
_ ■j'"':: .'2Î .2' '" ■·' " 'ГП ’̂■' ■
■■ Λ -r -r-"· — r ·: w ^ ' ·*»’ , -< -^ тУ4і

.-.·' '■*!■ « It- i v ‘*v»*^:w ЧІ- ■·-·.#- - î^ ; ·■·<*■ i i . 1 ^ - 4 * ' - N ^ ’ ¿ ^ 4 / * ^ , · -i

THE DESIGN OF FINITE-STATE MACHINES FOR
QUANTIZATION USING SIMULATED ANNEALING

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL AND

ELECTRONICS ENGINEERING

AND THE INSTITUTE OF ENGINEERING AND SCIENCES

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By
Ercan Engin Kııruoğlıı

August 1993

ir:

■^6·} '
i Э 9'^

В 14709

11

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Ender Ayanoglu (Principal Advi.sor)

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Assüc. Prof. Dr. Erdal Ankan

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

i .

Assoc. Prof. Dr. Enis Çetin

Approved for the Institute of Engineering and Sciences:

Prof. Dr. Mehmet
Director of Institute of Engineerift^ and Sciences

ABSTRACT

THE DESIGN OF FINITE-STATE MACHINES FOR
QUANTIZATION USING SIMULATED ANNEALING

Ercaii Eiigin Kuruoglii
M.S. in Electrical and Electronics Engineering
Supervisor: Assoc. Prof. Dr. Ender Ayanogiu

August 1993

In this thesis, the combinatorial optimization algorithm known as simulated an­
nealing (SA) is applied to the solution of the next-state map design problem of
data compression systems based on finite-state machine decoders. These data
compression systems which include finite-state vector ciuantization (FSVQ),
trellis waveform coding (TWC), predictive trellis waveform coding (PTWC),
and trellis coded quantization (TCQ) are studied in depth. Incorporating gen­
eralized Lloyd algorithm for the optimization of output map to SA, a finite-state
machine decoder design algorithm for the joint optimization of output map
and next-state map is constructed. Simulation results on several discrete-time
sources for FSVQ, TWC and PTWC show that decoders with higher per­
formance are obtained by the SA-I-CLA algorithm, when compared to other
related work in the literature. In TCQ, simulation results are obtained for
sources with memory and new observations are made.

Keywords : data compression, Jlnitc-state vector quantization, trellis waveform
coding, predictive trellis xvaveform coding, trellis coded quantization, simulated
annealing, finite-state machine decoders.

Il l

ÖZET

TAVLAMA BENZETİMİ KULLANARAK NİCEMLEME
AMAÇLI SONLU DURUM MAKİNELERİ TASARIMI

Ercan Engin Kuruoğlu
Elektrik ve Elektronik Mühendisliği Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Ender Ayanoğiu
Ağustos 1993

Bu çalışmada, sonlu durum makinelerine dayanan bazı veri sıkıştırma
dizgelerinde eniyiye yakın kodçözûcü tasarımı sorununa bir çözüm önerisi
irdelenmiştir. Tezin bu konudtiki araştırmalara temel katkısı, kodçözücü
durum değiştirme tablosu tasarımında tavlama benzetimi olarak bilinen
katışımsal eniyileştirme algoritmasının kullanılmasıdır. Çıktı tablosunun eniyi-
leştirilmesinde kullanılan genelleştirilmiş Lloyd algoritması da tavlama ben­
zetimi ile birlikte çalıştırılarak çıktı tablosu ve durum değiştirme tablosunu
beraber eniyileştiren bir tasarım algoritması oluşturulmuştur. Sonlu durum
vektör nicemleyicisi, çit kaynak kodlaması ve öngörülü çit kaynak kodla­
ması için elde edilen benzetim sonuçları önerilen algoritma ile daha önce
yayınlanmış çalışmalara göre daha yüksek başarımlı kodçözücülerin tasar­
landığını göstermektedir. Çit kodlamalı nicemleme için de yeni gözlemlerde
bulunulmuştur.

Anahtar sözcükler : veri sıkıştırma, sonlu durum vektör nicemleyicisi, çit
kaynak kodlaması, öngörülü çit kaynak kodlaması, çit kodlamak nicemleme,
tavlama benzetimi, sonlu durum makineli kodçözücü.

IV

ACKNOWLEDGEMENT

I would like to thank Dr. Ender Ayanoğlu for his supervision, guidance and
suggestions during the development of this thesis. I would like to thank Dr.
Erdal Arikan for many invaluable discussions. I would also like to thank him
and Dr. Ellis Çetin for reading and commenting on the thesis.

My special thanks go to Sarah (Clay) for her love, patience, understanding
and encouragement especially at times of hardship and despair. Of course, I
cannot pass without mentioning my parents and my sister here, whose very
existence gave me so much courage.

I would like to extend my thanks to Dr. İlknur Özgen and Dr. Varol Akman
for their support and closeness. And the last but by no means the least, my
sincerest feelings are towards all of my friends for the times we had.

Contents

1 INTRODUCTION 1

2 QUANTIZATION TECHNIQUES 4

2.1 Scalar Q uantization.. 4

2.2 Vector Quantization 6

2.3 Finite-State Vector Quantization 8

2.4 Trellis Waveform C od ing .. 14

2.4.1 Viterbi A lgorithm.. 18

2.5 Predictive Trellis Waveform C od ing ... 19

2.5.1 System D escription... 20

2.5.2 Search A lgorithm .. 22

2.5.3 Design A lgorithm .. 23

2.6 Trellis Coded Q uantization... 24

3 SIMULATED ANNEALING 28

3.1 Practical Imi)lementation... 33

4 PROBLEM DEFINITION AND SOLUTION 36

VI

Vll

4.1 Next-State Map Design... 37

4.2 Output Map Design.. 39

4.3 Trellis Decoder Design A lgorithm .. 42

5 SIMULATION RESULTS 44

5.1 Trellis Waveform C od ing ... 45

5.1.1 Memoryless Gaussian Source... 45

5.1.2 First Order Gauss-Markov S ource 48

5.2 Vector Trellis Waveform C od ing ... 52

5.3 Finite-State Vector Quiintizcition 52

5.4 Predictive Trellis Waveform C od ing ... 55

5.4.1 First Order Gauss-Markov Source 57

5.4.2 Speech Model S ource .. 59

5.5 Trellis Coded Q uantization... 61

5.5.1 Memoryless Gaussian Source.. 61

5.5.2 First Order Gauss-Markov Source 63

5.5.3 Predictive Trellis Coded Quantization................................ 64

5.5.4 Codebook Assignment to Branches in TCQ 65

6 SUMMARY AND CONCLUSIONS 71

APPENDIX 73

A Trellis Waveform Coders 74

A.l Memoryless Gaussian Source.. 74

V lll

A.2 First Order Gauss-lVhirkov Source 80

B Vector Trellis Waveform Coders 89

C Finite-State Vector Quantizers 95

D Predictive Trellis Waveform Coders 107

D.l First Order Gauss-Markov Source...107

D.2 Speech Model Source... 117

List o f Figures

1.1 Communication system ... 1

2.1 State Transition Diagram 10

2.2 (a) State transition d ia g ra m .. 17

2.2 (b) Trellis d ia g ra m .. 17

2..3 A predictive trellis coding system (a) Decoder (b) Encoder . . . 21

2.4 Marcellin and Fischer’s TCQ s y s te m ... 27

•5.1 Trellis waveform coder, SQNR results for Gaussian i.i.d. source,
SA+GLA: Trellis waveform coder with simulated annealing and
generalized Lloyd cilgorithm, PA64: Powell’s 1964 algorithm,
CGA: conjugate gradient algorithm, SFD: Linde and. Gray’s
scrambling function decoder, GLA: generalized Lloyd algorithm. 47

5.2 Trellis waveform coder, SQNR results for first order Gauss-
Markov source, SA+GLA: Simulated Annealing and General­
ized Lloyd Algorithm, GLA: Generalized Lloyd Algorithm only. 50

5.3 Vectoral TVVC vs scalar TWC, hrst order Gauss-Markov source 53

5.4 Finite-state vector (luantization, SQNR results for first order
Gauss-Markov source, 8 state trellis, SA+GLA : FSVQ with
simulated annealing and generalized Lloyd algorithm, VQ: mem­
oryless vector quantizer, OLT+GLA : FSVQ with omniscient
labeled transition ilesign method and generalized Llod algorithm. 56

i.x

5.5 Predictive trellis waveform coder, SQNR results for first order
Gauss-Markov source... 58

5.6 Predictive trellis waveform coder, SQNR results for speech
model source... 60

5.7 Ungerboeck trellises satisfying the branch labeling rules of
Unger b o e c k .. 66

X

List o f Tables

5.1 SQNR [dB] results for the memoryless Gaussian source. K: con­
straint length, SA-I-GLA; trellis waveform coder with simulated
annealing and generalized Lloyd algorithm, PA64: Powell’s 1964
algorithm, CGA: conjugate gradient algorithm, .SFD: Linde and
Gray’s scrambling function decoder, GLA: generalized Lloyd al­
gorithm.. 46

5.2 SQNR [dB] results for the first order Gauss-Markov source. K\
constraint length, SA-fiGLA: simulated annealing iuid general­
ized Lloyd algorithm, GLA: generalized Lloyd algorithm only.

5.5

51

5.3 SQNR [dB] results for the first order Gauss-Markov source with
different truncation depths. K: constraint length, TD: trunca­
tion depth... 51

5.4 SQNR [dB] results for scalar and vector trellis waveform, coding
where the systems with k — \ and k = 2 are designed using
SA-f-GLA and results for k = 3 and k = 4 are those of the labeled
state vector trellis encoding system. N: number of states, k\
vector length, LSVTE: labeled state vector trellis encoding system. 54

SQNR [dB] results for 8-state FSVQ and VQ for the first order
Gauss-Markov source, k: vector length, SA-I-GLA : FSVQ with
simulated annealing and generalized Lloyd algorithm, VQ: mem­
oryless vector quantizer, OLT : FSVQ with omniscient labeled
transition design method. 55

5.6 SQNR [dB] results for the first order Gauss-Markov source. K\
constraint length, SA-f-GLA: simulated annealing and general­
ized Lloyd algorithm, GLA: generalized Lloyd algorithm only. 57

XI

XU

5.7 SQNR [clB] results for the speech model source, /v: constraint
length, SA+GLA; simulated annealing and generalized Lloyd
algorithm, (JGA: Powell’s conjugate gradient algorithm, GLA:
generalized Lloyd algorithm only... 61

5.8 Comparison of trellis coders for Gaussian i.i.d. source, = 4, L-
M Q.: Lloyd-Max quantizer, CGA: Conjugate gradient algorithm 62

5.9 = 4, first order Gauss-Markov source, a = 0 . 9 64

5.10 Predictive trellis coding results for first order Gauss-Markov source 64

5.11 Predictive trellis coding results for speech model so u rc e 64

5.12 7? = 1, performance comparison of possible branch labelings for
Ungerboeck trellis, Gauss-Markov sources...................................... 67

5.13 Trellis-a and trellis-b comparison (t-a: trellis-a, t-b: trellis-b),
-fSA: performance with SA on the trellis the SQNR of which is
given in the previous column, Ql and Q2 denote the quantizers
with Lloyd-Max output points calculated for SI (source 1) and
S2 (source 2) respectively. Source 2 has a correlation coefficient
that is negative of Source I ’s. 68

A.l K = 2, TWC, Gaussian i.i.d. source... 75

A.2 K = 3, TWC, Gaussian i.i.d. source... 75

A.3 K — 4, TWC, Gaussian i.i.d. source... 76

A.4 K = 5, TWC, Gaussian i.i.d. source... 77

A.5 K = 6, TWC, Gaussian i.i.d. source... 78

A.5 K = 6, TWC, Gaussian i.i.d. source... 79

A.6 K = 3, TWC, first order Gauss-Markov so u rce 80

A.7 K = 4, TWC, first order Gauss-Markov so u rce 81

A.8 K = 5, TWC, first order Gauss-Markov so u rce 82

Xlll

A.9 K = 6, TWC, first order Gauss-Markov source 83

A.9 K = 6, TWC, first order Caiiss-Markov so u rce 84

A.10 K = 7, TWC, first order Gauss-Markov source 85

A.10 K = 7, TWC, fii'st order Gauss-Markov source 86

A. 10 K = 7, TWC, first order Gauss-Markov source 87

A.10 K = 7, TWC, first order Gauss-Mcirkov Source 88

B.l N=4, VTWC, first order Gauss-Markov source 90

B.l N=8, VTWC, first order Gauss-Markov source 91

B.2 N=16, VTWC, first order Gauss-Markov source 92

B.2 N=16, VTWC, first order Gauss-Markov source 93

B.2 N=16, VTWC, first order Gauss-Markov s o u rc e 94

C.l k = I, N = 8., FSVQ, first order Gauss-Markov source 96

C.2 k = 2, yV = 8, FSVQ, first order Gauss-Markov source 97

C.2 k = 2, N = 8, FSVQ, first order Gauss-Markov source 98

C.3 k = 8, N = S, FSVQ, first order Gauss-Markov source 99

C.3 k = 3, N = 8, FSVQ, first order Cfauss-Markov source 100

C.3 k = 3, N = 8, FSVQ, first order Gauss-Markov source 101

C.4 k = 4, yV = 8, FSVQ, first order Gauss-Markov source................... 102

C.4 k = 4, N = 8, FSVQ, first order Gauss-Markov source...................103

C.4 k = 4, yV = 8, FSVQ, first order Gauss-Markov source...................104

C.4 k = 4, N = 8, FSVQ, first order (Jauss-Markov .source.................. 105

C.4 k = 4, yV = 8, FSVQ, first order Cfauss-Markov source 106

XIV

D.2 K = 3, PTWC, first order Gauss-Markov so u rc e 108

D.3 K = 4, PTWC, first order Gauss-Markov so u rc e109

D.4 K = 5, PTWC, first order Gauss-Markov so u rc e110

D.5 K = 6, PTWC, first order Gauss-Markov so u rc eI l l

D.5 K = 6, PTWC, first order Gauss-Markov so u rc e 112

D.6 K = 7, PTWC, first order Gauss-Markov so u rc e 113

D.6 K = 7, PTWC, first order Gauss-Markov so u rc e 114

D.6 K=7, PTWC, first order Gauss-Markov so u rce115

D.6 K=7, PTWC, first order Gauss-Markov so u rce116

D.7 K = 2, PTWC, speech model source .. 117

D.8 K=3, PTWC, speech model s o u r c e ... 118

D.9 K=4, PTWC, speech model s o u r c e ... 119

D.IO K=5, PTWC, speech model s o u r c e .. 120

D.l K = 2, PTWC, first order Causs-Markov Source..........................108

Chapter 1

IN T R O D U C T IO N

The goal of design of any communication system is to build a system which
enables the transfer of information-bearing signals from the transmitter to
the receiver reliably, that is with “little” or no loss in information. To reach
the goal of reliable communication, the information to be transmitted should
be converted into a form that is in some way more “convenient” to transmit
and then be converted back to the original form after transmission. Let the
information source be in the form of a random process Â „. Then, a simple,
yet general model of a communication system aiming a reliable transfer of
information is as given in Figure 1.1.

A communication system is composed of three parts, an encoder, the chan­
nel, and a decoder. The channel represents the medium through which infor­
mation will be sent. The information which is represented by the input random
jjrocess X,i is converted by the encoder into another random process Un which
is more convenient to handle aiul to transmit over the channel. This process
(Jn is sent through the channel, and at the other end of the channel another
random process Un is received lyy the receiver which is related to Un through
a conditional probability distribution. Then, the decoder performs the reverse

A

X.

Figure 1.1: ('ommunication system

operation of the encoder, and converts Un into Xn·, the reproduction symbols.
It is possible (and may actually be desirable) that X,i ^ and the objective
of communication system design is to minimize the difference between the
input sequence, and X^^ the rej^roduction sequence.

Usually the channel puts severe restrictions on the type and the quantity
of signals that can be transmitted through it. For example, most of the time
one has to represent an infinite collection of input signals X^ with a finite
collection of signals Un· This introduces quantization errors into the commu­
nication process, causing a loss in information since there is no way one can
recover Xn from Un- Other than this, the difference between X,i and Xn iTiay
be due to some disturbances in the channel which corrupt the signal. These
disturbances may be deterministic such as filtering, modulation, aliasing, or
random such as additive noise, fading, and jamming. Then, the fundamental
issues in communication system design are source coding or data compression
which is the mapping of the input sequence (information source) efficiently
into a representation for transmission over the channel and channel coding or
error-control coding for overcoming the noise in the channel.

Claude Shannon formulated both of these issues in his classical papers [1],
[2]. One important fact he proved was that in a communication system design,
source coding and (nror-control coding (channel coding) can be considered
independently: one can design seperate systems for source and channel coding
and then simply cascade them. The result would be as good as the result of
designing both systems together at the same time.

In our work, we focused on the problem of data compression, making some
assumptions about the channel and then ignoring it completely, the approach
being justified with Shannon’s above mentioned theorem. Our first assumption
about the channel is that it is digital, that its permissible inputs and outputs
form a finite set or alphabet. Our second assumption is that the rate of the
channel is fixed, that is, for each channel input symbol chosen from the
input alphabet there is just one output symbol f/„. The third assumption is
that the channel is noiseless, that is = Un-

Data compression involves the design of the encoder and the decoder. As
stated above, the encoder is a mapi)ing from the input sequence Xn into i/„,
the channel input secpience. This ma,pping can be performed in many ways,
the objective still being to minimize the difference between the reproduction

symbols and the input symbols. A special ciise of data compression is when the
encoder is a minimum distortion or nearest neighbor mapping and this partic­
ular type of data compression is called qxLantization. Shannon’s distortion rate
theory formulates the lowest distortion achievable for a given fixed rate with
such a system but it makes no suggestions for the ways of actually building
systems with optimal performance. Therefore, many researchers since Shannon
have concentrated on finding the rules for the design of systems with perfor­
mance approaching theoretical bounds. Although many good coding systems
have been suggested, there is still room before the bounds are reached. The
goal of this work is to contribute to these efforts in the fields of trellis waveform
coding and related systems using a different design approach.

Before we go into the details of our coding approach, we provide some
background information on some important quantization techniques related to
our work in the next chapter.

Chapter 2

Q UANTIZATIO N
TECH NIQ UES

2.1 Scalar Q uantization

Scalar quantization is the simplest of qucintization techniques. It is simple
because it performs quantization on a discrete time sequence considering the
samples one by one, in other words, it quantizes the samples independently.
The scalar quantizer is defined with a codebook C = {yi, J/2 , · · - yN) composed
of the codewords ?/,s which iire the reproduction values, and an encoding rule,
which determines the way in])ut symbols are encoded to one of r/,s. The code­
words partition the input space into N regions, ,S'i, .$2) · · · > <5'̂ /·, each Si being
composed of the points in the s])ace that are assigned to ?y,· through the en­
coding rule. The elements Xn from the input sequence {.ri, ;r2 , . . . , x’l} are
quantized one by oiuj according to the encoding rule, that is, a symbol from
the input sequence is quantized to ;iy, if it falls into the region .5',·. An impor­
tant special case of the ciuantizer is the Nearest Neighbor (NN) quantizer. In
NN encoding, the distance of :;;,i from each yi is calculated via the distortion
measure d{x,i, yi) and Xn is quantized in the following way.

— yji 11 Si yi)i Vi G {1,2, .. . N}i (2.1)

where q(x) denotes the (piantizer function. If the equality holds, that is, if there
is more than one such j , the choice is maile randomly. The encoder being the
NN encoding rule, the decoder is simply a look-up table (the codebook itself)

which reproduces tlie codeword with tlie index received from the channel.

In the design of a scalar quantizer the goal is to come up with an encoding
rule and a codebook which gives the best performance for input in terms of a
performance criterion, over all possible encoding rules and codebooks. The dif­
ference between the input seciuence and the reproduction sequence is referred to
as distortion. In order to measure the “distance” between the source sequence
and the sequence of the quantized samples, one uses a mesaure, known as the
distortion measure, between the two sequences. A wide class of distortion mea­
sures are known as per-letter distortion measures, i.e., the contribution from
individual samples and their quantized values in a sequence have independent
effects; for example, for additive distortion measures, these contributions are
additive. There are various functions proposed in the literature as measures of
sample distortion.

The most common (.listortion measure between two vectors x and x whose
members are .t, and ;t·,, 0 < ?’ < A: — 1, is the squared error distortion or the
square of the Euclidean distance:

k - \

d(x,x) = I ^ I (2.2)
¿=0

Other possible distortion measures are Holder iiorm.

A.—1

Minkowski norm^

</(x,x) = I Xi - Xi I"}
t=0

d(x,x) = max | .c,· — .i·,· |,0<г<̂ ·—1
and the weighted-squares distortion^

A—1
d(x,x) = W{ I X{ I ,

(2.3)

(2.4)

(2.5)
¿=0

where in,· > 0, i = 0 , . . . , A' — 1.

These distortion measures are called (.lilference distortion measures since
they depend on the vectors x and x oidy through the difference vector x — x.
Other types of distortion measures are also used in tlata com])ression systems
but they are more complicated. Throughout this thesis we will only use the
squared error distortion measure l)ecause it is commonly used in the data
compression literature and because of its mathematical tractability.

2.2 Vector Q uantization

A direct generalization of scalar quantization (SQ) to higher dimensions, that
is, coding of symbols in blocks with length more than one is vector quantization
(VQ). A vector quantizer Q of dimension k and size is a mapping from a
vector in the ¿-dimensional Euclidean space 7?.̂ ’ into a finite set C containing
N codewords or reproduction])oints. That is.

Q : K ‘ ->C, C = {yi,y2.---,yw) Mid y, € (2.6)

With analogy to the scalar case, the codewords y,s in the codebook C
partition the input vector space into N regions each composed of points
in the space which are associated with y,·. Each vector x,i from the input
sequence is encoded into y,· only if it is in Si. Again, a special case is nearest
neighbor encoding where the quantizer computes the distortion between the
input vector and each codevector in the codebook and encodes the input vector
to the one which gives the smallest distortion. That is,

Q M = Yj if <K^n,yj) < (l{^n,yi), 3 j ,V ie (2.7)

where, again the choice is made randomly if the equality holds.

Vector quantization is more efficient than scalar quantization because it can
exploit the correlation lietween samples which SQ cannot do since it quantizes
the samples independently. Moreover, even if there is no statistical correlation
to be exploited between the siunples, VQ can do better than SQ due to its
higher freedom in choosing decision regions for jiartitioning [4].

Since the quantizer is completely S])ecified by a codebook and an encoding
rule, the design objective of vector quantizer is to find a codebook corre­
sponding to the decoder and an encoding rule corresponding to the encoder,
that will give the best performance. For a given codebook C, the average
distortion (for empirical data) can l)e lower l.)ounded according to

(2.8)
A. = l - -

This lower bound is achieved if Q assigns each vector Xf. in the input sequence
to a codeword which is the nearest neighbor condition. Looking for the optimal
codebook given the partition h'ads us to the centroid condition. A centroid.

ceut(5), of a set S € is the vector y which minimizes the expected value of
the distance between any point x in S and y. That is,

:.'ent(5) = m iir 'E (d (X ,y) | X G 5) (2.9)

where the inverse minimum notation means the vector y satisfying the mini­
mum is chosen.

It is easy to show that for the squared error distortion measure, this leads
to the center of mass of S. For empirical data, the center of mass of S is.

cent (5) =
1
S

Ill’ll

1=1
(2.10)

where the summation is over the vectors x,· that are in S. Then, given the
partition (or equally the encoding rule) the oj)timum codebook is composed of
the center of masses of each partition cell.

These necessary conditions of optimality suggest an iterative means of nu­
merically designing a good vector quantizer. Given S one can start with an
arbitrary initial codebook and partition S according to NN. Then the optimal
codebook for this partition is found I:>y computing the centroids and the new
partition can be found for the new codebook. Iteratively, this procedure pro­
ceeds to better codebooks. This algorithm is known as the Generalized Lloyd
Algorithm (GLA) or the LBG algorithm [3]. Although there are various vector
quantizer design methods [4], GLA is the most popular and several extensions
of it are made in the literature. The extension that is of interest to us is the
one intoduced by Stewart et al. in [20] in the context of trellis waveform coding
which we will discuss in length in the coming sections. At this point we give
GLA in its original form as was introduced by Linde et al. [3] for VQ:

The Generalized Lloyd Algorithm

1. Begin with an initial codebook Go. Set m = 0, and a threshold value e > 0.

2. Given the codebook. Cm = {yi},
partition the training set into cells ,S', using the NN condition:

Si = {x : d(x,y,·) < d(x,yj); Vj / /:}.
3. Compute the centroids of the partition cells. Si using (2.10),

update the codebook according to the centroid condition:

Cm+i = {cent(,S;·)}.

4. Compute the average distortion, for C,n+i·

If (An - An+i)/An < e,

stop with codebook An+i,
else, set m <— m + 1.

2.3 F in ite-S ta te Vector Q uantization

Vector quantization, as discussed in the previous section, considers each vector
independently and therefore does not take into account the future or past
vectors. Therefore the right term to define standard VQ is memoryless VQ.

As discussed in the previous section, the superiority of VQ to SQ (scalar
quantization) partly comes from the fact that VQ exploits the correlation
among the samples in the block. And the bigger the vector (or block) di­
mension is, the more VQ will exploit the statistical dependences in the se­
quence, since it will see more samples at a time. At this point, it is clear that
contending with a finite vector size and quantizing the blocks seperately, we
are ignoring the dependencies Ijetween samples in consequetive blocks which
could be exploited for even better coding performance. One apparent solu­
tion to this problem is to increase the vector dimension indefinitely which is
then accompanied with a pro])ortional increase in computational complexity,
which becomes unmanagable. Since this solution is not practical, instead of
introducing more sam])les in the quantization process, we should include the
information about these samples to the current quantization instant in some
way, that is we should introduce memory into the quantizer. This memory
is used to derive information about statistical dependencies between samples,
and this information is ex])loited for better coding performance. This can be
realized in the following manner.

In standard (memoryless) V(), we base our quantization decisions on a fixed
codebook C = {y i,y 2) · · · lyAf}· Instead, we think of employing a codebook
changing with time, we let a dilferent codebook be used at each quantization
instant and choose this codel)ook from a. collection of codebooks according
to the output of the previous ([uantization instant. Using the knowledge of

previous quantization in deciding the codebook to be used, we effectively in­
corporate memory into the (piantization process. If the separate codebooks are
designed to suit different characteristics typical of the source, and the codebook
selection procedure is designed properly as a good predictor of the trajectory
the source will follow, interblock correlations will be exploited and the perfor­
mance will increase. This form of vector quantization is called recursive vector
quantization [4]. The important special case of recursive vector quantization is
when the collection of codebooks contains only a finite number of codebooks
and this VQ is called finite-state vector quantization (FSVQ) [4]. Choosing a
different codebook from a finite collection of codebooks at each quantization
instant suggests a “state-based structure,” where each state is identified with
the choice of codewords composing a particular codebook. The state with the
codebook associated to it, which we can name as the state-codebook, describes
the mode the quantizer is in, and is in a way a summary of the past behavior
of the source. This “state-based structure” is a finite-state machine specified
by a next-state function, determining state transitions and a decoder mapping
which decodes the input bit stream to a re])roduction symbol (a codeword from
the current-state codebook).

The best way to pictorially describe the F.SVQ finite state machine is
through an example state transition diagram shown in Figure 2.1 with the
assumption that the rate of the system is one bit per sample, corresponding
to binary transitions or state-codebooks with size two. This FSVQ has four
states, represented by circles numbered as 00, 01, 10, and 11. The lines with
arrows represent possible state transitions at a decoding instant. y,jS are code­
words from the ith state-codebook. For instance, the channel symbol 0 when
the quantizer is at state 01 i>roduces a reproduction symbol yio, the codeword
from state codebook 1 with index 0, and causes the quantizer to move to state
10. The transitions are equivalent to the next-state function, the labels of
transition lines with the states are equivalent to the decoder mapping.

Now, let us give a formal definition of the finite-state vector quantizer
(FSVQ):

Define a state space S as a collection of .symbols S = {.Sj, .S2 , . . . , ¿'/c-i}
called states. Let the vector dimension lie k. Let the set of channel symbols
be U = {uo, U i,. . . , U/v-i}. The coding rate is log/V bits per input vector or

log iV bits |)er source symbol. Then, a finite-state encoder is a mapping
cv : X S —y U, that is, given an iii])ut vector x and the current state s

10

the function o:(x, .s) maps x into u, a channel symbol. In addition to the
encoder mapping, the quantizer is defined by the next-state mapping which
is the essential difference of FSVQ from other VQ techniques. The next-state
mapping is a function / : ¿Y x <S —> <S which produces the next state /(u ,s) ,
given the current state s and an output symbol u produced from the input
symbol X .

Correspondingly, a finite-state decoder is a mapping fi : U x S —>■ 7̂ ’̂,
that is, given the current state s and the channel symbol u it produces the
reproduction symbol x.

The output spaces of the encoder and decoder mappings are required to
be the same, also the next-state mapping is resctricted to depend only on the
current state and the encoder output rather than the input symbol. These
two restrictions enable the encoder to track the state sequence given the initial
state, and one does not need to send the state information in addition to the
channel symbols.

To each state, .s, a fitatc codebook, C, = {/7(u, .s), u G ¿/}, is associated which
is composed of the possible reproduction vectors in that state.

i l

Then, the encoding process of a random process {A^,,n = 0 ,1 ,2 ,...} can
be described as follows. Given an initial state sq G <5, the channel symbol
sequence, the state sequence, and the reproduction sequence are produced re­
cursively for n = 0 ,1 ,2 ,... as:

u „ = cv(x„, 6 ;) .sw, = / (u ,„ Sn) Xn = Sn). (2 . 11)

To complete the definition of FSVQ, we should also specify the encoding rule:
FSVQ encodes according to minimum distortion or nearest neighbor condition.
That is, using the Euclidean distance as the distortion measure, the encoder
mapping a is defined by

«(x, .s) = min ‘d(x,/:l(u, .s)) (2. 12)

which means that a(x, .s) is the index u for which the reproduction codeword
)il(u,s) yields the minimum possible distortion over all possible reproduction
codewords in the state codebook Cs- In our discussion on vector quantization
we noted that the minimum distortion encoding rule was the optimal encoding
for a given codebook. Although in FSVQ minimum distortion encoding seems
the most natural choice, in the long term, it may not be the best choice.
Because, FSVQ with minimum distortion encoding optimizes only the short
term performance of the system. Because of the memory in the quantizer, a
codeword with very small distortion can lead to a state with a bad codebook for
the next input vector. But, the minimum distortion rule is intuitively satisfying
and no better encoder structure with comparable complexity is found so far.
Therefore, we will contend with this encoding rule.

Suboptimality of the minimum distortion encoding in FSVQ is the conse­
quence of FSVQ’s having a memory of only one vector size. The remedy is to
have an encoder with a memory of iii])ut sequence size which leads us to the
trellis encoding system that will be discussed in the next section.

Note that VQ is a special case of FSVQ with only one state. Although
FSVQ is more general, distortion ixite functions of information theory show
that, optimal achievable])erformance (average distortion) for a given rate is
the same for both cases [5]. But the performances of FSVQ and VQ are the
same only when arbitrarily large vector dimensions are allowed. FSVQ, because
of its higher ability to exploit correlations between samples, obtains the same
performance with VQ using shorter vectors, therefore it provides systems with
lower complexity.

12

Based on the finite-state machine perspective, we can identify two different
ways of relating the state sec|uence and the reproduction sequence. These are
pairing of each reproduction vector with a state or with a transition. The
first type of FSVQ is called labeled-state FSVQ and the second one is called
labeled-transition FSVQ.

The decoder mapping /i of a labeled-state FSVQ depends on the current
state and channel symbol only through the induced next state; the current
reproduction Xn is determined by the next state Sn-i-i· On the other hand,
the decoder output of a labeled-transition FSVQ is associated with the tran­
sition from the current state to the next state and therefore is determined by
both the current state and the next state s,i+i. These two configurations
correspond to two different finite-state machines: labeled-state FSVQ to the
Moore machine.! labeled-transition FSVQ to the Mealy machine [7]. The
two structures are equivalent in the sense that Mealy and Moore machines are
equivalent [6]. That is, given one, one can find an equivalent FSVQ of the
other form, equivalent in the sense that given an initial state and an input
sequence, the two quantizers will yield the same output sequence. The code­
words are held constant in transition from one form to the other. For example,
going from labeled-transition FSVQ to labeled-state FSVQ the codewords that
were assigned to branches are assigned to separcite states which amounts to an
increase in the number of states.

As noted above, an FSVQ is fully determined by an encoding rule, state
codebooks and the next-state function. Therefore, the design of a FSVQ fo­
cuses on generating state codebooks and a next-state function. First, we con­
sider finding a good encoder a and a good decoder /i given a fixed next-state
function / . Finding the best decoder for the given next-state function and
given encoder is equivalent to finding the best state codebooks. Suppose we
have an input .sequence {X„; = 1 ,2 ,.. . , L}. If the initial state is .Sq, encod­
ing, we obtain the channel .symbols U,i = (v(X,i,.s,i) and the state sequence

= /(U ,i,s,i) for n — 1,2, . . . ,L . Then our goal is to find the decoder
mapping (d minimizing the distortion,

D = l x ; , i (X , „ / i (U , (2.13)
^ n=l

It is easy to show that optimal decoder cod(wectors are the centroids [4], that
IS,

/̂ (u,.s) = min ' ■ -/— -T, .
I I I I

^ rf(x...y) (2.14)

13

where M (u, s) is the collection of U„ such that Un = u.

This is the optimum decoder for the given encoder and the next-state func­
tion, but the encoder may not be the optimum one for the obtained decoder,
so the next step is to find the optimum encoder for the given decoder. Now
we perform a nearest neighbor encoding using the state codebooks found and
the given next-state function, which yields a new partition and therefore a new
encoder a. Then, we should find the best decoder for the current encoder and
given next-state function and the process of finding the best encoder and de­
coder continues iteratively until no significant performance gain is obtained by
subsequent iterations. This procedure is indeed a variation of the generalized
Lloyd algorithm. We can summarize the algorithm as follows.

FSVQ E n co d e r/D eco d er Design A lgorithm
1. Initialization:

Given: a state space <S,
an initial state Sq,
an encoder ao
a next-state function / ,
a training sequence {Xn; n = 1 ,2 ,. . . , L}.
Set e > (J, m = l. Do = oo.

2. Encode X„, n = 1 ,2 , . . . , L, using a,n-i
to obtain {U„, s„}; n = 1 ,2 ,. . . , L.
The state codebooks are modified into ^(u, s) = cent(u,s).

3. Replace the encoder by the minimum distortion encoder am for ^m-

Compute the distortion Dm·, if l^m — Dm-i\IDm < e quit else goto stepl.

Then, the problem left is to design the next-state function. Several methods
are proposed in the literature to solve this problem. These methods include
Conditional Histogram Design, Nearest Neighbor Design, Set Partitioning, Om­
niscient Design, etc. A detailed discussion of these methods can be found in

[4].

Conditional histogram design is one of the simplest techniques. First, the
algorithm forms a supercodebook through applying GLA with standard VQ. A
state is assigned to each codeword thus found. Then the method estimates the
conditional probabilities of successor codewords in the supercodebook which is

14

named the classifier codebook und forms a labeled-state FSVQ by only including
the most probable codeword successors in the classifier codebook to the state
codebook. Since the codewords are assigned to states, the choice of state
codebooks also determines the next-state function.

The method called nearest neighbor design also generates a classifier code­
book in the same way, but uses the distortion between the codewords and not
the conditional probabilities for selecting the set of allowed new states from
a given prior state. For each state assigned to each codeword in the classifier
codebook, N nearest neighbors are found and the state codebook is formed
with these codewords. Hence the next-state function is formed.

Another FSVQ design techniciue, called omniscient design was introduced
by Foster et al. [7] and Haoui and Messerschmitt [8], and developed for speech
coding by Dunham and Ciray [9] and for image coding by Gersho and Aravind
[10]. This method is more complicated than nearest neighbor and conditional
histogram methods but it usually shows better performance and it can be
used with more general classifiers than VQ. Although nearest neighbor and
conditional histogram techniques are for the labeled-state FSVQ design, the
omniscient method can be used for both labeled-transition and labeled-state
FSVQ design. The details of this algorithm can be found in [4] and [7]. Ref­
erence [7] also provides simulation results for the comparison of various FSVQ
design techniques. These results show that omniscient labeled-transition design
(OLT) gives the best results for sources of practical interest. This method is
also referred to in [4] as the method through which best results are obtained
thus far.

One of the contributions of this work is to suggest and show a design algo­
rithm that has better performance than the methods described above, which
will be described in Chapters .'3-5.

2.4 Trellis W aveform C oding

In this section, we turn our attention to a more advanced data compression
scheme, trellis utaveform coding ̂ which is the main qucintization scheme on
which our work has focused with the goal of designing a near-optimum decoder.

This coding scheme has l)eeu very popular among many researchers since

15

early 1980s, who made considerable progress towards an understanding of trellis
encoding systems. The popularity of this data compression system is partly
due to the fact that results in information theory have proved the existence
of trellis systems which show performance close to the theoretical bounds [11],
[12]. But these are only existence proofs, which do not describe the actual ways
of constructing good codes. Therefore many researchers concentrated on the
problem of finding rules for constructing good codes and came up with various
design algorithms. The goal of this thesis is to make a contribution to these
efforts, which has been achieved by designing an algorithm for constructing
near-optimum codes based on an ajjproach different from other work in the
literature.

We will now describe the trellis waveform coding system. In the previous
section, we discussed a VQ system called FSVQ. As was noted, FSVQ is supe­
rior to VQ due to the incori)oration of memory into the quantization process.
But as also explained, minimum distortion encoding may not be optimal in
FSVQ, since a codeword with very small distortion can lead to a state with a
bad codebook for the next input vector. Although through good design one
can try to eliminate this problem, we can never be sure about the optimality
of the encoding.

This observation leads us to tlie conclusion that the suboptimality of FSVQ
encoding is due to its having a memory size of only one vector and the remedy
is to increase the memory of the FSVCJ encoder from vector size one to vector
size M\ instead of making “greedy” ciuantization decisions on vectors one by
one, to delay the decision until M vectors are seen and to decide on these M
vectors together. Then the quantizer will make a decision which is good for
at least M vectors, and the jn'obability of making bad decisions will decrease.
In this manner, we expect to have an optimal encoder as M approaches the
length of the vector sequence.

This operation is called delayed decision encoding^ lookahead encoding, mul­
tipath search encoding, or trellis encoding, for reasons that will become appar­
ent. For delayed decision encoding, we employ a finite-state machine for the
decoder as in FSVQ where the states summarize the past behavior of the sys­
tem, and approximate the current mode of behavior of the input sequence. In
this case, the forms of encoding, decoding, and next-state mappings are differ­
ent. In FSVQ, the state transition diagram (finite-state machine) is sufficient
to explain the operation of the .system; but in delayed decision coding, we need

16

a more elaborate structure tliat takes the past into account explicitly.

For convenience we repeat here Figure 2.1 as Figure 2.2.a, which shows
the state transition diagram of a FSVQ. The extension in time of the state
transition diagram is the directed graph given in Figure 2.2.b. The stages
in the graph corres])ond to consecutive time instants of the data compression
process and each stage is ccpiivalent to the state transition diagram. Each node
corresponds to a distinct state at a given time, and each branch originating
from a node represents a transition from that state (node) to some state (the
node which the branch is connected to) at the next instant. The graph begins
at state 5o and ends at To each branch in the graph certain weights are
assigned which are the reproduction symbols-or state codewords- in the FSVQ
state transition diagram. This directed graph is called a trellis and it is a
special case of a i/’ce, branches of which are self-emerging, that is, branches
originating from a common root (node) can meet again at another node later
in the tree. The encoding system b£ised on this data structure is called the
trellis source coding system. To every possible state sequence of the trellis
there corresponds a unique path. Given the channel symbols, the trellis can
keep track of the state sequence and generate the reproduction symbols out of
the state codebooks.

The trellis structure thus described can be used to represent a vector quan­
tizer if the trellis has only one state or a finite-state vector quantizer but to
represent a trellis encoding system we introduce measures assigned to each node
along the trellis. The measure assigned to a particular node corresponds to the
total distortion of a state sequence that starts at state .Sq and ends at that node.
The encoder performs a nearest neighbor encoding in the following manner. At
each time instant, for each node, it considers the input branches to that node
and computes the distortions due to the codewords corresponding to these
branches. Summing the node-distortion of each node which these branches
originate from and the calculated distance of the corresponding branch, the
total distortion faced by a particular path is calculated. The encoder decides
on the path with the least distortion and assigns the distortion corresponding
to this path to the node under consideration; it also stores the index of the
branch connected to that node. Therefore, the encoder is a trellis search al­
gorithm which tries to find the path with the minimum distortion. There are
various algorithms in the literature for trellis search, Viterbi Algorithm (VA)
[1.3] being the most popular one. Tlx; reason for its popularity is that it is an
optimal search algorithm. A well-known alternative, the M-L algorithm, is not

17

STATE
к = о k=l к = 2 У(Ю к = 3 к = 4 k = L-l k = L

Figure 2.2: (1)) Trelli.s diagram

18

optimum and it is better suited for tree search since it takes no advantage of
the simpler trellis (self-emerging tree) structure.

The Viterbi algorithm was first suggested by Viterbi in 1967 [14]. It was
later shown by Omura in 1969 [15] that it was a special case of dynamic pro­
gramming. Here we summarize this important algorithm.

2.4.1 V i t e r b i A lg o r i t h m

Given : a collection of states S = (Tq, <ti, . . . , ctm- i ·,
a starting state sq,
an input vector sequence :ri, x-2 , . . . , x l ,
a decoder /i(n, .s).

Let d(.,.) denote the squared Euclidean distance and Dj{k) denote the total
distortion for state k at time j.

1. Set Z)jt(O) = oo, 1 < A; < M
2. For 1 < n < L do

2.1 For 0 < k < M do
2.1.1 Calculate d(j,k) for all states j from which a branch

to state k exists
2.1.2 Df,{n + 1) = m,in(Dj(n) + d(j, k))

J

2.1.3 Eliminate the branches other than the branch
achieving the minimum above. Save the optimum branch.

3. Find \mi\Dk{L) which is the minimum distortion obtainable.

Trace back the survivor i^ath, which is the optimum state sequence.

Although the Viterbi algorithm is very favorable due to its optimality, there
is a price paid for this. First of all, coni])utational complexity is higher when
compared with FSV(J. Second, there is the important practical problem that
the algorithm does not make a decision on the o])timum])ath until it reaches
the final node. First of all, this amounts to the storage of all the survivor paths
until the algorithm e.xecution is completed. One observation enables us to get
around this difficulty: most of the time we .see that the survivor paths at time

19

k have a common root some / stages back at time k — 1. Then the survivor
paths are said to have merged at deptli /. If all the survivor paths at time k
have merged at depth /, we can safely make a decision about the optimum path
up to time k — I without waiting until the end of the sequence. An efficient
way of performing truncated search is to stop the normal execution of VA at
certain instants periodically and perform a back search to find the root, where
the survivor paths are merged. When the root is found, a decision can be
made for the optimal path before the root and the cursor of the storage array
is simply moved to the root. Even if we cannot find a root, considering the
path with the lowest distortion up to the decision node, we can force a decision
for the optimum path. If we keep the period of searches large enough, that is,
if we keep the truncation depth large enough, the probability of making errors
in the truncations will be low. In the literature [16], a truncation depth TD
of 5 times the constraint length is suggested. Obviously, performing VA with
truncated search greatly reduces the memory storage requirements. Instead of
storing L X N integers we just store I'D x N integers and usually TD L.

Another reason for])referring truncated search VA to standard VA is that
when a coder is to be used in interactive applications, because of practical delay
reasons, search lengths should be kept short. For typical interactive speech
applications the practically allowable delay is no greater than 40 milliseconds
which corresponds to search-length values around 256 in rate 1 bit/sample
communication. But, of course, there are no such restrictions in broadcast or
storage applications and as long as there is need to do so, long search lengths
can be used.

Since the encoder of the trellis waveform coder is simply a trellis search
algorithm for which we choose the Viterbi algorithm to use, the problem left
is to design the decoder which is the objective of this thesis.

2.5 P red ictive Trellis W aveform C oding

Another way of incorporating memory into the quantization process is to in­
clude prediction to the encoder. In the literature, this approach was applied
to vector quantization and gi-eat improvement over standard VQ was reported
[4]. An interesting approach was reported later by Ayanoglu and Cray in [19]
who replaced the VQ encoder with a trellis encoder and named the new system

2 0

predictive trellis waveform coding (PTWC).

Our knowledge of DPCM states that for a good predictive encoder, pre­
diction error samples are approximately white. Therefore, if the predictor is
well-designed, combined with the advantages of trellis waveform coding, PTWC
will exploit most of the redundancy in the source.

Predictive trellis waveform coding system is expected to perform better
when compared to noiifeedback trellis encoders since whitening the source,
which prediction does efficiently, means exploiting the statistical redundancy
of a source better. It is also expected to perform better than DPCM due to
delayed decision encoding for reasons explained before. One more advantage
offered by delayed-decision encoding is the stabilizing effect on the decoder
prediction filter [18].

2.5.1 S y s te m D e s c r ip t io n

The encoder and the decoder of the predictive trellis encoding system are as
given in Figure 2.3. In the encoder, the output of the predictor which tries
to approximate the input is subtracted from the input to obtain the error
symbols {ejt}. Having the error symbols as input, the trellis search decides on
the best choice of a channel symbol sequence {ziA,.} through minimum distortion
encoding. Channel symbols ua’s are sent through the channel and received by
the decoder which converts them into codewords with corresponding indexes.
The decoded codeword is then added to the predictor output which is the same
as the predictor in the encoder. As in the case of DPCM, the reconstruction
error Xk — Xk is equal to the (|uantization error e.k — (j{ek) = (xk — d:k) — {¿k — ¿k)
where (j{ek) is the codeword assigned to e-k·

The most essential])art of the system is the predictor, the design of which
should be done carefully so that it predicts the input sequence efficiently.
Ayanoglu and Gray used a linear time invariant predictor since this would
keep the decoder complexity low and would enable the use of relatively simple
design techniques leased on linear])rediction theory [19].

Therefore, to tlefine the predictive system suggested by Ayanoglu and Gray

21

U,

(a)

(b)

Figure 2.3: A predictive trellis coding system (a) Decoder (b) Encoder

2 2

[19], we should specify the trellis search algorithm and the codebook and pre­
dictor design algorithm. The trellis search algorithm aims at the optimal min­
imum distortion encoding of the input sequence in the presence of a predictor.
Due to the finite state machine structure, a trellis search algorithm is possible
and it is a modified version of the Viterbi Algorithm.

2.5.2 S ea rch A lg o r i t h m

The search algorithm should keep an estimate for the previous Lp reproduction
symbols Xk-i along the survivor path leading to state j , which will be used by
the predictor at time A; -f 1. Let Xk{j, l) , l = l , . . . ,L p represent Xk-i along
the path leading to state j at time k. Let Xk{j) = {^k{ jA)T-- i^k{ j^Lp)y^
a = (ai , . . . Let Di,{j) represent the total distortion associated with
the j th node at time k. Let y{i, j) be the codeword on the branch connecting
nodes i and j . The predictor order is Lp.

0. Initialization:

Do{0) = 0,
Do{j) = oo, 1 < i < - 1,
X o(i) = 0, 0 < i < 2^ ' - * - l ,

1. Recursion: For 0 < k < Lb — U do
1.1 For 0 < J < 2^'“ ’, do

1.1.1. Dynammic programming step:

Dk+i{j) = mini{Dk{i) -I- (l(xk,a^Xk{i) + y{i,j)))·
The index i is from the set of all nodes from which a path exists to node j.
Save the argument minimizing this equation as Ik(j)·

1.1.2. Update the first element of Xk{j) íis

Xk+iU, 1) = a^XkihU)) + y{IkU)J)
1.1.3. Prediction update:

Xk+x{jJ) = Xk{Ik{ j) . l - 1), 2 < / < Lp.
2. When ii = L — 1, find j such that = minD/,_i(j).

i
Release the corresponding pathmaj) through the trellis to the channel.

The search algorithm is a direct extension of Viterbi algorithm and reduces
to it for a = 0.

23

2.5.3 D e s ig n A lg o r i t h m

The encoder is specified by two sets of parameters: the linear prediction
coefficients, a,·; f and the prediction error (residual) codewords,
yk', k = 0, . . . , 2^ — 1. The performance of the coding system is totally depen­
dent on the good design of these parameters. The design algorithm assumes
initial values for these parameters and then iteratively improves them. The
initial values for the codewords can be generated with any of the known meth­
ods particularly with extension [20] or splitting [3]. The natural choice for the
initial predictor coefficients is the solution of the VViener-Hopf equation, R a
= V, where R = ‘'-»d v = This choice for the initial pre­
dictor coefficients is based on the assumption that the original source inputs
rather that the reproductions are the observables. We use coded reproduc­
tions in the predictive system therefore these parameters are not optimal, but
these choices are intuitive and are good starting points for the design algorithm
which improves them iteratively.

For a fixed prediction vector a, the distortion for the given training source
IS

Y(^d{xn,Xn) = - Xnf = - Cnf.
71=1 n=l 71=1

(2.15)

This distortion is minimized if we change the codewords into centroids of par­
titioning cells,

= (2.16)
II II71G.S·

We try to]n*eclict Xŷ by

Xyi — ̂ —
/=1

(2.17)

The orthogonality])rinciple [4] implies that a should be such that the prediction
errors and the observations are orthogonal. This leads to

L - \

^ ̂(■C'?i •Cn)-l'n—i — fi) ̂ — 1) · · ·) kp.
ii=0

Substituting

(2.18)

(2.19)

in (2.18), we obtain tlie])reclictor ii|)dat(' ('(|uation

k L L
Y ^ a j ^ X k - j - r k - i = J 2 { x k - (¡ i c k)] x k - i , / = 1, , Lj, . (2 .20)
j= l *:=I A.'=l

Now, we state tlie predictive trellis wavelonn coder design algorithm.

0. Initialization:
Generate initial codebook Co = ij'f·, i = () ,..., 2”‘“ '
Find initial predictor c|ueiiici('iits solving the Wiener-Hopf equation, R a
where R = and v = [/i’,]L,,xi·

1. Trellis Codebook U])date:
Encode the training sequence using and

L

in order to obtain Z)'“ =
A:=l

If < i stop with
Vi = 0 < < 2^'“ ’ and (li — «■", 1 < i < L,,,
else update the trellis codebook according to (2.16) to ol>tain

2. Predictor Ui)date;
Use {2/,·"'*’̂ } and {u·“) to encode tlie training sequence.
Use (2.20) to obtain the new generation of])redictor coefficients

3. Set m <— m + 1, go to 1.

= V,

2.6 Trellis Coded Q uantization

Another data compression system based on trellis encoding and finite-state
machine decoder is the trellis coded quantization (TCQ). This recently intro­
duced data coiTi])ression system is rei)orted to give good results for memoryless
sources and in predictive trellis coding [4].

Trellis coded quantization was first introduced by Marcellin and Fischer
[51], who, motivated by the success of trellis coded rnodulation (TCM) in the
field of modulation theory, and the results of alphabet-constrained rate distor­
tion theory, constructed the source coding analog of TCM.

In 1982, Ungerboeck formulated coded modulation using trellis coding and
introduced the ideas of set partitioning and branch labeling for trellis coder

design [52]. The set]:>artit.ioning idĉ as introduced in tliis work wer(‘ based on
the following observation: signed wa.v(donns re])resenting iniorination sequences
are most resistant to noise induced errors if tliey are very diil’erent from each
other, that is, if th(u*e is a. larg(‘ distaiic(‘ in Euclidean signal space between
the signal sequences. Following this fact, TC'M do'signs the signal map])ing
function so as to nuiximize dir('ctly the '1Ve(' distance” (minimum Euclidean
distance) between coded signal se(|uences. ('oinl)ined with the use of signal-set
expansion to provide redundancy for coding and use of a finite-state encoder,
this method led to a modulation scheme su]>erior to conventional modulation
techniques.

A particular TC'M system is s])ecilied l)V the trellis structure (next-state
function) and the codes assigned to trellis branches. As for the trellis struc­
tures, Ungerl)oeck suggested some symmetric trellises for N = 4 and N = S
states. The branch connections are similar to the ty]ucal trellis of Figure 2.2
but for rates higher than 2, the transitions are multiple, that is each branch
on the graph corres])onds to 2 or more |)arallel transitions. On a conventional
modulation system for a signal constellation of size 2”^ in bit codes are used to
send one of the 2” ̂ symbols. In trellis coded quantization, the signal constella­
tion is first doubled to])oints. Then this constellation is])artitioned into

subsets, where ih is an integer less than or equal to in. ih of the inj)ut
bits are used to select, by trellis encoding, which of the subsets the channel
symbol for the current signaling instant will be chosen from. The remaining
771 — 77A bits are used to select one of the channel symliols in the selected
subset. By this way although the rate of the system is held constant, a finer
coding is achieved through introducing redundancy.

The basic idea of alpliabct-conslmincd rate distortion theory is to find an
expression for the best achievalile performance for encoding a continuous source
using a finite reproduction al])habet. The theory is developed in [53] and [43].
Marcellin and Fischer in [51] insi)ecting the ¿dphabet constrained rate distortion
functions for the uniform i.i.d. source, made the observation that for a given
encoding rate of R bits i)er saiiq^le, it is])ossible to obtain necirly all of the
gain theoretically |)ossible over the R. bits]̂ er sam])le Lloyd-Max quantizer b}'
using an encoder with ¿in outj)ut alpluibet consisting of the output points of
the R + 1 bits per sam])le Lloyd-M¿ıx cjuantizer.

Motivated by this observ<ition ¿md T(JM, Mcircellin ¿uid Fischer constructed
a fixed structure trellis for ixite R. encoding which employed the outj)ut points

26

of rate R-\-l Lloyd-Max quantizer as tlie codewords, assigned to trellis branches
according to Ungerboeck’s set])a.rtitioning and branch labelling rules [52]. The
system they introduced in [51] is given in Figure 2.'̂ 1. The trellis can be any of
Ungerboeck’s amplitude modulation trellises [52]. But the branches])resented
here no more represent single transitions but multiple ones quantity of whicli
is determined by the rate of the .system. Consider an encoding rate of 2. Then
the rate 3 Lloyd-Max output])oints (for uniform i.i.d. .source), which will
be employed as the codewords aie as shown on real line in Figure 2.4. These
codewords are partitioned into four subsets by labeling consecutive points with
Do·, Di, D2 , Do, D i, D2 , D:i,. . . starting with tlie leftmost (most negative)
point and proceeding to the right. Then tliese sub.sets are assigned to the
trellis branches following branch labelling rules of Ungerl)oeck [52]:

1. Parallel transitions are associated with codewords with maximum dis­
tance between them.

2. The branches originating from the same node should be labeled with
subsets with maximum distance between them.

3. The branches terminating at the same branch should be labeled with
subsets with maximum distance between them.

4. All codewords should be used with equal frequency in the trellis diagram.

The first rule is satisfied with the above .set partitioning. To satisfy second and
third rules the subsets are grou])ed as Do with D2 and D\ with Do and these
groups are assigned to leaving and entering branches as shown in the figure.
Fourth rule is already satisfied with this labeling.

This system is later modified l>y Marcellin and Fischer to incorjiorate])re-
diction and they introduced PTCQ in [51]. The trellis search algorithm they
use in their predictive .system is the same as the search algorithm of Ayanoglu
and Gray [19] for /? = 1 and an extension of it for higher rates, but in the design
stage they do not train the codel)ooks and they do not u])date the predictor
coefficients.

27

OID,.

Dj
, 1 ^2 ^3

■7 A -5 À -3 A - A A 3A 5A 7 A
8 8 8 8 8 8 8 8

Figure 2.4: Marcellin and Fischer’s TCQ system

Chapter 3

SIM ULATED A N N EA LIN G

Optimization is an issue of high iin])ortaiice in many diverse arecis, in partic­
ular, it is a vital element of analysis and design in many fields in electrical
engineering. In electrical engineering, j^articularly in the field of telecommu­
nications, we sometimes deal with discrete variables and may need to cany
out combinatorial analysis, that is, we deal witli the arrangement, grou])ing,
ordering, or selection of discrete ol)jects. In these ¿inalyses, being engineers,
our objective is to fiiid out the o]:)tima.l arrangements, orderings or selection of
discrete variables. In other words, we are frequently confronted with combina­
torial optimization j:>roblems.

Many common problems in fields such as electrical engineering, operations
research, and comj)uter science are combinatorial optimization problems, but
the field particularly owes the existence of its wide range of ap])lications to the
advent of digital coni])uters. Most currently acce])ted methods of solving com­
binatorial optimization problems would not have been considered seriously 10
or 20 years ago, for the reason that no one could have carried out the comjiu-
tations involved. However, even today, while many powerful digital computers
are available, various large scale combinatorial optimization problems cannot
be solved in reasonable time. Most of these])rol)lems are NF-complctc problems
[21], in other words, they are not solvable by a computational effort bounded
by a polynomial function of the size of the jiroblem.

Thus, one is forced to use approximation algorithms or heuristics. Heuristics
are not guaranteed to get the ojitimum answer, they are designed to give an
acceptable answer (hopefully close to the 0])timum ¿uiswer) with a reasonable

28

29

amount of computational eiforl or equivalently time. That is, using a heuristic,
one makes a compromise between tin' o])timnm result and the com])utationa.l
effort.

Now, let us give a formal delinition of a cojnl)inatorial oj)tiniization jjroblein.
A combinatorial optimization])robleni is formalized as a])air (A, 6’), where S is
the countable (finite or infinite) conJi(]uratioa space or the set of configurations
and (7 is a cost function, C : S —> Tv., (Tv: the set of real numbers) which
assigns a real number to each configuration. For convenience, C is defined in
such a way that decreasing values of C corres])ond to luTter configurations.
With this definition, the optimum configuration Sopt is tlui configuration for
which C takes its global minimum value. That is.

Copt = niin CC)·,ies (T l)

where Copt denotes the optimum value of the cost function. The objective of
a combinatorial optimization])roblem is to find the configuration tluit gives
Copt ·

Simulated annealing is one of the heuristics suggested to .solve large-scale
combinatorial o])timization])roldems efficiently, although not exactly, with rea­
sonable amount of comjjutational effoi t. It is a. heuristic or an a])])roximation
algorithm in the sense that it is not a mechanical sequence of computations to
solve a specific problem, and its])erformance is highly de])endent on how the
user tailors it for a specific])rol>lem. There are various heuristic strategies for
solving combinatorial o])timization problems such as “constructive” heuristics
which construct an answer directly. Simulated Annealing instead is related
to “iterative improvement” strategies, which construct an initial suboptimal
optimal solution and then perturl) this solution slightly, in the direction of a
better solution on the average.

The simplest algorithm this strategy suggests is the iterative improvement
algorithm. Before describing this algorithm we define a neighborhood 5, for
each configuration i, consisting of all configurations that can be reached from i
in one transition. Let i denote the current configuration, inew the configuration
after perturbation.

30

Iterative Improvement Algorithm:

i ^ io /*initial coiiiiguratioii*/
rei^eat

perturb(i, .S’,·); /*clioos(' raiuloiniy £ S */
if C{tnen,)<C{t)

* hiew /*cuiTent Configuration is rc])lacecl l>y the neighbor*/
until no inew € S exists such that C{incu>) <

There are two obvious disadvantages of this algorithm. First, although it
is certain that the algorithm readies a minimum, there is no guarantee that
it is the global minimum. Instead, the algorithm may get stuck in a local
minimum and there is generally no information as to the amount by which this
local minimum deviates from a. global minimum. .Second, the obtained local
minimum depends on the initial configuration. Tliere are some juoposed ways
of getting around these inadec|uacies. First, one can execute the algorithm
for a large number, say N, of initial configurations [22]. For N —> oo, this
algorithm finds the global minimum with probability' 1. Second, one can use
the information gained through])ievious runs to im])rove the choice of an
initial configuration for the next run [24]. Third, one can introduce a more
complex generation mechanism, in order to be able to “jumi) out” of the local
minima corresponding to a sim]>le generation mechcmism. Fourth, one can
accept transitions which corres])ond to an increase in the cost function in a
limited way.

The second and third ap])roaches are strongly problem dependent so they
do not lead to a general algorithm. The first one was the traditional approach
until 1982 when Kirk]ratrick ei al. suggested the fourth one which they called
simulated annealing [23]. Many experiments verified that simulated cumealing
is superior to the first ajrjrroach [24].

Simulated annealing is based on an analogy between a ju'oeess called anneal­
ing of solids in condensed matter jrhysics and large combinatorial optimization
problems. Annealing is a jrrocess in which a solid is heated up to a maximum
value at which all particles of the solid randomly arrange themselves in the
liquid phase and then it is cooled down veiy slowly. Through this process, all
particles arrange themselves in the lowest energy configuration if the maximum

31

temperature is high enough and the cooling juocess is carricul out sufficient!} ̂
slowly. During the cooling])rocess, the solid is allowed to reach thermal equi­
librium which is characterized l)y the])rol.)al)ility of the solid's Ijcing in a stat('
with energy E which is given 1)V the Boltzmann disirihui/ion:

Fr{Encr(iy = E) =
Z (/ j 7

(.3.2)

where Z{T) is a nonnalizatioii fartor (lejM-ixliiig on T and k-B is the Boltzmann
constant.

In 19-')3 Metropolis ci al.])ro])o.scd an algorithm to .simulate the evolution
of a solid towards iJicrinal cqailihriutn [2.3]. This algorithm can be summa­
rized as follows: Given the current state (conliguration) of the solid which is
determined by the configuration of its jiarticles, a randomly chosen particle is
slightly moved from its current])osition. The resulting energy is calculated
and compared with the j>revious enei'gy of tlie solid. If / \E is negative, that
is, if the perturbation leads to a decrease in the total energy of the system, the
process is continued with the new state. If AC is nonnegative, then the new
configuration is accepted as the new state with probability exp(—̂ |:) . This
acceptance rule is called the hJciropoUs criUrion. If the algorithm is executed
until sufficiently many)>erturl)ations are made with this acce])tance criterion,
the probability distril)ution of the configurations (or states) aj^proaches the
Boltzmann distribution, wliich states that the system reached thermal ec|uilib-
rium.

The problem of minimizing the energy of the solid is indeed a combinatorial
optimization problem, the configuration s])a.ce S being the jjossible configura­
tions of particles in the solid, the cost function C assigning an energy value
to each configuration. This observation suggests a way to handle general com­
binatorial optimization problems. Foi· the problem in hand, we can generate
a sequence of configurations with the Metropolis algorithm, that is, using the
Metropolis criterion in configuration transitions, and in the end we can reach a
configuration of thermal equilibrium characteristic to that v̂ alue of the control
parameter. If we re])eat this Metropolis process for a sequence of decreasing
values of the control parameter, we can ho|)e to reach the global minimum just
as nature does in the annealing of solids. The described j)rocess is nothing but
simulated annealing. The analog of em.'rgy is the cost function and the analog
of configuration of])a.rticles is the set of values])roblem variables take which
is a point in the configuration s])ac(“ .S'. As in the .solid state physics analogy,
from a configuration i we])ass to aiiother ra.iKlomly chosen configuration j with

;r2

probability 1, if A C ij < 0 ami witli prol)aI)ility exp(— if A6',·,., > 0, t be­
ing the control variable. Now, we introdua' tlu' simulated annealing algorithm
[24].

Simulated Annealing Algorithm

begin
INITIALIZE;
M := 0 ;
repeat

repeat
PERTURB (config. i —> coniig. j);
if A C ij < 0 then

UPDATE(coniig. j)
else if exp(— —) > random[0, J) then

UPDATE(config. ;);
until quasiequilibrium is reached;

Im +i ·= S{Im)\
1;

until stop criterion;
end.

Although we have])ointed out tlie existence of a strong analogy between
the annealing of solids, which is known to give optimum results for sufficiently
slow cooling, and solving combinatorial o])timization problems with simulated
annealing, one needs a formal proof for the convergence of simulated annealing
to the global optimum. Such proofs are given in [24], [26]. But these con­
vergence proofs are asym])totic convergence j)roofs; convergence of simulated
annealing to the global minimum is guaranteed only if infinite length Markov
chains are used and infinitely slow cooling schemes are ap]:>lied. We cannot
allow such schemes in ju-actical problem solving. Instead, we should contend
with finite speed cooling schemes and finite length Markov chains.

33

3.1 P ractical Im plem entation

Practice has shown in recent years that simulated annealing is still V(iry succes-
ful when finite Markov chains are used and the cooling])rocoss is not infinitely
slow. But the perfonnanc(' of the algorithm highly depends on the design of
the parameters of the algorithm.

In a practical implementation one should specify the following:

• initial value of the control i)aramet('r or temperature /0 ;

• final value of the temperatvmi ij (stoj) criterion);

• length of the Markov chains:

• move-set (neighborhood structure), that is the set of allowable perturba­
tions;

• a rule for changing the current value of the control])arameter, ¿y, into
the next one, ¿y+i.

We will now cite .some sim])le schemes from tlie literature for determining
the values of these jiarameters.

The initial value of t is chosen such that virtually all transitions are ac­
cepted, that is exp(—AC/Z-o) ~ 1 for all transitions. An em])irical rule is given
by Johnson ct al. [28]: determine Zq lyy calculating the average increase in cost
(or energy), for a number of random transitions and solve Zq from

A’o = exp(-A6yZo), (3.3)

where Aq is the acceptance ratio defined as the ratio of the number of accepted
transitions to the number of])ioposed transitions.

The final value of “tem].)erature” can be determined by fixing the number of
temperature values Z-a·, for which Metropolis loo])s are to be executed. Also, the
execution can be terminated if the last configurations of consecutive Markov
chains are identical for a nuinljer of chains. Or, as in determining Zq, we can
introduce a parameter Ay, and can terminate execution when the accejitance
ratio is smaller than Ay.

-M

The simplest choice lor the h'ligtli of the Markov chain is a value depending
polynomially on the size of the]nol>lein [29]. Other than [29], various schemes
are suggested in the literature. If N{k·) re])iesents the length of the Arth Markov
chain, one can use arithmetic N{k) = N{k — 1) + 6', geometric N{k) = N{k —
l) /a{k), logarithmic N{k) — 6 '/ Iog(/.(/«;)) schemes or continue until a number
of acceptances are made, or until a numljer of rejections have occured.

The decrement in the tem])erature should l)e chosen such that small Markov
chain lengths suffice to reestablish quasi-equilibrium after the decrement.
Therefore, the changes in the value of temperature shoukl be small. Sim­
ple temperature decrement rules include arithme.tic, /,¿.+1 = C -f geometric
tk+i = a X t̂ ., and logarithmic /,/; = 6yin(l -)- k) decrement functions.

Each combinatorial oj^timization i)rol.)lem suggests different neighborhood
structures. Therefore the choice of the move-set is])roldem de])endent.

There are more ehiborate cooling scliedules cited in [2-1] but those are de­
rived for specific])roblems. Further, oiKi elaliorate schedule that is very suc­
cessful in one problem can jierform far worse than a sinqjle schedule in another
problem. Therefore, in the course of our work, we used sini])le schedules.

In the literature, attempts have lieen made to give good measures about
the general performance of simulated annealing, in terms of the quality of the
final solution obtained fiy the algorithm aiul the running time required by the
algorithm. Lundy and Mees [30] succeeded in olitaining the worst-case result
for the total number of transitions generated during the execution of the algo­
rithm which is 0(1 SntUj I 111 | S |), where | S-ady | is tliP size of neighborhoods
and] S' I is the size of the configuration s])ace. Since, for most combinato­
rial optimization])robIems, the sizes of the neighborhoods can be chosen to be
polynomial and the size of the configuration space | S’ | is exponential, this for­
mula shows that the execution of the algorithm takes polynomial time for most
combinatorial optimization j^roblems. For a Iiound on the worst-case j^erfor-
mance of the result of algorithm, Sasaki and Hajek [31] provided a probabilistic
measure.

Since its introduction in 1982 [23], simulated annealing has been success­
fully applied to many diverse combinatorial oj)timization])roblems. It became
most popular in the field of VLSI design especially in placement and routing
problems, where other known methods])iovide])oor results. It has been used in
image processing for image restoration and enhancement jiroblems. The first

:ir)

paper in this context was])ul)lisli(‘(l 1)V (h'lnan and CJeinan [32], in which a
generalization of simulated annealing is uscmI to find a maximum j)osterior dis­
tribution for degraded images El Cîamal ct al. used SA on])roblems involving
source codes, constant weight cliannel codes and s]dierica.l codes. Specifically,
they considered the])roblem of re])resenting the set of all 2^ binary sequences
of length L by a much smaller subset of 2̂ ̂ codewords (<C L) in such a way
that the average Hamming distance [between eacdi of the 2̂ " sequences and its
nearest codeword is minimal. They re])ort that the results are very encourag­
ing [33]. Çetin and Weerackody [35] and Flanagan ct al. [3̂ 1] a.])])lied simulated
annealing in codebook design for vector quantizcition. Other fields simulated
annealing has l)een ap])lied includ(^ neural networks, numerical analysis, biol-
ogŷ materials science, sclied/uliny, statistics and yrapli theory.

In almost all of these fields, SA has j)roved to be a successful algorithm,
especially in the solution of lai-ge-scale])roblems for which no tailored solutions
are known. For more information al.)out the a])])lications of simulated annealing
the reader is referred to the survey]>a])er l)y Collins et al. [36].

Chapter 4

PROBLEM D EFIN ITIO N
A N D SOLUTION

The goal of this work is to introduce a new algorithm for the design of trellis-
based coding systems with performance higher than other work in the literature
and to contribute to the study of these systems. With “trellis-based coding
systems,” we refer to the coding systems with finite-state machine decoders
such as finite-state vector quantizers (F.SV(^), trellis waveform coders (TWC),
predictive trellis xvaveform codcr.s· (PTVVC) and trellis coded quantizers (TCQ).

The difference of our design apj^roach when com]>ared to other work in
the literature is in the way we design tlie next-state function of the decoder
finite-state machine.

As we have noted in our discussion of trcdlis waveform coding in Chapter 2,
the encoder of a trellis wavefonn codei· is simply a trellis search algorithm and
there exist various trellis search algorithms in the literature with well-known
performance tradeoffs. Therefoie, we concluded that tlie design problem of the
trellis waveform coder reduces to the design i)rol.)lem of the decoder finite-state
machine. In FSVQ, the encoder is simply the encoder of the corresponding
state-VQ which is the nearest neighl)oi· encoding rule. Therefore, similarly,
the design problem of FSVQ reduces to the design jjroblem of the decoder
finite-state machine.

The decoder finite-state machine is completely s])ecified by the state code­
books or the output map and the next-state maj) which corres])onds to the

30

:п

branch connections in trellis дга])Ь. Псчич', FSVC ̂ and T\V(! design]:>roblems
are com])osed of two design])i4)bleins:

• output nia.]) design

and

• next-state шар design.

We will consider these two])roblems iirst se])arateh^, that is, we will focus
on the design of the out])ut map for a. given next-state ma]) and on the design of
the next-state шар for a given oiit])iit шар sej^arately. Then, we will combine
the solutions to these two])robleins to]^ro])ose our decodcu* finite-state machine
design algorithm.

4.1 N ex t-S ta te Map D esign

The central contribution of tliis tliesis is the suggestion of a new heuristic for
the design of the next-state ina]) of tlie decoder finite-state machine. Given
the current state and the channel index, tlie next-state ina.]) is equivalent to
one-stage of the trellis diagram or the state-transition diagram.

The trellis diagram is s])ecifil'd l)y the number of nodes and the orientation
of branches, that is, connections between the nodes. Each different set of
connections correspond to a different trellis structure and therefore a different
next-state maj). Then, the]>roblem of finding the optimum next-state map
is equivalent to the problem of finding the optimum .set of connections of the
branches.

This is clearly a combinatorial optimization]>roblem, S\ the configuration
space being the sj)ace of])ossil)le trellis structures, and C, the cost function,
the value of which is to be minimized over .S', being the total distortion. For
a trellis coding system of rate R, A' states and vector size A.·, the trellis will
have N nodes and l)ranches originating from each node (assuming binary
communications). This trellis can l>e constructed in different possible
configurations. Since the size of the state space is exi)onentially dependent
on the system varial)les, it is not i)ractically possible to .solve this problem

3<S

by exhaustive searcli (a trellis system with unit rate and 32 states for scalar
quantization requires more than iterations).

Due to the enormous com])lexity of the ju-obhiin, we look for a heuristic. In
the literature, some heuristics aie suggested foi· the solution of this problem.
The ones suggested by Foster cl al. [7] in the context of F.SVQ were described
in Chapter 2. The drawback of these* heuristics were that they could only
iteratively improve the codewords foi· a given next-state function, providing
no mechanism for improving the next-state function. That is, once the next-
state function is designed it is fixed and not tuned to the c.odebook. Akso,
these heuristics are not intuitively simjile. Duidiam and Gray in [9] proposed a
stochastic iteration algorithm to allow incor])oration of the next-state function
design in a probabilistic manner, but their algorithm is not straightforward.
An interesting work in the literature is Ijy .Ituing who suggested obtaining a
minimum degradation network l>y a jtruning])rocedure which he called Pruned
Trellis Vector Quantizer [37]. His algorithm begins with a fully connected
trellis and proceeds by j)runing the Itranches, the removal of which causes the
minimum degradation. The algorithm stojts when a desired rate is reached.
This algorithm is a modification of the branch and cut algorithm from linear
programming. Juang noted that this algorithm was not successful for rates
equal to and below 2.

We propose using Simulated Aiinealing for the design of the next-state maj)
of trellis decoder finite-stiite machine:

• The s ta te space consists of all the possible trellis structures (branch
connections) with the constraint that there are 2̂ ^̂ branches originat­
ing from each node. This restriction is made since we assume binary
communications.

• The cost function or energy function to be minimized is simply the
total distortion calculated lyy Viterlu algorithm.

• The m ove-set is the changing of the orientation of one of the branches,
alternatively the neighborhood set is the set of all trelli.ses obtainable
by moving the end of a branch from the state it is connected to, to another
state.

• The in itial value of the tem p era tu re is calculated in the way Johnson
et al. [28] suggested.

3!)

• The length of M arkov chains is dioseii tx; he liiieiirly depeiulent on
the number of states as c x A^ where N is tlie ininil>er of states, and c
is a constant. The constant c is tletermined by experiimnital means and
using intuition. For example, for fast cooling schedules one needs longer
Metropolis loo])s to stabilix(', or as the nundjer of nodes in the trellis
is increased, the size of the stat(> space; increases and longer Metropolis
loops are needed to reach ('C|uilil)rium.

• Geometric improvement is chosen as the decrem ent rule for temj)era-
ture. That is, ¿„+i = F’ x /.„, n: time' index.

• No final value for tem p e ra tu re is chosen. The cooling is exited when
no more significant im])rovements occur.

For a given output map, the next-state ma.]) design algorithm begins with an
initial trellis with a corresponding known distortion, and an initial temperature.
Then the algorithm])erturbs the tr(dlis lyy breaking the end connection of a
branch from its current position and coniK'cting it to iuiother state, hence
changing the state-transition matrix. The new distortion is calculated via
encoding the input source with the new trellis by the Viterbi algorithm, and
compared with the previous distortion. If the new distortion is smaller, the
perturbed trellis is acce])ted as tin; current trellis, else a random number in
the interval [0,1) is generated and compared with the ex])oneiitial exp((A’“ —

If the (;x]jonential is greater, the perturl)ed trellis is accepted,
otherwise it is rejected. The algorithm continues to perturl) the trellis this
way until the system reaches qua.si-e(iuilibrium at this tem])erature T. The
condition for reaching qiiasi-eciuilibrium is dictated by the choice of length of
the Markov chain. This is one Metro])olis looj). Then, the temperature is
decreased according to the cooling function (geometric cooling) and another
Metropolis loop is started. The algorithm terminates when no more significant
improvements are seen at the out|)uts of the Metroj)olis loo])s.

4.2 O utput Map D esign

We propose the adajjtation of GLA for tlie design of state-codebooks for a given
trellis structure. Actually, adaptations of GLA to TW(! and F.SVQ have been
used by many researchers in the literature. GLA was suggested in the context

40

of TWC' first l)y Stewart ci al. [20] for co(leI)ook ini]rroveinent. They also
developed an extension algorithm which increases tlui constraint length by I
producing a double size trellis from a given trellis, the performance of which is
at least as good as the])erformance of tlu; trellis before extension. Combining
their codchook irnprovcmcnl alijoriihin and (xicnsion alfforitkms they j)ro])osed
an algorithm for tlui automatic design of a. trellis di^coder with N states.

GLA is also em])loyed by Foster cl al. [7] in the context of FSVQ, by
Ayanoglu and Cray in pr(‘dictive 7AV(' [10], and l\y Bei and Cray [38] in
vector TWC.

We employ Stewart’s codchook improvcm.cnt algorithm for improving a fixed
trellis structure (fixed next-state function) and we propose ah extension al­
gorithm of our own for producing a good initial structure and codebook for
optimization of the trellis with constraint length increased by 1. Here, we cite
Stewart’s codebook imjrrovenumt algorithm:

Codebook Improvement Algorithm

0. Initialization:
Given a distortion threshold c > 0,
a binary noiseless channel,
an A-state decoder,
an initial codebook with cardinality || 6’̂ [(= M =
and a training sec|uence {.i.'j : j = 0 ,1 ,. . . , n — 1}, set m = 0.

1. Encoding:
Given = {j/”‘ : ·/’ = 0 , . . . , yi/ — 1) the codebook for generation m,
find the minimum distortion trellis encoding {;i:j : j = 0 ,. . . ,n — 1}
of the training secpience.
This encoding induces a partition on the training sequence

{,S’r : f = 0 , . . . , yi/ - 1} with S ’" = {j : Xj =
Each set S}" contains the time indexes of those elements of
the training sequence which are encotled liy codeword y’".

2. Compute the average distortion A,,̂ = d(.T,·, .r,).
3. If the decrease in distortion has fallen below the threshold e,

(A„j — A„,_i)/A,„_i < t,
then halt with O’" as the final codebook. Otherwi.se goto step 4.

4. Find the o])tima.I codelnxjk Гог generation m + I as
(Om+i ^ i^m+1 : = о , . . . ,Л / - 1]

where the are the centroids of the new])artitioii

Replace ?7i I>y m + 1 and go to step J.

The initial codebook has two codenvords since, the constraint length of the
decoder is 1 (trellis has only 1 stat('). Tlx'se initial codewords can be chosen
simply as —1 and 1.

Now, we introduce our extension algoritliin,

Trellis Extension Algorithm

0. Given number of states A\ constraint length /r, rate R, vector dimension /,
the super codebook C — {//¿k,· '■ > — — \ , j = 0,...,2^^^) ,
where yfj is the j th codeword (corresponding to j th l)ranch) of i th state,
and state transition matrix (or trellis diagram).
0.1 Increase constraint length by 1 : k <— A;+ 1.

1. Codebook extension :
1.1 Retain the codebooks of the old states :

¡/u ' = 2/fj, ̂ = 0 , . . . , yV - 1, J = 0 , . . . , 2'"},
1.2 Assign codewords to the new l)ranches in the following way:

»ST - » Ar,....(2 X K) - t J - 0.....2«).
2. Trellis extension :

For (0 < f < (2 X — 1)) do
2.1 if i is even then

lietain the connections of the branches originating from state i
as in the previous trellis;

2.2 else if i is odd then
Connect the branches originating from state i to states
with indexes N more than the indexes of the states
(addition according to mod'IN)
to which the branches were connected in the previous trellis.

42

The trellis can be extended by just doubling the original trellis size (nuinl)cr
of states) and inserting an identical co])y of the original trellis for the newly
generated states. But in this newly formed trellis, the two identical trellises are
separate; no branch originating from a state in one of the trellises ends at a state
in the other trellis. This structure can l>e no better than the original mother
trellis. To have a chance for significantly better structures the branches should
spread. It will take time for SA to form such an ‘̂ inbiased” next-state ma])
by perturbing. To accelerate this process the extension algorithm introduced
above flips some of the brctnch connections corresponding to the states with the
same positions in the two identical trellises. In this way, some of the branches
starting from a state in one (half)trellis end at states in the other (half)trellis.
The performance is no less than the])erformcince of the original trellis since
original connections are preserved. The Viterbi algorithm in the worst case
will choose a path identical to the o])timum path in the original trellis. Due to
the introduction of new])aths the])erformance may even be better.

Stewcirt et a/.’s extension algorithm])roduces an extended trellis which is at
least as good as the origiiicd ti*ellis, too. Their algorithm extends the codebooks
in the same way we did. The difference between the two algorithms is in the
way the next-state function is modified. Stewart ct ai used a shift register
decoder (giving the fixed trellis structure) [20]. While extending the trellis
they simply added a new cell to the shift register. Since we are not using a
state-transition matrix instead of a shift register decoder, we j)referred to use
the algorithm described above which is a])])lical)le to a general state-transition
matrix.

4.3 Trellis D ecoder D esign A lgorithm

Assuming the rate is unity and scalar quantization is performed;

0. Initialization;

N = l ,
codebook; yo = +\,yi = —
0.1. GLA
0.2. EXTEND /*■ N *-

0.3. GLA

2 V

4'A

0.4. Calculate distoi tioii A"
0.5. l)est-coniig.-reache<J = 0

1. while N < Nmax

1.1. while hest-coiilig.-reached
1.1.1. SA
1.1.2. GLA
1.1.3. Calculate di.stortioii A'

0 uo

if (A ’'* - A ”'- ')/ A in — 1

best-config.-readied = 1
1.2. EXTEND ^ 2 x A^7

The initial codebook and the trellis are generated as described before in
the text. For a given codel)ook, the trellis structure is o])tiinized using SA,
and for this structure, the codebook is modified using (¡LA. Then for the new
codebook, the trellis structui*e is reoj^timized. The])rocess is continued until
the system reaches an equilil)rium, with resi)ect to the SA criteria. Having
found the optimum trellis for constraint length A:, the trellis is extended to
a constraint length k + 1 trellis by the extension algorithm described above.
Then, SA and GLA are run iteratively in the same way for the extended trellis.
In this way, the algorithm automatical!}' designs near-optimum trellis coding-
systems with increasing constraint lengths for a given in])ut sequence whose
statistics are not known.

Chapter 5

SIM ULATION RESULTS

To test the performance of tlit* trellis decoder design algorithm we introduced,
several coding systems based on finite-state machine decoders such as trel­
lis waveform coder, finite-state v('c.tor c[uantizer,])redictive trellis waveform
coder, and trellis coded quantizer were designed for coding independent iden­
tically distributed (i.i.d.) Ciaussian, Gauss-Markov (autoregressive Gaussian),
and speech model sources. These sources are of high practical and theoretical
interest and are commonly used in the source coding literature for testing the
performance of quantization .systems. The results obtained via simulations are
compared with the results of other work]>ul)lished in the literature.

Gaussian sources used in the sinudations were generated by Knuth’s
algorithm-P [39] using the uniformly distriljuted random secjuence generated
by the random number generator, random{), from the mathematical library
of the SunOS operating system. Release 4.1, by Sun Microsystems Comjjuter
Corporation.

To be able to compare tlie performance of different design methods, we cal­
culated signal to quantization noise ratio (SQNR), for each decoder designed
via simulations. SQNR. is a commonly used measure of distortion due to quan­
tization and is defined as.

A
SQ NR = -10 logio — , (5.1)

where A is the total distortion calculatetl l)y the square of the Euclidean dis­
tance, that is, A = {Xn — AT)·, and crj is the source])ower,

4 0

5.1 Trellis W aveform Coding

5.1.1 M e m o ry le s s G au ss ian S ou rce

The meinoryless (laiissiaii soura“ consists (j1 sam])les drawn inde])ondently
from a Gaussian probability density witli zero mean and unit variance. The
distortion-rate function for this source evaluated at li — 1 yields the bound
SQNR = 6.02 dB [44]. The J-bit Lloyd-Max scalar quantizer [44] has SQNR
= 4.40 clB.

The trellis waveform coder is designed using SA-|-GL/\ on a memoryless
Gaussian training sequence of 10,000 samples. Then, the performance of the
trained decoder is measured 1a’ coding a test sequence different from the train­
ing sequence but whose distribution and length are the sanKx The simulation
results are given in Table 5.1 and in Figure 5.1 along with the results obtained
by Linde and Gray [42], .Stewart ct al. [20], Pearlman [43] and Freeman ct al.
144).

Linde and Gra}' [42] state that the problem of designing a good time-
invariant tree-coding data comi)ression system is equivalent to that of finding a
good low rate “fake jn-ocess” for the oiiginal source. Tlie fake jrrocess problem
is basically the problem of designing a fdter which, when driven by a discrete
uniform, i.i.d.])rocess,])roduces an output that “looks like” the]>rocess that
one wishes to com])ress. Imllowing their statement they suggested a scram­
bling function decoder (SFD) and Viterbi encoding. The encoder finds the
sequence of codewords which Irest describes the in])ut data lyy carrying out a
trellis search, and the corres])onding index sequence is released to the channel.
The decoder receives the channel syml)ols through a shift register and at each
decoding instant applies the sum of the contents of the register to a nonlinear
filter (scrambling function) to pioduce the reproduction .symbols.

Stewart et al. [20] designetl trellis waveform coders with fixed next-state
function via GLA on a training se(|uence of 20,000 sam])les. They used table-
lookup shift register decoders witli random codewords (as the initial guess).
Then, they tested the performance on data from outside the training sequence.

K
2
3
4
5

6

SA+CLA
tram
4.65
5.09
5.23
5.36
5.49

test
4.65
5.06
5.15
5.21
5.31

15561

tram
4.70
5.05
5.20
5.40
5.70

test
4.70
4.S5
5.03
5.05
5.15

CCiA
tram
4.85
5.13
5.35
5.47

test
4.70
5.07
5.18
5.30
5.42

SFD
test

4.45
4.90
5.00
5.00

GLA
test
4.40
4.70
4.92
5.07
5.12

46

Table 5.1: SQNR [dB] results for the mcmoryless Gaussian .source. K: con­
straint length, SA+GLA: trellis waveform coder with simulated annealing and
generalized Lloyd algorithm, PA64: I’owell’s 1964 algorithm, GGA: conjugate
gradient algorithm, SFD: Linde and Gray’s scrambling function decoder, GLA:
generalized Lloyd algorithm.

Pearlnian [43] approached the design of trellis source coders through rate-
distortion theory for constrained size reproduction alphabets. Solving the con­
strained rate-distortion function, he obtained reproduction levels. Then, he
constructed sliding-block codes Iry distributing the rej)roduction values over
one level of the trellis, tlie structure (next-state function) of which is fixed. He
reported simulation results for large trellises of 256 and 512 states.

Freeman et al. [44] viewed th<i encoder simulation as the evaluation of an
objective function of the code assignment variables. They used two optimiza­
tion methods due to Powell. The first one is a nonderivative descent method
called Powell’s 1964 algorithm (PA64) [4.5] and the second is a gradient descent
method called Powell’s conjugate gradient algorithm (GGA) [46], [47]. Each of
these methods performs a series of liiui searches in conjugate search directions.
A line search is in effect the minimization with resjrect to one])arameter, that
gives the position along a. straight line in the space of independent variables
[44].

The important difference of our ap])roa.ch fiom these works is that, while
they keep the next-state function fixed, we optimize it. Looking at Table 5.1,
first note the improvement from GLA to SA+GLA. This improvement is due
to the optimization of the trellis structure and is larger for larger constraint
lengths. As the constraint length increases, the size of the configuration space
increases exponentially, therefoi'e, the fixed trellis structure (or the next-state
function) used by GLA [20] in design l)ecomes less and less]>robable to be
“the best” structure. Also, as the size of configuration space is increased there

4 {

Trellis Waveform Coding

Figure 5.1: Trellis waveform coder, .SQNR, results for Gaussian i.i.d. source,
SA+GLA: Trellis waveform coder with simulated annealing and generalized
Lloyd algorithm, PA64; Powell’s 1904 algorithm, CGA: conjugate gradient
algorithm, SFD: Linde and Gray’s scraml)ling function decoder, GLA: gener­
alized Lloyd algorithm.

48

are more “good” structures iiitroducc'd, and therefore SA has the chance to
choose a “good” trellis from a. wider set. I'hese two facts explain the higher
performance improvement for larger constraint-lengths.

As stated above, GLA is not the 011I3' method for ini|)roving the out])ut
map. The improvement possilrle with codel)ook design algorithms other than
GLA can be judged by com])aring the trellis waveform coding system results of
Freeman et al. with GLA results: GGA performs much better than GLA. Not­
ing the improvement from the GLA results to the SA-f-GLA results, and noting
the improvement from the GLA results to the CGA results, one can speculate
that using the conjugate gradient algorithm instead of GLA for codebook de­
sign and employing SA for trellis structure o])timization, i.e., using SA-fCGA,
better performance can be obtained for memoryless Gaussian sources.

When test results are compared, SA-f-GLA out])erforms Powell’s 1964 al­
gorithm PA64 and Linde and Gray’s scrainlding function decoder. Akso, Pearl-
man’s results for K — 9 and A = 10 are 5.18 dB and 5 . 2 1 dB respectively
which SA-fGLA outperforms with only a K = 5 trellis. On the other hand,
conjugate gradient algorithm CGA gives the l.)est results among all, although
our results (SA+GLA) are almost the same for constraint-lengths 2 , .3,4, and
are only slightly worse (about 0.1 dB) for K — 5,6.

5.1.2 F ir s t O rd e r G a u s s -M a rk o v S ou rce

The advantage of a waveform coding system with memory, such as the trel­
lis waveform coder, is in getting high])erforniance in encoding sources with
memory. Therefore, a better source to test the performance of our algorithm
is the Gauss-Markov autoregressive source. To this end, in this work, trellis
wavefornr coding systems of different constraint lengths and of rate one were
trained using SA and GLA by a first oider Gauss-Markov source defined
by

X n = (i X n - \ + l'f’„ 71 = 1,2, . . . ('T2)

where Wn is a white and zero-mean Gaussian time series, and a = 0.9. This
source was chosen since it is a common model of real data and it is widely used
in comparing data comjjression systems [4]. The D{R) bound for this source
is 13.2 dB [19].

For constraint lengths of 2-8, signal-to-(]uantization-noise ratios (SQNR)

4!)

were corn])uted. Tlicn (.1k‘ system was test(‘d using a test s(ir|ucnce with tlie
same statistics. In Tabh' 5.2 and Figure 5.2 the SQNH. values are given
(SA+GLA) together witli the results ol Stc'wart cl al. (CiLA) [2 0]. Itesults
obtained using SA are better than tho.se of [20], especially for structures with
small constraint lengths. The difference in])erformance comes from the o]>ti-
mization of the trellis structure (or the next-state function). For constraint-
lengths 3, 4 and 5 the improvement is morci than 1 dB (for A' = 4 is 1.5 dB),
which is significant since the GLA])erlormance is within 2.5 dB of D(R) l)ound
for K = 5. With increasing A ,])crformance improvement decreases to about
0.3 clB for K = 8 , which is again cpiite significant since the GLA performance
is within 1 clB of D{R) bound for this constraint-length. We have not seen any
significant improvement for K — 2 ; this is because the configuration sj)ace for
this constraint-length is very nairow, and aj)])arently the shift-register trellis
used by Stewart ct al. [2 0] is a good trellis among few possible ones. With
the increasing constraint-length (with the widening configuration space), the
improvement increases and l)ecomes maximum at A’ = 4. The improvement
for this constraint-length is about 1.5 dB. for larger constraint-lengths the
improvement decreases since largci codel)Ooks already]>rovid(“ good])recision
for quantization and im])rovement due to SA becomes less significant when
compared with the im])rovement with enlarged codel)ooks. Actually, during
simulations it was observed that for K > 6 perturbing the trellis with SA
does not lead to significant im])rovements. This is ¡tartly due to the fact that
temperature is quite low at the.se instants and that since the oj)timization of
trellis structure at a certain constraint-length K begins with the extension of
the optimum trellis structure for constraint-length K — I trellis, and therefore
the initial structures can be expected to l>e already good structures for high
constraint-length trellises.

As can be seen from Table 5 .2 , the difference between the training sequence
and test sequence SQNRs is increasing for increasing constraint-length. For
K = 8 the difference is almost 0.35 dB for SA-fGLA results, which points the
inadequate training of the source, that is, we need longer training sequences or
equally longer trellises. But, we cannot increase the trellis length indefinetely
since this is accompanied with increasing storage requirements and longer trellis
searches during encoding which means longer execution times. In Chapter 2 ,
Section 4, we touched upon the.se practical difficulties in using the Viterbi
algorithm and suggested a way to get around this inconvenience, which was
to perform a “truncated search” instead of full trellis search])erformed by

50

Trellis Waveform Coding
1st order Gauss Markov source

Figure 5.2: Trellis waveform coder, SQNR re.sults for first order Gauss-Markov
source, SA+GLA: Simulated Annealing and Generalized Lloyd Algorithm,
GLA: Generalized Lloyd Algorithm only.

51

SA+GLA GLA
K train test train test
2 7.03 6.81 6.92 6 . 8 6

3 9.82 9.55 8.77 8.59
4 11.61 11.50 10.13 9.87
5 1 2 . 1 2 12.06 11.05 10.67
6 12.18 1 2 . 0 2 11.56 11.09
7 12.31 11.97 11.87 11.70

, J L 12.32 11.97 12.13 11.91

Table 5.2: SQNR [clB] results for the first order Gauss-Markov source. I\ :
constraint length, SA+GLA; simulated annealing and generalized Lloyd algo­
rithm, GLA: generalized Lloyd algorithm only.

Truncation Depth:
K full search 1 0 0 A' 5077 10/7 5/7 3/7 2/7
2 5.482 5.482 5.482 5.476 5.448 5.358 5.122
3 8.709 8.709 8.709 8.683 8.592 8.449 8.235
4 11..304 11.304 11.304 11.294 11.153 10.706 10.183
5 11.550 11.550 11.550 11.5.39 11.315 10.821 10.359
6 12.103 12.103 12.103 12.057 11.7.32 11.194 10.805

Table 5.3; SQNR [dB] results for the first order Gau.ss-Markov source with
different truncation depths. I\: constraint length, TD: truncation dejAh.

the Viterbi algorithm. This modification in trellis search would allow us to
store only a part of candidate])aths (typically of length 1 0 x K) and therefore
enable us to use larger training sequences such as 50,000 or 1 0 0 , 0 0 0 samples.
This argument needs experimental justification: we sliould show that both full
search Viterbi algorithm and its modified version jjerforming truncated search
give the same results and there is no performance loss. This is done by running
SA+GLA having a full-search encoder and testing the optimum trellis (with
optimum codebooks and state-transitions) obtained by this run with the same
Gauss-Markov source and truncated-search encoder with various search depths.
The results are given in Table 5.3.

As can be seen, there is no])erformance loss at all for VAs with truncci-
tion depths of 10 times the constraint length and above. For small constraint
lengths, truncation depths of even 5 times the constraint length are sati.sfying.

52

But, for truncation depths short(*r than 5 times the constraint length, the ¡per­
formance difference becomes significant. Tlierefoiii, we are jnstihcxl to use the
modified Viterbi algorithm with a search de])th of lU x K .

5.2 Vector Trellis W aveform Coding

As discussed in Chapter 2 , Section 2 , coding symbols in blocks rather than one
by one is expected to yield higher jperformance since there is a higher degree of
freedom in choosing decision regions for (|ua.ntiza.tion in block coding and since
this enables exploitation of the correlation between sani|ples. Simulation results
for coding symbols in ¡pairs are given along with the results for scalar coding
using simulated annealing and the generalized Lloyd algorithm in Table 5.4
and Figure 5.3. Although there exists a. significantly large difference between
training and test .sequence results, indicating the insufficient size of the training
sequence, it can still be concluded from this taJple that vector coding results
are better than scalar coding results. However, the difference is not signifi­
cantly large. This observation can be inteiqprete(.l to suggest that scalar trellis
waveform or delayed-decision coding Ipy itself exqploits the correlation between
samples quite well, and there is not much left for improvement by vector trellis
waveform coding.

A related work is Bei and Cfray’s lalpeled state vector trellis encoding system
[38]. Their approach is to design a FSVQ using the methods introduced by
Foster ct al. [7] and use this decoder with Viterbi encoding in trellis waveform
coding. A comparison of our results with those of Bei and Cray’s (for which
two related data points are shown in Table 5.4) indicate (i) the observation
that the ¡performance improvement while increasing the vector length for this
source is limited is shared in [38], and (it) the system and the design technique
proposed here outperform that in

5.3 F in ite-S tate Vector Q uantization

As noted above, FSVQ is a sjpecial case of TVVC where the search length of the
encoder (Viterbi algorithm) is reduced to one stage. Therefore, our arguments
for truncated-search Viterbi idgorithm in Chapter 2 , Section 1 . 2 applies to

5;{

Vector Trellis Waveform Coding
1st order Gauss Markov Source

Figure 5.3: Vectoral TWC vs scalar TWC, first order Cfauss-Markov source

54

N

SA+GLA LSVTF
k --= 1 k == 2 k == 3 k == 4

train test train test train test train test
4 9.83 9.53 10.62 10.44
8 11.59 11.44 11.74 11.54
16 11.95 11.90 12.04 11.72
32 1 2 . 0 0 11.90 12.30 11.84 11.4 11.4
64 12.25 11.97 12.54 11.93 11.7 1 1 . 6

Table 5.4: SQNR [clB] results for scalar and vector trellis waveform coding
where the systems with k = 1 and k — 2 are designed using SA+GLA and
results for k — 3 and k = 4 are those of the labeled state vector trellis encoding
system. N: number of states, k: vector length, LSVTE: labeled state vector
trellis encoding system.

FSVQ, with a search depth of one vectorsize. Looking at Table 5.3, we noted
before that the performance of TVVC is the same for truncation depths 10 x K,
but the loss in performance l.)ecomes significant for truncation depths less than
5 X K , which is due to the fact that the truncated search Viterbi algorithm
cannot perform an optimal search for this short constraint lengths. Therefore,
it is apparent that the])erformance of FSVQ will be significantly less than the
performance of TWC. Yet still, FSVQ is important practically, since it has
much less computational com])lexity than TVVC and there is only one vector-
size delay involved.

We obtained simulation results first designing the finite-state vector quan­
tizer for the first order Gauss-Markov source and then testing the design with
a source from outside the training data. For designing FSVQ’s with vector-
lengths 1 , 2, 3, and 4, a fixed training .sequence of length 20,000 samples is
divided into blocks of 1 , 2, 3, and 4 sam])le lengths resjjectively, and the re­
sulting vector sequences are used for training the FSVQ.

Our results are given in Table 5.5, and in Figure 5.4 together with the results
obtained by Foster et al. [7] and memoryless vector quantization results. Foster
et al. used a method based on a heuristic approach called Omniscient Labeled
Transitions (OLT) for the design of the next-state map, and GLA for the
codebook design. Our results show that .SA+GLA performs much better than
VQ and generally better than OLT although not much better. OLT is known
to yield the best results obtained in FSV̂ Q so far [4]. Our results show that

SA+GLA is a contender for j)erlonning l)etter, and we l)elieve the])erformance
improvement may be more significant Idi· more comi)lica.ted sources, such as
speech samples. Also, considering tin' results of Bei and Gray [.',18] cited in
Chapter 5, Section 5.1, who used tlie trellis designed for FSV(J l\y the methods
of [7] for TWC with Viterl)i encoding, as a])lagiarized decoder, we can conclude
that SA+GLA is generally a l)etter algorithm for designing finite-state machine
decoders than the methods of [7].

SA+GLA VQ OLT
k train test train test train test
1 9.40 9.50 4.42 4.40 9.21 9.14
2 10.05 10.81 7.90 7.80 11.04 10.90
3 11.17 1 1 . 2 0 9.24 9.17 1 1 . 2 2 11.08
4 11.53 11.38 10.15 10.07 11.34 1 1 . 1 2

Table 5.5: SQNR. [dB] results for S-sta.te FSVQ and V(̂ for the first order
Gauss-Markov source, k: vector length, SA-fGLA : FSVQ with simulated
annealing and generalized Lloyd algoiithm, VQ: memoryless vector quantizer,
OLT : FSVQ with omniscient lal)eled transition design method.

5.4 P red ictive Trellis W aveform Coding

In [19], Ayanoglu and Gray incor])orated prediction into trellis waveform cod­
ing, the idea being similar to predictive vector quantization [4], with a trellis
encoder replacing the memoryless vector quantizer and a finite-state machine
decoder replacing the vector (juantizer codebook. The j^redictive trellis coding
system they used and the design algorithm they suggested were described in
Chapter 2 , Section 5. Their aijproach in designing])redictive trellis waveform
coder was to keep the next-state function fixed, improving the codebooks iter­
atively with GLA and regularly uj)dating the |)rediction coefficients according
to modified state-codebooks. Through simulations, they designed j^redictive
trellis waveform coders [19] and compared the SQNR. results with the SQNR
results for nonpredictive trellis waveform coders designed with GLA [20]. The
results they report show that, there is a very significant])erformance improve­
ment introduced 1)V incor|)ora.ting prediction to the encoding process, which is
about 4 clB for K = 2, 2.5 dB for 1\ — 5 and generally more than 1 dB for
higher constraint-lengths.

56

Finite-State Vector Quantization
1st order Gauss-Markov source

Figure 5.4: Finite-state vector quantization, .SQNR n'sults for first order
Causs-Markov .source, 8 state trellis, .SA-f-ClLA : F.SVQ with simulated an­
nealing and generalized Lloyd algorithm, VQ: memoryless vector quantizer,
OLT-fGLA : FSVQ with omniscient labeled transition design method and gen­
eralized Llod algorithm.

57

Following our arguments in the previous sections of the thesis, we can
conjecture that, as in the nonpredictive case, optimizing also the next-state
function we can obtain even Ijetter performance with tlie predictive system.
Considering the performance improvement SA provided over the performance
of GLA, we incorporated SA into the predictive system of Ayanoglu and Gray:
in the design algorithm we suggested for TVVC in Chapter 4 , Section 3 , we
inserted the design algorithm of Ayanoglu and Gray [19] in place of GLA. The
resulting algorithm, at each constraint-length, starts the design process with
a fixed trellis, and then perturbs it into new trellises using SA. When SA exit
criterion is satisfied, the codewords are modified by GLA and the predictor
coefficients are updatetl according to new codewords (output map) and new
next-state map. This process is repeated until no significant improvement is
observed on consequent SA terminations. The initial trellis for each constraint
length K is obtained by extending the optimum trellis of contraint-length K —\.

5.4.1 F ir s t O rd e r G a u s s -M a rk o v S ou rce

A PTWC is designed using the method just described on a first order Gauss-
Markov source training sequence of 10,000 samples and the design is tested
with a sequence of the same length. The SQNR results for nonpredictive and
predictive trellis coders designetl l)v GL.A and SA-l-GLA are given below in
Table 5.6, and Figure 5.5.

К

nonpnidictive predictive
GLA S A-f-(iLA GLA SA-bGLA

train test train test train test train test
1 4.35 4.28 4.35 4.28 1 0 . 0 1 9.65 9.98 1 0 . 1 1

2 6.92 6 . 8 6 7.03 6.81 11.08 10.73 11.08 1 1 . 2 1

3 8.77 8.59 9.82 9.55 11.53 11.18 11.61 11.74
4 10.13 9.87 11.61 11.50 11.84 11.47 12.09 1 2 . 2 0

5 11.05 10.67 1 2 . 1 2 12.06 12.18 11.83 12.26 12.33
6 11.56 11.09 12.18 1 2 . 0 2 12.38 11.96 12.38 12.45
7 11.87 11.70 12.31 11.97 12.52 12.52 12.41 12.50

Table 5.6: SQNR [dB] results for the first order Gauss-Markov source. K:
constraint length, SA-f-GLA: simulated annealing and generalized Lloyd algo­
rithm, GLA: generalized Lloyd algorithm only.

The GLA on nonpredictive system (NS), and GLA on]>redictive system

58

Predictive Trellis Waveform Coding
1st order Gouss-Morkov source

Figure 5.5: Predictive trellis waveform coder, SQNR results tor first order
Gauss-Markov source.

59

(PS) results in Table 5.6 are reproduced from [19]. Comparing these two sys­
tems, we see the significant improvement provided by the predictive system as
reported in [19]. The performance improvement from GLA on nonpredictive
system to SA-f-GLA on nonpredictive system was discussed in Section 5 . 1 in the
context of TWC. When the results of SA-(-GLA on nonpredictive system and
GLA on predictive system, that is, our TWC results and Ayanoglu and Gray’s
PTWC results are compared, their results are significantly better for structures
with small constraint lengths {K — 1,2,3). This is expected since the predic­
tive system has a higher system coini)lexity. However, for higher constraint
lengths our results are quite close to those of [19], so that the nonpredictive
system once again becomes attractive. Next, comparing our SA-j-GLA results
for nonpredictive and predictive systems, we observe a significant performance
improvement provided with the predictive system (especially for K = 1,2,3,4)
which paraléis the results of Ayanoglu and Gray [19]. Finally, when GLA and
SA-I-GLA results for the predictive system are compared, the superiority of
SA-f-GLA is obvious. The SA-f-CfLA results are good since even with a con­
straint length of 4, the algorithm sliows a])erformance which is within 1 dB of
the D{R) bound.

5.4.2 S p eech M o d e l S ou rce

Another source of importcuice is the speech model source. In [49] Wilson and
Husain used the sj)eech data obtained I>y McDonald [50] to obtain a third-order
Gauss-Markov model for speech. The model is described by the difference
equation

= 1.75Â ,7 1 — 1 [.22A"„_,+ 0..30LY„_3 + f n (5.3)

where HA’s .̂re independent, identically Gaussian distributed with zero mean.
The variance cr'{y is 0.097. The process AT is stationary with unit variance. The
D{R.) bound for this .source is calculated to be 14.4 dB at rate 1 bit/sample
[4 4]. The SQNR of 1 bit DPCM for this .source is 8.4 dB. Simulation results
are given in Table 5.7 and Figure 5.6. with the results of Ayanoglu and Gray’s
predictive system [19], CCiA [44] and GLA.

These results indicate that predictive systems show significantly better per­
formance over nonpredictivii systems. This is ex])ected since the source is
more complex (third order) than the previously used sources, and a higher
order linear predictor is used. Second, the performances of nonpredictive GLA

60

Predictive Trellis Waveform Coding

P' îgure 5.6: Predictive trellis wavelorin coder, SQNR residts lor speech model
source.

61

iion])redictive predictive
K GLA CGA GLA SA-bGLA
2 6.97 7.00 10.40 10.53
.3 9.20 9.20 11.47 11.70
4 10.96 10.80 12.04 12.25
5 12.16 1 2 . 1 0 12.60 12.60

Table 5.7: SQNR [clB] results for the speech model source. K: constraint
length, SA+GLA: simulated annealing and generalized Lloyd algorithm, CGA:
Powell’s conjugate gradient algorithm, GLA: generalized Lloyd algorithm only.

and CGA are almost the same. Remember that for the memoryless Gaussian
source, the performance of CGA was significantly better than the performance
of GLA. This observation shows that we cannot generalize our argument about
CGA and GLA on the memoryless Gaussian source to other sources. The per­
formance of the algorithms is tlei)endent on the source used. Third, predictive
system designed with SA-I-GLA has a higher i)erformance than the predictive
system designed with GLA only. This result points out the potential of im­
proving the performance of predictive trellis waveform coders by optimizing
the next-state function.

5*5 Trellis Coded Q uantization

5*5.1 M e m o ry le s s G au ss ian S ou rce

As was discussed in (Jhapter 2 , Section (), Marcellin and Fischer suggested TCQ
in [51], basing their arguments on a.n oI)servation made in alphabet-constrained
rate distortion theory for the uniform i.i.d source. In [51], Marcellin and Fischer
cdso noted that they had no intuitively i)leasing distance property arguments
to justify using TCQ for memoryless Gaussian source but ¿ilphabet constrained
rate distortion theory indicated that a substanticil performance increase over
the Lloyd-Max quantizer was possible. The simulation results they obtained
following this observation for memoryless Cîaussian sources are given along
with the simulation results lor unilorm i.i.d. and Laplacian i.i.d. sources in
[51]. Among these, the memoryless (¡aussian results are ol interest to us since
we have already tested the |)eriormaii('e ol our design apj)roach on this source

62

R TCQ TCQ(+SA) TWC(SA+GLA) TWC(CGA) L-M Q. D(R)
1 4.54 4.57 4.65 4.85 4.40 6 . 0 2

2 10.06 10.06 10.19 9.30 12.04

Table 5.8: Comparison of trellis coders for Gaussian i.i.d. source, = 4, L-M
Q.: Lloyd-Max quantizer, CCA: Conjugate gradient algorithm

in the previous sections.

Marcellin and Fischer used the Ungerboeck trellis structure described in
Chapter 4, Section 6 as the next-state function for the rates R = 1,2,3. The
output map was constructed by assigning the /? 4 - 1 bits/sample Lloyd-Max
output points to the trellis briuiches according to Ungerboeck’s branch labeling
rules [52]. They report that although the SQNR results for the Gaussian i.i.d.
source were quite higher than the Lloyd-Max quantizer results, the results were
still far away from the D{R) bound. To improve performance, they developed a
training sequence based numerical optimization procedure for output alphabet
design and they obtained better results with this algorithm. They also report
that the performance diverged away from the distortion rate function as the
rate growed. Therefore, they examined all the trellises other than the one
described to see whether there are other trellis structures fitting better to
TCQ, but they report that little could be gained over Ungerboeck’s trellises.
In several cases they found trellises that performed better than Ungerboeck’s,
but the improvement was insignificant. To observe it any improvement can
be gained by SA, we first constructed a trellis lollowing the procedure they
gave for TCQ, obtained the SQNR value for this trellis, and then perturbed
the trellis structure with SA and obtained SQNR values for the new trellises.
The SQNR results for “|)lain” TCQ system, TCQ system with SA applied,
Lloyd-Max quantizer and rate-tlistortion fiound tor R = 1, R = 2 are given in
Table 5.8 together with our SA-I-GLA results tor TW('.

Results show that almost no improvement is gained due to changing the
next-state map. But some improvement is seen when the output points are
trained. Taking a look at our ¡irevious TWC results for the memoryless Gaus­
sian source, we also see that CGA gives mucli better performance than “plain”
TCQ although with a price of higher computational complexity. These re­
sults rlraw our attention to two (acts: First, lor rate R. encoding, rate /2 -|- 1
Lloyd-Max output points are not the best choices as codewords tor memoryless

6.3

Gaussian sources. Better output majjs can be obtained with design algorithms
like GLA and CGA. Second, as was discussed in Chapter 2 , trellis coding efh-
ciently exploits the correlation between the samples, that is its real success is in
coding sources with memory. Since Gaussian i.i.d. source does not have mem­
ory, the trellis structure supplies no important advantages, therefore, changing
the next-state map does not affect the performance significantly.

To verify the last statement more strongly an exhaustive search was per­
formed over the possible R = I, N — 4 trellises, and it was observed that other
than the pathological cases, the])erformance for most trellises were very close.
It is worth noting that this exhausted search also showed that TWC with SA
had found the best trellis.

5.5.2 F ir s t O rd e r G a u s s -M a rk o v S ou rce

As discussed before, the success of trellis source coding is in coding sources with
memory. In [.'jl], Marcellin and Fischer did not give any simulation results for
coding sources with memory by TCQ. Therefore, we performed simulations
for the first order autoregressive Gauss-Markov source, using the TCQ system
introduced in [.M] for memoryless sources. That is, the trellis is an Ungerboeck
trellis with Lloyd-Max output points assigned to brances as described in [.M].
Then, the trellis structure (next-state map) is perturbed into new structures
via SA. The results are given in Table -5.9. The improvement from the trellis of
[•51] by SA is significant (about 0.7 dB), which shows that for coding first order
Gauss-Markov sources there exist trellis structures significantly better than the
one used in [.51]. The improvement l)y SA was expected, because the source is
highly correlated (correlation coefficient: 0.9) and the next-state map becomes
important. But even with optimizing next-state function for the given output
map, the performance is far from the D(R.) l)ounds. Our simulation results
obtained for the first order Gauss-Markov source are also shown in the table to
indicate the need for optimizing output map and next-state map together for
the design of high])erformance trellis coder. The improvement from “plain”
TCQ to TWC with SA-f-GLA is more than 4.5 dB for R - 1 and 6.5 dB for
R = 2 . Observingthe difference l>etween the TCCJ results and the TWC (GLA)
results obtained by [20], we see that using Lloyd-Max quantizer output points
does not guarantee any good codeljook.

64

R TCQ
4.71
6.85

TCQ(+SA)
5.45
7.65

T\VC(SA+aLA)
9.55
18.58

TVVC(GLA)
8.59

D(R)
13.23
19.25

Table 5.9: = 4, fir.st order Gaus.s-Markov source, a = 0.9

5.5.3 P r e d ic t iv e T r e l l is C o d e d Q u a n t iz a t io n

Marcellin and Fischer incorporated linear prediction to TC(J to form predictive
TCQ (PTCQ). The search algorithm, that is the encoder, of their predictive
system is similar to that of Ayanoglu and Gray [19], but the design algorithm
is different in that they do not train the codebooks and they do not update the
predictor coefficients. For comparison we give simulation results for PTCQ of
[51], PTWC of [19] and our PTW’fl with SA+GLA on first order Gauss-Markov
source in Table 5.10 and on speech model source in Table 5.11. As can be seen,
in both cases our PTVVC with SA+GLA performs better than the other two
systems. This superiority is due to optimizing the next-state map.

PTCQ PTWC(GLA) PTWC(SA+GLA)
К test train test train test
3 11.19 11.53 11.18 11.61 11.74
4 11.60 11.84 11.47 12.09 1 2 . 2 0

5 11.89 12.18 11.83 12.26 12.33
6 12.13 12.38 11.96 12.38 12.45
7 1 2 . 2 2 12.52 12.52 12.41 12.50

Table 5.10: Predictive trellis coding results for first order Gauss-Markov source

К PTCQ PTWC(GLA) PTVVC(SA+GLA)
3 11.03 11.47 11.70
4 11.65 12.04 12.25
5 12.24 12.60 12.60

Table 5.11: Predictive trellis coding results for speech model .source

65

5.5.4 C o d e b o o k A s s ig n m e n t to B ran ch es in T C Q

During our simulations with SA on the initial Ungerboeck trellis used by Mar-
cellin and Fischer, we noticed that some of the new trellises reached by a series
of SA perturbations were Ungerboeck trellises used in [51], but the branch
labelings were different. These trellises mostly had better (sometimes signifi­
cantly better) performance than the initial trellis. Moreover, we noticed that
the branch labelings satisfied Ungerboeck’s l)ranch labeling rules [52]. This
observation seemed very interesting to us, since nothing was mentioned in the
papers by Ungerboeck [52] and Marcellin and Fischer [51] about the possibility
of existence of other trellises labeled according to Ungerboeck branch labeling
rules but showing different performances.

To see the performances of those trellis coders we first produced all of the
possible different branch labelings (codebook assignments) satisfying Unger­
boeck’s rules for the trellis with the structure of Figure 2.4. The super­
codebook is generated cuid the set partitioning is done iis described in [51].
These trellis coders are shown in Figure 5.7.

There are symmetries among some of the trellises: If the nodes 0 , 1 , 2 and
3 are relabeled as 3 , 2 , 1 and 0 respectively, trellis-e becomes trellis-a, trellis-
f becomes trellis-b, trellis-g becomes trellis-c and trellis-h becomes trellis-d,
that is, trellises in (a) and (e), (b) and (f), (c) and (g), and (d) and (h) are
equivalent. Therefore, we need to consider only trellis-a, trellis-b, trellis-c and
trellis-d.

Trellis-a is the one used by Marcellin and Fischer [51]. The difference be­
tween the performance of this trellis and the others was noticed while coding
Gauss-Markov source with correlation coefficient a = 0.9, and before for mem­
oryless Gaussian source {a = 0.0) we sciw noted that the performances for
most trellises (other than patological ones) were almost the same. For this
reason we are tempted to look at the performance for various values of a. We
first calculated SQNR for trellis-a, trellis-b, trellis-c and trellis-d on first or­
der Gauss-Markov source with several correlation coefficients, on memoryless
Gaussian source and on s|)eech model source, using Lloyd-Max output points
as codewords as in [51]. The r<‘sults are given in Table 5.12.

The results show that tn'llis-I) shows the l,)est performance and trellis-d
shows the worst among a.ll. Moreover, we see that the performance difference

66

(a)

CD

(fO

Figure 5.7: Ungerboeok trellises satisfying the branch labeling rules ot Unger-
boeck

67

a trellis-a trellis-b trellis-c trelHs-cl
0.95 4.71 5.54 4.60 4.41
0.9 4..5S 5.30 4.53 4.35
0.7 4.69 5.01 4.61 4.60
0.5 4.70 4.82 4.66 4.71
0 . 0 4.71 4.71 4.71 4.71

speech 4.52 4.80 4.55 4.33

Table 5.12: /? = 1 , performance com])ari.son of possible branch labelings for
Ungerboeck trellis, Gauss-Markov sources

decreases with decreasing correlation coefficient and there is no performance
difference for a = 0 .0 , the memoryless case.

Trellis-b shows always better performance than the other trellis coders. To
gain more insight to the matter we concentrated on this coder and trellis-a, the
trellis coder used in [51] and obtained data for negative values of correlation
coefficient [a < 0), and for coding sequences with correlation coefficient, a
with a decoder designed for a sequence with correlation coefficient —a, that
with output map as the Lloyd-Max cjuantizer output points for source with
—a. The results are given in Table 5.15.

On this data, we can make the following observations: The difference be­
tween the performances of the two trellises increases with increasing a.

With decreasing «, the performance improvement supjjlied by SA decreases.

For the positive and negative values of «, trellis-b shows always better
performance. This is true even when the coilebook designed for the source
with —<i is u.sed for .source with a.

While the SQNR values for trellis-b increases significantly (from 4.65 dB
to 5.35 dB) with increasing a, the .SQNR values for trellis-a stays almost the
same.

In the light of these results, we can draw the following conclusions about
TCQ:

As was discussed in previous clia|)ters, the design prol)lem of trellis source
coding is equivalent to the design problem of the next-state map and the output

68

Q 1 (a = 0.9) Q2 (a == -0.9)
a t-a 4 -SA t-b -f-SA t-a -f-SA t-b +SA

0.9 4.61 5.34 5.34 5.34 4.58 5.26 5.26 5.26
-0.9 4.57 5.45 5.39 5.52 4.49 5.40 5.30 5.37

(a)

Q 1 (a = 0.7) Q2 (a == -0.7)
a t-a +SA t-b +SA t-a +SA t-b +SA

0.7 4.69 5.12 5.01 5 . 1 2 4.66 5.09 4.99 5.09
-0.7 4.63 5.16 5.00 5.08 4.62 5.13 4.99 5.13

(b)

Q1 (rt = 0.5) Q2 (a == -0.5)
a t-a +SA t-b -l-SA t-a -f-SA t-b -bSA

0.5 4.69 4.91 4.79 4.91 4.67 4.88 4.78 4.90
-0.5 4.72 4.95 4.76 4.95 4.72 4.93 4.75 4.98

(c)

Q 1 [a = 0 . 1) Q2 [a --= - 0 . 1)
a t-a -f-S A t-b -bSA t-a +SA t-b +SA

0 . 1 4.65 4.71 4.71 4.74 4.64 4.67 4.69 4.71
- 0 . 1 4.67 4.69 4.69 4.71 4.66 4.69 4.67 4.69

(«1)

Table 5.13: Trellis-a aiul t,rellis-b comparison (t-a; trellis-a, t-b: trellis-b),
+SA: performance witli SA on tlie trellis the SCJNR of which is given in the
previous column, Q 1 and Q2 denote the quantizers with Lloyd-Max output
points calculated for Si (source 1) ami S2 (source 2) respectively, Source 2 has
a correlation coefficient that is negative of Source 1 ’s.

69

map. Being a trellis source coder design approach, the TCQ technique suggests
a fixed next-state map during trellis decoder design procedure: the next-state
map is not optimized. The next-state map TCIQ suggests is the Ungerboeck
trellis which was shown in Figure 2.4.

For memoryless Gaussian source our results showed that this next-state
map was fairly good, but it is one of the many good ones, it is not particularly
the best trellis. As also noted in [20], the next-state map is not very important
in coding memoryless sources with trellis coders, therefore, other than the
pathological cases, most of the trellises would give approximately the same
performance. This was verified almve by the results of exhaustive search we
performed for /? = 1 , /V = 4 trellis. The Ungerboeck trellis, having asymmetric
structure, is just one of the better ones.

TCQ’s suggestion for output map design involves the generation of a su­
percodebook, partitioning this supercodebook into subsets and labeling the
branches with indexes of the subsets, that is, assigning the subsets to the
branches. As we noted even tor memoryless Gaussian source, this choice of
Lloyd-Max output points does not look like a good one, since we have shown
the possibility of obtaining significantly better codebooks with GLA or CGA.

Set partitioning and branch labeling are done in a way to increase the
distance between the codewords. These two approaches were borrowed from
т е м where they are well justified. In TCM, set partitioning and branch label­
ing according to UngeiToeck’s rules leads to the maximization of free distance
between code sequences. This means that the code sequences are made as
far as possible from each other, wliich decreases the probability of deciding
on a wrong code in the decoder due to channel noise. Making codes robust
to channel noise is a common goal in modulation and channel coding. But
in quantization, as discussed in Ghapter 1, it is assumed that the channel is
lossless, and therefore the goal is not to design robust codes but to compress
the data so that the redundancy is lemoved and communication can be done
with less bits per sample. Therefore, maximizing the distance between the
codewords is not a step towards l>etter compression. Yet, for memoryless uni­
form sources, maximizing the distance between the codewords available at a
state seems a intuitively good ap])ioach since this allows an even distribution of
codewords for finer (|uantization. But, it is not that straightlorward for sources
with memory, since not codewords but codeword sequences become significant
due to memory. During design, one should take into account consequent stages.

70

not just one stage. Aljove we stated that the arguments of modulation do not
carry to quantization. Even if such an analogy exists according to Marcellin
and Fischer’s arguments, this analogy can l)e only on the basis of memoryless
sources. For sources with memory, carrying the idea of maximizing the distance
between codes in modulation to trellis quantization leads to the maximizing
the distance between available reproduction sequences. As showed by our sim­
ulations in Section 1 .1 this chapter, there is no significant loss in performance
if the Viterbi algorithm makes truncated search instead of full search, with a
truncation depth of 5 x K for small constraint lengths and 10 x K for for higher
constraint lengths. Then, following the above observation, for a trellis 4 states
the codebooks should be assigned to trellis branches considering a section of
trellis with 15 stages. Therefore, unlike branch labeling rules of TCM, or of
TCQ on memoryless source who consider only one stage of trellis the branch
labeling rules to I.)e designed must take into account a long trellis section. This
is not an easy task.

We can conclude that the rules of Ungerboeck do not carry to sources with
memory. This fact is verified with our simulation results for Gauss-Markov
sources. We have seen that there exist significantly better trellis structures
and that optimizing next-state map and output ma|), substantial gains are
possible.

Our last observation about different trellises satisfying Ungerboeck rules but
having significantly varying performances, also point out the lack of analogy
in this case with TCM.

Chapter 6

SUM M ARY A N D
CONCLUSIONS

The main contribution of this thesis is the employment of simulated anneal­
ing (SA) for the optimization of the next-state nicip of the decoder for data
compression systems based on finite-state machines, such as finite-state vector
quantization, trellis waveform coding, predictive trellis waveform coding, and
trellis coded quantization. A tlecoder design algorithm for the joint optimiza­
tion of the output map and the next-state map is obtained by incorporating
the generalized Lloyd algorithm (CLA), a well-known algorithm for codebook
design, into design.

Simulation results were obtained for Gaussian sources such as Gaussian
i.i.d., first order Gauss-Markov, and third order Gauss-Markov (speech model)
sources. Comparison of these results with other related work in the literature
shows (i) the need for optimization of the next-state map of finite-state machine
decoders, and (ii) SA is very succesful when employed for this purpose.

During simulations, theoretical as well as heuristic methods were used for
choosing the SA i)arameters. In most of the simulations. Metropolis loop
lengths of 20 X N or even 10 x l\̂ sufficed to reach quasi-equilibrium where
N is the number of states. For the selection of the initial temperature, John­
son’s algorithm turned out to be a good method in almost all of the cases, but in
some cases for the speech model source (third order Gauss-Markov source), this

71

72

algorithm gave too low initial temi)eratiires which had to be increased man­
ually. As the cooling or temperature decrement function, geometric cooling
was used. In almost all of the simulations for finite-state vector quantization
and trellis waveform coding, the values between 0 . 8 and 0 . 9 seemed to be the
ideal choices for the cooling coefficient. For predictive trellis waveform coding,
cooling coefficients as small as 0.6 led to good cooling schedules. After each
output map optimization with the GLA, and after each trellis extension, the
temperature was multijdied with two different constants to increase the prob­
ability of moving out of local minima for the new structures. Experimentally
the ideal values of these constants were found to l̂ e 5 and 3, respectively. The
exit criterion was that program terminated when the relative improvement was
below 0 . 0 0 1 which was also determined experimentally.

The main drawback of the SA-f GLA is the computational complexity due to
running the Viterbi algorithm for each new structure during SA and each new
output map during GLA. It has l^een ol)served during the simulations that for
high constraint length trellises the .SA imj^rovement is not very significant, most
of the improvement is provided by the GLA. Following this observation, one can
simply perform only GLA for high constraint lengths and speed up the design.
Another way to speed up the design is to l>ring some restrictions to the state
space such as a sub.set of the previously defined state space in Chapter 4, but
for which it is more likely to oirtain the o|)timum trellis structure. For example,
intuitively, symmetric structures can l.)e exi^ected to give better performance.
With this motivation we brought the following restrictions to the state-space:
the state-space of all trellis structures with two branches coming out of each
branch and two branches going into each node. The trellis structures in this set
have a fair amount of symmetry. The simidation results for rate /7 = 1 scalar
trellis waveform coder showed that the execution time was reduced to less than
one fifth of the original, while there was no performance loss. However, this
approach did not work well for vector trellis waveform coding, and a significant
loss of])erformance was seen tine to the smaller state-s])ace.

The trellis coded quantization results show that this (|uantization technique
does not have a sufficiently high peiforinance for sources with memory, and
the analogies from trellis corled modidation which work well lor trellis coded
quantizer design for memory less sources do not carry over to trellis coded
quantization for sources with memory.

A P P E N D IX

In this appendix, we give the optimal decoders obtained for each constraint-
length of the quantization systems simulated. The SQNR values of these de­
coders were given in Chapter 5. Also, the typical SA parameters for obtaining
good decoders for each qiuintization system are given.

7:l

A ppendix A

Trellis Waveform Coders

A .l M em ory less Gaussian Source

Typical SA Parameters

Markov chain length : 20 X N
Initial temperature .-Johnson’s method for

number of iterations : 20

Ao = 0.8
decrement coefficient for temperature : 0.85

exit epsilon : 0.001

temperature increment coefficient after GLA : 5.0

temperature increment coeificient after EXTEND : 3.0

74

Best Decoders

75

71 l:n‘aiich 0 branch 1
0
1

0
0

1
1

'a) next-state iiicip

n 1)ranch 0 I.)raiicli 1
0
1

0.400727
-0.394668

-0.394668
0.400727

(1)) output map

Table A.l: /i — 2, TWC, Gaussian i.i.d. source

n l)ranch 0 branch 1
0 0 2
I 1 .3
2 1 .3
.3 0 2

a) next-state map

11 1)ranch 0 branch 1
0 0.498106 -0.933209
1 -0.402267 1.083091
2 1.227503 -0.398080
3 -1.353667 0.345442

(b) output map

Table A.2; A' — •'1, TWO, Gaussian i.i.d. source

76

n branch 0 brancli 1
0 4 0
1 n 6
2 0 4
3 6 5
4 1 7
5 3 2
6 7 1
7 ·> 3

[a) next-state map

n branch 0 branch 1
0 1.023595 -0.433611
1 -1.612412 0.335513
2 1.116483 -0..380100
3 -1.130612 0.358584
4 1.153563 -0.410210
5 -1.143184 0.336238
6 1.392741 -0.369801
7 -0.864818 0.504675

(I)) output map

Table A.;b K - 4, TVVC, (iaussian i.i.d. source

77

n branch 0 branch 1
0 8 10
1 1 0
2 7 2
3 12 5
4 2 3
5 5 14
6 3 8
7 11 9
8 12 7
9 0 1
10 10 13
11 15 6
12 11 4
13 6 14
14 13 4
15 9 15

(a) next-state map

n branch 0 l)ranch 1
0 0.956935 -0.626999
1 -1.449356 0.204309
2 0.814988 -0.308483
3 -1.167243 0.433341
4 1.111163 -0.523422
5 -1.096058 0.288956
6 0.943482 -0.522604
7 -0.771833 0.770788
8 0.831855 -0.469643
9 -1.992718 0.243803
10 1.181968 -0.317668
11 -0.970490 0.477060
12 1.338492 -0.386708
13 -0.889492 0.465952
14 1.799364 -0.248257
15 -0.646306 0.547582

(b) output map

Table Л.4; К = 5, I VVC, Ciaussiaii i.i.d. source

78

n 1) ranch 0 branch 1
0 1 21
1 19 26
2 14 5
3 26 0
4 6 30
5 14 17
6 25 0
7 28 18
8 21 23
9 10 3
10 24 7
11 20 31
12 30 27
13 4 29
14 7 15
15 11 13
16 12 1
17 29 27
IS 8 6
19 23 5
20 31 16
21 2 10
22 9 28
23 9 25
24 4 22
25 3 11

Ozo
27 17

o
20

28 16 12
29 18 19
30 22 24
31 13 15

(a.) next-state map

Table A.5: K - 0, T W (\ (laussian i.i.d. source

79

и i)ranch 0 branch 1
0 1.005928 -0.570051
1 -0.894044 0.467453
2 0.61.3815 -0..522761
3 -1.114618 0.621003
4 1.069456 -0..303017
5 -0.648785 0.418263
б 2.132303 -0.179864
7 -1.415704 0.359435
8 0.789710 -0.417666
9 -1.2509.54 0.331562
10 0.965719 -0.264935
И -1.904037 0.112167
12 1.,522146 -0.424.552
13 -0.651077 0.664.537
14 1.04.54.53 -0.478977
15 -0.972378 0.489671
16 0.983003 -0.240081
17 -0.650244 0..561.341
18 0.724704 -0.396233
19 -0.8611.56 0.593744
20 1.0178.55 -0..321219
21 -0.700058 0.744010
22 1.442099 -0.026367
23 -1.419970 0.370383
24 1.071631 -0.259449
25 -1.731.396 0.190.351
26 1.122810 -0.510312
27 -1..562663 -0.017035
28 1.665159 -0.203703
29 -0.964871 0.832433
30 0.7.30172 -0.718638
31 -0.888529 0..347167

(Ь) output шар

Table А.5; К ■ 6, TWC, Gaussian i.i.cl. source

80

A .2 First Order Gauss-M arkov Source
Typical SA Parameters

Markov chain length : 10
Initial temperature rJohnson’s method for

number of iterations : 20
Aq ■ 0.8

decrement coefficient for temi)erature : 0.83
exit epsilon : 0.0001
temperature increment coefficient after C!LA : 5.0
temperature increment coefficient after EXTEND ; 3.0

Best Decoders

n l)rancli 0 braiicli 1
0 I 0
1 0 2
2 3 1

1 2 3
'a) next-staite map

n branch 0 branch 1
0 -1.317558 -3.555688
1 -1.332245 1.172.386
2 1.021110 -0.217269
•5 1.215147 3.409187

(b) output map

Table A.6: K = 3, TVVC, lirst order CJauss-Markov source

81

n branch 0 branch 1
0 1 4
1 0 3
2 7 6
3 r0 1
4 0 4
5 2 6
6 5 3
7 2 7

(a) next-state map

branch 0 branch 1
0 -1.842838 -3.240623
1 -1.975841 -0.679682
2 3.087688 1.917083
3 0.215805 -0.841480
4 -3.148938 -4.784435
5 1.869517 0.624560
6 1.424980 0.151375
7 3.055708 4.850288

(b) output map

Table A.7; K = 4, TVVC, first order Causs-Markov source

82

n 1.)ranch 0 1) ranch 1
0 3 8
1 4 7
2 7 3
3 11 2
4 0 12
5 13 14
6 13 9
7 o 9
8 1 4
9 0 11
10 15 5
11 14 1
12 8 12
13
1 /1

10
r

6
914

15
0
10 15 1

(a) next-state map

n branch 0 branch 1
0 -1.595288 -2.337436
1 -2.210103 -1.149231
2 0.061080 -0.579140
3 -1.019557 -0.389978
4 -2.454559 -3.815359
5 2.472368 1.243834
6 1.307222 0.577187
7 0.340460 -0.875333
8 -2.180346 -3.326029
9 -1.469261 0.010402
10 3.740247 2.583740
11 0.513443 -1.161432
12 -3.595695 -5.154974
13 2.746586 1.722071
14 1.391175 0.439584
15 3.669924 5.266708

(1)) output ma])

Table A.8: K = 5, TVVC, fii-st order Oauss-Markov source

83

n branch 0 branch 1
0 9 27
1 20 23
2 23 1
3 19 18
4 1 12-
5 29 21
6 18 22
7 14 7
8 1 0 4
9 17 2
10 15 29
11 11 19
12 8 20
13 25 30
14 5 6
15 26 31
16 12 3
17 4 9
18 21 7
19 16 3
20 16 28
21 13 2
22 5 25
23 30 0
24 17 24
25 8 11
26 31 22
27 6 13
28 24 28
29 10 14
30 26 27
31 10 15

(a) next-state map

Table A.9: K — 6, TW(J, (irst order Gauss-Markov source

84

n branch 0 branch 1
0 -0.974455 -0.164.520
1 -2.000049 -1.074749
2 -0.822482 -1..5.52700
3 -0.869755 -0.507039
4 -1.129692 -3.601913
5 1.946057 1.0.500.50
6 0.756962 1.086598
7 1.321117 -0.374331
8 -1.589065 -2.634410
9 -1.057536 -1.39.5539
10 3.244459 2.7.53728
11 U.49S574 -0.7.58142
12 -2.647436 -3.348706
13 0.217420 0.929271
14 0.305753 1.399723
15 4.046789 5.346585
16 -1.930892 -1.402306
17 -1.966713 -2.423832
18 0.315046 0..558480
19 -1.129013 0.068317
20 -2.174525 -4.064084
21 0.225421 -0.379364
22 1.763938 0.744750
23 0.120431 -0.492896
24 -2.389042 -3.315650
25 -1.845309 0.1.59638
26 3.820021 2.367039
27 -0.520255 -0.463210
28 -3.867087 -5.286714
29 2.733174 1.5.53090
30 2.280112 1.301.5.52
31 3.778.540 5.272804

(b) output map

Table A.9: K = b, TVV(', first order (.Jauss-Markov source

85

n branch 0 branch 1
0 34 27
1 49 0
2 13 2
3 37 46
4 32 44
5 61 63
6 18 54
7 48 62
8 25 4
9 57 48
10 53 23
11 11 52
12 41 20
13 43 22
14 13 6
15 15 37
16 28 4
17 36 8
18 2 15
19 11 7
20 17 12
21 38 21
22 61 55
23 16 46
24 16 43
25 40 35
26 29 22
27 55 1
28 60 28
29 42 29
30 26 5
•■̂1 42 47

(a) next-state map

Table A.10: К = 7, TVVC, first order Gauss-Markov source

86

n branch 0 branch 1
32 41 39
33 59 51
04
35

Oo
19

oZ
34

36 33 12
37 3 17
38 39 31
39 10 53
40 9 20
41 52 24
42 47 58
43 45 25
44 40 23
45 51 30
46 45 38
47 26 31
48 44 19
49 36 1
50 54 50
51 9 63
52 19 24
53 5 62
54 30 57
55 59 27
56 8 0
57 7 18
58 21 14
59 6 33
60 56 60
61 10 14

·)
o z

63
e)U
50

О

35
(a) next-state map

Table A. 10: К = 7, TWC, first order Gauss-Markov source

87

n branch 0 1) ranch 1
0 -1.118349 -0.652145
I -1.575397 -1.157551
2 0.381212 -0.917564
3 -0.372262 1.069438
4 -2.081864 -2.368968
5 2.045488 0.518434
6 0.639121 1.468953
7 -0.996002 -0.415278
8 -1.667547 -2.743954
9 -0.665897 -1.634842
10 2.069734 0.980288
11 0.540117 -0.768559
12 -3.082379 -4.027615
13 0.645130 1.507162
14 1.672200 1.538610
15 -0.594325 0.017553
16 -4.580405 -2.220619
17 -2.406700 -2.352795
18 0.361871 0.371523
19 -0.964185 -0.581324
20 -3.152089 -4.112184
21 1.419376 0.170540
22 2.730453 1.453511
23 -1.352295 -0.307346
24 -3.336836 -0.924279
25 -1.404181 -0.689395
26 3.304664 3.017478
27 0.298691 -0.643394
28 -4.743217 -5.863248
29 3.179764 2.414539
30 2.075268 0.819766
31 3.508097 5.098598

(Ь) output map

Table A. 10: К = 7, TVVC, lirst order Causs-Markov source

88

n I)ranch 0 l.)ranch 1
32 -1.516683 -0.436919
33 -0.245306 -0.668541
34 0..347109 -0.876801
35 -0.587441 -0.059613
3G -1.179526 -3.105496
37 -0.228464 -1.346078
38 1.276110 2.972176
39 1.279942 0.689286
40 -1.810527 -3.017648
41 -2.730923 -2.188176
42 3.775604 2.540935
43 0.269531 -0.414943
44 -2.560996 -1.025332
45 0.335405 1.036889
46 0.409701 1.763624
47 3.774790 5.190171
48 -1.911748 -1.151869
49 -1.662895 -1.472138
50 1.433393 2.031889
51 -0.247752 0.645106
52 -1.651646 -2.968583
53 1.735594 1.185651
54 1.755470 0.871120
55 0.864863 0.111568
56 -2.775165 -1.053425
57 -0.461909 -0.105301
58 1.241838 1.945119
59 0.522274 -0.631521
60 -3.438734 -4.309810
61 2.667530 1.931792
62 -0.295367 0.708645
63 0.997236 0.645050

(1)) output map

Table A. 10: К == 7, TVVC, first order Gauss-Markov Source

A ppendix B

Vector Trellis Waveform Coders

Typical SA Parameters

Markov chain length : 10
Initial temperature rJohnson’s method for

number of iterations : 20
.Yo = 0.8

decrement coefficient for temperature : O.SO
exit epsilon : 0.0001
temperature increment coefficient after CLA ; 5.0
temperature incremciiit coefficient af ter EXTEND : 3.0

89

Best Decoders

90

n branch 0 branch 1 branch 2 branch 3
0 0 0 I 2
1 3 1 3 3
2 0 3 0 1
3 0 3 2 1

(a) next-state map

n branch
0 0 4.741133 4.700180

1 -4.857343 -4.858268
2 3.289365 2.596924
3 -3.388359 -2.716634

1 0 2.478996 2.560070
1 1.630951 1.721158
2 0.138875 0.033560
3 0.889355 -0.222991

2 0 -1.956920 -1.877931
1 -1.186885 -0.657885
2 -2.590685 -3.327544
3 -0.579778 0.261204

3 0 2.801722 3.399782
1 1.383932 1.249191
2 -0.606197 -1.231465
3 0.416988 0.799233

(·>) output map

Table B.l: N=4, VTWC, first order Causs-Markov source

n branch 0 1) ranch 1 brancli 2 1)ranch 3
0 0 0 1 6
1 0 1 7 3
2 2 1 6 5
3 4 1 2 5
4 0 3 5 2
5 3 5 1 7
6 6 >1i 0 3
7 r0 2 1 6 7

(a) iK!Xt-stat(i map

91

n branch
0 0 5.270138 5.218014

1 -5.57G530 -5.527416
2 3.943297 3.183580
3 -4.038607 -3.366626

1 0 3.383417 4.156414
1 2.740852 2.686939
2 1.373504 0.337192
3 1.974406 1.642668

2 0 -1.428479 -1.499126
1 0.877330 2.004853
2 -0.634315 -1.514517
3 -0.845216 -0.335287

3 0 2.032316 2.725143
1 1.311425 1.859928
2 -0.072939 -0.827797
3 0.803080 0.267072

4 0 3.740659 3.647718
1 3.100620 2.306767
2 2.436588 1.530980
3 1.529577 0.450096

5 0 0.530888 0.972506
1 L.526149 1.300949
2 0.164933 0.919070
3 0.291570 -0.357172

6 0 -2.896511 -2.815017
1 -2.250079 -1.477163
2 -3.545522 -4.247868
3 -1.251571 0.129170

7 0 -0.142969 0.540490
1 -0.260102 -0.052904
2 -1.642102 -2.460466
3 -1.040778 -1.044247

(b) output map

Table B.l: N=S, VTVVC, first order Gauss-Markov source

92

n branch 0 branch 1 branch 2 branch 3
0 0 0 1 6
1 12 9 15 11
2 2 1 6 5
3 12 9 10 13
4 4 4 3 2
5 11 13 10 15
6 6 7 0 15
7 13 10 14 15
8 10 3 8 10
9 0 1 7 3
10 15 9 14 13
11 4 1 15 5
12 12 11 13 5
13 3 5 1 7
14 14 15 13 11
15 5 ·)“ () 7

(a.) next-state map

Table B.2: N=l(), VTVVC, first order Causs-Markov source

93

n branch
0 0 5.604480 5.611066

1 -5.938118 -5.984645
2 4.492712 3.605468
3 -4.516740 -3.750058

1 0 3.024328 3.570780
1 2.746552 2.830484
2 1.208910 0.531043
3 1.974774 1.823300

2 0 -0.876491 -0.773329
1 1.055753 2.265142
2 -0.828843 -1.921983
3 0.104732 0.095432

3 0 1.629170 2.521529
1 1.279947 1.411081
2 0.256865 -0.464566
3 0.613959 0.099513

4 0 4.369026 4.495937
1 3.152935 2.799014
2 3.052041 1.906039
3 1.837109 0.728823

5 0 0.705043 1.227415
1 1.777746 1.143278
2 0.836047 0.362670
3 0.103672 -0.328298

6 0 -3.316464 -3.323153
1 -3.016271 -1.996450
2 -4.022808 -4.645373
3 -2.040093 -1.322354

7 0 -0.357065 0.618988
1 -0.853582 -0.425589
2 -2.204035 -2.552752
3 -1.234572 -1.214583

C>) output map

Table B.2: N=16, VTWC, first order Causs-Markov source

9'1

n branch
8 0 0.019146 0.019146

1 0.019146 0.019146
2 0.019146 0.019146

0.019146 0.019146
9 0 3.398979 4.366274

1 2.697483 2.764611
2 1.130.342 -0.176796
3 1.709224 1..536646

10 0 -0.953227 -1.97.5671
1 0.637947 1.763029
2 -0.585642 -1.493.568
3 -0.624613 -0.514.568

11 0 2.057704 2.858293
1 1.891900 1.965196
2 0.269043 -1..350487
3 1.1.35860 0.4661.50

12 0 4.120543 3.749097
1 3.328598 2.627894
2 2.476284 1.190209
3 2.464518 1.824183

13 0 0.360137 0.776775
1 1.390415 1.4561.53
2 0.108352 1.173122
3 0.019502 -0.640070

14 0 -1.443214 -1.477200
1 -2.673143 -2.308079
2 -1.8.5.3312 -0.88.3801
3 -1.241634 0..3.5.3378

15 0 -0.730426 0.127879
1 -0.078537 0.043096
2 -1.987503 -2.829045
3 -1.397843 -1.2.32957

(l>) output map

Table B.2; N=l(), VTW(·, first orcK'r (lauss-Markov source

Appendix С

Finite-State Vector Quantizers

T yp ica l SA P a ra m eters for к -

Markov chain length : 50 x N
Initial temperature :Johnson’.s method fur

number of iterations : 20

Ao = 0.8
decrement coefficient for temperature : 0.90

exit epsilon : 0.0001

temperature increment coefficient after GLA : 7.0

temperature increment coeilicieiit after EXTEN49 5.0

95

96

Best Decoders

n Irranch 0 branch 1
0 4 2
1 7 1
2 4 6
a 4 7
4 4 0
5 4 4
6 2 ()

7 4 1
(a.) next-state map

n])ranch 0 branch 1
0 -U.410441 -2.219085
1 1.854699 4.178640
2 -0.981642 -2.910005
4 -0.499422 1.480241
4 0.190448 -1.486205
5 0.048175 0.048175
6 -2.201912 -4.442060

1 / 0.525404 2.474466
.

(Ij) ou tpu t map

Table CM: k — I, N = 8, FSV(J, first order Causs-Markov source

97

Typical SA Parameters for к = 2

Markov chain length : 25 x N
initial temperature rjohnson’s method lor

number of iterations : 20
Aq = 0.8

decrement coefficient for temperature : 0.85
exit epsilon : 0.0001
temperature increment coefficient after Cl LA : 5.0
temperature increment coelficicnit after EXTEND : 5.0

n bra.iicli 0 branch 1 I)rancli 2 branch 3
0 0 0 2 2
1 2 1 1 3
2 0 2 2 1
3 1 .3 1 7
4 0 (j 2 3
5 .3 1 0 2
6 3 0 5 5
7 .3 .3 1 1 7

(a.) next-state map

Table CJ.2: k = 2, N = 8, F.SVCJ, lirst order Claus.s-Markov source

98

11 branch
0 0 5.265943 5.168925

1 3.750847 3.579158
2 2.684506 2.194793
3 1.418963 0.600342

1 0 0.769608 1.267821
1 -1.535065 -1.561955
2 -0.477617 -0.253232
3 -2.727873 -3.128867

2 0 2.894946 3.238086
1 1.616706 1.668941
2 0.516535 0.343445
3 -0.652627 -1.192525

3 0 -1.375284 -0.610177
1 -3.520238 -3.500049
2 -2.622608 -2.111162
3 -4.760429 -4.935087

4 0 4.982733 3.395519
1 1.071062 2.719021
2 1.303239 2.599440
3 3.424378 7.463252

5 0 -2.038737 -1.136977
1 0.459546 -1.348421
2 1.991501 -1.163665
3 0.120761 -1.472381

6 0 5.004342 7.290382
1 -0.032637 1.297522
2 0.380164 2.049153

-2.219444 1.268733
7 0 -1.962890 -1.477953

1 -4.720466 -4.143184
2 -3.565314 -2.581057
3 -6.209052 -6.024692

(10 out|)nt map

Table (J.2: k = 2, N = 8. I’\SV(J, lirst, ordiu- (iauss-iVIarkov source

99

Typical SA Parameters for k — 'i

Markov chain length : 10 x N
Initial temperature .-Johnson’s method lor

number of iterations : 20
Ao = 0.8

decrement coefficient for temperature : 0.85
exit epsilon : 0.0001
temperature increment coefficient after (,!L/\ : 5.0
temperature increment coefficient after EXTEND 5.0

n br 0 l>r 1 br 2 1)1- 3 1)1- 4 br 5 br 6 br 7
0 0 0 3 0 1 1 1 6
1 0 1 3 3 () 0 1 7
2 0 2 2 1 1 5 7 5
3 0 3 1 7 3 6 3 7
4 1 5 (i 0 1 l-r1 5 5
5 1 0 5 () 0 .3 6 0
6 0 3 3 6 1 7 0 7
7 6 0 () 7 1 1 7 1

(a) next-state map

Table C.3: к = 3, N = 8, F.SVĈ , first order Gauss-Markov source

1 0 0

n branch
0 0 5.109363 5.431272 5.164.586

1 4.006186 3.966095 3.738970
2 1.130406 0.475162 0.265883
3 2.514161 2.846415 3.161463
4 2.636059 1.,596125 0.482898
5 3.634866 2.720881 1.935693
6 1.693023 1.668988 1.912491
7 0.526378 -0.701.3.34 -1.088612

1 0 2.703965 3.483591 3.653046
1 2.530346 2.378704 1.762619
2 -0.534182 -0.637212 -0.412121
3 1.615769 1.1.3.5916 0.318295
4 0.871124 -0.258427 -0.879948
5 1.253705 1.691569 2.2.52157
(j 0.3121.38 0..395390 1.042463
7 -0.577184 -1.672618 -2.266603

2 0 -7.87.3535 -7..343118 28.097795
1 -12.48.5530 -7.631879 6.858236
2 2.909985 -21.846602 -0.878008

17.380016 5.414954 -1.4839.55
4 9.173210 -3.319110 -7.088783
5 -3.803651 11.083963 -1.407703
6 7.891477 4.132295 -0.264960
7 11.722192 12.466121 -0..5716.55

3 0 1.9188.54 2.708772 2.8061.56
1 1.0.54827 0.970893 0.381185
2 0.614771 1.372642 1.9132.35
3 -0.379710 - 1 ..3 7 .5 .5 4 7 -2.187086
4 -0.440361 -0.024965 0.646896
b 0.157639 -0.232453 -0.8148.59
() -1.299189 -1 ..364472 -0.691068
7 -1.861581 -2.547947 -2.84.541 1

Table C.O: k = 0, /V = <S, l''SVQ, lirst (M'dor (buiss-Markov source

101

n brand]
4 0 4.423141 -0..5.35716 -10.151269

1 2.569156 5.7.58779 -28.459314
2 0.781074 -0.11.5801 -6..596109
3 -2.953858 -3.355364 0.302886
4 -6.919418 8.108907 11.269861
5 -12.787813 10.286900 -4.243959
6 -2.459163 1..542001 4.1648.34
7 -13.148629 7.328683 0.870785

5 0 7.759699 5.494298 3.877136
1 -5.94.3651 -2.899627 6.206387
2 -10.869227 14.524001 -2.006455
3 -1.314725 0.206836 20.874896
4 -9.774140 4.949367 -6.447612
5 5.948494 -15.910822 8.628721
0 12.463370 -25.775613 2.2368.52
7 -14.569044 -3.913.555 7.314335

6 0 0.853615 1.632691 1.960263
1 -1.4.54003 -0.925700 -0.064284
2 -0.020440 -0.023677 -0.495230
3 -2.272457 -2.050835 -1.447365
4 -0.385407 0.364243 0.914068
5 -1.6.391.55 -2.316810 -2.953503
() -0.857495 -1.1132.38 -1..5.59765
7 -2.932331 -3.645203 -3.713961

7 0 -1.069803 -0.928287 -1.21.5668
1 -3.499.389 -2.818865 -1.776407
2 -2.296375 -1.847692 -1.712942
3 -2.520621 -2.806058 -3.420323
4 -0.593835 0.313559 0.890702
f) -2.223030 -0.993426 0.015999
() -4.1.5.5631 -3.840168 -3.562237
7 -5.118240 -5..376744 -5.16,5783

(I)) out,put, map

Table C.3: k = N = <S, I".SV(J, lirsl or(l('r Clauss-Markov source

1 0 2

Typical SA Parameters for к = 4

Markov chain length ; 25 x N
Initial temperature :Johnson’s method For

number oF iterations : 20
A(j = 0.8

0 decrement coefficient for temperature : 0.85
exit epsilon : 0.0001
temperature increment coeificient after GLA : 5.0
temperature increment coefficient after EXTEND ; 5.0

n bO bl 1)2 1)3 b4 1)5 I.) 6 1)7 1)8 1)9 bio 1)11 bl2 bl3 1)14 1)15
0 0 0 4 2 4 0 0 3 2 5 1 5 0 2 2 7
1 4 5 0 5 0 () 1 3 1 6 0 7 2 3 2 7
2 0 1 0 5 4 3 2 2 4 2 I 3 3 1 3 3
3 0 4 1 5 5 2 7 3 3 2 7 3 0 3 7 7
4 1 5 6 0 4 7 5 5 4 4 0 1 0 4 4 6
P* 1 1 0 0 4 1 2 3 4 2 1 5 0 5 5 3
6 6 3 0 3 5 3 () 3 4 5 4 () 0 3 0 6
7 4 5 2 3 0 () 3 3 2 7 7 0 7 3 7

(a) next-state map

Table C.4: k — 4, N = 8, E.SVĈ , first order Gaiiss-Markov source

103

n branch
0 0 5.227879 5.222703 5.180445 4.962482

1 3.061840 3.529504 3.024169 2.644407
2 4.908993 4.109995 3.460792 2.490690
3 2.315391 1.986947 1.432104 0.813344
4 3.210274 3.822244 4.296479 4.324479
5 1.348381 1.430499 1.716049 1.979447
6 2.976751 2.070146 1.984638 2..548806
7 1.310724 0.500959 -0.688282 -I..526424
8 3.400473 2.922449 1.815959 1.119154
9 2.273855 2.174724 0.413194 -0.624835
10 2.086431 0.647237 0.443988 0.580190
11 0.429293 -0.070658 0.601813 1.125022
12 1.901406 2.147314 3.231333 3.423555
13 0.836969 0.946234 0.549445 0.079659
14 -0.362503 -0.517407 -0.394530 -0.353687
15 0.042171 -1.200428 -1.428519 -1.629724

2 0 1.109072 1.868644 2.886931 3.242663
1 0.804820 0.975939 1.178270 0.894042
2 1.419470 0.888401 1.108795 2.206163
3 0.554578 -0.248155 0.332569 0.579718
4 2.546227 3.282443 3.383271 3.270037
5 1.088489 1.269104 -0.077087 -0.561724
6 -0.340642 -0.962293 -1.045435 0.031829
7 -1.172.360 -2.039238 -2.147176 -1.562863
8 1.867937 2.163727 1.973565 1.090582
9 -0.017820 0.104221 0.000968 -1.040702
10 -0.306480 0.380124 1.125690 1.866454
11 -0.321653 -0.626501 -1.691397 -2.386711
12 -1.074334 -0.303466 0.104046 0.412994
13 0.589971 -0.442100 -1.182364 -1..347421
14 -1.366716 -1.4.38010 -0.677140 -0.753578
15 -1.748543 -2.503087 -3.005085 -3.532139

(1̂) output ma])

Table C.4; k = 4, N = 8, FSV(^, lir.st order Causs-Markov source

104

n branch
2 0 1.653353 3.323528 3.995395 3.655310

1 0.157950 -0.188828 -0.619951 -0.021862
2 0.219413 0.890520 1.634637 2.170611
3 1.485394 1.330426 0..344219 0.0.52146
4 1.289104 1.9.32611 2.261041 2.354643
5 -0.390299 -0.896879 -1.409742 -1.37.3270
6 -0.555592 -0.422140 0.435892 1.126510
7 -1..383174 -1.196924 -0.371784 -0.412408
8 1.977054 2.699583 2.202050 1.574635
9 1.379172 0.264099 0.357382 1.48.5374
10 0.184771 0.879950 1.238693 0.867818
11 -1.699794 -2.190999 -1.872276 -1.331113
12 0.67.5461 0.179512 -0.89.3515 -1.690347
13 0.225928 0.351949 0.552408 -0..507.5.54
14 -0.720230 -1..578199 -2.385555 -2.918827
15 -2.108860 -3.361140 -4.005695 -3.788009

3 0 0.039789 0.761.580 2.588775 2.778637
1 -0.545327 0.178386 0.965966 1..527636
2 -0.201165 -0.098703 -0..533126 -0.6.54125
3 -1.675274 -1 ..364451 -0.828726 -0.376175
4 0.385342 1.299466 1.271423 0.740254
5 -1.09.32.58 -0.097195 0.210242 0.064081
6 -0.976682 -1.437113 -2.548065 -3.363974
7 -3.485885 -2.994728 -2.593.587 -2.067435
8 -1.010938 -1.074361 -1.264.308 -1.714685
9 -2.681102 -2.508308 -1.40.3470 -0.434489
10 -2.594999 -1.918280 -1.706093 -2.441286
11 -3.861101 -4.397837 -3.940016 -3.255873
12 -1.748.360 -1.039979 0.055208 1.043799
13 -1.638.354 -2.5.390.36 -2.687967 -1.7.38728
14 -2.579102 -2.998587 -.3.579.586 -3.866772
15 -4.023214 -4.533536 -5.178437 -5.526924

(I)) output map

Table C.4: k = 4, N = 8, I''SVQ, first order Gauss-Markov source

105

n branch
4 0 5.281671 5.681374 5.775602 5.433521

1 3.010793 3.246764 3.089777 3.146135
2 4.854619 4.515278 3.981652 3.107831
3 2.831109 2.289188 1.364458 0.336485
4 3.351190 3.883814 4.627867 4.761534
5 1.448312 1.649043 1.685533 1.283646
6 2.978435 2.005127 1.873545 2.119432
7 0.946447 0.147288 -1.02.3231 -1.058876
8 3.656195 3.141818 2.477588 1.521517
9 2.279281 1.379370 0.295886 -0.871526
10 2.136742 1.106592 0.182649 0.586265
11 0.735370 0.209262 0.996495 1.872894
12 1.733753 ! 1.939007 2.519213 3.099075
13 0.420364 0.646570 0.684226 0.126489
14 -0.106914 -0.768176 -0.488993 -0.200048
15 -0.388612 -1.712114 -2.038898 -2.567068

5 0 0.865816 2.138511 3.028739 3.037902
1 0.808163 1.336477 1.471085 0.716005
2 0.286856 0.310225 0.405434 1.337242
3 0.687882 -0.160595 0.019041 -0.177723
4 2.359523 3.063505 3.441359 3.5-15694
5 1.428320 1.196454 -0.046013 -0.203154
6 -0.259998 -0.519088 -1.001004 -0.145809
7 -1.177289 -1.695135 -1.928733 -1.418465
8 1.940139 2.007018 1.713247 1.897120
9 -0.445266 0.441076 0.217998 -0.745537
10 -0.011374 0.49039] 1.740862 2.180284
11 -0.210068 -1.082106 -2.257986 -2.961311
12 -0.965287 -0.715514 0.381692 0.760455
13 0.356798 -0.262727 -1.121685 -1.695942
14 -1.399471 -1.372330 -0.609834 -0.400839
15 -1.887589 -2.828381 -3.287188 -.3.245541

(I)) ()ut])ut map

Table C.4: k — 4, N = <S, FSViJ, first order (lanss-Markov source

106

11 branch
6 0 3.038388 3.807328 3.646188 3.460132

1 -0.066479 -0.168720 -0.413650 0.649414
2 -0.380786 0.751973 1.963218 2.908115
3 1.752275 1.485710 0.646039 -0.244.543
4 1.36.5431 1.940973 2.796231 2.879169
5 -0.702142 -0.770116 -1.329488 -1.988381
6 -1.452346 -0.752503 0.021547 1.249908
7 -1.784706 -1.451505 -0.865718 -0.592809
8 1.835899 2.077102 1.990262 1.676482
9 1.309921 0.905866 0.706612 1..306185
10 -0.192.321 0.694702 1.089092 0.708,565
11 -1.916234 -2.682508 -2.290774 -1.457715
12 0.311850 -0.492539 -1.051893 -1.093283
13 -0.31T2S2 -0.217276 0.194151 -1.046666
14 -1.0592,58 -1.679216 -2.215159 -3.082141
15 -2.458228 -3.746438 -4.221.353 -5.329292

7 0 -0.028298 1..388451 1.847877 2.204583
1 -1..342149 -0.123337 0.685931 1.346408
2 -0.354274 -0.676146 -0.590660 -0.310146
3 -1.792123 -1.787193 -1.479759 -0.703968
4 -0.232535 0.999194 1.19.3,569 0.563240
5 -1.737747 -0.392301 0.378597 -0.4,56511
6 -2.304754 -2.063374 -2.,568177 -3.569643
7 -4.056797 -3.735753 -2.805000 -1.888820
8 -1.2.32179 -0.9(41354 -1.142411 -1.882263
9 -3.322765 -2.447452 -1.068927 -0.320465
10 -3.315.508 -1.8.58131 -1.689,576 -1.870707
11 -4.709952 -4.622735 -4.202162 -3.710412
12 -2.244998 -1 ..336790 -0..361.302 0.50,5608
13 -1.792309 -2.384165 -2.712839 -2.028203
14 -3.345218 -3.380766 -3.420138 -3.602545
15 -5.405321 -5.777733 -6.136681 -5.951677

(I> oiiti)ut map

Table C.4: k = 4, N = 8, FSVT ,̂ first ortier Cfauss-Markov .source

Appendix D

Predictive Trellis Waveform
Coders

D .l First Order Gauss-M arkov Source

T yp ica l SA P a ra m eters

Markov chain length : 20 X N
Initial temperature :Johnson's metliod for

number of iterations : 20

A (j — 0.8
decrement coeiFicient for temperature : 0.70

exit epsilon : 0.001

temperature increment coedicient after (¡LA : 5.0

temperature increment coefficient after EXTlsND : 5.0

Best Decoders
Predictor coefficient : 0.906695

108

n briinch 0 1) ranch 1
0 0 1
1 0 1

(a) next-.state map

n branch 0 l)ranch i
0
1

1.111982
0.413708

-0..384706
-1.12.3029

(b) output map

Table D.l: К = 2, PTW(j, first order Gauss-Markov Source

Predictor coefficient : 0.916.341

n branch 0 l)ranch 1
0 2 1
1 2 1
2 0 3
.3 0 .3

[a) next-sla.te map

11 l)rancli 0 l)rancli 1
0 0.915178 -0.269363
1 0.312816 -0.944278
2 0.911924 -0.301855

.
0.281040 -0.980543
(b) out|)ut map

Table D.2: A = 3, PT’VVG. first order Gauss-iVIarkov source

Predictor coefficient : 0.927614

109

n l)ranch 0 1) ranch 1
0 2 6
1 ;.i 5
2 0 1
;3 2 ;5
4 4 1
5 4 7
6 4 7
7 6 1

'a) next-state map

11 branch 0 I) ranch 1
0 1.075S53 -0.1.306.53
1 0.251032 -0.954735
2 0.9.35542 -0.205267
.3 0.189845 -1.117,598
4 1.031421 -0.161472
5 0.300580 -1.071149
6 0.923144 -0.381030
7 0.291311 -1.082695

(h) output ma.|)

Table D.4: K = 4, PTWC, lirst order Clau.s.s-Markov source

Predictor coefficient : 0.927650

1 1 0

n branch 0 branch 1
0 2 15
1 11 13
2 0 8
;3 10 11
4 4 1
5 12 15
6 4 5
7 7 4
8 0 14
0 10 11
10 8 1
11 2 3
12 12 9
13 12 5
14 i;{ 15
15 6 1

(a) next-state map

n I)rancli 0 branch 1
0 1.134871 -0.137760
1 0.181215 -0.986359
2 0.987319 -0.213432
3 0.174623 -1.1384.33
4 1.060623 -0.073275
5 0.356516 -1.036582
6 0.982620 -0.414797
7 0.058227 0.058227
8 1.117164 -0.093702
9 0.201276 -0.9.34484
10 0.846.3!)9 -0.280867
11 0.160655 -1.089513
12 1.010280 -0.137835
13 0.292415 -1.086113
14 0.807014 -0.436842

. 1·̂ . 0..3234 73 -1.070942
(I)) ont|)iit map

Table D.4: l< = 5, i’d’VVC, lirst order (¡a.uss-Ma.rkov source

Predictor coefficient : 0.929305

111

71 branch 0 branch 1
0 2 15
1 27 29
2 0 8
3 26 27
4 4 1
5 28 31
() 4 5
7 23 20
8 0 14
9 26 27
10 8 1
11 18 19
12 12 9
13 28 21
14 13 15
15 22 17
IG 18 31
17 11 13
18 16 24
19 10 11
20 20 17
21 12 15
22 20 21
2;i 7 4
21 16 ;io

25 10 11
2G 24 17
27 2 .3

28 28 25
29 12 5
30 29 31
31 6 1

(a.) next-stat(' map

Table D.5: K = (i, PTVVC, (irst ord(u· Gau.s.s-Markov .source

1 1 2

n branch 0 branch 1
0 1.068216 -0.1414.38
1 0.227482 -1.016312
2 1.001803 -0.1807,52
3 0.129795 -1.1.5-5.584
4 1.061888 -0.097036
5 0.334116 -1.024486
6 1.014661 -0.371507
7 0.058227 0.0.58227
8 1.04.3461 -0.196263
9 0.178796 -0.87.5891
10 0.8.3.5491 -0..301874
11 0.116516 -1.07.52.54
12 0.932344 -0.087264
13 0.338087 -1.068908
14 0.822509 -0.543447
15 0.364198 -1.023614
16 1.191688 -0.109190
17 0.163243 -0.97.5402
IS 1.001946 -0.276178
19 0.160787 -1.0.52673
20 0.966187 0.018772
21 0.414.337 -1.0.53512
22 1.015183 -0.456718
23 0.058227 0.058227
24 1.104032 -0.127150
25 0.226031 -0.93.3410
26 0.800813 -0.253945
27 0.157.525 -1.0.32063
28 1.029958 -0.143985
29 0.328459 -1.11.30.34
30 0.766298 -0.519169
31 0.309725 -1.0.34781

(1)) out|)ut map

Table D.5: K = (i, PTVVC, first order Causs-Markov source

113

Predictor coefficient : 0.981607

n branch 0 branch 1
0 4 3
1 63 48
2 10 12
3 60 59
4 0 6
5 58 51
6 6 7
7 61 57
8 23 19
9 62 63
10 2 9
11 16 51
12 8 14
13 48 55
14 14 15
15 5;i 61
16 20 19
17 37 34
18 22 29
19 44 43
20 16 23
21 37 35
22 21 9
23 45 41
24 24 27
25 34 47
26 18 25
27 36 35
28 24 30
29 32 39
30 30 31
31 37 1 45 1

(a) n('xt-sta.t(' niaj)

Table D.6; K = 7, P3TVC, iir.st order (¡aus.s-Markov source

114

n branch 0 branch 1
32 36 39
33 31 32
34 42 44
35 28 27
36 32 38
37 26 29
38 38 39
39 25 25
40 55 51
41 26 31
42 34 41
43 14 19
44 40 46
45 16 23
46 46 47
47 21 29
48 52 51
49 5 2
50 54 61
51 12 11
52 48 55
53 5 3
54 53 41
55 9 9
56 56 59
57 2 15
58 50 57
59 4 3
60 56 62
61 0 7
62 62 63
63 5 13

(a) next-state map

Table D.6: K = 7, PTWC, first order Gauss-Markov source

115

n branch 0 branch 1
0 1.067527 -0.227400
1 0.058227 0.058227
2 1.045111 -0.044962
3 0.239541 -1.215145
4 1.123499 -0.254090
5 0.482145 -0.798489
6 0.868862 -0.393713
7 0.158135 -1.010741
8 1.063410 -0.328876
9 0.507587 -1.089764
10 1.239051 -0.062521
11 0.168174 -1.0344.38
12 0.860863 -0.228660
13 0.394628 -0.969272
14 0.889886 -0.2.55689
15 0.179361 -0.9.52348
16 1.154937 -0.345874
17 0.058227 0.058227
18 1.358414 -0.109824
19 0.202926 -1.122350
20 0.858289 -0.292539
21 0.473892 -0.7.3.5464
22 1.104599 -0.642922
23 0..396518 -0.983133
24 0.947004 -0.3700.33
25 0.433335 -0.812679
26 1.139252 0.008647
27 0.212970 -1.003097
28 0.836071 -0.3842.55
29 0.378602 -0.894847
30 0.969908 -0.274176
31 0.131837 -0.857242

(b) output map

Table D.6; K=7, PTVVC, first order Gauss-Markov source

116

n branch 0 branch 1
32 1.050203 -0.242625
33 0.058227 0.058227
34 1.034266 -0.198651
35 0.228873 -1.215367
36 1.083966 -0.251974
37 0.445761 -0.823869
38 0.764979 -0.358087
39 0.152590 -0.926611
40 0.996126 -0.181070
41 0.434391 -1.087660
42 1.084295 -0.139640
43 0.058105 -1.211544
44 0.928252 -0.196057
45 0.361007 -0.893359
46 0.881515 -0.259517
47 0.208972 -0.942371
48 1.031775 -0.330460
49 0.058227 0.058227
50 1.371263 0.082492
51 0.217393 -0.989503
52 0.915519 -0.289374
53 0.560198 -0.811990
54 1.059585 -0.272314
55 0.337927 -1.154558
56 1.051480 -0.306598
57 0.470205 -0.920356
58 1.061990 0.032295
59 0.180428 -1.059504
60 0.843564 -0.370121
61 0.386182 -0.961029
62 0.873250 -0.267560
63 -0.077626 -0.926265

(b) output map

Table D.6; K=7, PTVVC, first order Gauss-Markov source

117

D .2 Speech M odel Source
Typical SA Parameters

Markov chain length : 20 x A
Initial temperature rJohnson’s method for

number of iterations : 20
Ao = 0.80

decrement coefficient for temperature : 0.65
exit epsilon : 0.001
temperature increment coefficient after GLA : 5.0
temperature increment coefficient after EXTEND : 3.0

Best Decoders

ao a, «2
1.720968 -1.1.57482 0.260467

(a) predictor coefficients

n branch 0 branch 1
0 0 1
1 0 1

(b) next-state map

n branch 0 branch 1
0
1

0.511626
0.073658

-0.0.54820
-0.493039

Talde D.7: K

(c) output map

2, PTWC, speech model source

118

ao a\ 0>2
1.471274 -0.757848 0.063235

(a) predictor coefficients

n branch 0 branch 1
0 3 1
1 0 3
2 2 1
3 2 1

b) next-state map

n branch 0 branch 1
0 0.346273 -0.207067
1 0.185423 -0.443003
2 0.527068 -0.094146
3 0.199848 -0.417819

(c) output map

Table D.8: K=3, PTWC, speech model source

119

CIq a i 0̂ 2

1.422285 -0.625918 -0.043350
(a) predictor coefficients

n branch 0 branch 1
0 6 5
1 0 7
2 7 4
3 4 7
4 0 1
5 0 3
6 2 4
7 6 1

b̂) next-state map

n branch 0 branch 1
0 0.271190 -0.245824
1 0.173037 -0.415635
2 0.468551 -0.104078
3 0.199708 -0.391784
4 0.308147 -0.218104
5 0.170122 -0.422712
6 0.495243 -0.092068
7 0.222125 -0.406521

(c) output map

Table D.9: K=4, PTWC, speech model source

1 2 0

do ai 0.2
1.446420 -0.620597 -0.070605

(a) predictor coefficien

n branch 0 branch 1
0 6 5
1 8 15
2 10 13
3 9 11
4 12 5
5 14 1
6 8 11
7 14 9
8 12 13
9 0 7
10 14 12
11 4 5
12 2 9
13 8 3
14 10 3
15 6 5

(b) next-state map

n branch 0 branch 1
0 0.281038 -0.201709
1 0.091144 -0.477598
2 0.424088 -0.024323
3 0.123631 -0.333086
4 0.237027 -0.210885
5 0.183590 -0.367477
6 0.456388 -0.054239
7 0.134848 -0.411201
8 0.210858 -0.243100
9 0.120873 -0.395746
10 0.483714 -0.033224
11 0.156109 -0.349602
12 0.305478 -0.126260
13 0.099484 -0.323703
14 0.387079 -0.038689
15 0.204252 -0.505380

(c) output map

; K==5, PTWC, .speech mod

Bibliography

[1] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. vol. 27, pp. 379-423, 623-656, 1948.

[2] C. E. Shannon, “Coding theorems for a discrete source with a fidelity
criterion,” IRE National Convention Record, Part 4, pp. 142-163, 1959.

[3] Y. Linde, Λ. Buzo, and R. M. Gray, “An algorithm for vector quantizer
design,” IEEE Trans. Commun., vol. COM-28 pp. 84-95, .Jan. 1980.

[4] A. Gersho, R. M. Gray, Vector Quantization and Signal Compression,
Kluwer Academic Publishers, 1991.

[5] R. M. Gray, Source Coding Theory, Kluwer Academic Press, Boston, 1990.

[6] .1. E. Hopcroft and .J. D. LUlman, Introduction to Automata Theory, Lan­
guage, and Computation, Addison-Wesley, Reading, Mass., 1979.

[7] .1. Foster, R. M. Gray, M. 0 . Dunham, “Finite-state vector quantization
lor wcweform coding,” IEEE Trans. Info. Theory, vol. IT-31, pp. 348-359,
May 1985.

[8] A. llaoui and D. G. Messerschmitt, “Predictive vector quantization,” in
Proc. ICASSP-84, San Diego, CA, Mar. 19-21, 1984.

[9] A4. 0 . Dunham and R. M. Gray, “An algorithm for vector quantizer de­
sign,” IEEE Trans. Commun., vol. COM-28, pp. 84-95, .Jan. 1980.

[10] Λ. Gcu- sho and B. Rarnamurthi, “Image coding using vector quantization,”
Proc. ICASSP-82, vol 1, pp. 428-431, Paris, April 1982.

[11] F..J elinek and .1. B. Anderson, “Tree encoding of memoryless discrete time
sources witli a fidelity criterion,” IEEE Trans. Inform. Theory, vol. IT-15,
pp. 584-590, Sept. 1969.

121

1 2 2

[12] R. M. Gray, “Time-invariant trellis encoding of ergodic discrete-time
sources with a fidelity criterion,” IEEE Trans. Inform. Theory, vol. IT-23,
pp. 71-83, Jan. 1977.

[13] G. D. Forney, “The Viterbi algorithm,” Proc. IEEE, vol. 61, pp. 268-278,
March 1973.

[14] A. J. Viterbi, “Error bounds for convolutional codes and an asmptotically
optimum decoding algorithm,” IEEE Trans. Inform. Theory, vol. IT-13,
pp. 260-269, Apr. 1967.

[15] J. K. Omura, “On the Viterbi decoding algorithm,” IEEE Trans. Inform.
Theory, vol. lT-15, pp. 177-179, Jan. 1969.

[16] A. J. Viterbi, J. K. Omura, Principles of Digital Communication and
Coding, McGraw-Hill, 1979.

[17] L. C. Stewart, “ Trellis data compression,” Stanford Electron. Lab., Stan­
ford, CA, Tech. Rep. L905-1, July 1981.

[18] C. C. Cutler, “Delayed encoding: stabilizer for adaptive coders,” IEEE
Trans. Commun. Technol., vol. COM-19, pp. 898-907, Dec. 1971.

[19] E. Ayanoglu, R. M. Gray, “The design of predictive trellis waveform
coders using the generalized Lloyd algorithm,” IEEE Trans. Commun.,
vol. COM-34, pp. 1073-1081, Nov. 1986.

[20] L. C. Stewart, R. M. Gray, Y. Linde, “The design of trellis waveform
coders,” IEEE Trans. Commun., vol. COM-30, pp. 702-711, April 1982.

[21] M. R. Garey and D. D. Johnson, Compxiters and Intractability: A Guide
to the Theory of NP-Completeness, W.II. Freeman and Co., San Francisco,
1979.

[22] A. 11. G. Rinnooy Kan and G. T. Timmer, “Stochastic methods for global
optimiziition,” Econometric Institute, Erasmus University, Rotterdam,
Report S m iO , 1983.

[23] S. Kirk])atrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated
annealing,” Science, vol. 220, pp. 671-680, May 1983.

[24] P. .1. M. van Laarhoven, E. II. L. Aarts, Simulated Annealing: Theory and
Applications. MIA D. Reidel Publishing Company, 1988.

123

[25] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, “Equa­
tion of state calculations by fast computing machines,” J. of Chem.
Physic vol. 21, pp. 1087-1092, 1953.

[26] R. II. J. M. Otten, L. P. P. P. van Ginneken, The Annealing Algorithm,
Kluwer Academic Publishers, 1989.

[27] VV. Feller, An Introduction to Probability Theory and Its Applications,
vol.l, Wiley, New York, 1950.

[28] D. S. .Johnson, C. R. Aragon, L. A. McGeoch, C. Shevon, “Optimization
by simulated annealing: an experimental evaluation. Parts I and II,” Oper.
Res., vol. 37, pp. 865-892, December 1989, and vol. 39, pp. 378-406, June
1991.

[29] R. E. Burkard and F. Rendi. “A thermodynamically motivated simulation
procrdure for combinatorial optimization problems,” European J. of Oper.
Res., vol. 17, pp. 169-174, 1984.

[30] M. Lundy and A. Mees, “Convergence of an annealing algorithm,” Math.
Prog., vol. 34, pp. 111-124, 1986.

[31] G. IT. Sasaki and B. Ilajek, “The time complexity of maximum matching
by simulated annealing,” .Journal of the ACM, vol. 35, pp. 387-403, 1988.

[32] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions,
and the Bayesian restoration of images,” IEEE Proc. Pattern Analysis
and Machine hitelligence, vol. PAMI-6, pp. 721-741, 1986.

[33] A. El Gamal, L. A. Ilernachandra, I. Shperling and V. K. Wei, “Using
simulated annealing to design good codes,” IEEE Trans. Inform. Theory,
vol. IT-.33, pp. 116-123, 1987.

[•34] J. K. Flanagan, D. R. Morrell, R. L. Frost, C. J. Read and B. E. Nel­
son, “Vector quantization codebook generation using simulated anneal­
ing,” Proc. ICASSP-89, pp. 1759-1762, 1989.

[-35] A. E. Çetin and V. Weerackody, “Design of vector quantizers using sim­
ulated annealing,” IEEE Trans. Circ. Syst., vol. CAS-35, p. 1550, Dec.
1988.

[36] N. E. Collins, R. W. Eglcse, B. L. Golden, “Simulated annealing—an
annotated bibliography,” Amer. ./. of Math, and Man. Sci., vol. 8,]>p.
205-307, 1988.

124

[37] B. II. Juang, “Design and performance of trellis vector quantizers for
speech signals,” IEEE Trans. Acoust., Speech, Signal Processing, vol.
ASSP-36, pp. 1423-1431, Sept. 1988.

[38] C.-D. Bei, R. M. Gray, “Simulation of vector trellis encoding systems,”
IEEE Trans. Commun., vol. COM-34, pp. 214-218, March 1986.

[39] D. E. Knuth, The Art of Computer Programming, Addison-Wes ley, Read­
ing, Mass. 1981.

[40] S. P. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inform.
Theory, vol. IT-28, pp. 129-137, Mar. 1982, reprint of unpublished 1957
rep.

[41] .J. Max, “Quantizing for minimum distortion,” IRE Trans. Inform. The­
ory, vol. IT-6, pp. 7-12, Mar. 1960.

[42] Y. Linde and R. M. Gray, “A fake process approach to data compression,”
IEEE Trans. Commun., vol. COM-26, pp. 840-847, June 1978.

[43] W. A. Pearlman, “Sliding-block and random source coding with con­
strained size reproduction alphabets,” IEEE Trans. Commun., vol. COM-
30, pp. 1859-1867, Aug. 1982.

[44] G. II. Freeman, J. W. Mark, I. F. Blake, “Trellis source codes designed by
conjugate gradient optimization,” IEEE Trans. Commun., vol. COM-36,
pp. 1-12, January 1988.

[45] M. J. D. Powell, “An efficient method for finding the minimum of a func­
tion of several variables without calculating derivatives,” Comp. J., vol.7,
pp. 155-162, May 1964.

[46] M. J. D. Powell, “Restart procedures for the conjugate gradient method,”
Math. Prog., vol. 12, pp. 241-254, 1977.

[47] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Aca­
demic Press, London, 1981.

[48] R. M. Cray, “Time-invariant trellis encoding of ergodic discrete-time
sources with a fidelity criterion,” IEEE Trans. Inform. Theory, vol. IT-23,
pp. 71-83, Jan. 1977.

125

[49] S. G. Wilson, S. Husain, “Adaptive tree encoding of speech at 8000 bits/s
with a frequency-weighted error criterion,” IEEE Trans. Commun., vol.
COM-27, pp. 165-170, Jan. 1979.

[50] R. A. McDonald, “Signal-to-quantization noise ratio and idle channel per­
formance of DPCM systems with particular application to voice signals,”
Dell Syst. Tech. J., vol. 45, pp. 112.3-1151, Sept. 1966.

[51] M. W. Marcellin, T. R. Fischer, “Trellis coded quantization of memoryless
iuid Gauss-Markov sources,” IEEE Trans. Commun., vol. COM-38, pp.82-
93, Jan. 1990.

[52] G. Ungerboeck, “Trellis coded modulation with redundant signal sets,”
IEEE Commun. Mag., vol. 25, pp. .5-21, Feb. 1987.

[53] W. A. Finamore and W. A. Pearlman, “Optimal encoding of discrete-time
continuous-amplitude memoryless sources with finite output alphabets,”
IEEE Trans. Inform. Theory, vol. IT-26, pp. 144-155, Mar. 1980.

