
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 6, NOVEMBER 1992

~

1833

TABLE XI
WEIGHT ENUMERATOR OF ck , A [52,27,9]-CODE

1 + 170~’ + 442~’” + 714y” + 6188~” + 28560~”
+5304Oyl4 + 77520~” + 308958~’~ + 879480~’~
+ 1270360y’8 + 1661240y” + 3754569~” + 6824752~‘~
+8065616~~~ + 9306480~’~ + 1270750Oyz4 + 14775.516~~~
+ 14775516~‘~ + 14775516~” + 12707500yZ8 + 9306480~’~
+8O65616y3O + 6824752~~~ + 37.54569~~~ + 1 6 6 1 2 4 0 ~ ~ ~
+ 1270360~1~~ + 879480~” + 3 0 8 9 5 8 ~ ~ ~ + 7 7 5 2 0 ~ ~ ~
+53040y3 + 2 8 5 6 0 ~ ~ ~ + 6188~~’ + 714y41 + 4 4 2 ~ ~ ~
+ 1 7 0 ~ ~ ~ + y5’

TABLE XI1
A GENERATOR MATRIX AND WEIGHT DISTRIBUTION OF

T54, A [54,27,10]-CODE
1000000000000000000000000000001 110101 11 1000001 11 100010
01000000000000000oO00000100000100111011101000011100100
001000o0O000000m0000100011100101001001011001001111
00010000000000000000000010000l010100l11111011101011111
000010000000OOOO0010101001001101oO0110011000
000001000000000000000000l00010100000001010100001010010
0000001000000000000000001000000l1011101111110100100100
00000001000000000000oO00000010110010110001011100000001
000000001oO0000000000000000011110000010101101000011000
0000000001000000000000001000001 1 1 1010100001 1001 0000010
00000000001000000000000000001010000110l110111111010010
0000000000010000000000000000101 11001 1 1101001 1001 110001
000000000000100oO0000000000011110101110000001010100000
000000000000010000000000100000111111 1000100000110111 10
00000000000000100000000000001010000011011 110011 1111100
000000000000000100000OOOlOOOOOO10101ooo0011101011 loo00
0000000000000000100000001000000110011 1000101110011 1101
00000000000000000 1000000 10000 10 1 1 1 1 1 10 100 100 100001 101 1
000000000000000000100000100001 11 1100100101000010001000
00oO00000000000000010000000010000001010100000111010111
00000000000000000000100000001 1101001 1001 1 100010 I 1 1001 1
000000000000000000000 1000000 1 10 1 1 10 1 1 1 1 1 10 100 100 100001
0000000000000000000000100000l1000111110010010100001000
00000000000000oO00000001000010001010110100001100011100
0000000000000000000000000100101 1 1 11 10001 101001 1001001 1
00000000000000000000000oO010 1 1 1 10 1 10 10 1 1 1001 0 10 10 1000 1
000000000000000000000oO000011101001001101000110011oO00

Weight Frequency

0 1
10 255
12 5831
14 44268
16 330174
18 1414284
20 4802364
22 11681 193
24 20802220
26 28028274
28 28028274
30 20802220
32 1 168 1193
34 4802364
36 14 14284
38 330174
40 44268
42 5831
44 255
54 1

~~

MacWilliams identities, the weight enumerator of Ck is shown
in Table XI. Let S be a codeword in C that is not orthogonal to
s, where
S = (100000000000000000000000001 11 11

00010 10000 1 1 10100 100 1).

TABLE XI11
WEIGHT ENUMERATOR OF (c,*)’ , A [54,28,3]-CODE

1 + y 3 + 255y” + 2754 “ + 5 8 3 1 ~ ’ ~ + 44268~’~
+258944yI5 + 330174~‘ + 1414284~’~ + 5469039~”
+ 4802364~’~ + 11681193y” + 32372352~~~ + 20802220~~~
+ 28028274~~~ + 58011548~’~ + 28028274~’~ + 2080222Oy3O
+32372352y3‘ + 11681193y3’ + 4802364~~~ + 5469039~~
+ 1 4 1 4 2 8 4 ~ ~ ~ + 3 3 0 1 7 4 ~ ~ ~ + 258944~~’ + 44268~~’
+5831y4’ + 2 7 5 4 ~ ~ ~ + 2 5 5 ~ ~ ~ + y51 + yS4

By Theorem 1, we get a new code C*, which we denote by T54, a
[54,27,10]-code, which is generated by (1,0, s), (1,1, S) and 25
basis vectors of CO, (0, 0, basis vector of CO>. A generator matrix
and the weight distribution of T54 are shown in Table XII.
Hence, we get W as given in (4) with p = 12.

Let C,* be the subcode of C* consisting of all codewords of
weight O(mod 4). Then (e,*) has the weight enumerator, by the
MacWilliams identities, as shown in Table XIII. Therefore, we
get S in (4) with p = 12.

ACKNOWLEDGMENT

The author would like to thank Prof. J. Leon for his fast
program help and for comments on the manuscript. The author
would also like to thank Prof. V. Pless for her lecture discus-
sions.

REFERENCES
[1] J. H. Conway and N. J. A. Sloane, “A new upper bound on the

minimal distance of self-dual codes,” IEEE Trans. Inform. Theory,
vol. 36, pp. 1319-1333, NOV. 1990.
R. A. Brualdi and V. S. Pless, “Weight enumerators of self-dual
codes,” IEEE Trans. Inform. Theory, vol. 37, pp. 1222-1225, July
1991.

[3] H. P. Tsai, “Existence of certain extrema1 self-dual codes,” IEEE
Trans. Inform. Theory, vol. 38, pp. 501-504, Mar. 1992.

[2]

Sequential Decoding of Low-Density
Parity-Check Codes by Adaptive

Reordering of Parity Checks

Branko Radosavljevic, Student Member, IEEE, Erdal Arikan,
Member, IEEE, and Bruce Hajek, Fellow, IEEE

Abstract-Decoding algorithms are investigated in which unpruned
codeword trees are generated from an ordered list of parity checks. The
order is computed from the received message, and low-density parity-
check codes are used to help control the growth of the tree. Simulation
results are given for the binary erasure channel. They suggest that for

Manuscript received November 15, 1990; revised November 15, 1991.
This work was supported by the Joint Services Electronics Program
under Grant N00014-90-5-1270 and by an Office of Naval Research
graduate fellowship. This work was presented in part at the IEEE
International Symposium on Information Theory, Budapest, Hungary,
June 24-28, 1991.

B. Radosavljevic and B. Hajek are with the Coordinated Science
Laboratory and the Department of Electrical and Computer Engineer-
ing, University of Illinois, Urbana, IL 61801.

E. Arikan is with the Department of Electrical Engineering, Bilkent
University, P.K. 8, 06572, Maltepe, Ankara, Turkey.

IEEE Log Number 9203035.

0018-9448/92$03.00 0 1992 IEEE

1834 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 6, NOVEMBER 1992

small erasure probability, the method is computationally feasible at
rates above the computational cutoff rate.

Index Term-Low-density codes, sequential decoding, computational
cutoff rate.

I. INTRODUCTION
Sequential decoding is a general method for decoding tree

codes. The amount of computation depends on the channel
noise and the expected computation per decoded digit is finite
only at code rates below R,, the computational cutoff rate. The
present scheme is a modification of standard sequential decod-
ing in an attempt to operate at rates greater than R,.

With standard sequential decoding, a long burst of noise
requires a great deal of computation to resolve. This is illus-
trated in the following example, taken from [7]. Suppose we have
a binary erasure channel and use a convolutional code with rate
R. If the first L symbols are erased, then each path with length
L symbols in the codeword tree will appear equally likely to the
decoder, until they are extended further into the tree. Since
there are approximately 2 L R such paths, and each path has
probability 1/2 of being extended before the decoder finds the
correct one, the expected number of paths searched by the
decoder is 2LR-’. A long burst of noise will cause a sequential
decoder to perform a great deal of computation even on more
general communication channels. For example, consideration of
bursts allowed Jacobs and Berlekamp [7] to prove their proba-
bilistic lower bound to the amount of computation on any
discrete memoryless channel.

This leads one to consider adaptively reordering the codeword
tree, that is, changing the order of the digits used to generate
the tree. In this way, one can try to limit the occurrence and
duration of bursts of noise. More generally, the goal of reorder-
ing the tree is to decrease the computation performed by the
sequential decoder.

Apparently, however, one cannot significantly reorder the
codeword tree associated with a convolutional code and still
obtain a tree that is practical to search. Instead, in this paper we
consider decoding linear block codes by sequential decoding.
Our method of generating codeword trees for block codes differs
from that taken by Wolf [lo], Forney [3], and others. The nodes
of the trees that we construct are partially specified n-tuples
which may correspond to valid codewords. If the trees were
suitably pruned, the nodes would always correspond to partially
specified codewords, and thus, we call our trees unpruned code-
word trees.’ In contrast, the nodes in Wolfs trellis correspond to
parity check sums of partially specified n-tuples. A similar prun-
ing operation in his case leaves only those paths in the trellis
that correspond to partially specified codewords. In addition, the
resulting trellis is typically decoded using Viterbi decoding in-
stead of sequential decoding.

Specifically, we consider using low-density parity-check codes.
These codes, devised by Gallager [5], [6], are linear block codes
characterized by three parameters. A b i n a j (n , q, r) low-density
code has blocklength n, and a parity matrix with exactly q 1’s in
each column and r 1’s in each row. Typically, q and r are much
smaller than n , resulting in a sparse parity matrix. For these
reasons, low-density codes have the following two features. First,
given any ordering of the parity checks used to define a low-den-
sity code, one can generate an unpruned codeword tree that

’ Although we do not explicitly prune the tree, the decoding algorithm
essentially does this automatically, by choosing trees in which invalid
turns quickly lead to dead ends.

Ordering
Algorithm

Decoder Y

Fig. 1. The general structure of SDR algorithms.

grows slowly compared to the growth for a dense parity matrix.
Second, different parity check orderings yield different trees.

These two features are used by the decoding algorithms
presented in this correspondence. The algorithms, which we call
sequential decoding with reordering (SDR) algorithms, all have
the structure shown in Fig. 1. The ordering algorithm observes
the channel output and uses this information to choose a parity
check ordering. The sequential decoder then searches the corre-
sponding tree to obtain the decoder output. Decoding algo-
rithms are discussed for the binary erasure and binary symmetric
channels. Simulations were performed to investigate the possibil-
ity of using this approach at rates greater than R,.

There exist other methods related to sequential decoding that
can operate at rates greater than R,. In one approach, due to
Falconer [2], codewords of a block code with blocklength N are
fed in parallel to N convolutional encoders. The result is de-
coded by N parallel sequential decoders, and the structure of
the block code is used to push forward the slowest sequential
decoders. A second approach, considered by Pinsker [8], uses
concatenated codes, where the inner code is a block code and
the outer code is a convolutional code. Both approaches can
operate at rates up to capacity. In related research, other
decoding algorithms for low-density codes have been presented
by Gallager [SI, [6, pp. 41-52, 57-59] and Zyablov and Pinsker

We use the following terminology. The vector x = (x ~) : , ~ is
the transmitted codeword and y = (y,):, is the channel output,
where n is the blocklength of the code being used. For simplic-
ity, we assume the channel input is binary.

[111, 1121.

11. CODEWORD TREES FOR L ~ W - D E N S I T ~ CODES
To begin with, we mention some relevant properties of a

binary (n , q , r) low-density code. There are nq/r rows in the
parity matrix, but the rows need not be linearly independent.
Thus, the rate R satisfies

R 2 1 - q / r .

We use this bound to approximate R . One expects this approxi-
mation to be good for the codes used in this study because the
parity checks are randomly chosen (using a construction similar
to that given in [5] , [6, pp. 12-13]). A second property, obtained
by Gallager [SI, [6, p. 161, is that with q and r fixed with q 2 3,
the typical minimum distance of a random low-density code
grows linearly with n. Finally, codes in this study are chosen to
satisfy two constraints: n is a multiple of r , and no two parity
check sets have more than one digit in common. The first
constraint is required by the code construction procedure. The
second constraint was desirable when using the decoding algo-
rithms considered for the binary symmetric channel, and in
addition prevented the degenerate case of having a code with
minimum distance equal to two.

To generate an unpruned codeword tree, we start with an
ordered list of the nq/r parity equations used to define the

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 6, NOVEMBER 1992 1835

6j

Parity equations
X I + x* + X j

x3 + xq + x5

x s + x a + x , = o

0 0 0 1

...... -
Example:

Binary erasure channel
y = OeeelOl

Level 0 1 2 3 4 El

OIlOIlO

01110 - -

10101 . .
1011ooo

101 10110.- “-- :ew 1011011

Fig. 2. An unpruned codeword tree for a linear block code defined by
four parity equations. (To conserve space, the code is not a low-density
code.) Nodes that agree with the received message have underlined
labels. The quantities Mi, ei, and 6, are defined in Section IV.

code. (See Fig. 2.) Any ordering will work; at this point it is
arbitrary. Each parity check corresponds to a level in the tree,
and the nodes of the tree correspond to partially specified
n-tuples.

At the root node, the n-tuple is completely unspecified. In
moving from a node to one of its children, the set of specified
digits is increased by those “new” digits (if any) that appear in
the current parity check but not in any previous parity check. A
different child is created for each of the ways to assign values to
these new digits that satisfies the current parity check. Note the
possibility that all the digits involved in the current parity check
have already been assigned values earlier in the tree (i.e., the
current parity check contains no new digits). In this case, a node
will have no children if it does not satisfy the current parity
check. For this reason, the tree is called “unpruned,” to stress
the fact that some nodes at intermediate levels may not corre-
spond to valid codewords.

Thus, a given level in the tree consists of all the subsequences
that satisfy the current and all previous parity checks. At the
final level, all the n-tuples are completely specified, and they all
correspond to valid codewords.

This procedure can be used with any linear block code.
However, in the general case there is no limit on the number of
digits involved in a parity check, other than the blocklength n. A
typical parity check may involve n / 2 digits. If this is the first
parity check used to generate the tree, there will be 2n/2-1
nodes in the first level, and this is too large to be searched by a
practical decoder. However, in an (n , q, r) low-density code,
each parity check used to define the code involves exactly r
digits. The parameter r is typically small, and may be chosen
independently of n. All low-density codes considered here have
r I 10. As discussed next, trees for low-density codes have
fanout limited by 2*- ’ , and typically the fanout is much less.

One property of the trees obtained using the method previ-
ously given is the variability of their fanout, or growth rate. This
contrasts with codeword trees for convolutional codes, which
grow at the same rate at every level. To characterize the growth
rate, we first present some definitions. The set of digits involved
in a parity check is referred to as a parity check set. Given an
ordering of the parity checks, each parity check set is partitioned
into two groups, the n-set and the o-set. The n-set, or new set,
contains the “new” digits (as previously defined), and the o-set,
or old set, contains the rest.

Given a tree for an (n , q , r) low-density code, let ni be the
number of digits in the n-set associated with level i in the tree.
Also, let 4. be the total number of nodes at level i, with
No = 1. Then it is not hard to check that, for 1 I i

1) if the ith parity check is independent of the preceding

n q / r ,

parity checks,

2) otherwise,
Ni = N i - l .

In general,

This result implies that codeword trees for low-density codes
tend to grow quickly near the beginning of the tree and more
slowly toward the end. This occurs because the growth rate at a
given level depends on the size of the corresponding n-set. At a
level close to the origin, few digits will have had a chance to
appear in previous parity check sets, hence the corresponding
n-set tends to be large. The opposite situation holds near the
end of the tree. As a result, ni will roughly be a decreasing
function of i. This is not a hard and fast rule, but a good
qualitative description that holds regardless of which parity
check ordering is used.

In addition to the variable growth rate, codeword trees for
low-density codes and those for convolutional codes differ in
another important way. With a low-density code, two different
subtrees descending from a common parent node can be identi-
cal for many levels. This happens because the set of digit values
assigned to a node’s children depends only on the parity of the
child level’s o-set. Specifically, two subtrees with a common
parent node will agree on the values they assign to codeword
digits until a level is reached where the o-set in one subtree has
different parity than the o-set in the other subtree. To deter-
mine where such a level can occur, consider the root nodes of
the two subtrees. The labels of these two nodes will differ only
in the values assigned to the digits in the n-set of the level
containing the root nodes. Denote this n-set by S. Then the first
level at which the two subtrees can differ must have an o-set
that contains one or more digits in S.

This property can significantly affect the behavior of a sequen-
tial decoder. If the decoder diverges from the correct path in the
tree, it may not be able to detect its error for many levels. In this
case, backtracking one level at a time would be very inefficient.
For example, when using a (396,5,6) low-density code and a
typical parity check ordering, ten percent of the digits will have
50 or more levels between their appearance in an n-set and their
first appearance in an o-set. For this reason, a new sequential
decoding algorithm was developed for use on the binary symmet-
ric channel.

111. GENERAL FORM OF THE ORDERING ALGORITHM

As a basic heuristic for choosing parity check orderings,
consider the following structure. First, let f (a) be some nonneg-
ative measure of the unreliability of symbol y,. To limit compu-
tation, f(a) is constrained to depend on y only through the set
{yi, i E Sa}, where Sa c {l;.., n}. Specific definitions for f and
Sa are given in Section IV for the binary erasure channel.

The algorithm generates an order by choosing parity checks
one at a time. At each step, it chooses one of the remaining
parity checks that minimizes E, where E is a function chosen to

1836 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 6, NOVEMBER 1992

reflect the total noise in the “new” digits involved in a parity
check. E is defined by

E (C) = c f (a > ,
a = C n A

where C L {l;.., n) is a parity check set (i.e., C corresponds to a
row of the parity matrix) and A c {l;.., n) is the set of digits not
involved in any previously chosen parity check.

This heuristic has some desirable properties. First, it requires
much less computation than searching through all possible or-
derings; the specific amount depends on the definition of f and
S a . Second, it tends to push unreliable digits to the rear of the
codeword tree. As mentioned in Section 11, codeword trees for
low-density codes tend to grow more slowly toward the end.
Thus, a wrong move by the sequential decoder is less likely and
less costly toward the end of the tree than toward the beginning.
Third, the heuristic tends to minimize the growth of the tree. At
a given level, the growth of the tree depends on the number of
new digits in the corresponding parity check. Since f is nonnega-
tive, a parity check with fewer new digits is more likely to be
chosen than one with more. A slowly growing tree is desirable
because it is easier to search by the sequential decoder.

IV. THE BINARY ERASURE CHANNEL

For the binary erasure channel (BEC), we propose the mini-
mum new erasure (MNE) algorithm. It has the structure de-
scribed in Section 111, with the following definitions. Each set Sa
equals (a). The function f (a) equals 1 if y a is an erasure, and
equals 0, otherwise. With this definition of f, the function E
counts the number of new erasures, hence the algorithm’s name.
Sa has minimum size; this is appropriate because observing yo
alone completely characterizes its reliability.

The MNE algorithm is related to an upper bound on the
number of nodes visited by the sequential decoder, for a given
parity check ordering and erasure pattern. Here, the sequential
decoder “visits” a node if at some time that node is hypothe-
sized to be on the path corresponding to the transmitted code-
word. This upper bound is found by counting the nodes in the
codeword tree that agree with the unerased portion of the
received message. (See Fig. 2.) Let M, be the number of such
nodes at level i in the codeword tree for an (n, q, r) low-density
code. Then,

MO = 1,

M, = 2aiM,-1, 1 I z I m ,
where

a, = e, + 6, - 1,

m = n q / r = the number of levels in the codeword tree,

and e, is the number of new erasures at level i, which is the
number of erasures in the n-set at level i. The terms n-set and
o-set are defined in Section 11. The quantity 8, is defined as
follows. We assign 6, = 1 if e, = 0 and in addition, either: 1)
there are no erasures in the o-set at level i, or 2) the parity of
the erasures in the o-set at level i, taken as a group, assumes
only one value among the surviving nodes at level i - 1. Other-
wise, we assign 8, = 0.

An upper bound to the number of nodes visited by the
sequential decoder is given by

m m i

M = E M , = n2.1,
, = O , = o I = l

where M is a function of the channel output and the parity
check ordering. The MNE algorithm can be interpreted as a
greedy heuristic for minimizing M , ignoring the 6i term. The
first parity check is chosen to minimize e,; ignoring 6,, this
would minimize M I . Similarly, the second parity check is chosen
to minimize e2, and so on.

A straightforward implementation of this algorithm searches
the entire set of unused parity checks every time a new parity
check is chosen. Also, the number of new erasures involved in
each parity check is recalculated for every search, since the
definition of “new” changes. For an (n , q , r) low density code,
where n is the blocklength, this implementation requires
O(q2n2/r) computation and O(qn) memory. A more efficient
implementation [9, p. 112-1181 requires O(qn) computation and
O(qn) memory.

The MNE ordering algorithm was implemented on a com-
puter. The objectives were to estimate the maximum number of
erasures the decoding algorithm can handle and to compare this
number with what can theoretically be achieved with standard
sequential decoding. To form a complete decoder, the MNE
algorithm was coupled with the stack algorithm [l, pp. 326-3281,
a standard sequential decoding algorithm. Fixed weight pseudo-
random erasure patterns were generated and decoded by the
computer, and the results were used to estimate the expected
amount of computation and the probability of decoding failure
(pDF). Graphs of these quantities versus number of erasures are
shown in Fig. 3. Data points with no decoding failures were
omitted from the graph of pDF. To gauge the effectiveness of
the MNE algorithm, simulations were also performed with a
random ordering algorithm, which chooses parity check order-
ings with equal probability for each possible ordering. The
results of using the two algorithms with a (395,5,6) low-density
code are shown in Fig. 4.

The measure of computation was the number of steps per-
formed by the sequential decoder; specifically, the number of
times the entry at the top of the stack was extended. The
all-zeros codeword was always used. To compensate for this, the
sequential decoder searched the codeword tree branches in
reverse numerical order, and thus the all-zeros branch was
always searched last. As a result, the expected computation and
probability of decoding failure are upper bounds to what would
be expected with random codewords. After each trial, which
consisted of decoding a fixed weight pseudorandom erasure
pattern, the measured average computation, c, and the mea-
sured standard deviation of computation, s, were calculated. The
standard deviation of c, denoted by ŝ , was estimated by s ̂ =

s/ 6, where t, is the number of trials. This relation assumes
independent trials. For each data point, the computer performed
at least 200 trials and at most 3000; within this range, it stopped
if s ̂ < (0.025)~. The number of trials resulting in decoding
errors, NE, and the number of aborted trials, NA, were recorded
as well. A trial was aborted if the number of steps performed by
the sequential decoder reached ten thousand, or if the stack size
reached 200. However, the limit on stack size was unnecessary,
because none of the trials aborted for this reason. The estimated
probability of decoding failure was given by pDF = (NE +
N A) / T , where T is the total number of trials. Note that all codes
were chosen to have the property that no two parity check sets
contain more than one digit in common, as mentioned in Section
11.

The results shown in Fig. 4 indicate that the MNE algorithm
performs significantly better than random ordering. However, to
compare this approach with standard sequential decoding, we

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 6, NOVEMBER 1992 1837

n=3%
n=%
n=600

30-

20 -

10 -

n, 1

e
i%m
6
2 2000

0
0.20

R=1/3

R=1/6 A 0.30 fraction of 0.40 bits erased 0.50 0.60

: \ R=0.7

-I . . , I
0.20 0.30 0.40 0.50 0.60

fraction of bits erased

Fig. 3. Simulation results for the MNE algorithm. The code rates were
0.7,0.S, 1/3, and 1/6, with parameters (1OOO,3, lo), (396,3,6), (396,4,6),
and (396,5,6).

random

, , ,,I:.
0.00 0.20 0.40 0.60 0.80

fraction of bits erased

0.00 0.20 0.40 0.60 0.80
fraction of bits erased

Fig. 4. Simulation results for random ordering and the MNE algorithm,
used with a (396,S, 6) code.

must consider the asymptotic behavior. Simulations were per-
formed using codes with fixed q and r values, but varying
blocklengths. This is shown in Fig. 5 , which contains graphs of
normalized computation versus fraction of bits erased for q = 3,
r = 6 and q = 5, r = 6. Here, the normalized computation is the

q = 3, r = 6, rate = 1/2
5 0 , El I

20

10

~~ 0 0.30

n=3% I

0.40 0.50
fraction of bits erased

q = 5, r = 6, rate = 1/6
60, I

40

n=1% i
- .
0.40 0.50 0.60

fraction of bits erased

Fig. S. Normalized computation using the MNE algorithm, for two sets
of (q , r) values and various values of n.

amount of computation divided by nq/r + 1, the number of
levels in the codeword tree with the root node. Both graphs
seem to indicate that the cutoff point, where the average compu-
tation starts to increase, occurs at roughly the same value of the
fraction of bits erased, as n varies with q and r fixed. In other
words, for fixed q and r , the number of decodable erasures
when using the MNE algorithm appears to increase linearly in
n. This behavior is expected, since the typical minimum distance
of an ensemble of (n , q, r) low-density codes grows asymptoti-
cally linearly in n, for q 2 3 [5] , [6, p. 161. In addition, the cutoff
becomes sharper with increasing n, in the following sense. For
both graphs, at the first data point, normalized computation
decreases with increasing n (for example, 1.18, 1.095, 1.0056, and
1.0050 for n equals 96, 198, 396 and 600, respectively, with
q = 3, r = 6). This represents a feasible operating point. At the
second and third data points, normalized computation tends to
increase with increasing n. This trend is somewhat obscured
because trials were aborted if the computation reached 10000.
Thus, normalized computation cannot exceed 10 000/(nq/r +
1).

What can we conclude about using the MNE algorithm at
rates above R,, the computational cutoff rate for sequential
decoding? Estimates of E ~ ~ , the maximum erasure frequency
handled by the MNE algorithm, are shown in Table I. The upper
range is determined by the data point in Fig. 3 where the
average computation first exceeds two times its minimum possi-
ble value, n q / r + 1. The lower range is given by the last data
point with average computation less than 1.5(nq/r + 1). For
example, for the (396,5,6) code, the relevant data points have
215 and 210 erasures out of 396 digits. The well-known formula
of R, on a discrete memoryless channel [4, p. 2791 applied to the
BEC yields

R, = 1 - log,(l + E) ,

1838 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 6, NOVEMBER 1992

TABLE I
CUTOFF POINTS FOR THE MNE ALGORITHM AND STANDARD

SEQUENTIAL DECODING ON THE BEC

Code Parameters Rate

n i k R EMNE ‘SD

-
lo00 3 10 0.7 0.245-0.251 0.2311
396 3 6 0.5 0.404-0.429 0.4142
396 4 6 0.333 0.480-0.505 0.5874
396 5 6 0.167 0.530-0.543 0.7818

where E is the channel erasure probability and R , is measured
in bits. Inverting this formula yields the maximum erasure
probability that sequential decoding can handle for a given code
rate. Table I shows values of E ~ , , corresponding to the code
rates used in the simulations. For the (396,4,6) and (396,5,6)
codes, sMVIM: for the MNE algorithm is significantly less than
E ~ ~ . Thus, it seems that one cannot exceed R , using the MNE
algorithm with these values of q and r . The (396,3,6) code looks
more promising. Its value of E M N E nearly equals eSD.

Finally, for the (1000,3,10) code, sMNE is estimated to be
greater than eSD. To interpret this, recall that the simulations
were performed with fixed weight erasure patterns, not indepen-
dent erasures. At n = 1000, with 245 erasures, normalized com-
putation was 1.33. Extending this point proportionately out to
n = 5000 resulted in normalized computation equal to 1.0013. If
the conjecture about a linearly increasing operating region is
true, then it seems that an erasure frequency of 0.245 is within
the operating region for all n (with q = 3, r = 10). This implies
that for sufficiently large n , the MNE algorithm can handle
independent erasures with erasure probability at least up to
0.245. This would exceed the performance of standard sequen-
tial decoding, which has = 0.2311. Though this seems plau-
sible, nevertheless a finite number of simulations cannot prove
an asymptotic result.

Decoding errors occurred much less often than decoding
failures. A decoding error occurs when the sequential decoder
completes its search but outputs the wrong codeword. As de-
fined here, a decoding failure occurs if a trial results in a
decoding error or is aborted because of too much computation.
Out of 31 069 trials used to generate the graphs in Fig. 3, only 8
resulted in decoding errors. Thus, if the MNE algorithm is used
on a channel with feedback and retransmission capabilities, one
can achieve decoding error rates several orders of magnitude
smaller than p D F . However, the effective information rate would
be lower than the code rate, because of retransmissions. For the
results shown in Fig. 5, a significant number of decoding errors
occurred when using the (96,3,6) and (198,3,6) codes. It seems
one should avoid using blocklengths this small because, for the
trials used to generate Fig. 5, none of the other codes had any
decoding errors.

This discussion implicitly assumes that the codes used in the
simulations are “typical” low-density codes. The assumption is
reasonable in light of Gallager’s result that almost all the
low-density codes in his ensemble have minimum distance greater
than a single lower bound, Sq,n. In addition, for the binary
symmetric channel, simulation results obtained using two ran-
domly chosen (396,5,6) low-density codes are found to be very
close.

Given the extra work performed by the ordering algorithm,
why doesn’t the MNE algorithm outperform standard sequential
decoding in all cases? One feature that limits the SDR ap-
proach, not encountered in standard sequential decoding, is that

codeword trees for low-density codes tend to grow more rapidly
near the beginning than near the end. This happens regardless
of the parity check ordering, as discussed in Section 11. Thus, the
early part of the tree looks like a code with higher rate than the
original code. This is a drawback, since the sequential decoder
works well only at rates less than R,. However, the MNE
algorithm tends to push erased digits toward the end of the tree,
and this helps the sequential decoder. The net result of these
effects determines whether the overall performance is better
than standard sequential decoding. Another limitation of the
SDR approach is that the distance properties of low-density
codes are probably not the best possible.

v. THE BINARY SYMMETRIC CHANNEL

Results for the binary symmetric channel (BSC) were not as
promising ‘as for the BEC. Several ordering algorithms were
implemented [9], but several problems were encountered. First,
the same features that limit the SDR approach for the BEC
apply to the BSC as well. The trees searched by the sequential
decoder tend to grow more quickly near the root node than at
later levels, and low-density codes may have suboptimal distance
properties. Second, as discussed in Section 11, the trees used
here are such that if the sequential decoder diverges from the
correct path in the tree, it may not be able to detect its error for
many levels. This is not a problem on the BEC because the
unerased portion of a received message serves to eliminate from
consideration many nodes in the tree. Since conventional se-
quential decoders do not work well for this application on the
BSC, a new sequential decoder [9] was designed, but the result-
ing performance was still not good enough to approach the
cutoff rate. Third, the BSC is, in a sense, the worst possible
channel for SDR algorithms. Each digit at the channel output,
taken by itself, is equally unreliable-unlike, for example, the
BEC or the Gaussian noise channel. This makes it difficult to
generate a good parity check ordering.

VI. CONCLUSION

Sequential decoding with reordering (SDR) algorithms were
designed for the binary erasure and binary symmetric channels.
For both channels, with respect to standard sequential decoding,
relative performance improved with increasing code rate. For
the erasure channel, simulations suggest that one can use rate
0.7 low-density codes to handle a higher probability of erasure
than standard sequential decoding. A similar result did not hold
for the errors channel.

For future work, one could consider different parity-check
ordering algorithms. In addition, SDR algorithms could be gen-
erated for other communication channels. For example, one
could define f (u) = h (P (x , = OJy,)), where h is the entropy
function. The resulting SDR algorithm could be used on chan-
nels with real-valued outputs, such as the Gaussian noise chan-
nel.

ACKNOWLEDGMENT

The authors thank the reviewers for their useful comments.

REFERENCES
[I] G. C. Clark and J. B. Cain, Error-Correction Coding for Digital

Communications. New York: Plenum Press, 1981.
[2] D. D. Falconer, “A hybrid sequential and algebraic decoding

scheme,” Ph.D. dissert., Dept. of Elect. Eng., Massachusetts Inst.
of Technol., Cambridge, MA, 1967.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 6, NOVEMBER 1992 1839

G. D. Forney, Jr., “Coset codes-Part 11: Binary lattices and
related codes,” IEEE Trans. Inform. Theory, vol. 34, pp. 1152-1187,
Sept. 1988.
R. G. Gallager, Information Theory and Reliable Communication.
New York: Wiley, 1968.
-, “Low-density parity-check codes,” IRE Trans. Inform. The-
ory, vol. IT-8, pp. 21-28, Jan. 1962.
-, Low-Density Parity-Check Codes. Cambridge, MA: M.I.T.
Press, 1963.
I. M. Jacobs and E. R. Berlekamp, “A lower bound to the
distribution of computation for sequential decoding,” ZEEE Trans.
Inform. neory, vol. IT-13, pp. 167-174, Apr. 1967.
M. S. Pinsker, “On the complexity of decoding,” Probl. Inform.
Trans. (translation of Probl. Pereduch. Inform.), vol. 1, pp. 84-86,
Jan.-Mar. 1965.
B. Radosavljevic, “Sequential decoding with adaptive reordering of
codeword trees,” M.S. thesis, Tech. Rep. UILU-ENG-90-2209,
Coor. Sci. Lab., Univ. of Illinois, Urbana, IL, Mar. 1990.
J. K. Wolf, “Efficient maximum likelihood decoding of linear
blocks codes using a trellis,” IEEE Trans. Inform. Theory, vol.
IT-24, pp. 76-80, Jan. 1978.
V. V. Zyablov and M. S. Pinsker, “Decoding complexity of low-
density codes for transmission in a channel with erasures,” Probl.
Inform. Trans. (translation of Probl. Pereduch. Inform.), vol. 10, pp.
10-21, Jan.-Mar. 1974.
-, “Estimation of the error-correction complexity for Gallager
low-density codes,” Probl. Inform. Trans. (translation of Probl.
Peredach. Inform.), vol. 11, pp. 18-28, Jan.-Mar. 1975.

The Lempel-Ziv Algorithm and Message
Complexity

E. N. Gilbert, Fellow, IEEE, and T. T. Kadota, Fellow, IEEE

Abstract-Data compression has been suggested as a non-parametric
way of discriminating between message sources (e.g., a complex noise
message should compress less than a more redundant signal message).
Compressions obtained from a Lempel-Ziv algorithm for relatively
short messages, such as those encountered in practice, are examined.
The intuitive notion of message complexity has less connection with
compression than one might expect from known asymptotic results
about infinite messages. Nevertheless, discrimination by compression
remains an interesting possibility.

Index Terms-Lempel-Ziv parsing, data compression, nonparametric
discrimination.

I. INTRODUCTION

A discrimination question asks which of two possible sources
(e.g., signal or noise) produced a received message. If good
probabilistic descriptions of the sources were known, a likeli-
hood ratio might decide. Often the sources are not well under-
stood and nonparametric methods are needed. If the two sources
differ in redundancy, then data compression may be used
([1]-[3]). Thus, redundant signal messages will compress more
than non-redundant noise messages. Here, we examine
Lempel-Ziv compression for properties that may be useful in
discriminating binary sources.

There are several Lempel-Ziv algorithms. The one we study
scans the message digits in order and creates a new word

Manuscript received October 7, 1991; revised March 3, 1992. This
work was presented in part at the IEEE International Symposium on
Information Theory, Budapest, Hungary, June 24-28, 1991.

The authors are with AT & T Bell Laboratories, 600 Mountain Av-
enue, Murray Hill, NJ 07974.

IEEE Log Number 9201221.

whenever the current block of unparsed digits differs from all
words already found. Suppose the first m words from the mes-
sage contain a total of s, digits. Then, s, will tend to be large
for repetitious or redundant messages. As m goes to infinity, a
well-known result ([2], [4]) shows that s, increases like
(mlogm)/H, where H is the entropy of the source. Thus,
sources with different entropies could be perfectly discriminated
by parsing infinite messages.

Long messages are not available in real discrimination prob-
lems; moreover the asymptotic formula is found to be inaccurate
until m is very large indeed. For these reasons, we avoid
asymptotic results and concentrate on finite values of m. Even
small values like m = 3 or 4 provide interesting counterexam-
ples to show that properties holding for large m need not hold
in general. If m is small, and especially for highly redundant
sources, compression is found to be only very roughly related to
the intuitive notion of message complexity. For instance, two
messages that are just reversals of one another may compress
very differently (Section V). However, compression does give a
basis for discriminating. The main analytical results follow from
a useful identity (1) that enumerates parsed messages.

11. ENUMERATION
A list L, of all possible messages composed of m parsed

words will be a basic tool (L , lists six messages 0,OO; 0,Ol; 0,l;
1,O; 1,lO; 1,111. In principle, any probability related to the first m
words (e.g., the probability distribution of s,) from any known
source can be computed by evaluating the probability of each
message in L,. Since L , contains (m + l)! messages [5], such
computations become impractical with large m but here, with
smaller m, they give some insight. Memoryless sources, consid-
ered in Section 111, allow simplifications for larger m.

An inductive procedure constructs L,. Suppose L,;.., L , - ,
are known. Construct L , as follows. One message in L, is
O,OO,OOO, ... with m(m + 1)/2 digits, all zeros. Another message
has all ones. Other messages have a number k 2 0 of words
beginning 0 and m - k 2 0 words beginning 1. The first word
beginning with 0 is 0 itself. Any remaining words beginning with
0 are, in parsing order, the words A, , A, , ... of one member of
L k _ with an extra 0 added as prefix to each word. Similarly, the
words beginning with 1 will be 1,1 B, , 1 B,, ... where B, , B,, ...
are the words of a parsed message in Lm-k- 1. Thus, with m = 5
and k = 2, the choices 1 from L , and 0,Ol from L , determine
the words 0,Ol and 1,10,101. These two parsings can be inter-
leaved, keeping the words OA, and lBJ in the same order, to
produce parsed messages like 1,10,0,101,01. In general, for
given m, k , and given choices from L,_ and L , -,- 1, there are (T) possible interleavings.

One can easily verify that this procedure lists only Lempel-Ziv
parsings. That is, 1) the words of each parsing are distinct and 2)
each parsing contains, as words, all proper prefixes of each of its
words. Conversely, every Lempel-Ziv parsing into m words is
found by this procedure.

Counting the choices that arise in this procedure leads to a
count of the number f(m, i, j) of parsings with m words, z zeros,
and j ones. The result is stated most simply in terms of the
generating function F,(x, y) = E,, f(m, i, j) x ‘ y J , which is found
to satisfy the recurrence

0018-9448/92$03.00 0 1992 IEEE

