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The upper critical field for coupled layered superconductors with local pairs is analyzed within the
mean-field approach for the anisotropic negative-U Hubbard model. Effects of reduced dimensional-
ity are investigated by solving the Ginzburg-Landau equations to obtain critical fields for different
anisotropy ratios. The Harper s type system of equations is solved analytically for some special field
values. Limitations of Peierls substitution are also discussed.

The negative-U Hubbard model has been widely used
to understand the physics of local-pair superconductors
with nonretarded interactions. i The ratio of the on-site
attractive interaction U to the band width determines the
coupling regime. When the ratio is small, the usual weak
coupling or BCS picture is valid. On the other hand,
for strong coupling, electrons are tightly bound to form
on-site pairs and the transition to the superconducting
phase is due to Bose-Einstein condensation of these hard
core bosons. Due to their very small coherence lengths,
the high-T, cuprate superconductors are nearer to the
latter limit. It is the aim of this study to analyze the
upper critical magnetic 6elds for layered systems in the
large U or strong coupling regime.

The Ginzburg-Landau (GL) functional for layered sys-
tems has been treated by mean-field theory at both weak2
and strongs coupling limits. Wen and Kans have investi-
gated the case of the quasi-two-dimensional charged Bose
gas. In this paper the same problem is solved on a lattice.

In the strong coupling limit, the negative-U Hubbard
model can be mapped onto a hard core Bose gas on a
lattice with an effective hopping amplitude —2t2/U and
nearest neighbor repulsion 2t2/U where t is the near-
est neighbor tight binding hopping matrix element for
electrons. i A hard core Bose gas on a lattice is isomor-
phous to a spin-2 problem where super8uid order cor-
responds to an z-y ferromagnetic alignment which can
be solved by means of a GL-type functional. 4 It should
be noted that negative-U Hubbard model has solutions
corresponding to charge ordered states also. As long as
the filling factor v = N, /2N, where N, is the number
of electrons and N is the number of lattice sites, is low
the superconducting state is favored. However, in the
very dilute limit boson-boson interactions become im-
portant and mean-field theory may not give reliable re-
sults. Therefore, using the existing phase diagrams for
the model, it will be assumed that v 0.1—0.2 where the
superconducting phase is guaranteed for a large range of

parameters.
In order to analyze the layered structures the GL func-

tional can be generalized to include strong anisotropy
effects. This is achieved by using different hopping am-

plitudes, t~ and t~~~, for motion perpendicular and parallel
to layers, respectively. In this model a layer is assumed to
be a square lattice in the zy plane with a lattice constant

a~~ while the layers are separated by a~ in the z direc-
tion. At temperature k~T, the &ee energy functional up
to quadratic terms in on-site order parameters g,
reads

kgT (1 —v tF = ) T„Q;Q, exp(iP„) + ln
~

rr'
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Here, T„ is the effective boson hopping amplitude

T„= —~~b b„,„(hi+it +~i ii)
2t
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and P„ is the phase due to vector potential A
K(0, zcos8, xsin8) for the magnetic field H
H(0, sin8, cos0) and it is given by

2+Ha)(l
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where Po
——hc/2e is the flux quantum.

The first term in Eq. (1) can be derived from the
negative-U Hubbard model by means of degenerate per-
turbation theory where the effective second. -order Hamil-
tonian is given by

H,~=Pa —) ) ) t„iexp(if~, '/2)t, i,«~exp(ig, ~, ~/2)ct c,~ ct„,c, i /U
ggs gtlglll ~~I
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Here, Po is the projection operator that restricts the
action of H,g to the subspace of doubly occupied sites
and t„ is the hopping amplitude for electrons described
by the operators ct and c, . It should be noted that
along with the pair hopping terms, H,g contains terms
describing the repulsion of neighboring pairs via virtual
ionization. However, since these terms have only a con-
stant contribution to the &ee energy E, they are not in-
cluded in Eq. (1). Finally, the last term in Eq. (1) can be
obtained by expanding the entropy expression in order
parameter which is a good assumption in the vicinity
of superconducting-normal transition line as long as the
fiuctuation efFects are not important.

Minimization of the free energy with respect to Q,
gives the GL equations. The upper critical magnetic field
for perpendicular orientation (8 = 0) is calculated by
finding the highest eigenvalue T for the system of equa-
tions

2mHa
i+ 2 a+ cos gi+ pi+i ——Tgi (5)

for given H and e = (t~/t~~) . The fact that for the
highest eigenvalue the on-site order parameters have no
m or n dependence is stressed by using the index I, only.
Here T is the dimensionless temperature defined by

kgTU 1 1 —vT=
2 ln

2)2 1 —2v
II

(6)

A similar equation is satisfied for fields parallel to the
layers. This time Qi's are related by

2m Ha~[a Ll l ~lhli+2
~

1+ecos
I %+%+i = TA

o j (7)
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while for fields parallel to the layers

1+gl+ e'
2+a (9)
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When a=1, the two results coincide as expected. For
vanishing e, parallel magnetic fields have no effect on
superconducting properties as long as orbital degrees of
ft'. eedom are considered.

Both Eqs. (5) and (7) are of Harper's types and in gen-
eral their solution can be obtained numerically. However,
for some special H values the problem can be handled
analytically.

When H = 0, the uniform solution (pi=const) gives
the critical temperature To, ——T, (H = 0) = 4+ 2e.
Thus, To, changes linearly in e. For &=1, which cor-
responds to simple cubic lattice, To, 6while for e=——0,
two-dimensional square lattice, To,——4. The former limit
(with additional condition a~ ——

a~~
= a) is the case stud-

ied by Bulaevskii et al.s

For two more values, explicit expressions for the eigen-
values can be obtained. For perpendicular orientation (in
units of To, )
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FIG. 1. Upper critical magnetic fields H,2~ (dotted lines)
and H,ql (solid lines) vs temperature T for various snisotropy
ratios. To denotes the zero field critical temperature. H, 2 is
measured in $0/a~~ snd Po/ala~ for perpendicular and par-
allel orientations, respectively. For e = 1, which corresponds
to the simple cubic lattice case, the two curves are identical
(dashed line) snd for the parallel fields the e = Q curve falls
on the right axis.

x vt'i + '4+i ——TA. (10)

In solving Eqs. (5) and (7) it is assumed that the ar-
gi~Tnents of the cosine terms are of the form 2mrl where
r = p/q is a rational number. Thus the system is peri-
odic in I,, and can be solved by the diHerence equation
analog of Floquet's theorem. In order to solve the gen-
eral problem by the same method, arguments of the two
cosine terms in Eq. (10) should satisfy this condition si-
multaneously.

Although they can estimate the qualitative behavior
of the physical systems correctly, mean-field calculations
may not give accurate numerical results. For example,
critical temperatures are overestimated in comparison to
the random-phase approximation calculations. There-

Typical curves obtained by solving Eqs. (5) and (7) are
shown in Fig. 1. As can be seen from the equations T
is periodic in H, if the proper units are used (Po/a~~ for

K,2~ and Po/a~~a~ for H, 2~~ ), with period unity. Further-
more, the curves are symmetric about half-integer values.
In the absence of interlayer interactions, i.e., e = 0, paral-
lel magnetic fields have no effect on critical temperature.
For this limiting value the curve falls exactly on the right
axis. On the other hand T, falls to the values as low as

0.65 for fields perpendicular to the layers. The features
seen on the curves correspond to simple rational values
of H, refiecting the fractal nature of Harper's equation.
Physically, these values are attained when the Qux pass-
ing through a certain number of rectangular unit cells
(a~~ x a~~ or a~~ x az) is an integer inultiple of fiux quan-
tum Po.

It is possible to generalize the above calculations for
arbitrary orientation of the magnetic field. For H
H(0, sin 8, cos 8), the GL equation becomes

( 2vrHal a~ sin 8 2m Ha~~ cos ~ l
'ljl1i i + 2 e cos t + cos

o )
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E+ 1
lim T,(H) =

H-+oo E' + 2
(12)

fore, the above calculations can be trusted only quali-
tatively.

Finally, it should be noted that periodic variation of T,
with 0 is not due to mean-6eld treatment of the problem
but it is an artifact of Peierls substitution" as it will be
seen below. Treatment of the lattice particles of charge

g in magnetic 6elds by using the substitution

(~q
T„, —+ T„exp

i

— A(s) ds i,(hc

where T„ is the hopping amplitude &om site r to site
r is due to Peierls. A better treatment of the problem
is to take into account the fact that under magnetic field
the magnitude of T„t changes also. Dependence of T»s
on H can easily be introduced into the previous calcula-
tions. The only modi6cation is to put the proper factor
in front of the cosine terms in Eqs. (5) and (7). The de-
pendence of the hopping amplitude on magnetic 6eld can
only be found if the atomic wave functions and pseudopo-
tentials are known (see, for example, Ref. 8). However,
the behavior of the system under strong magnetic 6elds
is independent of the details and it is characterized by
the strong suppression of T„. In this limiting case co-
sine terms can be neglected and the solution of Eqs. (5)
and (7) are given by (in units of To )

and

lim T,(H) =
H —+oo g+ 2

(13)

respectively. Thus, even with the improved Peierls sub-
stitution, the mean-field theory still predicts in6nite up-
per critical fields at low temperatures.

Divergence of the upper critical 6eld below a certain
temperature is due to decoupling of lattice sites. In this
system, the vortex currents are entirely Josephson tun-
neling currents. At the decoupling temperature, the co-
herence length becomes smaller than the intersite spacing
and therefore the system behaves as a collection of iso-
lated lattice sites. Since the sites are assumed to have
zero extension in space, no critical field can suppress the
superconductivity.

In conclusion, the upper critical field for coupled lay-
ered superconductors with local pairs is analyzed within
the mean-field approach for the anisotropic negative-U
Hubbard model. The H,z(T) curve is found to have
upward curvature near T„a characteristic behavior of
low-dimensional superconducting systems. It is shown
that periodic variation of the critical temperature with
magnetic 6eld is due to use of the Peierls substitution
outside its range of validity. In this context, it is inter-
esting to reexamine the theory of the upper critical field
in layereds and filamentaryio superconductors by using
the improved Peierls substitution.
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