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a b s t r a c t 

Sparse recovery aims to reconstruct signals that are sparse in a linear transform domain from a heavily 

underdetermined set of measurements. The success of sparse recovery relies critically on the knowledge 

of transform domains that give compressible representations of the signal of interest. Here we consider 

two- and three-dimensional images, and investigate various multi-dimensional transforms in terms of 

the compressibility of the resultant coefficients. Specifically, we compare the fractional Fourier (FRT) and 

linear canonical transforms (LCT), which are generalized versions of the Fourier transform (FT), as well 

as Hartley and simplified fractional Hartley transforms, which differ from corresponding Fourier trans- 

forms in that they produce real outputs for real inputs. We also examine a cascade approach to im- 

prove transform-domain sparsity, where the Haar wavelet transform is applied following an initial Hart- 

ley transform. To compare the various methods, images are recovered from a subset of coefficients in 

the respective transform domains. The number of coefficients that are retained in the subset are varied 

systematically to examine the level of signal sparsity in each transform domain. Recovery performance is 

assessed via the structural similarity index (SSIM) and mean squared error (MSE) in reference to original 

images. Our analyses show that FRT and LCT transform yield the most sparse representations among the 

tested transforms as dictated by the improved quality of the recovered images. Furthermore, the cascade 

approach improves transform-domain sparsity among techniques applied on small image patches. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Classical sampling theory dictates that signals sampled at twice

he rate of their effective bandwidth can be recovered perfectly

hrough linear algorithms. This Nyquist-sampling criterion requires

cquisition of an often impractically large number of measure-

ents. In contrast, the recent theory of sparse recovery suggests

hat signals can be recovered from a much smaller set of measure-

ents under the condition that they have sparse representations

 Donoho, Elad, & Temlyakov, 2006 ). The promise of significantly

ewer measurements has led sparse recovery to receive ample in-

erest in multiple domains including image processing and medical

maging ( Lustig, Donoho, & Pauly, 2007 ). Of course, a critical step
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o successful recovery is the specification of linear transform do-

ains in which the signals are sparse or highly compressible, i.e.,

epresented with few non-zero coefficients ( Candès & Romberg,

007 ). Yet, maximally-sparse transforms remain largely unexplored

n many application domains, compromising recovery performance.

Efficient representation of digital images is a prevalent field

hat has implications for both storage and transmission of visual

nformation. Naturally, certain aspects of image representation

uch as compression, quantization and coding have been broadly

tudied in literature ( Leung and Taubman, 2005; Pennebaker and

itchell, 1992; Song, Peng, Xu, Shi, and Wu, 2015 ; ISO/IEC, 2002 ;

uzuki & Ikehara, 2010; Zhu & Chen, 2012 ). These effort s put forth

avelet and Fourier-related transforms such as discrete cosine

ransform (DCT) as an established standard in image compression

 Pennebaker and Mitchell, 1992 ; ISO/IEC, 1992 ; 2002 ). Note that

he problem of sparse recovery differs conceptually from image

ompression. In compression, an encoder first reduces the di-

ensionality of fully-sampled images, and based on the encoding
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Fig. 1. The following stages are performed sequentially during the sparse recov- 

ery experiments: sparsifying transformations, thresholding of varying percentages 

of transform-domain coefficients, inverse tranformation to reconstruct images. 
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algorithm a decoder then restores the original image. In sparse

recovery, however, the algorithm (or equivalently the transform)

that yields optimally sparse representation of the images is un-

known. Few recent studies have considered image sparsification

based on discrete Hartley transform (DHT) and their fractional

versions such as fractional Fourier transform (FRT) and fractional

Hartley transform (FRHT) ( Divya & Prabha, 2015; Jimenez, Tor-

res, & Mattos, 2011; Kumar, Singh, & Khanna, 2012 ). However, a

comparative evaluation of candidate transforms in comparison to

standard approaches is lacking. 

Magnetic resonance imaging (MRI) is another area where

sparse recovery approaches have been gaining broad attention

( Cukur, Lustig, & Nishimura, 2009; Lustig et al., 2007 ). Accelerated

MRI acquisitions can be performed by undersampling the mea-

surement matrix in the Fourier domain. Compressibility in a linear

transform domain is then leveraged to recover unacquired data

and reconstruct images. In many studies, MRI images are typically

assumed to be compressible directly in the image domain or in the

Wavelet domain ( Cukur, Lustig, Saritas, & Nishimura, 2011 ). How-

ever, given the substantial variability across different anatomies

in the body, the respective images and the optimal sparsifying

transforms remain unknown. There is a pressing need to explore

transforms that can be adapted to the intrinsic properties of MR

images to enhance sparsity and thereby improve image quality. 

Here, we consider the problem of obtaining sparse represen-

tation of multi-dimensional images via appropriate sparsifying

transforms. To encounter the high degree of variability across im-

age structure in various applications, we examine transforms with

one or more free parameters that enable adaptation to specific

images. For this purpose, we not only test fractional Fourier and

fractional Hartley transforms but also include another integral

transform known as linear canonical transform (LCTs). One-

dimensional (1D) LCTs ( Healy, Kutay, Ozaktas, & Sheridan, 2016;

Ozaktas, Zalevsky, & Kutay, 2001 ) constitute a three-parameter
Fig. 2. SSIM index and MSE
lass of linear integral transforms that include among its special

ases, the one-parameter subclasses of fractional Fourier trans-

orms (FRTs), scaling operations, and chirp multiplication (CM) and

hirp convolution (CC, also known as Fresnel transform) opera-

ions. For cases with limits on memory or computation power, we

lso consider a framework based on cascaded transforms applied

n small image patches, specifically Hartley-Haar transforms. Dis-

rete Cosine Transform (DCT) and Wavelets with 9/7 and 5/3 filters

re also used as references in comparisons. The sparse recovery

erformance of these different approaches are compared in both

wo- and three-dimensional images based on mean squared error

MSE) and structural similarity index (SSIM) metrics. 

FRT and LCT transforms yield the most sparse representations

ost of the time among the tested transforms as dictated by the

mproved quality of the recovered images. Their sparsifying effects

s a preprocessing step have also been demonstrated. 

The paper is organized as follows: in Section 2 , we will give

reliminary information about the transforms we used, the gen-

ral method that we followed in sparsely representing images and

resent the example images that we used. In Section 3 , we will

emonstrate our results and finally in Section 4 , we will give our

iscussions and concluding remarks. 

. Methods 

.1. Sparsifying transforms 

.1.1. The fractional Fourier transform 

FRT is a generalized version of Fourier transform. The a th order

ractional Fourier transform { F 

a f } (u ) of the function f ( u ) may be

efined for 0 < | a | < 2 as 

 

a [ f (u )] ≡ {F 

a f } (u ) ≡
∫ ∞ 

−∞ 

K a (u, u 

′ ) f (u 

′ ) du 

′ , 

 a (u, u 

′ ) ≡ A φ exp 

[
iπ(u 

2 cot φ − 2 uu 

′ csc φ + u 

′ 2 cot φ) 
]
, 

 φ ≡ exp (−iπsgn ( sin φ) / 4 + iφ/ 2) 

| sin φ| 1 / 2 , (1)

here φ ≡ a π /2 and i is the imaginary unit. The kernel ap-

roaches K 0 (u, u ′ ) ≡ δ(u − u ′ ) and K ±2 (u, u ′ ) ≡ δ(u + u ′ ) for a = 0

nd a = ±2 respectively. The FRT, like the Fourier transform,

roduces complex outputs for real inputs. 
 vs CR for lake image. 
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Fig. 3. Decompressed images after being compressed with CR = 40 using (a) Haar transform (16 × 16 blocks), (b) Hartley and Haar transforms (8 × 8 blocks), (c) SFRHT and 

Haar transform (8 × 8 blocks), (d) Hartley transform (to whole image), (e) SFRHT (to whole image), (f) FRT (to whole image), (g) LCT (to whole image), (h) DCT (to whole 

image), (i) Wavelet 9/7 (to whole image), (j) Wavelet 5/3 (to whole image). 
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.1.2. The Hartley transform 

The Hartley transform, however, gives real outputs for real

nputs and is related to the Fourier transform as 

{ x (t) } = Re { F { x (t) }} − Im { F { x (t) }} , (2) 

here H and F represent Hartley and Fourier transforms, respec-

ively. The original signal can be recovered by taking the Hartley

ransform of H { x ( t )}, by recalling that the Hartley transform is an

nvolution. 

This basic relationship between Hartley and Fourier transforms

oes not exist between fractional versions of these transforms. The

eason for this is that the FRT does not produce conjugate sym-

etric outputs for real inputs, unlike the Fourier transform. There

s more than one definition for the fractional Hartley transform

FRHT), most of which fail to produce real outputs for real inputs.

implified fractional Hartley transform, (SFRHT) defined in Pei and

ing (2002) , has the property of producing real outputs for real
nputs: 

 

α(s ) = 

√ 

1 

2 π

∫ ∞ 

−∞ 

cas (st ) cos 

(
1 

2 

cot (φ) t 2 
)

x (t ) dt , (3) 

here cas (x ) = cos (x ) + sin (x ) , φ = απ/ 2 and α is the fractional

rder of SFRHT. 

.1.3. The linear canonical transform 

The 1D LCT of f ( u ) with parameter matrix M is denoted as

f M 

(u ) = (C M 

f )(u ) : 

(C M 

f )(u ) = 

√ 

βe −iπ/ 4 

×
∫ ∞ 

−∞ 

exp 

[
iπ(αu 

2 − 2 βuu 

′ + γ u 

′ 2 ) 
]

f (u 

′ ) du 

′ , (4) 

here α, β , γ are real parameters independent of u and u ′ and

here C M 

is the LCT operator. The transform is unitary. For certain

alues of α, β , and γ , LCT reduces to the FRT. 
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Fig. 3. Continued 
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Due to the increased degree of freedom they provide, LCTs

appear widely in optics ( Ozaktas et al., 2001 ), electromagnetics,

classical and quantum mechanics ( Healy et al., 2016 ), in compu-

tational and applied mathematics ( Koç, Oktem, Ozaktas, & Kutay,

2016 ), radar signal processing ( Chen, Guan, Huang, Liu, & He,

2015 ), speech processing ( Qiu, Li, & Li, 2013 ) as well image en-

cryption and watermarking ( Li & Shi, 2014; Singh & Sinha, 2010 ).

The application areas of LCTs also include the study of scattering

from periodic potentials, laser cavities, and multilayered structures

in optics and electromagnetics. They can also be used for fast

and efficient realization of filtering in linear canonical transform

domains ( Barshan, Kutay, & Ozaktas, 1997 ). 

Generalizations to two-dimensional (2D) transforms and

complex-parametered transforms are also present in the literature.

Classification of first-order optical systems and their representa-

tion through LCTs are studied in for 1D and 2D cases ( Bastiaans

& Alieva, 2007; Healy et al., 2016 ). Bilateral Laplace transforms,

Bargmann transforms, Gauss-Weierstrass transforms, fractional

Laplace transforms, and complex-ordered FRTs are all special cases

of complex linear canonical transforms (CLCTs) ( Healy et al., 2016;

Wolf, 1974 ). 

There are fast algorithms that have been proposed for efficient

computation of FRT, Hartley transform and LCTs ( Hennelly & Sheri-

dan, 2005; Koc, Ozaktas, & Hesselink, 2011; Koç, Ozaktas, Candan,

& Kutay, 2008; Koç, Ozaktas, & Hesselink, 2010a; 2010b; Ozaktas,

Arıkan, Kutay, & Bozda ̆gı, 1996; Ozaktas, Koç, Sari, & Kutay, 2006 ),

of which existence is critical for the specific applications given in

this paper. 

2.1.4. Cascade transforms 

Here we examine a cascade-transform method where Transform

1 can be selected as either the Hartley transform or the SFRHT

and Transform 2 is strictly constrained to be the Haar wavelet

transform. Note that Haar wavelet transforms are not computed
or the whole image at once but in each (NxN) block separately,

here N is usually 8 or 16. Furthermore, because the Haar wavelet

ransform can only implement real-to-real mapping, it constrains

ransform 1 to also be selected as a real-to-real transform. As a

esult, FRT and LCT transforms are not considered in this cascade

orm. 

.2. Sparse recovery 

The sparse recovery experiment conducted here is summarized

n Fig. 1 . In this experiment, original images are first transformed

ia one of the candidate methods described in previous sections. In

he second stage, the subset of the transform-domain coefficients

hat are smaller then a select threshold is set to zero. Finally, an

nverse transform is performed on the thresholded coefficients to

ecover the image. The threshold selection reflects a desired rate

f undersampling denoted here as CR: 

R = 

‖ V be f ‖ 0 

‖ V a f t ‖ 0 

, (5)

here ‖ x ‖ 0 denotes the l 0 -norm of vector x , defined as the number

f nonzero elements in x . Note that V be f = [ A 

T 
be f, 1 

A 

T 
be f, 2 

. . . A 

T 
be f,N 

] T 

nd V a f t = [ A 

T 
a f t, 1 

A 

T 
a f t, 2 

. . . A 

T 
a f t,N 

] T , where A bef, i and A aft, i are the

 th columns of A bef and A aft , which correspond to the transform of

he ideal reference image I ori ∈ IR 

M ×N before and after the thresh-

lding, respectively. So, A = T { I ori } , where T is the transform that

e are using. CR corresponds to the ratio of nonzero elements in

he transformed data before and after the thresholding is applied. 

Comparative assessments of sparsifying transforms were based

n two image quality metrics: mean squared error (MSE) and

tructural similarity index (SSIM). For each method, MSE was
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Fig. 4. Decompressed images after being compressed with CR = 100 using (a) Haar transform (16 × 16 blocks), (b) Hartley and Haar transforms (8 × 8 blocks), (c) SFRHT 

and Haar transform (8 × 8 blocks), (d) Hartley transform (to whole image), (e) SFRHT (to whole image), (f) FRT (to whole image), (g) LCT (to whole image), (h) DCT (to 

whole image), (i) Wavelet 9/7 (to whole image), (j) Wavelet 5/3 (to whole image). 
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alculated as follows: 

SE = 

∑ M 

j=1 

∑ N 
i =1 (I rec (i, j) − I ori (i, j)) 2 ∑ M 

j=1 

∑ N 
i =1 (I ori (i, j)) 2 

× 100 , (6) 

here I ori ∈ IR 

M ×N is the ideal reference image, I rec ∈ IR 

M ×N is

he recovered image, and I ori ( i, j ), I rec ( i, j ) are the image pixels.

n average SSIM metric was calculated across the whole image as

ollows ( Wang, Bovik, Sheikh, & Simoncelli, 2004 ): 

SIM = 

1 

X Y 

X ∑ 

x =1 

Y ∑ 

y =1 

( 2 μx μy + c 1 ) ( 2 σxy + c 2 ) (
μ2 

x + μ2 
y + c 1 

)(
σ 2 

x + σ 2 
y + c 2 

) (7) 

here x and y are image patches extracted from the recovered and

deal images, respectively. μ and σ are the mean and covariance of

ixel intensity within the given patches. The remaining parameters

ere selected as c 1 = 10 −4 , c 2 = 9 × 10 −4 , a Guassian kernel of

idth 10, standard deviation 5. 
All methods were implemented in MATLAB (Mathworks Inc)

nd performed on a PC with 2.7 GHz Intel i5 CPU and 8 GB RAM.

or fractional transforms and the linear canonical transform, trans-

orm parameters were optimized to optimize image quality after

parse recovery. This optimization enabled unbiased comparisons

mong techniques. 

.3. Analyzed images 

The proposed methods have been applied to representative

wo-dimensional (2D) and three-dimensional (3D) images. The

ample 2D image depicted an outdoors visual scene comprising

 lake and surrounding trees (from an online database at http:

/www.imageprocessingplace.com/root _ files _ V3/image _ databases. 

tm ). This grayscale image size was of size 512 × 512. The sample

D image was taken as an MRI dataset acquired in the lower ex-

remities. Lower leg angiograms were collected on a 1.5T scanner

http://www.imageprocessingplace.com/root_files_V3/image_databases.htm
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Fig. 4. Continued 

Fig. 5. Small portions of decompressed images after being compressed with CR = 40 using (a) Haar transform (16 × 16 blocks), (b) Hartley and Haar transforms (8 × 8 

blocks), (c) SFRHT and Haar transform (8 × 8 blocks), (d) Hartley transform (to whole image), (e) SFRHT (to whole image), (f) FRT (to whole image), (g) LCT (to whole 

image), (h) DCT (to whole image), (i) Wavelet 9/7 (to whole image), (j) Wavelet 5/3 (to whole image). 
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via a magnetization-prepared steady-state sequence ( Cukur, Lustig

et al., 2011; Cukur, Shimakawa et al., 2011b ). The following proto-

col was prescribed: a field-of-view of 192 × 128 × 128 mm 

3 , an

isotropic spatial resolution of 1 mm, a repetition time of 4.6 ms,

a scan time of 52 s, and 4 interleaves with 4096 phase encodes

each. 

3. Results 

We have performed experiments by using both two-

dimensional and three-dimensional images. 
.1. Two-dimensional images 

To observe the behavior of the proposed method and to com-

are it with other methods, a wide range of values for compression

atio (between 1 and 100) is spanned. Fig. 2 demonstrates how

he image quality measurement parameters SSIM and MSE change

ith respect to different compression ratios for our proposed

ransforms as well as standard Discrete Cosine transform (DCT)

nd Wavelet based methods with 9/7 and 5/3 filters. The test im-

ge for these simulation results is rich in terms of high frequency

omponents. Moreover, the decompressed output images for com-
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Fig. 6. Small portions of decompressed images after being compressed with CR = 100 using (a) Haar transform (16 × 16 blocks), (b) Hartley and Haar transforms (8 × 8 

blocks), (c) SFRHT and Haar transform (8 × 8 blocks), (d) Hartley transform (to whole image), (e) SFRHT (to whole image), (f) FRT (to whole image), (g) LCT (to whole 

image), (h) DCT (to whole image), (i) Wavelet 9/7 (to whole image), (j) Wavelet 5/3 (to whole image). 

Fig. 7. The three-dimensional angiographic images of the lower leg were processed 

with maximum-intesntiy projections to visualize the underlying vasculature. Sagit- 

tal, coronal and axial projections are shown. 
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ression ratios of 40 and 100 can also be seen in Figs. 3 and 4 ,

espectively. 

Whenever Haar wavelet transform is used, block size is varied,

aking the values of 8, 16, or 32 and the best one is shown

n the plots in Fig. 2 . Also, for fractional transforms and linear

anonical transform, the optimal transform parameters are found

nd the results of the corresponding output are shown in the

lots. Optimization of the transform parameters is performed by

imply sweeping parameters and finding the parameter that yields

he highest SSIM index as we aim to understand the performance

f the transforms in how much they can sparsify the data without

ausing significant distortion in the image. To be more specific, we

rst sweep the parameter range in 10 equal parts, find the best
erforming parameter, then further sweep in the neighborhood

f this coarse optimal value with 10 more sub-steps and find

he optimal transform parameter. Furthermore, for the wavelet

ransforms with different levels, we find and use the level at

hich the transform reaches its maximum SSIM index. 

Simulation results show that the performance of Haar wavelet

ransform can be increased if Hartley transform or SFRHT is

rst applied to the input image. However, applying only Hartley

ransform is observed to yield better results compared to the

ombination of Hartley and Haar wavelet transforms. This would

ean that it is preferable to use Hartley transform alone in this

ase. 

Wavelet transform with filter 5/3 leads to higher SSIM indices

or CR values up to 50. For CR values larger than 50, we see

hat the performances of FRT and LCT catch up with the wavelet

ransform with filter 5/3. Moreover, these three transforms seem

o outperform DCT, in terms of SSIM index, for a wide range of

Rs when all of them are applied to the whole image. 

A comparison between only FRT and LCT shows that their

erformances are nearly identical. This implies that it would be

ore preferable to use FRT instead of LCT since LCT requires

ptimization of three parameters whereas FRT requires only one. 

Figs. 3 and 4 show that the deterioration when only Haar

avelet transform is used is more likely to bother human-eye

ompared to other methods because blocks of the chosen size

 can be noticed in the output images. Nonetheless, applying

artley transform before Haar wavelet transform alleviates this

roblem. To better assess the quality of images and the effects of

ifferent transforms on sparsified data visually, a small patch of

he recovered test image has been zoomed and presented in Figs. 5

nd 6 . 

DCT and Wavelet based methods are very essential and estab-

ished in the image compression field. This has led to a great body

f research on their fast implementations for years. Consequently,

here exist optimized codes for DCT and Wavelets, including

ow-level implementations that boost efficiency. Keeping this in

ind, it would not be fair to make processing time comparisons

etween DCT/Wavelet based methods and the proposed ones.

owever, there are O ( N log N ) time efficient digital implementation

lgorithms for both FRT and LCTs ( Koç et al., 2008; Ozaktas et al.,

996 ). Although these algorithms are not exhaustively optimized

t low-level, their general algorithmic complexity is on the same

rder with those of the DCT and Wavelets. Therefore, the proposed
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Fig. 8. MSE vs CR for the three-dimensional lower-leg image. 
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methods in this paper can also be implemented with increased

efficiency, depending on the specific application. 

3.2. Three-dimensional images 

Three-dimensional images are frequently used in medical imag-

ing and the angiographic dataset analyzed in this study is shown

in Fig. 7 . For visualization only, the 192x128x128 complex-valued

image was processed with a maximum-intensity projection in

three cardinal dimensions. During the actual analyses, we have

experimented only with FRT and LCT since they are capable of

handling complex values. 

We have compressed the three-dimensional image using two

different approaches: 

1. Regarding the three-dimensional image as a set of two-

dimensional images and finding an optimal fractional order for

each layer and compressing each layer independently 

2. Taking the three-dimensional transform of the image data and

treating the resulting data as a three-dimensional signal to

compress 

The performances of these two different approaches when FRT

or LCT is used are shown in Fig. 8 . In Fig. 8 , FRT (A) and LCT (A)

correspond to the cases where the first approach is used. Likewise,

FRT (B) and LCT (B) means that these transforms are applied to

the image using the second approach. 

Fig. 8 illustrates that LCT and FRT perform similarly. How-

ever, the second approach produces higher quality outputs for

three-dimensional images compared to the first approach. 

4. Conclusion and future work 

In this study, we investigated several different transforms or

cascades of transforms with respect to their effects on the sparsity

of image data in the respective domains. Our results indicate that,

overall, the fractional and linear canonical transforms with tunable

parameters offer improved sparsity compared to static Fourier

and Wavelet transforms for both 2D and 3D images. This differ-

ence in transform-domain sparsity is reflected in sparse recovery

performance, and the differences in performance become more

prominent at higher compression ratios. The closest competitor to

fractional and linear canonical transforms is the Hartley transform
pplied to the whole image. Note that in practice there may be

onstraints of computing time or memory, which may motivate

he use of transforms on small-image patches. Our analyses show

hat, in such cases, the cascade Haar-Hartley transform yields

mproved sparsity and recovery performance compared to other

pproaches. Additionally, the existence of O ( N log N ) time algo-

ithms for digital computation of FRTs and LCTs makes these

ransforms practical in terms of the processing time consider-

tions. Lastly, we find that 3D transforms yield substantially

mproved performance on 3D images compared to 2D transforms

pplied on each cross-section independently. This leads to a single

ransform-parameter specification for the entire 3D volume. In

uture work, we plan to investigate a sliding-window approach

here stacks of 2D images are processed with 3D transforms,

nd the transform parameters are adaptively optimized for each

tack. 
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