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Abstract
We consider an inventory system for perishables with fixed lifetimes, positive replenishment
lead times and lost sales in the presence of non-negligible fixed ordering costs. The system is
studied under the lotsize reorder level (Q, r) policy. An exact analysis of this system based on
the stationary distribution of the remaining lifetime process is provided by Berk and Gürler
(Oper Res 56(5):1238–1246, 2008) under the restriction that there is at most one outstanding
order at any time (r < Q). In this work, we generalize their results to allow for more than one
outstanding orders (r ≥ Q). We provide the operating characteristics of the inventory system
and construct the exact expected cost rate expression using a renewal theoretic approach. An
illustrative numerical study indicates that allowing for multiple outstanding orders (r ≥ Q)

may result in significant savings in the expected cost rate, compared to the case with r < Q.
In particular, when the fixed lifetimes are short and the ordering costs are low, expected costs
can be reduced by more than half.

Keywords Perishable inventory · Lot size-reorder point policy · Lost sales · Effective
lifetime · Multiple outstanding orders

1 Introduction

Perishable inventories are commonly encountered in practice as fashion goods, foodstuffs,
pharmaceuticals, bloodproducts or compositematerials. In the related literature,Weiss (1980)
may be cited as the earliest work with fixed lifetime. With positive lead times, Schmidt and
Nahmias (1985) provide the first exact analytical treatment of a system with fixed lifetimes
and under continuous review, extended by Perry and Posner (1998). Nahmias and Wang

B Emre Berk
eberk@bilkent.edu.tr

Ülkü Gürler
ulku@bilkent.edu.tr

Saeed Poormoaied
saeed@bilkent.edu.tr

1 Faculty of Business Administration, Bilkent University, Ankara, Turkey

2 Department of Industrial Engineering, Bilkent University, Ankara, Turkey

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-018-3044-3&domain=pdf


Annals of Operations Research

(1979) provide the first approximate treatment of perishable inventory with fixed ordering
costs and a constant lead time. Chiu (1995) and Olsson (2014) provide other heuristic solu-
tions. Tekin et al. (2001) propose a time-based control policy for fixed lifetimes under a special
aging process. Studies considering random lifetime models include Nahmias (1975), Liu
(1990), Kalpakam and Shanthi (2001), Kalpakam and Shanthi (2006), andGürler andÖzkaya
(2008).

Most of the available inventory literature on perishables under continuous review with
positive lead times employ the lot size-reorder point policy class. (See Kouki et al. 2015 for
an extensive taxonomy of the available models and policies.) It is known that this policy class
is not necessarily optimal. However, the structure of the optimal policy for perishables in
the presence of non-negligible lead times is still an open question. As stated in Schmidt and
Nahmias (1985), it is unlikely that anyone interested in a real problem would be able to find
or to use an optimal policy. A reasonable alternative to optimal policies which is commonly
employed is to find the best policy from a prespecified class...” (emphasis added). Berk and
Gürler (2008) focused on this policy class and provided a (Q, r) inventory model with lost
sales under the restriction of r < Q. Similarly, we consider a model where each item in the
same batch has the same fixed lifetime, under continuous review setting with a fixed positive
lead time and non-negligible ordering cost. Our model herein differs from theirs in that we
allow for r ≥ Q, that is, there may be more than one outstanding orders at any time. This
extension makes the analysis more complicated as the remaining shelf life process is now
expressed as a vector, the elements of which are related to each other in a special structure.
However, our numerical examples show that this generalization albeit at a cost of increased
technicality pays for itself. As illustrated in our numerical section, allowing for more than
one outstanding order would be most beneficial where the desired service levels (fraction
of stockout times) would be high with highly variable demand and/or relatively small (but
non-negligible) fixed ordering costs and in some cases expected cost rate is reduced by more
than half. An important by-product of our model is the following. As the constant lifetimes
of items go to infinity in the limit, our model subsumes the non-perishable inventories. The
exact analysis of the lost sales model is not available in the literature for non-perishables with
Markovian demands, constant lead times and positive fixed ordering costs. The authors are
familiar with only Hill (1992, 1994) where a non-perishable inventory system is analyzed
under the restriction of at most two outstanding orders at any time. Hence, our model may be
viewed as a unifying framework for a class of lost sales inventory systems. Furthermore, our
generalized model could serve as a building block to address joint pricing (Liu et al. 2015;
Avinadav et al. 2017; Chintapalli 2015) and more novel customer behaviors during stockouts
(Amirthakodi et al. 2015; Ioannidis et al. 2013; Al Hamadi et al. 2015).

The rest of the paper is organized as follows. Section 2 introduces the basic assumptions
of the perishable inventory system under consideration and main results existing for the
case r > Q are presented. Some novel characteristics of the sequence of effective lifetime
distributions are introduced in Sect. 3. In Sect. 4, the operating characteristics of the model
are derived and the objective function is constructed for the case where r is not an integer
multiple of Q. In Sect. 5, we address the special case where r is an integer multiple m of Q.
Section 6 presents some numerical results on the benefits of alleviating the restriction r < Q
and some sensitivity results. Finally, Sect. 7 provides concluding remarks.
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2 Themodel assumptions and preliminaries

Unit external demands are generated according to a Poisson process with rate λ. Replenish-
ment is done in batches and there is a fixed, positive procurement lead time, L . All of the
items in a batch have identical lifetimes. After joining stock, a batch has a fixed, finite lifetime
of τ time units, beyond which it is no longer usable. The items are withdrawn from stock to
satisfy the demand according to the FIFO policy. Each unit held in the stock incurs a holding
cost h per unit time. Each unit that perishes incurs a perishing cost of p. All unmet demand
is lost at a unit lost sales cost of π . There is a fixed non-zero ordering cost K . The inventory
system is monitored continuously and the following modified (Q, r) control policy based on
the inventory position (on hand inventory plus outstanding orders) is employed.
Policy A replenishment order of size Q is placed whenever the inventory position hits or
crosses r , whichever occurs first.

To see how the policy operates, letm be a positive integer defined asm := � r
Q � for a (Q, r)

pair, where �x� denotes the smallest integer greater than x . We have (m − 1)Q ≤ r < mQ.

Under the above policy, items join stock in batches of Q units and all items in a batch have
the same lifetime. So long as inventory depletion occurs through demand, inventory position
decreases incrementally by one unit and a reorder decision is triggered when the inventory
position hits r . However, it is also possible that items in the oldest batch simultaneously
perish; then, the reorder decision is triggered either when the inventory position hits r or
crosses r momentarily depending on whether or not r is an integer multiple of Q. If the
reorder point is an integer multiple of the lot size (r = (m − 1)Q), the inventory position
hits r at instances of order placement by perishing; otherwise, reordering is triggered as the
inventory position crosses r . In both cases, the inventory position drops exactly to the level
(m−1)Q.Furthermore, wemake the following observations: (i) At steady state, the inventory
position takes on values in the interval [r +1, Q+r ] in both cases (m−1)Q ≤ r < mQ and
r = (m−1)Q. (ii) There may be at mostm+1 different batches if (m−1)Q ≤ r < mQ and
m different batches if r = (m − 1)Q in the inventory system. (iii) Between two consecutive
order placements, there is always an instance when the inventory position hits mQ for the
first time. This note will become important when we discuss the embedded cycles in the
subsequent sections. (iv) The inventory system can be fully characterized by the inventory
position at any point in time and the times elapsed since each of the batches in the system
was ordered.

To illustrate the above particulars of the policy, we provide the following examples. Sup-
pose Q = 5 and r = 3. Then, m = � r

Q � = 1. At any instance at most one order may be
outstanding. The policy orders 5 units when the inventory position drops to 3 by demand or
to 0(= (m−1)Q) by perishing, whichever occurs first. At steady state, the inventory position
takes values in the interval [4, 8]. Suppose now, Q = 5 and r = 5 so that m = 2 which
implies that there may be at most two outstanding orders at any time. The policy orders 5
units whenever the inventory position drops to 5 by demand or perishing. At steady state, the
inventory position takes on values between [6, 10]. Lastly, suppose that Q = 5 and r = 7 so
that m = 2 again. There may be at most two outstanding orders at any time. An order of 5
units is ordered when the inventory drops to 7 by demand or crosses 7 dropping momentarily
to 5 by perishing of the oldest batch, whichever occurs first. At steady state, the inventory
position takes on values between [8, 12].

In our analysis, we impose no restrictions on the possible values that Q and r may assume
other than that they are non-negative. However, as will be illustrated below, when the reorder
point r is an integer multiple of the order quantity Q, some event realizations possible for

123



Annals of Operations Research

r �= Q are not observed which consequently results in some simplifications. Hence, we
address the cases for r > (m − 1)Q and r = (m − 1)Q separately. We first discuss the
former and defer the discussion of the latter to Sect. 5.

Our modeling approach is similar to that in Berk and Gürler (2008) and rests on the
concept of an embedded cycle defined, herein, as the time between two consecutive instances
at which the inventory position hitsmQ. Such instances provide extreme ease in the analysis:
At the beginning of an embedded cycle, a new batch is ‘issued’ for use; the batch ‘issued’ is
the oldest among the most recentm batches due to the FIFO rule; during the embedded cycle,
only this batch is being used to satisfy demand; at the end of the embedded cycle, this batch
has been depleted completely either by demand or perishing. Note that, in the model herein, a
stockout period occurs (when it does) at the beginning of an embedded cycle whereas in Berk
and Gürler (2008) such periods are by definition at the end. For brevity, we shall refer to the
batch issued at the beginning of an embedded cycle as the current batch, for the entirety of
the embedded cycle. We also define the effective lifetime of a batch as the lifetime τ plus
the lead time L minus the time elapsed since that particular batch was ordered. That is, the
effective lifetime is the remaining lifetime at the beginning of an embedded cycle if the batch
is already in stock; otherwise, it is the remaining lead time at that moment plus the lifetime τ .
The effective lifetime of a batch may, in general, take on values over (0, τ +L]. At embedded
cycle beginnings (when the inventory position is mQ by definition), the inventory system
can be fully characterized by an m-dimensional array of the effective lifetimes of the most
recent m batches. If one observes these arrays over consecutive embedded cycle beginnings,
they would appear as a sequence of random vectors, to which we shall refer as the sequence
of effective lifetime vector. Next, we obtain the probability distribution and certain properties
of this sequence.

3 Effective lifetime distribution

In this section, we show that the effective lifetime (vector) sequence has theMarkov property,
establish certain properties leading to the ergodicity of the process, and derive the stationary
effective lifetime (vector) distribution.

Suppose we start observing the inventory system operating under the proposed policy
at time t = 0 with m batches of Q items in the system. Let {Tn, n ≥ 1} be the sequence
of time epochs at which the inventory position hits mQ for the nth time; with T1 = 0.
Then, IP(Tn) = mQ for all n ≥ 1, where IP(t) is the inventory position at time t . Let
{Zn, n ≥ 1} be the sequence of effective lifetimes of the m batches in the system at Tn ,
where Zn = {Zn,1, . . . , Zn,m}; and zn = {zn,1, . . . , zn,m} denote a particular realization of
Zn , where 0 < zn,1 ≤ zn,2 ≤ · · · ≤ zn,m ≤ τ + L . Considering the system between two
consecutive instances when the inventory position hits mQ, we develop the expressions for
the limiting probability distribution of the effective lifetime sequence {Zn, n ≥ 1}.

We first demonstrate that the effective lifetime process {Zn, n ≥ 1} possesses the Markov
property,which is a crucial assumption for the validity of ourmodeling approach. Let {Y j , j ≥
1} be the sequence of Poisson demand arrival times in chronological order and let N (t) be the
counting process of the arrivals in (0, t]. Then, {Tn, n ≥ 1} is a sequence of stopping times
for N (t). Hence, the time between the (N (Tn) + j)th demand arrival and the last stopping
time, i.e., YN (Tn)+ j − Tn has an Erlang j distribution with rate λ, independent of the events
prior to Tn . The time between Tn+1 and Tn corresponds to the nth embedded cycle for n ≥ 1
as defined above.
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As an example, consider the following sample path: Set the time origin, T1 = t = 0, as
the beginning of Embedded Cycle 1, where the oldest batch in the system has an effective
lifetime z1,1 = τ (hence all the other zi,1 ≤ τ ). Suppose the inventory position drops to
r after mQ − r demands have arrived and a replenishment order is given at t = YmQ−r .
During the lead time period of length L , the remaining r − (m − 1)Q units are also depleted
by demand and Embedded Cycle 1 is completed before the lead time period ends, starting
Embedded Cycle 2 (T2 = YQ). This realization is characterized by the events YQ < z1,1 = τ

and YQ − YQ−r < L . Embedded Cycle 1 has lasted for T2 − T1 = YQ time units; hence,
the second embedded cycle begins with a batch of Q items with an effective lifetime of
z2,1 = z1,2 − [T2 − T1] = z1,2 − YQ . Similarly, we have z2,i = z1,i+1 − [T2 − T1] for
i = 2, . . . ,m − 1. The youngest batch (the most recently placed order) in the system has an
effective lifetime of z2,m = τ + L − [YQ − YmQ−r ], where the bracketed term corresponds
to the time elapsed since the corresponding order was placed. Suppose in Embedded Cycle
2, the inventory position drops to r at time t = YN (T2)+mQ−r and an order of size Q is
placed and at the end of the lead time, there are still some unsold items left over. Those items
are then depleted by demand at time t = YN (T2)+Q without perishing and Embedded Cycle
3 starts (T3 = YN (T2)+Q). This realization is characterized by the events YN (T2)+mQ−r −
T2 < z2,1, YN (T2)+Q − YN (T2)+mQ−r > L and YN (T2)+Q − T2 < z2,1. At the beginning
of Embedded Cycle 3, the effective lifetimes for the batches in the system are as follows:
z3,i = z2,i+1 − [T3 − T2] for i = 1, . . . ,m − 1 and z3,m = τ + L − [T3 − YN (T2)+mQ−r ].
Assume that z3,1 > τ , implying that this batch corresponds to an outstanding order, and
that the system loses the demand that occur, if any, over the time segment w(z3,1), where
w(x) = (x − τ)+ = max(0, x − τ). A positive value of w(x) implies a stockout period
with duration of that length, which occurs at the beginning of the corresponding embedded
cycle under our definition herein of an embedded cycle. Suppose in this embedded cycle, the
inventory level drops to r at t = YN (T3)+N (w(z3,1))+mQ−r and an order of size Q is placed.
Note that the demands arriving over the time segment (T3, T3+w(z3,1)] are lost to the system
since there is no stock on hand during this time. At the end of the lead time, there are still
unsold items and unlike the previous case, however, suppose some of these left over items
perish at time t = T4 before they are depleted by demand. This perishing event completes
the third embedded cycle and starts the fourth one (T4 = T3 + z3,1). This realization is
characterized by the events YN (T3)+N (w(z3,1))+Q −T3 > z3,1, YN (T3)+N (w(z3,1))+mQ−r −T3 <

z3,1 and YN (T3)+N (w(z3,1))+Q −YN (T3)+N (w(z3,1))+mQ−r > L . At the beginning of Embedded
Cycle 4, we have z4,i = z3,i+1 − [T4 − T3] = z3,i+1 − z3,1 for i = 1, 2, . . . ,m − 1
and z4,m = τ + L − [T4 − YN (T3)+N (w(z3,1))+mQ−r ]. Assume that z4,1 > τ and an order
is placed at t = T4 + z4,1 when all items on hand perish before a total of mQ − r units
can be sold. This perishing event which triggers a reordering decision also completes the
fourth embedded cycle and starts Embedded Cycle 5 (T5 = T4 + z4,1). This realization
is characterized by the event YN (T4)+N (w(z4,1))+mQ−r − T4 < z4,1. At the beginning of
the fifth embedded cycle, we have z5,i = z4,i+1 − [T5 − T4] = z4,i+1 − z4,1 for i =
1, 2, . . . ,m − 1 and z5,m = τ + L . The process continues in this fashion. As illustrated by
the foregoing discussion, the effective lifetime vector Zn+1 at the beginning of the (n + 1)th
embedded cycle is completely determined by (i) Zn and, (ii) the Poisson demand arrival
process after the stopping time Tn . Therefore, the embedded process {Zn, n ≥ 1} has the
Markov property. Due to possible stockouts, the demand process within an embedded cycle
is not identical to the sales process within it. For brevity, we, henceforth define Xr−(m−1)Q =
YN (Tn)+N (w(zn,1))+Q−YN (Tn)+N (w(zn,1))+mQ−r , XQ = YN (Tn)+N (w(zn,1))+Q−[Tn+w(zn,1)],
and XmQ−r = YN (Tn)+N (w(zn,1))+mQ−r − [Tn + w(zn,1)]. They denote, respectively, the
times that elapse until r − (m − 1)Q, Q, and mQ − r units are sold since the beginning of
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an embedded cycle or the first instance within an embedded cycle at which there is positive
stock, whichever occurs first. Note that Xr−(m−1)Q, XQ and XmQ−r are independent Erlang
r − (m − 1)Q, Erlang Q and Erlang mQ − r variables with rate λ, respectively. For an
Erlang j variable, its probability density function (p.d.f.) is denoted by h j (·), its cumulative
distribution function (c.d.f) by Hj (·), and its complementary c.d.f. by Hj (·).

The effective lifetimes for the (n + 1)th embedded cycle are obtained by considering
the following events. (i) E1 : {XQ < min(Zn,1, τ ) = Zn,1 − w(Zn,1)} where all Q items
of the oldest batch of embedded cycle n are sold without perishing; (ii) E2 : {XmQ−r <

Zn,1 − w(Zn,1) < XQ} where some of the items in the oldest batch of embedded cycle n
perish after reordering; and (iii) E3 : {XmQ−r > Zn,1 − w(Zn,1)} where some of the items
in the oldest batch of embedded cycle n perish before the reorder point r is reached through
sales. We have

Zn+1,i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Zn,i+1 − w(Zn,1) − XQ i = 1, 2, . . . ,m − 1 and E1

τ + L − Xr−(m−1)Q i = m and E1,

Zn,i+1 − Zn,1 i = 1, 2, . . . ,m − 1 and E2

τ + L − [Zn,1 − w(Zn,1) − XmQ−r ]
= τ + L + XmQ−r − min(Zn,1, τ ) i = m and E2,

Zn,i+1 − Zn,1 i = 1, . . . ,m − 1 and E3

τ + L i = m and E3.

(1)

Remark In event E1 above, we need Z(n+1),m > L , since, otherwise, τ + L − Xr−(m−1)Q <

L , which will imply τ < Xr−(m−1)Q . However, in this realization, XQ = Xr−(m−1)Q +
XmQ−r < min(Zn,1, τ ) < τ which implies Xr−(m−1)Q < τ and this conflicts with the
previous finding. Similarly, in event E2, we conclude that Zn+1,m > L , since otherwise
τ + L − min(Zn,1, τ ) + XmQ−r < L , which implies that XmQ−r < min(Zn,1, τ ) < τ ,
which is not possible. Therefore, L < Zn,m ≤ τ + L for n ≥ 1. But, we have 0 ≤ Zn,1 ≤
Zn,2 ≤ · · · ≤ Zn,m for all n. The state space of the system is S = {(x1, x2, . . . , xm) : 0 ≤
xi ≤ τ + L, i = 1, . . . ,m − 1; L ≤ xm ≤ τ + L}. Let Bm be the Borel σ -algebra generated
by the subsets of S. Without loss of generality, we consider the sets A ∈ Bm which are in
the form A = (0, z1] × (0, z2] × · · · (L, zm], where zi ≤ τ + L, i = 1, . . . ,m − 1 and
L ≤ zm ≤ τ + L . Let x = (x1, x2, . . . , xm),Zn = (Zn,1, Zn,2, . . . , Zn,m). Then, we have
the following result.

Theorem 1 (Transition probability function of Zn).
For r �= (m − 1)Q, let P(A|x) ≡ P(Zn+1,i ≤ zi , i = 1, . . . ,m|Zn = x). Then,

P(A|x) =

⎧
⎪⎪⎨

⎪⎪⎩

HmQ−r [min(x1, τ ) − (τ + L − zm)]H̄r−(m−1)Q(τ + L − zm)

− ∫ min(x1,τ )

τ+L−zm
HmQ−r (mx − u)dHr−(m−1)Q(u)

+I (zm = τ + L)H̄mQ−r (min(x1, τ )) if x1 ≥ m1,

0 if x1 < m1,

(2)
where mx = m1 − (x1 − τ)+,m1 = max1≤i≤m−1{xi+1 − zi } and I (·) is the indicator
function.

Proof See “Appendix”. 	

Proposition 1 (Boundedness)

(i) Given Zn = x, we have

E[Zn+1,i |x] = xi+1 − x1 +
∫ min(x1,τ )

0
dHQ(u), for i ≤ m − 1, (3)
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E[Zn+1,m |x] = τ + L −
∫ min(x1,τ )

0
HmQ−r (u)H̄r−(m−1)Q(min(x1, τ ) − u)du. (4)

(ii) For 0 < a < τ and x1 > max(τ + L − a, τ ),

m∑

i=1

E[Zn+1,i |Zn = x] ≤
m∑

i=1

xi − ε,

where

ε =
∫ a

0
HmQ−r (u)H̄r−(m−1)Q(τ − u)du.

Proof See “Appendix”. 	

Theorem 2 (Ergodicity) The process {Zn, n ≥ 1} is ergodic.
Proof Recall that if there are no closed classes in a Markov chain, except for the entire class
of states, the chain is irreducible (Cinlar (2013), p. 127). Inspecting (2), we see that for any
A ∈ Bm , there exists some x ∈ A such that P(A|x) = 0. In particular, for any x that satisfies
xi ≤ zi , i = 1, . . . ,m and x1 < m1, P(A|x) = 0. That is, p(Zn+1 ∈ A|Zn = x ∈ A) = 0
and Zn+1 gets out of the subset A. This implies that a set of the form A given above is not
closed. Similarly, it is easy to check that p(A|x) = 1 if zi = τ + L, i = 1, . . . ,m, in which
case, A is the entire state space. Hence, irreducibility follows. We now invoke Theorem 2.1
of Laslett et al. (1978) for a multi-dimensional Euclidean space and take g(x) = ∑m

i=1 xi .
Then, Proposition 1 implies the boundedness of the mean hitting times of the process, which
implies the ergodicity. Using Theorem 1, the transient and stationary distribution of the
effective lifetime vector can be obtained by linking the nth and (n + 1)th cycles,

Fn+1(z1, z2, . . . , zm) =
∫

· · ·
∫

P(A|x1, . . . , xm)dFn(x1, . . . , xm). (5)

Specifically, we have the following result. 	

Corollary 1 Define the m−dimensional arrays z = (z1, z2, . . . , zm), z = (0, z1, z2, . . . ,
z(m−1)),u = (t, ω(t) + x + y, . . . , ω(t) + x + y) and v = (t, t, . . . , t); and let ∂/∂zi Fn(z)
denote the partial derivative of Fn(.) w.r.t. zi .

(a) For 0 < z1 ≤ z2 ≤ · · · ≤ zm and L ≤ zm < τ + L,

Fn+1(z) =
∫ τ+L

t=0

∫ min(t,τ )

y=τ+L−zm

∫ min(t,τ )−y

x=0

∂

∂z1
Fn(z + u)dHmQ−r (x)dHr−(m−1)Q(y)dt

+
∫ τ+L

t=0

∫ min((t−ω(t)),(zm+ω(t)−τ−L))

x=0

∂

∂z1
Fn(z + v)

× Hr−(m−1)Q(t − ω(t) − x)dHmQ−r (x)dt

+
∫ τ+L

t=0

∂

∂z1
Fn(z + v)HmQ−r (t − ω(t))dt .

(b) For 0 < z1 ≤ z2 ≤ · · · ≤ zm = τ + L,

Fn+1(z) =
∫ τ+L

t=0

∂

∂z1
Fn(z + v)HmQ−r (t − ω(t))dt .

(c) As n → ∞, Fn+1(z) = Fn(z) = F(z), where F(z) denotes the stationary distribution
of the effective lifetime process.
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The last part of the above corollary follows from the ergodicity of the process which
implies that the limiting distribution of the effective lifetime process exists. F(z) is found
via the set of Volterra-type equations in the above corollary.

4 Operating characteristics and objective function

In this section, we obtain the expressions for the operating characteristics of the inventory
system at hand and construct the objective function of the decision model.

4.1 Operating characteristics

Wederive the operating characteristics of the system for a given value of the effective lifetime,
Z = z = (z1, . . . , zm). Hence, the entities derived may be viewed as conditional; later, we
shall uncondition them over the steady state effective lifetime vector. We first write the
(conditional) embedded cycle length,

[CL|z] =
⎧
⎨

⎩

XQ + w(z1) if XQ < z1 − w(z1),

z1 if XQ ≥ z1 − w(z1).
(6)

Recall that w(zi ) is the time that will pass in an embedded cycle before the i th oldest batch
joins stock (the stockout period), which may be zero. The first event above corresponds to
depleting the batch of items through demand, and the second corresponds to not being able to
sell the items in the batch prior to the expiry of their lifetimes. Carrying out the expectations,
we have the following conditional expectations:

E[CL|z] = z1 −
∫ z1−w(z1)

x=0
dHQ(x). (7)

After standard calculus, we arrive at the following expression:

E[CL|z] =
∫ z1−w(z1)

0
xdHQ(x) −

∫ ∞

z1−w(z1)
z1dHQ(x) = z1 −

∫ min(z1,τ )

0
dHQ(x). (8)

Next, we consider the (conditional) total stock-years (i.e., area under the inventory curve in
an embedded cycle), [OH |z]. For convenience, we define the following events:

E1a : {XQ < XmQ−r + L; XQ < z1 − w(z1)},
E1b : {XmQ−r + L < XQ < z1 − w(z1)},
E2a : {z1 − w(z1) − L < XmQ−r < z1 − w(z1); XQ > z1 − w(z1)},
E2b : {XmQ−r < z1 − w(z1) − L; XQ > z1 − w(z1)},
E3 : {XmQ−r > z1 − w(z1)}.

Event E1a corresponds to the case where the oldest batch is depleted by demand without
perishing, an order is given during the embedded cycle but this order does not arrive before
the embedded cycle terminates. Event E1b corresponds to the case where the oldest batch
is depleted with demand and the order given during the embedded cycle arrives before the
embedded cycle is completed. Event E2a describes the case where the oldest batch perishes
after reordering and the last ordered batch does not join the stock before the embedded cycle
ends; event E2b corresponds to the case where the oldest batch perishes after reordering and
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the ordered batch arrives before perishing; and, finally, event E3 corresponds to the case
where the oldest batch perishes before the reorder point is reached. Then,

[OH |z] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{∑Q
i=1 Xi

}
+ {∑m

i=2 Q[XQ − (w(zi ) − w(z1))]+
} + {0} if E1a,

{∑N (z1−w(z1))
i=1 Xi + (z1 − w(z1))[Q − N (z1 − w(z1))]

}

+ {∑m
i=2 Q[z1 − w(zi )]+

} + {0} if E2a,{∑Q
i=1 Xi

}
+ {∑m

i=2 Q[XQ − (w(zi ) − w(z1))]+
}

+ {
Q[XQ − XmQ−r − L]} if E1b,{∑N (z1−w(z1))
i=1 Xi + (z1 − w(z1))[Q − N (z1 − w(z1))]

}

+ {∑m
i=2 Q[z1 − w(zi )]+

} + {
Q[z1 − w(z1) − XmQ−r − L]} if E2b,{∑N (z1−w(z1))

i=1 Xi + (z1 − w(z1))[Q − N (z1 − w(z1))]
}

+ {∑m
i=2 Q[z1 − w(zi )]+

} + {0} if E3.

The expression for [OH |z] for each event consists of three components (within curly
brackets): The stock-years computed for the items in the batch that is currently being used,
for those in the previously placed m − 1 orders which are already in stock or may join stock
during the current cycle, and finally, for the most recently placed order. For example, for
Event E1a , the oldest batch will be carried in stock within an embedded cycle for the time
until Q units are sold (one by one); the remaining batches (i = 2 through m) of size Q each
will be carried in inventory for the time segment during which they are on hand; the most
recently placed will result in zero positive stock since the embedded cycle ends before the
lead time does. The stock-years are computed similarly for the other events.

The stock dynamics under the model herein is such that the stock-years computed for the
oldest batch and the most recently placed order are identical to those obtained for the model
with m = 1 and the same effective lifetimes for the oldest batch in Berk and Gürler (2008).
Then, the expected stock-years expression for multiple outstanding orders can be written as
follows.

E[OH |z] = E[ ˜OH |z1 − w(z1)] + Q
m∑

i=2

∫ z1−w(z1)

w(zi )−w(z1)
[u + w(z1) − w(zi )]dHQ(u)

+ Q
m∑

i=2

[z1 − w(zi )]+HQ(z1 − w(z1)),

(9)

where E[ ˜OH |x] is the corresponding expression in Berk and Gürler (2008) for m = 1
(modified to allow for m > 1) with the oldest batch having an effective lifetime of z1 = x ,

E[ ˜OH |x] = Q[η(Q, r , x) + xHQ(x) − mQ − r

λ
HmQ−r+1(x − L)

+ (Q + 1)

2λ
HQ+1(x) + γ (Q, r , x)] − λx2

2
HQ−1(x),

(10)

and

γ (Q, r , x) = HmQ−r (x − L)[x − LHr−(m−1)Q(L) − r

λ
Hr−(m−1)Q+1(L)],

η(Q, r , x) =
∫ x−L

0
[r − (m − 1)Q

λ
Hr−(m−1)Q+1(x − u)

− (x − u)Hr−(m−1)Q(x − u)]dHmQ−r (u).

(11)
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The conditional number of perishing units in an embedded cycle is [P|z] = Q − N (z1 −
w(z1)) if XQ > z1 − w(z1), and zero, otherwise. Then, the corresponding conditional
expectation is given by

E[P|z] =
Q−1∑

i=0

(Q− i)P{N (z1 −w(z1)) = i} =
Q−1∑

i=0

(Q− i)
e−λ(z1−w(z1))[λ(z1 − w(z1))]i

i ! .

(12)
Stockout occurs within a cycle if z1 > τ . Then, the conditional expectation of the number

of lost sales is
E[LS|z] = λw(z1). (13)

4.2 Objective function

The objective for our problem is the minimization of the expected cost rate, TC(Q, r)which
is a function of Q and r . The approach taken to construct the expected cost rate is similar to
that of Berk and Gürler (2008) and builds on the results of Ross (1970) and Tijms (1994),
with some modifications needed due to the multi-dimensional nature of the effective lifetime
process.

We show that, for the inventory system at hand, the expected average cost based on
regenerative cycles can be written via the embedded cycles defined above. We begin with
stating the equivalence result of Ross (1970) for a general semi-Markov decision process
(SMDP). In our model, the stochastic behavior of the inventory system at any time t is
characterized by the multidimensional process W (t) = {Z(t), IP(t), t ≥ 0}, where Z(t) =
(Z1(t), Z2(t), . . . , Zm(t)) is the effective lifetime process corresponding to the number of
outstanding orders with state space S = {(s1, s2, . . . , sm) : 0 ≤ si ≤ τ + L, i = 1, . . . ,m −
1; L ≤ xm ≤ τ + L} and IP(t) is the inventory position at time t . Recall that Zn is the
remaining lifetime vector of outstanding orders when the inventory position (IP) hits mQ
for the nth time. Without loss of generality, let the initial state of the system be w = w(0) =
(z, Q), z ∈ S, T = inf{t > 0 : W(t) = w,W(t−) �= w} and N = min{n > 0 : Zn+1 = z}.
Hence, T is the first return time to state w, and, since we fix the initial inventory position at
Q, N determines the number of transitions it takes to return to the initial state. Considering
the inventory system in continuous time, let C(t) denote the cost incurred over the interval
(0, t]. Also, let Ci ≡ Ci (Zi ,X) and Li ≡ Li (Zi ,X) be the cost and the length of the i th
embedded cycle (i = 1, 2, . . .), where X denotes the array of inter-arrival times of Poisson
demands within the i th embedded cycle, independent of (Z1, . . . ,Zi ). Following Ross, we
define the two average cost criteria as follows:

φ1(w) = limt→∞E[C(t)/t |W(0) = w], (14)

φ2(z) = limn→∞
E

[∑n
i=1 Ci (Zi ,X)|Z1 = z

]

E
[∑n

i=1 Li (Zi ,X)|Z1 = z
] , (15)

where φ1(w) is the limiting value of the expected cost per time as time tends to infinity given
that the initial system state wasw, and φ2(z) is the limiting value of the expected cost per time
across a number of completed embedded cycles as that number of embedded cycles tends
to infinity. The two expected cost constructs are equivalent if the stochastic system at hand
satisfies the condition that transitions of Zn (embedded cycle completions) do not take place
‘too quickly’. In the case of m = 1, this is established easily by the fact that each embedded
cycle contains one full lead time period of finite length. However, for m > 1, this condition
does not hold; instead, we need the following result.
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Lemma 1 If E[T |w] is finite, then E[N |w] < ∞ and T = ∑N
n=1 Ln .

Proof Let N (≡ N |w) be the number of embedded cycles within a regenerative cycle, i.e.,
the number of times the inventory position hits mQ between two consecutive visits to state
w. These N embedded cycles can be partitioned into consecutive blocks each consisting of
(m + 1) consecutive embedded cycles. The first block will be composed of the embedded
cycles 1 through m + 1, the second block will be composed of the embedded cycles m + 2
through 2(m + 1), and so on. If N is not an integer multiple of (m + 1), there will be one
incomplete block (at the end) consisting of less than m + 1 embedded cycles; otherwise,
there will be no such incomplete cycle. For j ≥ 1, let Γ j = ∑ j(m+1)

i=( j−1)(m+1)+1 Li . Then,
Γ1 is the length of the first block, Γ2 is the length of the second block, and so on. We
can write, in general, T = ∑K

j=1 Γ j + Re where Re, if non-zero, corresponds to the last
segment in (0, T ] which is an incomplete block, and K is the (random) number of complete
blocks within a regenerative cycle, starting at initial state w. Then,

∑K
j=1 Γ j < T and

E[∑K
j=1 Γ j ] < E[T ]. Next, we show that the length of any block cannot be smaller than the

lead time; Γ j ≥ L for j ≥ 1. Consider the kth block; the first embedded cycle of this block
is the (k(m + 1) + 1)th embedded cycle starting at time Tk(m+1)+1. Suppose that t is the
time of the reordering decision during this embedded cycle, which ends at Tk(m+1)+2. Clearly,
Tk(m+1)+1 < t ≤ Tk(m+1)+2. By Tk(m+1)+2, exactly Q units of stock have been depleted since
the beginning of the embedded cycle k(m+1)+1. Similarly, by the end of the last embedded
cycle in the kth block, Tk(m+1)+m+1, exactlymQ units of stock will have been depleted either
by demand or perishing. The batch ordered at t arrives at t+L . If Tk(m+1)+m+1 ≥ t+L , then
there is positive stock in the system at the beginning of the next k + 1th block. This implies
Γk = [T(k+1)(m+1)+1 − Tk(m+1)+1] ≥ L . Otherwise, the system experiences a stockout
only after which sales can occur; then, by definition of an embedded cycle, we must have
T(k+1)(m+1)+1 > t+L . This also implies Γk = [T(k+1)(m+1)+1−Tk(m+1)+1] ≥ L . The lower
bound on the duration of a block, in turn, implies E[K ]L < E[∑K

j=1 Γ j ] < E[T ] < ∞.
Furthermore, N < (m+1)(K+1) gives E[N ] < (m+1)(E[K ]+1) ≤ (m+1)(E[T ]/L+1),
and it follows from the finiteness of E[T ] that E[N ] < ∞. Hence, as in Berk and Gürler
(2008) for m = 1, Theorem 1 of Ross (1970) establishes the equivalence of φ1(w) = φ2(z)
for m > 1. 	


Let C(z) = E[Ci (Zi ,X)|Zi = z] and L(z) = E[Li (Zi ,X)|Zi = z] for i ≥ 1. The
expectations are independent of the index i when Zi = z is given and are calculated with
respect to the interarrival times of Poisson demands X, as provided above. Generalizing the
results of Tijms (1994) to continuous state spaces, we have the following.

Theorem 3 Let F(·) be the limiting distribution function of {Zi , i ≥ 1}. Then,

φ2(z) =
∫

z C(z)dF(z)
∫

z L(z)dF(z)
. (16)

We can now construct the expected cost rate, TC(Q, r), as follows:

TC(Q, r) = K + ∫

z (hE[OH |Z = z] + pE[P|Z = z] + πE[LS|Z = z]) dF(z)
∫

z E[CL|Z = z]dF(z)
. (17)
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5 Special case: reorder point is an integer multiple of order quantity

Suppose r = (m−1)Q,m ≥ 1. In this case, the order placement instances and the embedded
cycle beginning/ending points coincide, unlike the cases encountered when r �= (m − 1)Q.
One of the implications of this is that, the event E2 : {XmQ−r < Zn,1 − w(Zn,1) < XQ}
(described in Sect. 3) corresponding to the realization where some of the items in the oldest
batch of the embedded cycle n perish after reordering, is never realized. This results in some
simplifications in the expressions. Below, we reproduce some of the main results for the
special case r = (m − 1)Q.

For notational convenience, the state space of the system is described slightly differently
as SS = {(x1, x2, . . . , xm) : 0 ≤ xi ≤ τ + L, i = 1, . . . ,m − 1; xm = τ + L}. As before,
let Bm be the Borel σ -algebra generated by the subsets of SS. Without loss of generality, we
consider the sets A ∈ Bm which are in the form A = (0, z1] × (0, z2] × · · · × (0, zm−1] ×
[τ + L], where zi ≤ τ + L, i = 1, . . . ,m − 1. Let x = (x1, x2, . . . , xm−1, τ + L),Zn =
(Zn,1, Zn,2, . . . , Zn,m−1, τ +L). Then, we have the following result analogous to Theorem 1.

Theorem 1S If r = (m − 1)Q, then the transition probability matrix P(A|x) ≡ P(Zn+1,i ≤
zi , i = 1, . . . ,m − 1, Zn+1,m = τ + L|Zn = x) is given by

P(A|x) =
{
H̄Q([m1 − (x1 − τ)+]+) if x1 ≥ m1,

0 if x1 < m1.
(18)

Proof See “Appendix”. 	

Also, by directly applying the characteristics of the special case to Proposition 1, we have

the following result.

Proposition 1S (i) Given Zn = x, we have

E[Zn+1,i |x] = xi+1 − x1 +
∫ min(x1,τ )

0
dHQ(u), i ≤ m − 1,

E[Zn+1,m |x] = τ + L.

(19)

(ii) For 0 < a < τ and x1 > max(τ + L − a, τ ),

m∑

i=1

E[Zn+1,i |Zn = x] ≤
m∑

i=1

xi − ε,where ε =
∫ a

0
dHmQ−r (u). (20)

The ergodicity of the process for the special case also follows as stated below.

Theorem 2S The process {Zn, n ≥ 1} is ergodic.
Proof Similar to Theorem 2, omitted. 	


For r = (m − 1)Q, the expressions for expected cycle length, expected number of units
that perish, and expected lost sales do not change but there is a slight change in the expressions
for expected on hand. Note that the events E1b, E2a, E2b (as discussed in Sect. 4.1 in relation
to the on-hand expression) are not realized for r = (m − 1)Q, since XmQ−r = XQ . Hence,
only the remaining events E1a : {XQ < z1 −w(z1)} and E3 : {XmQ−r > z1 −w(z1)} are to
be considered. The expected on hand expression given by (9) is still valid and the expressions
given in (10) and (11) change slightly as follows. For r = (m − 1)Q, we have the two cases
below: (i) If m = 1, then γ (Q, r , x) = (x − L)HQ(x − L), η(Q, r , x) = 0 and
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E[ ˜OH |x] = Q[xHQ(x) − Q

λ
HQ+1(x − L) + (Q + 1)

2λ
HQ+1(x) + (x − L)HQ(x − L)]

− λx2

2
HQ−1(x).

(21)
(i) If m ≥ 2, then γ (Q, r , x) = η(Q, r , x) = 0 and

E[ ˜OH |x] = Q[xHQ(x) + (Q + 1)

2λ
HQ+1(x)] − λx2

2
HQ−1(x). (22)

Note that m = 1 corresponds to the case r = 0, no safety stock is held in inventory and
orders are placed only when the on-hand inventory drops to zero. In this case, the remaining
lifetime of the batch is a degenerate random variable which always takes the value τ + L .
When m = 2, the remaining lifetime of the younger batch, Z2 is always τ + L and hence
the lifetime vector reduces effectively to a single dimension. In general, for any m, the
effective dimension of the remaining lifetime vector is m − 1. For the cases of m = 2 and
m = 3, respectively, we provide below the distribution functions of the effective lifetime
distributions: (i) For m = 2, the univariate lifetime distribution is

Fn+1,Z1(z1) =
∫ τ+L

x=τ+L−z1
HQ(τ + L − z1 − (x − τ)+)dFn,Z1(x). (23)

(ii) For m = 3, the bivariate lifetime distribution is

Fn+1,Z1,Z2(z1, z2)

=
∫ τ+L

x2>z1

∫ τ+L

x1>max(x2−z1,τ+L−z2)
HQ(m1 − (x1 − τ)+)dFn,Z1,Z2(x1, x2).

Fn+1,Z1,Z2(z1, z2)

=
∫ τ+L

x2>τ+L−z1−z2

∫ min(x2,τ+L)

x1>x2−z1
HQ(m1 − (x1 − τ)+)dFn,Z1,Z2(x1, x2)

+
∫ τ+L+z1+z2

x2>τ+L−z2

∫ min(x2,τ+L)

x1>τ+L−z2
HQ(m1 − (x1 − τ)+)dFn,Z1,Z2(x1, x2).

(24)

Note that the arguments leading to the proof of Lemma 1 and Theorem 3 also follow
similarly except that the modified definition of the state space S above is used. Hence, these
results are also valid for the special case of r = (m−1)Q and the expected cost rate expression
given in (17) is valid with the modified expected on-hand related expressions given in (21)
and (22).

6 Illustrative examples

In this section, we provide some examples to illustrate the sensitivity of the optimal values of
the policy parameters w.r.t. operating environment parameters and, the restrictiveness of the
r < Q assumption and benefits ensuing from alleviating this restriction. For the numerical
examples, we fix L = 1, h = 1, λ = 10 and π = 40 but vary the lifetime (τ = 2, 2.5, and 3),
the fixed ordering cost (K = 5, 10, 50, and 100) and the unit perishing cost (p = 10 and 50).
We retain the notation already introduced and use FR to denote the expected fraction of stock-
out timewithin an embedded cycle defined as FR = ∫

z w(z1)dF(z)/
∫

z E[CL|Z = z]dF(z).
The expressions given in Theorems 1 and 1S for the steady state distribution function of shelf
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lives do not have closed forms. Therefore, we resorted to numerical methods to obtain the
effective lifetime distributions and used a discretization of sizeΔ = (τ + L)/k.Note that the
domain for Zm is [L, τ +L]whereas the domains for Zi ’s are [0, τ +L] for i = 1, . . . ,m−1.
To ensure consistent discretization for Zm and the other Zi ’s, we chose k around 100 when
the dimension of the shelf life distribution is two or less and, around 40 for when it is 3 in our
numerical study. For optimization, we used exhaustive search over a broad range of policy
parameter values, and observed unimodality in all of the cases considered.

We present our results in Tables 1 and 2. The optimal lotsize-reorder point pairs, the
corresponding expected total cost rate and stockout fractions are shown, respectively, by
(Q∗, r∗), E(TC∗) and FR∗; the corresponding maximum number of outstanding orders is
m∗. Their counterparts under the r < Q restriction (m = 1) are shown by (Q, r)1, E(TC)1,

and FR1. The percentage deviation of the E(TC)1 from the optimal is denoted by GAP%.
The sensitivity of the optimal values of policy parameters (Q∗, r∗) w.r.t. the parameters

of the operating environment is as follows. Both Q∗ and r∗ are non-decreasing in shelf
life τ , but they are non-increasing in unit perishing cost p. But the maximum number of
outstanding orders, m is non-increasing in τ whereas it is also non-decreasing in p, which
implies that for systems with higher unit perishing costs such as pharmaceuticals the r < Q
restriction is more costly. As the fixed ordering cost K increases, Q∗ is non-decreasing and
r∗ is non-increasing such that m is overall non-increasing.

Table 1 Comparison of the optimal and one-outstanding-order-restricted lotsize-rerorder policies; p = 10

Parameters K (Q, r)1 E(TC)1 FR1 (Q∗, r∗) E(TC∗) FR∗ m∗ GAP%

τ = 2 5 (15, 14) 28.53 98.55 (8, 16) 21.72 99.40 3 31.35

10 (15, 14) 32.07 98.55 (9, 16) 27.91 99.37 2 14.91

50 (15, 14) 60.58 98.52 (15, 14) 60.58 98.52 1 0.00

100 (17, 13) 94.63 97.01 (17, 13) 94.63 97.01 1 0.00

τ = 2.5 5 (15, 14) 22.50 98.73 (9, 16) 19.37 99.45 2 16.16

10 (15, 14) 25.86 98.73 (11, 16) 24.42 99.48 2 5.90

50 (17, 14) 51.46 98.76 (17, 14) 51.46 98.76 1 0.00

100 (19, 14) 79.54 98.62 (19, 14) 79.54 98.62 1 0.00

τ = 3 5 (16, 15) 20.10 99.35 (10, 16) 18.63 99.50 2 7.89

10 (16, 15) 23.23 99.35 (13, 16) 22.84 99.58 2 1.71

50 (20, 14) 45.95 98.95 (20, 14) 45.96 98.95 1 0.00

100 (23, 14) 69.48 98.77 (23, 14) 69.48 98.77 1 0.00

Table 2 Comparison of the optimal and one-outstanding-order-restricted lotsize-rerorder policies; p = 50

Parameters K (Q, r)1 E(TC)1 FR1 (Q∗, r∗) E(TC∗) FR∗ m∗ GAP%

τ = 2 5 (13, 12) 42.75 95.90 (7, 15) 26.49 98.81 3 61.38

10 (13, 12) 46.55 95.90 (8, 14) 34.57 98.06 2 34.65

τ = 2.5 5 (14, 13) 28.69 97.71 (7, 16) 21.16 99.35 3 35.59

10 (14, 13) 32.22 97.71 (9, 15) 27.09 99.00 2 18.94

τ = 3 5 (15, 14) 22.38 98.76 (9, 16) 19.13 99.45 2 16.99

10 (15, 14) 25.68 98.76 (11, 16) 24.11 99.52 2 6.51
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We observe that the savings can be significant when the restriction is alleviated. The
deviations are increasing as the optimal number of outstanding orders (m∗) increases, as the
fixed ordering cost decreases, as the unit perishing cost increases, and as shelf life decreases.
Although not reported herein, similar effects are observed as unit lost sales cost increases.

7 Concluding remarks

In this paper, we provide the generalization of the (Q, r)model for perishables with constant
lifetimes and lead times for multiple outstanding orders. Expressions are given for the tran-
sient and steady state distribution of remaining lifetimes of all batches at hand; and operating
characteristics are derived using an embedded Markov chain approach. From our numeri-
cal study, we observed that the contribution of the generalization to allow more than one
outstanding orders becomes more pronounced when ordering costs and lifetimes are small,
perishing and lost sales costs are high. Even in systems holding items with the long lifetime,
small fixed ordering cost enforces the system to have multiple outstanding orders. Among
all parameters, lifetime and fixed ordering cost are the most important ones playing very
important rule in sensitivity of other parameters and the number of outstanding orders. The
batch size is affected directly by unit perishing cost and reorder point by unit lost sales cost.
The number of orders outstanding is very sensitive to any increase in lead time.

Appendix

Proof of Theorem 1 Suppose Zn,i = xi , i = 1, . . . ,m be given and, for brevity of notation
let k = r − (m − 1)Q so that Q − k = mQ − r . Then, referring to the expressions in (1),
we have, for zm < τ + L,

P(A|x) = P(xi+1 − (x1 − τ)+ − XQ ≤ zi , i = 1, . . . ,m − 1;
τ + L − Xk ≤ zm; XQ ≤ min(x1, τ ))

+ P(x1 ≥ m1; τ + L + XQ−k − min(x1, τ ) ≤ zm; XQ−k ≤ min(x1, τ ) ≤ XQ)

= P(mx − Xk < XQ−k ≤ min(x1, τ ) − Xk; τ + L − zm ≤ Xk < min(x1, τ ))

+ P(m1 < x1;min(x1, τ ) − Xk ≤ XQ−k ≤ min(x1, τ )

− (τ + L − zm); τ + L − zm ≤ Xk)

=
∫ min(x1,τ )

τ+L−zm
[HQ−k(min(x1, τ ) − u) − HQ−k(mx − u)]dHk(u)

+
∫ ∞

τ+L−zm
[HQ−k(min(x1, τ ) − (τ + L − zm)) − HQ−k(min(x1, τ ) − u)]dHk(u)
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=
∫ min(x1,τ )

τ+L−zm
[HQ−k(min(x1, τ ) − (τ + L − zm) − HQ−k(mx − u)]dHk(u)

+ HQ−k(min(x1, τ ) − (τ + L − zm)H̄k(min(x1, τ ))

= HQ−k(min(x1, τ ) − (τ + L − zm)H̄k(τ + L − zm)

−
∫ min(x1,τ )

τ+L−zm
HQ−k(mx − u)]dHk(u)

and, for zm = τ + L,

P(A|x) = P(xi+1 − x1 ≤ zi , i = 1, . . . ,m − 1; XQ−k ≥ min(x1, τ ))

= P(x1 ≥ m1, XQ−k ≥ min(x1, τ )).

Combining the cases, we obtain the result.

Proof of Theorem 1S Suppose r = (m − 1)Q. Then, Zn,m = τ + L . Let Zn,i = zi , i =
1, . . . ,m − 1, and zn,m = τ + L . First, assume z1 > τ ; XQ ≤ min(z1, τ ). According to the
discussion in Sect. 5, only the realizations E1 and E3 of Sect. 3 are valid for this special case.
Hence, for given Zn,i = xi , i = 1, . . . ,m we have:
If XQ < min(z1, τ ),

zn+1,i = xi+1 − (x1 − τ)+ − XQ; i = 1, . . . ,m − 2,

zn+1,m−1 = τ + L − (x1 − τ)+ − XQ,

zn+1,m = τ + L,

and if XQ > min(z1, τ ),

zn+1,i = xi+1 − x1; i = 1, . . . ,m − 2,

zn+1,m−1 = τ + L − x1,

zn+1,m = τ + L.

Then, we have

P(A|x) = P(Zn+1,i ≤ zi , i = 1, . . . ,m|Zn,i = xi , i = 1, . . . ,m)

= P(xi+1 − (x1 − τ)+ − XQ ≤ zi , i = 1, . . . ,m − 2; τ + L − min(x1, τ ) − XQ ≤ zm−1;
XQ ≤ min(x1, τ ))

+ P(xi+1 − zi ≤ x1, i = 1, . . . ,m − 2; τ + L − zm−1 ≤ x1,min(x1, τ ) < XQ)

= P(xi+1 − zi − (x1 − τ)+ < XQ ≤ min(x1, τ ); i = 1, . . . ,m − 1)

+ I

(

x1 ≥ max
i=1,...,m−1

{xi+1 − zi }
)

H̄Q(min(x1, τ )).

Recalling m1 = maxi=1,...,m−1{xi+1 − zi } the above expression is written as

P(A|x) = P(m1 − (x1 − τ)+ < XQ ≤ min(x1, τ ) + I (x1 ≥ m1)H̄Q(min(x1, τ ).

Observe that P(A|x) = 1 − HQ(m1) if x1 < τ, x1 ≥ m1, and zero otherwise. Also, if
x1 ≥ τ, x1 ≥ m1, P(A|x) = 1 − HQ(m1 − x1 + τ). This yields the following compact
expression P(A|x) = H̄Q(m1 − (x1, τ )+)I (x1 ≥ m1).

Proof of Proposition 1 Note that x1−(x1−τ)+ = min(x1, τ ). Then, rewriting the expressions
in (1), we have, for i = 1, . . . ,m − 1

Zn+1,i = xi+1 − x1 + (min(x1, τ ) − XQ)+, (25)
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and
Zn+1,m = τ + L − Xk I (XQ < min(x1, τ ))

+ (XQ−k − min(x1, τ )) I (XQ−k < min(x1, τ ) < XQ).
(26)

(i) (19) follows by taking the expectation with respect to XQ . Also, referring to (26), we have

E[Xk I (XQ < min(x1, τ ))] =
∫ min(x1,τ )

0
uHQ−k(min(x1, τ ) − u)dHk(u),

P(XQ−k < min(x1, τ ) < XQ) = HQ−k(min(x1, τ )) − Hk(min(x1, τ )),

and

E[XQ−k I (XQ−k < min(x1, τ ) < XQ)]

=
∫ min(x1,τ )

0

∫ min(x1,τ )

min(x1,τ )−y
ydHk(u)dHQ−k(y) +

∫ min(x1,τ )

0

∫ ∞

min(x1,τ )

ydHk(u)dHQ−k(y)

=
∫ min(x1,τ )

0
u H̄k(min(x1, τ ) − u)dHQ−k(u)

= min(x1, τ )H̄Q−k(min(x1, τ )) −
∫ min(x1,τ )

0
HQ−k(u)H̄k(min(x1, τ ) − u)du

−
∫ min(x1,τ )

0
(min(x1, τ ) − u)HQ−k(u)dHk(u),

where the last equality follows from integration by parts. Now, (4) follows from taking the
expectation of (26).
(ii) According to the part (i) above,

m∑

i=1

E[Zn+1,i |Zn = x] ≤
m−1∑

i=1

[xi+1 − (x1 − τ)+] + τ + L

−
∫ min(x1,τ )

0
HQ−k(u)H̄k(min(x1, τ ) − u)du

=
m∑

i=2

xi − (m − 1)(x1 − τ)+ + τ + L −
∫ min(x1,τ )

0
HQ−k(u)H̄k(min(x1, τ ) − u)du

=
m∑

i=1

xi − [(m − 1)(x1 − τ)+ + x1

+
∫ min(x1,τ )

0
HQ−k(u)H̄k(min(x1, τ ) − u)du − (τ + L)].

Let C be the term in square brackets. If x1 > τ + L − a,

C ≥ x1 +
∫ τ

0
HQ−k(u)H̄k(τ − u)du − τ − L

> τ + L −
∫ τ

a
HQ−k(u)H̄k(τ − u)du +

∫ τ

0
HQ−k(u)H̄k(τ − u)du − τ − L

=
∫ τ

a
HQ−k(u)H̄k(τ − u)du.
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