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ABSTRACT

THE DESIGN OF FINITE-STATE MACHINES FOR
QUANTIZATION USING SIMULATED ANNEALING

Ercan Engin Kuruoglu
M.S. in Electrical and Electronics Engineering
Supervisor: Assoc. Prof. Dr. Ender Ayanoglu
August 1993

In this thesis, the combinatorial optimization algorithm known as simulated an-
nealing (SA) is applied to the solution of the next-state map design problemn of
data compression systems based on finite-state machine decoders. These data
compression systems which include finite-state vector quantization (FSVQ),
trellis waveform coding (TWC), predictive trellis waveform coding (PTWC),
and trellis coded quantization (TCQ) are studied in depth. Incorporating gen-
eralized Lloyd algorithm for the optimization of output map to SA, a finite-state
machine decoder design algorithm for the joint optimization of output map
and next-state map is constructed. Simulation results on several discrete-time
sources for FSVQ, TWC and PTWC show that decoders with higher per-
formance are obtained by the SA+GLA algorithin, when compared to other
related work in the literature. In TCQ, simulation results are obtained for

sources with memory and new observations are made.

Keywords : data compression, finitc-state vector quantization, trellis waveform
coding, predictive trellis waveform coding, trellis coded quantization, simulated

annealing, finite-state machine decoders.
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OZET

TAVLAMA BENZETIMI KULLANARAK NICEMLEME
AMAGCLI SONLU DURUM MAKINELERI TASARIMI

Ercan Engin Kuruoglu
Elektrik ve Elektronik Miihendisligi Yiiksek Lisans
Tez Yoneticisi: Do¢. Dr. Ender Ayanoglu
Agustos 1993

Bu ¢aligmada, sonlu durum makinelerine dayanan bazi veri sikigtirma
dizgelerinde eniyiye yakin kodgozicii tasarimi sorununa bir ¢6zim oOnerisi
irdelenmistir.  Tezin bu konudaki aragtirmalara temel katkisi, kodg¢ozucu
durum degistirme tablosu tasarnmmda tavlama benzetimi olarak Dbilinen
katigimsal eniyilegtirme algoritmasimin kullamlmasidir. Cikt1 tablosunun eniyi-
legtirilmesinde kullamilan genellestirilinis Lloyd algoritmasi da tavlama ben-
zetimi ile birlikte galigtirlarak ¢ikti tablosu ve durum degistirme tablosunu
beraber eniyilestiren bir tasarim algoritmasi olugturulmustur. Sonlu durum
vektor nicemleyicisi, ¢it kaynak kodlamasi ve ongorili ¢it kaynak kodla-
masi igin elde edilen benzetim sonuglari ounerilen algoritma ile daha once
yaymlanmig c¢alismalara gore daha yiksek bagarimli kodgozicilerin tasar-

landigim1 gostermektedir. (it kodlamali nicemleme igin de yeni gozlemlerde

bulunulmugtur.

Anahtar sozcikler : veri sikigtirma, sonlu durum vektor nicemleyicisi, ¢it
kaynak kodlamasi, ongorili ¢it kaynak kodlamasi, ¢it kodlamali nicemleme,

tavlama benzetimi, sonlu durum makineli kod¢ozici.



ACKNOWLEDGEMENT

I would like to thank Dr. Ender Ayanoglu for his supervision, guidance and
suggestions during the development of this thesis. I would like to thank Dr.
Erdal Arikan for many invaluable discussions. I would also like to thank him

and Dr. Enis Cetin for reading and commenting on the thesis.

My special thanks go to Sarah (Clay) for her love, patience, understanding
and encouragement especially at times of hardship and despair. Of course, I
cannot pass without mentioning my parents and my sister here, whose very

existence gave me so much courage.

I would like to extend my thanks to Dr. Ilknur Ozgen and Dr, Varol Akman
for their support and closeness. And the last but by no means the least, my

sincerest feelings are towards all of my friends for the times we had.



Contents

1 INTRODUCTION

2 QUANTIZATION TECHNIQUES

2.1

2.6

3.1

Scalar Quantization . . . . .. .. ... ... L.

Vector Quantization

Finite-State Vector Quantization

Trellis Waveform Coding . . . . . .. .. ... ... ..
2.4.1 Viterbi Algorithm . . . . . ... ... ... ...
Predictive Trellis Waveform Coding . . . . . . ... ..
2.5.1 System Description . . . . . ... ... .....
2.5.2  Search Algorithm . . . . .. ... ... .....
2.5.3  Design Algorithm . . . . .. .. .. ... ...,
Trellis Coded Quantization . . . . . .. .. ... ....

SIMULATED ANNEALING

Practical Implementation. . . . .. .. .. ... .. ..

PROBLEM DEFINITION AND SOLUTION

Vi

14

18

19

20

22

23

24

28

33

36



vii

4.1 Next-State Map Design . . . . . .. ... ... ... ....... 37
4.2 Output Map Design. . . . . ... ... ... .. ......... 39
4.3 Trellis Decoder Design Algorithm . . . .. ... ... ...... 42

5 SIMULATION RESULTS 44
5.1 Trellis Waveform Coding . . . . ... ... .. ... ... .... 45
5.1.1 Memoryless Gaussian Source . . . . .. ... .. ..... 45

5.1.2  First Order Gauss-Markov Source . . . . .. .. .. ... 48

5.2 Vector Trellis Waveform Coding . . . . . ... ... ... . ... 52
5.3 Finite-State Vector Quantization 52
5.4 Predictive Trellis Waveform Coding . . . . .. ... ... .... 55
5.4.1 First Order Gauss-Markov Source . . . . . . .. .. ... 57

5.4.2 Speech Model Source . . . . .. ... ... ... ... 59

5.5 Trellis Coded Quantization . . . . . . ... ... ......... 61
5.5.1  Memoryless Gaussian Source . . . . . . . .. .. ... .. 61

5.5.2  First Order Gauss-Markov Source . . . . .. .. .. ... 63

5.5.3  Predictive Trellis Coded Quantization . . . . .. .. ... 64

5.5.4 Codebook Assignment to Branches in TCQ . . ... .. 65

6 SUMMARY AND CONCLUSIONS 71
APPENDIX 73
A Trellis Waveform Coders 74
74

A.1 Memoryless Gaussian Source . . . . . . . . .00



viil

A.2 First Order Gauss-Markov Source . . . . . . . ... .. .. ... 80
B Vector Trellis Waveform Coders 89
C Finite-State Vector Quantizers 95
D Predictive Trellis Waveform Coders 107
D.1 First Order Gauss-Markov Source . . . . . . . ... .. .. ... 107

D.2 Speech Model Source . . . . .. .. .. .. L 117



List of Figures

1.1

2.1

2.2

2.2

2.3

24

[N
—

o
N

[
O

[7 |
N

Communication system . . . . . . . . ... .. ... ...

State Transition Diagram

(a) State transition diagram . . . . .. ... ... L.
(b) Trellis diagram . . . . ... .. ... ... ... .. ...

A predictive trellis coding system (a) Decoder (b) Encoder . . .

Marcellin and Fischer’s TCQ system . . . ... ... ... ...

Trellis waveform coder, SQNR results for Gaussian i.i.d. source,
SA+GLA: Trellis waveform coder with simulated annealing and
generalized Lloyd algorithm, PAG4: Powell’s 1964 algorithm,
CGA: conjugate gradient algorithm, SFD: Linde and. Gray’s
scrambling function decoder, GLA: generalized Lloyd algorithm.

Trellis waveform coder, SQNR results for first order Gauss-
Markov source, SA+GLA: Simulated Annealing and General-
ized Lloyd Algorithm, GLA: Generalized Lloyd Algorithm only.

Vectoral TWC vs scalar TWC, first order Gauss-Markov source

Finite-state vector quantization, SQNR results for first order
Gauss-Markov source, 8 state trellis, SA+GLA : FSVQ with
simulated annealing and generalized Lloyd algorithm, VQ: mem-
oryless vector quantizer, OLT+GLA : I'SVQ with omniscient

labeled transition design method and generalized Llod algorithm.

X

10

17

17

21

27

47

56



Ut
(7

5.6

Ut
-J

Predictive trellis wavelorm coder, SQNR results for first order

Gauss-Markov source. . . . . . .. .. ... ... 58
Predictive trellis waveform coder, SQNR results for speech
model source. . . . .. .. e 60
Ungerboeck trellises satisfying the branch labeling rules of

66

Ungerboeck . . . . . . .. oo oo



List of Tables

<t

[V

.

it

(o5

Ut

3

e

(V2

SQNR [dB] results for the memoryless Gaussian source. K: con-
straint length, SA+GLA: trellis waveform coder with simulated
annealing and generalized Lloyd algorithm, PA64: Powell’s 1964
algorithm, CGA: conjugate gradient algorithm, SFD: Linde and
Gray’s scrambling function decoder, GLA: generalized Lloyd al-

gorithm. . . . . ... ... 46

SQNR [dB] results for the first order Gauss-Markov source. K:
constraint length, SA+GLA: simulated annealing and general-
ized Lloyd algorithm, GLA: generalized Lloyd algorithm only. 51

SQNR [dB] results for the first order Gauss-Markov source with
different truncation depths. K: constraint length, TD: trunca-

tiondepth.. . . . . .. ...

SQNR [dB] results for scalar and vector trellis wavelorm coding
where the systems with & = 1 and £ = 2 are designed using
SA+GLA and results for & = 3 and k& = 4 are those of the labeled
state vector trellis encoding system. N: number of states, &:

vector length, LSVTLE: labeled state vector trellis encoding system. 5

54
SQNR [dB] results for 8-state FSVQ and VQ for the first order
Gauss-Markov source. k: vector length, SA+GLA : FSVQ with
simulated annealing and generalized Lloyd algorithm, VQ: mem-

oryless vector quantizer, OLT : FSVQ with omniscient labeled

transition design method.

SQNR [dB] results for the first order Gauss-Markov source. K:
constraint length, SA+GLA: simulated annealing and general-

ized Lloyd algorithm, GLA: generalized Lloyd algorithm only. 37

X1



5.7

5.9

5.11

A7

A.8

X1l

SQNR [dB] results for the speech model source. K: constraint
length, SA+GLA: simulated annealing and generalized Lloyd
algorithm, CGA: Powell’s conjugate gradient algorithm, GLA:

generalized Lloyd algorithmonly. . . . .. .. ... ... .... 61

Comparison of trellis coders for Gaussian i.i.d. source, N = 4, L-
M Q.: Lloyd-Max quantizer, CGA: Conjugate gradient algorithm 62

N =4, first order Gauss-Markov source, a =0.9 . . .. .. ... 64

Predictive trellis coding results for first order Gauss-Markov source 64
Predictive trellis coding results for speech model source . . . . . 64

R =1, performance comparison of possible branch labelings for

Ungerboeck trellis, Gauss-Markov sources . . . . . . .. .. ... 67

Trellis-a and trellis-b comparison (t-a: trellis-a, t-b: trellis-b),
+SA: performance with SA on the trellis the SQNR of which is
given in the previous column, Q1 and Q2 denote the quantizers
with Lloyd-Max output points calculated for S1 (source 1) and

S2 (source 2) respectively, Source 2 has a correlation coefficient

that is negative of Source 1’s. 68
K =2, TWC, Gaussian 1.1.d. source . . . . .. ... ... .... 75
K =3, TWC, Gaussian 1.i.d. source . . . . .. .. ... PP 75
K =4, TWC, Gaussian 1.1.d. source . . . . . . ... .. .. ... 76
K =5, TWC, Gaussian i.i.d. source . . . . .. ... .. .. ... 7
K =6, TWC, Gaussian 1.i.d. source . . . . .. ... .. .. ... 78
K =6, TWC, Gaussian i.i.d. source . . . . . . ... .. .. ... 79
K = 3, TWC, first order Gauss-Markov source . . . . . .. ... 80
K = 4, TWC, first order Gauss-Markov source . . . . . .. . .. 81

82

K = 5, TWC, first order Gauss-Markov source . . . . . .. ...



X1il

A9 K =6, TWC, first order Gauss-Markov source . . . . . .. ... 83
A9 K =6, TWC, first order Gauss-Markov source . . . . . .. ... 84
A10 K =7, TWC, first order Gauss-Markov source . . . . . .. ... 85
A 10K =7, TWC, first order Gauss-Markov source . . . . . .. ... 86
A 10K =7, TWC, first order Gauss-Markov source . . . .. .. ... 87
A 10K =7, TWC, first order Gauss-Markov Source . . . . ... ... 88
B.1 N=4, VTWC, first order Gauss-Markov source . . . . ... ... 90
B.1 N=8, VTWC, first order Gauss-Markov source . . . . ... ... 91
B.2 N=16, VITWC, first order Gauss-Markov source . . .. ... .. 92
B.2 N=16, VTWC(, first order Gauss-Markov source . . . ... ... 93
B.2 N=16, VTWC, first order Gauss-Markov source . . .. ... .. 94
C.l1 k=1, N =8, [FSVQ, first order Gauss-Markov source . . . . . . 96
C.2 k=2, N =8, IFSVQ, first order Gauss-Markov source . . . . . . 97
C.2 k=2, N =8, FSVQ, first order Gauss-Markov source . . . . . . 98
C3 k=3, N=8, I'SVQ, first order Gauss-Markov source . . . . . . 99
C3 k=3, N=8, FSVQ, first order Gauss-Markov source . . . . . . 100
C.3 k=3, N=28, FSVQ, first order Gauss-Markov source . . . . . . 101
C4 k=4, N=28, FSVQ, first order Gauss-Markov source . . . . . . 102
C.4 k=4, N =38, IFSVQ, first order Gauss-Markov source . . . . . . 103
C4 k=4, N =38, I'SVQ, first order Gauss-Markov source . . . 104
C4 k=4, N=28, FSVQ, first order Gauss-Markov source . . . . . . 105

106

CA4

k=4, N =3, FSVQ, first order Gauss-Markov source



D.1

D.2

D.3

D.4

D.5

D.5

D.6

D.6

D.6

D.6

D.7

D.8

D.9

Xiv

K =2, PTWC, first order Gauss-Markov Source . . . . .. ... 108
K =3, PTWC, first order Gauss-Markov source . . . . .. ... 108
K =4, PTWC, first order Gauss-Markov source . . . . ... .. 109
K =5, PTWC, first order Gauss-Markov source . . . . .. ... 110
K =6, PTWC, first order Gauss-Markov source . . . . ... .. 111
K =6, PTWC, first order Gauss-Markov source . . . . .. ... 112
K =17, PTWC, lirst order Gauss-Markov source . . . . ... .. 113
K =17, PTWC(, first order Gauss-Markov source . . . . .. ... 114
K=7, PTWC, first order Gauss-Markov source . . . . . .. ... 115
K=7, PTWC, first order Gauss-Markov source . . . .. .. ... 116
K =2, PTWC, speech model source . . . . ... ... ..... 117
K=3, PTWC, speech model source . . .. .. ... .. ..... 118
K=4, PTWC, speech model source . . .. .. ... ... .... 119

D.10 K=5, PTWC, speech model source . . .. .. ... .. ..... 120



Chapter 1

INTRODUCTION

The goal of design of any communication system is to build a system which
enables the transfer of information-bearing signals from the transmitter to
the receiver reliably, that is with “little” or no loss in information. To reach
the goal of reliable communication, the information to be transmitted should
be converted into a form that is in some way more “convenient” to transmit
and then be converted back to the original form after transmission. Let the
information source be in the form of a random process X,. Then, a simple,

yet general model of a communication system aiming a reliable transfer of

information 1s as given i Figure 1.1.

A communication system is composed of three parts, an encoder, the chan-
nel, and a decoder. The channel represents the medium through which infor-
mation will be sent. The information which is represented by the input random
process X, is converted by the encoder into another random process U,, which
is more convenient to handle and to transmit over the channel. This process
U, is sent through the channel, and at the other end of the channel another
random process U, is received by the receiver which is related to U, through

a conditional probability distribution. Then, the decoder performs the reverse

Xy —>1 ENCODER CHANNEL DECODER [—> n

Figure 1.1: Communication system
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operation of the encoder, and converts U, into X,,, the reproduction symbols.
[t is possible (and may actually be desirable) that X, # X,, and the objective
of communication system design is to minimize the difference between X,,, the

iput sequence, and X, the reproduction sequence.

Usually the channel puts severe restrictions on the type and the quantity
of signals that can be transmitted through it. For example, most of the time
one has to represent an infinite collection of input signals X, with a finite
collection of signals U,,. This introduces quantization errors into the commu-
nication process, causing a loss in information since there is no way one can
recover X,, from U,. Other than this, the difference between X, and Xn may
be due to some disturbances in the channel which corrupt the signal. These
disturbances may be deterministic such as filtering, modulation, aliasing, or
random such as additive noise, fading, and jamming. Then, the fundamental
issues in communication system design are source coding or data compression
which is the mapping of the input sequence (information source) efficiently
into a representation for transmission over the channel and channel coding or

error-control coding for overcoming the noise in the channel.

Claude Shannon formulated both of these issues in his classical papers [1],
[2]. One important fact he proved was that in a communication system design,
source coding and error-control coding (channel coding) can be considered
independently: one can design seperate systems for source and channel coding

and then simply cascade them. The result would be as good as the result of

designing both systems together at the same time.

In our work, we focused on the problem of data compression, making some
assumptions about the channel and then ignoring it completely, the approach
being justified with Shannon’s above mentioned theorem. Our first assumption
about the channel is that it is digital, that its permissible inputs and outputs
form a finite set or alphabet. Our second assumption is that the rate of the
channel is fixed, that is, for each channel input symbol U, chosen from the
input alphabet there is just one output symbol {J,. The third assumption is

that the channel is noiseless, that is U, = (,A/'n.

Data compression involves the design ol the encoder and the decoder. As
stated above, the encoder is a mapping from the input sequence X, into U,,
the channel input sequence. This mapping can be performed in many ways,

the objective still being to minimize the difference between the reproduction



symbols and the input symbols. A special case of data compression is when the
encoder is a minimum distortion or nearest neighbor mapping and this partic-
ular type of data compression is called quantization. Shannon’s distortion rate
theory formulates the lowest distortion achievable for a given fixed rate with
such a system but it makes no suggestions for the ways of actually building
systems with optimal performance. Therefore, many researchers since Shannon
have concentrated on finding the rules for the design of systems with perfor-
mance approaching theoretical bounds. Although many good coding systems
have been suggested, there is still room before the bounds are reached. The
goal of this work is to contribute to these efforts in the fields of trellis waveform

coding and related systems using a different design approach.

Before we go into the details of our coding approach, we provide some
background information on some important quantization techniques related to

our work in the next chapter.



Chapter 2

QUANTIZATION
TECHNIQUES

2.1 Scalar Quantization

Scalar quantization is the simplest of quantization techniques. It is simple
because it performs quantization on a discrete time sequence considering the
samples one by one, in other words, it quantizes the samples independently.
The scalar quantizer is defined with a codebook C = {y1,y2,...y~n} composed
of the codewords y;s which are the reproduction values, and an encoding rule,
which determines the way input symbols are encoded to one of y;s. The code-
words partition the input space into N regions, 51,.52,...,5n, each S; being
composed of the points in the space that are assigned to y; through the en-
coding rule. The elements x, from the input sequence {zy,z,,...,21} are
quantized one by one according to the encoding rule, that is, a symbol z, from
the input sequence is quantized to y; if it falls into the region S;. An impor-
tant special case of the quantizer is the Nearest Neighbor (NN) quantizer. In
NN encoding, the distance of x, from each y; is calculated via the distortion

measure d(z,,y;) and 2, is quantized in the following way,
q(zn) =yj, A dlan,y;) < d(en,y),  3F5,Vi€ {1,2,...N}, (2.1)

where q(z) denotes the quantizer function. If the equality holds, that is, if there
is more than one such j, the choice is made randomly. The encoder being the

NN encoding rule, the decoder is simply a look-up table (the codebook itself)

1



which reproduces the codeword with the index received from the channel.

In the design of a scalar quantizer the goal is to come up with an encoding
rule and a codebook which gives the best performance for input X, in termsof a
performance criterion, over all possible encoding rules and codebooks. The dif-
ference between the input sequence and the reproduction sequence is referred to
as distortion. In order to measure the “distance” between the source sequence
and the sequence of the quantized samples, one uses a mesaure, known as the
distortion measure, between the two sequences. A wide class of distortion mea-
sures are known as per-letter distortion measures, 1.e., the contribution from
individual samples and their quantized values in a sequence have independent
effects; for example, for additive distortion measures, these contributions are
additive. There are various functions proposed in the literature as measures of

sample distortion.

The most common distortion measure between two vectors x and x whose

members are r; and z;, 0 <17 < &k — 1, is the squared error distortion or the

square of the Fuclidean distance:

~~~~
o
(S

N

k-1
N A 12
d(x,%) = > |ai—3: 2.
=0
Other possible distortion measures are Holder norm,

k=1
d(x, %) = {> | wi — & "}, (2.3)

1=0
Minkowski norm,
d(x,X)= max |x;—; 2.4
( ’ ) Ofifck—l t t |y ( )

and the weighted-squares distortion,

k—1
d(x,%) = Z w;i | ey — & [ (2.5)
=0

where w; > 0,2=0,...,k— 1.

These distortion measures are called difference distortion measures since
they depend on the vectors x and %X only through the difference vector x — Xx.
Other types of distortion measures are also used in data compression systems
but they are more complicated. Throughout this thesis we will only use the
squared error distortion measure because it is commonly used in the data

compression literature and because of its mathematical tractability.



2.2 Vector Quantization

A direct generalization of scalar quantization (SQ) to higher dimensions, that
is, coding of symbols in blocks with length more than one is vector quantization
(VQ). A vector quantizer ) of dimension & and size N is a mapping from a
vector in the k-dimensional Euclidean space R* into a finite set C containing

N codewords or reproduction points. That is,

Q:RF>C, C={y,ys...,yn} and y; €R" (2.6)

With analogy to the scalar case, the codewords y;s in the codebook C
partition the input vector space R* into N regions .S;, each composed of points
in the R* space which are associated with y;. Each vector x,, from the input
sequence is encoded into y; only if it is in \S;. Again, a special case is nearest
netghbor encoding where the quantizer computes the distortion between the
input vector and each codevector in the codebook and encodes the input vector

to the one which gives the smallest distortion. That is,
Q(xn) =y; if d(x,,y;) <d(x,,y:), 35,Vie{l,2,...N}, (2.7)
where, again the choice i1s made randomly if the equality holds.

Vector quantization is more efficient than scalar quantization because it can
exploit the correlation between samples which SQ cannot do since it quantizes
the samples independently. Moreover, even if there is no statistical correlation
to be exploited between the samples, VQ can do better than SQ due to its

higher freedom in choosing decision regions for partitioning [4].

Since the quantizer is completely specified by a codebook and an encoding
rule, the design objective of a vector quantizer is to find a codebook corre-
sponding to the decoder and an encoding rule corresponding to the encoder,
that will give the best performance. Tor a given codebook C, the average
distortion (for empirical data) can be lower bounded according to

L
> in d(xe, yi). 2,
D> glg}g}vd(xk,yz) (2.8)

This lower bound is achieved if ) assigns each vector x; in the input sequence
to a codeword which is the nearest neighbor condition. Looking for the optimal

codebook given the partition leads us to the centroid condition. A centroid,



cent(S), of a set S € R* is the vector y which minimizes the expected value of

the distance between any point x in .S and y. That is,
cent(.S) = n;in_lE((l(X,y) | X € 5) (2.9)

where the inverse minimum notation means the vector y satisfying the mini-

mum is chosen.

It is easy to show that for the squared error distortion measure, this leads
to the center of mass of S. For empirical data, the center of mass of S is,
1 s
cent(S) = —— > x; (2.10)
15 =
where the summation is over the vectors x; that are in .S. Then, given the
partition (or equally the encoding rule) the optimum codebook is composed of

the center of masses of each partition cell.

These necessary conditions of optimality suggest an iterative means of nu-
merically designing a good vector quantizer. Given 5 one can start with an
arbitrary initial codebook and partition S according to NN. Then the optimal
codebook for this partition is found by computing the centroids and the new
partition can be found for the new codebook. Iteratively, this procedure pro-
ceeds to better codebooks. This algorithm is known as the Generalized Lloyd
Algorithm (GLA) or the LBG algorithm [3]. Although there are various vector
quantizer design methods [4], GLA is the most popular and several extensions
of it are made in the literature. The extension that is of interest to us is the
one intoduced by Stewart et al. in [20] in the context of trellis waveform coding
which we will discuss in length in the coming sections. At this point we give

GLA in its original form as was introduced by Linde ¢t al. [3] for VQ:

The Generalized Lloyd Algorithm

1. Begin with an initial codebook Cy. Set m = 0, and a threshold value € > 0.
2. Given the codebook, C,, = {y.},

partition the training set into cells .5; using the NN condition:

Si = {x:d(x,yi) <d(x,y;); Vi #1i}.
3. Compute the centroids of the partition cells, S; using (2.10),

update the codebook according to the centroid condition:

C’Ym+l = {C(’.l)t(.s',')}.



4. Compute the average distortion, D,, 41, for Cpq1.

If (Dm - Dm+l)/Dm < €,

stop with codebook C,, 41,

else, set m «— m + 1.

2.3 Finite-State Vector Quantization

Vector quantization, as discussed in the previous section, considers each vector
independently and therefore does not take into account the future or past
vectors. Therefore the right term to define standard VQ is memoryless VQ.

As discussed in the previous section, the superiority of VQ to SQ (scalar
quantization) partly comes from the fact that VQ exploits the correlation
among the samples in the block. And the bigger the vector (or block) di-
mension is, the more V(Q will exploit the statistical dependences in the se-
quence, since it will see more samples at a time. At this point, it is clear that
contending with a finite vector size and quantizing the blocks seperately, we
are ignoring the dependencies between samples in consequetive blocks which
could be exploited for even better coding performance. One apparent solu-
tion to this problem is to increase the vector dimension indefinitely which is
then accompanied with a proportional increase in computatioxial complexity,
which becomes unmanagable. Since this solution is not practical, instead of
introducing more samples in the quantization process, we should include the
information about these samples to the current quantization instant in some
way, that is we should introduce memory into the quantizer. This memory
is used to derive information about statistical dependencies between samples,

and this information is exploited for better coding performance. This can be

realized in the following manner.

In standard (memoryless) V(}, we base our quantization decisions on a fixed
codebook C = {y1,¥2,...,y~n}. lustead, we think of employing a codebook
changing with time, we let a different codebook be used at each quantization
instant and choose this codebook from a collection of codebooks according

to the output of the previous quantization instant. Using the knowledge of



previous quantization in deciding the codebook to be used, we effectively in-
corporate memory into the quantization process. If the separate codebooks are
designed to suit different characteristics typical of the source, and the codebook
selection procedure is designed properly as a good predictor of the trajectory
the source will follow, interblock correlations will be exploited and the perfor-
mance will increase. This form of vector quantization is called recursive vector
quantization [4]. The important special case of recursive vector quantization is
when the collection of codebooks contains only a finite number of codebooks
and this VQ is called finite-state vector quantization (FSVQ) [4]. Choosing a
different codebook from a finite collection of codebooks at each quantization
instant suggests a “state-based structure,” where each state is identified with
the choice of codewords composing a particular codebook. The state with the
codebook associated to it, which we can name as the state-codebook, describes
the mode the quantizer is in, and is in a way a summary of the past behavior
of the source. This “state-based structure” is a finite-state machine specified
by a next-state function, determining state transitions and a decoder mapping

which decodes the input bit stream to a reproduction symbol (a codeword from

the current-state codebook).

The best way to pictorially describe the FSVQ finite state machine is
through an example state transition diagram shown in Iigure 2.1 with the
assumption that the rate of the system is one bit per sample, corresponding
to binary transitions or state-codebooks with size two. This FSV(Q has four
states, represented by circles numbered as 00, 01, 10, and 11. The lines with
arrows represent possible state transitions at a decoding instant.” y;;s are code-
words from the zth state-codebook. [For instance, the channel symbol 0 when
the quantizer is at state 01 produces a reproduction symbol ¥, the codeword
from state codebook | with index 0, and causes the quantizer to move to state
10. The transitions are equivalent to the next-state function, the labels of

transition lines with the states are equivalent to the decoder mapping.

Now, let us give a formal definition of the finite-state vector quantizer
(FSVQ):

Define a state space S as a collection of symbols § = {s1,82,...,8x-1}

called states. Let the vector dimension be k. Let the set of channel symbols

be U = {up,uy,...,un—1}. The coding rate is log N bits per input vector or
k='log N bits per source symbol. Then, a finite-state encoder is a mapping

o R¥F x 8 — U, that is, given an input vector x and the current state s
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Figure 2.1: State Transition Diagram

the function «(x,s) maps x into u, a channel symbol. In addition to the
encoder mapping, the quantizer is defined by the next-state mapping which
is the essential difference of FSV(Q from other V() techniques. The next-state
mapping is a function [/ : U x § — S which produces the next state f(u,s),

given the current state s and an output symbol u produced from the input
symbol x .

Correspondingly, a finite-state decoder is a mapping # : U x S — RF,
that is, given the current state s and the channel symbol u it produces the

reproduction symbol X.

The output spaces of the encoder and decoder mappings are required to
be the same, also the next-state mapping is resctricted to depend only on the
current state and the encoder output rather than the input symbol. These
two restrictions enable the encoder to track the state sequence given the initial

state, and one does not need to send the state information in addition to the
channel symbols.

To each state, s, a state codebook, C; = {f(u,s),u € U}, is associated which

1s composed of the possible reproduction vectors in that state.
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Then, the encoding process of a random process {X,,,n = 0,1,2,...} can
be described as follows. Given an initial state s € S, the channel symbol

sequence, the state sequence, and the reproduction sequence are produced re-

cursively for n = 0,1,2,... as:
Un - (Y(Xn, Sn) Sn+l = f(Una Sn) Xn = /j(Una Sn)- (211)

To complete the definition of F'SVQ, we should also specify the encoding rule:
FSVQ encodes according to minimum distortion or nearest neighbor condition.

That is, using the Euclidean distance as the distortion measure, the encoder

mapping « is defined by
a(x,s) = muin—l(l(x,/i(u,s)) (2.12)

which means that a(x,s) is the index u for which the reproduction codeword
A(u,s) yields the minimum possible distortion over all possible reproduction
codewords in the state codebook C,. In our discussion on vector quantization
we noted that the minimum distortion encoding rule was the optimal encoding
for a given codebook. Although in FSV(Q minimum distortion encoding seems
the most natural choice, in the long term, it may not be the best choice.
Because, FSVQ with minimum distortion encoding optimizes only the short
term performance of the system. Because of the memory in the quantizer, a
codeword with very small distortion can lead to a state with a bad codebook for
the next input vector. But, the minimum distortion rule is intuitively satisfying
and no better encoder structure with comparable complexity is found so far.

Therefore, we will contend with this encoding rule.

Suboptimality of the minimum distortion encoding in FSVQ) is the conse-
quence of FSVQ’s having a memory of only one vector size. The remedy is to
have an encoder with a memory of input sequence size which leads us to the

trellis encoding system that will be discussed in the next section.

Note that VQ is a special case of FSV(Q with only one state. Although
FSVQ is more general, distortion rate functions of information theory show
that optimal achievable performance (average distortion) for a given rate is
the same for both cases [5]. But the performances of FSVQ and VQ are the
same only when arbitrarily large vector dimensions are allowed. FSVQ, because
of its higher ability to exploit correlations between samples, obtains the same

performance with VQ using shorter vectors, therefore it provides systems with

lower complexity.
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Based on the finite-state machine perspective, we can identify two different
ways of relating the state sequence and the reproduction sequence. These are
pairing of each reproduction vector with a state or with a transition. The

first type of FSVQ is called labcled-state FSVQ and the second one is called
labeled-transition FSVQ.

The decoder mapping f of a labeled-state FSVQ depends on the current
state and channel symbol only through the induced next state; the current
reproduction /\A’n 1s determined by the next state s,.;. On the other hand,
the decoder output of a labeled-transition FSVQ is associated with the tran-
sition from the current state to the next state and therefore is determined by
both the current state s, and the next state s,4;. These two configurations
correspond to two different finite-state machines: labeled-state FSVQ to the
Moore machine, and labeled-transition FSVQ to the Mealy machine [7]. The
two structures are equivalent in the sense that Mealy and Moore machines are
equivalent [6]. That is, given one, one can find an equivalent FSVQ of the
other form, equivalent in the sense that given an initial state and an input
sequence, the two quantizers will yield the same output sequence. The code-
words are held constant in transition from one form to the other. For example,
going from labeled-transition FSVQ to labeled-state FSVQ the codewords that

were assigned to branches are assigned to separate states which amounts to an

increase in the number of states.

As noted above, an FSVQ is fully determined by an encoding rule, state
codebooks and the next-state function. Therefore, the design of a FSVQ fo-
cuses on generating statc codebooks and a next-state function. First, we con-
sider finding a good encoder « and a good decoder 4 given a fixed next-state
function f. Finding the best decoder for the given next-state function and
given encoder is equivalent to finding the best state codebooks. Suppose we

have an input sequence {X,;n = 1,2,..., L}. If the initial state is so, encod-

ing, we obtain the channel symbols U, = «(X,,s,) and the state sequence
Sut1 = f(Uynys,) for n = 1,2,..., L. Then our goal is to find the decoder

mapping A minimizing the distortion,
L

D= % S (X, A(Usy 50)- (2.13)

n=I1
It is easy to show that optimal decoder codevectors are the centroids (4], that

18,

1 v
Alu,s) = min™!H ———— d(x,,Y) (2.14)
y o | M(u,s) || 7161\%:(:11,3)
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where M (u, s) is the collection of U, such that U, = u.

This is the optimum decoder for the given encoder and the next-state func-
tion, but the encoder may not be the optimum one for the obtained decoder,
so the next step is to find the optimum encoder for the given decoder. Now
we perform a nearest neighbor encoding using the state codebooks found and
the given next-state function, which yields a new partition and therefore a new
encoder a. Then, we should find the best decoder for the current encoder and
given next-state function and the process of finding the best encoder and de-
coder continues iteratively until no significant performance gain is obtained by
subsequent iterations. This procedure is indeed a variation of the generalized

Lloyd algorithm. We can summarize the algorithm as follows.

FSVQ Encoder/Decoder Design Algorithm
1. Initialization:
Given: a state space S,
an initial state s,,
an encoder ap
a next-state function f,
a training sequence {X,;n =1,2,...,L}.
Set € > 0, m=1, Dy = oo.
2. Encode X,,,n =1,2,..., L, using o,_1
to obtain {U,,s,};n=1,2,...,L.
The state codebooks are modified into #(u, s) = cent(u, s).

3. Replace the encoder a,,—; by the minimum distortion encoder a;, for B

Compute the distortion D,,, if |Dp — Dim—1]/Dm < € quit else goto stepl.

Then, the problem left is to design the next-state function. Several methods
are proposed in the literature to solve this problem. These methods include
Conditional Histogram Design, Nearest Neighbor Design, Set Partitioning, Om-

niscient Design, etc. A detailed discussion of these methods can be found in
[4].

Conditional histogram design is one of the simplest techniques. First, the
algorithm forms a supercodebook through applying GLA with standard VQ. A
state is assigned to each codeword thus found. Then the method estimates the

conditional probabilities of successor codewords in the supercodebook which is
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named the classifier codebook and forms a labeled-state FSVQ by only including
the most probable codeword successors in the classifier codebook to the state
codebook. Since the codewords are assigned to states, the choice of state

codebooks also determines the next-state function.

The method called nearest neighbor design also generates a classifier code-
book in the same way, but uses the distortion between the codewords and not
the conditional probabilities for selecting the set of allowed new states from
a given prior state. For each state assigned to each codeword in the classifier
codebook, N nearest neighbors are found and the state codebook is formed

with these codewords. Hence the next-state function is formed.

Another FSV(} design technique, called omniscient design was introduced
by Foster et al. [7] and Haoui and Messerschmitt [8], and developed for speech
coding by Dunham and Gray [9] and for image coding by Gersho and Aravind
[10]. This method is more complicated than nearest neighbor and conditional
histogram methods but it usually shows better performance and it can be
used with more general classifiers than V(). Although nearest neighbor and
conditional histogram techniques are for the labeled-state FSVQ design, the
omniscient method can be used for both labeled-transition and labeled-state

FSVQ design. The details of this algorithm can be found in [4] and [7]. Ref-
erence [7] also provides simulation results for the comparison of various FSVQ

design techniques. These results show that omniscient labeled-transition design
(OLT) gives the best results for sources of practical interest. This method is

also referred to in [4] as the method through which best results are obtained

thus far.

One of the contributions of this work is to suggest and show a design algo-

rithm that has better performance than the methods described above, which

will be described in Chapters 3-5.

2.4 Trellis Waveform Coding

In this section, we turn our attention to a more advanced data compression

scheme, trellis waveform coding, which is the main quantization scheme on

which our work has focused with the goal of designing a near-optimum decoder.

This coding scheme has been very popular among many researchers since



early 1980s, who made considerable progress towards an understanding of trellis
encoding systems. The popularity of this data compression system is partly
due to the fact that results in information theory have proved the existence
of trellis systems which show performance close to the theoretical bounds [11],
[12]. But these are only existence proofs, which do not describe the actual ways
of constructing good codes. Therefore many researchers concentrated on the
problem of finding rules for constructing good codes and came up with various
design algorithms. The goal of this thesis is to make a contribution to these
efforts, which has been achieved by designing an algorithm for constructing

near-optimum codes based on an approach different from other work in the

literature.

We will now describe the trellis waveform coding system. In the previous
section, we discussed a VQ system called FSVQ. As was noted, FSVQ is supe-
rior to VQ due to the incorporation of memory into the quantization process.
But as also explained, minimum distortion encoding may not be optimal in
FSVQ, since a codeword with very small distortion can lead to a state with a
bad codebook for the next input vector. Although through good design one

can try to eliminate this problem, we can never be sure about the optimality

of the encoding.

This observation leads us to the conclusion that the suboptimality of FSVQ
encoding is due to its having a memory size of only one vector and the remedy
is to increase the memory of the I'SV() encoder from vector size one to vector
size M: instead of making “greedy” quantization decisions on vectors one by
one, to delay the decision until M vectors are seen and to decide on these M
vectors together. Then the quantizer will make a decision which is good for
at least M vectors, and the probability of making bad decisions will decrease.

In this manner, we expect to have an optimal encoder as A approaches the

length of the vector sequence.

This operation is called delayed decision encoding, lookahead encoding, mul-
tipath search encoding, ov irellis encoding, for reasons that will become appar-
ent. For delayed decision encoding, we employ a finite-state machine for the
decoder as in FSVQ where the states summarize the past behavior of the sys-
tem, and approximate the current mode of behavior of the input sequence. In
this case, the forms of encoding, decoding, and next-state mappings are differ-
ent. In FSVQ, the state transition diagram (finite-state machine) is sufficient

to explain the operation of the system; but in delayed decision coding, we need
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a more elaborate structure that takes the past into account explicitly.

For convenience we repeat here Figure 2.1 as Figure 2.2.a, which shows
the state transition diagram of a FSVQ. The extension in time of the state
transition diagram is the directed graph given in Figure 2.2.b. The stages
in the graph correspond to consecutive time instants of the data compression
process and each stage is equivalent to the state transition diagram. Each node
corresponds to a distinct state at a given time, and each branch originating
from a node represents a transition from that state (node) to some state (the
node which the branch is connected to) at the next instant. The graph begins
at state sop and ends at s;. To each branch in the graph certain weights are
assigned which are the reproduction symbols-or state codewords- in the FSVQ
state transition diagram. This directed graph is called a trellis and it is a
special case of a tree, branches of which are self-emerging, that is, branches
originating from a common root (node) can meet again at another node later
in the tree. The encoding system based on this data structure is called the
trellis source coding system. 'To every possible state sequence of the trellis
there corresponds a unique path. Given the channel symbols, the trellis can

keep track of the state sequence and generate the reproduction symbols out of

the state codebooks.

The trellis structure thus described can be used to represent a vector quan-
tizer if the trellis has only one state or a finite-state vector quantizer but to
represent a trellis encoding system we introduce measures assigned to each node
along the trellis. The measure assigned to a particular node corresponds to the
total distortion of a state sequence that starts at state sy and ends at that node.
The encoder performs a necarest neighbor encoding in the following manner. At
each time instant, for each node, it considers the input branches to that node
and computes the distortions due to the codewords corresponding to these
branches. Summing the node-distortion of each node which these branches
originate from and the calculated distance of the corresponding branch, the
total distortion faced by a particular path is calculated. The encoder decides
on the path with the least distortion and assigns the distortion corresponding
to this path to the node under consideration; it also stores the index of the
branch connected to that node. Therefore, the encoder is a trellis search al-
gorithm which tries to find the path with the minimum distortion. There are
various algorithms in the literature for trellis search, Viterbi Algorithm (VA)
[13] being the most popular one. The reason for its popularity is that it is an
optimal search algorithm. A well-known alternative, the M-L algorithm, is not
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optimum and it is better suited for tree search since it takes no advantage of

the simpler trellis (self-emerging tree) structure.

The Viterbi algorithm was first suggested by Viterbi in 1967 [14]. It was
later shown by Omura in 1969 [15] that it was a special case of dynamic pro-

gramming. Here we summarize this important algorithm.

2.4.1 Viterbi Algorithm

Given : a collection of states S = gy, 01,..., 001,
a starting state sq,
an input vector sequence z,,23,..., 2L,

a decoder f(u,s).

Let d(.,.) denote the squared Euclidean distance and D;(k) denote the total

distortion for state & at time j.

1. Set Di(0) =00, <Ak M
2. For1 <n <L do
21For 0 <k < M do
2.1.1 Calculate d(j, k) for all states j from which a branch
to state & exists
212 Di(n+1) = mjin(Dj(n) + d(j,k))
2.1.3 Eliminate the branches other than the branch

achieving the minimum above. Save the optimum branch.
3. Find mkiu Dy (L) which is the minimum distortion obtainable.

Trace back the survivor path, which is the optimum state sequence.

Although the Viterbi algorithm is very favorable due to its optimality, there
is a price paid for this. First of all, computational complexity is higher when
compared with FSVQ. Second, there is the important practical problem that
the algorithm does not make a decision on the optimum path until it reaches
the final node. First of all, this amounts to the storage of all the survivor paths
until the algorithm execution is completed. One observation enables us to get

around this difficulty: most of the time we sce that the survivor paths at time
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k have a common root some [ stages back at time & — I. Then the survivor
paths are said to have merged at depth [. If all the survivor paths at time &
have merged at depth [, we can safely make a decision about the optimum path
up to time & — [ without waiting until the end of the sequence. An efficient
way of performing truncated search is to stop the normal execution of VA at
certain instants periodically and perform a back search to find the root, where
the survivor paths are merged. When the root is found, a decision can be
made for the optimal path before the root and the cursor of the storage array
1s simply moved to the root. Even if we cannot find a root, considering the
path with the lowest distortion up to the decision node, we can force a decision
for the optimum path. If we keep the period of searches large enough, that is,
if we keep the truncation depth large enough, the probability of making errors
in the truncations will be low. In the literature [16], a truncation depth T'D
of 5 times the constraint length is suggested. Obviously, performing VA with
truncated search greatly reduces the memory storage requirements. Instead of

storing L X N integers we just store 7'D x N integers and usually TD < L.

Another reason for preferring truncated search VA to standard VA is that
when a coder is to be used in interactive applications, because of practical delay
reasons, search lengths should be kept short. For typical interactive speech
applications the practically allowable delay is no greater than 40 milliseconds
which corresponds to search-length values around 256 in rate 1 bit/sample
communication. But, of course, there are no such restrictions in broadcast or

storage applications and as long as there is need to do so, long search lengths

can be used.

Since the encoder of the trellis waveform coder is simply a trellis search
algorithm for which we choose the Viterbi algorithm to use, the problem left

is to design the decoder which is the objective of this thesis.

2.5 Predictive Trellis Waveform Coding

Another way of incorporating memory into the quantization process is to in-
clude prediction to the encoder. In the literature, this approach was applied
to vector quantization and great improvement over standard VQ was reported
[4]. An interesting approach was reported later by Ayanoglu and Gray in {19]
who replaced the VQ encoder with a trellis encoder and named the new system
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predictive trellis waveform coding (PTWC).

Our knowledge of DPCM states that for a good predictive encoder, pre-
diction error samples are approximately white. Therefore, if the predictor is
well-designed, combined with the advantages of trellis waveform coding, PTWC

will exploit most of the redundancy in the source.

Predictive trellis waveform coding system is expected to perform better
when compared to nonfeedback trellis encoders since whitening the source,
which prediction does efficiently, means exploiting the statistical redundancy
of a source better. It is also expected to perform better than DPCM due to
delayed decision encoding for reasons explained before. One more advantage

offered by delayed-decision encoding is the stabilizing effect on the decoder

prediction filter [18].

2.5.1 System Description

The encoder and the decoder of the predictive trellis encoding system are as
given in Figure 2.3. In the encoder, the output of the predictor which tries
to approximate the input is subtracted from the input to obtain the error
symbols {ex}. Having the error symbols as input, the trellis search decides on
the best choice of a channel symbol sequence {u;} through minimum distortion
encoding. Channel symbols u;’s are sent through the channel and received by
the decoder which converts them into codewords with corresponding indexes.
The decoded codeword is then added to the predictor output which is the same
as the predictor in the encoder. As in the case of DPCM, the reconstruction
error zj — & 1s equal to the quantization error ey — q(ex) = (wp — k) — (Tk — Tk)

where ¢(ex) is the codeword assigned to e;.

The most essential part of the system is the predictor, the design of which
should be done carefully so that it predicts the input sequence efficiently.
Ayanoglu and Gray used a linear time invariant predictor since this would
keep the decoder complexity low and would enable the use of relatively simple

design techniques based on linear prediction theory [19].

Therefore, to define the predictive system suggested by Ayanoglu and Gray
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[19], we should specify the trellis search algorithm and the codebook and pre-
dictor design algorithm. The trellis search algorithm aims at the optimal min-
imum distortion encoding of the input sequence in the presence of a predictor.
Due to the finite state machine structure, a trellis search algorithi is possible

and it is a modified version of the Viterbi Algorithm.

2.5.2 Search Algorithm

The search algorithm should keep an estimate for the previous L, reproduction
symbols Z;_; along the survivor path leading to state j, which will be used by
the predictor at time & + 1. Let ,‘:’k(j, [),l =1,...,L, represent &;_; along
the path leading to state j at time k. Let X’k(]) = (Xk(j, 1),. ..,X’k(j, L,)),
a = (ay,...,ar,)". Let Di(j) represent the total distortion associated with
the jth node at time k. Let y(z,7) be the codeword on the branch connecting

nodes ¢ and j. The predictor order is L,.

0. Initialization:

Dy(0) =0,
Do(j):OO, IS]'S‘ZI\‘_I_]W
Xo(G) =0,  0<j<2Mt

1. Recursion: For 0 < i < Lg -1, do
1.1 For 0 < j <2%-1 do
1.1.1. Dynammic programming step:
Dii1(5) = mini(Di(i) + d(zg, a X (1) + y (3, 7))
The index 7 is from the set of all nodes from which a path exists to node j.
Save the argument minimizing this equation as [¢(j).
1.1.2. Update the first element of X,(j) as
Xig1(J, 1) = aXe(1(5)) + y(Ia(4), )
1.1.3. Prediction update:
Xer1(G, ) = Xe(Le(4), 1 = 1), 2< 1< L,
2. When n = L — 1, find j such that D™ = mjiuDL_l(j).

Release the corresponding pathmap through the trellis to the channel.

The search algorithm is a direct extension of Viterbi algorithm and reduces

to it for ¢« = 0.



2.5.3 Design Algorithm

The encoder is specified by two sets of parameters: the linear prediction
coefficients, a;;t = 1,...,L,; and the prediction error (residual) codewords,
yi; k= 0,...,2Y — 1. The performance of the coding system is totally depen-
dent on the good design of these parameters. The design algorithm assumes
initial values for these parameters and then iteratively improves them. The
initial values for the codewords can be generated with any of the known meth-
ods particularly with eztension [20] or splitting [3]. The natural choice for the
initial predictor coefficients is the solution of the Wiener-Hopf equation, Ra
= v, where R = [R;_;]1, 1, and v = [Ri]y,x1. This choice for the initial pre-
dictor coefficients is based on the assumption that the original source inputs
rather that the reproductions are the observables. We use coded reproduc-
tions in the predictive system therefore these parameters are not optimal, but
these choices are intuitive aud are good starting points for the design algorithm

which improves them iteratively.

For a fixed prediction vector a, the distortion for the given training source

is
L L L

Z(l(:l:n,;i'n) = Z(:L‘n — .'i'”)2 = Z(E” — (?n)'z. (2.15)

n=1 n=1 n=1

This distortion is minimized if we change the codewords into centroids of par-

titioning cells,

1
yi= > €y i=0,1,...,2" — L. (2.16)
” ‘Sz HnESi
We try to predict z, by
L,
;i:n = Z“l"i'n—l- (217)
(=1

The orthogonality principle [4] implies that @ should be such that the prediction

errors and the observations are orthogonal. This leads to

L-1
2 (tn = &) =05 =1 Ly (2.18)
n=0
Substituting
Ly,
Ty = Z(L_.,-:f:k_j + q(ex), (2.19)

=1
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in (2.18), we obtain the predictor update equation

L

k L
Zajzi'k—j-';fk—i - Z(.’If/; - (]((:;;)).’i.'k_,', 1= 1,2, ey L,,‘ (2.20)

=1 k=1 k=1

Now, we state the predictive trellis waveform coder design algorithm.

0. Initialization:
Generate initial codebook Cy = y¥;i=0,..., 277!
Find initial predictor quefficients solving the Wiener-Hopf equation, Ra = v,
where R = [Ri_;]p,x1, and v = [Iti]L x1.
1. Trellis Codebook Update:

Encode the training sequence using {y™} and {«*}
L

in order to obtain D™ = > d(xy, &)
hk=1

If |D™=1 — D™|/D™ < e stop with

yi=yr,0<: < 9K=1 and a; =1 <0< Ly,

else update the trellis codebook according to (2.16) to obtain {y™*1}.
2. Predictor Update:

Use {y™*'} and {a*} to encode the training sequence.

Use (2.20) to obtain the new generation of predictor coefficients {a?**'}.

3. Set m «— m + 1, go to l.

2.6 Trellis Coded Quantization

Another data compression system based on trellis encoding and finite-state
machine decoder is the trellis coded quantization (TCQ). This recently intro-
duced data compression system is reported to give good results for memoryless

sources and in predictive trellis coding [4].

Trellis coded quantization was first introduced by Marcellin and Fischer
[51], who, motivated by the success of trellis coded modulation (TCM) in the
field of modulation theory, and the results of alphabet-constrained rate distor-

tion theory, constructed the source coding analog of TCM.

In 1982, Ungerboeck formulated coded modulation using trellis coding and

introduced the ideas of set partitioning and branch labeling for trellis coder



design [02]. The set partitioning ideas introduced in this work were based on
the following observation: signal waveforms representing information sequences
are most resistant to noise induced errors if they are very different from each
other, that is, if there is a large distance in Luclidean signal space between
the signal sequences. TFollowing this fact, TCM designs the signal mapping
function so as to maximize directly the “free distance” (minimum Euclidean
distance) between coded signal sequences. Combined with the use of signal-set
expansion to provide redundancy for coding and use of a finite-state encoder.
this method led to a modulation scheme superior to conventional modulation

techniques.

A particular TCM system is specified by the trellis structure (next-state
function) and the codes assigned to trelhis branches. As for the trellis struc-
tures, Ungerboeck suggested some symmetric trellises for N =4 and N = 8
states. The branch connections are similar to the typical trellis of Figure 2.2
but for rates higher than 2, the transitions are multiple, that is each branch
on the graph corresponds to 2 or more parallel transitions. On a conventional
modulation system for a signal constellation of size 2™, m hit codes are used to
send one of the 2" symbols. In trellis coded quantization, the signal constella-
tion is first doubled to 2™*! points. Then this constellation is partitioned into
241 subsets, where 1 is an integer less than or equal to m. 1 of the input
bits are used to select, by trellis encoding, which of the subsets the channel
symbol for the current signaling instant will be chosen from. The remaining
m — 1 bits are used to select one of the 27" channel symbols in the selected
subset. By this way although the rate of the system is held constant, a finer

coding is achieved through iutroducing redundancy.

The basic idea of alphabet-constrained rate distortion theory is to find an
expression for the best achievable performance for encoding a continuous source
using a finite reproduction alphabet. The theory is developed in [53] and [43].
Marcellin and Fischer in [51] inspecting the alphabet constrained rate distortion
functions for the uniform i.i.d. source, made the observation that for a given
encoding rate of R Dbits per sample, it is possible to obtain nearly all of the
gain theoretically possible over the f2 bits per sample Lloyvd-Max quantizer by
using an encoder with an output alphabet consisting of the output points of

the R + 1 bits per sample Lloyvd-Max quantizer.

Motivated by this observation and TCM, Marcellin and Fischer constructed

a fixed structure trellis for rate R encoding which employed the output points
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of rate R+1 Lloyd-Max quantizer as the codewords, assigned to trellis branches
according to Ungerboeck’s set partitioning and branch labelling rules [52]. The
system they introduced in [51] is given iu Figure 2.4. The trellis can be any of
Ungerboeck’s amplitude modulation trellises [52]. But the branches presented
here no more represent single traunsitions but multiple ones quantity of which
is determined by the rate of the system. Consider an encoding rate of 2. Then
the rate 3 Lloyd-Max output points (for uniform i.i.d. source), which will
be employed as the codewords are as shown on real line in Figure 2.4. These
codewords are partitioned into four subsets by labeling consecutive points with
Dy, Dy, Dy, D3, Dy, Dy, Dy, Dy, . .. starting with the leftmost (most negative)
point and proceeding to the right. Then these subsets arc assigned to the

trellis branches following branch labelling rules of Ungerboeck [52]:

1. Parallel transitions are associated withh codewords with maximum dis-

tance between them.

2. The branches originating from the same node should be labeled with

subsets with maximum distance between them.

3. The branches terminating at the same branch should be labeled with

subsets with maximum distance between them.

4. All codewords should be used with equal frequency in the trellis diagram.

The first rule is satisfied with the above set partitioning. To satisfy second and
third rules the subsets are grouped as Dy with D, and D; with D; and these
groups are assigned to leaving and entering branches as shown in the figure.

Fourth rule is already satisfied with this labeling.

This system is later modified by Marcellin and Fischer to incorporate pre-
diction and they introduced PTCQ in [51]. The trellis search algorithm they
use in their predictive system is the same as the search algorithm of Ayanoglu
and Gray [19] for R = | and an extension of it for higher rates, but in the design

stage they do not train the codebooks and they do not update the predictor

coeflicients.



D() Dl D.’.’ D;i D() Dl D2 1)3
° ° TS — o * ° ®
7A-5A-3A -A A 3A 5A 74
§ 8§ 8§ 8 8 8 8 8
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Chapter 3

SIMULATED ANNEALING

Optimization is an issue of higl importance in many diverse areas, in partic-
ular, 1t is a vital element of analysis and design in many ficlds in electrical
engineering. In electrical engineering, particularly in the field of telecommu-
nications, we sometimes deal with discrete variables and may need to carry
out combinatorial analysis, that is, we deal with the arrangement, grouping,
ordering, or selection of discrete objects. In these analyses, being engineers,
our objective is to find out the optimal arrangements, orderings or selection of
discrete variables. In other words, we are frequently confronted with combina-

torial optimization problems.

Many common problems in fields such as electrical engineering, operations
research, and computer science are combinatorial optimization problems, but
the field particularly owes the existence of its wide range of applications to the
advent of digital computers. Most currently accepted methods of solving com-
binatorial optimization problems would not have been counsidered seriously 10
or 20 years ago, for the reason that no one could have carried out the compu-
tations involved. However, even today, while many powerful digital computers
are available, various large scale combinatorial optimization problems cannot
be solved in reasonable time. Most of these problems are NP-complete problems
[21], in other words, they are not solvable by a computational effort bounded

by a polynomial function of the size of the problem.

Thus, one is forced to use approvimation algorithins or heuristics. Heuristics
are not guaranteed to get the optimum answer, they are designed to give an

acceptable answer (hopefully close to the optimum answer) with a reasonable

28
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amount of computational effort or equivalently time. That is, using a heuristic,

one makes a compromise between the optimum result and the computational

effort.

Now, let us give a formal definition of a combinatorial optimization problem.
A combinatorial optimization problem is formalized as a pair (S, C), where S is
the countable (finite or infinite) configuration space or the set of configurations
and C is a cost function, (" : S — R, (R: the set of real numbers) which
assigns a real number to cach configuration. For conveunience, C' is defined in
such a way that decreasing values of (' correspond to better configurations.
With this definition, the optimum configuration S,,, is the configuration for

which C takes its global minimum value. That is,
Cope = min C(2), (3.1)
ted

where Cop; denotes the optimum value of the cost function. The objective of

a combinatorial optimization problem is to find the configuration that gives

Copt-

Simulated annealing is one of the heuristics suggested to solve large-scale
combinatorial optimization problems efficiently, although not exactly, with rea-
sonable amount of computational effort. It is a heuristic or an approximation
algorithm in the sense that it is not a mechanical sequence of computations to
solve a specific problem, and its performance is highly dependent on how the
user tailors it for a specific problem. There are various heuristic strategies for
solving combinatorial optimization problems such as “constructive” heuristics
which construct an answer directly. Simulated Annealing instead is related
to “iterative improvement” strategies, which construct an initial suboptimal

optimal solution and then perturh this solution slightly, in the direction of a

better solution on the average.

The simplest algorithm this strategy suggests is the ilerative improvement
algorithm. Before describing this algorithm we define a neighborhood S; for
each configuration z, consisting of all configurations that can be reached from @

in one transition. Let ¢ denote the current configuration, ¢,., the configuration

after perturbation.



Iterative Improvement Algorithm:

1 1p /¥initial configuration*/

repeal
perturb(z, S;); /*choose randomly i,,., € S;*/
if Clinew) < C(7)

1~ lnew [*current configuration is replaced by the neighbor*/

until N0 tye € 5 exists such that C(iyeq,) < CQ)

There are two obvious disadvantages of this algorithm. First, although it
is certain that the algorithm reaches a minimum, there is no guarantee that
it 1s the global minimum. Instead, the algorithm may get stuck in a local
minimum and there is generally no information as to the amount by which this
local minimum deviates from a global minimum. Second, the obtained local
minimum depends on the initial configuration. There are some proposed ways
of getting around these inadequacies. Iirst, one can execute the algorithm
for a large number, say N, ol initial configurations [22]. For N — oo, this
algorithm finds the global minimum with probability 1. Second, one can use
the information gained through previous runs to improve the choice of an
initial configuration for the next ruu [24]. Third, one can introduce a more
complex generation mechanism, in order to he able to “jump out” of the local
minima corresponding to a simple generation mechanism. Fourth, one can

accept transitions which correspond to an increase in the cost function in a

limited way.

The second and third approaches are strongly problem dependent so they
do not lead to a general algorithm. The first one was the traditional approach
until 1982 when Kirkpatrick ef al. suggested the fourth one which they called

stmulated annealing [23]. Many experiments verified that simulated annealing

is superior to the first approach [24].

Simulated annealing 1s based on an analogy between a process called anneal-
ing of solids in condensed matter physics and large combinatorial optimization
problems. Annealing is a process in which a solid is heated up to a maximum
value at which all particles of the solid randomly arrange themselves in the
hiquid phase and then it is cooled down very slowly. Through this process, all

particles arrange themselves in the lowest energy configuration if the maximum



temperature is high enough and the cooling process is carried out sufficiently
slowly. During the cooling process, the solid is allowed to reach thermal equi-
Librium which is characterized by the probability of the solid’s heing in a state
with energy £ which is given by the Boltzmnann distribution:

I
xp(— 3.9
707 exp( /\.'HT)" (3.2)

Pr{Energy = I’} =

where Z(T') is a normalization factor depending on T and kg is the Boltzmann

constant.

In 1953 Metropolis ¢t al. proposed an algorithm to simulate the evolution
of a solid towards thermal cquilibrivm [25]. This algorithm can be summa-
rized as follows: Given the currcut state (configuration) of the solid which is
determined by the configuration of its particles, a randomly chosen particle is
slightly moved {rom its current position. The resulting energy is calculated
and compared with the previous energy of the solid. If AFE is negative, that
is, if the perturbation leads to a decrease in the total energy of the system, the
process is continued with the new state. If AFE is nonnegative, then the new
configuration 1s accepted as the new state with probability exp(—@—?). This
acceptance rule is called the Mctropolis eriderion. If the algorithm is executed
until sufficiently many perturbations are made with this acceptance criterion,
the probability distribution of the configurations (or states) approaches the

Boltzmann distribution, which states that the system reached thermal equilib-

rium.

The problem of minimizing the energy of the solid is indeed a combinatorial
optimization problem, the counfiguration space S being the possible configura-
tions of particles in the solid, the cost function C assigning an energy value
to each configuration. This observation suggests a way to handle general com-
binatorial optimization problems. Ior the problem in hand, we can generate
a sequence of configurations with the Metropolis algorithm, that is, using the
Metropolis criterion in configuration transitions, and in the end we can reach a
configuration of thermal equilibrium characteristic to that value of the control
parameter. If we repeat this Metropolis process for a sequence of decreasing
values of the control parameter, we can hope to reach the global minimum just
as nature does in the annealing of solids. The described process is nothing but
simulated anncaling. The analog of energy is the cost function and the analog
of configuration of particles is the set of values problem variables take which
is a point in the configuration space S. As in the solid state physics analogy,

from a configuration 7 we pass to another randomly chosen configuration 7 with



probability 1, if AC;; < 0 and with probability (*xp(—é%i), i AC:; > 0,1 be-
ing the control variable. Now, we introduce the simulated anncaling algorithm

[24].

Simulated Annealing Algorithm

begin
INITIALIZE;
M:=0;
repeat
repeat
PERTURB (config. « — config. j);
if AC;; <0 then
UPDATE(config. j)

else if exp(—&f"i) > random|0, 1) then

UPDATE(config. j);
until quasiequilibrium is reached;
IMy1 = f(iM)§
M:=M+1;
until stop criterion;

end.

Although we have pointed out the existence of a strong analogy between
the annealing of solids, which 1s known to give optimum results for sufficiently
slow cooling, and solving combinatorial optimization problems with simulated
annealing, one needs a formal proof for the convergence of simulated annealing
to the global optimum. Such proofs are given in [24], [26]. But these con-
vergence proofs are asymptotic convergence proofs; convergence of simulated
annealing to the global minimum 1s guaranteed only if infinite length Markov
chains are used and infinitely slow cooling schemes are applied. We cannot
allow such schemes in practical problem solving. Instead, we should contend

with finite speed cooling schemes and finite length Markov chains.



33

3.1 Practical Implementation

Practice has shown in recent years that simulated annealing is still very succes-
ful when finite Markov chains are used and the cooling process is not infinitely
slow. But the performance of the algorithim highly depends on the design of

the parameters of the algorithm.

In a practical implementation one should specify the following:

¢ initial value of the control parameter or temperature Ly;
e final value of the temperature t; (stop criterion);
e length of the Markov chains:

e move-set (neighborhood structure), that is the set of allowable perturba-

tions;

e a rule for changing the current value of the control parameter, ¢, mto

the next one, fp4g.

We will now cite some simple schemes from the literature for determining

the values of these parameters.

The initial value of ¢ is chosen such that virtually all transitions are ac-
cepted, that is exp(—AC/ty) = 1 for all transitions. An empirical rule is given
by Johnson et al. [28]: determine ty by calculating the average increase in cost

(or energy), for a number of random trausitions and solve {y from
Ao = exp(=AC/ty), (3.3)

where A} is the acceptance ratio defined as the ratio of the number of accepted

transitions to the number of proposed transitions.

The final value of “temperature” can be determined by fixing the number of
temperature values ., for which Metropolis loops are to he executed. Also, the
execution can be terminated il the last configurations of consecutive Markov
chains are identical for a number of chains. Or, as in determining ¢y, we can

introduce a parameter 1y, and can terminate execution when the acceptance

ratio is smaller than Ay,
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The simplest choice for the length of the Markov chain is a value depending
polynomially on the size of the problem [29]. Other than [29], various schemes
are suggested in the literature. If N (%) represents the length of the kth Markov
chain, one can use arithmetic N(k) = N(k — 1)+ C, geometric N(k) = N(k —
1)/a(k), logarithmic N(k) = ("/log(t(k)) schemes or continue until a number
of acceptances are made, or until a number of rejections have occured.

The decrement in the temperature should be chosen such that small Markov
chain lengths suffice to reestablish quasi-equilibrium after the decrement.
Therefore, the changes in the value of temperature should be small. Sim-
ple temperature decrement rules include arithmetic, ¢34 = C + {;, geometric

tkyr = @ X b, and logarithmic 7, = C'/In(1 + k) decrement functious.

Each combinatorial optimization problem suggests different neighborhood

structures. Therefore the choice of the move-set is problem dependent.

There are more elaborate cooling schedules cited in [24] but those are de-
rived for specific problems. Further; one elaborate schedule that is very suc-
cessful in one problem can perform far worse than a simple schedule in another

problem. Therefore, in the course of our work, we used simple schedules.

In the literature, attempts have been made to give good measures about
the general performance of simulated anncaling, in terms of the quality of the
final solution obtained by the algorithm and the running time required by the
algorithm. Lundy and Mees [30] succeeded in obtaining the worst-case result
for the total number of transitions generated during the execution of the algo-
rithm which is O(] Speiy | In | S |), where | Sueiy | is the size of neighborhoods

and | S | is the size of the configuration space. Since, for most combinato-

rial optimization problems, the sizes of the neighborhoods can be chosen to be
polynomial and the size of the configuration space | .S | is exponential, this for-
mula shows that the execution of the algorithm takes polynomial time for most
combinatorial optimization problems. For a bound on the worst-case perfor-
mance of the result of algorithm, Sasaki and Hajek [31] provided a probabilistic

measure.

Since its introduction in 1982 [23], simulated annealing has been success-
fully applied to many diverse combinatorial optimization problems. It became
most popular in the field of VLSI design especially in placement and routing
problems, where other known methods provide poor results. It has been used in

image processing for image restoration and enhancement problems. The first



paper in this context was published by Geman and Geman [32], in which a
generalization of simulated anncaling is used to find a maximum posterior dis-
tribution for degraded image. El Gamal ¢f al. used SA on problems involving
source codes, constant, weight channel codes and spherical codes. Specifically,
they considered the problem of representing the set of all 2% binary sequences
of length L by a much smaller subset of 2% codewords (A < L) in such a way
that the average Hamming distance between each of the 2% sequences and its
nearest codeword i1s minimal. They report that the results are very encourag-
ing [33]. Cetin and Weerackody [35] and Flanagan ¢t «l. [34] applied simulated
annealing i codebook design for vector quantization. Other fields simulated
annealing has been applied include neural networks, numerical analysis, biol-

ogy, materials scicnee, scheduling, stalistics and graph theory.

In almost all of these fields, SA has proved to be a successful algorithm,
especially in the solution of large-scale problems for which no tailored solutions
are known. For more information about the applications of simulated annealing

the reader is referred to the survey paper by Collins ¢f al. [36].



Chapter 4

PROBLEM DEFINITION
AND SOLUTION

The goal of this work is to introduce a new algorithm for the design of trellis-
based coding systems with performance higher than other work in the literature
and to contribute to the study of these systems. With “trellis-based coding
systems,” we refer to the coding systems with finite-state machine decoders
such as finite-state vector quantizers (I'SVQ), trellis waveform coders (TWC),
predictive trellis waveform coders (PTWC) and trellis coded quantizers (TCQ).

The difference of our design approach when compared to other work in

the literature is in the way we design the nezt-stale function of the decoder

finite-state machine.

As we have noted in our discussion of trellis waveform coding in Chapter 2,
the encoder of a trellis waveform coder is simply a trellis search algorithm and
there exist various trellis search algorithms i the literature with well-known
performance tradeofls. Therefore, we concluded that the design problem of the
trellis waveform coder reduces to the design problem of the decoder finite-state
machine. In FSVQ, the encoder is simply the encoder of the corresponding
state-VQ which 1s the nearest neighbor encoding rule. Therefore, similarly,
the design problem of F'SVQ reduces to the design problem of the decoder

finite-state machine.

The decoder finite-state machine is completely spectfied by the state code-

books or the output map and the next-state map which corresponds to the

36
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branch connections in trellis graph. Hence, FSVQ and TWC design problems

are composed of two design problems:

e output map design

and

e ncxt-state map design.

We will consider these two problems first separately, that is, we will focus
on the design of the output map for a given next-state map and on the design of
the next-state map for a given output map separately. Then, we will combine

the solutions to these two problems to propose our decoder finite-state machine

design algorithm.

4.1 Next-State Map Design

The central contribution of this thesis is the suggestion of a new heuristic for
the design of the next-state map of the decoder finite-state machine. Given
the current state and the channel index, the next-state map is equivalent to

one-stage of the trellis diagram or the state-transition diagram.

The trellis diagram is specificd by the number of nodes and the orientation
of branches, that is, connections between the nodes. Each different set of
connections correspond to a different trellis structure and therefore a different
next-state map. Then, the problem of finding the optimum next-state map

is equivalent to the problem of finding the optimum set of connections of the

branches.

This is clearly a combinatorial optimization problem, .S, the configuration
space being the space of possible trellis structures, and €7, the cost function,
the value of which is to be minimized over .S, being the total distortion. For
a trellis coding system of rate R, NV states and vector size &, the trellis will
have N nodes and 2% branches originating from each node (assuming binary
communications). This trellis can be constructed in NN different possible
configurations. Since the size of the state space is exponentially dependent

on the system variables, it is not practically possible to solve this problem



by exhaustive search (a trellis system with unit rate and 32 states for scalar

quantization requires more than 10”° iterations).

Due to the enormous complexity of the problem, we look for a heuristic. In
the literature, some heuristics are suggested for the solution of this problem.
The ones suggested by Foster ¢f al. [7] in the context of FSVQ were described
in Chapter 2. The drawback of these licuristics were that they could only
iteratively improve the codewords for a given next-state function, providing
no mechanism for improving the next-state function. That is, once the next-
state function is designed it is fixed and not tuned to the codebook. Also,
these heuristics are not intuitively simple. Dunham and Gray in [9] proposed a
stochastic iteration algorithm to allow incorporation of the next-state function
design in a probabilistic manner, but their algorithm is not straightforward.
An interesting work in the literatire is by Juang who suggested obtaining a
minimum degradation network by a pruning procedure which he called Pruned
Trellis Vector Quantizer [37). His algorithm begins with a fully connected
trellis and proceeds by pruning the branches, the removal of which causes the
minimum degradation. The algorithm stops when a desired rate is reached.
This algorithm is a modification of the branch and cut algorithm from linear
programming. Juang noted that this algorithm was not successful for rates

equal to and below 2.

We propose using Simulated Anncaling for the design of the next-state map

of trellis decoder finite-state machine:

e The state space consists of all the possible trellis structures (branch
connections) with the constraint that there are 2*% branches originat-

ing from each node. This restriction is made since we assume binary

communications.

e The cost function or energy function to be minimized is simply the

total distortion calculated by Viterhi algorithm.

e The move-set is the changing of the orientation of one of the branches,
alternatively the neighborhood set is the set of all trellises obtainable

by moving the end of a branch from the state it is connected to, to another

state.

e The initial value of the temperatureis calculated in the way Johnson

et al. [28] suggested.



34

e The length of Markov chains is chosen to be linearly dependent on
the number of states as ¢ x N, where N is the number of states, and ¢
1s a constant. The constant ¢ is determined by experimental means and
using mtuition. For example, for fast cooling schedules one needs longer
Metropolis loops to stabilize, or as the number of nodes in the trellis
is increased, the size of the state space increases and longer Metropolis

loops are needed to reach equilibrium.

o Geometric improvement is chosen as the decrement rule for tempera-

turc. That is, ¢,,41 = ( X ¢, n: time index.

e No final value for temperature is chosen. The cooling is exited when

no more significant improvements occur.

For a given output map, the next-state map design algorithim begins with an
initial trellis with a correspouding known distortion, and an initial temperature.
Then the algorithm perturbs the trellis by breaking the end connection of a
branch from its current position and connecting it to another state, hence
changing the state-transition matrix. The new distortion is calculated via
encoding the input source with the new trellis by the Viterbi algorithm, and
compared with the previous distortion. If the new distortion is smaller, the
perturbed trellis is accepted as the current trellis, else a random number in
the interval [0, 1) is generated and compared with the exponential exp((A™ —
A™N /T, If the exponential is greater, the perturbed trellis is accepted,
otherwise it 1s rejected. The algorithm continues to perturh the trellis this
way until the system reaches quasi-equilibrium at this temperature 7'. The
condition for reaching quasi-equilibrium is dictated by the choice of length of
the Markov chain. This is one Metropolis loop. Then, the temperature is
decreased according to the cooling function (geometric cooling) and another
Metropolis loop is started. The algorithm terminates when no more significant

improvements are seen at the outputs of the Metropolis loops.

4.2 Output Map Design

We propose the adaptation of GLA for the design of state-codebooks for a given
trellis structure. Actually, adaptations of GLA to TWC and FSVQ have been

used by many researchers in the literature. GLA was suggested in the context
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of TWC first by Stewart ¢ al. [20] for codchook improvement. They also
developed an extension algorithm which increases the constraint length by 1
producing a double size trellis from a given trellis, the performance of which is
at least as good as the performance of the trellis before extension. Combining
their codebook improvement algorithm and cxtension algorithms they proposed

an algorithm for the automatic design of a trellis decoder with N states.

GLA is also employed by Foster of al. [7] in the context of FSVQ, by
Ayanoglu and Gray in predictive TWC [19], and by Bei and Gray [38] in
vector TWC.

We emiploy Stewart’s codebook improvement algorithm for improving a fixed
trellis structure (fixed next-state function) and we propose an extension al-
gorithm of our own for producing a good initial structure and codebook for
optimization of the trellis with constraint length increased by 1. Here, we cite

Stewart’s codebook improvement algorithm:

Codebook Improvement Algorithm

0. Initialization:
Given a distortion threshold ¢ > (0,
a binary noiseless channel,
an N-state decoder,
an initial codebook C° with cardinality || C° ||= M = 2M'N,
and a training sequence {x;: 3 =0,1,...,n — 1}, set m = 0.

1. Encoding:
Given C™ = {y™ :1=0,..., M — 1} the codebook for generation m,
find the minimum distortion trellis encoding {#; : j =0,...,n — 1}
of the training sequence.
This encoding induces a partition on the training sequence
{SP:i=0,...,M =1} with S = {j : &; = y*}.
Each set S?* contains the time indexes of those elements of
the training sequence which are encoded by codeword ",

2. Compute the average distortion A,, = n~'S) d(x;, ;).

3. If the decrease in distortion has fallen below the threshold e,
(Am - Am—l)/Am—l S ¢,

then halt with C'™ as the final codebook. Otherwise goto step 4.



4. Find the optimal codebook (! for generation m + | as
Cm+l = {y™*ti=0,...,M - 1}
where the y™ 1! are the centroids of the new partition
{Srt i =0,...,N —1}.
Replace m by m 4+ 1 and go to step 1.

The mitial codebook has two codewords since the constraint length of the

decoder is 1 (trellis has only | state). These initial codewords can be chosen

simply as —1 and 1.
Now, we introduce our extension algorithi,

Trellis Extension Algorithm

0. Given number of states N, constraint length £, rate fx’,, vector dimension [,
)IR}

the super codebook (' = {;z/f‘:j a=0,...,.N~-1,57=
where yi}fj is the 5 th codeword (corresponding to j Lll ])1'a,nch) of ¢ th state,
and state transition matrix (or trellis diagram).
0.1 Increase constraint length by 1: L «— k+ 1.
1. Codebook extension :
1.1 Retain the codebooks of the old states :
gyl =gk i=0,...,N=1,57=0,...,2},
1.2 Assign codewords to the new branches in the following way:
yitl =gk y o i= N2 xN) = 1,5 =0,..., 28}
2. Trellis extension :
For (0<:<(2x N —1))do
2.1 if ¢ is even then
Retain the connections of the branches originating {from state ¢
as in the previous trellis;
2.2 else if 7 1s odd then
Connect the branches originating from state « to states
with indexes N more than the indexes of the states
(addition according to mod2N')

to which the branches were connected in the previous trellis.



The trellis can be extended by just doubling the original trellis size (number
of states) and inserting an identical copy ol the original trellis for the newly
generated states. But in this newly formed trellis, the two identical trellises are
separate; no branch originating from a state in one of the trellises ends at a state
in the other trellis. This structure can be no better than the original mother
trellis. To have a chance for significantly better structures the branches should
spread. It will take time for SA to form such an “unbiased” next-state map
by perturbing. To accelerate this process the extension algorithm introduced
above flips some of the branch connections corresponding to the states with the
same positions in the two identical trellises. In this way, some of the branches
starting from a state in one (half)trellis end at states in the other (half)trellis.
The performance is no less than the performance of the original trellis since
original connections are preserved. The Viterbi algorithm in the worst case
will choose a path identical to the optimum path in the original trellis. Due to

the introduction of new paths the performance may even be better,

Stewart et al.’s extension algorithm produces an extended trellis which 1s at
least as good as the original trellis, too. Their algorithm extends the codebooks
in the same way we did. The difference between the two algorithms is in the
way the next-state function is modified. Stewart ef al. used a shift register
decoder (giving the fixed trellis structure) [20]. While extending the trellis
they simply added a new cell to the shift register. Since we are not using a
state-transition matrix instead of a shift register decoder, we preferred to use
the algorithm described above which is applicable to a general state-transition

matrix.

4.3 Trellis Decoder Design Algorithm

Assuming the rate is unity and scalar quantization is performed:

0. Initialization:
N =1,
codebook: yo = +1,y; = —1
0.1. GLA
0.2. EXTEND /¥ N —27%/
0.3. GLA



0.4. Calculate distortion A"
0.5. best-config.-reached =0
1. while N < N,,ax

1.1. while best-config.-reached = 0 do
1.1.1. SA
1.1.2. GLA
1.1.3. Calculate distortion A™
if (A™ =AM oAM= <,

best-config.-reached = |

1.2. EXTEND  /* N « 2 x N*/

&~

The initial codebook and the trellis are generated as described before in
the text. For a given codebook, the trellis structure is optimized using SA,
and for this structure, the codebook is modified using GLA. Then for the new
codebook, the trellis structure is reoptimized. The process is continued until
the system reaches an equilibrium, with respect to the SA criteria. Having
found the optimum trellis for constraint length &, the trellis is extended to
a constraint length & + 1 trellis by the extension algorithm described above.
Then, SA and GLA are run iteratively in the same way for the extended trellis.
In this way, the algorithm automatically desigus near-optimum trellis coding
systems with increasing constraint lengths for a given input sequence whose

statistics are not known.



Chapter 5

SIMULATION RESULTS

To test the performance of tiwe trellis decoder design algorithm we introduced,
several coding systems based on finite-state machine decoders such as trel-
lis waveform coder, finite-state vector quantizer, predictive trellis waveform
coder, and trellis coded quantizer were designed for coding independent iden-
tically distributed (i.i.d.) Gaussian, Gauss-Markov (autoregressive Gaussian),
and speech model sources. These sources are of high practical and theoretical
interest and are commonly used in the source coding literature for testing the
performance of quantization systems. The results obtained via simulations are

compared with the results of other work published in the literature.

Gaussian sources used in the simulations were gencrated by Knuth’s
algorithm-P [39] using the uniformly distributed random sequence generated
by the random number generator, random( ), from the mathematical library

of the SunOS operating system, Relcase 4.1, by Sun Microsystems Computer

Corporation.

To be able to compare the performance of different design methods, we cal-
culated signal to quantization noisc ratio (SQNR), for each decoder designed

via simulations. SQNR is a commonly used measure of distortion due to quan-

tization and is defined as,

(5.1)

)

SONER = —10 log,,

where A is the total distortion calculated by the square of the Euclidean dis-

tance, that is, A = ¥, (X, — X,,)?, and o2 is the source power, 3, X2.
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5.1 Trellis Waveform Coding

5.1.1 Memoryless Gaussian Source

The memoryless Gaussian source consists of samples drawn independently
from a Gaussian probability density with zero mean and unit variance. The
distortion-rate function for this source evaluated at /£ = 1 yields the bound
SQNR = 6.02 dB [44]. The 1-bit Lloyd-Max scalar quantizer [44] has SQNR
= 4.40 dB.

The trellis waveform coder is designed using SA+GLA on a memorviess
Gaussian training sequence of 10,000 samples. Then, the performance of the
trained decoder is measured by coding a test sequence different from the train-
ing sequence but whose distribution and length are the same. The simulation
results are given in Table 5.1 and in Figure 5.1 along with the results obtained

by Linde and Gray [42], Stewart ¢ al. [20], Pearlman [43] and Freeman cf al.

[44].

Linde and Gray [42] state that the problem of designing a good time-
invariant tree-coding data compression system is equivalent to that of finding a
good low rate “fake process” for the original source. The fake process problem
is basically the problem of designing a filter which, when driven by a discrete
uniform, i.i.d. process, produces an output that “looks like” the process that
one wishes to compress. Following their statement they suggested a seram-
bling function decoder (SFD) and Viterbi encoding. The encoder finds the
sequence of codewords which best describes the input data by carrying out a
trellis search, and the corresponding index sequence is released to the channel.
The decoder receives the channel symbols through a shift register and at each
decoding instant applies the sum of the contents of the register to a nonlinear

filter (scrambling function) to produce the reproduction symbols.

Stewart et al. [20] designed trellis waveform coders with fixed next-state
function via GLA on a training sequence of 20,000 samples. They used table-
lookup shift register decoders with random codewords (as the initial guess).

Then, they tested the performance on data from outside the training sequence.
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SA+GLA PAG1 CGA SFD | GLA
I | train | test | train | test | train | test | test [ test
2 | 4.65 {4.65 ] 4.70 [ 4.70 | 4.85 | 4.70 4.40
3| 5.09 [ 5.06] 5.05 [ 4.85 | 5.13 [ 5.07 | 4.45 | 4.70
4 1 5.23 | 5.15 ] 5.20 | 5.03 1 535 | 5.18 | 4.90 | 4.92
5 ] 5.36 [ 5.21 | 5.40 | 5.05 | 547 | 5.30 | 5.00 | 5.07
6 | 5.49 [ 5.31 | 5.70 | 5.15 | 5.55 [ 542 ] 5.00 | 5.12

Table 5.1: SQNR [dB] results for the memoryless Gaussian source. K: con-
straint length, SA+GLA: trellis waveform coder with simulated annealing and
generalized Lloyd algorithm, PA64: Powell’s 1964 algorithm, CGA: conjugate
gradient algorithm, SI'D: Linde and Gray’s scrambling function decoder, GLA:
generalized Lloyd algorithm.

Pearlman [43] approached the design of trellis source coders through rate-
distortion theory for constrained size reproduction alphabets. Solving the con-
strained rate-distortion function, he obtained reproduction levels. Then, he
constructed sliding-block codes by distributing the reproduction values over
one level of the trellis, the structure (next-state function) of which is fixed. He

reported simulation results for large trellises of 256 and 512 states.

Freeman et al. [44] viewed the encoder simulation as the evaluation of an
objective function of the code assignment variables. They used two optimiza-
tion methods due to Powell. The first one is a nonderivative descent method
called Powell’s 1964 algorithm (PAG4) [45] and the second is a gradient descent
method called Powell’s conjugate gradient algorithm (CGA) [46], [47]. Each of
these methods performs a series of line searches in conjugate search directions.
A line search is in effect the minimization with respect to one parameter, that

gives the position along a straight line in the space of independent variables

[44).

The important difference of our approach from these works is that, while
they keep the next-state function fixed, we optimize it. Looking at Table 5.1,
first note the improvement from GLA to SA+GLA. This improvement is due
to the optimization of the trellis structure and is larger for larger constraint
lengths. As the constraint length increases, the size of the coufiguration space
increases exponentially, therefore, the fixed trellis structure (or the next-state
function) used by GLA [20] in design becomes less and less probable to be

“the best” structure. Also, as the size of configuration space is increased there
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SA+GLA: Trellis waveform coder with simulated annealing and generalized
Lloyd algorithm, PA64: Powell’s 1964 algorithm, CGA: conjugate gradient
algorithm, SFD: Linde and Gray’s scrambling function decoder, GLA: gener-

alized Lloyd algorithm.
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are more “good” structures introduced, and therefore SA has the chance to
choose a “good” trellis from a wider set. These two facts explain the higher

performance improvement for larger constraint-lengths.

As stated above, GLA is not the only method for improving the output
map. The improvement possible with codebook design algorithms other thau
GLA can be judged by comparing the trellis waveform coding system results of
Freeman et al. with GLA results: CGA performs much better than GLA. Not-
ing the improvement from the GLA results to the SA+GLA results, and noting
the improvement {rom the GLA results to the CGA results, one can speculate
that using the conjugate gradient algorithm instead of GLA for codebook de-
sign and employing SA for trellis structure optimization, i.e., using SA4+CGA,

better performance can be obtained for memoryless Gaussian sources.

When test results are compared, SA+GLA outperforms Powell’s 1964 al-
gorithm PA64 and Linde and Gray’s scrambling function decoder. Also, Pearl-
man’s results for X' = 9 and A = 10 are 5.18 dB and 5.21 dB respectively
which SA+GLA outperforms with only a A = 5 trellis. On the other hand,
conjugate gradient algorithm CGA gives the best results among all, although
our results (SA+GLA) are almost the same for constraint-lengths 2,3,4, and

are only slightly worse (about 0.1 dB) for A’ = 5,6.

5.1.2 First Order Gauss-Markov Source

The advantage of a waveform coding system with memory, such as the trel-
lis waveform coder, is in getting high performance in encoding sources with
memory. Therefore, a better source to test the performance of our algorithm
is the Gauss-Markov autoregressive source. To this end, in this work, trellis
waveform coding systems of different constraint lengths and of rate one were
trained using SA and GLA by a first order Gauss-Markov source {X, } defined
by

Xy =aXo + 1, n=12... (5.2)
where W, is a white and zero-mean Gaussian time series, and a = 0.9. This
source was chosen since it is a common model of real data and it is widely used
in comparing data compression systems [4]. The D(R) bound for this source

is 13.2 dB [19].

For constraint lengths of 2-8, signal-to-quantization-noise ratios (SQNR)



49

were computed. Then the system was tested using a test sequence with the
same statistics. In Table 5.2 and Figure 5.2 the SQNR values are given
(SA+GLA) together with the results of Stewart ¢t al. (GLA) [20]. Results
obtained using SA are better than those of [20], especially for structures with
small constraint lengths. The difference in performance comes from the opti-
mization of the trellis structure (or the next-state function). For constraint-
lengths 3, 4 and 5 the improvement is more than 1 dB (for A =415 1.5 dB),
which is significant since the GLA performance is within 2.5 dB of D(R) bound
for K = 5. With increasing A', performance improvement decreases to about
0.3 dB for K = 8, which is again quite significant since the GLA performance
is within 1 dB of D(R) bound for this constraint-length. We have not seen any
significant improvement for A = 2; this is because the configuration space for
this constraint-length is very narrow, and apparently the shilt-register trellis
used by Stewart et al. [20] is a good trellis among few possible ones. With
the increasing constraint-lengtl: (with the widening configuration space), the

improvement increases and becomes maximum at A = 4. The improvement

for this constraint-length is about 1.5 dB. For larger constraint-lengths the
improvement decreases since large codebooks already provide good precision
for quantization and improvement due to SA becomes less significant when
compared with the improvement with enlarged codebooks. Actually, during
simulations it was observed that for A' > 6 perturbing the trellis with SA
does not lead to significant improvements. This is partly due to the fact that
temperature is quite low at these instants and that since the optimization of
trellis structure at a certain constraint-length " begins with the extension of
the optimum trellis structure for constraint-length A" - | trellis, and therefore

the initial structures can be expected to be already good structures for high

constraint-length trellises.

As can be seen from Table 5.2, the diflerence between the training sequence
and test sequence SQNRs is increasing for increasing constraint-length. For
K = 8 the difference is almost 0.35 dB for SA+GLA results, which points the
inadequate training of the source, that is, we need longer training sequences or
equally longer trellises. But, we cannot increase the trellis length indefinetely
since this is accompanied with increasing storage requirements and longer trellis
searches during encoding which means longer execution times. In Chapter 2,
Section 4, we touched upon these practical difficulties in using the Viterbi
algorithm and suggested a way to get around this inconvenience, which was

to perform a “truncated search” instead of full trellis search performed by
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SA+GLA GLA

N | train | test | train | test

21 7.03 | 681 | 6.92 | 6.86
30 9.82 | 955 | 877 | 8.59
4 [ 11.61 { 11.50 | 10.13 | 9.87
O 1202 012,06 | 11.05 | 10.67

6 | 12,18 | 12.02 ) 11.56 | 11.09
711230 ) 1197 ) 11.87 | 11.70
8 | 12,32 [ 11.97 | 12.13 | 11.91

Table 5.2: SQNR [dB] results for the first order Gauss-Markov source. A
constraint length, SA+GLA: simulated annealing and generalized Lloyd algo-
rithm, GLA: generalized Lloyd algorithm only.

Truncation Depth:

K | full search | 1004 50K 10K LY4¢ 3N 2K
5.482 0.482 | 5482 | 5476 | 5.448 | 5.358 | 5.122
8.709 8.709 | 8.709 | 8.683 | 8.592 | 8.449 | 8.235
11.304 11.304 | 11.304 | 11.294 [ 11.153 | 10.706 | 10.183
11.550 11.550 | 11.550 | 11.539 | 11.315 | 10.821 | 10.359
12.103 12.103 | 12.103 | 12.057 | 11.732 | 11.194 | 10.805

ST WS

Table 5.3: SQNR [dB] results for the first order Gauss-Markov source with
different truncation depths. L': constraint length, TD: truncation depth.

the Viterbi algorithm. This modification in trellis search would allow us to
store only a part of candidate paths (typically of length 10 x A") and therefore
enable us to use larger training sequences such as 50,000 or 100,000 samples.
This argument needs experimental justification: we should show that both full
search Viterbi algorithm and its modified version performing truncated search
give the same results and there is no performauce loss. This 1s done by running
SA+GLA having a full-search encoder and testing the optimum trellis (with
optimum codebooks and state-transitions) obtained by this run with the same

Gauss-Markov source and truncated-search encoder with various search depths.

The results are given in Table 5.3.

As can be scen, there is no performance loss at all for VAs with trunca-
tion depths of 10 times the constraint length and above. For small constraint

lengths, truncation depths of even 5 times the constraint length are satisfying.
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But, for truncation depths shorter than 5 times the constraint length, the per-
formance difference becomes significant. Therefore, we are justified to use the

modified Viterbi algorithm with a search depth of 10 x A

5.2 Vector Trellis Waveform Coding

As discussed in Chapter 2, Section 2, codiug symbols in blocks rather than one
by one 1s expected to yield higher performance since there is a higher degree of
freedom in choosing decision regions for quantization in block coding and since
this enables exploitation of the correlation between samples. Simulation results
for coding symbols in pairs are given along with the results for scalar coding
using simulated annealing and the generalized Lloyd algorithm in Table 5.4
and Figure 5.3. Although there exists a significantly large difference between
training and test sequence results, indicating the insufficient size of the training
sequence, it can still be concluded from this table that vector coding results
are better than scalar coding results. However, the difference is not signifi-
cantly large. This observation can be interpreted to suggest that scalar trellis
waveform or delayed-decision coding by itself exploits the correlation between

samples quite well, and there 1s not much left for improvement by vector trellis

waveform coding.

A related work is Bei and Gray’s labeled state vector trellis encoding system
[38]. Their approach is to design a FSVQ using the methods introduced by
Foster et al. [7] and use this decoder with Viterbi encoding in trellis waveform
coding. A comparison of our results with those of Bei and Gray’s (for which
two related data points are shown in Table 5.4) indicate (i) the observation
that the performance improvement while increasing the vector length for this

source is limited is shared in [38], and (@) the system and the design technique

proposed here outperform that in [38].

5.3 Finite-State Vector Quantization

As noted above, FSVQ is a special case of TWC where the search length of the
encoder (Viterbi algorithm) is reduced to one stage. Therefore, our arguments

for truncated-search Viterbi algorithm in Chapter 2, Section 1.2 applies to
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SA+GLA LSVTE
k=1 k=2 k=3 k=4

N | train | test | train | test | train | test | train | test
4 { 9.83 | 9.53 [ 10.62 | 10.44

8 | 11.59 | 1144 | 11.74 | 11.54

16 | 11.95 { 11.90 | 12.04 | 11.72

32 (112.00 ) 11.90 | 12.30 | 11.84 | 11.4 | 11.4

64 | 12.25 | 11.97 | 12.54 | 11.93 11.7 | 11.6

Table 5.4: SQNR [dB] results for scalar and vector trellis waveform coding
where the systems with & = | and & = 2 are designed using SA+GLA and
results for £ = 3 and k& = 4 are those of the labeled state vector trellis encoding
system. N: number of states, &: vector length, LSVTLE: labeled state vector

trellis encoding system.

FSVQ, with a search depth of one vectorsize. Looking at Table 5.3, we noted
before that the performance of TWC is the same for truncation depths 10 x I\,
but the loss in performance becomes significant [or truncation depths less than
5 x K, which is due to the fact that the truncated search Viterbi algorithm
cannot perform an optimal search for this short constraint lengths. Therefore,
it is apparent that the performance of FSVQ will be significantly less than the
performance of TWC. Yet still, FSVQ is important practically, since it has

much less computational complexity than TWC and there is only one vector-

size delay involved.

We obtained simulation results first designing the finite-state vector quan-
tizer for the first order Gauss-Markov source and then testing the design with
a source from outside the training data. For designing I'SVQ’s with vector-
lengths 1, 2, 3, and 4, a fixed training sequence of length 20,000 samples is
divided into blocks of 1, 2, 3, and 4 sample lengths respectively, and the re-

sulting vector sequences are used for training the FSVQ.

Our results are given in Table 5.5, and in Iigure 5.4 together with the results
obtained by Foster ef al. [7] and memoryless vector quantization results. Foster
et al. used a method based on a heuristic approach called Omniscient Labeled
Transitions (OLT) for the design of the next-state map, and GLA for the
codebook design. Our results show that SA+GLA performs much better than
VQ and generally better than OLT although not much better. OLT is known
to yield the best results obtained in FSVQ so far [4]. Our results show that
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SA+GLA is a contender {or performing hetter, and we believe the performance
improvement may be more significant for more complicated sources, such as
speech samples. Also, considering the results of Bei and Gray [38] cited in
Chapter 5, Section 5.1, who used the trellis designed for FSVQ by the methods
of [7] for TWC with Viterbi encoding, as a plagiarized decoder, we can conclude
that SA+GLA is generally a better algorithm for designing finite-state machine

decoders than the methods of [7].

SA+GLA VQ OLT
train | test | train | test | train | test
946 | 9.50 | 442 | 440 | 9.2] 9.14
10.65 | 10.81 | 7.90 | 7.86 | 11.04 | 10.90
11.17 | 11.26 ] 9.24 | 9.17 [ 11.22 1 11.08
TLS3 [ 1138 10.15 7 10.07 | 11.34 ) 11.12

L b — o

Table 5.5: SQNR [dB] results for §-state FSVQ and VQ for the first order
Gauss-Markov source. k: vector length, SA+GLA : FSVQ with simulated
annealing and generalized Lloyd algorithm, VQ: memoryless vector quantizer,
OLT : FSVQ with omniscient labeled transition desigu method.

5.4 Predictive Trellis Waveform Coding

In [19], Ayanoglu and Gray incorporated prediction into trellis waveform cod-
ing, the idea being similar to predictive vector quantization [4], with a trellis
encoder replacing the memoryless vector quantizer and a finite-state machine
decoder replacing the vector quantizer codebook. The predictive trellis coding
system they used and the design algorithm they suggested were described in
Chapter 2, Section 5. Their approach in designing predictive trellis waveform
coder was to keep the next-state function fixed, improving the codebooks iter-
atively with GLA and regularly updating the prediction coefficients according
to modified state-codebooks. Through simulations, they designed predictive
trellis waveform coders [19] and compared the SQNR results with the SQNR
results for nonpredictive trellis waveform coders designed with GLA [20]. The
results they report show that, there is a very significant performance improve-
ment introduced by incorporating prediction to the encoding process, which is
about 4 dB for A" = 2, 2.5 dB for ¥ = 3 and generally more than 1 dB for

higher constraint-lengths.
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Following our arguments in the previous sections of the thesis, we can
conjecture that, as in the nonpredictive case, optimizing also the next-state
function we can obtain even better performance with the predictive system.
Considering the performance improvement SA provided over the performance
of GLA, we incorporated SA into the predictive system of Ayanoglu and Gray:
in the design algorithm we suggested for TWC in Chapter 4, Section 3, we
inserted the design algorithm of Ayanoglu and Gray [19] in place of GLA. The
resulting algorithm, at each constraint-length, starts the design process with
a fixed trellis, and then perturbs it into new trellises using SA. When SA exit
criterion is satisfied, the codewords are modified by GLA and the predictor
coefficients are updated according to new codewords (output map) and new
next-state map. This process is repeated until no significant improvement is
observed on consequent SA terminations. The initial trellis for each constraint

length K is obtained by extending the optimum trellis of contraint-length K —1.

5.4.1 First Order Gauss-Markov Source

A PTWC is designed using the method just described on a first order Gauss-
Markov source training sequence of 10,000 samples and the design is tested
with a sequence of the same length. The SQNR results for nonpredictive and
predictive trellis coders designed by GLA and SA+GLA are given below in

able 5.6, and Figure 5.5.
Tabl 6, and Figure 5.5

nonpredictive predictive
GLA SA+GLA GLA SA+GLA
K | train | test | train | test | tram | test | train | test
1| 4.35 | 428 | 4.35 | 4.28 | 10.01 | 9.65 | 9.98 | 10.11
21692 [ 6.8 | 7.03 | 6.81 || 11.08 | 10.73 | 11.08 | 11.21
3| 877 | 859 | 9.82 | 955 | 11.h3 [ 11.18 | 11.61 | 11.74
4 1 10.13 [ 9.87 | 11.61 | LS50 | 11.84 | 11.47 | 12.09 | 12.20
5 1 11.05 | 10.67 | 12.12 | 12.06 || 12.18 | 11.83 | 12.26 | 12.33
6 | 11.56 | 11.09 | 12,18 | 12.02 || 12.38 | 11.96 | 12.38 | 12.45
7 0 1L87 | LL70 | 12,31 | LL9T {| 12.52 | 12.52 | 12.41 | 12.50

Table 5.6: SQNR [dB] results for the first order Gauss-Markov source. K:
constraint length, SA+GLA: simulated annealing and generalized Lloyd algo-
rithm, GLA: generalized Lloyd algorithm only.

The GLA on nonpredictive system (NS), and GLA on predictive system



Predictive Trellis Waveform Coding

1st order Gauss—Markov source

14,0 . I . I "
______________ e
o T -
K e —— .
_________ Beeeeeet
__________________________ A
L //’F -------------------------------- Er"// B
/,”/‘ /‘A ______________
100 F 7 i
~ &
ir)
N
N L
Z
g
7]
8.0 - - 8 GLA, nonpredictive TWC -
»——~ SA+GLA, nonpredictive TWQ
I 4 GLA, predictive TWC
e -+ SA+GLA, predictive TWC
~— D(R)
6.0 -
40 | L 1 1
1.0 3.0 6.0 7.0
constraint—length
Figure 5.5: Predictive trellis waveform coder, SQNR results for first order

Gauss-Markov source.



59

(PS) results in Table 5.6 are reproduced from [19]. Comparing these two sys-
tems, we see the significant improvement provided by the predictive system as
reported in [19]. The performance improvement from GLA on nonpredictive
system to SA4+GLA on nonpredictive system was discussed in Section 5.1 in the
context of TWC. When the results of SA+GLA on nonpredictive system and
GLA on predictive system, that is, our TWC results and Ayanoglu and Gray’s
PTWC results are compared, their results are significantly better for structures
with small constraint lengths (K = 1,2,3). This is expected since the predic-
tive system has a higher system complexity. However, for higher constraint
lengths our results are quite close to those of [19], so that the nonpredictive
system once again becomes attractive. Next, comparing our SA+GLA results
for nonpredictive and predictive systems, we observe a significant performance
improvement provided with the predictive system (especially for K = 1,2, 3,4)
which paralels the results of Ayanoglu and Gray [19]. Finally, when GLA and
SA+GLA results for the predictive system are compared, the superiority of
SA+GLA is obvious. The SA+GLA results are good since even with a con-

straint length of 4, the algorithm shows a performance which is within 1 dB of

the D(R) bound.

5.4.2 Speech Model Source

Another source of importance is the speech model source. In [49] Wilson and
Husain used the speech data obtained by McDonald [50] to obtain a third-order
Gauss-Markov model for speech. The model is described by the difference
equation
X, = L75X, -1 — 122X, +0.301 X, -3 + Wi (').3)
where W’s are independent, identically Gaussian distributed with zero mean.
The variance oy is 0.097. The process Xy is stationary with unit variance. The
D(R) bound for this source is calculated to be 14.4 dB at rate 1 bit/sample
[44]. The SQNR of 1 bit DPCM for this source is 8.4 dB. Simulation results

are given in Table 5.7 and Figure 5.6. with the results of Ayanoglu and Gray’s

predictive system [19], CGA [44] and GLA.

These results indicate that predictive systems show significantly better per-

formance over nonpredictive systems. This is expected since the source is

more complex (third order) than the previously used sources, and a higher

order linear predictor is used. Second, the performances of nonpredictive GLA
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nonpredictive predictive
K | GLA | CGA | GLA | SA+GLA
2| 6.97 | 7.00 | 10.40 10.53
30920 | 9.20 | 11.47 11.70
4 1 10.96 | 10.80 | 12.04 12.25
5| 12,16 ] 12.10 | 12.60 12.60

Table 5.7: SQNR [dB] results for the speech model source. K: constraint
length, SA+GLA: simulated annealing and generalized Lloyd algorithm, CGA:
Powell’s conjugate gradient algorithm, GLA: generalized Lloyd algorithm only.

and CGA are almost the same. Remember that for the memoryless Gaussian
source, the performance of CGA was significantly better than the performance
of GLA. This observation shows that we cannot generalize our argument about
CGA and GLA on the memoryless Gaussian source to other sources. The per-
formance of the algorithms is dependent on the source used. Third, predictive
system designed with SA+GLA has a higher performance than the predictive
system designed with GLA only. This result points out the potential of im-
proving the performance of predictive trellis waveform coders by optimizing

the next-state function.

5.5 Trellis Coded Quantization

5.5.1 Memoryless Gaussian Source

As was discussed in Chapter 2, Section 6, Marcellin and Fischer suggested TCQ
in [51], basing their arguments on an observation made in alphabet-constrained
rate distortion theory for the uniform i.i.d source. In [51], Marcellin and Fischer
also noted that they had no intuitively pleasing distance property arguments
to justify using TCQ for memoryless Gaussian source but alphabet constrained
rate distortion theory indicated that a substantial performance increase over
the Lloyd-Max quantizer was possible. The simulation results they obtained
following this observation for memoryless Gaussian sources are given along
with the simulation results for uniform i.i.d. and Laplacian i.i.d. sources in
[51]. Among these, the memoryless Gaussian results are of interest to us since

we have already tested the performance of our design approach on this source



R|TCQ | TCQ(+SA) | TWC(SA+GLA) | TWC(CGA) | L'M Q. | D(R)
1| 4.54 4.57 465 1.85 440 | 6.02
2 110.06 | 10.06 10.19 9.30 | 12.04

Table 5.8: Comparison of trellis coders for Gaussian i.i.d. source, N =4, L-M
Q.: Lloyd-Max quantizer, CGA: Conjugate gradient algorithin

in the previous sections.

Marcellin and Fischer used the Ungerboeck trellis structure described in
Chapter 4, Section 6 as the next-state function for the rates R =1,2,3. The
output map was constructed by assigning the R + 1 bits/sample Lloyd-Max
output points to the trellis branches according to Ungerboeck’s branch labeling
rules [52]. They report that although the SQNR results for the Gaussian i.i.d.
source were quite higher than the Lloyd-Max quantizer results, the results were
still far away from the D(R) bound. To improve performance, they developed a
training sequence based numerical optimization procedure for output alphabet
design and they obtained better results with this algorithm. They also report
that the performance diverged away from the distortion rate function as the
rate growed. Therefore, they examined all the trellises other than the one
described to see whether there are other trellis structures fitting better to
TCQ, but they report that little could be gained over Ungerboeck’s trellises.
In several cases they found trellises that performed better than Ungerboeck’s,
but the improvement was insignificant. To observe if any improvement can
be gained by SA, we first constructed a trellis following the procedure they
gave for TCQ, obtained the SQNR value for this trellis, and then perturbed
the trellis structure with SA and obtained SQNR values for the new trellises.
The SQNR results for “plain” TCQ system, TCQ system with SA applied,
Lloyd-Max quantizer and rate-distortion bound for 2 = 1, 2 = 2 are given in

Table 5.8 together with our SA+GLA results for TWC.

Results show that almost no improvement is gained due to changing the
next-state map. But some improvement is seen when the output points are
trained. Taking a look at our previous TWC results for the memoryless Gaus-
sian source, we also see that CGA gives much better performance than “plain”
TCQ although with a price of higher computational complexity. These re-
sults draw our attention to two facts: First, for rate R encoding, rate B + 1

Lloyd-Max output points are not the best choices as codewords for memoryless




63

Gaussian sources. Better output maps can be obtained with design algorithms
like GLA and CGA. Second, as was discussed in Chapter 2, trellis coding effi-
ciently exploits the correlation between the samples, that is its real success is in
coding sources with memory. Since Gaussian i.i.d. source does not have mem-
ory, the trellis structure supplies no important advantages, therefore, changing

the next-state map does not affect the performance significantly.

To verify the last statement more strongly an exhaustive search was per-
formed over the possible R = 1, N = 4 trellises, and it was observed that other
than the pathological cases, the performance for most trellises were very close.

It is worth noting that this exhausted search also showed that TWC with SA

had found the best trellis.

5.5.2 First Order Gauss-Markov Source

As discussed before, the success of trellis source coding is in coding sources with
memory. In [51], Marcellin and Fischer did not give any simulation results for
coding sources with memory by TCQ. Therefore, we performed simulations
for the first order autoregressive GGauss-Markov source, using the TCQ system
introduced in [51] for memoryless sonrces. That is, the trellis is an Ungerboeck
trellis with Lloyd-Max output points assigned to brances as described in [51].
Then, the trellis structure (next-state map) is perturbed into new structures
via SA. The results are given in Table 5.9. The improvement from the trellis of
[51] by SA is significant (about 0.7 dB), which shows that for coding first order
Gauss-Markov sources there exist trellis structures significantly better than the
one used in [51]. The improvement by SA was expected, because the source is
highly correlated (correlation coefficient: 0.9) and the next-state map becomes
important. But even with optimizing next-state function for the given output
map, the performance is far from the D(R) bounds. Our simulation results
obtained for the first order Gauss-Markov source are also shown in the table to
indicate the need for optimizing output map and next-state map together for
the design of high performance trellis coder. The improvement from “plain”
TCQ to TWC with SA+GLA is more than 4.5 dB for R = 1 and 6.5 dB for
R = 2. Observingthe difference between the TCQ results and the TWC (GLA)

results obtained by [20], we sce that using Lloyd-Max quantizer outpnt points

does not guarantee any good codebook.



R | TCQ | TCQ(+5A) | TWC(SA+GLA) | TWC(GLA) | D(R)
Il 4.71 5.45 9.55 8.59 13.23
2] 6.85 7.65 13.58 19.25

Table 5.9: N =4, first order Gauss-Markov source, a = 0.9

5.5.3 Predictive Trellis Coded Quantization

Marecellin and Fischer incorporated linear prediction to TCQ) to form predictive
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TCQ (PTCQ). The search algorithm, that is the encoder, of their predictive
system is similar to that of Ayanoglu and Gray [19], but the design algorithm

is different in that they do not train the codebooks and they do not update the

predictor coefficients. For comparison we give simulation results for PTCQ of
[51], PTWC of [19] and our PTW with SA4+GLA on first order Gauss-Markov
source in Table 5.10 and on speech model source in Table 5.11. As can be seen,
in both cases our PTWC with SA+GLA performs better than the other two

systems. This superiority is due to optimizing the next-state map.

PTCQ | PTWC(GLA) | PTWC(SA+GLA)
K test train test train test
30 1119 (1153 1118 | 11.61 11.74
4 | 11.60 | 11.84 | 11.47 | 12.09 12.20
5 11.89 | 12,18 ] 11.83 | 12.26 12.33
6 | 12.13 | 1238 ] 11.96 | 12.38 12.45
T 1222 | 1252 12.52 | 1241 12.50

Table 5.10: Predictive trellis coding results for first order Gauss-Markov source

K | PTCQ | PTWC(GLA) | PTWC(SA+GLA)
31 11.03 11.47 11.70
4 | 11.65 12.04 12.25
ool 12.24 12.60 12.60

Table 5.11: Predictive trellis coding results for speech model source



5.5.4 Codebook Assignment to Branches in TCQ

During our simulations with SA on the initial Ungerboeck trellis used by Mar-
cellin and Fischer, we noticed that some of the new trellises reached by a series
of SA perturbations were Ungerboeck trellises used in [51], but the branch
labelings were different. These trellises mostly had better (sometimes signifi-
cantly better) performance than the initial trellis. Moreover, we noticed that
the branch labelings satisfied Ungerboeck’s branch labeling rules [52]. This
observation seemed very interesting to us, since nothing was mentioned in the
papers by Ungerboeck [52] and Marcellin and Fischer [51] about the possibility
of existence of other trellises labeled according to Ungerboeck branch labeling

rules but showing different performances.

To see the performances of those trellis coders we first produced all of the
possible different branch labelings (codebook assignments) satisfying Unger-
boeck’s rules for the trellis with the structure of Figure 2.4. The super-
codebook is generated and the set partitioning is done as described in [51].

These trellis coders are shown in [figure 5.7.

There are symmetries among some of the trellises: If the nodes 0, 1, 2 and
3 are relabeled as 3, 2, | and 0 respectively, trellis-e becomes trellis-a, trellis-
f becomes trellis-b, treilis-g becomes trellis-¢ and trellis-h becomes trellis-d,
that is, trellises in (a) and (¢), (b) and (f), (¢) and (g), and (d) and (h) are

equivalent. Therefore, we need to consider only trellis-a, trellis-D, trellis-c and

trellis-d.

Trellis-a is the one used by Marcellin and Fischer [51]. The difference be-
tween the performance of this trellis and the others was noticed while coding
Gauss-Markov source with correlation coefficient @ = 0.9, and before for mem-
oryless Gaussian source (¢ = 0.0) we saw noted that the performances for
most trellises (other than patological ones) were almost the same. For this
reason we are tempted to look at the performance for various values of a. We
first calculated SQNR for trellis-a, trellis-h, trellis-c and trellis-d on first or-
der Gauss-Markov source with several correlation coefficients, on memoryless
Gaussian source and on speech model source, using Lloyd-Max output points

as codewords as in [51]. The results are given in Table 5.12.

The results show that trellis-b shows the best performance and trellis-d

shows the worst among all. Morcover, we see that the performance difference
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(6] )

Figure 5.7: Ungerboeck trellises satislying the branch labeling rules of Unger-

hoeck



67

a trellis-a | trellis-b | trellis-c | trellis-d
0.95 4.71 5.54 4.60 4.41
0.9 4.58 5.30 4.53 4.35
0.7 4.69 5.01 4.61 4.60
0.5 4.70 1.82 4.66 4.71
0.0 4.71 4.71 4.71 4.71

speech | 4.52 4.80 4.55 4.33

Table 5.12: R = 1, performance comparison of possible branch labelings for
Ungerboeck trellis, Gauss-Markov sources

decreases with decreasing correlation coefficient and there is no performance

difference for a = 0.0, the memoryless case.

Trellis-b shows always better performance than the other trellis coders. To
gain more insight to the matter we concentrated on this coder and trellis-a, the
trellis coder used in [51] and obtained data for negative values of correlation
coefficient (¢ < 0), and for coding sequences with correlation coefficient, a
with a decoder designed for a sequence with correlation coefficient —a, that

with output map as the Lloyd-Max quantizer output points for source with

—a. The results are given in Table 5.13.

On this data, we can make the following observations: The difference be-

tween the performances of the two trellises increases with increasing a.
With decreasing a, the performance improvement supplied by SA decreases.

For the positive and negative values of «, trellis-b shows always better

performance. This is true even when the codebook designed for the source

with —« 1s used for source with «.

While the SQNR values for trellis-l increases significantly (from 4.65 dB

to 5.35 dB) with increasing @, the SQNR values for trellis-a stays almost the
same.

In the light of these results, we can draw the following conclusions about
TCQ:

As was discussed in previous chapters, the design problem of trellis source

coding is equivalent to the design problem of the next-state map and the output



Ql (¢ =0.9) Q2 (e« = —-0.9)

a t-a | +SA | t-b | +SA | t-a | +SA | t-b | +SA
0.9 | 4.61 | 5.34 | 5.34 | 5.34 | 4.58 | 5.26 | 5.26 | 5.26
-0.9 |1 4.57 | 5.45 | 5.39 | 5.52 [ 4.49 | 540 | 5.30 | 5.37

(a)
Ql (a=0.7) Q2 (a = —-0.7)

a t-a | +5A | t-L | +5A | t-a | +SA | t-b | +SA
0.7 | 4.69 5.12 | 5.01 | 5.12 [ 4.66 | 5.09 | 4.99 | 5.09
-0.714.63 | 5.16 | 5.00 | 5.08 | 4.62 1} 5.13 | 4.99 | 5.13

)
Ql (« =0.5) Q2 (¢ = —0.5)

a t-a | +SA | t-b | +SA | t-a | +SA | t-b | +SA
0.5 | 4.69 | 4.91 | 4.79 | 4.91 | 4.67 | 4.88 { 4.78 | 4.90
0.5 4.72 1 4.95 | 4.76 | 4.95 [ 4.72 ] 4.93 | 4.75 | 4.98

(©)
Ql (« =0.1) Q2 (a = —-0.1)

a t-a | +SA | t-b | +SA | t-a | +SA | t-b | +SA
0.1 | 4.65] 4.71 [ 4.71 | 4.74 | 4.64 | 4.67 | 4.69 | 4.71
-0.1 { 4.67 | 4.69 [ 4.69 | 4.71 | 4.66 | 4.69 | 4.67 [ 4.69

Table 5.13: Trellis-a and trellis-h comparison (t-a: trellis-a, t-b: trellis-b),
+SA: performance with SA on the trellis the SQNR of which is given in the
previous column, Ql and Q2 denote the quantizers with Lloyd-Max output
points calculated for S1 (source 1) and S2 (source 2) respectively, Source 2 has

(d)

a correlation coefficient that is negative of Source I's.
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map. Being a trellis source coder design approach, the TCQ technique suggests
a fixed next-state map during trellis decoder design procedure: the next-state

map is not optimized. The next-state map TCQ suggests is the Ungerboeck

trellis which was shown in Figure 2.4.

FFor memoryless Gaussian source our results showed that this next-state
map was fairly good, but it is one of the many good ones, it is not particularly
the best trellis. As also noted in [20], the next-state map is not very important
in coding memoryless sources with trellis coders, therefore, other than the
pathological cases, most of the trellises would give approximately the same
performance. This was verified above by the results of exhaustive search we

performed for R = I, N = 4 trellis. The Ungerboeck trellis, having a symmetric

structure, is just one of the better ones.

TCQ’s suggestion for output map design involves the generation of a su-
percodebook, partitioning this supercodebook into subsets and labeling the
branches with indexes of the subsets, that is, assigning the subsets to the
branches. As we noted even for memoryless Gaussian source, this choice of
Lloyd-Max output points does not look like a good one, since we have shown
the possibility of obtaining significantly better codebooks with GLA or CGA.

Set partitioning and branch labeling are done in a way to increase the
distance between the codewords. These two approaches were borrowed from
TCM where they are well justified. In TCM, set partitioning and branch label-
ing according to Ungerboeck’s rules leads to the maximization of free distance
between code sequences. This means that the code sequences are made as
far as possible from each other, which decreases the probability of deciding
on a wrong code in the decoder due to channel noise. Making codes robust
to channel noise is a common goal in modulation and channel coding. But
in quantization, as discussed in Chapter 1, it is assumed that the channel is
lossless, and therefore the goal is not to design robust codes but to compress
the data so that the redundancy is removed and communication can be done
with less bits per sample. Therefore, maximizing the distance between the
codewords is not a step towards better compression. Yet, for memoryless uni-
form sources, maximizing the distance between the codewords available at a
state seems a intuitively good approach since this allows an even distribution of
codewords for finer quantization. But, it is not that straightforward for sources
with memory, since not codewords but codeword sequences become significant

due to memory. During design, one should take into account consequent stages,
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not just one stage. Above we stated that the arguments of modulation do not
carry to quantization. Lven if such an analogy exists according to Marcellin
and Fischer’s arguments, this analogy can be only on the basis of memoryless
sources. For sources with memory, carrying the idea of maximizing the distance
between codes in modulation to trellis quantization leads to the maximizing
the distance between available reproduction sequences. As showed by our sim-
ulations in Section 1.1 this chapter, there is no significant loss in performance
if the Viterbi algorithm makes truncated search instead of full search, with a
truncation depth of 5 x K for small constraint lengths and 10 x K for for higher
constraint lengths. Then, following the above observation, for a trellis 4 states
the codebooks should be assigned to trellis branches considering a section of
trellis with 15 stages. Therefore, unlike branch labeling rules of TCM, or of
TCQ on memoryless source who consider only one stage of trellis the branch

labeling rules to be designed must take into account a long trellis section. This

is not an easy task.

We can conclude that the rules of Ungerboeck do not carry to sources with
memory. This fact is verified with our simulation results for Gauss-Markov
sources. We have scen that there exist significantly better trellis structures

and that optimizing next-state map and output map, substantial gains are
possible.

Our last observation about different trellises satislying Ungerboeck rules but
having significantly varying performances, also point out the lack of analogy

in this case with TCM.



Chapter 6

SUMMARY AND
CONCLUSIONS

The main contribution of this thesis is the employment of simulated anneal-
ing (SA) for the optimization of the next-state map of the decoder for data
compression systems based on finite-state machines, such as finite-state vector
quantization, trellis waveform coding, predictive trellis waveform coding, and
trellis coded quantization. A decoder design algorithm for the joint optimiza-
tion of the output map and the next-state map is obtained by incorporating

the generalized Lloyd algorithm (GLA), a well-known algorithm for codebook

design, into design.

Simulation results were obtained for Gaussian sources such as Gaussian
i.i.d., first order Gauss-Markov, and third order Gauss-Markov (speech model)
sources. Comparison of these results with other related work in the literature
shows (%) the need for optimization of the next-state map of finite-state machine

decoders, and (i) SA is very succesful when employed for this purpose.

During simulations, theoretical as well as heuristic methods were used for

choosing the SA parameters. In most of the simulations, Metropolis loop
lengths of 20 x N or even 10 x N sulliced to reach quasi-equilibrium where
N is the number of states. For the selection of the initial temperature, John-
son’s algorithm turned out to be a good method in almost all of the cases, but in

some cases for the speech model source (third order Gauss-Markov source), this



algorithm gave too low initial temperatures which had to be increased man-
ually. As the cooling or temperature decrement function, geometric cooling
was used. In almost all of the simulations for finite-state vector quantization
and trellis waveform coding, the values between 0.8 and 0.9 seemed to be the
ideal choices for the cooling coefficient. For predictive trellis waveform coding,
cooling coefficients as small as 0.6 led to good cooling schedules. After each
output map optimization with the GLA, and after each trellis extension, the
temperature was multiplied with two different constants to increase the prob-
ability of moving out of local minima for the new structures. Experimentally
the ideal values of these constants were found to be 5 and 3, respectively. The
exit criterion was that program terminated when the relative improvement was

below 0.001 which was also determined experimentally.

The main drawback of the SA+GLA is the computational complexity due to
running the Viterbi algorithm for each new structure during SA and each new
output map during GLA. It has Leen observed during the simulations that for
high constraint length trellises the SA improvement is not very significant, most
of the improvement is provided by the GLA. Following this observation, one can
simply perform only GLA for high constraint lengths and speed up the design.
Another way to speed up the design is to bring some restrictions to the state
space such as a subset of the previously defined state space in Chapter 4, but
for which it is more likely to obtain the optimum trellis structure. For example,
intuitively, symmetric structures can be expected to give better performance.
With this motivation we brought the following restrictions to the state-space:
the state-space of all trellis structures with two branches coming out of each
branch and two branches going into each node. The trellis structures in this set
have a fair amount of symmetry. The simulation results for rate R = 1 scalar
trellis waveform coder showed that the execution time was reduced to less than
one fifth of the original, while there was no performance loss. However, this
approach did not work well for vector trellis waveform coding, and a significant

loss of performance was seen due to the smaller state-space.

The trellis coded quantization results show that this quantization technique
does not have a sufficiently high performaunce for sources with memory, and
the analogies from trellis coded modulation which work well for trellis coded

quantizer design for memoryless sources do not carry over to trellis coded

quantization for sources with memory.



APPENDIX

In this appendix, we give the optimal decoders obtained for each constraint-
length of the quantization systems simulated. The SQNR values of these de-
coders were given in Chapter 5. Also, the typical SA parameters for obtaining

good decoders for each quantization system are given.



Appendix A

Trellis Waveform Coders

A.1 Memoryless Gaussian Source

Typical SA Parameters

Markov chain length : 20 x N

Initial temperature :Johnson’s method for
number of iterations : 20
Xop = 0.8

decrement coefficient for temperature ; 0.85

exit epsilon : 0.001

temperature increment coefficient after GLA : 5.0

temperature increment coefficient after EXTEND : 3.0



Best Decoders

n | branch 0 | branch 1
0 0 l
1 0 1

(a) next-state map

n | branch 0 | branch 1
01 0.400727 | -0.394668
I ]-0.394668 | 0.400727

Table A.l:

K =2, TWC, Gaussian i.i.d. source

(b) outp

1t map

n | branch 0 | branch 1
0 0 2
l | 3
2 1 3
3 0 2

(a) next-ste

wte map

n

branch 0

branch 1

LN —

0.498106
-0.402267
1.227503
-1.353667

-0.933209
1.083091

-0.398080
0.345442

Table A.2:

N

(b) output map

=3, TWC,

Gaussian 1.1.d. source




n | branch 0 | branch 1
0 4 0
1 b )
2 0 4
3 6 b)
4 l 7
5 3 2
6 T 1
7 2 3

(a) next-state map

branch 0

branch 1

Table A.3:

n
0| 1.023595 | -0.433011
1} -1.612412 ] 0.335513
2| 1.116483 | -0.380100
31 -1.130612 | 0.358584
41 1.153563 | -0.410210
51 -1.143184 | 0.336238
6| 1.392741 | -0.369801
7 1 -0.864818 | 0.504675
(h) output map
K =1, TWC, Gaussian i.1.d. source



n | branch 0 | branch 1
0 3 10
1 1 0
2 7 2
3 12 5
4 2 3
5 5 14
6 3 8
7 11 9
8 12 7
9 0 1
10 10 13
11 15 6
12 11 4
13 6 14
14 13 4
15 9 15

(a) next-state map

branch 0

branch 1

14
15

0.956935
-1.449356
0.814988
-1.167243
[LI11163
-1.096053
0.943482
-0.771833
0.8348H5
-1.992718
1181968
-0.970490
1.338492
-0.889492
1.799364
-0.646306

-0.626999
0.204309
-0.308483
0.433341
-0.523422
0.288956
-0.522604
0.770788
-0.469643
0.243803
-0.317663
0.477060
-0.386708
0.465952
-0.248257
0.547582

Table A.4: I

(b) output

map

=5, TWC, Gaussian i.1.d. source

7



Table A.5:

n | branch 0 | branch [
0 1 21
1 19 26
2 14 5
3 26 0
4 6 30
5 14 17
6 25 0
7 28 18
8 2] 23
9 10 3
10 24 7
11 20 31
12 30 27
13 4 29
14 7 15
15 11 13
16 12 1
17 29 27
18 8 6
19 2 5
20 1 16
21 2 10
22 9 28
23 9 25
24 4 22
25 3 11
26 2 S
27 17 20
28 16 12
29 13 19
30 22 24
31 13 15
(a) next-state map

KN =6, TW(C, Gaussian 1.i.d. source
b 9
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branch 0

branch 1

-1.415704
0.789710
-1.250954

0.359435
-0.417666
0.331562

n
0 | 1.005928 | -0.570051
1 ]-0.894044 | 0.467453
2 | 0.613815 | -0.522761
3 | -1.114618 | 0.621003
4 | 1.069456 | -0.303017
5 | -0.648785 | 0.418263
6 | 2.132303 | -0.179864
7
8
9
10

0.965719 | -0.264935
11| -1.904037 | 0.112167
12| 1.522146 | -0.424552
13 | -0.651077 | 0.664537
14 | 1.045453 | -0.478977
15 | -0.972378 | 0.489671
16 | 0.983003 | -0.240081
17 | -0.650244 | 0.561341
18 | 0.724704 | -0.396233
19 | -0.861156 | 0.593744
20 | 1.017855 | -0.321219
21 | -0.700058 | 0.744010
22 | 1.442099 | -0.026367
23 | -1.419970 | 0.370383
24 | 1071631 | -0.259449
25 | -1.731396 | 0.190351
26 | 1.122810 | -0.510312
27 | -1.562663 | -0.017035
28 | 1.665159 | -0.203703
29 | -0.964871 | 0.832433
30 | 0.730172 | -0.718638
31| -0.888529 | 0.347167

Table A.5:

K =6, TWC, Gaussian 1.i.d. source

(h) output

map

79



A.2 First Order Gauss-Markov Source

Typical SA Parameters

Markov chain length : 10
Initial temperature :Johnson’s method for
number of iterations : 20
Xop = 0.8
decrement coefficient for temperature : 0.83
exit epsilon : 0.0001
temperature increment coefficient after GLA : 5.0
temperature increment coefficient after EXTEND : 3.0

Best Decoders

] n | branch 0 | branch |1
0 l 0
l 0 2
2 3 I
3 2 3

(a) next-state map

n | branch 0 | branch 1
0 {-1.317558 | -3.555688
1] -1.332245 | 1.172386
20 1021110 | -0.217269
3| L2I5147 | 3.109187 |

(b) output map

Table A.6: K = 3, TWC, first order Gauss-Markov source



branch 0

branch 1

W — D

~
—

-~ Y

l
0

Tt -

AL B NV

<

\IOGC’:qsr—-C)w,,p_

(a) next-state map

branch 0

branch 1

-1.842838
-1.975841
3.087688
0.215805
-3.148938
1.869517
1.424980
3.055708

-3.240623
-0.679632
1.917083
-0.841430
-4.784435
0.624560
0.151375
4.850288

(b) output map

4, TWC(, first order Gauss-Markov source

Table A.7: K = ¢
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branch 0

branch 1

n
0 3 8
1 4 7
2 7 3
3 11 2
4 0 12
5 13 14
6 13 9
7 6 9
3 1 4
9 0 11
10 L5 b}
11 14 1
12 S 12
13 10 6
14 5 2
15 10 15

(a) next-state map

branch 0

branch 1

n

0 | -1.595288 | -2.337436
1| -2.210103 | -1.149231
2 | 0.061080 | -0.579140
3 | -1.019557 | -0.389978
4 | -2.454559 | -3.815359
5 | 2.472368 | 1.243834
6 | 1.307222 | 0.577187
7 | 0.340460 | -0.875333
8 | -2.180346 | -3.326029
9 | -1.469261 | 0.010402
10 | 3.740247 | 2.583740
11 0.513443 | -1.161432
12 ] -3.595695 | -5.154974
13 ] 2.746586 | 1.722071
14 1.391175 | 0.439584
151 3.669924 | 5.266708

(b) output map

Table A.8: K =5, TWC, first order Gauss-Markov source



branch 0 | branch 1

n
0 9 27
1 20 23
2 23 l
3 19 18
4 I 12
b) 29 21
6 18 22
7 14 7
8 | 0 4
9 17 2
10 15 29
11 11 19
12 8 20
13 25 30
14 b) 6
15 26 31
16 12 3
17 4 9
18 21 7
19 16 3
20 16 28
21 13 2
22 D 25
23 30 0
24 17 24
25 bt 11
26 31 22
27 6 13
28 24 28
29 10 14
30 20 27
31 10 15

(a) next-state map

Table A.9: K = 6, TWC, [irst order Gauss-Markov source



branch 0

branch 1

n
0 | -0.974455 | -0.164520
1 1-2.000049 | -1.074749
2 | -0.822482 | -1.552700
3 | -0.869755 | -0.507039
4 | -1.129692 | -3.601913
5 | 1.946057 | 1.050050
6 | 0.756962 | 1.086598
7| 1.321117 | -0.374331
8 | -1.589065 | -2.634410
9 | -1.057536 | -1.395539
10 | 3.244459 | 2.753728
11| U.498574 | -0.758142
12| -2.647436 | -3.348706
131 0.217420 | 0.929271
14 | 0.305753 | 1.399723
15 | 4.046789 | 5.346585
16 | -1.930892 | -1.402306
17 ] -1.966713 | -2.423832
18 | 0.315046 | 0.558480
19 | -1.129013 | 0.068317
20 | -2.174525 | -£.064084
21 1 0.225421 | -0.379364
22| 1763938 | 0.744750
23 | 0.120431 | -0.492896
24 | -2.389042 | -3.315650
25 | -1.845309 | 0.159633
26 | 3.820021 | 2.367039
27| -0.520255 | -0.463210
28 | -3.867087 | -5.286714
29 | 2.733174 | 1.553090
30 2.280012 | 1.301552
3L 3.778540 | 5.272804

Table A.9: K = 6, TWC(, first order Gauss-Markov source

(b) output map



n | branch 0 | branch 1
0 34 27
1 49 0
2 13 2
3 37 46
4 32 44
5 61 63
6 18 54
7 48 62
8 25 4
9 57 48
10 53 23
11 11 52
12 41 20
13 43 22
14 13 6
15 15 37
16 28 4
17 36 8
18 2 15
19 11 7
20 17 12
21 38 21
22 61 Ho
23 16 46
24 16 43
25 40 35
20 29 22
27 G5 l
28 60 28
29 42 29
30 26 5
31 42 47

(a) next-state map

Table A.10: K = 7, TWC, first order Gauss-Markov source



n | branch 0 | branch 1
32 41 39
33 H9 HY!
34 58 32
35 19 34
36 33 12
37 3 17
38 39 31
39 10 53
40 9 20
41 52 24
42 47 58
43 45 25
44 40 23
45 Hl 30
46 45 38
47 20 31
48 44 19
49 36 1
50 el 50
51 9 63
H2 49 24
53 H 62
54 30 5T
HY) H9 27
56 S 0
57 18
58 21 14
59 6 33
60 n0 60
61 10 14
62 56 3
6.3 50 35

(a) next-state map

Table A.10: K = 7, TWC, flirst order GGauss-Markov source



branch 0

branch 1

n

0 | -1.118349 | -0.652145
L | -1.575397 | -1.157551
2 | 0.381212 | -0.917564
3 ] -0.372262 | 1.069438
4 | -2.081864 | -2.368968
5| 2.045488 | 0.518434
6 | 0.639121 | 1.468953
7 -0.996002 | -0.415278
8 | -1.667547 | -2.743954
9 | -0.665897 | -1.634842
10 ] 2.069734 | 0.980288
I1T] 0.540117 | -0.768559
12| -3.082379 | -4.027615
13| 0.645130 | 1.507162
14| 1.672200 | 1.538610
15 | -0.594325 | 0.017553
16 | -4.580405 | -2.220619
I7 ] -2.406700 | -2.352795
181 0.361871 | 0.371523
191 -0.964185 | -0.581324
20 | -3.152089 | -4.112184
21| 1.419376 | 0.170540
22| 2.730453 | 1.453511
23 | -1.352295 | -0.307346
24 1 -3.336836 | -0.924279
25 | -1.404181 | -0.689395
26 | 3.304664 | 3.017478
27 1 0.298691 | -0.643394
28 | -4.743217 | -5.863248
29 | 3.179764 | 2.414539
30 | 2.075268 | 0.819766
31 3.508097 | 5.098598

Table A.10: K = 7, TWC, lirst order GGauss-Markov source

(b) output map
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n

branch 0

branch 1

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

I
(e

[ B

7

AR AR B B
T I D2 e S —

59
60
6l
62
63

-1.516683
-0.245306
0.347109
-0.587441
-1.179526
-0.228464

0.409701
3.774790
-1.9117438
-1.662895
1.433393
-0.247752
-1.651646
1735594
1755470
0.364863
-2.775165
-0.461909
1.241838
0.522274
-3.438734
2.667530
-0.295367
0.997236

20.436919
-0.668541
-0.876801
-0.059613
-3.105496
-1.346078
2.972176
0.639286
-3.017648
2.188176
2.540935
-0.414943
-1.025332
1.036889
1.763624
5.190171
-1.151869
-1.472138
2.031889
0.645106
22.968583
1.185651
0.871120
0.111568
-1.053425
-0.105301
1945119
-0.631521
-4.309810
1.931792
0.708645
0.645050

Table A.10: X =7,

(b) output map

TWC, first order Gauss-Markov Source



Appendix B

Vector Trellis Waveform Coders

Typical SA Parameters

Markov chain length : 10

Initial temperature :Johnson’s method for
number of iterations : 20
Xo =038

decrement coefficient for temperature : 0.80

exit epsilon : 0.0001

temperature increment coefficient after GLA : 5.0

temperature increment coefficient after EXTEND : 3.0
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Best Decoders

n | branch 0 | branch 1 ] branch 2 | branch 3
0 0 0 1 2
l 3 1 3 3
2 0 3 0 1
3 0 3 2 1

Table B.1: N=4, VTWC(, first order Gauss-Markov source

(a) next-state map

n | branch

(8%
L&l\JP—OL&l\D'—‘-OQQI\U'—*OQ&[\D»—C

4.741133
-4.857343
3.289365
-3.388359
2.478996
1.630951
0.138875
0.889355
-1.956920
-1.186885
-2.590685
-0.579778
2.801722
1.383932
-0.606197
0.4106988

4.700180
-4.858268
2.596924
-2.716634
2.560070
1.721158
0.033560
-0.222991
-1.877931
-0.657885
-3.327544
0.261204
3.399782
1.249191
-1.231465
0.799233

(b) output map

n | branch 0 | branch | l branch 2 | branch 3
0 0 0 I 0

1 0 1 7 3

2 2 1 6 b)

3 4 l 2 5

4 0 3 5] 2

5 3 “.') l 7

6 6 7 0 3

7 H 2 6 7 |

(a) next-state map

90



n | branch
0 0 5270138 | 5.218014
| -5.576530 | -5.527416
2 3.943297 | 3.183580
3 -4.033607 | -3.366626
l 0 3.383417 | 4.156414
l 2.710852 | 2.686939
2 1.373504 | 0.337192
3 1.974406 | 1.642668
2 0 -1.428479 | -1.499126
1 0.877330 | 2.004853
2 -0.634315 | -1.514517
3 -0.845216 | -0.335287
3 0 2.032316 | 2.725143
1 1311425 | 1.859928
2 -0.072939 | -0.827797
3 0.803080 | 0.267072
4 0 3.740659 | 3.647718
l 3.100620 | 2.306767
2 2.436588 | 1.530930
3 1.529577 | 0.450096
5 0 0.530883 | 0.972506
1 1.526149 | 1.300949
2 0.164933 | 0.919070
3 0.291570 | -0.357172
) 0 -2.896511 | -2.815017
1 -2.250079 | -1.477163
2 -3.5:45522 | -4.24786G8
3 1251571 | 0.129170
7 0 -0.142969 | 0.540490
| -0.260402 | -0.052904
2 -1.642102 | -2.460466
3 -1.040778 | -1.044247

Table B.1: N=8, VTWC, first order Gauss-Markov source

(b) output map
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n | branch 0 | branch 1 | branch 2 | branch 3
0 0 0 | 6
1 12 9 15 11
2 2 1 6 5
3 12 9 10 13
4 4 4 3 2
5 11 13 10 15
6 6 7 0 15
7 13 10 14 15
8 10 3 8 10
9 0 1 7 3
1 15 9 14 13
11 4 1 15 5
12 12 11 13 5
13 3 5 I 7
14 14 15 13 11
15 b) 2 6 7

Table B.2: N=16, VTWC(, [lirst order Gauss-Markov source

(a) next-state map



n | branch
0 0 5.604480 | 5.611066
-5.938118 | -5.984645
2 4.492712 | 3.605468
3 -4.516740 | -3.750058
| 0 3.024328 | 3.570780
1 2.746552 | 2.830484
2 1.208910 | 0.531043
3 1.974774 | 1.823300
2 0 -0.876491 | -0.773329
| 1.055753 | 2.265142
2 -0.828843 | -1.921983
30 0.104732 | 0.095432
3 0 1.629170 | 2.521529
l 1.279947 | 1.411081
2 0.256865 | -0.464566
3 0.613959 | 0.099513
4 0 4.369026 | 4.495937
| 3.152935 | 2.799014
2 3.052041 | 1.906039
3 1.837109 | 0.728823
) 0 0.705043 | 1.227415
1 777746 | 1.143278
2 0.836047 | 0.362670
3 0.103672 | -0.328298
6 0 -3.316464 | -3.323153
I -3.016271 | -1.996450
2 -4.022808 | -4.645373
3 -2.040093 | -1.322354
7 0 -0.357065 | 0.618988
l -0.853582 | -0.425589
2 -2.204035 | -2.552752
3 -1.234572 | -1.214583

Table B.2: N=16, VTWC(, first order Gauss-Markov source

(h) ontput map

93



n | branch
8 0 0.019146 | 0.019146
1 0.019146 | 0.019146
2 0.019146 | 0.019146
3 0.019146 | 0.019146
9 0 3.398979 | 4.366274
| 2.697483 | 2.764611
2 1.130342 | -0.176796
3 1.709224 | 1.536646
10 0 -0.953227 | -1.975671
1 0.637947 | 1.763029
2 -0.585642 1 -1.493568
3 -0.624613 | -0.514568
1 0 2.057701 | 2.858293
l 1.891900 | 1.965196
2 0.269043 | -1.350487
3 1.135860 | 0.466150
12 0 4.120543 | 3.749097
l 3.328598 | 2.627894
2 2.476281 | 1.190209
3 2.464518 | 1.824183
13 0 0.360137 | 0.776775
l 1.390415 | 1.456153
2 0.108352 | 1.173122
3 0.019502 | -0.640070
14 0 L3214 | - 1477200
| -2.673143 | -2.308079
2 -1.853312 | -0.883801
3 1241634 ) 0.353378
15 0 -0.730426 | 0.127879
I -0.078537 | 0.043096
2 -L98TH03 | -2.829045
3 1397843 | -1.232967

Table B.2: N=16, VI'WC(, lirst order Gauss-Markov source

() output map

94



Appendix C

Finite-State Vector Quantizers

Typical SA Parameters for & = |

Markov chain length : 50 x N

Initial temperature :Johuson’s method for
number of iterations : 20
Xo =038

decrement coefficient for temperature : 0.90

exit epsilon : 0.0001

temperature increment coeflicient after GLA : 7.0

temperature increment coellicient after EXTEND @ 5.0



Best Decoders

Table C.1: £ =1, N =3, I'SVQ, lirst order Gauss-Markov source

n | branch 0 | branch 1
0 4 2
I 7 l
2 4 6
3 4 7
4 3 ()
5 g 3
6 2 6
7 3 l

(a) next-state map

brauch 0

branch 1

n
01 -0.310431 | -2.219085
1| 1.854699 | 4.178630
21 -0.931642 | -2.910005
31 -0.399322 1 1.480231
41 04490338 | -1.386205
51 0.033175 | 0.038175
6| -2.201912 | -4.442060
7 2473366

0.525304
(b)

output map
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Typical SA Parameters for L = 2

Markov chain length : 25 x NV
Initial temperature :Johnson’s method for
number of iterations : 20
)\’0 = 08
decrement coefficient for temperature : 0.85
exit epsilon : 0.0001
temperature increment coefficient after GLA : 5.0
temperature increment coefficient after EXTEND @ 5.0

n | branch 0 | bhranch | | branch 2 | branch 3
0 0 0 2 2
l 2 l l 3
2 0 2 2 l
3 | 3 | 7
4 0 6 2 3
5 3 ] 0 2
6 3 0 5 5)
7 3 3 | 7

(a) next-state map

Table C.2: k=2, N =3, FSVQ, lirst order Gauss-Markov source



n | branch
0 0 5.265943 | 5.168925
1 3.750847 | 3.579158
2 2.684506 | 2.194793
3 1.418963 | 0.600342
1 0 0.769608 | 1.267821
1 -1.535065 | -1.561955
2 0477617 | -0.253232
3 S2.727873 | -3.128867
2 0 2.894946 | 3.238086
I 1.646706 | 1.668941
2 0.516535 | 0.343445
3 -0.652627 | -1.192525
3 0 -1.375284 | -0.610177
[ -3.520238 | -3.500049
2 2.622608 | -2.111162
3 4.760429 | -4.935087
4 0 4.982733 | 3.395519
l 1.071062 | 2.719021
2 1.303239 | 2.599440
3 3424378 | T.463252
5 0 2.038737 | -1.136977
! 0.459546 | -1.348421
2 1.991501 | -1.163665
3 0.120761 | -1.472381
) 0 5.004342 1 7.290382
| -0.032637 | 1.297522
2 0.330164 | 2.049153
3 2209444 1 1268733
7 0 -1.962890 1.477953
1 -4.720460 F143184
2 S3.565314 | -2.581057
3 -6.209052 | -6.021692

Table C.2: &k =

)

—

(1) output map

N = 8. I'SVQ, lirst order Gauss-Markov source
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Typical SA Parameters for £ =3

Markov chain length : 10 x N
Initial temperature :Johnson’s method for
number of iterations : 20
‘YU = 08
decrement coefficient for temperature : 0.85
exit epsilon : 0.0001
temperature increment coefficient after GLA : 5.0
temperature increment coelficient alter EXTEND : 5.0

n|ibrO{bel |br2{br3brd|be5|br6]|br?
0 0 0 3 0 1 l I 6
1 0 1 3 3 O 0 1 7
21 0 2 2 | | 5 7 )
3 0 3 | 7 3 6 3 7
4 l H O (0 q 7 5 b)
5 l 0 ) 6 0 3 6 0
6 0 3 3 O 1 7 6 7
7006 | 606 | 71| L] 7|7

(a) next-state map

Table C.3: A =3, N =38, FSVQ, tirst order Gauss-Markov source



n | branch

0 0 5.109363 5.431272 5.164536
1 4.006186 3.966095 | 3.738970
2 1.1304006 0.475162 | 0.265883
3 2.514161 2.846415 3.161463
4 2.636059 1.596125 | 0.482898
5 3.634366 2.720881 1.935693
6 1.693023 1.668988 1.912491
7 0.526378 -0.701334 | -1.088612

1 0 2.703965 3.483591 3.653046
I 2.530346 2.378704 1.762619
2 00534182 1 -0.637212 | -0.412121
3 1.61576Y 1.135916 0.318295
4 0.87112 -(.258427 | -0.879948
) 1.253705 1.691569 2252157
O 0.312138 (0.395390 1.042463
7 0.577134 -1.672618 | -2.266603

2 0 ST.873535 | -T.343118 | 28.097795
l -12.485530 | -7.631879 6.858236
2 2.909985 | -21.846602 | -0.878008
3 17.380016 5.414954 -1.483955
4 9.173210 -3.319110 | -7.088783
5 -3.503651 11.033963 | -1.407703
) 7.891477 4.4:32295 -0.264960
T 11722192 | 12466121 | -0.571655

3 0 1.918854 2.708772 | 2.806156
l 1.05:4827 (.970893 0.381185
2 0.614771 1.372642 1.913235
3 -0.379710 -1.375547 ) -2.187086
4 -0.4:40361 () 024965 0.646896
) 0.157639 ).232453 | -0.8148H9
) -1.299189 —l..i()-l-l-tl -0.691068
7 -1.861581 2547947 | -2.845411

Table C.3: & =13, N

=3, I'SVQ, first order Gauss-Markov source
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n | branch

4 0 1423141 -0.533716 | -10.151269
| 2.569156 5.I5STTO | -28.459314
2 0.781074 -0.115801 | -6.596109
3 -2.953858 | -3.355364 0.302886
4 -0.919418 3.108907 11.269861
5 S12.787813 | 10.286900 | -4.243959
6 -2.4159163 1.5:42001 4.164834
7 130148629 | T.328683 0.870785

5 0 7.759699 5.494298 3.877136
l -5.943651 | -2.899627 6.206387
2 -10.869227 | 14.524001 | -2.006455
3 S131AT25 0.206836 | 20.874896
4 SO 7740 1.949367 -0.447612
H 5.948494 -15.910822 | 8.628721
6 12163370 | -25.775613 | 2.236852
7 -14.569044 | -3.913555 7.314335

6 0 0.853615 1.632691 1.960263
| 1154003 ] -0.925700 | -0.064284
2 -0.020140 -0.023677 -0.495230
3 S2.272457 | -2.050835 | -1.447365
4 -0.385407 0.3642:13 0.9140068
5 S1.639155 | -2.316810 | -2.953503
6 -0.857:195 | -1.113238 | -1.559765
7 -2.932331 -3.045203 -3.713961

7 0 -1.069803 | -0.928287 | -1.215668
1 -3.:099389 -2.8318865 -1.776407
2 -2.296375 -1.8:47692 -1.712942
3 -2.520621 -2.30605H8 -3.420323
4 -0.593835H 0.:313559 0.890702
5 -2.223030 | -0.993426 0.015999
) -h 1HH63 1 -3.810168 -3.562237
7 S5UIS8240 | -5.376744 ] -5.165783

(h) output map

Table (.3: A =3, N =8, I'SVQ, lirst order Gauss-Markov source
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Typical SA Parameters for & = 4

Markov chain length : 25 x N
Initial temperature :Johnson’s method for
number of iterations : 20
‘Xr() = 08
0 decrement coefficient for temperature : 0.85
exit epsilon : 0.0001
temperature increment coefficient after GLA : 5.0
temperature increment coefficient after EXTEND : 5.0

| bO{ bl b2 b3 Dbd Db DL6 LT bS] L] blo|bll|blI2]bl3] bld | blb
0O 0104240031215 1 5 0 2 2 7
Li4 (510 (510601311716 0 7 2 3 2 7
2101 L {0 (5143122 4]2 l 3 3 1 3 3
31001415 H 2171 3]3]2 7 3 6 3 7 7
41 1 D 6 0 4 7 b) ) 4 4 0 l 0 4 4 6
51 1 L {00 |4 L 20311472 1 5 0 5 5 3
6] 613103513163 ]4]5 4 6 0 3 0 6
T4 (502131016173 /(3]2 7 7 0 7 3 7

(a) next-state map

Table C.4: k=4, N =38, I'SVQ, lirst order Ganss-Markov source




10
1
12
13
14

5

1.867937
-0.017820
-0.306480
-0.321653
-1.074334
0.589971
-1.366746
-1.7485H43

2.163727
0.104221
0.380124
-0.626501
-0.303:166
-0.4:42100
-1.433010
-2.503087

1.973565
0.000968
[.125690
-1.691397
0.104046
-1.132364
-0.677140
-3.005085

1.090582
-1.040702
1.866454
-2.386711
0.412994
-1.347421
0.753578
-3.532139

n | branch

0 0 5.227879 | 5.222703 | 5.180445 | 4.962482
1 3.061840 | 3.529504 | 3.024169 | 2.644407
2 4.908993 | 4.109995 | 3.460792 | 2.490690
3 2.315391 | 1.986947 | 1.432104 | 0.813344
4 3.210274 | 3.822244 | 4.296479 | 4.324479
5 1.348331 | 1.430499 | 1.716049 | 1.979447
6 2.976751 | 2.070146 | 1.984638 | 2.548806
7 1.310724 | 0.500959 | -0.688282 | -1.526424
8 3.400473 | 2.922449 | 1.815959 | 1.119154
9 2.273855 | 2.174724 | 0.413194 | -0.624835
10 2.086431 | 0.647237 | 0.443988 | 0.580190
11 0.429293 | -0.070658 | 0.601813 | 1.125022
12 1.901406 | 2147314 | 3.231333 | 3.423555
13 0.836969 | 0.946234 | 0.549445 | 0.079659
14 -0.362503 | -0.517407 | -0.394530 | -0.353687
15 0.042171 | -1.200428 | -1.428519 | -1.629724

2 0 1.109072 | 1.868644 | 2.886931 | 3.242663
| 0.804820 | 0.975939 | 1.178270 () 894042
2 1.419470 | 0.888401 1.108795 | 2.206163
3 0.554578 | -0.248155 | 0.332569 | 0.579718
4 2546227 | 3.282443 | 3.383271 | 3.270037
5 1.088489 | 1.269104 | -0.077087 | -0.561724
6 -0.340642 | -0.962293 | -1.045435 | 0.031829
7 -1.172360 | -2.039238 | -2.147176 | -1.562863
8
9

Table C.4: k=4, N =38, FSVQ, first order Gauss-Markov source

(b) output map
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n | branch

2 0 1.653353 1 3.323528 | 3.995395 | 3.655310
1 0.157950 | -0.188828 | -0.619951 | -0.021862
2 0.219413 | 0.890520 | 1.634637 | 2.170611
3 1.485394 | 1.330426 | 0.344219 | 0.052146
4 1.289104 | 1.932611 | 2.261041 | 2.354643
5 -0.390299 | -0.896879 | -1.409742 | -1.373270
6 -0.555592 | -0.422140 | 0.435892 | 1.126510
7 1383174 | -1.196924 | -0.371784 | -0.412408
8 1.977054 | 2.699583 | 2.202050 | 1.574635
9 1.379172 | 0.264099 | 0.357382 | 1.485374
10 0.184771 | 0.879950 | 1.238693 | 0.867818
11 -1.699791  -2.190999 | -1.872276 | -1.331113
12 0.675461 | 0.179512 | -0.893515 | -1.690347
13 0.225928 | 0.351949 | 0.552408 | -0.507554
14 -0.720230 | -1.578199 | -2.385555 | -2.918827
15 -2.108360 | -3.361140 | -4.005695 | -3.788009

3 0 0.039789 | 0.761580 | 2.588775 | 2.778637
1 -0.545327 1 0.178386 | 0.965966 | 1.527636
2 -0.201165 | -0.098703 | -0.533126 | -0.654125
3 S1.67H274 | -1.36445:4 | -0.828726 | -0.376175
4 (0.385:342 1.299466 | 1.271423 | 0.740254
) -1.093258 | -0.097195 | 0.210242 | 0.064081
6 -0.976682 | -1.437113 | -2.543065 | -3.363974
7 -3.485885 | -2.994723 | -2.593587 | -2.067435
8 -1.010938 | -1.074361 | -1.264308 | -1.714685
9 -2.681102 | -2.508308 | -1.403470 | -0.434489
10 -2.594999 | -1.918280 | -1.706093 | -2.441286
11 -3.861101 | -4.397837 | -3.940016 | -3.255873
12 1748360 | -1.039979 | 0.055208 1.043799
13 S1.638354 | -2.539036 | -2.687967 | -1.738728
14 22579102 | -2.998587 | -3.579586 | -3.866772
15 023214 | -4.033536 | -5.178437 | -5.526924

Table C.4: & =4, N =8, 'SVQ, first order Gauss-Markov source

(h) output map
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n

4 0 5.281671 | 5.681374 | 5.775602 | 5.433521
1 3.010793 | 3.246764 | 3.089777 | 3.146135
2 4.854619 | 4.515278 | 3.981652 | 3.107831
3 2.831109 | 2.289188 | 1.364458 | 0.336485
4 3.351190 | 3.883814 | 4.627867 | 4.761534
5 1.448312 | 1.649043 | 1.685533 | 1.283646
6 2.978435 | 2.005127 | 1.873545 | 2.119432
7 0.946447 | 0.147288 | -1.023231 | -1.058876
8 3.656195 | 3.141818 | 2.477588 | 1.521517
9 2279281 | 1.379370 | 0.295886 | -0.871526
10 2.136742 | 1.106592 | 0.182649 | 0.586265
11 0.735370 | 0.209262 | 0.996495 | 1.872894
12 L.733753 1 1.939007 | 2.519213 | 3.099075
13 0.420364 | 0.646570 | 0.684226 | 0.126489
14 -0.106914 | -0.768176 | -0.488993 | -0.200048
15 -0.388612 | -1.712114 | -2.038898 | -2.567068

3 0 0.865816 | 2.138511 | 3.028739 | 3.037902
l 0.808163 | 1.336477 | 1.471085 | 0.716005
2 0.286856 | 0.310225 | 0.405434 | 1.337242
3 0.687882 | -0.160595 | 0.019041 | -0.177723
4 2.359523 | 3.063505 | 3441359 | 3.545694
D 1.428320 | 1.196454 | -0.046013 | -0.203154
6 -0.259998 | -0.519088 | -1.001004 | -0.145809
7 SLETT289 1 -1.695135 | -1.928733 | -1.418465
b [.940139 | 2.007018 | 1.713247 | 1.897120
9 -0.445266 | 0.441076 | 0.217998 | -0.745537
10 -0.011374 | 0490391 | 1740862 | 2.180284
L1 -0.210068 | -1.082106 | -2.257986 | -2.961311
12 -0.965287 | -0.715514 | 0.381692 | 0.760455
13 0.356798 | -0.262727 | -1.121685 | -1.695942
14 139947 -1.372330 | -0.609834 | -0.400839
15 S1LSSTHSY | -2.828381 | -3.287188 | -3.245541

(h) output map

Table C.A: & =4, N =38, FSVQ, lirst order Gauss-Markov source




n | branch

6 0 3.038388 | 3.807328 | 3.646188 | 3.460132
1 -0.066479 | -0.168720 | -0.413650 | 0.649414
2 -0.380786 | 0.751973 | 1.963218 | 2.908115
3 1.752275 | 1.485710 | 0.646039 | -0.244543
4 1.365431 | 1.940973 | 2.796231 | 2.879169
5 -0.702142 ] -0.770116 | -1.329488 | -1.988381
6 -1.452346 | -0.752503 | 0.021547 | 1.249908
7 -1.784706 | -1.451505 | -0.865718 | -0.592809
8 [.835899 | 2.077102 | 1.990262 | 1.676482
9 1.309921 ' 0.905866 | 0.706612 | 1.306185
10 -0.192321 | 0.694702 | 1.089092 | 0.708565
11 1916234 | -2.682508 | -2.290774 | -1.457715
12 0.311350 | -0.492539 | -1.051893 | -1.093283
13 0311282 1 -0.217276 1 0.194151 | -1.046666
14 -1.059258 | -1.679216 | -2.215159 | -3.082141
15 -2.458228 | -3.746438 | -4.221353 | -5.329292

7 0 -0.028298 | 1.388451 | 1.847877 | 2.204583
1 -1.342149 1 -0.123337 | 0.685931 | 1.346408
2 -0.354274 | -0.676146 | -0.590660 | -0.310146
3 SL.792123 | -1.787193 | -1.479759 | -0.703968
4 -0.232535 | 0.999194 | 1.193569 | 0.563240
5 SLLT3TT4T | -0.392301 | 0.378597 | -0.456511
6 -2.304754 | -2.063374 | -2.568177 | -3.5696473
7 -4,056797 | -3.735753 | -2.805000 [ -1.888820
8 S1232179 | -0.904354 | 1142411 | -1.882263
9 -3.322765 | -2.447452 | -1.068927 | -0.320465
19 -3.315508 | -1.858131 | -1.689576 | -1.870707
11 -4 709952 | -4.622735 | -4.202162 | -3.710412
12 -2.244998 | -1.336790 | -0.361302 | 0.505608
13 1792309 | -2.384165 | -2.712839 | -2.028203
14 23345218 | -3.380766 | -3.420138 | -3.602545
15 5408321 | -5.TTT733 | -6.136681 | -5.951677

Table C.4: k=4, N =38, 'SVQ, lirst order Gauss-Markov source

(h) oubput map
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Appendix D

Predictive Trellis Waveform

Coders

D.1 First Order Gauss-Markov Source

Typical SA Parameters

Markov chain length : 20 x N
Initial temperature :Johuson’s method for

number of iterations : 20
;Y() = 0.8
decrement coefficient for temperature : 0.70

exit epstlon : 0.001
temperature increment coeflicient after GLA : 5.0

temperature increment coeflicient alter EXTEND : 3.0

n



Best Decoders

Predictor coefficient : 0.906695

n

branch 1

branch 0
0 l
0 1

(a) next-state map

branch 0

branch 1

1111982
0.413708

-0.354706
-1.123029

Table D.1: K =2, PTWC, first order Gauss-Markov Source

Predictor coefficient : 0.91634

(1) output map

1

N - D

branch 0 | branch 1 ]
2 |
2 l
0 3
0 3

(a) next-state map

n ] branch 0

hranch 1 ]

0.915178
0.312816
0.911924
0.2510410

— N — D

-0.269363
-0.944278
-0.301855
-0.980543

(h) output map

Table D.2: K =3, PTWC, first order Ganss-Markov source
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Predictor coefficient : 0.927614

branch 0

branch 1

6

0

~J — W —

— =

(a) next-state map

n | branch 0 [ branch |
0 | 1.075853 | -0.130653
1 0.251032 | -0.954735
21 0.935542 | -0.205267
30 0189845 | -1.117598
A4 1031421 | -0.161472
51 0.300580 | -1.071149
6| 0.923144 | -0.381030
71 0.291341 | -1.082695 ||

Table D.3: K =4, PTWC, first order Gauss-Narkov source

() output

majp
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Predictor coeflicient : 0.927650

n | branch 0 | branch 1
0 2 15
l 11 13
2 0 3
3 10 11
4 4 1
bt 12 15
6 4 5
7 7 4
3 () 14
9 10 11
10 S 1
11 2 3
12 12 9
13 12 H
14 13 15
15 O [

(a) next-state map

hranch 0

hranch 1

Il
12
13
14
15

1134871
0.181215
0.9873:49
0.174623
1.060623
0.356516
0.982620
0.058227
L1LT1064
0.201276
0.846:399
0. 160655
1.010280
0.292415
0.807014
0.323473

-0.137760
-0.986359
-0.213432
-1.138433
-0.073275
-1.036532
-0.414797
0.058227
-0.093702
-0.934484
-0.280367
-1.089513
-0.137835
-1.086113
-0.436842
-1.070942

Table D.4: K =5, PTWC, lirst order Gauss-Markov source

(h) ontput

map
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Predictor coefficient : 0.929305

n | branch 0 | branch |
0 2 15
1 27 29
2 0 S
3 26 27
4 4 1
5 28 31
6 4 5)
7 23 20
3 0

9 26 2
10 3 1
11 18 19
12 12 9
13 28 21
14 13 15
15 22 |7
16 18 31
17 Il :
18 16 24,
19 10 11
20 20 17
21 12 15
22 20 21
23 7 4
24 16 30
25 10 I
26 24 L7
27 2 3
28 23 25
29 12 b)
30 29 31
31 6

(a) next-state map

Table D.5: A =6, PTWC, first order Gauss-Markov source



branch 0

branch 1

n
0 | 1.068216 | -0.141438
1] 0.227482 | -1.016312
2 | 1.001803 | -0.180752
31 0.129795 | -1.155584
4 1 1.061888 | -0.097036
5 | 0.334116 | -1.024436
6 | 1.014661 | -0.371507
7 1 0.058227 | 0.058227
§ | 1.043461 | -0.196263
9 | G.178796 | -0.875891
10 | 0.535491 | -0.301874
11 ] 0.116516 | -1.075254
121 0.932344 | -0.087264
13 | 0.338087 | -1.063908
14 ] 0.822509 | -0.543447
15 ] 0.364198 | -1.023614
16 | 1.191688 | -0.109190
17 | 0.163243 | -0.975402
18 [ 1.001946 | -0.276178
19 1 0.160787 | -1.052673
20 | 0.966187 | 0.018772
21 | 04337 | -1.053512
22| 1.OL51S3 | -0.456718
23 1 0.058227 | 0.058227
241 1104032 | -0.127150
26 | 0.226031 | -0.933410
26 | 0.800843 | -0.253945
27 | 0.157525 | -1.032063
28 | 1029958 | -0.143985
29 | 0.328459 | -1.113034
30 1 0.766298 | -0.519169
3110309725 | -1.034781

(h) output map

Table D.5: I = 6, PTWC, first order Gauss-Markov source
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Predictor coefficient : 0.981607

n | branch 0 | branch 1
0 4 3
1 63 48
2 10 12
3 60 59
4 0 6
5 58 5l
6 6 7
7 6l 57
S 23 19
9 62 63
10 2 9
11 16 51
12 3 14
13 43 HhH
1 1< 15
15 53 61
16 20 19
17 37 34
13 22 29
19 14 43
20 16 23
21 37 35
22 21 9
23 4h 41
2. 2:4 27
25 34 47
20 IS 25
27 36 35
23 21 30
29 32 39
30 30 31
31 37 15

(a) next-state map

Table D.6: I =7, PTWC, first order Gaass-Markov source
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n | branch 0 | branch 1
32 36 39
33 31 32
34 42 44
35 28 27
36 32 38
37 26 29
38 38 39
39 25 25
40 55 51
4] 26 31
42 34 41
43 14 19
44 40 46
45 16 23
46 46 47
47 21 29
48 52 51
49 5 2
50 54 61
51 12 11
52 48 H5
53 5 3
54 53 41
55 9 9
56 56 59
57 2 15
58 50 57
59 4 3
60 56 62
61 0 7
62 62 63
63 5 13

(a) next-state map

Table D.6: K =7, PTWC, first order Gauss-Markov source



n | branch 0 | branch 1
0 ] 1.067527 | -0.227400
1 1 0.058227 | 0.058227
2 | 1.045111 | -0.044962
3 | 0.239541 | -1.215145
4 | 1.123499 | -0.254090
5 | 0.482145 | -0.798489
6 | 0.868862 | -0.393713
7 10.158135 | -1.010741
8 | 1.063410 | -0.328876
9 | 0.507587 | -1.089764
10 | 1.239051 | -0.062521
11 | 0.168174 | -1.034438
12 | 0.860863 | -0.228660
13 ] 0.394628 | -0.969272
14 | 0.889886 | -0.255689
151 0.179361 | -0.952348
16 | 1.154937 | -0.345874
17 | 0.058227 | 0.058227
18 | 1.358414 | -0.109824
19 | 0.202926 | -1.122350
20 | 0.858289 [ -0.292539
21 1 0.473892 | -0.735464
22 | 1.104599 | -0.642922
23 1 0.396518 | -0.983133
24 1 0.947004 | -0.370033
25 1 0.433335 | -0.812679
26 | 1.139252 | 0.008647
27 | 0.212970 | -1.003097
28 | 0.836071 | -0.384255
29 | 0.378602 | -0.894847
30 [ 0.969908 | -0.274176
31 | 0.131837 | -0.857242

Table D.6: K=7, PTWC, first order Gauss-Markov source

(b) output map
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n | branch 0 | branch 1
32 | 1.050203 | -0.242625
33| 0.058227 | 0.058227
34 | 1.034266 | -0.198651
351 0.228873 | -1.215367
36 | 1.083966 | -0.251974
37| 0.445761 | -0.823869
38 | 0.764979 | -0.358087
39 | 0.152590 | -0.926611
40 | 0.996126 | -0.181070
41 | 0.434391 | -1.087660
42 | 1.084295 | -0.139640
43 | 0.058105 | -1.211544
44 | 0.928252 | -0.196057
45 | 0.361007 | -0.893359
46 | 0.881515 | -0.259517
47 1 0.208972 | -0.942371
48 | 1.031775 | -0.330460
49 | 0.058227 | 0.058227
50 | 1.371263 | 0.082492
51| 0.217393 | -0.989503
52 | 0.915519 | -0.289374
53 1 0.560198 | -0.811990
54 | 1.059585 | -0.272314
551 0.337927 | -1.154558
56 | 1.051480 | -0.306598
57 | 0.470205 | -0.920356
58 | 1.061990 | 0.032295
59 | 0.180428 | -1.059504
60 | 0.843564 | -0.370121
6l | 0.386182 | -0.961029
62 | 0.873250 | -0.267560
63 | -0.077626 | -0.926265

Table D.6: K=7, PTWC, first order Gauss-Markov source

(b) output map
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D.2 Speech Model Source

Typical SA Parameters

Markov chain length : 20 x N
Initial temperature :Johnson’s method for
number of iterations : 20

Xo =0.80
decrement coefficient for temperature : 0.65

exit epsilon : 0.001
temperature increment coefficient after GLA : 5.0

temperature increment coefficient after EXTEND : 3.0

Best Decoders

(¢N) a ag
1.720968 | -1.157482 | 0.260467
(a) predictor coefficients

n | branch 0 | branch 1

0 0 1
1 0 l

(b) next-state map
n | branch 0 | branch 1
0| 0.511626 | -0.054820
1 {0.073658 | -0.493039

Table D.7: K = 2, PTWC, speech model source

(c) output map



ag a, as
] 1.471274 | -0.757848 | 0.063235

(a) predictor coefficients

n | branch 0 | branch 1

0 3 1

1 0 3

2 2 |

3 2 1

(b) next-state map

n | branch 0 | branch 1

0 | 0.346273 | -0.207067

110.185423 | -0.443003

21 0.527068 | -0.094146

3 10.199848 | -0.417819

Table D.S: K=3, PTWC, speech model source

(c) output map
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Qo

(431

az

1.422285

-0.625918

-0.043350

(a) predictor coefficients

n | branch 0 | branch 1
0 6 5
1 0 7
2 7 4
3 4 7
4 0 l
5 0 3
6 2 4
7 6 1
(b) next-state map
n | branch 0 | branch 1
0| 0.271190 | -0.245824
1 10.173037 | -0.415635
2 | 0.468551 | -0.104078
3 10.199708 | -0.391784
4 | 0.308147 | -0.218104
51 0.170122 | -0.422712
6 | 0.495243 | -0.092068
71 0.222125 | -0.406521

Table D.9:

K=4, PTWC, speech model source

(c) output map
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dg ay as
1.446420 | -0.620597 | -0.070605
(a) predictor coefficien’
n | branch 0 | branch 1
0 6 5
1 3 15
2 10 13
3 9 11
4 12 :
5 14 1
6 8 11
7 14 9
8 12 13
9 0 7
10 14 12
11 4 5
12 2 9
13 8 3
14 10 3
15 6 5

(b) next-state map

n | branch 0 | branch 1
0 | 0.281038 | -0.201709
1 {0.091144 | -0.477598
2 10.424088 | -0.024323
3 10.123631 | -0.333086
4 1 0.237027 | -0.210885
5 1 0.183590 | -0.367477
6 | 0.456388 | -0.054239
7 10.134848 | -0.411201
8 | 0.210858 | -0.243100
9 {0.120873 | -0.395746
10 | 0.483714 | -0.033224
11 ]0.156109 | -0.349602
12 | 0.305478 | -0.126260
13 | 0.099484 | -0.323703
14 ] 0.387079 | -0.038689
15| 0.204252 | -0.505380

Table D.10: k=5, PTWC, speech model source

(c) output map
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