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ABSTRACT 
 
A method for detection of dynamic textures in video is 
proposed. It is observed that the motion vectors of most of 
the dynamic textures (e.g. sea waves, swaying tree leaves 
and branches in the wind, etc.) exhibit random motion. On 
the other hand, regular motion of ordinary video objects 
has well-defined directions. In this paper, motion vectors 
of moving objects are estimated and tracked based on a 
minimum distance based metric. The direction of the 
motion vectors are then quantized to define two three-
state Markov models corresponding to dynamic textures 
and ordinary moving objects with consistent directions. 
Hidden Markov Models (HMMs) are used to classify the 
moving objects in the final step of the algorithm. 

 
1. INTRODUCTION 

 
Two dimensional (2-D) textures and related problems 
were extensively studied in the field of computer vision 
[Forsyth(1)]. On the other hand, there is very little 
research on three-dimensional (3-D) texture detection in 
video [2, 3].  Trees, fire, smoke, fog, sea waves, sky and 
shadows are examples of time-varying 3-D textures in 
video. It is well known that tree leaves in the wind, 
moving clouds, etc., cause major problems in outdoor 
video motion detection systems. If one can initially 
identify bushes, trees and clouds in a video, then such 
regions can be excluded from the search space or proper 
care can be taken in such regions. This leads to robust 
moving object detection and identification systems in 
outdoor video. In this paper, a method for detection of tree 
branches and leaves in video is proposed.  

Motion detection in video constitutes the primary step 
for almost all types of video based surveillance 
applications. [4]. It is observed that, the motion vectors of 
tree branches and leaves exhibit random motion. On the 
other hand, regular motion of green colored objects has 
well-defined directions. In this paper, the wavelet 
transform of motion vectors are computed and objects are 
classified according to the wavelet coefficients of motion 
vectors. Color information is also used to reduce the 
search space in a given image frame of the video. Motion 

trajectories of moving objects are modeled as Markovian 
processes. In the final step of the algorithm, Hidden 
Markov Models (HMMs) are used to classify the green 
colored objects according to their motion trajectories. 

In Section 2, detection algorithm is described. In 
Section 3 experimental results are presented. 
 

2. DETECTION ALGORITHM 
 
Our detection algorithm consists of three main steps: i) 
green colored moving region detection in video, ii) 
analysis of the motion trajectories in the wavelet domain, 
and iii) HMM based classification of the motion 
trajectories. 
 
2.1. Moving region detection 
 
Moving pixels and regions in the video are determined by 
using a background estimation method developed in [5] in 
which camera monitoring the scene is assumed to be 
stationary. In this method, a background image Bn+1 at 
time instant n+1 is recursively estimated from the image 
frame In and the background image Bn of the video as 
follows: 
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where In(k, l) represents a pixel in the nth video frame In, 
and a is a parameter between 0 and 1. Moving pixels are 
determined by subtracting the current image from the 
background image and adaptive thresholding (cf. Fig. 1a). 
For each pixel an adaptive threshold is estimated 
recursively in [5]. Pixels exceeding thresholds form 
moving regions and they are determined by connected 
component analysis. 

We do not need very accurate boundaries of moving 
regions. Hence the above computationally efficient 
algorithm is sufficient for our purpose of estimating the 
motion vectors of green colored moving regions in video. 
Other methods including the ones described in [6] and [7] 



can also be used for moving pixel estimation but they are 
computationally more expensive than [5]. 

We are solely concentrated on the detection of 
swaying leaves in video, therefore we incur a simple color 
constraint, G > B, on green (G) and blue (B) channels of 
the RGB color space to reduce the size of the search 
space. 
 

 
         (a)    (b) 

Fig. 1. (a) Moving pixels, and (b) their minimum 
bounding boxes are determined 
  
 
2.2. Analysis of motion trajectories in wavelet domain 
 
After a post-processing stage comprising of connecting 
the pixels, moving regions are encapsulated with their 
minimum bounding rectangles (cf. Fig.1b). Next, these 
moving regions in the current frame are matched to the 
closest moving regions in the previous frame. Euclidean 
metric is used for distance calculation. A motion 
trajectory is kept for each moving region. 

Tree branches and leaves usually exhibit a swaying 
motion trajectory which has a dominant horizontal (x) 
component compared to its vertical (y) component. The 
magnitude of these vectors are smaller than the motion 
vectors of regular moving objects. Another difference 
between the motion characteristics of swaying leaves and 
regular green colored moving objects is that regular 
moving objects have well-defined directions throughout 
the course of their motion. However, tree leaves in the 
wind sways back and forth within a limited region without 
a sense of particular direction (cf. Fig.2). 

Therefore, we only make use of temporal variations 
in the x-component of motion vectors and analyze them in 
the wavelet domain. For each moving region, n frame 
horizontal motion vector history is kept for its center of 
mass. The vectors in the motion history are quantized 
according to their directions as we are only concerned 
with the directions of the vectors. Hence we have the 
quantized motion feature signal ux =-1, 0, 1. The values +1 
and –1 correspond to opposite directions in the horizontal 
axis, and the zero value means the object under 
consideration is stationary or below a threshold. 

The temporal variations in the x-components of the 
center of masses of the leaves and the car in Fig.2, are 
presented in Fig.3(a) and Fig.4(a), respectively. Defining 

the horizontal direction from right to left as positive 
direction, the temporal variation in the quantized motion 
feature signal of the car and the leaves are shown in 
Fig.3(b), and Fig.4(b), respectively.   

 
 

 
 
Fig. 2. The car has a directionally consistent trajectory 
whereas the leaves, pointed with an arrow, sway randomly 
in the wind   
 

We then calculate the corresponding wavelet 
coefficients for this ternary motion feature signal, ux. 
Wavelet coefficients, w’s, are obtained by high-pass 
filtering followed by decimation as shown in Fig.5.  

The wavelet transform of the one-dimensional motion 
signal is used as a feature signal in HMM based 
classification in this paper. It is experimentally observed 
that this feature signal exhibits different behavior for the 
leaves swaying in the wind and the objects with 
directionally consistent trajectories. A random behavior 
with low temporal correlation is apparent for leaves and 
branches of a tree, in both the horizontal component of the 
temporal motion signal and its corresponding wavelet 
signal as shown in Figs. 3(c) and 4(c), respectively. On 
the other hand, an ordinary green moving object with a 
well-defined direction does not exhibit such a random 
behavior. In this case there is high correlation between the 
samples of the motion feature signal. This difference in 
motion characteristics is also apparent in the wavelet 
domain. 

The use of wavelet coefficients, w’s, instead of the 
quantized motion vector to characterize moving regions 
has some major advantages over the use of actual 
temporal signal. The primary advantage is that, wavelet 
signals can easily reveal the highly correlated 
characteristic of the motion which is intrinsic for 
directionally consistent moving objects. The unit direction 
vectors for these objects are the same for all the time 
during their entire travel, except for some turns with 



horizontal component of their motion vector reversed. 
Since, wavelet signals are high-pass filtered signals, no 
variations in the original signal lead to zero wavelet 
coefficients. Hence it is easier to set thresholds in the 
wavelet domain which are robust to variations of 
trajectories. Wavelet coefficients of the motion signal of 
tree branches is also a zero mean signal but its variance is 
high due to high-frequency nature of the original temporal 
motion signal. 

 

 
Fig. 3. (a) x-position variation with time of the center of 
mass of the leaves in Fig.2, (b) corresponding quantized 
motion signal, and (c) the wavelet coefficients of the 
quantized motion signal. 
  

 
Fig. 4. (a) x-position variation with time of the center of 
mass of the car in Fig.2, (b) corresponding quantized 
motion signal, and  (c) its wavelet coefficients. Since the 
car in Fig.2 does not change its direction in the horizontal 
axis, there is no variation in signals shown in (b) and (c) 
 

 
Fig. 5. Wavelet coefficients, w corresponding to motion 
feature signal, ux,  are evaluated with an integer arithmetic 
high-pass filter (HPF) corresponding to Lagrange 
wavelets [8] followed by decimation  

 
We set two thresholds, T1 and T2 for defining 

Markov states in the wavelet domain as shown in Fig. 3. 
The lower threshold T1 basically determines the wavelet 
signal being close to zero. For a direction consistent 
moving object, normally the motion vector is constant 
except for a few number of turns. When the motion 
direction is consistent, the wavelet signal is zero. After a 
few turns, the wavelet signal start taking values close to 
zero. When turning is over, it takes zero values again. The 
use of wavelet domain information also makes the method 
robust to subsequent variations in the direction of the 
moving object’s trajectory. This is achieved by the use of 
the second threshold T2 to detect high amplitude 
variations in the wavelet signal, which correspond to 
edges or high-frequency changes in the original signal. 
When the wavelet coefficients exceed the higher threshold 
T2 in a frequent manner this means that the object is 
changing its direction or exhibiting periodic behavior due 
to bending or swaying back and forth in the wind. 

T2 

T1 

 
2.3. HMM based classification 
 
Regular motion of the green colored objects exhibits a 
Markovian behavior with strong correlation. On the other 
hand, horizontal component of the motion vector of tree 
branches have little correlation in time. Therefore, 
Markov model based classification is ideal for the 
classification problem. 

Two three-state Markov models are used to classify 
the motion of objects in this paper. Non-negative 
thresholds T1 < T2 introduced in wavelet domain, define 
the three states of the Hidden Markov Models for leaves 
and directionally consistent moving objects as shown in 
Fig.6(a) and (b), respectively. 

At time n, if |w(n)| < T1, the state is in S1; if 
T1<|w(n)|< T2, the state is S2; else if |w(n)| > T2, the state 
S3 is attained. During the training phase of the HMMs 
transition probabilities auv and buv, u,v = 1, 2, 3, for leaves 
and directionally consistent moving object models are 
estimated off-line, from a set of training videos. In our 
experiments, 20 consecutive image frames are used for 
training HMMs. 

For the leaves, since the motion is quasi-periodic, we 
expect similar transition probabilities between the states. 
Therefore the values of a’s are close to each other. 



However, for directionally consistent moving objects, the 
wavelet signal takes values around zero. Hence we expect 
a higher probability value for b00 than any other b value in 
the directionally consistent moving object model, which 
corresponds to higher probability of being in S1. The state 
S2 provides hysteresis and it prevents sudden transitions 
from S1 to S3 or vice versa. 

 
 
 
 
 
 
 
 
 
       (a)    (b) 
Fig. 6. Three state Markov models for (a) leaves, and (b) 
directionally consistent moving objects 

 
During the recognition phase the state history of 

length 20 image frames are determined for the moving 
objects detected in the viewing range of the camera. This 
state sequence is fed to the leaves and directionally 
consistent moving object models. The objects for which 
the directionally consistent moving object model yields 
higher probability are suppressed. Only the moving 
objects for which leaves model yield higher probability is 
kept. The pixels for which color constraint is satisfied 
within these moving objects form the leaves mask.  
 

3. EXPERIMENTAL RESULTS 
 
The proposed algorithm works in real-time on an AMD 
AthlonXP 2000+ 1.66GHz processor. As described above 
HMMs are trained from outdoor video clips with swaying 
tree leaves in the wind and regular moving objects. A total 
of 12 video clips having 5633 image frames with 360x280 
pixel resolution are used. Four of the clips are captured at 
5 fps and the others have capture frame rate of 10 fps. 

We trained our models with two of the clips having 
both tree leaves in the wind and regular moving objects, 
such as cars and walking people. The remaining ten clips 
are used for test purposes. Our method yields no false 
positives in any of the clips.  

Detection results for test videos are presented in 
Table1. There are parking cars and walking people in 
almost all of the test video clips. Image frames from some 
of the clips are shown in Fig.7. Our method detects leaves 
that are persistently swaying in the wind for a while. It 
does not detect leaves that move in a few frames. This is 
mainly due to the fact that we need to build a Markovian 
model of the motion and this obviously requires a 
temporal history of the motion. Once tree branches and 
leaves are identified, their locations in the video are 

determined by the surveillance system and random motion 
in such regions can be excluded to eliminate false alarms 
due to the motion of tree branches in the wind.  
 
 
 
Table1: Detection results for ten test videos. The middle 
column lists the number of frames in which there is 
motion due to moving tree leaves in the wind. The column 
on the right shows the number of frames in which tree 
leaves are detected by our method 
 

CLIPS 

Number of 
frames in which 
leaves sway in 

the wind 

Number of 
frames in which 
leaves detected 

with our method 
V1 0 0 
V2 0 0 
V3 70 47 
V4 45 36 
V5 35 13 
V6 9 2 
V7 0 0 
V8 74 42 
V9 617 502 

V10 107 43 
 

 
4. CONCLUSION 

 
A method for detection of swaying tree branches and 
leaves in video is proposed. Random motion of tree 
branches and leaves in the wind are used to recognize the 
tree branches and leaves. The wavelet transform of motion 
vectors are computed and objects are classified according 
to the wavelet coefficients of motion vectors. Regular 
motion of ordinary green colored objects exhibits a 
Markovian behavior with strong correlation. On the other 
hand, horizontal of the motion vector of tree branches 
have little correlation in time. The use of wavelet 
coefficients instead of actual motion vectors in an HMM 
framework for classification provides more robust results. 
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