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ABSTRACT

THE DESIGN OF FINITE-STATE MACHINES FOR 
QUANTIZATION USING SIMULATED ANNEALING

Ercaii Eiigin Kuruoglii
M.S. in Electrical and Electronics Engineering 
Supervisor: Assoc. Prof. Dr. Ender Ayanogiu 

August 1993

In this thesis, the combinatorial optimization algorithm known as simulated an­
nealing (SA) is applied to the solution of the next-state map design problem of 
data compression systems based on finite-state machine decoders. These data 
compression systems which include finite-state vector ciuantization (FSVQ), 
trellis waveform coding (TWC), predictive trellis waveform coding (PTWC), 
and trellis coded quantization (TCQ) are studied in depth. Incorporating gen­
eralized Lloyd algorithm for the optimization of output map to SA, a finite-state 
machine decoder design algorithm for the joint optimization of output map 
and next-state map is constructed. Simulation results on several discrete-time 
sources for FSVQ, TWC and PTWC show that decoders with higher per­
formance are obtained by the SA-I-CLA algorithm, when compared to other 
related work in the literature. In TCQ, simulation results are obtained for 
sources with memory and new observations are made.

Keywords : data compression, Jlnitc-state vector quantization, trellis waveform 
coding, predictive trellis xvaveform coding, trellis coded quantization, simulated 
annealing, finite-state machine decoders.
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ÖZET

TAVLAMA BENZETİMİ KULLANARAK NİCEMLEME 
AMAÇLI SONLU DURUM MAKİNELERİ TASARIMI

Ercan Engin Kuruoğlu
Elektrik ve Elektronik Mühendisliği Yüksek Lisans 

Tez Yöneticisi: Doç. Dr. Ender Ayanoğiu 
Ağustos 1993

Bu çalışmada, sonlu durum makinelerine dayanan bazı veri sıkıştırma 
dizgelerinde eniyiye yakın kodçözûcü tasarımı sorununa bir çözüm önerisi 
irdelenmiştir. Tezin bu konudtiki araştırmalara temel katkısı, kodçözücü 
durum değiştirme tablosu tasarımında tavlama benzetimi olarak bilinen 
katışımsal eniyileştirme algoritmasının kullanılmasıdır. Çıktı tablosunun eniyi- 
leştirilmesinde kullanılan genelleştirilmiş Lloyd algoritması da tavlama ben­
zetimi ile birlikte çalıştırılarak çıktı tablosu ve durum değiştirme tablosunu 
beraber eniyileştiren bir tasarım algoritması oluşturulmuştur. Sonlu durum 
vektör nicemleyicisi, çit kaynak kodlaması ve öngörülü çit kaynak kodla­
ması için elde edilen benzetim sonuçları önerilen algoritma ile daha önce 
yayınlanmış çalışmalara göre daha yüksek başarımlı kodçözücülerin tasar­
landığını göstermektedir. Çit kodlamalı nicemleme için de yeni gözlemlerde 
bulunulmuştur.

Anahtar sözcükler : veri sıkıştırma, sonlu durum vektör nicemleyicisi, çit 
kaynak kodlaması, öngörülü çit kaynak kodlaması, çit kodlamak nicemleme, 
tavlama benzetimi, sonlu durum makineli kodçözücü.
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Chapter 1

IN T R O D U C T IO N

The goal of design of any communication system is to build a system which 
enables the transfer of information-bearing signals from the transmitter to 
the receiver reliably, that is with “little” or no loss in information. To reach 
the goal of reliable communication, the information to be transmitted should 
be converted into a form that is in some way more “convenient” to transmit 
and then be converted back to the original form after transmission. Let the 
information source be in the form of a random process Â „. Then, a simple, 
yet general model of a communication system aiming a reliable transfer of 
information is as given in Figure 1.1.

A communication system is composed of three parts, an encoder, the chan­
nel, and a decoder. The channel represents the medium through which infor­
mation will be sent. The information which is represented by the input random 
jjrocess X,i is converted by the encoder into another random process Un which 
is more convenient to handle aiul to transmit over the channel. This process 
(Jn is sent through the channel, and at the other end of the channel another 
random process Un is received lyy the receiver which is related to Un through 
a conditional probability distribution. Then, the decoder performs the reverse

A

X.

Figure 1.1: ('ommunication system



operation of the encoder, and converts Un into Xn·, the reproduction symbols. 
It is possible (and may actually be desirable) that X,i ^  and the objective 
of communication system design is to minimize the difference between the 
input sequence, and X^^ the rej^roduction sequence.

Usually the channel puts severe restrictions on the type and the quantity 
of signals that can be transmitted through it. For example, most of the time 
one has to represent an infinite collection of input signals X^ with a finite 
collection of signals Un· This introduces quantization errors into the commu­
nication process, causing a loss in information since there is no way one can 
recover Xn from Un- Other than this, the difference between X,i and Xn iTiay 
be due to some disturbances in the channel which corrupt the signal. These 
disturbances may be deterministic such as filtering, modulation, aliasing, or 
random such as additive noise, fading, and jamming. Then, the fundamental 
issues in communication system design are source coding or data compression 
which is the mapping of the input sequence (information source) efficiently 
into a representation for transmission over the channel and channel coding or 
error-control coding for overcoming the noise in the channel.

Claude Shannon formulated both of these issues in his classical papers [1], 
[2]. One important fact he proved was that in a communication system design, 
source coding and (nror-control coding (channel coding) can be considered 
independently: one can design seperate systems for source and channel coding 
and then simply cascade them. The result would be as good as the result of 
designing both systems together at the same time.

In our work, we focused on the problem of data compression, making some 
assumptions about the channel and then ignoring it completely, the approach 
being justified with Shannon’s above mentioned theorem. Our first assumption 
about the channel is that it is digital, that its permissible inputs and outputs 
form a finite set or alphabet. Our second assumption is that the rate of the 
channel is fixed, that is, for each channel input symbol chosen from the 
input alphabet there is just one output symbol f/„. The third assumption is 
that the channel is noiseless, that is = Un-

Data compression involves the design of the encoder and the decoder. As 
stated above, the encoder is a mapi)ing from the input sequence Xn into i/„, 
the channel input secpience. This ma,pping can be performed in many ways, 
the objective still being to minimize the difference between the reproduction



symbols and the input symbols. A special ciise of data compression is when the 
encoder is a minimum distortion or nearest neighbor mapping and this partic­
ular type of data compression is called qxLantization. Shannon’s distortion rate 
theory formulates the lowest distortion achievable for a given fixed rate with 
such a system but it makes no suggestions for the ways of actually building 
systems with optimal performance. Therefore, many researchers since Shannon 
have concentrated on finding the rules for the design of systems with perfor­
mance approaching theoretical bounds. Although many good coding systems 
have been suggested, there is still room before the bounds are reached. The 
goal of this work is to contribute to these efforts in the fields of trellis waveform 
coding and related systems using a different design approach.

Before we go into the details of our coding approach, we provide some 
background information on some important quantization techniques related to 
our work in the next chapter.



Chapter 2

Q UANTIZATIO N
TECH NIQ UES

2.1 Scalar Q uantization

Scalar quantization is the simplest of qucintization techniques. It is simple 
because it performs quantization on a discrete time sequence considering the 
samples one by one, in other words, it quantizes the samples independently. 
The scalar quantizer is defined with a codebook C = {yi, J/2 , · · - yN) composed 
of the codewords ?/,s which iire the reproduction values, and an encoding rule, 
which determines the way in])ut symbols are encoded to one of r/,s. The code­
words partition the input space into N  regions, ,S'i, .$2 ) · · · > <5'̂ /·, each Si being 
composed of the points in the s])ace that are assigned to ?y,· through the en­
coding rule. The elements Xn from the input sequence {.ri, ;r2 , . . . ,  x’l} are 
quantized one by oiuj according to the encoding rule, that is, a symbol from 
the input sequence is quantized to ;iy, if it falls into the region .5',·. An impor­
tant special case of the ciuantizer is the Nearest Neighbor (NN) quantizer. In 
NN encoding, the distance of :;;,i from each yi is calculated via the distortion 
measure d{x,i, yi) and Xn is quantized in the following way.

— yji 11 Si yi)i Vi G {1,2, .. . N}i (2.1)

where q(x) denotes the (piantizer function. If the equality holds, that is, if there 
is more than one such j ,  the choice is maile randomly. The encoder being the 
NN encoding rule, the decoder is simply a look-up table (the codebook itself)



which reproduces tlie codeword with tlie index received from the channel.

In the design of a scalar quantizer the goal is to come up with an encoding 
rule and a codebook which gives the best performance for input in terms of a 
performance criterion, over all possible encoding rules and codebooks. The dif­
ference between the input seciuence and the reproduction sequence is referred to 
as distortion. In order to measure the “distance” between the source sequence 
and the sequence of the quantized samples, one uses a mesaure, known as the 
distortion measure, between the two sequences. A wide class of distortion mea­
sures are known as per-letter distortion measures, i.e., the contribution from 
individual samples and their quantized values in a sequence have independent 
effects; for example, for additive distortion measures, these contributions are 
additive. There are various functions proposed in the literature as measures of 
sample distortion.

The most common (.listortion measure between two vectors x and x whose 
members are .t, and ;t·,, 0 < ?’ < A: — 1, is the squared error distortion or the 
square of the Euclidean distance:

k - \

d(x,x) = I ^  I (2.2)
¿=0

Other possible distortion measures are Holder iiorm.

A.—1

Minkowski norm^

</(x,x) = I Xi -  Xi I"}
t=0

d(x,x) =  max | .c,· — .i·,· |,0<г<̂ ·—1
and the weighted-squares distortion^

A—1
d(x,x) = W{ I X{ I ,

(2.3)

(2.4)

(2.5)
¿=0

where in,· > 0, i = 0 , . . . ,  A' — 1.

These distortion measures are called (.lilference distortion measures since 
they depend on the vectors x and x oidy through the difference vector x — x. 
Other types of distortion measures are also used in tlata com])ression systems 
but they are more complicated. Throughout this thesis we will only use the 
squared error distortion measure l)ecause it is commonly used in the data 
compression literature and because of its mathematical tractability.



2.2 Vector Q uantization

A direct generalization of scalar quantization (SQ) to higher dimensions, that 
is, coding of symbols in blocks with length more than one is vector quantization 
(VQ). A vector quantizer Q of dimension k and size is a mapping from a 
vector in the ¿-dimensional Euclidean space 7?.̂ ’ into a finite set C containing 
N  codewords or reproduction ])oints. That is.

Q : K ‘ ->C, C =  {yi,y2.---,yw) Mid y, € (2.6)

With analogy to the scalar case, the codewords y,s in the codebook C 
partition the input vector space into N  regions each composed of points 
in the space which are associated with y,·. Each vector x,i from the input 
sequence is encoded into y,· only if it is in Si. Again, a special case is nearest 
neighbor encoding where the quantizer computes the distortion between the 
input vector and each codevector in the codebook and encodes the input vector 
to the one which gives the smallest distortion. That is,

Q M  = Yj if <K^n,yj) < (l{^n,yi), 3 j ,V ie  (2.7)

where, again the choice is made randomly if the equality holds.

Vector quantization is more efficient than scalar quantization because it can 
exploit the correlation lietween samples which SQ cannot do since it quantizes 
the samples independently. Moreover, even if there is no statistical correlation 
to be exploited between the siunples, VQ can do better than SQ due to its 
higher freedom in choosing decision regions for jiartitioning [4].

Since the quantizer is completely S])ecified by a codebook and an encoding 
rule, the design objective of vector quantizer is to find a codebook corre­
sponding to the decoder and an encoding rule corresponding to the encoder, 
that will give the best performance. For a given codebook C, the average 
distortion (for empirical data) can l)e lower l.)ounded according to

(2.8)
A. = l -  -

This lower bound is achieved if Q assigns each vector Xf. in the input sequence 
to a codeword which is the nearest neighbor condition. Looking for the optimal 
codebook given the partition h'ads us to the centroid condition. A centroid.



ceut(5), of a set S  € is the vector y which minimizes the expected value of 
the distance between any point x in S  and y. That is,

:.'ent(5) = m iir 'E (d (X ,y ) | X G 5) (2.9)

where the inverse minimum notation means the vector y satisfying the mini­
mum is chosen.

It is easy to show that for the squared error distortion measure, this leads 
to the center of mass of S. For empirical data, the center of mass of S  is.

cent (5) =
1
S

Ill’ll

1=1
(2.10)

where the summation is over the vectors x,· that are in S. Then, given the 
partition (or equally the encoding rule) the oj)timum codebook is composed of 
the center of masses of each partition cell.

These necessary conditions of optimality suggest an iterative means of nu­
merically designing a good vector quantizer. Given S  one can start with an 
arbitrary initial codebook and partition S  according to NN. Then the optimal 
codebook for this partition is found I:>y computing the centroids and the new 
partition can be found for the new codebook. Iteratively, this procedure pro­
ceeds to better codebooks. This algorithm is known as the Generalized Lloyd 
Algorithm (GLA) or the LBG algorithm [3]. Although there are various vector 
quantizer design methods [4], GLA is the most popular and several extensions 
of it are made in the literature. The extension that is of interest to us is the 
one intoduced by Stewart et al. in [20] in the context of trellis waveform coding 
which we will discuss in length in the coming sections. At this point we give 
GLA in its original form as was introduced by Linde et al. [3] for VQ:

The Generalized Lloyd Algorithm

1. Begin with an initial codebook Go. Set m = 0, and a threshold value e > 0.

2. Given the codebook. Cm = {yi},
partition the training set into cells ,S', using the NN condition:

Si = {x : d(x,y,·) < d(x,yj); Vj /  /:}.
3. Compute the centroids of the partition cells. Si using (2.10), 

update the codebook according to the centroid condition:

Cm+i = {cent(,S;·)}.



4. Compute the average distortion, for C,n+i·

If (An -  An+i)/An < e,

stop with codebook An+i, 
else, set m  <— m + 1.

2.3 F in ite-S ta te  Vector Q uantization

Vector quantization, as discussed in the previous section, considers each vector 
independently and therefore does not take into account the future or past 
vectors. Therefore the right term to define standard VQ is memoryless VQ.

As discussed in the previous section, the superiority of VQ to SQ (scalar 
quantization) partly comes from the fact that VQ exploits the correlation 
among the samples in the block. And the bigger the vector (or block) di­
mension is, the more VQ will exploit the statistical dependences in the se­
quence, since it will see more samples at a time. At this point, it is clear that 
contending with a finite vector size and quantizing the blocks seperately, we 
are ignoring the dependencies Ijetween samples in consequetive blocks which 
could be exploited for even better coding performance. One apparent solu­
tion to this problem is to increase the vector dimension indefinitely which is 
then accompanied with a pro])ortional increase in computational complexity, 
which becomes unmanagable. Since this solution is not practical, instead of 
introducing more sam])les in the quantization process, we should include the 
information about these samples to the current quantization instant in some 
way, that is we should introduce memory into the quantizer. This memory 
is used to derive information about statistical dependencies between samples, 
and this information is ex])loited for better coding performance. This can be 
realized in the following manner.

In standard (memoryless) V(), we base our quantization decisions on a fixed 
codebook C = {y i,y 2 ) · · · lyAf}· Instead, we think of employing a codebook 
changing with time, we let a dilferent codebook be used at each quantization 
instant and choose this codel)ook from a. collection of codebooks according 
to the output of the previous ([uantization instant. Using the knowledge of



previous quantization in deciding the codebook to be used, we effectively in­
corporate memory into the (piantization process. If the separate codebooks are 
designed to suit different characteristics typical of the source, and the codebook 
selection procedure is designed properly as a good predictor of the trajectory 
the source will follow, interblock correlations will be exploited and the perfor­
mance will increase. This form of vector quantization is called recursive vector 
quantization [4]. The important special case of recursive vector quantization is 
when the collection of codebooks contains only a finite number of codebooks 
and this VQ is called finite-state vector quantization (FSVQ) [4]. Choosing a 
different codebook from a finite collection of codebooks at each quantization 
instant suggests a “state-based structure,” where each state is identified with 
the choice of codewords composing a particular codebook. The state with the 
codebook associated to it, which we can name as the state-codebook, describes 
the mode the quantizer is in, and is in a way a summary of the past behavior 
of the source. This “state-based structure” is a finite-state machine specified 
by a next-state function, determining state transitions and a decoder mapping 
which decodes the input bit stream to a re])roduction symbol (a codeword from 
the current-state codebook).

The best way to pictorially describe the F.SVQ finite state machine is 
through an example state transition diagram shown in Figure 2.1 with the 
assumption that the rate of the system is one bit per sample, corresponding 
to binary transitions or state-codebooks with size two. This FSVQ has four 
states, represented by circles numbered as 00, 01, 10, and 11. The lines with 
arrows represent possible state transitions at a decoding instant. y,jS are code­
words from the ith state-codebook. For instance, the channel symbol 0 when 
the quantizer is at state 01 i>roduces a reproduction symbol yio, the codeword 
from state codebook 1 with index 0, and causes the quantizer to move to state 
10. The transitions are equivalent to the next-state function, the labels of 
transition lines with the states are equivalent to the decoder mapping.

Now, let us give a formal definition of the finite-state vector quantizer
(FSVQ):

Define a state space S  as a collection of .symbols S  = {.Sj, .S2 , . . . ,  ¿'/c-i} 
called states. Let the vector dimension lie k. Let the set of channel symbols 
be U = {uo, U i,. . . ,  U/v-i}. The coding rate is log/V bits per input vector or 

log iV bits |)er source symbol. Then, a finite-state encoder is a mapping 
cv : X  S  —y U, that is, given an iii])ut vector x and the current state s
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the function o:(x, .s) maps x into u, a channel symbol. In addition to the 
encoder mapping, the quantizer is defined by the next-state mapping which 
is the essential difference of FSVQ from other VQ techniques. The next-state 
mapping is a function /  : ¿Y x <S —> <S which produces the next state /(u ,s ) ,  
given the current state s and an output symbol u produced from the input 
symbol X .

Correspondingly, a finite-state decoder is a mapping fi : U x S  —>■ 7̂ ’̂, 
that is, given the current state s and the channel symbol u it produces the 
reproduction symbol x.

The output spaces of the encoder and decoder mappings are required to 
be the same, also the next-state mapping is resctricted to depend only on the 
current state and the encoder output rather than the input symbol. These 
two restrictions enable the encoder to track the state sequence given the initial 
state, and one does not need to send the state information in addition to the 
channel symbols.

To each state, .s, a fitatc codebook, C, =  {/7(u, .s), u G ¿/}, is associated which 
is composed of the possible reproduction vectors in that state.
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Then, the encoding process of a random process {A^,,n =  0 ,1 ,2 ,...}  can 
be described as follows. Given an initial state sq G <5, the channel symbol 
sequence, the state sequence, and the reproduction sequence are produced re­
cursively for n =  0 ,1 ,2 ,... as:

u „  =  cv(x„, 6 ;) .sw, = / ( u ,„  Sn) Xn = Sn). (2 . 11)

To complete the definition of FSVQ, we should also specify the encoding rule: 
FSVQ encodes according to minimum distortion or nearest neighbor condition. 
That is, using the Euclidean distance as the distortion measure, the encoder 
mapping a  is defined by

«(x, .s) = min ‘d(x,/:l(u, .s)) (2. 12)

which means that a(x, .s) is the index u for which the reproduction codeword 
)il(u,s) yields the minimum possible distortion over all possible reproduction 
codewords in the state codebook Cs- In our discussion on vector quantization 
we noted that the minimum distortion encoding rule was the optimal encoding 
for a given codebook. Although in FSVQ minimum distortion encoding seems 
the most natural choice, in the long term, it may not be the best choice. 
Because, FSVQ with minimum distortion encoding optimizes only the short 
term performance of the system. Because of the memory in the quantizer, a 
codeword with very small distortion can lead to a state with a bad codebook for 
the next input vector. But, the minimum distortion rule is intuitively satisfying 
and no better encoder structure with comparable complexity is found so far. 
Therefore, we will contend with this encoding rule.

Suboptimality of the minimum distortion encoding in FSVQ is the conse­
quence of FSVQ’s having a memory of only one vector size. The remedy is to 
have an encoder with a memory of iii])ut sequence size which leads us to the 
trellis encoding system that will be discussed in the next section.

Note that VQ is a special case of FSVQ with only one state. Although 
FSVQ is more general, distortion ixite functions of information theory show 
that, optimal achievable ])erformance (average distortion) for a given rate is 
the same for both cases [5]. But the performances of FSVQ and VQ are the 
same only when arbitrarily large vector dimensions are allowed. FSVQ, because 
of its higher ability to exploit correlations between samples, obtains the same 
performance with VQ using shorter vectors, therefore it provides systems with 
lower complexity.
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Based on the finite-state machine perspective, we can identify two different 
ways of relating the state sec|uence and the reproduction sequence. These are 
pairing of each reproduction vector with a state or with a transition. The 
first type of FSVQ is called labeled-state FSVQ and the second one is called 
labeled-transition FSVQ.

The decoder mapping /i of a labeled-state FSVQ depends on the current 
state and channel symbol only through the induced next state; the current 
reproduction Xn is determined by the next state Sn-i-i· On the other hand, 
the decoder output of a labeled-transition FSVQ is associated with the tran­
sition from the current state to the next state and therefore is determined by 
both the current state and the next state s,i+i. These two configurations 
correspond to two different finite-state machines: labeled-state FSVQ to the 
Moore machine.! labeled-transition FSVQ to the Mealy machine [7]. The 
two structures are equivalent in the sense that Mealy and Moore machines are 
equivalent [6]. That is, given one, one can find an equivalent FSVQ of the 
other form, equivalent in the sense that given an initial state and an input 
sequence, the two quantizers will yield the same output sequence. The code­
words are held constant in transition from one form to the other. For example, 
going from labeled-transition FSVQ to labeled-state FSVQ the codewords that 
were assigned to branches are assigned to separcite states which amounts to an 
increase in the number of states.

As noted above, an FSVQ is fully determined by an encoding rule, state 
codebooks and the next-state function. Therefore, the design of a FSVQ fo­
cuses on generating state codebooks and a next-state function. First, we con­
sider finding a good encoder a and a good decoder /i given a fixed next-state 
function / .  Finding the best decoder for the given next-state function and 
given encoder is equivalent to finding the best state codebooks. Suppose we 
have an input .sequence {X„; = 1 ,2 ,.. . ,  L}. If the initial state is .Sq, encod­
ing, we obtain the channel .symbols U,i = (v(X,i,.s,i) and the state sequence 

=  /(U ,i,s,i) for n — 1,2, . . . ,L .  Then our goal is to find the decoder 
mapping (d minimizing the distortion,

D = l x ; , i ( X , „ / i ( U , (2.13)
^ n=l

It is easy to show that optimal decoder cod(wectors are the centroids [4], that
IS,

/̂ (u,.s) = min ' ■ -/— -T, .
I I I I

^  rf(x...y) (2.14)
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where M (u, s) is the collection of U„ such that Un = u.

This is the optimum decoder for the given encoder and the next-state func­
tion, but the encoder may not be the optimum one for the obtained decoder, 
so the next step is to find the optimum encoder for the given decoder. Now 
we perform a nearest neighbor encoding using the state codebooks found and 
the given next-state function, which yields a new partition and therefore a new 
encoder a. Then, we should find the best decoder for the current encoder and 
given next-state function and the process of finding the best encoder and de­
coder continues iteratively until no significant performance gain is obtained by 
subsequent iterations. This procedure is indeed a variation of the generalized 
Lloyd algorithm. We can summarize the algorithm as follows.

FSVQ E n co d e r/D eco d er Design A lgorithm
1. Initialization:

Given: a state space <S,
an initial state Sq, 
an encoder ao 
a next-state function / ,  
a training sequence {Xn; n = 1 ,2 ,. . . ,  L}.
Set e > (J, m = l. Do =  oo.

2. Encode X„, n =  1 ,2 , . . . ,  L, using a,n-i 
to obtain {U„, s„}; n =  1 ,2 ,. . . ,  L.
The state codebooks are modified into ^(u, s )  = cent(u,s).

3. Replace the encoder by the minimum distortion encoder am for ^m-

Compute the distortion Dm·, if l^m — Dm-i\IDm < e quit else goto stepl.

Then, the problem left is to design the next-state function. Several methods 
are proposed in the literature to solve this problem. These methods include 
Conditional Histogram Design, Nearest Neighbor Design, Set Partitioning, Om­
niscient Design, etc. A detailed discussion of these methods can be found in

[4].

Conditional histogram design is one of the simplest techniques. First, the 
algorithm forms a supercodebook through applying GLA with standard VQ. A 
state is assigned to each codeword thus found. Then the method estimates the 
conditional probabilities of successor codewords in the supercodebook which is
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named the classifier codebook und forms a labeled-state FSVQ by only including 
the most probable codeword successors in the classifier codebook to the state 
codebook. Since the codewords are assigned to states, the choice of state 
codebooks also determines the next-state function.

The method called nearest neighbor design also generates a classifier code­
book in the same way, but uses the distortion between the codewords and not 
the conditional probabilities for selecting the set of allowed new states from 
a given prior state. For each state assigned to each codeword in the classifier 
codebook, N  nearest neighbors are found and the state codebook is formed 
with these codewords. Hence the next-state function is formed.

Another FSVQ design techniciue, called omniscient design was introduced 
by Foster et al. [7] and Haoui and Messerschmitt [8], and developed for speech 
coding by Dunham and Ciray [9] and for image coding by Gersho and Aravind 
[10]. This method is more complicated than nearest neighbor and conditional 
histogram methods but it usually shows better performance and it can be 
used with more general classifiers than VQ. Although nearest neighbor and 
conditional histogram techniques are for the labeled-state FSVQ design, the 
omniscient method can be used for both labeled-transition and labeled-state 
FSVQ design. The details of this algorithm can be found in [4] and [7]. Ref­
erence [7] also provides simulation results for the comparison of various FSVQ 
design techniques. These results show that omniscient labeled-transition design 
(OLT) gives the best results for sources of practical interest. This method is 
also referred to in [4] as the method through which best results are obtained 
thus far.

One of the contributions of this work is to suggest and show a design algo­
rithm that has better performance than the methods described above, which 
will be described in Chapters .'3-5.

2.4 Trellis W aveform C oding

In this section, we turn our attention to a more advanced data compression 
scheme, trellis utaveform coding  ̂ which is the main qucintization scheme on 
which our work has focused with the goal of designing a near-optimum decoder.

This coding scheme has l)eeu very popular among many researchers since
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early 1980s, who made considerable progress towards an understanding of trellis 
encoding systems. The popularity of this data compression system is partly 
due to the fact that results in information theory have proved the existence 
of trellis systems which show performance close to the theoretical bounds [11], 
[12]. But these are only existence proofs, which do not describe the actual ways 
of constructing good codes. Therefore many researchers concentrated on the 
problem of finding rules for constructing good codes and came up with various 
design algorithms. The goal of this thesis is to make a contribution to these 
efforts, which has been achieved by designing an algorithm for constructing 
near-optimum codes based on an ajjproach different from other work in the 
literature.

We will now describe the trellis waveform coding system. In the previous 
section, we discussed a VQ system called FSVQ. As was noted, FSVQ is supe­
rior to VQ due to the incori)oration of memory into the quantization process. 
But as also explained, minimum distortion encoding may not be optimal in 
FSVQ, since a codeword with very small distortion can lead to a state with a 
bad codebook for the next input vector. Although through good design one 
can try to eliminate this problem, we can never be sure about the optimality 
of the encoding.

This observation leads us to tlie conclusion that the suboptimality of FSVQ 
encoding is due to its having a memory size of only one vector and the remedy 
is to increase the memory of the FSVCJ encoder from vector size one to vector 
size M\ instead of making “greedy” ciuantization decisions on vectors one by 
one, to delay the decision until M  vectors are seen and to decide on these M  
vectors together. Then the quantizer will make a decision which is good for 
at least M  vectors, and the jn'obability of making bad decisions will decrease. 
In this manner, we expect to have an optimal encoder as M  approaches the 
length of the vector sequence.

This operation is called delayed decision encoding^ lookahead encoding, mul­
tipath search encoding, or trellis encoding, for reasons that will become appar­
ent. For delayed decision encoding, we employ a finite-state machine for the 
decoder as in FSVQ where the states summarize the past behavior of the sys­
tem, and approximate the current mode of behavior of the input sequence. In 
this case, the forms of encoding, decoding, and next-state mappings are differ­
ent. In FSVQ, the state transition diagram (finite-state machine) is sufficient 
to explain the operation of the .system; but in delayed decision coding, we need
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a more elaborate structure tliat takes the past into account explicitly.

For convenience we repeat here Figure 2.1 as Figure 2.2.a, which shows 
the state transition diagram of a FSVQ. The extension in time of the state 
transition diagram is the directed graph given in Figure 2.2.b. The stages 
in the graph corres])ond to consecutive time instants of the data compression 
process and each stage is ccpiivalent to the state transition diagram. Each node 
corresponds to a distinct state at a given time, and each branch originating 
from a node represents a transition from that state (node) to some state (the 
node which the branch is connected to) at the next instant. The graph begins 
at state 5o and ends at To each branch in the graph certain weights are 
assigned which are the reproduction symbols-or state codewords- in the FSVQ 
state transition diagram. This directed graph is called a trellis and it is a 
special case of a i/’ce, branches of which are self-emerging, that is, branches 
originating from a common root (node) can meet again at another node later 
in the tree. The encoding system b£ised on this data structure is called the 
trellis source coding system. To every possible state sequence of the trellis 
there corresponds a unique path. Given the channel symbols, the trellis can 
keep track of the state sequence and generate the reproduction symbols out of 
the state codebooks.

The trellis structure thus described can be used to represent a vector quan­
tizer if the trellis has only one state or a finite-state vector quantizer but to 
represent a trellis encoding system we introduce measures assigned to each node 
along the trellis. The measure assigned to a particular node corresponds to the 
total distortion of a state sequence that starts at state .Sq and ends at that node. 
The encoder performs a nearest neighbor encoding in the following manner. At 
each time instant, for each node, it considers the input branches to that node 
and computes the distortions due to the codewords corresponding to these 
branches. Summing the node-distortion of each node which these branches 
originate from and the calculated distance of the corresponding branch, the 
total distortion faced by a particular path is calculated. The encoder decides 
on the path with the least distortion and assigns the distortion corresponding 
to this path to the node under consideration; it also stores the index of the 
branch connected to that node. Therefore, the encoder is a trellis search al­
gorithm which tries to find the path with the minimum distortion. There are 
various algorithms in the literature for trellis search, Viterbi Algorithm (VA) 
[1.3] being the most popular one. Tlx; reason for its popularity is that it is an 
optimal search algorithm. A well-known alternative, the M-L algorithm, is not
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optimum and it is better suited for tree search since it takes no advantage of 
the simpler trellis (self-emerging tree) structure.

The Viterbi algorithm was first suggested by Viterbi in 1967 [14]. It was 
later shown by Omura in 1969 [15] that it was a special case of dynamic pro­
gramming. Here we summarize this important algorithm.

2.4.1 V i t e r b i  A lg o r i t h m

Given : a collection of states S  = (Tq, <ti, . . . ,  ctm- i ·, 
a starting state sq,
an input vector sequence :ri, x-2 , . . .  , x l , 
a decoder /i(n, .s).

Let d(.,.) denote the squared Euclidean distance and Dj{k) denote the total 
distortion for state k at time j.

1. Set Z)jt(O) = oo, 1 < A; < M
2. For 1 < n < L do

2.1 For 0 < k <  M  do
2.1.1 Calculate d(j,k)  for all states j  from which a branch 

to state k exists
2.1.2 Df,{n + 1) = m,in(Dj(n) + d(j, k))

J

2.1.3 Eliminate the branches other than the branch 
achieving the minimum above. Save the optimum branch.

3. Find \mi\Dk{L) which is the minimum distortion obtainable.

Trace back the survivor i^ath, which is the optimum state sequence.

Although the Viterbi algorithm is very favorable due to its optimality, there 
is a price paid for this. First of all, coni])utational complexity is higher when 
compared with FSV(J. Second, there is the important practical problem that 
the algorithm does not make a decision on the o])timum ])ath until it reaches 
the final node. First of all, this amounts to the storage of all the survivor paths 
until the algorithm e.xecution is completed. One observation enables us to get 
around this difficulty: most of the time we .see that the survivor paths at time
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k have a common root some / stages back at time k — 1. Then the survivor 
paths are said to have merged at deptli /. If all the survivor paths at time k 
have merged at depth /, we can safely make a decision about the optimum path 
up to time k — I without waiting until the end of the sequence. An efficient 
way of performing truncated search is to stop the normal execution of VA at 
certain instants periodically and perform a back search to find the root, where 
the survivor paths are merged. When the root is found, a decision can be 
made for the optimal path before the root and the cursor of the storage array 
is simply moved to the root. Even if we cannot find a root, considering the 
path with the lowest distortion up to the decision node, we can force a decision 
for the optimum path. If we keep the period of searches large enough, that is, 
if we keep the truncation depth large enough, the probability of making errors 
in the truncations will be low. In the literature [16], a truncation depth TD  
of 5 times the constraint length is suggested. Obviously, performing VA with 
truncated search greatly reduces the memory storage requirements. Instead of 
storing L X  N  integers we just store I'D x N  integers and usually TD L.

Another reason for ])referring truncated search VA to standard VA is that 
when a coder is to be used in interactive applications, because of practical delay 
reasons, search lengths should be kept short. For typical interactive speech 
applications the practically allowable delay is no greater than 40 milliseconds 
which corresponds to search-length values around 256 in rate 1 bit/sample 
communication. But, of course, there are no such restrictions in broadcast or 
storage applications and as long as there is need to do so, long search lengths 
can be used.

Since the encoder of the trellis waveform coder is simply a trellis search 
algorithm for which we choose the Viterbi algorithm to use, the problem left 
is to design the decoder which is the objective of this thesis.

2.5 P red ictive Trellis W aveform C oding

Another way of incorporating memory into the quantization process is to in­
clude prediction to the encoder. In the literature, this approach was applied 
to vector quantization and gi-eat improvement over standard VQ was reported 
[4]. An interesting approach was reported later by Ayanoglu and Cray in [19] 
who replaced the VQ encoder with a trellis encoder and named the new system
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predictive trellis waveform coding (PTWC).

Our knowledge of DPCM states that for a good predictive encoder, pre­
diction error samples are approximately white. Therefore, if the predictor is 
well-designed, combined with the advantages of trellis waveform coding, PTWC 
will exploit most of the redundancy in the source.

Predictive trellis waveform coding system is expected to perform better 
when compared to noiifeedback trellis encoders since whitening the source, 
which prediction does efficiently, means exploiting the statistical redundancy 
of a source better. It is also expected to perform better than DPCM due to 
delayed decision encoding for reasons explained before. One more advantage 
offered by delayed-decision encoding is the stabilizing effect on the decoder 
prediction filter [18].

2.5.1 S y s te m  D e s c r ip t io n

The encoder and the decoder of the predictive trellis encoding system are as 
given in Figure 2.3. In the encoder, the output of the predictor which tries 
to approximate the input is subtracted from the input to obtain the error 
symbols {ejt}. Having the error symbols as input, the trellis search decides on 
the best choice of a channel symbol sequence {ziA,.} through minimum distortion 
encoding. Channel symbols ua’s are sent through the channel and received by 
the decoder which converts them into codewords with corresponding indexes. 
The decoded codeword is then added to the predictor output which is the same 
as the predictor in the encoder. As in the case of DPCM, the reconstruction 
error Xk — Xk is equal to the (|uantization error e.k — (j{ek) = (xk — d:k) — {¿k — ¿k) 
where (j{ek) is the codeword assigned to e-k·

The most essential ])art of the system is the predictor, the design of which 
should be done carefully so that it predicts the input sequence efficiently. 
Ayanoglu and Gray used a linear time invariant predictor since this would 
keep the decoder complexity low and would enable the use of relatively simple 
design techniques leased on linear ])rediction theory [19].

Therefore, to tlefine the predictive system suggested by Ayanoglu and Gray
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(a)

(b)

Figure 2.3: A predictive trellis coding system (a) Decoder (b) Encoder
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[19], we should specify the trellis search algorithm and the codebook and pre­
dictor design algorithm. The trellis search algorithm aims at the optimal min­
imum distortion encoding of the input sequence in the presence of a predictor. 
Due to the finite state machine structure, a trellis search algorithm is possible 
and it is a modified version of the Viterbi Algorithm.

2.5.2 S ea rch  A lg o r i t h m

The search algorithm should keep an estimate for the previous Lp reproduction 
symbols Xk-i along the survivor path leading to state j ,  which will be used by 
the predictor at time A; -f 1. Let Xk{j, l) , l  = l , . . . ,L p  represent Xk-i along 
the path leading to state j  at time k. Let Xk{j) = {^k{ jA)T-- i^k{ j^Lp)y^  
a = (ai , . . .  Let Di,{j) represent the total distortion associated with
the j th  node at time k. Let y{i, j)  be the codeword on the branch connecting 
nodes i and j .  The predictor order is Lp.

0. Initialization:

Do{0) = 0,
Do{j) =  oo, 1 < i  < -  1,
X o(i)  =  0, 0 < i < 2^ ' - * - l ,

1. Recursion: For 0 < k < Lb — U do 
1.1 For 0 < J < 2^'“ ’, do

1.1.1. Dynammic programming step:

Dk+i{j) = mini{Dk{i) -I- (l(xk,a^Xk{i) +  y{i,j)))·
The index i is from the set of all nodes from which a path exists to node j.  
Save the argument minimizing this equation as Ik(j)·

1.1.2. Update the first element of Xk{j) íis

Xk+iU, 1) = a^XkihU)) + y{IkU)J)
1.1.3. Prediction update:

Xk+x{jJ) = Xk{Ik{ j ) . l -  1), 2 <  / <  Lp.
2. When ii = L — 1, find j  such that = minD/,_i(j).

i
Release the corresponding pathmaj) through the trellis to the channel.

The search algorithm is a direct extension of Viterbi algorithm and reduces 
to it for a = 0.
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2.5.3 D e s ig n  A lg o r i t h m

The encoder is specified by two sets of parameters: the linear prediction 
coefficients, a,·; f and the prediction error (residual) codewords,
yk', k = 0, . . .  , 2^  — 1. The performance of the coding system is totally depen­
dent on the good design of these parameters. The design algorithm assumes 
initial values for these parameters and then iteratively improves them. The 
initial values for the codewords can be generated with any of the known meth­
ods particularly with extension [20] or splitting [3]. The natural choice for the 
initial predictor coefficients is the solution of the VViener-Hopf equation, R a  
= V, where R  = ‘'-»d v = This choice for the initial pre­
dictor coefficients is based on the assumption that the original source inputs 
rather that the reproductions are the observables. We use coded reproduc­
tions in the predictive system therefore these parameters are not optimal, but 
these choices are intuitive and are good starting points for the design algorithm 
which improves them iteratively.

For a fixed prediction vector a, the distortion for the given training source
IS

Y(^d{xn,Xn) = -  Xnf  = -  Cnf.
71=1 n=l 71=1

(2.15)

This distortion is minimized if we change the codewords into centroids of par­
titioning cells,

=  (2.16)
II II71G.S·

We try to ]n*eclict Xŷ  by

Xyi —  ̂ —
/=1

(2.17)

The orthogonality ])rinciple [4] implies that a should be such that the prediction 
errors and the observations are orthogonal. This leads to

L - \

^  ̂(■C'?i •Cn)-l'n—i — fi)  ̂ — 1) · · · ) kp.
ii=0

Substituting

(2.18)

(2.19)



in (2.18), we obtain tlie ])reclictor ii|)dat(' ('(|uation 

k L L
Y ^ a j ^ X k - j - r k - i  =  J 2 { x k  -  ( ¡ i c k ) ] x k - i ,  / =  1, , Lj, .  ( 2 .20)
j= l *:=I A.'=l

Now, we state tlie predictive trellis wavelonn coder design algorithm.

0. Initialization:
Generate initial codebook Co = ij'f·, i = () ,..., 2”‘“ '
Find initial predictor c|ueiiici('iits solving the Wiener-Hopf equation, R a  
where R  = and v = [/i’,]L,,xi·

1. Trellis Codebook U])date:
Encode the training sequence using and

L

in order to obtain Z)'“ =
A:=l

If < i stop with
Vi =  0 < < 2^'“ ’ and (li — «■", 1 < i < L,,,
else update the trellis codebook according to (2.16) to ol>tain

2. Predictor Ui)date;
Use {2/,·"'*’̂ } and {u·“) to encode tlie training sequence.
Use (2.20) to obtain the new generation of ])redictor coefficients

3. Set m <— m + 1, go to 1.

= V,

2.6 Trellis Coded Q uantization

Another data compression system based on trellis encoding and finite-state 
machine decoder is the trellis coded quantization (TCQ). This recently intro­
duced data coiTi])ression system is rei)orted to give good results for memoryless 
sources and in predictive trellis coding [4].

Trellis coded quantization was first introduced by Marcellin and Fischer 
[51], who, motivated by the success of trellis coded rnodulation (TCM) in the 
field of modulation theory, and the results of alphabet-constrained rate distor­
tion theory, constructed the source coding analog of TCM.

In 1982, Ungerboeck formulated coded modulation using trellis coding and 
introduced the ideas of set partitioning and branch labeling for trellis coder



design [52]. The set ]:>artit.ioning idĉ as introduced in tliis work wer(‘ based on 
the following observation: signed wa.v(donns re])resenting iniorination sequences 
are most resistant to noise induced errors if tliey are very diil’erent from each 
other, that is, if th(u*e is a. larg(‘ distaiic(‘ in Euclidean signal space between 
the signal sequences. Following this fact, TC'M do'signs the signal map])ing 
function so as to nuiximize dir('ctly the '1Ve(' distance” (minimum Euclidean 
distance) between coded signal se(|uences. ('oinl)ined with the use of signal-set 
expansion to provide redundancy for coding and use of a finite-state encoder, 
this method led to a modulation scheme su]>erior to conventional modulation 
techniques.

A particular TC'M system is s])ecilied l)V the trellis structure (next-state 
function) and the codes assigned to trellis branches. As for the trellis struc­
tures, Ungerl)oeck suggested some symmetric trellises for N = 4 and N = S 
states. The branch connections are similar to the ty]ucal trellis of Figure 2.2 
but for rates higher than 2, the transitions are multiple, that is each branch 
on the graph corres])onds to 2 or more |)arallel transitions. On a conventional 
modulation system for a signal constellation of size 2”^ in bit codes are used to 
send one of the 2”  ̂ symbols. In trellis coded quantization, the signal constella­
tion is first doubled to ])oints. Then this constellation is ])artitioned into 

subsets, where ih is an integer less than or equal to in. ih of the inj)ut 
bits are used to select, by trellis encoding, which of the subsets the channel 
symbol for the current signaling instant will be chosen from. The remaining 
771 — 77A bits are used to select one of the channel symliols in the selected
subset. By this way although the rate of the system is held constant, a finer 
coding is achieved through introducing redundancy.

The basic idea of alpliabct-conslmincd rate distortion theory is to find an 
expression for the best achievalile performance for encoding a continuous source 
using a finite reproduction al])habet. The theory is developed in [53] and [43]. 
Marcellin and Fischer in [51] insi)ecting the ¿dphabet constrained rate distortion 
functions for the uniform i.i.d. source, made the observation that for a given 
encoding rate of R bits i)er saiiq^le, it is ])ossible to obtain necirly all of the 
gain theoretically |)ossible over the R. bits ]̂ er sam])le Lloyd-Max quantizer b}' 
using an encoder with ¿in outj)ut alpluibet consisting of the output points of 
the R +  1 bits per sam])le Lloyd-M¿ıx cjuantizer.

Motivated by this observ<ition ¿md T(JM, Mcircellin ¿uid Fischer constructed 
a fixed structure trellis for ixite R. encoding which employed the outj)ut points
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of rate R-\-l Lloyd-Max quantizer as tlie codewords, assigned to trellis branches 
according to Ungerboeck’s set ])a.rtitioning and branch labelling rules [52]. The 
system they introduced in [51] is given in Figure 2.'̂ 1. The trellis can be any of 
Ungerboeck’s amplitude modulation trellises [52]. But the branches ])resented 
here no more represent single transitions but multiple ones quantity of whicli 
is determined by the rate of the .system. Consider an encoding rate of 2. Then 
the rate 3 Lloyd-Max output ])oints (for uniform i.i.d. .source), which will 
be employed as the codewords aie as shown on real line in Figure 2.4. These 
codewords are partitioned into four subsets by labeling consecutive points with 
Do·, Di, D2 , Do, D i, D2 , D:i,. . .  starting with tlie leftmost (most negative) 
point and proceeding to the right. Then tliese sub.sets are assigned to the 
trellis branches following branch labelling rules of Ungerl)oeck [52]:

1. Parallel transitions are associated with codewords with maximum dis­
tance between them.

2. The branches originating from the same node should be labeled with 
subsets with maximum distance between them.

3. The branches terminating at the same branch should be labeled with 
subsets with maximum distance between them.

4. All codewords should be used with equal frequency in the trellis diagram.

The first rule is satisfied with the above .set partitioning. To satisfy second and 
third rules the subsets are grou])ed as Do with D2 and D\ with Do and these 
groups are assigned to leaving and entering branches as shown in the figure. 
Fourth rule is already satisfied with this labeling.

This system is later modified l>y Marcellin and Fischer to incorjiorate ])re- 
diction and they introduced PTCQ in [51]. The trellis search algorithm they 
use in their predictive .system is the same as the search algorithm of Ayanoglu 
and Gray [19] for /? =  1 and an extension of it for higher rates, but in the design 
stage they do not train the codel)ooks and they do not u])date the predictor 
coefficients.
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Figure 2.4: Marcellin and Fischer’s TCQ system



Chapter 3

SIM ULATED A N N EA LIN G

Optimization is an issue of high iin])ortaiice in many diverse arecis, in partic­
ular, it is a vital element of analysis and design in many fields in electrical 
engineering. In electrical engineering, j^articularly in the field of telecommu­
nications, we sometimes deal with discrete variables and may need to cany 
out combinatorial analysis, that is, we deal witli the arrangement, grou])ing, 
ordering, or selection of discrete ol)jects. In these ¿inalyses, being engineers, 
our objective is to fiiid out the o]:)tima.l arrangements, orderings or selection of 
discrete variables. In other words, we are frequently confronted with combina­
torial optimization j:>roblems.

Many common problems in fields such as electrical engineering, operations 
research, and comj)uter science are combinatorial optimization problems, but 
the field particularly owes the existence of its wide range of ap])lications to the 
advent of digital coni])uters. Most currently acce])ted methods of solving com­
binatorial optimization problems would not have been considered seriously 10 
or 20 years ago, for the reason that no one could have carried out the comjiu- 
tations involved. However, even today, while many powerful digital computers 
are available, various large scale combinatorial optimization problems cannot 
be solved in reasonable time. Most of these ])rol)lems are NF-complctc problems 
[21], in other words, they are not solvable by a computational effort bounded 
by a polynomial function of the size of the jiroblem.

Thus, one is forced to use approximation algorithms or heuristics. Heuristics 
are not guaranteed to get the ojitimum answer, they are designed to give an 
acceptable answer (hopefully close to the 0 ])timum ¿uiswer) with a reasonable

28
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amount of computational eiforl or equivalently time. That is, using a heuristic, 
one makes a compromise between tin' o])timnm result and the com])utationa.l 
effort.

Now, let us give a formal delinition of a cojnl)inatorial oj)tiniization jjroblein. 
A combinatorial optimization ])robleni is formalized as a ])air (A, 6’), where S  is 
the countable (finite or infinite) conJi(]uratioa space or the set of configurations 
and (7 is a cost function, C : S —> Tv., (Tv: the set of real numbers) which 
assigns a real number to each configuration. For convenience, C is defined in 
such a way that decreasing values of C corres])ond to luTter configurations. 
With this definition, the optimum configuration Sopt is tlui configuration for 
which C takes its global minimum value. That is.

Copt = niin CC)·,ies ( T l )

where Copt denotes the optimum value of the cost function. The objective of 
a combinatorial optimization ])roblem is to find the configuration tluit gives
Copt ·

Simulated annealing is one of the heuristics suggested to .solve large-scale 
combinatorial o])timization ])roldems efficiently, although not exactly, with rea­
sonable amount of comjjutational effoi t. It is a. heuristic or an a])])roximation 
algorithm in the sense that it is not a mechanical sequence of computations to 
solve a specific problem, and its ])erformance is highly de])endent on how the 
user tailors it for a specific ])rol>lem. There are various heuristic strategies for 
solving combinatorial o])timization problems such as “constructive” heuristics 
which construct an answer directly. Simulated Annealing instead is related 
to “iterative improvement” strategies, which construct an initial suboptimal 
optimal solution and then perturl) this solution slightly, in the direction of a 
better solution on the average.

The simplest algorithm this strategy suggests is the iterative improvement 
algorithm. Before describing this algorithm we define a neighborhood 5, for 
each configuration i, consisting of all configurations that can be reached from i 
in one transition. Let i denote the current configuration, inew the configuration 
after perturbation.
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Iterative Improvement Algorithm:

i ^  io /*initial coiiiiguratioii*/
rei^eat

perturb(i, .S’,·); /*clioos(' raiuloiniy £ S */
if C{tnen,)<C{t)

* hiew /*cuiTent Configuration is rc])lacecl l>y the neighbor*/
until no inew € S  exists such that C{incu>) <

There are two obvious disadvantages of this algorithm. First, although it 
is certain that the algorithm readies a minimum, there is no guarantee that 
it is the global minimum. Instead, the algorithm may get stuck in a local 
minimum and there is generally no information as to the amount by which this 
local minimum deviates from a. global minimum. .Second, the obtained local 
minimum depends on the initial configuration. Tliere are some juoposed ways 
of getting around these inadec|uacies. First, one can execute the algorithm 
for a large number, say N, of initial configurations [22]. For N  —> oo, this 
algorithm finds the global minimum with probability' 1. Second, one can use 
the information gained through ])ievious runs to im])rove the choice of an 
initial configuration for the next run [24]. Third, one can introduce a more 
complex generation mechanism, in order to be able to “jumi) out” of the local 
minima corresponding to a sim]>le generation mechcmism. Fourth, one can 
accept transitions which corres])ond to an increase in the cost function in a 
limited way.

The second and third ap])roaches are strongly problem dependent so they 
do not lead to a general algorithm. The first one was the traditional approach 
until 1982 when Kirk]ratrick ei al. suggested the fourth one which they called 
simulated annealing [23]. Many experiments verified that simulated cumealing 
is superior to the first ajrjrroach [24].

Simulated annealing is based on an analogy between a ju'oeess called anneal­
ing of solids in condensed matter jrhysics and large combinatorial optimization 
problems. Annealing is a jrrocess in which a solid is heated up to a maximum 
value at which all particles of the solid randomly arrange themselves in the 
liquid phase and then it is cooled down veiy slowly. Through this process, all 
particles arrange themselves in the lowest energy configuration if the maximum
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temperature is high enough and the cooling juocess is carricul out sufficient!}  ̂
slowly. During the cooling ])rocess, the solid is allowed to reach thermal equi­
librium which is characterized l)y the ])rol.)al)ility of the solid's Ijcing in a stat(' 
with energy E  which is given 1)V the Boltzmann disirihui/ion:

Fr{Encr(iy = E) =
Z  ( / j 7

(.3.2)

where Z{T)  is a nonnalizatioii fartor (lejM-ixliiig on T  and k-B is the Boltzmann 
constant.

In 19-')3 Metropolis ci al. ])ro])o.scd an algorithm to .simulate the evolution 
of a solid towards iJicrinal cqailihriutn [2.3]. This algorithm can be summa­
rized as follows: Given the current state (conliguration) of the solid which is 
determined by the configuration of its jiarticles, a randomly chosen particle is 
slightly moved from its current ])osition. The resulting energy is calculated 
and compared with the j>revious enei'gy of tlie solid. If / \E  is negative, that 
is, if the perturbation leads to a decrease in the total energy of the system, the 
process is continued with the new state. If AC is nonnegative, then the new 
configuration is accepted as the new state with probability exp( —̂ |: ) .  This 
acceptance rule is called the hJciropoUs criUrion. If the algorithm is executed 
until sufficiently many )>erturl)ations are made with this acce])tance criterion, 
the probability distril)ution of the configurations (or states) aj^proaches the 
Boltzmann distribution, wliich states that the system reached thermal ec|uilib- 
rium.

The problem of minimizing the energy of the solid is indeed a combinatorial 
optimization problem, the configuration s])a.ce S  being the jjossible configura­
tions of particles in the solid, the cost function C assigning an energy value 
to each configuration. This observation suggests a way to handle general com­
binatorial optimization problems. Foi· the problem in hand, we can generate 
a sequence of configurations with the Metropolis algorithm, that is, using the 
Metropolis criterion in configuration transitions, and in the end we can reach a 
configuration of thermal equilibrium characteristic to that v̂ alue of the control 
parameter. If we re])eat this Metropolis process for a sequence of decreasing 
values of the control parameter, we can ho|)e to reach the global minimum just 
as nature does in the annealing of solids. The described j)rocess is nothing but 
simulated annealing. The analog of em.'rgy is the cost function and the analog 
of configuration of ])a.rticles is the set of values ])roblem variables take which 
is a point in the configuration s])ac(“ .S'. As in the .solid state physics analogy, 
from a configuration i we ])ass to aiiother ra.iKlomly chosen configuration j  with
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probability 1, if A C ij < 0 ami witli prol)aI)ility exp( — if A6',·,., > 0, t be­
ing the control variable. Now, we introdua' tlu' simulated annealing algorithm 
[24].

Simulated Annealing Algorithm

begin
INITIALIZE;
M := 0 ;
repeat

repeat
PERTURB (config. i —> coniig. j); 
if A C ij < 0 then 

UPDATE(coniig. j)  
else if exp( — — ) > random[0, J) then

UPDATE(config. ;); 
until quasiequilibrium is reached;

Im +i ·= S{Im )\
1;

until stop criterion; 
end.

Although we have ])ointed out tlie existence of a strong analogy between 
the annealing of solids, which is known to give optimum results for sufficiently 
slow cooling, and solving combinatorial o])timization problems with simulated 
annealing, one needs a formal proof for the convergence of simulated annealing 
to the global optimum. Such proofs are given in [24], [26]. But these con­
vergence proofs are asym])totic convergence j)roofs; convergence of simulated 
annealing to the global minimum is guaranteed only if infinite length Markov 
chains are used and infinitely slow cooling schemes are ap]:>lied. We cannot 
allow such schemes in ju-actical problem solving. Instead, we should contend 
with finite speed cooling schemes and finite length Markov chains.
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3.1 P ractical Im plem entation

Practice has shown in recent years that simulated annealing is still V(iry succes- 
ful when finite Markov chains are used and the cooling ])rocoss is not infinitely 
slow. But the perfonnanc(' of the algorithm highly depends on the design of 
the parameters of the algorithm.

In a practical implementation one should specify the following:

• initial value of the control i)aramet('r or temperature /0 ;

• final value of the temperatvmi ij (stoj) criterion);

• length of the Markov chains:

• move-set (neighborhood structure), that is the set of allowable perturba­
tions;

• a rule for changing the current value of the control ])arameter, ¿y, into 
the next one, ¿y+i.

We will now cite .some sim])le schemes from tlie literature for determining 
the values of these jiarameters.

The initial value of t is chosen such that virtually all transitions are ac­
cepted, that is exp(—AC/Z-o) ~  1 for all transitions. An em])irical rule is given 
by Johnson ct al. [28]: determine Zq lyy calculating the average increase in cost 
(or energy), for a number of random transitions and solve Zq from

A’o = exp(-A6yZo), (3.3)

where Aq is the acceptance ratio defined as the ratio of the number of accepted 
transitions to the number of ])ioposed transitions.

The final value of “tem].)erature” can be determined by fixing the number of 
temperature values Z-a·, for which Metropolis loo])s are to be executed. Also, the 
execution can be terminated if the last configurations of consecutive Markov 
chains are identical for a nuinljer of chains. Or, as in determining Zq, we can 
introduce a parameter Ay, and can terminate execution when the accejitance 
ratio is smaller than Ay.
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The simplest choice lor the h'ligtli of the Markov chain is a value depending 
polynomially on the size of the ]nol>lein [29]. Other than [29], various schemes 
are suggested in the literature. If N{k·) re])iesents the length of the Arth Markov 
chain, one can use arithmetic N{k) = N{k — 1) + 6', geometric N{k) = N{k — 
l ) /a{k),  logarithmic N{k) — 6 '/ Iog(/.(/«;)) schemes or continue until a number 
of acceptances are made, or until a numljer of rejections have occured.

The decrement in the tem])erature should l)e chosen such that small Markov 
chain lengths suffice to reestablish quasi-equilibrium after the decrement. 
Therefore, the changes in the value of temperature shoukl be small. Sim­
ple temperature decrement rules include arithme.tic, /,¿.+1 = C -f geometric 
tk+i = a X t̂ ., and logarithmic /,/; = 6yin(l -)- k) decrement functions.

Each combinatorial oj^timization i)rol.)lem suggests different neighborhood 
structures. Therefore the choice of the move-set is ])roldem de])endent.

There are more ehiborate cooling scliedules cited in [2-1] but those are de­
rived for specific ])roblems. Further, oiKi elaliorate schedule that is very suc­
cessful in one problem can jierform far worse than a sinqjle schedule in another 
problem. Therefore, in the course of our work, we used sini])le schedules.

In the literature, attempts have lieen made to give good measures about 
the general performance of simulated annealing, in terms of the quality of the 
final solution obtained fiy the algorithm aiul the running time required by the 
algorithm. Lundy and Mees [30] succeeded in olitaining the worst-case result 
for the total number of transitions generated during the execution of the algo­
rithm which is 0(1 SntUj I 111 | S  |), where | S-ady | is tliP size of neighborhoods 
and ] S' I is the size of the configuration s])ace. Since, for most combinato­
rial optimization ])robIems, the sizes of the neighborhoods can be chosen to be 
polynomial and the size of the configuration space | S’ | is exponential, this for­
mula shows that the execution of the algorithm takes polynomial time for most 
combinatorial optimization j^roblems. For a Iiound on the worst-case j^erfor- 
mance of the result of algorithm, Sasaki and Hajek [31] provided a probabilistic 
measure.

Since its introduction in 1982 [23], simulated annealing has been success­
fully applied to many diverse combinatorial oj)timization ])roblems. It became 
most popular in the field of VLSI design especially in placement and routing 
problems, where other known methods ])iovide ])oor results. It has been used in 
image processing for image restoration and enhancement jiroblems. The first
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paper in this context was ])ul)lisli(‘(l 1)V (h'lnan and CJeinan [32], in which a 
generalization of simulated annealing is uscmI to find a maximum j)osterior dis­
tribution for degraded images El Cîamal ct al. used SA on ])roblems involving 
source codes, constant weight cliannel codes and s]dierica.l codes. Specifically, 
they considered the ])roblem of re])resenting the set of all 2^ binary sequences 
of length L by a much smaller subset of 2̂  ̂ codewords ( <C L) in such a way 
that the average Hamming distance [between eacdi of the 2̂ " sequences and its 
nearest codeword is minimal. They re])ort that the results are very encourag­
ing [33]. Çetin and Weerackody [35] and Flanagan ct al. [3̂ 1] a.])])lied simulated 
annealing in codebook design for vector quantizcition. Other fields simulated 
annealing has l)een ap])lied includ(^ neural networks, numerical analysis, biol- 
ogŷ  materials science, sclied/uliny, statistics and yrapli theory.

In almost all of these fields, SA has j)roved to be a successful algorithm, 
especially in the solution of lai-ge-scale ])roblems for which no tailored solutions 
are known. For more information al.)out the a])])lications of simulated annealing 
the reader is referred to the survey ]>a])er l)y Collins et al. [36].



Chapter 4

PROBLEM  D EFIN ITIO N  
A N D  SOLUTION

The goal of this work is to introduce a new algorithm for the design of trellis- 
based coding systems with performance higher than other work in the literature 
and to contribute to the study of these systems. With “trellis-based coding 
systems,” we refer to the coding systems with finite-state machine decoders 
such as finite-state vector quantizers (F.SV(^), trellis waveform coders (TWC), 
predictive trellis xvaveform codcr.s· (PTVVC) and trellis coded quantizers (TCQ).

The difference of our design apj^roach when com]>ared to other work in 
the literature is in the way we design tlie next-state function of the decoder 
finite-state machine.

As we have noted in our discussion of trcdlis waveform coding in Chapter 2, 
the encoder of a trellis wavefonn codei· is simply a trellis search algorithm and 
there exist various trellis search algorithms in the literature with well-known 
performance tradeoffs. Therefoie, we concluded that tlie design problem of the 
trellis waveform coder reduces to the design i)rol.)lem of the decoder finite-state 
machine. In FSVQ, the encoder is simply the encoder of the corresponding 
state-VQ which is the nearest neighl)oi· encoding rule. Therefore, similarly, 
the design problem of FSVQ reduces to the design jjroblem of the decoder 
finite-state machine.

The decoder finite-state machine is completely s])ecified by the state code­
books or the output map and the next-state maj) which corres])onds to the
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branch connections in trellis дга])Ь. Псчич', FSVC  ̂ and T\V(! design ]:>roblems 
are com])osed of two design ])i4)bleins:

• output nia.]) design 

and

• next-state шар design.

We will consider these two ])roblems iirst se])arateh^, that is, we will focus 
on the design of the out])ut map for a. given next-state ma]) and on the design of 
the next-state шар for a given oiit])iit шар sej^arately. Then, we will combine 
the solutions to these two ])robleins to ]^ro])ose our decodcu* finite-state machine 
design algorithm.

4.1 N ex t-S ta te  Map D esign

The central contribution of tliis tliesis is the suggestion of a new heuristic for 
the design of the next-state ina]) of tlie decoder finite-state machine. Given 
the current state and the channel index, tlie next-state ina.]) is equivalent to 
one-stage of the trellis diagram or the state-transition diagram.

The trellis diagram is s])ecifil'd l)y the number of nodes and the orientation 
of branches, that is, connections between the nodes. Each different set of 
connections correspond to a different trellis structure and therefore a different 
next-state maj). Then, the ]>roblem of finding the optimum next-state map 
is equivalent to the problem of finding the optimum .set of connections of the 
branches.

This is clearly a combinatorial optimization ]>roblem, S\ the configuration 
space being the sj)ace of ])ossil)le trellis structures, and C, the cost function, 
the value of which is to be minimized over .S', being the total distortion. For 
a trellis coding system of rate R, A' states and vector size A.·, the trellis will 
have N  nodes and l)ranches originating from each node (assuming binary 
communications). This trellis can l>e constructed in different possible
configurations. Since the size of the state space is exi)onentially dependent 
on the system varial)les, it is not i)ractically possible to .solve this problem
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by exhaustive searcli (a trellis system with unit rate and 32 states for scalar 
quantization requires more than iterations).

Due to the enormous com])lexity of the ju-obhiin, we look for a heuristic. In 
the literature, some heuristics aie suggested foi· the solution of this problem. 
The ones suggested by Foster cl al. [7] in the context of F.SVQ were described 
in Chapter 2. The drawback of these* heuristics were that they could only 
iteratively improve the codewords foi· a given next-state function, providing 
no mechanism for improving the next-state function. That is, once the next- 
state function is designed it is fixed and not tuned to the c.odebook. Akso, 
these heuristics are not intuitively simjile. Duidiam and Gray in [9] proposed a 
stochastic iteration algorithm to allow incor])oration of the next-state function 
design in a probabilistic manner, but their algorithm is not straightforward. 
An interesting work in the literature is Ijy .Ituing who suggested obtaining a 
minimum degradation network l>y a jtruning ])rocedure which he called Pruned 
Trellis Vector Quantizer [37]. His algorithm begins with a fully connected 
trellis and proceeds by j)runing the Itranches, the removal of which causes the 
minimum degradation. The algorithm stojts when a desired rate is reached. 
This algorithm is a modification of the branch and cut algorithm from linear 
programming. Juang noted that this algorithm was not successful for rates 
equal to and below 2.

We propose using Simulated Aiinealing for the design of the next-state maj) 
of trellis decoder finite-stiite machine:

• The s ta te  space consists of all the possible trellis structures (branch 
connections) with the constraint that there are 2̂ ^̂  branches originat­
ing from each node. This restriction is made since we assume binary 
communications.

• The cost function or energy function to be minimized is simply the 
total distortion calculated lyy Viterlu algorithm.

• The m ove-set is the changing of the orientation of one of the branches, 
alternatively the neighborhood set is the set of all trelli.ses obtainable 
by moving the end of a branch from the state it is connected to, to another 
state.

• The in itial value of the  tem p era tu re  is calculated in the way Johnson 
et al. [28] suggested.
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• The length  of M arkov chains is dioseii tx; he liiieiirly depeiulent on 
the number of states as c x A^ where N  is tlie ininil>er of states, and c 
is a constant. The constant c is tletermined by experiimnital means and 
using intuition. For example, for fast cooling schedules one needs longer 
Metropolis loo])s to stabilix(', or as the nundjer of nodes in the trellis 
is increased, the size of the stat(> space; increases and longer Metropolis 
loops are needed to reach ('C|uilil)rium.

• Geometric improvement is chosen as the  decrem ent rule for temj)era- 
ture. That is, ¿„+i = F’ x /.„, n: time' index.

• No final value for tem p e ra tu re  is chosen. The cooling is exited when 
no more significant im])rovements occur.

For a given output map, the next-state ma.]) design algorithm begins with an 
initial trellis with a corresponding known distortion, and an initial temperature. 
Then the algorithm ])erturbs the tr(dlis lyy breaking the end connection of a 
branch from its current position and coniK'cting it to iuiother state, hence 
changing the state-transition matrix. The new distortion is calculated via 
encoding the input source with the new trellis by the Viterbi algorithm, and 
compared with the previous distortion. If the new distortion is smaller, the 
perturbed trellis is acce])ted as tin; current trellis, else a random number in 
the interval [0,1) is generated and compared with the ex])oneiitial exp((A’“ — 

If the (;x]jonential is greater, the perturl)ed trellis is accepted, 
otherwise it is rejected. The algorithm continues to perturl) the trellis this 
way until the system reaches qua.si-e(iuilibrium at this tem])erature T. The 
condition for reaching qiiasi-eciuilibrium is dictated by the choice of length of 
the Markov chain. This is one Metro])olis looj). Then, the temperature is 
decreased according to the cooling function (geometric cooling) and another 
Metropolis loop is started. The algorithm terminates when no more significant 
improvements are seen at the out|)uts of the Metroj)olis loo])s.

4.2 O utput Map D esign

We propose the adajjtation of GLA for tlie design of state-codebooks for a given 
trellis structure. Actually, adaptations of GLA to TW(! and F.SVQ have been 
used by many researchers in the literature. GLA was suggested in the context
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of TWC' first l)y Stewart ci al. [20] for co(leI)ook ini]rroveinent. They also 
developed an extension algorithm which increases tlui constraint length by I 
producing a double size trellis from a given trellis, the performance of which is 
at least as good as the ])erformance of tlu; trellis before extension. Combining 
their codchook irnprovcmcnl alijoriihin and (xicnsion alfforitkms they j)ro])osed 
an algorithm for tlui automatic design of a. trellis di^coder with N  states.

GLA is also em])loyed by Foster cl al. [7] in the context of FSVQ, by 
Ayanoglu and Cray in pr(‘dictive 7AV(' [10], and l\y Bei and Cray [38] in 
vector TWC.

We employ Stewart’s codchook improvcm.cnt algorithm for improving a fixed 
trellis structure (fixed next-state function) and we propose ah extension al­
gorithm of our own for producing a good initial structure and codebook for 
optimization of the trellis with constraint length increased by 1. Here, we cite 
Stewart’s codebook imjrrovenumt algorithm:

Codebook Improvement Algorithm

0. Initialization:
Given a distortion threshold c > 0, 
a binary noiseless channel, 
an A-state decoder,
an initial codebook with cardinality || 6’̂  [(= M = 
and a training sec|uence {.i.'j : j  = 0 ,1 ,. . . ,  n — 1}, set m = 0.

1. Encoding:
Given = {j/”‘ : ·/’ = 0 , . . . ,  yi/ — 1) the codebook for generation m, 
find the minimum distortion trellis encoding {;i:j : j  = 0 ,. . .  ,n  — 1} 
of the training secpience.
This encoding induces a partition on the training sequence 

{,S’r  : f = 0 , . . . ,  yi/ -  1} with S ’" = {j : Xj =
Each set S}" contains the time indexes of those elements of 
the training sequence which are encotled liy codeword y’".

2. Compute the average distortion A,,̂  = d(.T,·, .r,).
3. If the decrease in distortion has fallen below the threshold e,

(A„j — A„,_i)/A,„_i < t,
then halt with O’" as the final codebook. Otherwi.se goto step 4.



4. Find the o])tima.I codelnxjk Гог generation m + I as
(Om+i ^  i^m+1 : = о , . . . ,Л /  -  1]

where the are the centroids of the new ])artitioii

Replace ?7i I>y m + 1 and go to step J.

The initial codebook has two codenvords since, the constraint length of the 
decoder is 1 (trellis has only 1 stat('). Tlx'se initial codewords can be chosen 
simply as —1 and 1.

Now, we introduce our extension algoritliin,

Trellis Extension Algorithm

0. Given number of states A\ constraint length /r, rate R, vector dimension /,
the super codebook C — {//¿k,· '■ > — — \ , j  = 0,...,2^^^) ,
where yfj is the j  th codeword (corresponding to j  th l)ranch) of i th state, 
and state transition matrix (or trellis diagram).
0.1 Increase constraint length by 1 : k <— A;+ 1.

1. Codebook extension :
1.1 Retain the codebooks of the old states :

¡/u ' =  2/fj,  ̂ = 0 , . . . ,  yV -  1, J = 0 , . . . ,  2'"},
1.2 Assign codewords to the new l)ranches in the following way:

»ST -  » Ar,....(2 X K ) - t J  -  0.....2«).
2. Trellis extension :

For ( 0 < f < (2 X — 1)) do
2.1 if i is even then

lietain the connections of the branches originating from state i 
as in the previous trellis;

2.2 else if i is odd then
Connect the branches originating from state i to states 
with indexes N  more than the indexes of the states 
(addition according to mod'IN)
to which the branches were connected in the previous trellis.
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The trellis can be extended by just doubling the original trellis size (nuinl)cr 
of states) and inserting an identical co])y of the original trellis for the newly 
generated states. But in this newly formed trellis, the two identical trellises are 
separate; no branch originating from a state in one of the trellises ends at a state 
in the other trellis. This structure can l>e no better than the original mother 
trellis. To have a chance for significantly better structures the branches should 
spread. It will take time for SA to form such an ‘̂ inbiased” next-state ma]) 
by perturbing. To accelerate this process the extension algorithm introduced 
above flips some of the brctnch connections corresponding to the states with the 
same positions in the two identical trellises. In this way, some of the branches 
starting from a state in one (half)trellis end at states in the other (half)trellis. 
The performance is no less than the ])erformcince of the original trellis since 
original connections are preserved. The Viterbi algorithm in the worst case 
will choose a path identical to the o])timum path in the original trellis. Due to 
the introduction of new ])aths the ])erformance may even be better.

Stewcirt et a/.’s extension algorithm ])roduces an extended trellis which is at 
least as good as the origiiicd ti*ellis, too. Their algorithm extends the codebooks 
in the same way we did. The difference between the two algorithms is in the 
way the next-state function is modified. Stewart ct ai used a shift register 
decoder (giving the fixed trellis structure) [20]. While extending the trellis 
they simply added a new cell to the shift register. Since we are not using a 
state-transition matrix instead of a shift register decoder, we j)referred to use 
the algorithm described above which is a])])lical)le to a general state-transition 
matrix.

4.3 Trellis D ecoder D esign A lgorithm

Assuming the rate is unity and scalar quantization is performed;

0. Initialization;

N = l ,
codebook; yo = +\,yi  = — 
0.1. GLA
0.2. EXTEND /*■ N  *- 

0.3. GLA

2 V
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0.4. Calculate distoi tioii A"
0.5. l)est-coniig.-reache<J = 0

1. while N  < Nmax

1.1. while hest-coiilig.-reached
1.1.1. SA
1.1.2. GLA
1.1.3. Calculate di.stortioii A'

0 uo

if (A ’'* -  A ”'- ')/ A in — 1

best-config.-readied = 1 
1.2. EXTEND ^  2 x A^7

The initial codebook and the trellis are generated as described before in 
the text. For a given codel)ook, the trellis structure is o])tiinized using SA, 
and for this structure, the codebook is modified using (¡LA. Then for the new 
codebook, the trellis structui*e is reoj^timized. The ])rocess is continued until 
the system reaches an equilil)rium, with resi)ect to the SA criteria. Having 
found the optimum trellis for constraint length A:, the trellis is extended to 
a constraint length k + 1 trellis by the extension algorithm described above. 
Then, SA and GLA are run iteratively in the same way for the extended trellis. 
In this way, the algorithm automatical!}' designs near-optimum trellis coding- 
systems with increasing constraint lengths for a given in])ut sequence whose 
statistics are not known.



Chapter 5

SIM ULATION RESULTS

To test the performance of tlit* trellis decoder design algorithm we introduced, 
several coding systems based on finite-state machine decoders such as trel­
lis waveform coder, finite-state v('c.tor c[uantizer, ])redictive trellis waveform 
coder, and trellis coded quantizer were designed for coding independent iden­
tically distributed (i.i.d.) Ciaussian, Gauss-Markov (autoregressive Gaussian), 
and speech model sources. These sources are of high practical and theoretical 
interest and are commonly used in the source coding literature for testing the 
performance of quantization .systems. The results obtained via simulations are 
compared with the results of other work ]>ul)lished in the literature.

Gaussian sources used in the sinudations were generated by Knuth’s 
algorithm-P [39] using the uniformly distriljuted random secjuence generated 
by the random number generator, random{ ), from the mathematical library 
of the SunOS operating system. Release 4.1, by Sun Microsystems Comjjuter 
Corporation.

To be able to compare tlie performance of different design methods, we cal­
culated signal to quantization noise ratio (SQNR), for each decoder designed 
via simulations. SQNR. is a commonly used measure of distortion due to quan­
tization and is defined as.

A
SQ NR  = -10  logio — , (5.1)

where A is the total distortion calculatetl l)y the square of the Euclidean dis­
tance, that is, A = {Xn — AT)·, and crj is the source ])ower,
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5.1 Trellis W aveform Coding

5.1.1 M e m o ry le s s  G au ss ian  S ou rce

The meinoryless (laiissiaii soura“ consists (j1 sam])les drawn inde])ondently 
from a Gaussian probability density witli zero mean and unit variance. The 
distortion-rate function for this source evaluated at li — 1 yields the bound 
SQNR = 6.02 dB [44]. The J-bit Lloyd-Max scalar quantizer [44] has SQNR 
= 4.40 clB.

The trellis waveform coder is designed using SA-|-GL/\ on a memoryless 
Gaussian training sequence of 10,000 samples. Then, the performance of the 
trained decoder is measured 1a’ coding a test sequence different from the train­
ing sequence but whose distribution and length are the sanKx The simulation 
results are given in Table 5.1 and in Figure 5.1 along with the results obtained 
by Linde and Gray [42], .Stewart ct al. [20], Pearlman [43] and Freeman ct al. 
144).

Linde and Gra}' [42] state that the problem of designing a good time- 
invariant tree-coding data comi)ression system is equivalent to that of finding a 
good low rate “fake jn-ocess” for the oiiginal source. Tlie fake jrrocess problem 
is basically the problem of designing a fdter which, when driven by a discrete 
uniform, i.i.d. ])rocess, ])roduces an output that “looks like” the ]>rocess that 
one wishes to com])ress. Imllowing their statement they suggested a scram­
bling function decoder (SFD) and Viterbi encoding. The encoder finds the 
sequence of codewords which Irest describes the in])ut data lyy carrying out a 
trellis search, and the corres])onding index sequence is released to the channel. 
The decoder receives the channel syml)ols through a shift register and at each 
decoding instant applies the sum of the contents of the register to a nonlinear 
filter (scrambling function) to pioduce the reproduction .symbols.

Stewart et al. [20] designetl trellis waveform coders with fixed next-state 
function via GLA on a training se(|uence of 20,000 sam])les. They used table- 
lookup shift register decoders witli random codewords (as the initial guess). 
Then, they tested the performance on data from outside the training sequence.



K
2
3
4
5

6

SA+CLA
tram
4.65
5.09
5.23
5.36
5.49

test
4.65
5.06
5.15
5.21
5.31

15561

tram
4.70 
5.05 
5.20 
5.40
5.70

test
4.70
4.S5
5.03
5.05
5.15

CCiA
tram
4.85
5.13
5.35
5.47

test
4.70
5.07
5.18
5.30
5.42

SFD
test

4.45
4.90
5.00
5.00

GLA
test
4.40
4.70
4.92
5.07
5.12
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Table 5.1: SQNR [dB] results for the mcmoryless Gaussian .source. K: con­
straint length, SA+GLA: trellis waveform coder with simulated annealing and 
generalized Lloyd algorithm, PA64: I’owell’s 1964 algorithm, GGA: conjugate 
gradient algorithm, SFD: Linde and Gray’s scrambling function decoder, GLA: 
generalized Lloyd algorithm.

Pearlnian [43] approached the design of trellis source coders through rate- 
distortion theory for constrained size reproduction alphabets. Solving the con­
strained rate-distortion function, he obtained reproduction levels. Then, he 
constructed sliding-block codes Iry distributing the rej)roduction values over 
one level of the trellis, tlie structure (next-state function) of which is fixed. He 
reported simulation results for large trellises of 256 and 512 states.

Freeman et al. [44] viewed th<i encoder simulation as the evaluation of an 
objective function of the code assignment variables. They used two optimiza­
tion methods due to Powell. The first one is a nonderivative descent method 
called Powell’s 1964 algorithm (PA64) [4.5] and the second is a gradient descent 
method called Powell’s conjugate gradient algorithm (GGA) [46], [47]. Each of 
these methods performs a series of liiui searches in conjugate search directions. 
A line search is in effect the minimization with resjrect to one ])arameter, that 
gives the position along a. straight line in the space of independent variables 
[44].

The important difference of our ap])roa.ch fiom these works is that, while 
they keep the next-state function fixed, we optimize it. Looking at Table 5.1, 
first note the improvement from GLA to SA+GLA. This improvement is due 
to the optimization of the trellis structure and is larger for larger constraint 
lengths. As the constraint length increases, the size of the configuration space 
increases exponentially, therefoi'e, the fixed trellis structure (or the next-state 
function) used by GLA [20] in design l)ecomes less and less ]>robable to be 
“the best” structure. Also, as the size of configuration space is increased there
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Trellis Waveform Coding

Figure 5.1: Trellis waveform coder, .SQNR, results for Gaussian i.i.d. source, 
SA+GLA: Trellis waveform coder with simulated annealing and generalized 
Lloyd algorithm, PA64; Powell’s 1904 algorithm, CGA: conjugate gradient 
algorithm, SFD: Linde and Gray’s scraml)ling function decoder, GLA: gener­
alized Lloyd algorithm.
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are more “good” structures iiitroducc'd, and therefore SA has the chance to 
choose a “good” trellis from a. wider set. I'hese two facts explain the higher 
performance improvement for larger constraint-lengths.

As stated above, GLA is not the 011I3' method for ini|)roving the out])ut 
map. The improvement possilrle with codel)ook design algorithms other than 
GLA can be judged by com])aring the trellis waveform coding system results of 
Freeman et al. with GLA results: GGA performs much better than GLA. Not­
ing the improvement from the GLA results to the SA-f-GLA results, and noting 
the improvement from the GLA results to the CGA results, one can speculate 
that using the conjugate gradient algorithm instead of GLA for codebook de­
sign and employing SA for trellis structure o])timization, i.e., using SA-fCGA, 
better performance can be obtained for memoryless Gaussian sources.

When test results are compared, SA-f-GLA out])erforms Powell’s 1964 al­
gorithm PA64 and Linde and Gray’s scrainlding function decoder. Akso, Pearl- 
man’s results for K — 9 and A = 10 are 5.18 dB and 5 . 2 1  dB respectively 
which SA-fGLA outperforms with only a K = 5 trellis. On the other hand, 
conjugate gradient algorithm CGA gives the l.)est results among all, although 
our results (SA+GLA) are almost the same for constraint-lengths 2 , .3,4, and 
are only slightly worse (about 0.1 dB) for K — 5,6.

5.1.2 F ir s t  O rd e r  G a u s s -M a rk o v  S ou rce

The advantage of a waveform coding system with memory, such as the trel­
lis waveform coder, is in getting high ])erforniance in encoding sources with 
memory. Therefore, a better source to test the performance of our algorithm 
is the Gauss-Markov autoregressive source. To this end, in this work, trellis 
wavefornr coding systems of different constraint lengths and of rate one were 
trained using SA and GLA by a first oider Gauss-Markov source defined
by

X n  =  ( i X n - \  + l'f’„ 71 =  1,2, . . .  ('T2)

where Wn is a white and zero-mean Gaussian time series, and a = 0.9. This 
source was chosen since it is a common model of real data and it is widely used 
in comparing data comjjression systems [4]. The D{R) bound for this source 
is 13.2 dB [19].

For constraint lengths of 2-8, signal-to-(]uantization-noise ratios (SQNR)



4!)

were corn])uted. Tlicn (.1k‘ system was test(‘d using a test s(ir|ucnce with tlie 
same statistics. In Tabh' 5.2 and Figure 5.2 the SQNH. values are given 
(SA+GLA) together witli the results ol Stc'wart cl al. (CiLA) [2 0 ]. Itesults 
obtained using SA are better than tho.se of [20], especially for structures with 
small constraint lengths. The difference in ])erformance comes from the o]>ti- 
mization of the trellis structure (or the next-state function). For constraint- 
lengths 3, 4 and 5 the improvement is morci than 1 dB (for A' = 4 is 1.5 dB), 
which is significant since the GLA ])erlormance is within 2.5 dB of D(R) l)ound 
for K  = 5. With increasing A , ])crformance improvement decreases to about 
0.3 clB for K  = 8 , which is again cpiite significant since the GLA performance 
is within 1 clB of D{R) bound for this constraint-length. We have not seen any 
significant improvement for K — 2 ; this is because the configuration sj)ace for 
this constraint-length is very nairow, and aj)])arently the shift-register trellis 
used by Stewart ct al. [2 0 ] is a good trellis among few possible ones. With 
the increasing constraint-length (with the widening configuration space), the 
improvement increases and l)ecomes maximum at A’ = 4. The improvement 
for this constraint-length is about 1.5 dB. for larger constraint-lengths the 
improvement decreases since largci codel)Ooks already ]>rovid(“ good ])recision 
for quantization and im])rovement due to SA becomes less significant when 
compared with the im])rovement with enlarged codel)ooks. Actually, during 
simulations it was observed that for K > 6  perturbing the trellis with SA 
does not lead to significant im])rovements. This is ¡tartly due to the fact that 
temperature is quite low at the.se instants and that since the oj)timization of 
trellis structure at a certain constraint-length K  begins with the extension of 
the optimum trellis structure for constraint-length K  — I trellis, and therefore 
the initial structures can be expected to l>e already good structures for high 
constraint-length trellises.

As can be seen from Table 5 .2 , the difference between the training sequence 
and test sequence SQNRs is increasing for increasing constraint-length. For 
K  = 8  the difference is almost 0.35 dB for SA-fGLA results, which points the 
inadequate training of the source, that is, we need longer training sequences or 
equally longer trellises. But, we cannot increase the trellis length indefinetely 
since this is accompanied with increasing storage requirements and longer trellis 
searches during encoding which means longer execution times. In Chapter 2 , 
Section 4, we touched upon the.se practical difficulties in using the Viterbi 
algorithm and suggested a way to get around this inconvenience, which was 
to perform a “truncated search” instead of full trellis search ])erformed by
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Trellis Waveform Coding
1st order Gauss Markov source

Figure 5.2: Trellis waveform coder, SQNR re.sults for first order Gauss-Markov 
source, SA+GLA: Simulated Annealing and Generalized Lloyd Algorithm, 
GLA: Generalized Lloyd Algorithm only.
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SA+GLA GLA
K train test train test
2 7.03 6.81 6.92 6 . 8 6

3 9.82 9.55 8.77 8.59
4 11.61 11.50 10.13 9.87
5 1 2 . 1 2 12.06 11.05 10.67
6 12.18 1 2 . 0 2 11.56 11.09
7 12.31 11.97 11.87 11.70

, J L 12.32 11.97 12.13 11.91

Table 5.2: SQNR [clB] results for the first order Gauss-Markov source. I\ : 
constraint length, SA+GLA; simulated annealing and generalized Lloyd algo­
rithm, GLA: generalized Lloyd algorithm only.

Truncation Depth:
K full search 1 0 0  A' 5077 10/7 5/7 3/7 2/7
2 5.482 5.482 5.482 5.476 5.448 5.358 5.122
3 8.709 8.709 8.709 8.683 8.592 8.449 8.235
4 11..304 11.304 11.304 11.294 11.153 10.706 10.183
5 11.550 11.550 11.550 11.5.39 11.315 10.821 10.359
6 12.103 12.103 12.103 12.057 11.7.32 11.194 10.805

Table 5.3; SQNR [dB] results for the first order Gau.ss-Markov source with 
different truncation depths. I\: constraint length, TD: truncation dejAh.

the Viterbi algorithm. This modification in trellis search would allow us to 
store only a part of candidate ])aths (typically of length 1 0  x K) and therefore 
enable us to use larger training sequences such as 50,000 or 1 0 0 , 0 0 0  samples. 
This argument needs experimental justification: we sliould show that both full 
search Viterbi algorithm and its modified version jjerforming truncated search 
give the same results and there is no performance loss. This is done by running 
SA+GLA having a full-search encoder and testing the optimum trellis (with 
optimum codebooks and state-transitions) obtained by this run with the same 
Gauss-Markov source and truncated-search encoder with various search depths. 
The results are given in Table 5.3.

As can be seen, there is no ])erformance loss at all for VAs with truncci- 
tion depths of 10 times the constraint length and above. For small constraint 
lengths, truncation depths of even 5 times the constraint length are sati.sfying.
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But, for truncation depths short(*r than 5 times the constraint length, the ¡per­
formance difference becomes significant. Tlierefoiii, we are jnstihcxl to use the 
modified Viterbi algorithm with a search de])th of lU x K .

5.2 Vector Trellis W aveform Coding

As discussed in Chapter 2 , Section 2 , coding symbols in blocks rather than one 
by one is expected to yield higher jperformance since there is a higher degree of 
freedom in choosing decision regions for (|ua.ntiza.tion in block coding and since 
this enables exploitation of the correlation between sani|ples. Simulation results 
for coding symbols in ¡pairs are given along with the results for scalar coding 
using simulated annealing and the generalized Lloyd algorithm in Table 5.4 
and Figure 5.3. Although there exists a. significantly large difference between 
training and test .sequence results, indicating the insufficient size of the training 
sequence, it can still be concluded from this taJple that vector coding results 
are better than scalar coding results. However, the difference is not signifi­
cantly large. This observation can be inteiqprete(.l to suggest that scalar trellis 
waveform or delayed-decision coding Ipy itself exqploits the correlation between 
samples quite well, and there is not much left for improvement by vector trellis 
waveform coding.

A related work is Bei and Cfray’s lalpeled state vector trellis encoding system 
[38]. Their approach is to design a FSVQ using the methods introduced by 
Foster ct al. [7] and use this decoder with Viterbi encoding in trellis waveform 
coding. A comparison of our results with those of Bei and Cray’s (for which 
two related data points are shown in Table 5.4) indicate (i) the observation 
that the ¡performance improvement while increasing the vector length for this 
source is limited is shared in [38], and (it) the system and the design technique 
proposed here outperform that in

5.3 F in ite-S tate Vector Q uantization

As noted above, FSVQ is a sjpecial case of TVVC where the search length of the 
encoder (Viterbi algorithm) is reduced to one stage. Therefore, our arguments 
for truncated-search Viterbi idgorithm in Chapter 2 , Section 1 . 2  applies to



5;{

Vector Trellis Waveform Coding
1st order Gauss Markov Source

Figure 5.3: Vectoral TWC vs scalar TWC, first order Cfauss-Markov source
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N

SA+GLA LSVTF
k --= 1 k == 2 k == 3 k == 4

train test train test train test train test
4 9.83 9.53 10.62 10.44
8 11.59 11.44 11.74 11.54
16 11.95 11.90 12.04 11.72
32 1 2 . 0 0 11.90 12.30 11.84 11.4 11.4
64 12.25 11.97 12.54 11.93 11.7 1 1 . 6

Table 5.4: SQNR [clB] results for scalar and vector trellis waveform coding 
where the systems with k = 1 and k — 2  are designed using SA+GLA and 
results for k — 3 and k = 4 are those of the labeled state vector trellis encoding 
system. N: number of states, k: vector length, LSVTE: labeled state vector 
trellis encoding system.

FSVQ, with a search depth of one vectorsize. Looking at Table 5.3, we noted 
before that the performance of TVVC is the same for truncation depths 10 x K, 
but the loss in performance l.)ecomes significant for truncation depths less than 
5 X K , which is due to the fact that the truncated search Viterbi algorithm 
cannot perform an optimal search for this short constraint lengths. Therefore, 
it is apparent that the ])erformance of FSVQ will be significantly less than the 
performance of TWC. Yet still, FSVQ is important practically, since it has 
much less computational com])lexity than TVVC and there is only one vector- 
size delay involved.

We obtained simulation results first designing the finite-state vector quan­
tizer for the first order Gauss-Markov source and then testing the design with 
a source from outside the training data. For designing FSVQ’s with vector- 
lengths 1 , 2, 3, and 4, a fixed training .sequence of length 20,000 samples is 
divided into blocks of 1 , 2, 3, and 4 sam])le lengths resjjectively, and the re­
sulting vector sequences are used for training the FSVQ.

Our results are given in Table 5.5, and in Figure 5.4 together with the results 
obtained by Foster et al. [7] and memoryless vector quantization results. Foster 
et al. used a method based on a heuristic approach called Omniscient Labeled 
Transitions (OLT) for the design of the next-state map, and GLA for the 
codebook design. Our results show that .SA+GLA performs much better than 
VQ and generally better than OLT although not much better. OLT is known 
to yield the best results obtained in FSV̂ Q so far [4]. Our results show that



SA+GLA is a contender for j)erlonning l)etter, and we l)elieve the ])erformance 
improvement may be more significant Idi· more comi)lica.ted sources, such as 
speech samples. Also, considering tin' results of Bei and Gray [.',18] cited in 
Chapter 5, Section 5.1, who used tlie trellis designed for FSV(J l\y the methods 
of [7] for TWC with Viterl)i encoding, as a ])lagiarized decoder, we can conclude 
that SA+GLA is generally a l)etter algorithm for designing finite-state machine 
decoders than the methods of [7].

SA+GLA VQ OLT
k train test train test train test
1 9.40 9.50 4.42 4.40 9.21 9.14
2 10.05 10.81 7.90 7.80 11.04 10.90
3 11.17 1 1 . 2 0 9.24 9.17 1 1 . 2 2 11.08
4 11.53 11.38 10.15 10.07 11.34 1 1 . 1 2

Table 5.5: SQNR. [dB] results for S-sta.te FSVQ and V(  ̂ for the first order 
Gauss-Markov source, k: vector length, SA-fGLA : FSVQ with simulated 
annealing and generalized Lloyd algoiithm, VQ: memoryless vector quantizer, 
OLT : FSVQ with omniscient lal)eled transition design method.

5.4 P red ictive Trellis W aveform Coding

In [19], Ayanoglu and Gray incor])orated prediction into trellis waveform cod­
ing, the idea being similar to predictive vector quantization [4], with a trellis 
encoder replacing the memoryless vector quantizer and a finite-state machine 
decoder replacing the vector (juantizer codebook. The j^redictive trellis coding 
system they used and the design algorithm they suggested were described in 
Chapter 2 , Section 5. Their aijproach in designing ])redictive trellis waveform 
coder was to keep the next-state function fixed, improving the codebooks iter­
atively with GLA and regularly uj)dating the |)rediction coefficients according 
to modified state-codebooks. Through simulations, they designed j^redictive 
trellis waveform coders [19] and compared the SQNR. results with the SQNR 
results for nonpredictive trellis waveform coders designed with GLA [20]. The 
results they report show that, there is a very significant ])erformance improve­
ment introduced 1)V incor|)ora.ting prediction to the encoding process, which is 
about 4 clB for K = 2, 2.5 dB for 1\ — 5  and generally more than 1 dB for 
higher constraint-lengths.
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Finite-State Vector Quantization
1st order Gauss-Markov source

Figure 5.4: Finite-state vector quantization, .SQNR n'sults for first order 
Causs-Markov .source, 8  state trellis, .SA-f-ClLA : F.SVQ with simulated an­
nealing and generalized Lloyd algorithm, VQ: memoryless vector quantizer, 
OLT-fGLA : FSVQ with omniscient labeled transition design method and gen­
eralized Llod algorithm.
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Following our arguments in the previous sections of the thesis, we can 
conjecture that, as in the nonpredictive case, optimizing also the next-state 
function we can obtain even Ijetter performance with tlie predictive system. 
Considering the performance improvement SA provided over the performance 
of GLA, we incorporated SA into the predictive system of Ayanoglu and Gray: 
in the design algorithm we suggested for TVVC in Chapter 4 , Section 3 , we 
inserted the design algorithm of Ayanoglu and Gray [19] in place of GLA. The 
resulting algorithm, at each constraint-length, starts the design process with 
a fixed trellis, and then perturbs it into new trellises using SA. When SA exit 
criterion is satisfied, the codewords are modified by GLA and the predictor 
coefficients are updatetl according to new codewords (output map) and new 
next-state map. This process is repeated until no significant improvement is 
observed on consequent SA terminations. The initial trellis for each constraint 
length K  is obtained by extending the optimum trellis of contraint-length K —\.

5.4.1 F ir s t  O rd e r  G a u s s -M a rk o v  S ou rce

A PTWC is designed using the method just described on a first order Gauss- 
Markov source training sequence of 10,000 samples and the design is tested 
with a sequence of the same length. The SQNR results for nonpredictive and 
predictive trellis coders designetl l)v GL.A and SA-l-GLA are given below in 
Table 5.6, and Figure 5.5.

К

nonpnidictive predictive
GLA S A-f-(iLA GLA SA-bGLA

train test train test train test train test
1 4.35 4.28 4.35 4.28 1 0 . 0 1 9.65 9.98 1 0 . 1 1

2 6.92 6 . 8 6 7.03 6.81 11.08 10.73 11.08 1 1 . 2 1

3 8.77 8.59 9.82 9.55 11.53 11.18 11.61 11.74
4 10.13 9.87 11.61 11.50 11.84 11.47 12.09 1 2 . 2 0

5 11.05 10.67 1 2 . 1 2 12.06 12.18 11.83 12.26 12.33
6 11.56 11.09 12.18 1 2 . 0 2 12.38 11.96 12.38 12.45
7 11.87 11.70 12.31 11.97 12.52 12.52 12.41 12.50

Table 5.6: SQNR [dB] results for the first order Gauss-Markov source. K: 
constraint length, SA-f-GLA: simulated annealing and generalized Lloyd algo­
rithm, GLA: generalized Lloyd algorithm only.

The GLA on nonpredictive system (NS), and GLA on ]>redictive system
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Predictive Trellis Waveform Coding
1st order Gouss-Morkov source

Figure 5.5: Predictive trellis waveform coder, SQNR results tor first order 
Gauss-Markov source.
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(PS) results in Table 5.6 are reproduced from [19]. Comparing these two sys­
tems, we see the significant improvement provided by the predictive system as 
reported in [19]. The performance improvement from GLA on nonpredictive 
system to SA-f-GLA on nonpredictive system was discussed in Section 5 . 1  in the 
context of TWC. When the results of SA-(-GLA on nonpredictive system and 
GLA on predictive system, that is, our TWC results and Ayanoglu and Gray’s 
PTWC results are compared, their results are significantly better for structures 
with small constraint lengths {K — 1,2,3). This is expected since the predic­
tive system has a higher system coini)lexity. However, for higher constraint 
lengths our results are quite close to those of [19], so that the nonpredictive 
system once again becomes attractive. Next, comparing our SA-j-GLA results 
for nonpredictive and predictive systems, we observe a significant performance 
improvement provided with the predictive system (especially for K  =  1,2,3,4) 
which paraléis the results of Ayanoglu and Gray [19]. Finally, when GLA and 
SA-I-GLA results for the predictive system are compared, the superiority of 
SA-f-GLA is obvious. The SA-f-CfLA results are good since even with a con­
straint length of 4, the algorithm sliows a ])erformance which is within 1 dB of 
the D{R) bound.

5.4.2 S p eech  M o d e l  S ou rce

Another source of importcuice is the speech model source. In [49] Wilson and 
Husain used the sj)eech data obtained I>y McDonald [50] to obtain a third-order 
Gauss-Markov model for speech. The model is described by the difference 
equation

= 1.75Â ,7 1 — 1 [.22A"„_,+ 0..30LY„_3 + f n (5.3)

where HA’s .̂re independent, identically Gaussian distributed with zero mean. 
The variance cr'{y is 0.097. The process AT is stationary with unit variance. The 
D{R.) bound for this .source is calculated to be 14.4 dB at rate 1 bit/sample 
[4 4 ]. The SQNR of 1 bit DPCM for this .source is 8.4 dB. Simulation results 
are given in Table 5.7 and Figure 5.6. with the results of Ayanoglu and Gray’s 
predictive system [19], CCiA [44] and GLA.

These results indicate that predictive systems show significantly better per­
formance over nonpredictivii systems. This is ex])ected since the source is 
more complex (third order) than the previously used sources, and a higher 
order linear predictor is used. Second, the performances of nonpredictive GLA
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Predictive Trellis Waveform Coding

P' îgure 5.6: Predictive trellis wavelorin coder, SQNR residts lor speech model
source.
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iion])redictive predictive
K GLA CGA GLA SA-bGLA
2 6.97 7.00 10.40 10.53
.3 9.20 9.20 11.47 11.70
4 10.96 10.80 12.04 12.25
5 12.16 1 2 . 1 0 12.60 12.60

Table 5.7: SQNR [clB] results for the speech model source. K: constraint 
length, SA+GLA: simulated annealing and generalized Lloyd algorithm, CGA: 
Powell’s conjugate gradient algorithm, GLA: generalized Lloyd algorithm only.

and CGA are almost the same. Remember that for the memoryless Gaussian 
source, the performance of CGA was significantly better than the performance 
of GLA. This observation shows that we cannot generalize our argument about 
CGA and GLA on the memoryless Gaussian source to other sources. The per­
formance of the algorithms is tlei)endent on the source used. Third, predictive 
system designed with SA-I-GLA has a higher i)erformance than the predictive 
system designed with GLA only. This result points out the potential of im­
proving the performance of predictive trellis waveform coders by optimizing 
the next-state function.

5*5 Trellis Coded Q uantization

5*5.1 M e m o ry le s s  G au ss ian  S ou rce

As was discussed in (Jhapter 2 , Section (), Marcellin and Fischer suggested TCQ 
in [51], basing their arguments on a.n oI)servation made in alphabet-constrained 
rate distortion theory for the uniform i.i.d source. In [51], Marcellin and Fischer 
cdso noted that they had no intuitively i)leasing distance property arguments 
to justify using TCQ for memoryless Gaussian source but ¿ilphabet constrained 
rate distortion theory indicated that a substanticil performance increase over 
the Lloyd-Max quantizer was possible. The simulation results they obtained 
following this observation for memoryless Cîaussian sources are given along 
with the simulation results lor unilorm i.i.d. and Laplacian i.i.d. sources in 
[51]. Among these, the memoryless (¡aussian results are ol interest to us since 
we have already tested the |)eriormaii('e ol our design apj)roach on this source
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R TCQ TCQ(+SA) TWC(SA+GLA) TWC(CGA) L-M Q. D(R)
1 4.54 4.57 4.65 4.85 4.40 6 . 0 2

2 10.06 10.06 10.19 9.30 12.04

Table 5.8: Comparison of trellis coders for Gaussian i.i.d. source, =  4, L-M 
Q.: Lloyd-Max quantizer, CCA: Conjugate gradient algorithm

in the previous sections.

Marcellin and Fischer used the Ungerboeck trellis structure described in 
Chapter 4, Section 6  as the next-state function for the rates R =  1,2,3. The 
output map was constructed by assigning the /? 4 - 1 bits/sample Lloyd-Max 
output points to the trellis briuiches according to Ungerboeck’s branch labeling 
rules [52]. They report that although the SQNR results for the Gaussian i.i.d. 
source were quite higher than the Lloyd-Max quantizer results, the results were 
still far away from the D{R) bound. To improve performance, they developed a 
training sequence based numerical optimization procedure for output alphabet 
design and they obtained better results with this algorithm. They also report 
that the performance diverged away from the distortion rate function as the 
rate growed. Therefore, they examined all the trellises other than the one 
described to see whether there are other trellis structures fitting better to 
TCQ, but they report that little could be gained over Ungerboeck’s trellises. 
In several cases they found trellises that performed better than Ungerboeck’s, 
but the improvement was insignificant. To observe it any improvement can 
be gained by SA, we first constructed a trellis lollowing the procedure they 
gave for TCQ, obtained the SQNR value for this trellis, and then perturbed 
the trellis structure with SA and obtained SQNR values for the new trellises. 
The SQNR results for “|)lain” TCQ system, TCQ system with SA applied, 
Lloyd-Max quantizer and rate-tlistortion fiound tor R =  1, R = 2 are given in 
Table 5.8 together with our SA-I-GLA results tor TW('.

Results show that almost no improvement is gained due to changing the 
next-state map. But some improvement is seen when the output points are 
trained. Taking a look at our ¡irevious TWC results for the memoryless Gaus­
sian source, we also see that CGA gives mucli better performance than “plain” 
TCQ although with a price of higher computational complexity. These re­
sults rlraw our attention to two (acts: First, lor rate R. encoding, rate /2 -|- 1 
Lloyd-Max output points are not the best choices as codewords tor memoryless
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Gaussian sources. Better output majjs can be obtained with design algorithms 
like GLA and CGA. Second, as was discussed in Chapter 2 , trellis coding efh- 
ciently exploits the correlation between the samples, that is its real success is in 
coding sources with memory. Since Gaussian i.i.d. source does not have mem­
ory, the trellis structure supplies no important advantages, therefore, changing 
the next-state map does not affect the performance significantly.

To verify the last statement more strongly an exhaustive search was per­
formed over the possible R = I, N  — 4 trellises, and it was observed that other 
than the pathological cases, the ])erformance for most trellises were very close. 
It is worth noting that this exhausted search also showed that TWC with SA 
had found the best trellis.

5.5.2 F ir s t  O rd e r  G a u s s -M a rk o v  S ou rce

As discussed before, the success of trellis source coding is in coding sources with 
memory. In [.'jl], Marcellin and Fischer did not give any simulation results for 
coding sources with memory by TCQ. Therefore, we performed simulations 
for the first order autoregressive Gauss-Markov source, using the TCQ system 
introduced in [.M] for memoryless sources. That is, the trellis is an Ungerboeck 
trellis with Lloyd-Max output points assigned to brances as described in [.M]. 
Then, the trellis structure (next-state map) is perturbed into new structures 
via SA. The results are given in Table -5.9. The improvement from the trellis of 
[•51] by SA is significant (about 0.7 dB), which shows that for coding first order 
Gauss-Markov sources there exist trellis structures significantly better than the 
one used in [.51]. The improvement l)y SA was expected, because the source is 
highly correlated (correlation coefficient: 0.9) and the next-state map becomes 
important. But even with optimizing next-state function for the given output 
map, the performance is far from the D(R.) l)ounds. Our simulation results 
obtained for the first order Gauss-Markov source are also shown in the table to 
indicate the need for optimizing output map and next-state map together for 
the design of high ])erformance trellis coder. The improvement from “plain” 
TCQ to TWC with SA-f-GLA is more than 4.5 dB for R - 1 and 6.5 dB for 
R  =  2 . Observingthe difference l>etween the TCCJ results and the TWC (GLA) 
results obtained by [20], we see that using Lloyd-Max quantizer output points 
does not guarantee any good codeljook.
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R TCQ
4.71
6.85

TCQ(+SA)
5.45
7.65

T\VC(SA+aLA)
9.55
18.58

TVVC(GLA)
8.59

D(R)
13.23
19.25

Table 5.9: =  4, fir.st order Gaus.s-Markov source, a = 0.9

5.5.3 P r e d ic t iv e  T r e l l is  C o d e d  Q u a n t iz a t io n

Marcellin and Fischer incorporated linear prediction to TC(J to form predictive 
TCQ (PTCQ). The search algorithm, that is the encoder, of their predictive 
system is similar to that of Ayanoglu and Gray [19], but the design algorithm 
is different in that they do not train the codebooks and they do not update the 
predictor coefficients. For comparison we give simulation results for PTCQ of 
[51], PTWC of [19] and our PTW’fl with SA+GLA on first order Gauss-Markov 
source in Table 5.10 and on speech model source in Table 5.11. As can be seen, 
in both cases our PTVVC with SA+GLA performs better than the other two 
systems. This superiority is due to optimizing the next-state map.

PTCQ PTWC(GLA) PTWC(SA+GLA)
К test train test train test
3 11.19 11.53 11.18 11.61 11.74
4 11.60 11.84 11.47 12.09 1 2 . 2 0

5 11.89 12.18 11.83 12.26 12.33
6 12.13 12.38 11.96 12.38 12.45
7 1 2 . 2 2 12.52 12.52 12.41 12.50

Table 5.10: Predictive trellis coding results for first order Gauss-Markov source

К PTCQ PTWC(GLA) PTVVC(SA+GLA)
3 11.03 11.47 11.70
4 11.65 12.04 12.25
5 12.24 12.60 12.60

Table 5.11: Predictive trellis coding results for speech model .source
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5.5.4 C o d e b o o k  A s s ig n m e n t to  B ran ch es  in  T C Q

During our simulations with SA on the initial Ungerboeck trellis used by Mar- 
cellin and Fischer, we noticed that some of the new trellises reached by a series 
of SA perturbations were Ungerboeck trellises used in [51], but the branch 
labelings were different. These trellises mostly had better (sometimes signifi­
cantly better) performance than the initial trellis. Moreover, we noticed that 
the branch labelings satisfied Ungerboeck’s l)ranch labeling rules [52]. This 
observation seemed very interesting to us, since nothing was mentioned in the 
papers by Ungerboeck [52] and Marcellin and Fischer [51] about the possibility 
of existence of other trellises labeled according to Ungerboeck branch labeling 
rules but showing different performances.

To see the performances of those trellis coders we first produced all of the 
possible different branch labelings (codebook assignments) satisfying Unger­
boeck’s rules for the trellis with the structure of Figure 2.4. The super­
codebook is generated cuid the set partitioning is done iis described in [51]. 
These trellis coders are shown in Figure 5.7.

There are symmetries among some of the trellises: If the nodes 0 , 1 , 2 and 
3  are relabeled as 3 , 2 , 1 and 0  respectively, trellis-e becomes trellis-a, trellis- 
f becomes trellis-b, trellis-g becomes trellis-c and trellis-h becomes trellis-d, 
that is, trellises in (a) and (e), (b) and (f), (c) and (g), and (d) and (h) are 
equivalent. Therefore, we need to consider only trellis-a, trellis-b, trellis-c and 
trellis-d.

Trellis-a is the one used by Marcellin and Fischer [51]. The difference be­
tween the performance of this trellis and the others was noticed while coding 
Gauss-Markov source with correlation coefficient a = 0.9, and before for mem­
oryless Gaussian source {a = 0.0) we sciw noted that the performances for 
most trellises (other than patological ones) were almost the same. For this 
reason we are tempted to look at the performance for various values of a. We 
first calculated SQNR for trellis-a, trellis-b, trellis-c and trellis-d on first or­
der Gauss-Markov source with several correlation coefficients, on memoryless 
Gaussian source and on s|)eech model source, using Lloyd-Max output points 
as codewords as in [51]. The r<‘sults are given in Table 5.12.

The results show that tn'llis-I) shows the l,)est performance and trellis-d 
shows the worst among a.ll. Moreover, we see that the performance difference
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(a)

CD

(fO

Figure 5.7: Ungerboeok trellises satisfying the branch labeling rules ot Unger- 
boeck
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a trellis-a trellis-b trellis-c trelHs-cl
0.95 4.71 5.54 4.60 4.41
0.9 4..5S 5.30 4.53 4.35
0.7 4.69 5.01 4.61 4.60
0.5 4.70 4.82 4.66 4.71
0 . 0 4.71 4.71 4.71 4.71

speech 4.52 4.80 4.55 4.33

Table 5.12: /? =  1 , performance com])ari.son of possible branch labelings for 
Ungerboeck trellis, Gauss-Markov sources

decreases with decreasing correlation coefficient and there is no performance 
difference for a = 0 .0 , the memoryless case.

Trellis-b shows always better performance than the other trellis coders. To 
gain more insight to the matter we concentrated on this coder and trellis-a, the 
trellis coder used in [51] and obtained data for negative values of correlation 
coefficient [a < 0 ), and for coding sequences with correlation coefficient, a 
with a decoder designed for a sequence with correlation coefficient —a, that 
with output map as the Lloyd-Max cjuantizer output points for source with 
—a. The results are given in Table 5.15.

On this data, we can make the following observations: The difference be­
tween the performances of the two trellises increases with increasing a.

With decreasing «, the performance improvement supjjlied by SA decreases.

For the positive and negative values of «, trellis-b shows always better 
performance. This is true even when the coilebook designed for the source 
with —<i is u.sed for .source with a.

While the SQNR values for trellis-b increases significantly (from 4.65 dB 
to 5.35 dB) with increasing a, the .SQNR values for trellis-a stays almost the 
same.

In the light of these results, we can draw the following conclusions about 
TCQ:

As was discussed in previous clia|)ters, the design prol)lem of trellis source 
coding is equivalent to the design problem of the next-state map and the output



68

Q 1 (a = 0.9) Q2  (a == -0.9)
a t-a 4 -SA t-b -f-SA t-a -f-SA t-b +SA

0.9 4.61 5.34 5.34 5.34 4.58 5.26 5.26 5.26
-0.9 4.57 5.45 5.39 5.52 4.49 5.40 5.30 5.37

(a)

Q 1 (a = 0.7) Q2  (a == -0.7)
a t-a +SA t-b +SA t-a +SA t-b +SA

0.7 4.69 5.12 5.01 5 . 1 2 4.66 5.09 4.99 5.09
-0.7 4.63 5.16 5.00 5.08 4.62 5.13 4.99 5.13

(b)

Q1 (rt = 0.5) Q2  (a == -0.5)
a t-a +SA t-b -l-SA t-a -f-SA t-b -bSA

0.5 4.69 4.91 4.79 4.91 4.67 4.88 4.78 4.90
-0.5 4.72 4.95 4.76 4.95 4.72 4.93 4.75 4.98

(c)

Q 1 [a = 0 . 1 ) Q2 [a --= - 0 . 1 )
a t-a -f-S A t-b -bSA t-a +SA t-b +SA

0 . 1 4.65 4.71 4.71 4.74 4.64 4.67 4.69 4.71
- 0 . 1 4.67 4.69 4.69 4.71 4.66 4.69 4.67 4.69

(«1 )

Table 5.13: Trellis-a aiul t,rellis-b comparison (t-a; trellis-a, t-b: trellis-b), 
+SA: performance witli SA on tlie trellis the SCJNR of which is given in the 
previous column, Q 1 and Q2  denote the quantizers with Lloyd-Max output 
points calculated for Si (source 1 ) ami S2  (source 2 ) respectively, Source 2  has 
a correlation coefficient that is negative of Source 1 ’s.
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map. Being a trellis source coder design approach, the TCQ technique suggests 
a fixed next-state map during trellis decoder design procedure: the next-state 
map is not optimized. The next-state map TCIQ suggests is the Ungerboeck 
trellis which was shown in Figure 2.4.

For memoryless Gaussian source our results showed that this next-state 
map was fairly good, but it is one of the many good ones, it is not particularly 
the best trellis. As also noted in [20], the next-state map is not very important 
in coding memoryless sources with trellis coders, therefore, other than the 
pathological cases, most of the trellises would give approximately the same 
performance. This was verified almve by the results of exhaustive search we 
performed for /? = 1 , /V = 4 trellis. The Ungerboeck trellis, having asymmetric 
structure, is just one of the better ones.

TCQ’s suggestion for output map design involves the generation of a su­
percodebook, partitioning this supercodebook into subsets and labeling the 
branches with indexes of the subsets, that is, assigning the subsets to the 
branches. As we noted even tor memoryless Gaussian source, this choice of 
Lloyd-Max output points does not look like a good one, since we have shown 
the possibility of obtaining significantly better codebooks with GLA or CGA.

Set partitioning and branch labeling are done in a way to increase the 
distance between the codewords. These two approaches were borrowed from 
т е м  where they are well justified. In TCM, set partitioning and branch label­
ing according to UngeiToeck’s rules leads to the maximization of free distance 
between code sequences. This means that the code sequences are made as 
far as possible from each other, wliich decreases the probability of deciding 
on a wrong code in the decoder due to channel noise. Making codes robust 
to channel noise is a common goal in modulation and channel coding. But 
in quantization, as discussed in Ghapter 1, it is assumed that the channel is 
lossless, and therefore the goal is not to design robust codes but to compress 
the data so that the redundancy is lemoved and communication can be done 
with less bits per sample. Therefore, maximizing the distance between the 
codewords is not a step towards l>etter compression. Yet, for memoryless uni­
form sources, maximizing the distance between the codewords available at a 
state seems a intuitively good ap])ioach since this allows an even distribution of 
codewords for finer (|uantization. But, it is not that straightlorward for sources 
with memory, since not codewords but codeword sequences become significant 
due to memory. During design, one should take into account consequent stages.
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not just one stage. Aljove we stated that the arguments of modulation do not 
carry to quantization. Even if such an analogy exists according to Marcellin 
and Fischer’s arguments, this analogy can l)e only on the basis of memoryless 
sources. For sources with memory, carrying the idea of maximizing the distance 
between codes in modulation to trellis quantization leads to the maximizing 
the distance between available reproduction sequences. As showed by our sim­
ulations in Section 1 .1  this chapter, there is no significant loss in performance 
if the Viterbi algorithm makes truncated search instead of full search, with a 
truncation depth of 5 x K  for small constraint lengths and 10 x K  for for higher 
constraint lengths. Then, following the above observation, for a trellis 4 states 
the codebooks should be assigned to trellis branches considering a section of 
trellis with 15 stages. Therefore, unlike branch labeling rules of TCM, or of 
TCQ on memoryless source who consider only one stage of trellis the branch 
labeling rules to I.)e designed must take into account a long trellis section. This 
is not an easy task.

We can conclude that the rules of Ungerboeck do not carry to sources with 
memory. This fact is verified with our simulation results for Gauss-Markov 
sources. We have seen that there exist significantly better trellis structures 
and that optimizing next-state map and output ma|), substantial gains are 
possible.

Our last observation about different trellises satisfying Ungerboeck rules but 
having significantly varying performances, also point out the lack of analogy 
in this case with TCM.



Chapter 6

SUM M ARY A N D  
CONCLUSIONS

The main contribution of this thesis is the employment of simulated anneal­
ing (SA) for the optimization of the next-state nicip of the decoder for data 
compression systems based on finite-state machines, such as finite-state vector 
quantization, trellis waveform coding, predictive trellis waveform coding, and 
trellis coded quantization. A tlecoder design algorithm for the joint optimiza­
tion of the output map and the next-state map is obtained by incorporating 
the generalized Lloyd algorithm (CLA), a well-known algorithm for codebook 
design, into design.

Simulation results were obtained for Gaussian sources such as Gaussian 
i.i.d., first order Gauss-Markov, and third order Gauss-Markov (speech model) 
sources. Comparison of these results with other related work in the literature 
shows (i) the need for optimization of the next-state map of finite-state machine 
decoders, and (ii) SA is very succesful when employed for this purpose.

During simulations, theoretical as well as heuristic methods were used for 
choosing the SA i)arameters. In most of the simulations. Metropolis loop 
lengths of 20 X N  or even 10 x l\̂  sufficed to reach quasi-equilibrium where 
N  is the number of states. For the selection of the initial temperature, John­
son’s algorithm turned out to be a good method in almost all of the cases, but in 
some cases for the speech model source (third order Gauss-Markov source), this
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algorithm gave too low initial temi)eratiires which had to be increased man­
ually. As the cooling or temperature decrement function, geometric cooling 
was used. In almost all of the simulations for finite-state vector quantization 
and trellis waveform coding, the values between 0 . 8  and 0 . 9  seemed to be the 
ideal choices for the cooling coefficient. For predictive trellis waveform coding, 
cooling coefficients as small as 0.6 led to good cooling schedules. After each 
output map optimization with the GLA, and after each trellis extension, the 
temperature was multijdied with two different constants to increase the prob­
ability of moving out of local minima for the new structures. Experimentally 
the ideal values of these constants were found to l̂ e 5 and 3, respectively. The 
exit criterion was that program terminated when the relative improvement was 
below 0 . 0 0 1  which was also determined experimentally.

The main drawback of the SA-f GLA is the computational complexity due to 
running the Viterbi algorithm for each new structure during SA and each new 
output map during GLA. It has l^een ol)served during the simulations that for 
high constraint length trellises the .SA imj^rovement is not very significant, most 
of the improvement is provided by the GLA. Following this observation, one can 
simply perform only GLA for high constraint lengths and speed up the design. 
Another way to speed up the design is to l>ring some restrictions to the state 
space such as a sub.set of the previously defined state space in Chapter 4, but 
for which it is more likely to oirtain the o|)timum trellis structure. For example, 
intuitively, symmetric structures can l.)e exi^ected to give better performance. 
With this motivation we brought the following restrictions to the state-space: 
the state-space of all trellis structures with two branches coming out of each 
branch and two branches going into each node. The trellis structures in this set 
have a fair amount of symmetry. The simidation results for rate /7 = 1  scalar 
trellis waveform coder showed that the execution time was reduced to less than 
one fifth of the original, while there was no performance loss. However, this 
approach did not work well for vector trellis waveform coding, and a significant 
loss of ])erformance was seen tine to the smaller state-s])ace.

The trellis coded quantization results show that this (|uantization technique 
does not have a sufficiently high peiforinance for sources with memory, and 
the analogies from trellis corled modidation which work well lor trellis coded 
quantizer design for memory less sources do not carry over to trellis coded 
quantization for sources with memory.



A P P E N D IX

In this appendix, we give the optimal decoders obtained for each constraint- 
length of the quantization systems simulated. The SQNR values of these de­
coders were given in Chapter 5. Also, the typical SA parameters for obtaining 
good decoders for each qiuintization system are given.

7:l



A ppendix A

Trellis Waveform Coders

A .l  M em ory less Gaussian Source

Typical SA Parameters

Markov chain length : 20 X  N
Initial temperature .-Johnson’s method for

number of iterations : 20

Ao = 0.8
decrement coefficient for temperature : 0.85 

exit epsilon : 0.001

temperature increment coefficient after GLA : 5.0 

temperature increment coeificient after EXTEND : 3.0
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Best Decoders
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71 l:n‘aiich 0 branch 1
0
1

0
0

1
1

'a) next-state iiicip

n 1)ranch 0 I.)raiicli 1
0
1

0.400727
-0.394668

-0.394668
0.400727

(1)) output map

Table A.l: /i — 2, TWC, Gaussian i.i.d. source

n l)ranch 0 branch 1
0 0 2
I 1 .3
2 1 .3
.3 0 2

a) next-state map

11 1)ranch 0 branch 1
0 0.498106 -0.933209
1 -0.402267 1.083091
2 1.227503 -0.398080
3 -1.353667 0.345442

(b) output map

Table A.2; A' — •'1, TWO, Gaussian i.i.d. source



76

n branch 0 brancli 1
0 4 0
1 n 6
2 0 4
3 6 5
4 1 7
5 3 2
6 7 1
7 ·> 3

[a) next-state map

n branch 0 branch 1
0 1.023595 -0.433611
1 -1.612412 0.335513
2 1.116483 -0..380100
3 -1.130612 0.358584
4 1.153563 -0.410210
5 -1.143184 0.336238
6 1.392741 -0.369801
7 -0.864818 0.504675

(I)) output map

Table A.;b K - 4, TVVC, (iaussian i.i.d. source
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n branch 0 branch 1
0 8 10
1 1 0
2 7 2
3 12 5
4 2 3
5 5 14
6 3 8
7 11 9
8 12 7
9 0 1
10 10 13
11 15 6
12 11 4
13 6 14
14 13 4
15 9 15

(a) next-state map

n branch 0 l)ranch 1
0 0.956935 -0.626999
1 -1.449356 0.204309
2 0.814988 -0.308483
3 -1.167243 0.433341
4 1.111163 -0.523422
5 -1.096058 0.288956
6 0.943482 -0.522604
7 -0.771833 0.770788
8 0.831855 -0.469643
9 -1.992718 0.243803
10 1.181968 -0.317668
11 -0.970490 0.477060
12 1.338492 -0.386708
13 -0.889492 0.465952
14 1.799364 -0.248257
15 -0.646306 0.547582

(b) output map

Table Л.4; К  = 5, I VVC, Ciaussiaii i.i.d. source
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n 1) ranch 0 branch 1
0 1 21
1 19 26
2 14 5
3 26 0
4 6 30
5 14 17
6 25 0
7 28 18
8 21 23
9 10 3
10 24 7
11 20 31
12 30 27
13 4 29
14 7 15
15 11 13
16 12 1
17 29 27
IS 8 6
19 23 5
20 31 16
21 2 10
22 9 28
23 9 25
24 4 22
25 3 11

Ozo
27 17

o
20

28 16 12
29 18 19
30 22 24
31 13 15

(a.) next-state map

Table A.5: K  -  0, T W (\ (laussian i.i.d. source
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и i)ranch 0 branch 1
0 1.005928 -0.570051
1 -0.894044 0.467453
2 0.61.3815 -0..522761
3 -1.114618 0.621003
4 1.069456 -0..303017
5 -0.648785 0.418263
б 2.132303 -0.179864
7 -1.415704 0.359435
8 0.789710 -0.417666
9 -1.2509.54 0.331562
10 0.965719 -0.264935
И -1.904037 0.112167
12 1.,522146 -0.424.552
13 -0.651077 0.664.537
14 1.04.54.53 -0.478977
15 -0.972378 0.489671
16 0.983003 -0.240081
17 -0.650244 0..561.341
18 0.724704 -0.396233
19 -0.8611.56 0.593744
20 1.0178.55 -0..321219
21 -0.700058 0.744010
22 1.442099 -0.026367
23 -1.419970 0.370383
24 1.071631 -0.259449
25 -1.731.396 0.190.351
26 1.122810 -0.510312
27 -1..562663 -0.017035
28 1.665159 -0.203703
29 -0.964871 0.832433
30 0.7.30172 -0.718638
31 -0.888529 0..347167

(Ь) output шар

Table А.5; К ■ 6, TWC, Gaussian i.i.cl. source
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A .2 First Order Gauss-M arkov Source
Typical SA Parameters

Markov chain length : 10
Initial temperature rJohnson’s method for

number of iterations : 20 
Aq ■ 0.8

decrement coefficient for temi)erature : 0.83 
exit epsilon : 0.0001
temperature increment coefficient after C!LA : 5.0 
temperature increment coefficient after EXTEND ; 3.0

Best Decoders

n l)rancli 0 braiicli 1
0 I 0
1 0 2
2 3 1

1 2 3
'a) next-staite map

n branch 0 branch 1
0 -1.317558 -3.555688
1 -1.332245 1.172.386
2 1.021110 -0.217269
•5 1.215147 3.409187

(b) output map

Table A.6: K = 3, TVVC, lirst order CJauss-Markov source
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n branch 0 branch 1
0 1 4
1 0 3
2 7 6
3 r0 1
4 0 4
5 2 6
6 5 3
7 2 7

(a) next-state map

branch 0 branch 1
0 -1.842838 -3.240623
1 -1.975841 -0.679682
2 3.087688 1.917083
3 0.215805 -0.841480
4 -3.148938 -4.784435
5 1.869517 0.624560
6 1.424980 0.151375
7 3.055708 4.850288

(b) output map

Table A.7; K = 4, TVVC, first order Causs-Markov source
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n 1.)ranch 0 1) ranch 1
0 3 8
1 4 7
2 7 3
3 11 2
4 0 12
5 13 14
6 13 9
7 o 9
8 1 4
9 0 11
10 15 5
11 14 1
12 8 12
13 
1 /1

10
r

6
914

15
0
10 15 1

(a) next-state map

n branch 0 branch 1
0 -1.595288 -2.337436
1 -2.210103 -1.149231
2 0.061080 -0.579140
3 -1.019557 -0.389978
4 -2.454559 -3.815359
5 2.472368 1.243834
6 1.307222 0.577187
7 0.340460 -0.875333
8 -2.180346 -3.326029
9 -1.469261 0.010402
10 3.740247 2.583740
11 0.513443 -1.161432
12 -3.595695 -5.154974
13 2.746586 1.722071
14 1.391175 0.439584
15 3.669924 5.266708

(1)) output ma])

Table A.8: K = 5, TVVC, fii-st order Oauss-Markov source
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n branch 0 branch 1
0 9 27
1 20 23
2 23 1
3 19 18
4 1 12-
5 29 21
6 18 22
7 14 7
8 1 0 4
9 17 2
10 15 29
11 11 19
12 8 20
13 25 30
14 5 6
15 26 31
16 12 3
17 4 9
18 21 7
19 16 3
20 16 28
21 13 2
22 5 25
23 30 0
24 17 24
25 8 11
26 31 22
27 6 13
28 24 28
29 10 14
30 26 27
31 10 15

(a) next-state map

Table A.9: K — 6, TW(J, (irst order Gauss-Markov source
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n branch 0 branch 1
0 -0.974455 -0.164.520
1 -2.000049 -1.074749
2 -0.822482 -1..5.52700
3 -0.869755 -0.507039
4 -1.129692 -3.601913
5 1.946057 1.0.500.50
6 0.756962 1.086598
7 1.321117 -0.374331
8 -1.589065 -2.634410
9 -1.057536 -1.39.5539
10 3.244459 2.7.53728
11 U.49S574 -0.7.58142
12 -2.647436 -3.348706
13 0.217420 0.929271
14 0.305753 1.399723
15 4.046789 5.346585
16 -1.930892 -1.402306
17 -1.966713 -2.423832
18 0.315046 0..558480
19 -1.129013 0.068317
20 -2.174525 -4.064084
21 0.225421 -0.379364
22 1.763938 0.744750
23 0.120431 -0.492896
24 -2.389042 -3.315650
25 -1.845309 0.1.59638
26 3.820021 2.367039
27 -0.520255 -0.463210
28 -3.867087 -5.286714
29 2.733174 1.5.53090
30 2.280112 1.301.5.52
31 3.778.540 5.272804

(b) output map

Table A.9: K = b, TVV(', first order (.Jauss-Markov source
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n branch 0 branch 1
0 34 27
1 49 0
2 13 2
3 37 46
4 32 44
5 61 63
6 18 54
7 48 62
8 25 4
9 57 48
10 53 23
11 11 52
12 41 20
13 43 22
14 13 6
15 15 37
16 28 4
17 36 8
18 2 15
19 11 7
20 17 12
21 38 21
22 61 55
23 16 46
24 16 43
25 40 35
26 29 22
27 55 1
28 60 28
29 42 29
30 26 5
•■̂1 42 47

(a) next-state map

Table A.10: К = 7, TVVC, first order Gauss-Markov source
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n branch 0 branch 1
32 41 39
33 59 51
04
35

Oo
19

oZ
34

36 33 12
37 3 17
38 39 31
39 10 53
40 9 20
41 52 24
42 47 58
43 45 25
44 40 23
45 51 30
46 45 38
47 26 31
48 44 19
49 36 1
50 54 50
51 9 63
52 19 24
53 5 62
54 30 57
55 59 27
56 8 0
57 7 18
58 21 14
59 6 33
60 56 60
61 10 14

·)
o z

63
e)U
50

О

35
(a) next-state map

Table A. 10: К = 7, TWC, first order Gauss-Markov source
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n branch 0 1) ranch 1
0 -1.118349 -0.652145
I -1.575397 -1.157551
2 0.381212 -0.917564
3 -0.372262 1.069438
4 -2.081864 -2.368968
5 2.045488 0.518434
6 0.639121 1.468953
7 -0.996002 -0.415278
8 -1.667547 -2.743954
9 -0.665897 -1.634842
10 2.069734 0.980288
11 0.540117 -0.768559
12 -3.082379 -4.027615
13 0.645130 1.507162
14 1.672200 1.538610
15 -0.594325 0.017553
16 -4.580405 -2.220619
17 -2.406700 -2.352795
18 0.361871 0.371523
19 -0.964185 -0.581324
20 -3.152089 -4.112184
21 1.419376 0.170540
22 2.730453 1.453511
23 -1.352295 -0.307346
24 -3.336836 -0.924279
25 -1.404181 -0.689395
26 3.304664 3.017478
27 0.298691 -0.643394
28 -4.743217 -5.863248
29 3.179764 2.414539
30 2.075268 0.819766
31 3.508097 5.098598

(Ь) output map

Table A. 10: К = 7, TVVC, lirst order Causs-Markov source
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n I)ranch 0 l.)ranch 1
32 -1.516683 -0.436919
33 -0.245306 -0.668541
34 0..347109 -0.876801
35 -0.587441 -0.059613
3G -1.179526 -3.105496
37 -0.228464 -1.346078
38 1.276110 2.972176
39 1.279942 0.689286
40 -1.810527 -3.017648
41 -2.730923 -2.188176
42 3.775604 2.540935
43 0.269531 -0.414943
44 -2.560996 -1.025332
45 0.335405 1.036889
46 0.409701 1.763624
47 3.774790 5.190171
48 -1.911748 -1.151869
49 -1.662895 -1.472138
50 1.433393 2.031889
51 -0.247752 0.645106
52 -1.651646 -2.968583
53 1.735594 1.185651
54 1.755470 0.871120
55 0.864863 0.111568
56 -2.775165 -1.053425
57 -0.461909 -0.105301
58 1.241838 1.945119
59 0.522274 -0.631521
60 -3.438734 -4.309810
61 2.667530 1.931792
62 -0.295367 0.708645
63 0.997236 0.645050

(1)) output map

Table A. 10: К == 7, TVVC, first order Gauss-Markov Source



A ppendix B

Vector Trellis Waveform Coders

Typical SA Parameters

Markov chain length : 10
Initial temperature rJohnson’s method for

number of iterations : 20
.Yo = 0.8

decrement coefficient for temperature : O.SO 
exit epsilon : 0.0001
temperature increment coefficient after CLA ; 5.0 
temperature incremciiit coefficient af ter EXTEND : 3.0
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n branch 0 branch 1 branch 2 branch 3
0 0 0 I 2
1 3 1 3 3
2 0 3 0 1
3 0 3 2 1

(a) next-state map

n branch
0 0 4.741133 4.700180

1 -4.857343 -4.858268
2 3.289365 2.596924
3 -3.388359 -2.716634

1 0 2.478996 2.560070
1 1.630951 1.721158
2 0.138875 0.033560
3 0.889355 -0.222991

2 0 -1.956920 -1.877931
1 -1.186885 -0.657885
2 -2.590685 -3.327544
3 -0.579778 0.261204

3 0 2.801722 3.399782
1 1.383932 1.249191
2 -0.606197 -1.231465
3 0.416988 0.799233

(·>) output map

Table B.l: N=4, VTWC, first order Causs-Markov source

n branch 0 1) ranch 1 brancli 2 1)ranch 3
0 0 0 1 6
1 0 1 7 3
2 2 1 6 5
3 4 1 2 5
4 0 3 5 2
5 3 5 1 7
6 6 >1i 0 3
7 r0 2 1 6 7

(a) iK!Xt-stat(i map



91

n branch
0 0 5.270138 5.218014

1 -5.57G530 -5.527416
2 3.943297 3.183580
3 -4.038607 -3.366626

1 0 3.383417 4.156414
1 2.740852 2.686939
2 1.373504 0.337192
3 1.974406 1.642668

2 0 -1.428479 -1.499126
1 0.877330 2.004853
2 -0.634315 -1.514517
3 -0.845216 -0.335287

3 0 2.032316 2.725143
1 1.311425 1.859928
2 -0.072939 -0.827797
3 0.803080 0.267072

4 0 3.740659 3.647718
1 3.100620 2.306767
2 2.436588 1.530980
3 1.529577 0.450096

5 0 0.530888 0.972506
1 L.526149 1.300949
2 0.164933 0.919070
3 0.291570 -0.357172

6 0 -2.896511 -2.815017
1 -2.250079 -1.477163
2 -3.545522 -4.247868
3 -1.251571 0.129170

7 0 -0.142969 0.540490
1 -0.260102 -0.052904
2 -1.642102 -2.460466
3 -1.040778 -1.044247

(b) output map

Table B.l: N=S, VTVVC, first order Gauss-Markov source



92

n branch 0 branch 1 branch 2 branch 3
0 0 0 1 6
1 12 9 15 11
2 2 1 6 5
3 12 9 10 13
4 4 4 3 2
5 11 13 10 15
6 6 7 0 15
7 13 10 14 15
8 10 3 8 10
9 0 1 7 3
10 15 9 14 13
11 4 1 15 5
12 12 11 13 5
13 3 5 1 7
14 14 15 13 11
15 5 ·)“ () 7

(a.) next-state map

Table B.2: N=l(), VTVVC, first order Causs-Markov source
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n branch
0 0 5.604480 5.611066

1 -5.938118 -5.984645
2 4.492712 3.605468
3 -4.516740 -3.750058

1 0 3.024328 3.570780
1 2.746552 2.830484
2 1.208910 0.531043
3 1.974774 1.823300

2 0 -0.876491 -0.773329
1 1.055753 2.265142
2 -0.828843 -1.921983
3 0.104732 0.095432

3 0 1.629170 2.521529
1 1.279947 1.411081
2 0.256865 -0.464566
3 0.613959 0.099513

4 0 4.369026 4.495937
1 3.152935 2.799014
2 3.052041 1.906039
3 1.837109 0.728823

5 0 0.705043 1.227415
1 1.777746 1.143278
2 0.836047 0.362670
3 0.103672 -0.328298

6 0 -3.316464 -3.323153
1 -3.016271 -1.996450
2 -4.022808 -4.645373
3 -2.040093 -1.322354

7 0 -0.357065 0.618988
1 -0.853582 -0.425589
2 -2.204035 -2.552752
3 -1.234572 -1.214583

C>) output map

Table B.2: N=16, VTWC, first order Causs-Markov source
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n branch
8 0 0.019146 0.019146

1 0.019146 0.019146
2 0.019146 0.019146

0.019146 0.019146
9 0 3.398979 4.366274

1 2.697483 2.764611
2 1.130.342 -0.176796
3 1.709224 1..536646

10 0 -0.953227 -1.97.5671
1 0.637947 1.763029
2 -0.585642 -1.493.568
3 -0.624613 -0.514.568

11 0 2.057704 2.858293
1 1.891900 1.965196
2 0.269043 -1..350487
3 1.1.35860 0.4661.50

12 0 4.120543 3.749097
1 3.328598 2.627894
2 2.476284 1.190209
3 2.464518 1.824183

13 0 0.360137 0.776775
1 1.390415 1.4561.53
2 0.108352 1.173122
3 0.019502 -0.640070

14 0 -1.443214 -1.477200
1 -2.673143 -2.308079
2 -1.8.5.3312 -0.88.3801
3 -1.241634 0..3.5.3378

15 0 -0.730426 0.127879
1 -0.078537 0.043096
2 -1.987503 -2.829045
3 -1.397843 -1.2.32957

(l>) output map

Table B.2; N=l(), VTW(·, first orcK'r (lauss-Markov source



Appendix С

Finite-State Vector Quantizers

T yp ica l SA  P a ra m eters  for к -

Markov chain length : 50 x N
Initial temperature :Johnson’.s method fur

number of iterations : 20

Ao = 0.8
decrement coefficient for temperature : 0.90 

exit epsilon : 0.0001

temperature increment coefficient after GLA : 7.0 

temperature increment coeilicieiit after EXTEN49 5.0
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Best Decoders

n Irranch 0 branch 1
0 4 2
1 7 1
2 4 6
a 4 7
4 4 0
5 4 4
6 2 ()

7 4 1
(a.) next-state  map

n ])ranch 0 branch 1
0 -U.410441 -2.219085
1 1.854699 4.178640
2 -0.981642 -2.910005
4 -0.499422 1.480241
4 0.190448 -1.486205
5 0.048175 0.048175
6 -2.201912 -4.442060

1 / 0.525404 2.474466
.

(Ij) ou tpu t map

Table CM: k — I, N = 8, FSV(J, first order Causs-Markov source
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Typical SA Parameters for к = 2

Markov chain length : 25 x N
initial temperature rjohnson’s method lor

number of iterations : 20 
Aq = 0.8

decrement coefficient for temperature : 0.85 
exit epsilon : 0.0001
temperature increment coefficient after Cl LA : 5.0 
temperature increment coelficicnit after EXTEND : 5.0

n bra.iicli 0 branch 1 I)rancli 2 branch 3
0 0 0 2 2
1 2 1 1 3
2 0 2 2 1
3 1 .3 1 7
4 0 (j 2 3
5 .3 1 0 2
6 3 0 5 5
7 .3 .3 1 1 7

(a.) next-state map

Table CJ.2: k = 2, N = 8, F.SVCJ, lirst order Claus.s-Markov source
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11 branch
0 0 5.265943 5.168925

1 3.750847 3.579158
2 2.684506 2.194793
3 1.418963 0.600342

1 0 0.769608 1.267821
1 -1.535065 -1.561955
2 -0.477617 -0.253232
3 -2.727873 -3.128867

2 0 2.894946 3.238086
1 1.616706 1.668941
2 0.516535 0.343445
3 -0.652627 -1.192525

3 0 -1.375284 -0.610177
1 -3.520238 -3.500049
2 -2.622608 -2.111162
3 -4.760429 -4.935087

4 0 4.982733 3.395519
1 1.071062 2.719021
2 1.303239 2.599440
3 3.424378 7.463252

5 0 -2.038737 -1.136977
1 0.459546 -1.348421
2 1.991501 -1.163665
3 0.120761 -1.472381

6 0 5.004342 7.290382
1 -0.032637 1.297522
2 0.380164 2.049153

-2.219444 1.268733
7 0 -1.962890 -1.477953

1 -4.720466 -4.143184
2 -3.565314 -2.581057
3 -6.209052 -6.024692

(10 out|)nt map

Table (J.2: k = 2, N = 8. I’\SV(J, lirst, ordiu- (iauss-iVIarkov source
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Typical SA Parameters for k — 'i

Markov chain length : 10 x N
Initial temperature .-Johnson’s method lor

number of iterations : 20
Ao = 0.8

decrement coefficient for temperature : 0.85 
exit epsilon : 0.0001
temperature increment coefficient after (,!L/\ : 5.0 
temperature increment coefficient after EXTEND 5.0

n br 0 l>r 1 br 2 1)1- 3 1)1- 4 br 5 br 6 br 7
0 0 0 3 0 1 1 1 6
1 0 1 3 3 () 0 1 7
2 0 2 2 1 1 5 7 5
3 0 3 1 7 3 6 3 7
4 1 5 (i 0 1 l-r1 5 5
5 1 0 5 () 0 .3 6 0
6 0 3 3 6 1 7 0 7
7 6 0 () 7 1 1 7 1

(a) next-state map

Table C.3: к = 3, N = 8, F.SVĈ , first order Gauss-Markov source



1 0 0

n branch
0 0 5.109363 5.431272 5.164.586

1 4.006186 3.966095 3.738970
2 1.130406 0.475162 0.265883
3 2.514161 2.846415 3.161463
4 2.636059 1.,596125 0.482898
5 3.634866 2.720881 1.935693
6 1.693023 1.668988 1.912491
7 0.526378 -0.701.3.34 -1.088612

1 0 2.703965 3.483591 3.653046
1 2.530346 2.378704 1.762619
2 -0.534182 -0.637212 -0.412121
3 1.615769 1.1.3.5916 0.318295
4 0.871124 -0.258427 -0.879948
5 1.253705 1.691569 2.2.52157
(j 0.3121.38 0..395390 1.042463
7 -0.577184 -1.672618 -2.266603

2 0 -7.87.3535 -7..343118 28.097795
1 -12.48.5530 -7.631879 6.858236
2 2.909985 -21.846602 -0.878008

17.380016 5.414954 -1.4839.55
4 9.173210 -3.319110 -7.088783
5 -3.803651 11.083963 -1.407703
6 7.891477 4.132295 -0.264960
7 11.722192 12.466121 -0..5716.55

3 0 1.9188.54 2.708772 2.8061.56
1 1.0.54827 0.970893 0.381185
2 0.614771 1.372642 1.9132.35
3 -0.379710 - 1 ..3 7 .5 .5 4 7 -2.187086
4 -0.440361 -0.024965 0.646896
b 0.157639 -0.232453 -0.8148.59
() -1.299189 -1 ..364472 -0.691068
7 -1.861581 -2.547947 -2.84.541 1

Table C.O: k  =  0, /V =  <S, l''SVQ, lirst (M'dor ( buiss-Markov source
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n brand]
4 0 4.423141 -0..5.35716 -10.151269

1 2.569156 5.7.58779 -28.459314
2 0.781074 -0.11.5801 -6..596109
3 -2.953858 -3.355364 0.302886
4 -6.919418 8.108907 11.269861
5 -12.787813 10.286900 -4.243959
6 -2.459163 1..542001 4.1648.34
7 -13.148629 7.328683 0.870785

5 0 7.759699 5.494298 3.877136
1 -5.94.3651 -2.899627 6.206387
2 -10.869227 14.524001 -2.006455
3 -1.314725 0.206836 20.874896
4 -9.774140 4.949367 -6.447612
5 5.948494 -15.910822 8.628721
0 12.463370 -25.775613 2.2368.52
7 -14.569044 -3.913.555 7.314335

6 0 0.853615 1.632691 1.960263
1 -1.4.54003 -0.925700 -0.064284
2 -0.020440 -0.023677 -0.495230
3 -2.272457 -2.050835 -1.447365
4 -0.385407 0.364243 0.914068
5 -1.6.391.55 -2.316810 -2.953503
() -0.857495 -1.1132.38 -1..5.59765
7 -2.932331 -3.645203 -3.713961

7 0 -1.069803 -0.928287 -1.21.5668
1 -3.499.389 -2.818865 -1.776407
2 -2.296375 -1.847692 -1.712942
3 -2.520621 -2.806058 -3.420323
4 -0.593835 0.313559 0.890702
f) -2.223030 -0.993426 0.015999
() -4.1.5.5631 -3.840168 -3.562237
7 -5.118240 -5..376744 -5.16,5783

(I)) out,put, map

Table C.3: k = N = <S, I".SV(J, lirsl or(l('r Clauss-Markov source



1 0 2

Typical SA Parameters for к =  4

Markov chain length ; 25 x N
Initial temperature :Johnson’s method For

number oF iterations : 20
A(j = 0.8

0 decrement coefficient for temperature : 0.85 
exit epsilon : 0.0001
temperature increment coeificient after GLA : 5.0 
temperature increment coefficient after EXTEND ; 5.0

n bO bl 1)2 1)3 b4 1)5 I.) 6 1)7 1)8 1)9 bio 1)11 bl2 bl3 1)14 1)15
0 0 0 4 2 4 0 0 3 2 5 1 5 0 2 2 7
1 4 5 0 5 0 () 1 3 1 6 0 7 2 3 2 7
2 0 1 0 5 4 3 2 2 4 2 I 3 3 1 3 3
3 0 4 1 5 5 2 7 3 3 2 7 3 0 3 7 7
4 1 5 6 0 4 7 5 5 4 4 0 1 0 4 4 6
P* 1 1 0 0 4 1 2 3 4 2 1 5 0 5 5 3
6 6 3 0 3 5 3 () 3 4 5 4 () 0 3 0 6
7 4 5 2 3 0 () 3 3 2 7 7 0 7 3 7

(a) next-state map

Table C.4: k — 4, N = 8, E.SVĈ , first order Gaiiss-Markov source



103

n branch
0 0 5.227879 5.222703 5.180445 4.962482

1 3.061840 3.529504 3.024169 2.644407
2 4.908993 4.109995 3.460792 2.490690
3 2.315391 1.986947 1.432104 0.813344
4 3.210274 3.822244 4.296479 4.324479
5 1.348381 1.430499 1.716049 1.979447
6 2.976751 2.070146 1.984638 2..548806
7 1.310724 0.500959 -0.688282 -I..526424
8 3.400473 2.922449 1.815959 1.119154
9 2.273855 2.174724 0.413194 -0.624835
10 2.086431 0.647237 0.443988 0.580190
11 0.429293 -0.070658 0.601813 1.125022
12 1.901406 2.147314 3.231333 3.423555
13 0.836969 0.946234 0.549445 0.079659
14 -0.362503 -0.517407 -0.394530 -0.353687
15 0.042171 -1.200428 -1.428519 -1.629724

2 0 1.109072 1.868644 2.886931 3.242663
1 0.804820 0.975939 1.178270 0.894042
2 1.419470 0.888401 1.108795 2.206163
3 0.554578 -0.248155 0.332569 0.579718
4 2.546227 3.282443 3.383271 3.270037
5 1.088489 1.269104 -0.077087 -0.561724
6 -0.340642 -0.962293 -1.045435 0.031829
7 -1.172.360 -2.039238 -2.147176 -1.562863
8 1.867937 2.163727 1.973565 1.090582
9 -0.017820 0.104221 0.000968 -1.040702
10 -0.306480 0.380124 1.125690 1.866454
11 -0.321653 -0.626501 -1.691397 -2.386711
12 -1.074334 -0.303466 0.104046 0.412994
13 0.589971 -0.442100 -1.182364 -1..347421
14 -1.366716 -1.4.38010 -0.677140 -0.753578
15 -1.748543 -2.503087 -3.005085 -3.532139

(1̂ ) output ma])

Table C.4; k = 4, N = 8, FSV(^, lir.st order Causs-Markov source
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n branch
2 0 1.653353 3.323528 3.995395 3.655310

1 0.157950 -0.188828 -0.619951 -0.021862
2 0.219413 0.890520 1.634637 2.170611
3 1.485394 1.330426 0..344219 0.0.52146
4 1.289104 1.9.32611 2.261041 2.354643
5 -0.390299 -0.896879 -1.409742 -1.37.3270
6 -0.555592 -0.422140 0.435892 1.126510
7 -1..383174 -1.196924 -0.371784 -0.412408
8 1.977054 2.699583 2.202050 1.574635
9 1.379172 0.264099 0.357382 1.48.5374
10 0.184771 0.879950 1.238693 0.867818
11 -1.699794 -2.190999 -1.872276 -1.331113
12 0.67.5461 0.179512 -0.89.3515 -1.690347
13 0.225928 0.351949 0.552408 -0..507.5.54
14 -0.720230 -1..578199 -2.385555 -2.918827
15 -2.108860 -3.361140 -4.005695 -3.788009

3 0 0.039789 0.761.580 2.588775 2.778637
1 -0.545327 0.178386 0.965966 1..527636
2 -0.201165 -0.098703 -0..533126 -0.6.54125
3 -1.675274 -1 ..364451 -0.828726 -0.376175
4 0.385342 1.299466 1.271423 0.740254
5 -1.09.32.58 -0.097195 0.210242 0.064081
6 -0.976682 -1.437113 -2.548065 -3.363974
7 -3.485885 -2.994728 -2.593.587 -2.067435
8 -1.010938 -1.074361 -1.264.308 -1.714685
9 -2.681102 -2.508308 -1.40.3470 -0.434489
10 -2.594999 -1.918280 -1.706093 -2.441286
11 -3.861101 -4.397837 -3.940016 -3.255873
12 -1.748.360 -1.039979 0.055208 1.043799
13 -1.638.354 -2.5.390.36 -2.687967 -1.7.38728
14 -2.579102 -2.998587 -.3.579.586 -3.866772
15 -4.023214 -4.533536 -5.178437 -5.526924

(I)) output map

Table C.4: k = 4, N = 8, I''SVQ, first order Gauss-Markov source
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n branch
4 0 5.281671 5.681374 5.775602 5.433521

1 3.010793 3.246764 3.089777 3.146135
2 4.854619 4.515278 3.981652 3.107831
3 2.831109 2.289188 1.364458 0.336485
4 3.351190 3.883814 4.627867 4.761534
5 1.448312 1.649043 1.685533 1.283646
6 2.978435 2.005127 1.873545 2.119432
7 0.946447 0.147288 -1.02.3231 -1.058876
8 3.656195 3.141818 2.477588 1.521517
9 2.279281 1.379370 0.295886 -0.871526
10 2.136742 1.106592 0.182649 0.586265
11 0.735370 0.209262 0.996495 1.872894
12 1.733753 ! 1.939007 2.519213 3.099075
13 0.420364 0.646570 0.684226 0.126489
14 -0.106914 -0.768176 -0.488993 -0.200048
15 -0.388612 -1.712114 -2.038898 -2.567068

5 0 0.865816 2.138511 3.028739 3.037902
1 0.808163 1.336477 1.471085 0.716005
2 0.286856 0.310225 0.405434 1.337242
3 0.687882 -0.160595 0.019041 -0.177723
4 2.359523 3.063505 3.441359 3.5-15694
5 1.428320 1.196454 -0.046013 -0.203154
6 -0.259998 -0.519088 -1.001004 -0.145809
7 -1.177289 -1.695135 -1.928733 -1.418465
8 1.940139 2.007018 1.713247 1.897120
9 -0.445266 0.441076 0.217998 -0.745537
10 -0.011374 0.49039] 1.740862 2.180284
11 -0.210068 -1.082106 -2.257986 -2.961311
12 -0.965287 -0.715514 0.381692 0.760455
13 0.356798 -0.262727 -1.121685 -1.695942
14 -1.399471 -1.372330 -0.609834 -0.400839
15 -1.887589 -2.828381 -3.287188 -.3.245541

(I)) ()ut])ut map

Table C.4: k — 4, N  = <S, FSViJ, first order (lanss-Markov source
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11 branch
6 0 3.038388 3.807328 3.646188 3.460132

1 -0.066479 -0.168720 -0.413650 0.649414
2 -0.380786 0.751973 1.963218 2.908115
3 1.752275 1.485710 0.646039 -0.244.543
4 1.36.5431 1.940973 2.796231 2.879169
5 -0.702142 -0.770116 -1.329488 -1.988381
6 -1.452346 -0.752503 0.021547 1.249908
7 -1.784706 -1.451505 -0.865718 -0.592809
8 1.835899 2.077102 1.990262 1.676482
9 1.309921 0.905866 0.706612 1..306185
10 -0.192.321 0.694702 1.089092 0.708,565
11 -1.916234 -2.682508 -2.290774 -1.457715
12 0.311850 -0.492539 -1.051893 -1.093283
13 -0.31T2S2 -0.217276 0.194151 -1.046666
14 -1.0592,58 -1.679216 -2.215159 -3.082141
15 -2.458228 -3.746438 -4.221.353 -5.329292

7 0 -0.028298 1..388451 1.847877 2.204583
1 -1..342149 -0.123337 0.685931 1.346408
2 -0.354274 -0.676146 -0.590660 -0.310146
3 -1.792123 -1.787193 -1.479759 -0.703968
4 -0.232535 0.999194 1.19.3,569 0.563240
5 -1.737747 -0.392301 0.378597 -0.4,56511
6 -2.304754 -2.063374 -2.,568177 -3.569643
7 -4.056797 -3.735753 -2.805000 -1.888820
8 -1.2.32179 -0.9(41354 -1.142411 -1.882263
9 -3.322765 -2.447452 -1.068927 -0.320465
10 -3.315.508 -1.8.58131 -1.689,576 -1.870707
11 -4.709952 -4.622735 -4.202162 -3.710412
12 -2.244998 -1 ..336790 -0..361.302 0.50,5608
13 -1.792309 -2.384165 -2.712839 -2.028203
14 -3.345218 -3.380766 -3.420138 -3.602545
15 -5.405321 -5.777733 -6.136681 -5.951677

(I> oiiti)ut map

Table C.4: k = 4, N = 8, FSVT ,̂ first ortier Cfauss-Markov .source



Appendix D

Predictive Trellis Waveform  
Coders

D .l  First Order Gauss-M arkov Source

T yp ica l SA  P a ra m eters

Markov chain length : 20 X N
Initial temperature :Johnson's metliod for

number of iterations : 20

A (j — 0.8
decrement coeiFicient for temperature : 0.70 

exit epsilon : 0.001

temperature increment coedicient after (¡LA : 5.0 

temperature increment coefficient after EXTlsND : 5.0



Best Decoders
Predictor coefficient : 0.906695

108

n briinch 0 1) ranch 1
0 0 1
1 0 1

(a) next-.state map

n branch 0 l)ranch i
0
1

1.111982
0.413708

-0..384706 
-1.12.3029

(b) output map

Table D.l: К  = 2, PTW(j, first order Gauss-Markov Source

Predictor coefficient : 0.916.341

n branch 0 l)ranch 1
0 2 1
1 2 1
2 0 3
.3 0 .3

[a) next-sla.te map

11 l)rancli 0 l)rancli 1
0 0.915178 -0.269363
1 0.312816 -0.944278
2 0.911924 -0.301855

.
0.281040 -0.980543
(b) out|)ut map

Table D.2: A =  3, PT’VVG. first order Gauss-iVIarkov source



Predictor coefficient : 0.927614

109

n l)ranch 0 1) ranch 1
0 2 6
1 ;.i 5
2 0 1
;3 2 ;5
4 4 1
5 4 7
6 4 7
7 6 1

'a) next-state map

11 branch 0 I) ranch 1
0 1.075S53 -0.1.306.53
1 0.251032 -0.954735
2 0.9.35542 -0.205267
.3 0.189845 -1.117,598
4 1.031421 -0.161472
5 0.300580 -1.071149
6 0.923144 -0.381030
7 0.291311 -1.082695

(h) output ma.|)

Table D.4: K  = 4, PTWC, lirst order Clau.s.s-Markov source



Predictor coefficient : 0.927650

1 1 0

n branch 0 branch 1
0 2 15
1 11 13
2 0 8
;3 10 11
4 4 1
5 12 15
6 4 5
7 7 4
8 0 14
0 10 11
10 8 1
11 2 3
12 12 9
13 12 5
14 i;{ 15
15 6 1

(a) next-state map

n I)rancli 0 branch 1
0 1.134871 -0.137760
1 0.181215 -0.986359
2 0.987319 -0.213432
3 0.174623 -1.1384.33
4 1.060623 -0.073275
5 0.356516 -1.036582
6 0.982620 -0.414797
7 0.058227 0.058227
8 1.117164 -0.093702
9 0.201276 -0.9.34484
10 0.846.3!)9 -0.280867
11 0.160655 -1.089513
12 1.010280 -0.137835
13 0.292415 -1.086113
14 0.807014 -0.436842

. 1·̂  . 0..3234 73 -1.070942
(I)) ont|)iit map

Table D.4: l<  =  5, i’d’VVC, lirst order (¡a.uss-Ma.rkov source



Predictor coefficient : 0.929305

111

71 branch 0 branch 1
0 2 15
1 27 29
2 0 8
3 26 27
4 4 1
5 28 31
() 4 5
7 23 20
8 0 14
9 26 27
10 8 1
11 18 19
12 12 9
13 28 21
14 13 15
15 22 17
IG 18 31
17 11 13
18 16 24
19 10 11
20 20 17
21 12 15
22 20 21
2;i 7 4
21 16 ;io

25 10 11
2G 24 17
27 2 .3

28 28 25
29 12 5
30 29 31
31 6 1

(a.) next-stat(' map

Table D.5: K  =  (i, PTVVC, (irst ord(u· Gau.s.s-Markov .source



1 1 2

n branch 0 branch 1
0 1.068216 -0.1414.38
1 0.227482 -1.016312
2 1.001803 -0.1807,52
3 0.129795 -1.1.5-5.584
4 1.061888 -0.097036
5 0.334116 -1.024486
6 1.014661 -0.371507
7 0.058227 0.0.58227
8 1.04.3461 -0.196263
9 0.178796 -0.87.5891
10 0.8.3.5491 -0..301874
11 0.116516 -1.07.52.54
12 0.932344 -0.087264
13 0.338087 -1.068908
14 0.822509 -0.543447
15 0.364198 -1.023614
16 1.191688 -0.109190
17 0.163243 -0.97.5402
IS 1.001946 -0.276178
19 0.160787 -1.0.52673
20 0.966187 0.018772
21 0.414.337 -1.0.53512
22 1.015183 -0.456718
23 0.058227 0.058227
24 1.104032 -0.127150
25 0.226031 -0.93.3410
26 0.800813 -0.253945
27 0.157.525 -1.0.32063
28 1.029958 -0.143985
29 0.328459 -1.11.30.34
30 0.766298 -0.519169
31 0.309725 -1.0.34781

(1)) out|)ut map

Table D.5: K = (i, PTVVC, first order Causs-Markov source
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Predictor coefficient : 0.981607

n branch 0 branch 1
0 4 3
1 63 48
2 10 12
3 60 59
4 0 6
5 58 51
6 6 7
7 61 57
8 23 19
9 62 63
10 2 9
11 16 51
12 8 14
13 48 55
14 14 15
15 5;i 61
16 20 19
17 37 34
18 22 29
19 44 43
20 16 23
21 37 35
22 21 9
23 45 41
24 24 27
25 34 47
26 18 25
27 36 35
28 24 30
29 32 39
30 30 31
31 37 1 45 1

(a) n('xt-sta.t(' niaj)

Table D.6; K = 7, P3TVC, iir.st order ( ¡aus.s-Markov source
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n branch 0 branch 1
32 36 39
33 31 32
34 42 44
35 28 27
36 32 38
37 26 29
38 38 39
39 25 25
40 55 51
41 26 31
42 34 41
43 14 19
44 40 46
45 16 23
46 46 47
47 21 29
48 52 51
49 5 2
50 54 61
51 12 11
52 48 55
53 5 3
54 53 41
55 9 9
56 56 59
57 2 15
58 50 57
59 4 3
60 56 62
61 0 7
62 62 63
63 5 13

(a) next-state map

Table D.6: K = 7, PTWC, first order Gauss-Markov source
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n branch 0 branch 1
0 1.067527 -0.227400
1 0.058227 0.058227
2 1.045111 -0.044962
3 0.239541 -1.215145
4 1.123499 -0.254090
5 0.482145 -0.798489
6 0.868862 -0.393713
7 0.158135 -1.010741
8 1.063410 -0.328876
9 0.507587 -1.089764
10 1.239051 -0.062521
11 0.168174 -1.0344.38
12 0.860863 -0.228660
13 0.394628 -0.969272
14 0.889886 -0.2.55689
15 0.179361 -0.9.52348
16 1.154937 -0.345874
17 0.058227 0.058227
18 1.358414 -0.109824
19 0.202926 -1.122350
20 0.858289 -0.292539
21 0.473892 -0.7.3.5464
22 1.104599 -0.642922
23 0..396518 -0.983133
24 0.947004 -0.3700.33
25 0.433335 -0.812679
26 1.139252 0.008647
27 0.212970 -1.003097
28 0.836071 -0.3842.55
29 0.378602 -0.894847
30 0.969908 -0.274176
31 0.131837 -0.857242

(b) output map

Table D.6; K=7, PTVVC, first order Gauss-Markov source
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n branch 0 branch 1
32 1.050203 -0.242625
33 0.058227 0.058227
34 1.034266 -0.198651
35 0.228873 -1.215367
36 1.083966 -0.251974
37 0.445761 -0.823869
38 0.764979 -0.358087
39 0.152590 -0.926611
40 0.996126 -0.181070
41 0.434391 -1.087660
42 1.084295 -0.139640
43 0.058105 -1.211544
44 0.928252 -0.196057
45 0.361007 -0.893359
46 0.881515 -0.259517
47 0.208972 -0.942371
48 1.031775 -0.330460
49 0.058227 0.058227
50 1.371263 0.082492
51 0.217393 -0.989503
52 0.915519 -0.289374
53 0.560198 -0.811990
54 1.059585 -0.272314
55 0.337927 -1.154558
56 1.051480 -0.306598
57 0.470205 -0.920356
58 1.061990 0.032295
59 0.180428 -1.059504
60 0.843564 -0.370121
61 0.386182 -0.961029
62 0.873250 -0.267560
63 -0.077626 -0.926265

(b) output map 

Table D.6; K=7, PTVVC, first order Gauss-Markov source
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D .2 Speech M odel Source
Typical SA Parameters

Markov chain length : 20 x A
Initial temperature rJohnson’s method for

number of iterations : 20 
Ao = 0.80

decrement coefficient for temperature : 0.65 
exit epsilon : 0.001
temperature increment coefficient after GLA : 5.0 
temperature increment coefficient after EXTEND : 3.0

Best Decoders

ao a, «2
1.720968 -1.1.57482 0.260467

(a) predictor coefficients

n branch 0 branch 1
0 0 1
1 0 1

(b) next-state map

n branch 0 branch 1
0
1

0.511626
0.073658

-0.0.54820
-0.493039

Talde D.7: K

(c) output map

2, PTWC, speech model source
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ao a\ 0>2
1.471274 -0.757848 0.063235

(a) predictor coefficients

n branch 0 branch 1
0 3 1
1 0 3
2 2 1
3 2 1

b) next-state map

n branch 0 branch 1
0 0.346273 -0.207067
1 0.185423 -0.443003
2 0.527068 -0.094146
3 0.199848 -0.417819

(c) output map 

Table D.8: K=3, PTWC, speech model source
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CIq a i 0̂ 2

1.422285 -0.625918 -0.043350
(a) predictor coefficients

n branch 0 branch 1
0 6 5
1 0 7
2 7 4
3 4 7
4 0 1
5 0 3
6 2 4
7 6 1

b̂) next-state map

n branch 0 branch 1
0 0.271190 -0.245824
1 0.173037 -0.415635
2 0.468551 -0.104078
3 0.199708 -0.391784
4 0.308147 -0.218104
5 0.170122 -0.422712
6 0.495243 -0.092068
7 0.222125 -0.406521

(c) output map 

Table D.9: K=4, PTWC, speech model source



1 2 0

do ai 0.2
1.446420 -0.620597 -0.070605

(a) predictor coefficien

n branch 0 branch 1
0 6 5
1 8 15
2 10 13
3 9 11
4 12 5
5 14 1
6 8 11
7 14 9
8 12 13
9 0 7
10 14 12
11 4 5
12 2 9
13 8 3
14 10 3
15 6 5

(b) next-state map

n branch 0 branch 1
0 0.281038 -0.201709
1 0.091144 -0.477598
2 0.424088 -0.024323
3 0.123631 -0.333086
4 0.237027 -0.210885
5 0.183590 -0.367477
6 0.456388 -0.054239
7 0.134848 -0.411201
8 0.210858 -0.243100
9 0.120873 -0.395746
10 0.483714 -0.033224
11 0.156109 -0.349602
12 0.305478 -0.126260
13 0.099484 -0.323703
14 0.387079 -0.038689
15 0.204252 -0.505380

(c) output map

; K==5, PTWC, .speech mod
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