFC is very difficult, [16,18]. For some recent stabil- X7) = 0. We say thatYr is exponentially stable if
ity results related to DFC, see [16-21]. this decay is exponential, i.e., the following holds for
In this Letter, we consider the delayed feedback someM > 0 andp € (0, 1)
control (DFC) scheme for one-dimensional discrete «
time systems. To analyze the stability, we construct a d(x(k), Zr) < Mp'd(y, Zr). @)
map whose fixed points correspond to the periodicor-  In DFC, the following simple feedback control
bits of the system to be controlled. Then the stability input is used to stabiliz&7:
of the DFC is equivalent to the stability of the cor-
responding equilibrium point of the constructed map. #(*) = K (x(k) —x(k = T)), (4)
For each periodic orbit, we construct a characteristic \where K € R is a constant gain to be determined.
polynomial of a related Jacobian matrix. The Schur Note that ifx(0) € 7, thenx (k) € X7 andu(k) = 0.
stability of this polynomial could be used to analyze \jgoreover, if X7 is asymptotically stabilized, then
the stability of DFC. By using Schur—Cohn criterion, k) — 0 ask — occ. Inthe sequel we will derive some
we can find bounds on the gain of DFC to ensure sta- conditions and bounds ok for the stabilization of
bility. periodic orbits.
This Letter is organized as follows. In Section 2
we present the basic form of DFC and some notation
which will be used in this Letter. In the third section 3 stability analysis
we will give our basic stability results. In the following
section we will present some applications as well as  Tg motivate our analysis, consider the cadse: 1.
some simulation results. Finally we will give some |n this case we haves; = {x§) wherexg = f(x),
concluding remarks. i.e., period 1 orbits are the same as fixed pointg of
By definingx1(k) = x(k — 1), x2(k) = x(k), we can
rewrite (1) and (4) as
2. Delayed feedback control
x1(k + 1) = x2(k),
Let us consider the following one-dimensional xa(k + 1) = f(x2(k)) + K (x2(k) — x1(k)). (5)
discrete-time system
Let us definet = (x1x2)” € R2, where superscrigt
x(k+1) = f(x(k) +uk), 1) denotes transpose, and defiieR? — R2 asF (%) =
wherek =0, 1, ... is the discrete time index, : R — (x2Y2)T, whereY, = f(x2) + K (x2 — x1). Forx* =
R is an appropriate function, which is assumed to (xjx3)”, F(£*) = £* holds if and only ifx} = x} =
be differentiable wherever required, anct R is the f(x3). Hence any fixed point of corresponds to an
control input. We assume that in the uncontrolled case UCPO X3 of (1), and vice versa. Hence asymptotic
(i.e., whenu = 0) the system given by (1) possesses stability of X1 for (1) and (4) can be analyzed by

a T periodic orbit characterized by the sé&ty = studying the stability of the corresponding fixed point
{xg. X7, ..., x7_4}, i.e., forx(0) = x{, the iterates of of F for (5). To analyze the latter, le¥; = {x;} and
(D) withu =0yieldsx(1) = x3,...,x(T —=1) =x5_4, seta; = Df (x§), andJ = 2£ |, whereD stands for

x(k) = x(k = T) for k > T. Let us call this orbit  the derivative and/ is the Jacobian of evaluated
as an uncontrolled periodic orbit (UCPO) for future at the equilibrium point. Clearly the components of

reference. _ J are given asJ(1,1) =0,J(1,2 =1,J(2,1) =
Let S CR be a set, and € R. We define the  _k J(2,2) =a;+ K. The characteristic polynomial

distanced(y, S) betweeny andS as p1(2) of J can easily be found as

d(y,8)=22;|y—z|- 2 p1V) =dethl —J) =12 —(a1+ K)A+ K.  (6)

We say that¥'7 is asymptotically stable if for some We say that a polynomial is Schur stable if all of its
€ > 0, for any y € R satisfyingd(y, X1) < ¢, the eigenvalues are inside the unit disc of the complex
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plane, i.e., have magnitude less than unity. Hence, the J (1, 2) =

asymptotic stability of the fixed point of* for (5),
hence the asymptotic stability af1 for (1) and (4)
could be analyzed by studying the Schur stability of
p1(2) given by (6). Moreover note that the exponential
stability of the fixed points ofF is equivalent to
Schur stability ofp1(2), [22]. Hence we can state the
following facts:

1. The UCPOX; is exponentially stable for (1)
and (4) if and only if p1(3) given by (6) is Schur
stable. This condition is only sufficient for asymptotic
stability of X1.

2: If p1(12) has an unstable root, i.e., outside the
unit disc, then¥; cannot be asymptotically stable for
(2) and (4).

Remark 1. We note that Schur stability of a polyno-
mial can be determined by checking some inequalities
in terms of its coefficients; this is known as the Jury
test, see [23]. We will apply this test to (6) later.

To motivate our approach further, let us consider
the caseT = 2. Let the period 2 UCPO of (1) be
given asX; = {x{, x]} and defineiy = Df (x{), a2 =
Df (x7). By definingx1 (k) = x (k — 2), x2(k) = x (k —

1), x3(k) = x(k), we can rewrite (1) and (4) as

x1(k + 1) =x2(k), x2(k +1) = x3(k),
x3(k +1) = f(x3(k)) + K (x3(k) — x1(k)). (7

For £ = (x1x2x3)T € R3, let us defineG :R3 — R3
asG(X) = (xaY1Y2)T whereY; = x3, Yo = f (Y1) +
K (Y1 — x1). Note that the fixed points of; do
not correspond to the UCPOs of (1), but the fixed
points of F = G? does. To see this, note that =
(Y1Y2Y3)T where Y3 = f(Y2) + K(Y2 — x2). For
= (xjx3x3)7, the fixed points ofF, i.e., the so-
lutions of F(x*) = x*, are given ascj = x3, x; =
FGD), x5 = f(x3) = f2(x}). Hence for any UCPO
X2 = {xg,x7} of (1), there corresponds a fixed point
= (xSx’l"xa")T of F, and vice versa. Hence the as-
ymptotic stability of X, for (1) and (4) is equiva-
lent to the asymptotic stability of the corresponding
fixed point of F for the systemt(k + 1) = F(x(k)).
To analyze the latter, Iet us define the Jacobiai# of
at equilibrium asJ = dx . The entries of/ can

be calculated ag (i, j) = |):2 i,j=1,23. Af-
ter straightforward calculatlons we obtairfl, 1) =

vl z
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0,/J(1,3=1,J2,1)=—-K,J(2,2=0
J(2,3)=a1+K,JB,1)=—K(ax+ K), J(3,2) =
—K, J(3,3) = (a1 + K)(az2 + K). The characteristic

polynomial p2(1) of J can be calculated as:

p20) =detid — J) =23 — (a1 + K) (a2 + K)A?

+K((a1+K)+ (a2 + K)r— K% (8)

Hence for the stability o, for (1) and (4), we can
study the Schur stability gf2(2) given above. We will
consider the Schur stability gf,(1) for some cases in
the sequel.

Now let us proceed to the general cdse- m. As-
sume that (1) has an periodic UCPO given by, =

{xg, x7, ... _1} and definea; = Df(x3), az =
Df (x7), .. am = Df(x,,_4). In this case, by defin-
ing x1(k) = x(k m),x2(k) =xtk—m+1), ..., x,k)
=x(k — 1), xpmy1(k) = x(k), X = (X1xz~'xm+1)r €

R™1 and Y, = f(xmi1) + K (xpi1 — Xx1), We can
transform (1), (4) into the fornk(k + 1) = G(x(k))
where G:R"t1 — R+l js defined asG(X) =
(x2x3---xmy1Y2)T. As before, the UCPQ®,, does
not correspond to a fixed point a¥, but it corre-
sponds to a fixed point off = G™. To see this,
note thatF (%) = (Y1Y2--- Y,,11)T whereYs = x,41,
Yiri=fXY)+KYi—x),i=1,2,...,m. Forx* =

(xjx3---xk, 7, the fixed points ofF, i.e., the so-
lutions of F(x*) = x*, are given asx} =Y, i =
1,....m + 1, which in turn impliescy = x4, x; =

f(xl) x* 1= f(x ), j =1,...,m. Hence the as-
ymptotic stab|I|ty ofEm for (1) and (4) is equivalent
to the asymptotic stability of the corresponding fixed
point of F for the systenx (k + 1) = F(x(k)). To an-
alyze the latter, let us define the JacobiarnFoét the
equilibrium asJ = £ The entries of/ can be

7|5,
calculated as/ (i, j) = |2 , ,m + 1.

ay .
L i,j=1,...
After straightforward calculatlons, the entriesbére

found as follows: fori =1,...,m+1,j=1,...,m
we have
0, i—j<1,
JGi, j)y=1{ K, i—j=1 (9
KI—[I ]+l(a1+K), i—j>1
For j =m + 1, we have
JAm+1)=1,
i—1
Ji.m+D=[J@+K), i=2...m+1 (10)

=1
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Clearly the characteristic polynomig}, (1) of J
has the following form:

Pm(A) =AML e AT 4 1+ co. (1)
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At this point, note that one necessary condition for
Schur stability ofp,, (1) for anym is that p,, (1) > 0,
see[23,p. 181]. Thisresults ;, (1) = 1+cp+-- -+
c1+co > 0. By using (12), (12), this condition reduces

By using standard determinant formulas, after lengthy to the following

but straightforward calculations, the coefficients in
(11) can be found as follows: (ford ! < m)

co=—(-D"K", en=—[J@+K). (12
i=1

cm,,z—(—l)’K’Z Z Z

i1=1ip=i1+1 ii=ij—1+1

13)

i 50000]

Note that form = 1 andm = 2, p,,(1) given by (11)—
(13) reduces to (6) and (8), respectively.

Now we can state our main results as follows.
Let anm period UCPO of (1) be given by,
{xg:x3,....x;_4} and definea; = Df(xg), az
Df(x}),...,am =Df(x;_4). Then:

(1) X, is exponentially stable for (1) and (4) if and
only if p,, (1) given by (11)—(13) is Schur stable. This
condition is only sufficient for asymptotic stability of
.
(2) If pn(2) has at least one unstable root, i.e.,
magnitude strictly greater than unity, ther, cannot
be stabilized by (1) and (4). Hence the proposed
method to test stability is not conclusive only if some
roots of p,, (1) are on the unit disc, i.e., have unit
magnitude, while the rest of the roots are strictly inside
the unit disc.

Remark 2. We note that the Schur stability of a

polynomial can be checked by applying the so-called
Schur—Cohn criterion, or equivalently the Jury test
to the polynomial, see [23]. This test gives some

necessary and sufficient conditions on the coefficients

of the polynomial. These conditions are in the form

of a finite set of inequalities, hence could be checked

easily. In our case, once the terms are known,
these conditions become some inequalities in terms o
some polynomials oK . By finding the roots of these
polynomials, we could determine the intervals if
for which Schur stability holds. We will show some
examples in the sequel.

(14)

m
1—]_[a,- > 0.
i=1

This condition gives an inherent limitation of DFC in
the sense that when it fails (in the sense that when
> sign is replaced by), DFC cannot stabilize the
correspondingZ,,. We note that similar limitations in
terms of some Floquet multipliers have been given in
the literature, see [18,21,24,25].

4. Simulation results

Now we will consider some special cases. For
m =1, p1(}) given by (6) is Schur stable if and only
if () 1 —a1 > 0 (see (14)), (i) Ha1+2K >0,

(i) K <1, see [23, p. 180-183]. Clearly these in-
equalities are satisfied if and only#3 < a; < 1, see
[18]. If thisis the case, ank satisfying—(1+ a1)/2 <

K < 1 will result in the exponential stabilization
of the corresponding UCPO. Wheki > 1 or K <
—(1+a1)/2, at least one root op1(A) is unstable,
hence the corresponding UCPO cannot be stable. For
K =1 or K =—(1+a1)/2, stability cannot be de-
duced by using our approach.

To elaborate further, let us consider the logistic
equation f (x) = ux(1 — x). For u = 3.7, this map
has one truly period 2 UCPQ; = {xg,x]} given
by x5 = 0.390022,x; = 0.880248. The fixed points
x4 =0,xp=1-—1/u also induce period 2 orbits
o4 = {x4a,x4} and Xop = {xp, xg}. However, one
can easily show that the necessary condition (14) fails
for these orbits, and hence they cannot be stabilized
by DFC. ForX>, note thatay = p — 2uuxj = 0.8138,
az = — 2uxi = —2.8138. The coefficients gb2(1)

fare given by (8) as

c2=—(a1+ K)(az2 + K),

C1=K((611+K)+(a2+K)), co=—K2.
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From the Jury tesiyo(A) is Schur stable ifandonly & in Fig. 1(a) and (b), respectively. In the second

if simulation, we choos& = —0.28, which is quite
) close to the middle of the range &f given above. The

(i) |co+c2l<l4cy, results of this simulation (withx = 3.7, K = —0.28,

(i) |er—coc2l <1— cS, x(0) = 0.4) are shown in Fig. 1, where we plotte¢)

andd (x (k), X2) vs.k in Fig. 1(c) and (d), respectively.
As can be seen, in both cases the decay of solutions
to X7 is exponential, and that the required inpuis
(i) 1+4229>0, sufficiently small and decays to zero exponentially as
N 2 B well. Moreover, as is evidentin the Fig. 1, the decay is
(ff_) 4K4 4K3 1.29> (2) rather slow wherk is close to its stability boundaries,
(i) 2K"—2K°—-4.29K“+2K —1<0, and relatively fast wheik is sufficiently away from
(iv) 2K°+4.29Kk°-2K —1<0O. the stability boundaries.

. . ) To show the change of the stability range %
Clearly the sign conditions given above can be con- \ye performed similar analysis for various values
verted into some bounds ati once the roots of these of . A similar analysis shows that for = 3.75
polynomials are found. By finding these roots, we con- o ctapilization is possible wher0.3102< K <
clude thatX, can be exponentially stabilized if and _ 30039 and foru = 3.76, the stabilization is
only if —0.3167< K < —0.2566. Note that the pre-  ,sqiple Wwhen—0.3090 < K < —0.3089. Similar
cision of these bounds are related to the precision in 55 \vsis reveals that the stabilization is not possible
obtaining the related polynomials and their roots. We for > 3.77. Hence we conclude that there exists a

performed a numerical simulation for this case with . itical value 376 < ju* < 3.77 such that DFC can be
two different values ok within the givenrange. Since | sad for the stabilization of period 2 orbits for< 11*,
the stabilization is only local, the DFC will work when 4.4 cannot be used for> u*.

the actual orbit of (1) is sufficiently close t&>. To To elaborate further consider the case— 3.
evaluate the exact domain of attraction 05 is very Let the UCPO be given aZs = {x*, x*, x%}, and
difficult, but by extensive numerical simulations we yefine . — Df(x‘ ), i =123 Thg, cﬁ]argcteristic

find that when polynomial p3(1) given by (11) has the coefficients

see [23, p. 180-183]. These inequalities are equivalent
to the following:

2
di)y= |3 d(x(i — j), Z2)* < 0.09
j=0

c3=—(a1+ K)(a2+ K)(az + K),
c2=K((a1+ K)(az+ K) + (a1 + K) (a3 + K)
L : . + (a2 + K)(az + K)),

apparently the orbit is in the domain of attraction (note )

that the system is actually has dimension 3, see (7). €1 = —K“((a1+ K) + (a2 + K) + (a3 + K)).
By using this idea, we simulated (1) and (4) with the ¢q= K3,

following choice of input: ) , .
According to the Jury tesps(A) is Schur stable if and

K (x(k) = x(k =2)), d(i)<0.09, s onlyif
0, d(i) > 0.00. _
A Jeol <1,

Clearly, since the solutions of the logistic equation are

chaotic in the uncontrolled case, eventually the control (1) le1+csl <1+ co+cz,

law given above will be effective and the stabilization (i) |c2(1— co) + co(1— cg) + c3(cocs — c1)|
of X will be achieved for any (0) € (0, 1).

In the first simulation, we choos& = —0.257,
which is quite close to the upper bound of the range see [23, pp. 180-183]. As an example, consider the
of K given above. The results of this simulation (with logistic map withy = 3.85. In this case, the logistic
u =37, K =-0.257, x(0) = 0.4) are shown in map has two true period 3 orbits given &5, =
Fig. 1, where we plottedi(k) and d(x(k), X2) vs. {0.17250.5497,0.9529 and¥3_ = {0.4783 0.9606

u(k):{

< coc2(1—co) + (1= c§) + c1(cocs — c1).
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Fig. 1. The case’ =2, u = 3.7, x(0) = 0.4. (&) u(k) vs. k for K =
K =—0.28. (d)d(x(k), X2) vs.k for K = —0.28.

0.1453. The fixed pointsxy = 0 andxg = 1 —
1/u also induce period 3 orbits in the forthzy =
{xa,xa,x4} and X3p = {xp, xp, xp}. One can easily
show that the necessary condition (14) fails o5,
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—0.257. (b)d(x(k), X2) vs. k for K = —0.257. (c)u(k) vs. k for

apparently the orbitis in the domain of attraction (note
that the system is actually has dimension 4, see (7)).
By using this idea, we simulated (1) and (4) with the
following choice of input:

and X34, and hence these orbits cannot be stabilized

by DFC. For X35, one can show that the Jury test,
i.e., the inequalities (i)—(iii) given above, cannot be
simultaneously satisfied for arky, hence DFC cannot
be used for the stabilizatiox'sz as well. ForXs_,

by evaluating these inequalities, one can show that

DFC can be used for stabilization whef0.1041 <

K < —0.0315. We performed a numerical simulation
for this case with two different values &€ within
the given range. Since the stabilization is only local,
the DFC will work when the actual orbit of (1) is
sufficiently close ta¥s_. To evaluate the exact domain
of attraction forX'3_ is very difficult, but by extensive
numerical simulations we find that when

3
di)y= |3 d(x(i — j), Z3-)* <0.09
j=0

K(x(k) —x(k—3)), d(i)<0.09,

0, d(i) > 0.09. (16)

u(k) = {
Clearly, since the solutions of the logistic equation are
chaotic in the uncontrolled case, eventually the control
law given above will be effective and the stabilization
of X'3_ will be achieved for any (0) € (0, 1).

In the first simulation, we choos& = —0.032,
which is quite close to the upper bound of the range
of K given above. The results of this simulation
(with u = 3.85, K = —0.032,x(0) = 0.7) are shown
in Fig. 2, where we plotted (k) and d(x(k), ¥3-)
vs. k in Fig. 2(a) and (b), respectively. In this case,
apparently the trajectories enter in the domain of
attraction aftek = 30, and Fig. 2(b) is plotted fdr >
31. In the second simulation, we choase= —0.06,
which is quite close to the middle of the range fof



284 O. Morgiil / Physics Letters A 314 (2003) 278-285

x 107 a b
1.5 0.05
1
0.04
0.5
—~, 0.03
0 )
-1
0.01
o L
_2 0
0 200 400 600 800 1000 0 200 400 600 800 1000
k k
x10° c d
4 0.015

d(x,23)

-2
0.005

-4

-6 0
0 200 400 600 800 1000 0 200 400 600 800 1000

k k

Fig. 2. The casd’ = 3, © = 3.85, x(0) = 0.7. (@) u(k) vs. k for K = —0.032. (b)d(x(k), ¥3_) vs.k for K = —0.032, plotted fork > 31.
(c) u(k) vs.k for K = —0.06. (d)d(x(k), X3_) vs.k for K = —0.06, plotted fork > 91.

given above. The results of this simulation (wjth= u* < 3.88 such that DFC can be used for the stabiliza-

3.85, K = —0.06, x(0) = 0.7) are shown in Fig. 2, tion of period 3 orbits fou < u*, and cannot be used

where we plottedu(k) and d(x(k), X3-) vs. k in for u > u*.

Fig. 2(c) and (d), respectively. In this case, apparently

the trajectories enter in the domain of attraction after

k =91, and Fig. 2(d) is plotted fok > 91. As 5. Conclusion

can be seen, in both cases the decay of solutions to

Y3 is exponential, and that the required inputs In conclusion, we analyzed the stability of DFC

sufficiently small and decays to zero exponentially as for one-dimensional discrete time systems. We first

well. Moreover, as is evident in the Fig. 2, the decay is constructed a map whose fixed points correspond

rather slow wherk is close to its stability boundaries, to the periodic orbits of the uncontrolled chaotic

and relatively fast wheiK is sufficiently away from  system. Then the stability of DFC for the original

the stability boundaries. chaotic system is equivalent to the stability of the
To show the change of the stability range ¢ corresponding fixed point of the constructed map. We

we performed similar analysis for various valuegwof  derive the form of the characteristic polynomial of

A similar analysis shows that fqu = 3.86, the sta-  the Jacobian matrix of this map at the desired fixed

bilization is possible wher-0.1024< K < —0.0615, point. Then the stability problem of DFC reduces

and for u = 3.87, the stabilization is possible when to determine the Schur stability of the associated

—0.1008< K < —0.087. Similar analysis reveals that characteristic polynomial. By applying Jury test, we

the stabilization is not possible far > 3.88. Hence  can determine the bounds on the gain of DFC to ensure
we conclude that there exists a critical valu873B< the stability.
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The proposed methodology can also be applied to [9] F.J. Emer, Phys. Rev. E 57 (1998) R4903.
higher-dimensional discrete time chaotic systems, but [10] K. Pyragas, A. Tamasdiius, Phys. Lett. A 180 (1993) 99.

this requires further research. Also extension of the re-
sults presented here to continuous time systems is not!

obvious, and this point deserves further investigation.
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