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I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Asst. Prof. Dr. Defne Aktaş
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ABSTRACT

ERROR RESILIENT STEREOSCOPIC VIDEO

STREAMING USING MODEL-BASED FOUNTAIN

CODES

A. Serdar Tan

Ph.D. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Erdal Arıkan

January 2009

Error resilient digital video streaming has been a challenging problem since

the introduction and deployment of early packet switched networks. One of

the most recent advances in video coding is observed on multi-view video cod-

ing which suggests methods for the compression of correlated multiple image

sequences. The existing multi-view compression techniques increase the loss sen-

sitivity and necessitate the use of efficient loss recovery schemes. Forward Error

Correction (FEC) is an efficient, powerful and practical tool for the recovery of

lost data. A novel class of FEC codes is Fountain codes which are suitable to be

used with recent video codecs, such as H.264/AVC, and LT and Raptor codes are

practical examples of this class. Although there are many studies on monoscopic

video, transmission of multi-view video through lossy channels with FEC have

not been explored yet. Aiming at this deficiency, an H.264-based multi-view

video codec and a model-based Fountain code are combined to generate an effi-

cient error resilient stereoscopic streaming system. Three layers of stereoscopic

video with unequal importance are defined in order to exploit the benefits of Un-

equal Error Protection (UEP) with FEC. Simply, these layers correspond to intra
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frames of left view, predicted frames of left view and predicted frames of right

view. The Rate-Distortion (RD) characteristics of these dependent layers are de-

fined by extending the RD characteristics of monoscopic video. The parameters

of the models are obtained with curve fitting using the RD samples of the video,

and satisfactory results are achieved where the average difference between the

analytical models and RD samples is between 1.00% and 9.19%. An heuristic

analytical model of the performance of Raptor codes is used to obtain the resid-

ual number of lost packets for given channel bit rate, loss rate, and protection

rate. This residual number is multiplied with the estimated average distortion

of the loss of a single Network Abstraction Layer (NAL) unit to obtain the total

transmission distortion. All these models are combined to minimize the end-to-

end distortion and obtain optimal encoder bit rates and UEP rates. When the

proposed system is used, the simulation results demonstrate up to 2dB increase

in quality compared to equal error protection and only left view error protec-

tion. Furthermore, Fountain codes are analyzed in the finite length region, and

iterative performance models are derived without any assumptions or asymp-

totical approximations. The performance model of the belief-propagation (BP)

decoder approximates either the behavior of a single simulation results or their

average depending on the parameters of the LT code. The performance model of

the maximum likelihood decoder approximates the average of simulation results

more accurately compared to the model of the BP decoder. Raptor codes are

modeled heuristically based on the exponential decay observed on the simulation

results, and the model parameters are obtained by line of best fit. The analytical

models of systematic and non-systematic Raptor codes accurately approximate

the experimental average performance.

Keywords: Fountain Codes, Forward Error Correction, Video Streaming, Stereo-

scopic Video.
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ÖZET

MODEL TABANLI FOUNTAIN KODLARI KULLANARAK

HATAYA DAYANIKLI STEREO VİDEO AKITIMI

A. Serdar Tan

Elektrik ve Elektronik Mühendisliḡi Bölümü Doktora

Tez Yöneticisi: Prof. Dr. Erdal Arıkan

Ocak 2009

Hataya dayanıklı sayısal video akıtımı, paket anahtarlamalı ağların ortaya

çıkmasından ve yayılmasından bu yana ilgi çekici ve zor bir problem olmuştur.

Video kodlama alanındaki en yeni gelişmelerden biri ilinliti çoklu imge dizilerinde

sıkıştırma için metodlar öneren çok-görüşlü kodlayıcı-çözücülerde görülmektedir.

Mevcut çok-görüşlü sıkıştırma teknikleri yitimlere olan duyarlılığı arttırmakta ve

yitim kurtarma yöntemlerinin kullanımını gerektirmektedir. Gönderme Yönünde

Hata Düzeltimi (GYHD) yitik verilerin kurtarılması için verimli, kuvvetli ve

uygulanabilir bir araçtır. Fountain kodları GYHD kodlarının yeni bir sınıfıdır ve

LT ve Raptor kodları bu sınıfın uygulanabilir örnekleridir. Bu kodlar H.264/AVC

gibi en yeni video kodlayıcı-çözücüler ile uyumlu çalışabilmektedir. Tek görüşlü

video ile ilgili bir çok çalışma olmasına rağmen, çok-görüşlü videonun yitimli

kanallarda GYHD ile iletimi yeteri kadar incelenmemiştir. Bu eksikliği hedef

alarak, verimli ve hataya dayanıklı bir stereo video akıtım sistemi oluşturmak

için H.264 temelli çok-görüşlü bir video kodlayıcı-çözücü ve model temelli bir

Fountain kodu bir arada kullanılmıştır. GYHD ile birlikte eşit olmayan hata

koruması (EOHK) kullanmanın faydalarından yararlanmak için stereo video-

nun farklı önemlere sahip üç katmanı tanımlanmıştır. Temel olarak, bu üç
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katman sol görüşün çerçeve içi kodlanmış çerceveleri, sol görüşün öngörülmüş

çerçeveleri ve sağ görüşün öngörülmüş çerçevelerinden oluşur. Tek görüşlü

videonun Hız-Bozulum (HB) karakteristiği genişletilerek bağımlı katmanların HB

karakteristiği tanımlanmıştır. Videonun HB örneklerini kullanarak eğri oturtma

tekniği ile model parametreleri elde edilmiştir, ve HB örnekleri ile analitik model

arasındaki ortalama farkın %1.00 ve %9.19 arasında olduğu tatminkar sonuçlar

elde edilmiştir. Kanal bit hızı, kayıp oranı ve koruma oranı verildiğinde kalan

kayıp paket sayısını elde etmek için Raptor kodlarının buluşsal bir analitik

modeli kullanılmıştır. Bu kalan sayı, tek bir Ağ Soyutlama Katmanı (ASK)

biriminin yitiminden kaynaklanan kestirilmiş ortalama bozulum ile çarpılarak

toplam iletim bozulumu elde edilmiştir. Bütün bu modeller, uçtan-uca bozulumu

enküçültmek ve en iyi kodlayıcı bit hızlarını ve EOHK oranlarını elde etmek için

birleştirilmiştir. Önerilen sistem kullanıldığında, eşit hata koruması ve sadece

sol görüş koruması yöntemleri ile karşılaştırıldığında, benzetim sonuçları 2dB’ye

varan kalite artışı göstermiştir. Bundan başka, Fountain kodları sonlu uzunluk

bölgesinde analiz edilmiş ve varsayımlar ya da asimtotik yaklaşıklamalar olmadan

döngülü başarım modelleri türetilmiştir. İnanç-Yayılım (İY) kodçözücüsünün

başarım modeli LT kodunun parametrelerine bağlı olarak ya tek bir benzetim

sonucunu ya da bu sonuçların ortalamasını yaklaşıklamıştır. En büyük olabilirlik

kodçözücüsünün başarım modeli, İY kodçözücüsünün modeli ile kıyaslandığında,

benzetim sonuçlarının ortalamasını daha iyi yaklaşıklamıştır. Raptor kodları,

benzetim sonuçlarında görülen üstel azalmaya dayanarak, buluşsal olarak model-

lenmiş ve model parametreleri en iyi oturan doğru ile elde edilmiştir. Sistematik

ve sistematik olmayan Raptor kodlarının anatilik modelleri deneysel ortalama

başarımı doğru bir şekilde yaklaşıklamıştır.

Anahtar Kelimeler: Fountain Kodları, Gönderme Yönünde Hata Düzeltimi,

Kesintisiz Video İletimi, Stereo Video.
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Chapter 1

Introduction

Video streaming through lossy channels has received considerable attention for

the past 20 years. The worldwide increases in the number of Internet access,

dedicated bandwidth and video sharing websites have triggered the research.

1.1 Problem Statement

Increasingly more and more data have to be distributed over lossy transmis-

sion channels with limited bandwidth. Stereoscopic video is emerging as a new

source of data for the next generation communication systems. Owing to its high

bandwidth and loss sensitivity, optimal transmission strategies for stereoscopic

video should be derived to obtain efficiency. Furthermore, optimal transmission

through lossy channels necessitates the use of the most advanced error correction

schemes and their corresponding analysis.

There are some constraints on such a system in order to be deployed over

existing infrastructure. First of all, it has to be simple and piecewise analyzable.

The system has to be efficient and optimal in a sense that it compensates the

simple design. Flexibility and scalability, which are required for the ease of bit

1



rate adaptability, are also important constraints. Finally, the system has to be

robust against transmission errors, the main reason of the distortion in video

quality. Thus, the chosen error correction scheme has to be fully analyzed and

understood.

In this thesis, we consider optimal transmission strategies for an end-to-end

stereoscopic streaming system that uses an H.264-based multi-view video codec.

We use a Fountain code for recovery from packet losses, and investigate their

performance in detail.

1.2 Background

The data losses during transmission in Internet are observed due to several rea-

sons. In order to understand the sources of error, we should look at the protocol

stacks. In Figure 1.1, the protocol stacks specific to a recent video codec, H.264,

are presented. The transmission errors occur only in the IP and physical layers.

In the physical layer, bit errors occur due to the noise in the transmission. In the

IP layer, packet losses occur due to congestion in the routers. Caused by either

physical or IP layer, the error is observed as packet loss in the upper layers. In

order to protect from the packet losses in video streaming, application layer For-

ward Error Correction (FEC) can be used. In such a scenario, the place of the

FEC is demonstrated in Figure 1.1. In the following sections, we briefly define

error correction and video streaming.

1.2.1 Error Correction

After Shannon defined the fundamentals of channel capacity in the landmark pa-

per [1] in 1948, many researchers around the world studied different techniques

to approach the channel capacity in order to achieve the best error protection.
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Figure 1.1: The protocol stacks for video streaming

Among these, FEC scheme came out to be one of the best way of approaching

channel capacity in a feedback-free transmission system. In an FEC scheme,

the encoder introduces redundant bits to the original message. Then, in case

of any losses, the decoder tries to recover the original message with the help of

these redundant bits. Some of the primary examples of FEC codes are Hamming

codes [2], BCH codes [3], Reed-solomon (RS) codes [4] etc.. Among these pri-

mary examples RS coding is the most notable due to its widespread deployment

in current storage media such as CDs, DVDs and HDDs. The encoding and

decoding of the primary examples are problematic for large message lengths due

to their high complexities. One of the recently used, but not recently invented

examples of FEC codes is low-density parity-check (LDPC) codes. Invented in

1960 by Gallager [5], LDPC codes were impractical to implement, because they

are capacity approaching for very large message lengths. Three decades later,

LDPC codes were rediscovered and took place in many standards such as Digital

Video Broadcasting - Satellite - Second Generation (DVB-S2) [6] in 2003. In this

standard, message length varies from 16200 to 64800 bits. Using the belief prop-

agation decoding [7] with large message lengths, LDPC coding is nearly capacity
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achieving as shown in [8]. Operating on the sparse (low density) parity check

matrix, the belief propagation decoder can achieve a computational complexity

linear with the message length. In the early 90s a novel FEC scheme, Turbo cod-

ing [9] which combined two or more convolutional codes and a block interleaver

that has led to another capacity approaching channel code, was proposed.

The general application area of LDPC and Turbo codes are on noisy channels

such as Additive White Gaussian Noise Channel (AWGNC), Binary Symmetric

Channel (BSC) or Binary Erasure Channel (BEC). These codes are implemented

on the physical layer of transmission systems. However, the most widely deployed

networks are wired packet switched networks, such as Internet, and the source of

error in these networks is packet loss which is generally caused by congestion or

other network problems, and not usually by physical layer errors. Thus applying

channel coding in physical layer is not a proper way of protection in these net-

works. The underlying channel in packet switched networks is denoted as packet

erasure channel (PEC). In the PEC a packet is either received completely intact

and error free or it is lost. Thus, a lost packet with all its bits is the erasure.

The most widely deployed error detection/correction technique for PEC is the

Automatic Repeat Request (ARQ) scheme that the Transport Control Protocol

(TCP) utilizes. In the ARQ scheme the receiver detects missing packets and

automatically requests their retransmission from the source. The transmission

of the packets is ordered, so that when a packet is lost subsequent packets wait

the retransmission of the lost packet. This scheme may cause feedback implosion

in a broadcasting scenario, especially when the loss rate is high.

A novel technique that recently became popular for error protection in lossy

packet networks is Fountain codes which is also called rateless codes. The Foun-

tain coding idea is proposed in [10] and followed by practical realizations such

as (Luby Transform) LT codes [11] and Raptor codes [12]. Raptor codes are ex-

tended from LT codes by inserting a fixed-rate pre-code before LT coding stage.
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Fountain codes remove the necessity of orderly transmission and retransmissions

which prevents the feedback implosion that occurs when ARQ is used. They also

produce as many parity packets as needed on-the-fly. This approach is different

than the general idea of FEC codes where channel encoding is performed for a

fixed channel rate and all encoded packets are generated prior to transmission.

In the traditional FEC codes, if the number of losses exceeds a certain amount,

then the code cannot be extended on-the-fly to have a lower rate to achieve higher

loss protection.

LT codes achieve on-the-fly rate extension capability and low complexity in

exchange of some performance. Their performance depends on two factors. First

one is the degree distribution which is used for generating the output symbols

from the input symbols, and it has direct effect on encoding and decoding com-

plexities. Thus, the degree distribution is designed so that it minimizes the

complexity. Second factor is the block length, namely the number of input sym-

bols. The performance of Raptor codes are affected by another factor which

is the pre-coding stage. Fountain codes are asymptotically optimal, hence they

operate efficiently when the number of input symbols is very high. However, Rap-

tor codes are an exception, because their performance is quite acceptable for low

number of input symbols, as well. The analysis of the performance, depending on

the degree distribution and block length, needs detailed study to obtain accurate

results. In [13], an analysis of the performance of LT codes yielded an iterative

analytical model of their performance with significant high complexity. In [12],

rather than exact analysis and modeling, some bounds on the performance of LT

codes and Raptor codes are presented. The analysis and modeling of fountain

codes are beneficial for optimization in end-to-end transmission systems.

Although being recently proposed, fountain codes are protected by several

patents and appear in several standards. Raptor codes appear in the standards
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Digital Video Broadcast for Hand-held (DVB-H) [14] and 3rd Generation Part-

nership Project (3GPP) [15] in multimedia broadcast. In both of the standards

Raptor coding is applied as an application layer FEC to recover the lost packets

and the details on the Raptor codec is described in the IETF draft in [16].

1.2.2 Video Coding and Streaming

First practically applicable video coding standards appeared in the early 90s such

as H.261 [17] in 1990 and MPEG-1 [18] in 1991. Since then, the compression effi-

ciency of the codecs have increased and many novel tools have been introduced.

The main idea in video compression in the recent video codecs is similar to the

early ones. Currently, all of the available video codecs use the temporal depen-

dency between subsequent frames to achieve compression. Fundamentally, the

frames are divided into two groups: Intra-frames and inter-frames. The intra-

frames are compressed by standard still image compression techniques, similar

to JPEG [19], thus they are self-decodable. Generally, the location of the intra-

frames determines the beginning of group of pictures (GOP). The remaining

frames that reside between intra-frames are called inter-frames. Inter-frames are

compressed by using one or more previous or subsequent frames, eventually us-

ing intra-frames, and most of the gain in video compression is achieved by this

feature.

Video streams often have some scalability or unequal loss sensitivity. Basi-

cally, the loss of the packets of intra-frames reduce the quality of video more than

the loss of the packets of inter-frames. Because inter-frames are useless without

the intra-frames. Thus, intra-frames need more protection against losses. Sim-

ilarly, some parts of the images in a video may have more dominant motion

characteristics. This leads to Flexible Macroblock Ordering (FMO) [20], [21]

which partitions the macroblocks according to their impact on the video qual-

ity. Data Partitioning [22], [23] is another method for prioritization of bitstream
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elements of video, such as dc and ac coefficients, motion vectors, headers etc.,

based on their sensitivity to errors. Unequal loss sensitivity exists in scalable

video codecs where the bitstream is composed of base layer and enhancement

layers. Scalable video coding uses techniques such as spatial, temporal or SNR

scalability. In [24], the Scalable Video Coding (SVC) extension of H.264/AVC

is explained in a broader sense. In the cases where the video data parts have

unequal loss sensitivity, utilization of unequal error protection (UEP) offers sig-

nificant increase in video quality.

In order to further improve the visual experience, 3-dimensional video coding

techniques are also proposed. Multi-view video coding is an extension of stan-

dard single-view (monoscopic) video coding techniques to more than one views

(cameras) [25], [26]. Multi-view video is formed by the simultaneous capture of

a scene by more than one cameras which are separated with an acceptable dis-

tance. Eventually, capturing more than one video sequence increases the amount

of source data. Existing multi-view coding techniques tries to reduce the size by

the compression techniques that exploit the dependency between these views.

For this purpose, a new technique, inter-spatial frame coding is introduced and

used, besides intra and inter-frame coding. The sophisticated structure of multi-

view compression and increased dependencies between frames deduces even more

data groups with different loss sensitivities.

1.3 Contributions

In this thesis, we specifically focus on stereoscopic video streaming. Numer-

ous components have to be combined to work harmoniously in order to realize

streaming in lossy channels. Consequently, it is very difficult, if not impossible,

to obtain an optimal end-to-end streaming system. In this sense, since there

exist numerous parameters, stereoscopic video streaming in lossy transmission
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channels with FEC becomes a quite difficult joint source-channel coding prob-

lem. Thus, one needs to simplify the problem and handle it by dividing into

smaller pieces in exchange of moving away from optimality a little bit. In this

thesis, we specify the most important contributions as; basic partitioning of the

video according to unequal importance, obtaining rate-distortion properties of

these partitions, analysis of the utilized FEC scheme for UEP, and end-to-end

distortion minimization. We provide separate analysis for each part and obtain

mathematical models that we use for distortion minimization. The proposed an-

alytical models for RD curve of the layers and performance of Raptor codes are

quite accurate. After estimating the average distortion of a single lost packet, we

define a model for end-to-end distortion, namely the sum of encoder and trans-

mission distortions, and minimize it to obtain the optimal encoder and protection

bit rates.

Apart from the stereoscopic video streaming, we also focus on the analysis

of Fountain codes in detail. We aimed at the deficiency of analytical modeling

in the literature for fountain codes that would be beneficial in the optimization

of video streaming systems for lossy transmission. We give special attention to

LT codes with Belief Propagation (BP) and Maximum Likelihood (ML) decoder

and systematic and non-systematic Raptor codes. We contribute in two ways,

first by providing a detailed analysis of these codes, and second, by proposing

analytical models for their performances.

1.4 Outline

The organization of the thesis follows. In Chapter 2, we present the basics of

Fountain codes and video streaming with their historical overviews. We describe

the operation of Fountain codes with intuitive examples and explain video coding

in brief. In Chapter 3, we start with the motivation of the use of FEC with video
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streaming. Then, we analyze the components of stereoscopic video streaming and

propose an error-resilient system with Fountain codes. In Chapter 4, initially, we

describe the operation of Fountain codes in detail and present performance results

with simulations. Then, we analyze them and propose analytical performance

models. In Chapter 5, we conclude and state possible future work.
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Chapter 2

Related Work and Definitions

2.1 Basics of Fountain Coding

The idea of Fountain coding is different from the original FEC idea where chan-

nel encoding is performed for a fixed channel rate and all encoded packets are

generated prior to transmission. The Fountain encoder is an imaginary fountain

of limitless supply of water drops (output symbols). Any person who wants to

reconstruct all of the input symbols has to wait to fill their bucket with slightly

more water drops than the number of input symbols. Thus, the main idea be-

hind Fountain coding is to produce as many output symbols as needed on-the-fly.

This property gave another name to fountain codes, rateless codes.

The principle of Fountain codes is illustrated in Figure 2.1. The encoder

generates potentially limitless output symbols (water drops) from the input data.

The decoder (bins) try to collect enough number of output symbols to complete

decoding and reconstruct the input symbols. During the transmission (collecting

water drops), output symbols may get lost due to the channel conditions. In

such a case, decoders do not send any retransmission request messages back to
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Figure 2.1: Overview of Fountain coding: The decoders (bins) try to collect
sufficient number of output symbols (water drops)

the encoder. They just wait to receive enough number of output symbols to

complete the decoding.

Digital Fountain approach is first described in 1998 as a novel technique for

reliable distribution of bulk data [10]. In the same year, a company named

Digital Fountain Inc. is founded by Charlie Oppenheimer and Dr. Michael Luby

in CA, U.S. with the aim of commercializing and standardizing the fountain

coding approach. In 1999, first patent on fountain coding appeared [27], and

it has been revised several times under same title [28], [29], [30], [31]. In 2002,

Luby Transform (LT) codes, named after Michael Luby, are published in [11]

that described the coding scheme in the patents. The coding scheme attracted

significant interest and various papers on LT codes have been published since

then.
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Raptor coding is proposed as a multi-stage extension of LT coding. They are

invented in 2000 and patented [32]. Publication of Raptor codes appeared first

in a technical report in 2003 [33] and then in 2006 [12]. They are still one of the

most advanced fountain coding scheme, and similar to LT coding, attracted a

wide interest.

As mentioned in [11], the original idea and purpose of LT codes is the dis-

tribution of bulk data to many users. Most common application area is the

distribution of a service pack of an operating system to many computers in the

world. In such a scenario the number of users will be huge and each user will

experience different channel characteristics. If standard techniques are used such

as TCP, the server and client has to communicate for each lost packet. Fountain

codes are a candidate for this situation for reliable feedback-free transmission

where users just wait to receive enough packets.

LT codes are considered suitable also for data storage in hard drives. Orig-

inally, the data in hard drives are stored in successive segments, and when the

reading head misses one track it has to retrace to read again which causes signif-

icant delays. On the other hand, if fountain approach is used, the head does not

have to retrace; it just skips and reads enough number of next segments. Thus,

the hard drive can operate faster.

The encoding and decoding of LT codes are also defined in [11]. However, the

proposed decoding algorithm is asymptotically optimal, which necessitates large

block lengths. Thus, the problematic operation of LT codes on short and medium

block lengths lead the introduction of ML decoder. Eventually, ML decoder

performs better and its complexity is higher compared to original decoder, but

for short block lengths its complexity might be acceptable.

The inefficiency of LT codes for short block lengths also lead the introduction

of Raptor codes. After Raptor codes, fountain coding idea has taken part in
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many applications, because Raptor codes have reasonably better performance

than their prior LT codes. The main target became distribution of multimedia

data, such as video. Because video has sufficiently large block size and Raptor

codes have low latency in encoding and decoding, which allows real-time error

protection.

In order to be more suitable for multimedia distribution, the structure of

fountain codes are also modified. Their original structure was non-systematic,

namely each generated symbol is obtained by transforming the input symbols to

new symbols. This property causes an all or nothing code where all of the symbols

are either undecoded or decoded according to the loss rate of the transmission

channel. For time limited applications, where destination may not wait for more

output symbols, such as video streaming, this may become devastating. Treating

the fountain codes as a fixed rate FEC code, systematic fountain coding is also

proposed. By this way, partial recovery of data is still possible in case of excessive

packet losses. This process requires limited time which may seem controversial to

fountain coding approach; however, fast (low complexity) encoding and decoding

of fountain codes render them suitable for time limited applications, as well.

In the following sections, we describe the widely known Fountain codes; ran-

dom X-OR, Tornado, LT and Raptor codes which have attracted significant

interest in the recent years.

2.2 Random X-OR codes

Random X-OR coding is the simplest of Fountain codes where each output sym-

bol is generated as a random X-OR sum of the input symbols. Let Ii be the row

vector os size s that denotes the ith input symbol (1 ≤ i ≤ k), and Oj be the row

vector of size s that denotes the jth output symbol generated (1 ≤ j). In order
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to represent the generation of random output symbols, let Aj = [aj,1, aj,2, ..., aj,k]

denote the generator vector of jth output symbol, where

aj,i =





0 w.p. 1/2

1 w.p. 1/2
for 1 ≤ j, 1 ≤ i ≤ k . (2.1)

Furthermore, let

I =




I1
...

Ik


 , A =




A1

A2

...


 , O =




O1

O2

...


 . (2.2)

Then, the generation of jth output symbol and the whole output symbols are

given, respectively as

Oj =
k⊕

i=1

aj,iIi = Aj · I , (2.3)

O = A · I . (2.4)

In (2.4), infinitely many output symbols, 2k of them being distinct, are generated

from k input symbols with the semi-infinite generator matrix A. The decoder

tries to collect as many of these output symbols to reconstruct the input symbols.

Assume that the generator matrix for k = 3 is
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A =




0 1 1

1 0 1

1 1 0

0 0 1

1 1 1

...
...

...




→
→
→
×
→
...

, (2.5)

where × denotes loss and → denotes success during transmission. Having re-

ceived the first three symbols, the decoder cannot reconstruct the input symbols

since the Aj’s of the received symbols do not add up to a matrix with rank

3. When the fifth symbol arrives, after the fourth equation which was erased,

the received generator matrix becomes full rank, namely all input symbols are

determined.

In the decoding process, k independent output symbols must arrive for suc-

cessful recovery. Let p(j) denote the probability that an arriving symbol is de-

pendent when j independent symbols arrived previously, which can be calculated

as p(j) = (1 − 2−(k−j)). Then, the average waiting time to receive the next in-

dependent symbol can be calculated as Wj = 1/p(j) by geometric random series

analysis. The total time to receive k independent symbols can be calculated as

k−1∑
j=0

Wj =
k−1∑
j=0

1

(1− 2−(k−j))
(2.6)

= ∼ (k + 2) .

Thus, on the average, arrival of k + 2 output symbols ensures successful decod-

ing of the input symbols. However, due to the O(k3) complexity of standard

elimination algorithms for dense matrices, the complexity of the decoder is the

main drawback of X-OR codes. Lower complexity and efficient decoding algo-

rithms can be achieved by using degree distributions for the generated output
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symbols, where the number of X-OR summed input symbols will be chosen from

a distribution, so that

k∑
i=1

aj,i = dj , (2.7)

where dj is the degree of the jth output symbol chosen from a degree distribution.

2.3 Tornado Codes

Tornado codes [10], [34] are proposed to be the first example of fountain codes.

They can generate infinitely many encoded symbols from k input symbols. When

k(1 + ε) of these input symbols arrive to the decoder, all of the k input symbols

can be decoded. However, the code is designed for a fixed number of encoded

symbols n. The encoder can generate at most n output symbols and cannot

produce more symbols on-the-fly. Moreover, the required overhead, kε, is at

least a constant fraction of the number of input symbols. Due to this property

we do not consider Tornado codes as an ideal fountain code.

2.4 LT Codes

LT codes proposed in [11] have initiated a novel research area. Instead of op-

erating on low density parity check matrices, LT codes operate on low density

generator matrices. In [11], it is shown that for large message length k LT codes

are capacity achieving.
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Figure 2.2: Bipartite graph for LT coding

2.4.1 Encoder

The unit of encoding in LT codes is called a symbol which is a data packet of size

m bits for some fixed m ≥ 1. Let the number of input symbols be k, then the

input data size is (k ·m) bits. The number of the output symbols that can be

generated from these input symbols is virtually limitless, i.e. the code is rateless.

In Figure 2.2, generation of the first two output symbols are demonstrated on the

encoding graph, where A1 = [1, 1, 0, ..., 0] and A2 = [1, 0, 1, 0, ..., 1]. In Figure 2.2,

the number of edges connected to an output symbol is its degree d, for example

O1 has degree-2. The edges emanating from an output symbol of degree d are

connected randomly to d input symbols. These input symbols are denoted as the

neighbors of the output symbols to which they are connected.

The number of lines that connect the input symbols to output symbols defines

the complexity of the encoding process. Let d̄ represent the average degree of an

output symbol and assume that d̄ = ln (k). Then, based on the fact that k (1 + ε)

output symbols are enough to reconstruct the input symbols, the complexity is

O (k ln (k)).
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2.4.2 Decoder

There are two different LT decoding schemes: Belief Propagation (BP) decoder

and Maximum Likelihood (ML) decoder. BP decoder is the original low com-

plexity decoder proposed in [11], but it is optimal for large values of k. ML

decoder is the optimal decoder with high complexity.

Belief Propagation (BP) Decoder

Belief propagation decoding of LT codes is an iterative process best explained by

an example. Assume that the number of input symbols is four, and the generator

matrix and the received output symbols are given as

A =




1 1 0 0

1 0 0 0

0 1 0 1

0 1 1 1

0 0 1 1

...
...

...
...




→
→
→
×
→
...

O1 = I1 ⊕ I2

O2 = I1

O3 = I2 ⊕ I4

O5 = I3 ⊕ I4

. (2.8)

Having received O1, the decoder can not decode I1 or I2. However, with O2, a

degree-1 output symbol, the decoder recovers I1 and I2 by I1 = O2, I2 = O1⊕O2.

All of the steps of decoding for this specific example are given below.

• O2 = I1 ⇒ I1 is determined,

• O1 ⊕ I1 ⇒ I2 is determined,

• O3 ⊕ I2 ⇒ I4 is determined,

• O5 ⊕ I2 ⊕ I4 ⇒ I3 is determined.
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Figure 2.3: A step in the LT BP decoder

Initially, there exists an output symbol with degree 1 in the above example. If,

there were no output symbols with degree 1 then the LT BP decoding procedure

could not decode the input symbols with these set of output symbols. In such a

case, the decoder has to wait for more output symbols to succeed in decoding.

The algorithm of the BP decoding is given in the following steps, which are

associated with the decoding phases in Figure 2.3.

1. Find an output symbol Oj that is connected to only one input symbol Ii,

i.e. find an output symbol with degree 1. If there is no such symbol the

decoding fails (Phase-(a)).

2. Set Ii = Oj (Phase-(a)).

3. X-OR sum all of the output symbols that are connected to ith input symbols

with its value Ii (Phase-(b)).

4. Remove the edges of the input symbol Ii from the graph (Phase-(c)).

5. Go to step 1 until all Ii are determined.

Similar to the encoder, the decoding complexity of this algorithm is propor-

tional to the number of edges. When the average degree of an output symbol is
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d̄, and assuming that d̄ = ln(k), the complexity is O (k ln(k)) which is the same

as LT encoder.

Maximum Likelihood (ML) Decoder

In the belief propagation decoder, single degree output symbols have to exist

throughout the decoding process. Consider the set of received output symbols

A =




1 1 0 0

1 0 0 0

0 1 0 1

0 1 1 1

0 0 1 1

...
...

...
...




→
×
→
→
→
...

O1 = I1 ⊕ I2

O3 = I2 ⊕ I4

O4 = I2 ⊕ I3 ⊕ I4

O5 = I3 ⊕ I4

(2.9)

with the same generator matrix as (2.8) but with different received output sym-

bols. Since a degree one output symbol does not exist, when these set of symbols

are received the LT-BP decoder cannot determine any of the input symbols.

The ML decoder solves the system of linear equations in modulo-2 domain

to reconstruct the input symbols Ii as




1 1 0 0

0 1 0 1

0 1 1 1

0 0 1 1







I1

I2

I3

I4




=




O1

O3

O4

O5




. (2.10)

The LT-ML decoder solves the set of linear equations by straightforward linear

algebra techniques. The difference from the random X-OR coding is the low

density, namely sparsity, of the matrix A, so that more efficient solvers can be

implemented.
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Figure 2.4: The representation of the Raptor encoder

2.5 Raptor Codes

Raptor codes [12] are the most recent practical realization of Fountain codes

and are an extension of LT codes. They have two consecutive channel encoders,

where the pre-code is a high rate FEC code and the outer-code is an LT code.

The pre-code generates the pre-coded symbols from the input symbols and the

LT code generates output symbols from these pre-coded symbols.

2.5.1 Encoder

The complexity of the LT codes is O (k ln (k)) as explained in Section 2.4.2.

The multiplicand ln (k) comes from the average degree d̄. In order to make the

complexity linear with k, Raptor codes use a constant average degree in the LT

coding phase. The constant average degree reduces the performance of the LT

code, but the high-rate pre-code compensates this reduction.

An example to the construction of Raptor encoded symbols are given in Fig-

ure 2.4. Initially, the high-rate pre-code generates k/ (1− ẽ) pre-coded symbols

which are not transmitted but used in an intermediate step to generate the

transmitted output symbols. Then, LT coding with constant average degree is
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applied to the pre-coded symbols. The details of the chosen pre-code and degree

distribution are given in [12].

2.5.2 Decoder

The Raptor decoder begins to operate when slightly more than k output symbols

arrive. After the LT decoder, using the balls and bins example in Section 4.2.1,

the average number of source packets that remain unconnected in the graph can

be calculated as e−d̄ = e−3 ∼= 0.05, when d̄ = 3. Thus, when k (1 + ε) output

symbols are received, 5% of the pre-coded symbols will remain undecoded. The

pre-code is a perfect FEC code that can decode all input symbols when erasure

rate is ẽ (the number of generated pre-codes was k/ (1− ẽ)). When ẽ is chosen

as 0.05 all of the input symbols can be decoded by the pre-code.

Instead of the simple pre-code we used in Figure 2.4, more sophisticated

codes, such as LDPC codes [5], are used. Moreover, two stages of pre-codes are

also defined such as the fully-specified Raptor FEC scheme defined in [16].

2.6 Video Coding and Streaming

2.6.1 History of Video Coding Standards

Video coding corresponds to the efficient representation, compression and trans-

mission of image sequences. Studies on digital video processing have been virtu-

ally initiated by the studies on digital image processing in 1960s. Current video

coding techniques partially use the image compression techniques.

First practically applicable video coding standard appeared in the early 90s

named H.261 in 1990 as an ITU recommendation, which is described in [17]. The
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video codec aims at facilitating videoconferencing and videophone over the inte-

grated digital services network (ISDN). The bit rate of the video signal, together

with audio, can be varied from 64 kbps to 1.92 Mbps, for two image formats

CIF (360x180) and QCIF (180x90). With the introduction of efficient compres-

sion elements, such as inter-frame coding, motion compensation, discrete cosine

transform (DCT), maximum delay of 150ms, ease of hardware implementation

etc., H.261 standard is considered as the basis of latter video codecs.

In 1992, MPEG-1 was approved as an ISO video and audio coding standard

whose details are given in [18]. The codec is proposed to progressively compress

VHS quality video down to 1.5 Mbps for Video Compact Disc (VCD) storage.

The codec does not standardize the compression mode, instead it specifies the

coded bit stream and the decoder. In order to allow random access, periodic intra

frames that are self decodable are introduced. Compared to H.261, the delay

requirement of MPEG-1 is relaxed to 1 sec, because it does not aim bidirectional

interactivity, instead unidirectional interactivity.

MPEG-2 [35] is a generic audio-video codec designed for two purposes; first,

broadcast of TV signals at high bit rates, second, media storage on the Digital

Versatile Discs (DVD). The video coding part, which is also known as H.262,

is jointly developed by ISO and ITU-T teams, and the first standard appeared

on 1994. Compared to MPEG-1, MPEG-2 supports a wider range of bit rates

and resolutions; moreover it supports efficient tools for interlaced video. One of

its most important specialities is the utilization of two different containers for

the encoded video; first one is the transport stream that defines a communica-

tion protocol for data multiplexing and loss recovery for unreliable transmission,

whereas second one is the program stream that is designed for storage in reliable

media, such as DVDs.

Later, in 1996, another video compression technique H.263 is proposed target-

ing visual telephony, such as video conference similar to H.261, which is described
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in [36]. The compressed data is aimed to be used on low bit rate networks such

as ISDN and wireless networks. H.263 has a better performance than its prior

H.261 with little additional complexity. An advanced version of H.263 is pro-

posed in 1998 as H.263+, described in [37], with additional features, one of the

most important being the introduction of scalability. Three modes of scalability

are proposed; temporal, SNR and spatial scalability, which aim to improve the

delivery of video information in error-prone and lossy packet networks.

The next codec, developed jointly by ITU-VCEG and MPEG teams, and

completed in 2003, is the H.264 standard which is described in [24]. The codec

has the largest area of application among all previous codecs, so that it ad-

dresses all video telephony, storage, broadcast and streaming applications. The

codec has the most advanced compression techniques and most flexible structure

together with network friendly representation of the compressed data, so that

compared to MPEG-2 the bit rate is reduced up to by half for high resolutions.

H.264/AVC has two fundamental components; the Video Coding Layer (VCL)

and the Network Abstraction Layer (NAL). The VCL is designed to efficiently

compress the video, and the NAL is designed to format the compressed video

and insert appropriate header information for transport layers or storage media.

The scalable extension of the codec, which is described in [38], is completed in

2007. Currently, H.264/AVC is considered to be the state-of-the-art video coding

system.

In order to further improve the visual experience, H.264 video codec is being

extended to include multi-view video, pioneered by the 3D Audio Visual (3DAV)

group under MPEG committee [39], [40]. There are individual studies on the

extension of H.264 to multi-view video, such as [41], [42] and [43]. In our work

we also focused on a subset of multi-view video coding; stereoscopic video coding,

and utilized the codec in [43].
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Figure 2.5: An example reference structure in video coding

2.6.2 Video Compression Principles

Current video compression techniques achieve significant bit rate savings by com-

bining still image compression and motion compensation. The motivation behind

the use of image and video compression is the huge amount of raw data that em-

anates after the video capture. For example a raw video of resolution 1280x720

at 30 fps requires nearly 650Mbps which is unattainable in current technology

for commercial use. The most recent compression standard H.264 can reduce the

bit rate down to 10 Mbps with a reasonable quality.

A generic referencing structure of a video codec is given in Figure 2.5. The

frames denoted with I are intra coded frames, the other ones, P and B, are

inter coded frames. Intra-coding refers to self-decodable frames that are still

image coded. Inter coding refers to compressing the frame of interest dependent

on the previous or subsequent frames. When a frame is compressed referring

only to previous frames it is denoted with the letter P, and when it is coded

bi-directionally referring to both previous and subsequent frames it is denoted

with the letter B.

In the following sections we briefly describe the two different modes of video

coding, namely intra and inter coding.

Intra Coding

Intra coding uses the principles of still image compression techniques such as the

ones used in JPEG [19]. It starts with RGB yo YUV conversion, a simple linear
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conversion, which removes the dependency in color representation of RGB. After

the YUV conversion, 2-D DCT is applied on block-by-block basis (generally 8x8

or 16x16) in order to reduce the correlation among the image pixels. After DCT

and quantization, zig-zag scan and entropy coding are used to apply the final

compression steps to the chosen frame.

Intra coded frames are introduced on a regular basis in order to allow fast

synchronization and prevention of the propagation of losses. The period of intra

frames are subject to optimization for different types of environments. There is

a significant tradeoff between bit rate, quality and error robustness on the period

of intra frames. Since the entire frames between two intra-frames are eventually

dependent on them, intra-frames are generally given the highest priority during

lossy transmission.

Inter Coding

In the current block based video coding systems, inter coded frames are the main

factor of bandwidth saving. Inter coding refers to the compression of frames by

removing the temporal redundancy, whereas intra-coding removes the spatial re-

dundancy. The simplest way of removing the temporal redundancy is by just

sending the residual (the difference) between the current and the previous frame,

however more compression can be achieved by means of estimating and com-

pensating the motion between the frames. Block based motion estimation and

compensation is considered to be the most practical and efficient technique for

this purpose.

In Figure 2.6, block based motion estimation is presented. The aim of block

based motion estimation is to find a motion vector that relates best matching

block from the nth frame to the block of interest in the (n+1)th frame. The best

matching vector is searched in a limited search region to decrease the complexity
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Figure 2.6: Block-based motion estimation in inter-frames

of the method. In Figure 2.6, an artificial motion vector is demonstrated that

heads from the point (xa, ya) to (xb, yb). This process is repeated for each block

in the current frame. After all motion vectors are determined, a new motion

compensated frame from the (n + 1)th frame is formed using the best matching

blocks of the nth frame. A residual frame is constructed by subtracting the

motion compensated frame from the nth frame, and the residual is still image

coded. Then, the still image coded residual together with the motion vectors are

sent or stored as the compressed data of frame n + 1.

2.6.3 Video Streaming Principles

The term streaming appeared in the multimedia area following the possibility of

on-demand or real-time video over the Internet. It refers to the display of the

multimedia content at the end-user while it is being transmitted from the server.

In the lossy channels, video streaming is a complicated task where one has

to deal with many problems, such as latency, packet loss detection and recovery,

and bit rate budget-quality tradeoff, etc.. One of the most widely used stream-

ing protocols is Hypertext Transfer Protocol (HTTP) over TCP [44], which is
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a good choice to avoid firewall issues. Another protocol similar to HTTP is

Real-Time Streaming Protocol (RTSP) [45] which is being adopted to many sys-

tems. Real-time Transport Protocol (RTP) [46] is another streaming protocol

which is essentially a packet format that adds a timestamp, a sequence number,

a contributing source identifier, and a payload type and format on top of an

ordinary TCP or User Datagram Protocol (UDP) packet. In these protocols,

there are transmission rate control, congestion control, error control and packet

loss recovery, due to the properties of TCP. However this may cause latency and

inefficiency in bandwidth utilization.

RTP over UDP is another alternative to these systems where packets are sent

once and there is no means of an integrated transmission rate control or error

control. In these systems transmission rate and error controls can be performed

by the application layer which brings flexibility. The best candidate for appli-

cation layer error control in these systems is FEC, where few extra packets are

inserted to recover any lost packets. Thus, RTP over UDP provides flexibility,

lower latency and bandwidth utilization, which is well-suited for video streaming.

2.7 Multi-view Video Coding and Streaming

Multi-view video coding is an approach for the efficient compression and trans-

mission of image sequences captured from more than one cameras. Due to the

increase in the number of captured views, eventually, the raw bit rate increases

linearly with the number of cameras. This fact necessitates the exploitation of

spatial dependencies among the views, besides the exploitation of temporal de-

pendencies among frames of one view. Standardization of multiview video is

under process as a study in ISO/IEC [39], [40]. Other than the standardization

effort, there are individual studies on multi-view coding [41], [42] and [43].
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Figure 2.7: An example reference structure in multi-view video coding

In Figure 2.7, a referencing structure for multi-view coding is presented. Many

different referencing structures can be constructed according to the need of ap-

plication. Generally, one of the views is coded independent of the others (View 0

in Figure 2.7) in order to provide compatibility to monoscopic decoders. Other

views are coded dependent on their prior. In such a scheme, if one tries to group

the frames according to their importance, the easiest way is to use the referencing

structure. The priority of the frames diminishes from top to bottom. Providing

different protection to different frames can increase the quality of the decoded

multi-view video significantly.

Streaming of multi-view coded video is another research topic. In [47], a

streaming system that uses standard LAN connection is proposed. In [48], the

multi-view coded video is transmitted over RTP/UDP. Another study is on the

utilization of DCCP for streaming [49]. In [50], stereoscopic video is layered

using data partitioning, but an FEC method specific to stereoscopic video is

not used. The video data is segmented into three parts, however only the part

containing motion and disparity compensated error residuals is protected with

different channel code rates to observe changes experimentally, and simply, the

significance of UEP over EEP is demonstrated.
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2.8 Error Resilient Video Streaming with Foun-

tain Codes

Fountain codes for error resilient video streaming have gained a significant in-

terest in recent years. This is mainly caused by the extreme increase in the

transmission bit rates due to widespread deployment of video streaming systems

and consequent reliability issues. Fountain codes promise reliability with low

complexity for this large amount of data.

A scalable video streaming system which uses Raptor codes using multiple

media servers is presented in [51]. Different servers with different channel char-

acteristics stream same scalable video content independent of the client. The

authors considered delivery of two layers; base layer and enhancement layer.

They proposed two schemes: one with optimal rate allocation with complete

knowledge of network condition, and the other one with an heuristic approach.

A unicast video streaming method with rateless codes is proposed in [52]. Con-

trary to the idea of rateless codes, an acknowledgement message is sent from

the receiver for every source block. Thus, redundant output symbols arrive to

the receiver before the acknowledgement arrives to the sender. The authors

derive strategies to minimize the overhead under lossy transmission. A multi-

layered video coding scheme with unequal error protection with rateless codes

are proposed in [53]. A layer-aware FEC (L-FEC) system which applies differ-

ent protection to the defined dependent layers by a combined FEC scheme is

proposed. FEC is applied according to the dependency of the layers, so that

the FEC of current layer is created using all layers up to current layer. Foun-

tain codes also attracted interest for video transmission in mobile and ad hoc

networks. In [54], the authors used Scalable Video Coding (SVC) for rate adap-

tation at the peers of a mobile network. They also used application layer FEC

(AL-FEC) for encoding the source blocks separately as in [51]. The simultaneous
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utilization of SVC and AL-FEC allows distributed reception of video between the

peers. Another work about rateless codes in mobile networks is presented in [55].

The authors proposed a new UEP structure for Raptor codes where they apply

different code rates in the pre-coding stage to the video content with different

priorities. The authors proposed the scheme for scalable video delivery in mobile

networks. In [56], authors propose layered video streaming system, where the

most important layers received highest protection. The proposed system for SVC

is suitable for devices with limited computation capability. Network coding with

video streaming, which targets the case of several servers and clients, is another

novel research area. In [57], the authors proposed an efficient video transmission

scheme by combining Raptor codes and network coding. Rateless codes are also

used for energy-efficient video streaming studies, such as in [58].

2.9 Improving the State-of-the-Art Techniques

Fountain codes, especially Raptor codes, are the state-of-the-art error correc-

tion scheme for PEC. They appear in the most recent standards for multimedia

broadcast, such as Digital Video Broadcast for Hand-held (DVB-H) [14] and 3rd

Generation Partnership Project (3GPP) [15]. In our work, we analyze and model

the performance of LT and Raptor codes which can be used in these multime-

dia broadcast systems for ease of performance monitoring and optimization of

quality.

Studies on the state-of-the-art multi-view video codecs are carried on under

ISO/IEC [39], [40]. Integration of this system with an FEC scheme is one of

the possible ways to improve the standard for handling the lossy transmission.

Moreover, UEP techniques can also be applied since multi-view video has a high

number of data groups with different loss sensitivities. In this sense, we study

on the transmission of layered stereoscopic video with FEC.
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Chapter 3

Error Correction in Stereoscopic

Video Streaming

3.1 Motivation

Video streaming is a challenging problem when the transmission medium is lossy.

Especially, when the dimension of the video increases the problem becomes more

complicated. We aim at optimizing the visual quality of stereoscopic video under

lossy transmission. In order to achieve this, we suggest a method for modeling

the end-to-end rate distortion characteristics of video streaming. Specifically, we

propose a system that models the RD curve of video encoder and performance of

channel codec to jointly derive the optimal encoder bit rates and unequal error

protection (UEP) rates specific to the layered stereoscopic video streaming.

In Section 3.2, we present common error resiliency tools and demonstrate

that in order to achieve best quality, FEC is required for lossy transmission.

In Section 3.3, we give an overview of the stereoscopic streaming system. In

Section 3.4, we provide the calculation of the RD curve for the three layers of

stereoscopic video and demonstrate the accuracy of the model by using it in video
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encoder distortion minimization. In Section 3.5, we provide the performance

modeling of Raptor codes that is further detailed in Section 4.5.4. In Section 3.6,

we calculate the approximate distortion in video quality when units of video

data are lost during transmission. Finally, in Section 3.7, we perform end-to-end

distortion minimization to obtain optimal video encoder bit rates and UEP bit

rates, and provide simulation results under various transmission scenarios.

3.2 Basics of Error Resiliency Techniques for

Video Streaming

Error resiliency in video streaming refers to the techniques that aim at improving

the quality of the video in case of packet losses during the transmission. In order

to define the quality of the monoscopic video, generally peak signal to noise ratio

(PSNR) measure, which is defined as

PSNR = 10 log

((
2B − 1

)2

MSE

)
, (3.1)

is used, where B is the number of bits per pixel (generally 8), and MSE is mean

squared error between the original and reconstructed T images of size m by n.

The MSE is defined as

MSE =
1

T

T−1∑
t=0

1

mn

m−1∑
i=0

n−1∑
j=0

‖Iorig (i, j, t)− Irec (i, j, t)‖2 , (3.2)

where Iorig (i, j, t) and Irec (i, j, t) are the pixel values at the location (i, j) of the

tth frame of original and reconstructed frames, respectively. This PSNR measure

will be used in Sections 3.2.1 to 3.2.3, in order to demonstrate the effect of the

error resiliency schemes in the case of monoscopic video. The PSNR measure

that we use for the quality measurement of stereoscopic video is defined in (3.28).
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Frame n Frame n+1 

(b)

Figure 3.1: The representation of two basic error concealment techniques, (a) spa-
tial, (b) temporal

3.2.1 Error Concealment

One of the most commonly used error resiliency techniques is error concealment.

In this technique, the lost packet, namely some part of the image in the sequence,

is replaced with an accurate representation from the neighboring received parts

of the video. In Figure 3.1, two basic error concealment techniques are presented:

spatial and temporal. The black block represents the lost part of the frame. In

Figure 3.1(a), it is concealed by the average of neighboring blocks, whereas in

Figure 3.1(b) concealed by the co-located block in the previous frame. There

are many studies on advanced error concealment techniques such as described

in [59], [60], [61].

The effect of error concealment on the quality of received video is signifi-

cant. In Figure 3.2, the reconstructed video quality measures after %1, %3 and

%5 losses with error concealment and the reconstructed video quality after %1

loss without error concealment are demonstrated with the reference software of

H.264/AVC given in [62] for the ‘Rena’ video described in Section 3.7.2. Even at

%1 loss, the quality of the video decreases significantly when error concealment

is not used. The technique for error concealment is simply replacing the lost

part of the video with the previous frame, namely temporal concealment. Error
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Figure 3.2: The results on the effect of error concealment on video quality

concealment is generally independent of the encoder, however for better gains

the video has to be encoded in small sized slices (NAL units).

3.2.2 Flexible Macroblock Ordering

Flexible macroblock ordering (FMO) is another error resiliency tool that enables

the division of image sequences into different regions called slice groups, which

may consist of several slices (NAL units). Each slice group is encoded inde-

pendently and this yields more efficient error concealment by exploiting spatial

redundancy. When the slice groups are chosen so that no neighboring blocks

remain in the same group, a lost slice can be more accurately concealed using

the neighboring slices. There are many studies on different FMO schemes, such

as the ones described in [21], [20], [63].

In Figure 3.3, we give the results when FMO is used on top of error con-

cealment. The video is encoded and decoded with the reference software of

H.264/AVC in [62] for the ‘Rena’ video described in Section 3.7.2. The chosen
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Figure 3.3: The results on the effect of FMO on video quality

mode of FMO is type 1, which corresponds to the checker-board pattern. This

type is chosen due to simplicity and ease of use. Other types can yield better

performance. The results of EC-FMO and only EC are provided in the same fig-

ure. When no loss occurs, the video quality with FMO is slightly less than that

of the original. This is caused by the decrease in dependency and extra overhead

when more than one slice groups are formed. In the cases of lossy transmission,

when FMO is utilized, the quality of the reconstructed video increases especially

for high loss rates.

3.2.3 Forward Error Correction

Forward error correction (FEC) is one of the most efficient and powerful tech-

niques for error recovery. It corresponds to insertion of extra data to help the

recovery of lost data. Assume that RS coding [4] is used as the FEC scheme and

assume that the original input data length is k symbols and n− k extra symbols

are inserted to obtain a whole data stream of n symbols. At the decoder side,
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Figure 3.4: The results on the effect of FEC on video quality

the arrival of any k symbols out of n symbols ensure the recovery of the whole

original symbols. Actually, this is the theoretical limit in an erasure channel that

a maximum distance separable (MDS) code can achieve. RS codes operate at

this limit, however they have complexity of O(n2). Raptor codes approach this

limit with a lower complexity as described in Section 2.5. Video streaming with

FEC codes is studied on various papers such as in [64], [65], [66], [67], [68], [69].

Raptor codes are well-suited to the video streaming application through

packet networks, such as Internet. In case of video streaming, original sym-

bols that are given as input to FEC are the slices, namely NAL units, which

are composed of a fixed number of bytes. We present the effect of an ideal FEC

scheme, such as RS codes, in Figure 3.4. In the simulations 10% extra FEC

packets are sent together with the original packets for 1% and 5% losses. The

effect of FEC on video quality is significant, especially for high bit rates where

the number of packets is large.
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Figure 3.5: Overview of the stereoscopic streaming system

FEC schemes can be extended to provide unequal error protection to different

parts of video data. After the partitioning of the video, different protection is

applied to each priority, where the highest priority receives the highest error

protection.

3.3 Overview of the Video Streaming System

An overview of our proposed stereoscopic streaming system is presented in Fig-

ure 3.5. Initially, the scene of interest has to be captured with two cameras to

obtain the raw stereoscopic video data. The video capture process is not in the

scope of our work, thus we use publicly available raw video sequences. We encode

the raw stereoscopic video data with an H.264 based multi-view video encoder.

We use the codec in stereoscopic mode and generate three layers which are de-

noted with the symbols I, L and R. I-frames are the intra-coded frames of the

left view, L and R-frames are the inter-coded frames of the left view and right

view. The video encoder can encode each layer with different quantization pa-

rameters, thus with different bit rates RI , RL and RR. Due to lossy compression,

the encoding process causes a distortion of De in the video quality. After the

stereoscopic encoder, we apply FEC to each layer separately where we use Rap-

tor codes as the FEC scheme. The channel of interest in our system is a packet

erasure channel of loss rate pe and the available bandwidth of the channel is RC .
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We apply different protection rates ρI , ρL and ρR to each layer, because they

contribute differently to the video quality. After the lossy transmission, some of

the packets are lost and Raptor decoder operates to recover the losses. However,

some packets still may not be recovered and the loss of these packets causes a

distortion of Dloss in the video quality. In this system, our goal is to obtain the

optimal values of encoder bit rates RI , RL and RR and protection rates ρI , ρL

and ρR by minimizing the total distortion Dtot , (De + Dloss). In order to calcu-

late the total distortion, we simply summed encoder distortion and transmission

distortion. However, any other metric can be used, and the proposed system can

still operate. In the following sections, we describe the methods for distortion

minimization step by step.

3.4 Modeling the Rate-Distortion Curve of

Stereoscopic Video

3.4.1 Layers of the Stereoscopic Video

We use the stereoscopic video codec presented in [43], because it has low com-

plexity and simple decoding procedure. However, any multi-view video codec can

be used for the system we propose. The referencing structure of the codec in [43]

is given in Figure 3.6 where GOP size is set to 4. Let IL,PL and PR denote the

set of I-frames of left view, P-frames of left views and P-frames of right views

respectively. The set of frames can be written in open form as IL = {IL1, IL5, ...},
PL = {PL2, PL3, ...}, PR = {PR1, PR2, ...}, where L and R indicate the frames of

left and right video.

Although this coding scheme is not layered, frames are not equal in impor-

tance. We can classify the frames according to their contribution to the overall
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Figure 3.6: The layers of stereoscopic video and reference structure

quality and use them as layers of the video. Since losing an I-frame causes large

distortions due to motion / disparity compensation and error propagation, I-

frames should be protected the most. Among P-frames, left frames are more

important since they are referred by both left and right frames. According to

this prioritization of the frames, we form three layers as shown in Figure 3.6.

Layers can be coded with different quality (bit rate) by using either spatial scal-

ing [70] or quantization. In this work, we use quantization parameter to adjust

the quality of different layers.

3.4.2 RD Curve Models for the Layers of Stereoscopic

Video

RD curve is one of the widely used tools to adjust the quality of the video for

a given bit rate in the encoder. The RD curves used in this work are specific

to the utilized stereoscopic video encoder and do not yield the information theo-

retic bounds that are obtained with the rate-distortion theory. In [71], a simple
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analytical RD curve model that can accurately approximate a wide range of

monoscopic video sequences is presented. The model in [71] has the form

De (R) =
θ

R−R0

+ D0 , (3.3)

where De (R) is the mean-squared error (MSE) at the video encoder output at

the encoding rate of R bits/sec. There are 3 parameters to be solved. These

are θ, R0 and D0. The parameters R0 and D0 do not correspond to any rate or

distortion values and they are not initial values. At least three samples of the

RD curve are required to solve for the parameters.

In our work, we extended (3.3) for the layers of stereoscopic video and handled

the interdependency among the layers. The primary layer is Layer 0 (I-frame)

which consists of intra frames and it does not depend on any previous frame.

Thus, the distortion of Layer 0 only depends on the encoder bit rate of Layer 0.

We model its RD curve using the same framework as in (3.3) and set the model

as

DI
e (RI) =

θI

RI −R0I

+ D0I , (3.4)

where DI
e (RI) is the MSE coming from Layer 0 when Layer 0 is allocated a rate

of RI bits/sec. The model parameters, which have to be solved, are θI , R0I and

D0I .

The next layer is Layer 1 whose frames are coded dependent on previous

frames of Layer 1 and Layer 0. Thus, the distortion of Layer 1 depends on the

encoder bit rates of Layer 1 and Layer 0. We modify the model in (3.3) to handle

this dependency as
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DL
e (RL, RI) =

θL

RL + c1RI −R0L

+ D0L , (3.5)

where DL
e (RL, RI) is the MSE coming from Layer 1 when Layer 1 and Layer 0 are

allocated the rates of RL and RI bits/sec, respectively. The model parameters

are θL, c1, R0L and D0L which also have to be solved. The term c1RI in the

denominator is inserted to handle the dependency of the distortion of Layer 1 to

Layer 0 where the encoder bit rate of Layer 0 is weighted with the parameter c1.

The final layer is Layer 2 whose frames are coded dependent on previous

frames of Layers 2, 1 and 0. Thus, the encoder distortion of Layer 2 depends on

the encoder bit rates of all layers. We modify the model in (3.3) to handle this

dependency as

DR
e (RR, RL, RI) =

θR

RR + c2RI + c3RL −R0R

+ D0R , (3.6)

where DR
e (RR, RL, RI) is the MSE coming from Layer 2 when Layers 2, 1 and 0

are allocated the rates of RR, RL and RI bits/sec, respectively. The model

parameters are θR, c2, c3, R0R and D0R, which also must be solved. The terms

c2RI and c3RL in the denominator are inserted to handle the dependency of

Layer 2 to Layer 0 and Layer 1, where the encoder bit rate of Layer 0 and

Layer 1 are weighted with parameters c2 and c3.

3.4.3 Results

In order to construct the RD curve models of stereoscopic videos, i.e., to obtain

the model parameters, we used curve fitting tools. In our work, we used the

stereoscopic videos ‘Rena’ and ‘Soccer’ explained in Section 3.7 and obtained the

RD curve models of these videos for the analytical models in (3.4) to (3.6). We
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Table 3.1: Encoder RD curve parameters for the ‘Rena’ and ‘Soccer’ videos

Layer 0 θI R0I D0I

1.605e+011 6050 -289860
‘Rena’ Layer 1 c1 θL R0L D0L

Video 0.616 3.483e+013 51858 6142922
Layer 2 c2 c3 θR R0R D0R

0.308 0.086 4.535e+013 50000 4056654

Layer 0 θI R0I D0I

2.978e+011 10249 120330
‘Soccer’ Layer 1 c1 θL R0L D0L

Video 0.456 1.513e+014 -23018 2209000
Layer 2 c2 c3 θR R0R D0R

0.333 0.235 1.496e+014 19482 6003200

used a general purpose non-linear curve fitting tool which uses the Levenberg-

Marquardt method with line search [72]. Before the curve fitting operation we

obtained many RD curve samples of the video by sweeping the quantization pa-

rameters of each layer from low to high quality. We obtained more RD samples

than required in order to be able to observe the curve fitting performance. Then,

we chose some of the RD samples and inserted into the curve fitting tool. The re-

sulting analytical model parameters of the curve fit process are given in Table 3.1

for the chosen videos. The parameters are in accordance with the properties of

the videos. ‘Rena’ has a static background with moving objects and ‘Soccer’ has

camera motion. Since the ‘Soccer’ video has camera motion, while encoding a

right frame, correlation with the current left frame can be more than the previous

right frame. This shows why the c3 parameter of Layer 2 of the ‘Soccer’ video is

high when compared with the results of the ‘Rena’ video.

In Figures 3.7 to 3.12, we present the results of analytical modeling of the

RD curves. In Figures 3.7 and 3.8, we give the results for Layer 0 where the

analytical models are constructed using the model in (3.4) with the corresponding

parameters from Table 3.1. The RD samples correspond to the actual RD values

obtained from the video encoder before the curve fitting process. Later, the
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results for Layer 1 are presented in Figures 3.9 and 3.10 and those of Layer 2 are

presented in Figures 3.11 and 3.12. In the figures for Layers 1 and 2, we present

two cross-sections of the RD curves. The cross sections are obtained by fixing

the encoder bit rates of the layers other than the corresponding layer of interest.

The average difference between analytical models and RD samples for the ‘Rena’

video are 3.62%, 7.60% and 9.19% for Layers 0, 1 and 2 respectively, and those

of the ‘Soccer’ video are 1.00%, 5.87% and 8.89%. Thus, for both of the videos,

which have different characteristics, satisfactory results are achieved where the

analytical model approximates the RD samples accurately.
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Figure 3.7: The RD curve for Layer 0 of the ‘Rena’ video

0 0.5 1 1.5 2 2.5

x 10
5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

7

R
I
 (bps)

E
nc

od
er

 D
is

to
rt

io
n 

in
 L

ay
er

−
0 

(M
S

E
)

Rate−Distortion curve for Layer−0

 

 

Analytical Model: D
e
I (R

I
 )

RD samples

Figure 3.8: The RD curve for Layer 0 of the ‘Soccer’ video

45



0 0.5 1 1.5 2 2.5

x 10
6

0

0.5

1

1.5

2

2.5

3

3.5
x 10

8

R
L
 (bps)

E
nc

od
er

 D
is

to
rt

io
n 

in
 L

ay
er

−
1 

(M
S

E
)

Rate−Distortion curve for Layer−1

 

 

Analytical Model: D
e
L(R

L
 ,R

I
 =200.7kbps)

RD samples, R
I
 =200.7kbps

Analytical Model: D
e
L(R

L
 ,R

I
 =24.2kbps)

RD samples, R
I
 =24.2kbps

Figure 3.9: The RD curve for Layer 1 of the ‘Rena’ video
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3.4.4 Optimization on Encoder RD curve

In this part we use the previously derived RD curve models to obtain the optimal

values of bit rates that minimize the distortion at the encoder output. This

method does not relate to the end-to-end distortion minimization, but it can be

used to obtain best quality compression for a total bit rate. The results will also

demonstrate the accuracy of the RD models. The total distortion model DILR
e

can be written as

DILR
e (RR, RL, RI) = DI

e (RI) + DL
e (RL, RI) + DR

e (RR, RL, RI) . (3.7)

Using the analytical model of the RD curve, the optimal encoding rates for each

of the layers can be calculated for a constant transmission bandwidth. The

optimization is defined as

min
(RI ,RL,RR)

DILR
e (RR, RL, RI)

such that RI + RL + RR = RC .

(3.8)

In (3.8), RC denotes the channel bandwidth. The solution of this optimization

can be calculated with the Lagrange multiplier method as

L (λ) = DILR
e (RR, RL, RI) + λ (RI + RL + RR −RC)

∂L(λ)
∂RI

= 0 ⇒ RI = RI0 +
√

θI

λ(1−c1−c2+c1c3)

∂L(λ)
∂RL

= 0 ⇒ RL = RL0 − c1RI +
√

θL

λ(1−c3)

∂L(λ)
∂RR

= 0 ⇒ RR = RR0 − c2RI − c3RL +
√

θR

λ

∂L(λ)
∂λ

= 0 ⇒ RI + RL + RR −RC = 0

⇒ λ =

( √
θI(1−c1−c2+c1c3)+

√
θL(1−c3)+

√
θR

RC−(1−c1−c2+c1c3)RI0−(1−c3)RL0−RR0

)2

,

(3.9)
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where θI , θL, θR, RI0, RL0, RR0, c1, c2, c3 were previously determined in

Section 3.4.2. Thus, RC remains as the only free variable. Let DILR
e (RC)

be the solution of the minimization in (3.8). In Figure 3.13, the dots repre-

sent the experimental RD samples with different bit rates of layers that satisfy

RI +RL +RR = RC , whereas the plus signs represent the analytically calculated

RD samples for the same bit rates. The minimum distortion DILR
e (RC), which

accurately approximates the convex hull of the RD samples of the stereo encoder,

is represented with the black line.

3.5 Modeling the Performance of Raptor Codes

An abstraction of the performance of Raptor codes is required for optimization

purposes in large scale systems. In Section 4.5.4, we define the modeling of

systematic Raptor codes defined in [16]. The utilized model is
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F (r, k, ρ) =





k − r
1+ρ

r < k

k · 0.68 · ρ
1+ρ

· (0.545)(r−k) r ≥ k
. (3.10)

In (3.10), F (k, r, ρ) is the analytical model of the average number of undecoded

input symbols where k is the number of input symbols, r is the number of received

output symbols, and ρ = (n− k)/k is the parity ratio, where n is the number of

output symbols generated in the encoder. Since the modeling results are given in

Section 4.5.4, we do not present results on modeling in this section. The model

given in (3.10) are used to obtain the optimal values of the video bit-rate and

protection bit-rate.

3.6 Modeling the Error Propagation in Video

Video packets may get lost during the transmission and this loss propagates to

the subsequent frames. In this section, we estimate the average distortion caused

by the loss of a packet including the effect of its propagation.

3.6.1 Lossy Transmission

The channel of interest in our work is PEC as mentioned previously. During

the transmission of stereoscopic video layers from PEC, NAL units are lost with

probability pe. In the remaining part of our work, for simplicity, X will represent

the layer denotations I, L and R. As explained in in Section 3.4.1, we have three

layers of video with source bit rate RX which are Raptor encoded separately with

inserted parity rate ρX . Let NX
i = RX/Nbits be the number of input symbols

where Nbits is the number of bits per NAL packet. Thus, NX
i (1 + ρX) output

symbols are created and transmitted for each layer. After lossy transmission, the

number of received output symbols in Raptor decoder can be calculated as
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NX
r = NX

i (1 + ρX) (1− pe) , (3.11)

where we use the average loss probability for simplified modeling purposes only.

The experimental results in Section 3.7 reflect the actual distortions over lossy

channels where a single packet is lost with probability pe.

3.6.2 Reconstruction of Input Symbols in Raptor De-

coder

After receiving NX
r output symbols Raptor decoder operates to solve for the

input symbols. We use the model of the performance curve of Raptor codes

to obtain the average number of undecoded input symbols using (3.10). The

average number of undecoded input symbols (the residual number of lost NAL

units) can be calculated as

NX
u = F

(
NX

i , NX
r , ρX

)
. (3.12)

3.6.3 Propagation of Lost NAL units in Stereoscopic

Video Decoder

Due to the recursive structure of the video codec, the distortion of a NAL unit

loss not only causes distortion in the corresponding frame but it also propagates

to subsequent frames in the video. Initially, since each NAL unit contains a

specific number of macroblocks (MBs), we estimate the distortion in a frame

when a single MB is lost. The distortion is calculated after error concealment

techniques, explained in Section 3.2.1, are applied for the lost MB. Then, we
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calculate the average propagated distortion of a single MB and, consequently, a

NAL unit.

In [71], a model for distortion propagation is proposed where the propagated

error energy (distortion) at frame t after a loss at frame 0 is given as

σ2
u (t) =

σ2
u0

1 + γt
, (3.13)

where σ2
u0 is the average distortion per lost unit, and γ is the leakage factor

which describes the efficiency of the loop filtering in the decoder to remove the

introduced error (0 < γ < 1). We assume γ ≈ 0 which results in worst case

propagation where the distortion propagates equally to all subsequent frames

(σ2
u (t) = σ2

u0). In the following sections, we calculate the propagated NAL unit

loss distortion for each layer separately where we set MBs as the video unit.

NAL unit loss from Layer 0

The average distortion of spatial error concealment when a lost MB is concealed

by the average of its neighboring MBs can be calculated as

σ2
I0 =

1

N I
MB

∑

k∈SMB


 ∑

x,y∈MBk


II (x, y, 0)−

∑

x′,y′∈MB′k

II (x
′, y′, 0) /N ′

k




2
 , (3.14)

where SMB, MBi, SMB,i, N ′
i and N I

MB represent the set of macroblocks, the ith

macroblock, the set of ith MB’s neighbors, the number of neighbors of ith MB

and the number of MBs of Layer 0, respectively. II(x, y, 0) denotes the pixel in

position (x, y) of the intra frame of Layer 0. Layer 0 consists of a single intra

frame, thus only spatial error concealment can be used due to intra coding.
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Figure 3.14: The propagation of a MB loss from I-frame

In Figure 3.14, the propagation of an MB loss in an I-frame is demonstrated.

The black box in the frame IL1 represents a possible loss in the I-frame. The

loss causes a distortion of σ2
I0 as calculated in (3.14) for the frame IL1. The loss

propagates to all subsequent frames with equal distortion on the average since

both L-frames and R-frames refer initially to the I-frame. If we denote the GOP

size as T, then the average of total propagated loss distortion when an MB is

lost from Layer 0 can be calculated as

DI
MBprop = 2Tσ2

I0 . (3.15)

In order to calculate the average distortion of losing a NAL unit from Layer 0

(DI
NALloss), we have to calculate the average number of MBs in a NAL unit. Let

N I
MB denote the number of MBs in Layer 0. Then, DI

NALloss can be calculated as

DI
NALloss =

(
N I

MB

N I
i

)
·DI

MBprop . (3.16)

NAL unit Loss from Layer 1

The average distortion of temporal error concealment when a lost NAL unit is

concealed from the previous frame of Layer 1 can be calculated as
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Figure 3.15: The propagation of a MB loss from L-frame

σ2
L0 =

1
T−1

T−1∑
i=1

∑
x,y

[IL (x, y, i)− IL (x, y, i− 1)]2

NL
MB

, (3.17)

where NL
MB and T represent the number of MBs of Layer 1 and GOP size, re-

spectively. IL(x, y, i) denotes the pixel in position (x, y) of ith frame of Layer 1.

Layer 1 consists of predicted frames of left view. In our stereoscopic codec, we

used temporal error concealment for Layer 1 as shown in Section 3.4.1.

In Figure 3.15, the propagation of an MB loss in an L-frame is demonstrated.

The black box in the frame PL2 represents a possible loss in the L-frame. The

loss causes a distortion of σ2
L0 as calculated in (3.17) for the frame PL2. The loss

propagates to all subsequent L-frames with equal distortion since each L-frame

refers to the previous L-frame. Let m denote the frame index of loss in a GOP,

then the average propagated loss to L-frames can be calculated as

1

T− 1

T−1∑
m=1

(T−m) σ2
L0 . (3.18)

The MB loss also propagates to R-frames. However, R-frames not only refer

to current L-frames but also previous R-frames. Due to this fact, the distortion

in PR2 can be calculated as σ2
L0/2 using the previous undistorted MB (white

box in PR1). In the frame PR3 the propagated distortion can be calculated as
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(σ2
L0/2 + σ2

L0) /2 = 3
4
σ2

L0. In the subsequent frames the propagated distortion is

calculated similarly as shown in Figure 3.15. The average of total propagated

distortion in an R-frame caused by the loss of an L-frame MB can be calculated

as

1

T− 1

T−1∑
m=1

T−m∑
n=1

((
1− 1

2n

)
σ2

L0

)
. (3.19)

Thus, the average of total propagated distortion when an MB is lost from Layer 1

can be calculated as

DL
MBprop =

1

T− 1

T−2∑
m=0

m∑
n=0

((
2− 1

2n+1

)
σ2

L0

)
. (3.20)

In order to calculate the average distortion of losing a NAL unit from Layer 1

(DL
NALloss), we have to calculate the average number of MBs in a NAL unit. Let

NL
MB denote the number of MBs in Layer 1. Then, DL

NALloss can be calculated as

DL
NALloss =

(
NL

MB

NL
i

)
·DL

MBprop . (3.21)

NAL unit Loss from Layer 2

The average distortion of temporal error concealment when a lost NAL unit is

concealed from the frames of Layers 2 and 1 can be calculated as

σ2
R0 =

∑
x,y

[IL (x, y, 0)− IR (x, y, 0)]2

(T− 1) NR
MB

+

T−1∑
i=1

∑
x,y

[(
IR(x,y,i−1)+IL(x,y,i)

2

)
− IR (x, y, i)

]2

(T− 1) NR
MB

,

(3.22)

where NR
MB and T represent the number of MBs of Layer 2 and GOP size, re-

spectively. IR(x, y, i) denotes the pixel in position (x, y) of ith frame of Layer 2.
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Figure 3.16: The propagation of a MB loss from R-frame

Layer 2 consists of predicted frames of right view. In our stereoscopic codec, we

used temporal error concealment for Layer 2 where the frames are referred to

previous Layer 2 and current Layer 1 frames, as described in Section 3.4.1.

In Figure 3.16, the propagation of an MB loss in an R-frame is demonstrated.

The black box in the frame PR2 represents a possible loss in the R-frame. The

loss in an R-frame propagates only to the subsequent R-frames. A loss in the

frame PR2 creates a distortion of σ2
R0 as calculated in (3.22). In frame PR3, the

propagation distortion can be calculated as σ2
R0/2 using the undistorted MB in

the L-frame (white box in PL3). In each of the following R-frames the propa-

gated distortion is the half of the previous R-frame. Thus, the average of total

propagated distortion when an MB is lost from Layer 2 can be calculated as

DR
MBprop =

T−1∑
m=0

1

T

m∑
n=0

(
1

2n
σ2

R0

)
. (3.23)

In order to calculate the average distortion of losing a NAL unit from Layer 2

(DR
NALloss), we have to calculate the average number of MBs in a NAL unit. Let

NR
MB denote the number of MBs in Layer 2. Then, DR

NALloss can be calculated as

DR
NALloss =

(
NR

MB

NR
i

)
·DR

MBprop . (3.24)
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3.6.4 Calculation of Residual Loss Distortion

In this part, we calculate the average transmission distortion after Raptor decoder

and stereoscopic video decoder. Let

DX
loss (RX , ρX , pe) = Nu

(
NX

i , NX
r , ρX

) ·DX
NALloss (3.25)

denote the residual transmission distortion. In (3.25), we calculate DX
loss by

multiplying the number of undecoded input symbols with the average distortion

of losing a NAL unit. We use the assumption that the NAL unit losses are

uncorrelated which is met for low number of losses after the Raptor decoder.

Thus, the accuracy of the model may reduce for high loss rates.

3.7 Distortion Minimization and Results

In the previous sections, we described how to model each part of an end-to-end

stereoscopic streaming system. In this section, we use these models to derive

optimal values of the encoder bit rates and protection rates by minimizing the

end-to-end distortion. We present the minimization as

min
(RI , RL, RR, ρI , ρL, ρR)

Dtot

such that (1 + ρI) RI + (1 + ρL) RL + (1 + ρR) RR = RC ,

(3.26)

The minimization aims at obtaining the optimal encoder bit rates RI , RL and

RR, and optimal parity ratios ρI , ρL and ρR for given pe and RC . The constraint

ensures that the final bit rate satisfies a total transmission bandwidth of RC

including both the encoder bit rates and protection data bit rates. In (3.27), we

present the calculation of Dtot where DI
e (.), DL

e (.) and DR
e (.) are the encoder
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distortions defined in (3.4), (3.5) and (3.6), and DI
loss (.), DL

loss (.) and DR
loss (.)

are the residual loss distortions defined in (3.25).

Total distortion in left and right frames is weighted to handle the objective

stereoscopic video quality as stated in [73], so that

Dtot = 1
3

[
DR

e (RR, RL, RI) + DR
loss (RR, ρR, pe)

]

+2
3

[
DI

e (RI) + DL
e (RL, RI) + DI

loss (RI , ρI , pe) + DL
loss (RL, ρL, pe)

]
.

(3.27)

The weighting parameters in [73] are found by Least Squares Fitting of the sub-

jective results with the distortion values. In [73], there are three parameters used

for coding, number of layers, quantization parameter for left view and temporal

scaling. In our codec, we only use quantization parameter for adjusting the bit

rates. Although both codecs are not the same, they are both extensions of H.264

JM and JSVM softwares. So the distortions become similar if we consider only

the case where quantization parameter is used to adjust the bit rates. Also,

subjective results for our codec with temporal and spatial scaling can be found

in [74], where we have similar results as given in [73].

We did not determine whether the optimization in 3.26 is convex, since it

is easily processed with the tool that we used. In order to check the convexity,

the Hessian matrix of Dtot with respect to the parameters RI , RL, RR, ρI , ρL

and ρR should be calculated. If the Hessian is positive semi-definite, then the

optimization is convex.

58



3.7.1 Results on the Minimization of End-to-End Distor-

tion

We solve the minimization in (3.26) by a general purpose minimization tool

which uses sequential quadratic programming where the tool solves a quadratic

programming at each iteration as described in [75]. In our work, we obtain the

optimal encoder bit rates and parity ratios for pe ∈ {0.03, 0.05, 0.1, 0.2} and

RC ∈ {500, 750, 1000, 1500, 2000, 2500 (kbps)} for ‘Rena’ video and RC ∈ {1000,

1500, 2000, 2500, 3000, 3500 (kbps)} for ‘Soccer’ video in order to demonstrate

the performance of the proposed system. Thus we perform 24 optimizations per

video using (3.26).

In Tables 3.2 and 3.3, the optimal encoder bit rates and protection rates for

the proposed method are given for the ‘Rena’ and ‘Soccer’ stereoscopic videos

for pe = 0.03, 0.05, 0.1, 0.2. The encoder bit rates of the right view is lower than

that of the left view; this is due to the unequal weighting in the total distortion

expression in (3.27) and the higher priority of left view compared to right view.

The protection rate of I-frame is the largest due to low bit rate and high distortion

of losses.

3.7.2 Simulation Results

In this section, we evaluate the performance of the proposed stereoscopic video

streaming system on lossy channels via simulations. We use two stereoscopic

videos ‘Rena’ (Camera 38, 39) (640×480, first 30 frames) and ‘Soccer’ (720×480,

first 30 frames) for performance evaluation. We encode the stereoscopic videos

with the bit rates obtained by the minimization in (3.26) for given pe and RC ,

and NAL unit size is fixed to 150 bytes. The number of NAL units per layer,

namely the number of input symbols for the Raptor code, can be calculated by

dividing the given encoder bit rate to NAL unit size. The simulation results give
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Table 3.2: The video encoder bit rates and Raptor encoder protection rates for
the ‘Rena’ video

Protection Rates
pe RC(Kbs) Encoder Bit Rates (Kbs) Proposed (Optimal)

RI RL RR ρI ρL ρR

500 37.2 236.8 183.4 0.345 0.083 0.055
750 56.8 367.8 270.8 0.261 0.069 0.054

0.03 1000 76.5 499.7 358.8 0.213 0.061 0.051
1500 115.8 764.6 535.5 0.162 0.052 0.047
2000 155.2 1030.3 712.7 0.134 0.048 0.045
2500 194.6 1296.4 890.1 0.116 0.045 0.043

500 36.1 230.9 179.4 0.384 0.109 0.081
750 55.2 359.0 265.0 0.296 0.093 0.079

0.05 1000 74.4 488.2 351.1 0.246 0.085 0.076
1500 112.9 747.6 524.1 0.191 0.076 0.071
2000 151.4 1007.8 697.6 0.162 0.071 0.068
2500 190.0 1268.3 871.3 0.143 0.068 0.066

500 33.5 216.6 169.9 0.490 0.177 0.148
750 51.6 337.9 250.8 0.389 0.159 0.144

0.1 1000 69.7 460.1 332.3 0.332 0.149 0.140
1500 106.0 705.7 496.1 0.270 0.138 0.134
2000 142.5 952.0 660.3 0.237 0.132 0.130
2500 178.9 1198.7 824.8 0.215 0.129 0.127

500 28.8 189.0 151.4 0.743 0.338 0.301
750 44.7 296.3 223.0 0.612 0.313 0.294

0.2 1000 60.8 404.7 295.3 0.538 0.300 0.288
1500 93.0 622.6 440.6 0.457 0.285 0.280
2000 125.4 841.3 586.4 0.414 0.278 0.275
2500 157.8 1060.4 732.5 0.386 0.273 0.271

the average of 100 independent lossy transmission simulations for each pe and

RC , where each packet is lost with a probability of pe. Simulation results are

based on the weighted PSNR measure which can be calculated as

PSNRweighted = 10 · log10

(
2552

Dtot

)
, (3.28)

where the weighted MSE distortion Dtot is given in (3.27).
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Table 3.3: The video encoder bit rates and Raptor encoder protection rates for
the ‘Soccer’ video

Protection Rates
pe RC(Kbs) Encoder Bit Rates (Kbs) Proposed (Optimal)

RI RL RR ρI ρL ρR

1000 73.8 589.7 266.7 0.231 0.060 0.065
1500 103.8 903.5 404.5 0.184 0.051 0.057

0.03 2000 133.7 1217.9 542.8 0.155 0.047 0.052
2500 163.6 1532.6 681.2 0.136 0.044 0.049
3000 193.4 1847.7 819.7 0.123 0.042 0.046
3500 223.3 2162.8 958.3 0.112 0.041 0.045

1000 72.2 576.2 260.6 0.263 0.084 0.091
1500 101.5 883.4 395.6 0.214 0.074 0.081

0.05 2000 130.7 1191.2 531.0 0.184 0.070 0.075
2500 159.9 1499.5 666.5 0.164 0.067 0.072
3000 189.2 1807.9 802.2 0.150 0.065 0.069
3500 218.4 2116.6 937.9 0.139 0.063 0.068

1000 68.4 543.0 245.9 0.349 0.147 0.156
1500 96.0 833.8 373.7 0.294 0.136 0.145

0.1 2000 123.7 1125.3 501.9 0.260 0.130 0.138
2500 151.3 1417.2 630.3 0.238 0.127 0.134
3000 179.0 1709.3 758.7 0.222 0.125 0.131
3500 206.6 2001.6 887.3 0.209 0.123 0.128

1000 61.5 477.4 217.1 0.552 0.298 0.312
1500 86.0 735.6 330.6 0.484 0.284 0.295

0.2 2000 110.5 994.4 444.4 0.442 0.276 0.287
2500 135.1 1253.7 558.4 0.414 0.271 0.281
3000 159.6 1513.2 672.5 0.393 0.268 0.277
3500 184.2 1772.9 786.7 0.377 0.266 0.274

For channel protection, we use systematic Raptor codes based on their suit-

ability for our case as explained in Section 2.5. We applied Raptor encoding

to the source encoded video data using the protection rates obtained by the

minimization in (3.26) for given pe and RC . The proposed optimal streaming

scheme is compared with EEP, Protect-L, no-loss and no-protection cases. The

protection rates of equal error protection (EEP) and Protect-L cases can be eas-

ily calculated from Tables 3.2 and 3.3. These protection rates are non-optimal

and will be compared with the proposed optimal protection rates by simulations.
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In order to construct the EEP case, the resulting bit rate of proposed protec-

tion is distributed to the layers so that each layer has the same protection ratio.

Protect-L case is constructed similarly, using the results of [76], where the bit

rate of protection is distributed to only layers of left view (Layer 1 and Layer 0) so

that these layers have same protection ratio. The encoder bit rates for EEP and

Protect-L are the same as the optimal streaming case, thus they use the optimal

bit rates calculated by (3.26). The no-loss case represents the undistorted quality

of the video when the stereoscopic video is encoded with all available channel

bandwidth and, the bit rates of the layers are determined by the minimization

in 3.8. The no-protection case represents the transmission of the video of no-loss

case without any channel protection where only error concealment is used at the

decoder.

We give the simulation results of stereoscopic video pair ‘Rena’ in Fig-

ures 3.17 to 3.20 and those of ‘Soccer’ in Figures 3.21 to 3.24. The noticeable

observation is the large distortion in the no-protection case, even at low loss

rates. This result clearly demonstrates the loss sensitivity of the stereoscopic

video and points out the need for FEC utilization in stereoscopic video stream-

ing. Another observation is that the performance of EEP and Protect-L cases

depends on the chosen video. EEP is clearly better than Protect-L case for low

bit rates for the ‘Rena’ video, however EEP is better for high bit rates for the

‘Soccer’ video. The proposed case is obviously better then the other cases. For

low bit rates the difference is not clear but for high bit rates the difference is 1dB

for pe = 0.10 and nearly 2dB for pe = 0.20. The gap between the results of the

no-loss and the proposed case is caused by the reduction of the encoder bit rates

of video where the remaining bit rate is used for channel protection. The results

in Figures 3.17 to 3.24 demonstrate the necessity of FEC utilization and success

of the proposed scheme. We handled the problem of end-to-end transmission

with piecewise analysis and total distortion minimization. The proposed scheme

can be easily extended to almost all types of layered multi-view codecs.
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Figure 3.17: The results for pe = 0.03 for the ‘Rena’ video
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Figure 3.18: The results for pe = 0.05 for the ‘Rena’ video
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Figure 3.19: The results for pe = 0.10 for the ‘Rena’ video
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Figure 3.20: The results for pe = 0.20 for the ‘Rena’ video
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Figure 3.21: The results for pe = 0.03 for the ‘Soccer’ video
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Figure 3.22: The results for pe = 0.05 for the ‘Soccer’ video
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Figure 3.23: The results for pe = 0.10 for the ‘Soccer’ video
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Figure 3.24: The results for pe = 0.20 for the ‘Soccer’ video
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Chapter 4

Analysis and Modeling of

Fountain Codes

4.1 Motivation

The first practical realization of Fountain codes, namely LT codes were defined in

[11]. That work defined the principles of LT codes and some bounds on the per-

formance for asymptotic region. LT codes were shown to operate asymptotically

optimal, namely when the number of input symbols increases significantly. The

exact finite length analysis of LT codes that yielded significant high complexity

of O
(
n3 log2 (n) log log (n)

)
were defined in [13]. This analysis was improved in

[77] to yield a lower complexity with asymptotic Poisson approximation. An-

other study on the performance analysis of rateless codes was presented in [78]

that aimed at the region where the number of received output symbols are less

than the number of input symbols. In [79], exact analysis of LT codes with

Markov chain approach are provided for number of input symbols smaller than

30. Following the introduction of Raptor codes [12], there has been various anal-

ysis and design approaches. In the original paper [12], performance analysis of
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Raptor codes in the asymptotic region and finite length design for low number of

input symbols were provided. In [80], pre-code only (PCO) Raptor codes were

analyzed and a new definition of efficiency was defined for Fountain codes. The

EXIT functions for LT and Raptor codes were defined in [81] as a part of the

asymptotic analysis. The analysis of random linear Fountain codes combined

with LT codes were provided in [82]. The previous studies on the performance

analysis of Fountain codes used asymptotic approximations and most of them

lacked comparisons with actual simulation results.

In Chapter 3, we used Raptor codes for end-to-end stereoscopic streaming.

The complexity of such an end-to-end system is compelling to obtain simple

analytical models for each part of the system. The heuristic model for Raptor

codes was one of those we used in Chapter 3. In this chapter we analyze and

model the performance of the LT codes and Raptor codes.

4.2 Design of Degree Distributions

4.2.1 Degree Distribution of LT Codes

The degree distribution of LT coding needs proper design in order to obtain an

efficient coding scheme. The degree distribution has to be designed so that

• the entire input symbols have to be connected to at least one output symbol,

• there has to be degree-1 output symbols to initiate the decoding,

• the average degree has to be low to ensure low complexity encoding and

decoding.
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For ease of denotation of degree distributions and ease of operations, degree

polynomial is defined. Let the the probability of degree i output symbols be Ωi,

then the degree polynomial is defined as

Ω (x) =
∑

i

Ωix
i . (4.1)

We explain two different process to describe the operation and degree design

of the LT codes in the sequel.

Balls and Bins Process

A simple example about bins and balls is highly intuitive about the design of

LT codes. Assume that there are k bins into which we throw balls. We want

to calculate the number of balls that has to be thrown into the bins in order

to guarantee that all bins have at least one ball with probability 1 − δ. After

throwing b balls, the probability that one bin is empty can be calculated as,

(
1− 1

k

)b

' e−b/k . (4.2)

If b = k balls are thrown the approximate fraction of bins that are empty is 1/e.

If b = 4k balls are thrown the fraction is 1.8%. Thus, a large number of balls

have to be thrown to fill all the bins. For any b, the expected number of empty

bins can be calculated as,

k · e−b/k. (4.3)

We want this number to be smaller than δ to ensure that all bins have at least

one ball with probability 1− δ. Thus, b has to satisfy
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b > k ln

(
k

δ

)
. (4.4)

In order to associate the above example with LT codes, assume the balls

represent the edges and the bins represent the input symbols. In order to be a

capacity achieving code, all input symbols (bins) need at least one edge (ball).

Thus, the number of edges has to be greater than k ln (k) to ensure successful

decoding which leads to an average degree of at least ln(k). In [11], it is shown

that this bound can be achieved with the good design of degree distribution.

LT Process

In order to design the LT degree distributions, Luby defines the LT process as

follows [11]:

• All input symbols are initially uncovered.

• In the first step, all output symbols with degree-1 are released to cover an

input symbol.

• The set of covered input symbols that have not been processed is called

the ripple.

• At each step, one input symbol in the ripple is processed, namely, the

chosen input symbol from the ripple is removed from all output symbols

that have it as a neighbor and the newly emerging output symbols with

degree-1 are released to cover their neighbor.

• The process is complete when the ripple becomes empty. The process fails

if there are uncovered input symbols when the ripple becomes empty.

The LT process at step t is illustrated in Figure 4.1. The figure illustrates

the release of the output symbol y at step t. In order to be released at step t, y
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Figure 4.1: LT process at step t

needs to have its i−2 neighbors previously determined. Since the current step is

t there has to be t−1 determined input symbols (Smaller values than t−1 mean

decoding failure and larger values are not possible since 1 input symbol is released

at each step). Then one of the two remaining neighbors of y has to be processed

at step t − 1 and the remaining neighbor has to be in the undetermined input

symbols set. The number of undetermined input symbols at step t is calculated

by k − (t− 1)− 1 = k − t. Let

q(i, t) = Pr {y is released at step t|degree(y) =i} =

(
t−1
i−2

)(
1
1

)(
k−t
1

)
(

k
i

) (4.5)

represent the probability that y is released at step t when it has a degree i.

In (4.5), q(i, t) is obtained by calculating the probability that i−2 of the neighbors

of the output symbols of y are among the first t− 1 input symbols determined,

one neighbor is determined in step t, and the remaining neighbor is among the

k − t undetermined input symbols. If for all i, Ωi is the probability distribution

that an output symbol has degree i, since the events are disjoint, the overall

release probability is

r(t) = Pr {y is released at step t} =
∑

i

Ωi

(
t−1
i−2

)(
1
1

)(
k−t
1

)
(

k
i

) . (4.6)
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Ideal Soliton Distribution

The idea behind the design of Ideal Soliton distribution is that only one output

symbol is expected to be released at each step of the decoding. When n output

symbols arrive the number of released output symbols at step t can be expressed

as n · r (t). In order to release one output symbol at each step we require

n · r (t) = 1 . (4.7)

For sufficiently large k, r(t) can be approximated as

1

k

(
1− t

k

) ∑
i

Ωii (i− 1)
(t− 1)i−2

ki−2
. (4.8)

For an asymptotically optimal code we require n = k. Approximating (t− 1) ∼ t

and substituting x for t
k
, (4.7) can be modified as

(1− x) Ω′′ (x) = 1 . (4.9)

Solving for Ω(x) in (4.9) we obtain

Ω(x) = c0 + c1x +
∑
i≥2

xi

i(i− 1)
. (4.10)

The Ideal Soliton distribution based on this result is given in [11] as

Ω1 = 1/k

Ωi = 1/i(i− 1), i = 2, ..., k .
(4.11)

The average degree of an output symbol with the Ideal Soliton distribution is

ln(k). Thus, when k output symbols are received the number of edges becomes
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Table 4.1: The Ideal and Robust Soliton distributions for k = 500 (δ = 0.01,
c = 0.1 for Robust Soliton)

i 1 2 3 4 5 6 7 8 ... 21 ...
Ωi 0,002 0,5 0,1666 0,0833 0,05 0,0333 0,0238 0,0178 ... 0,0023 ...
µi 0,0324 0,3379 0,1178 0,0615 0,0384 0,0266 0,0198 0,0154 ... 0,2445 ...

k ln(k), which ensures covering all of the input symbols. According to balls and

bins process, k ln (k/δ) balls (edges) are required to succeed with probability

1 − δ. Thus, the encoding and decoding complexities will be O (k ln(k)). The

Ideal Soliton distribution Ωi is given Table 4.1 for k = 500.

Ideal Soliton distribution behaves poorly due to the assumption that expected

number of released output symbols is 1. However, the expected value of 1 is highly

vulnerable to even a small variance. Thus, in any step of decoder the probability

that there is no output symbol with degree is high.

Robust Soliton Distribution

The Robust Soliton distribution is proposed to remove the practical weakness

of the ideal soliton distribution by increasing the expected number of degree-

1 output symbols in each step. The robust soliton distribution is designed to

ensure that the expected number of output symbols released at step t is

R = c ln(k/δ)
√

δ (4.12)

for some suitable constant c > 0. The parameter δ is used in a bound on

probability that the decoding fails.

The Robust Soliton distribution is calculated in the following way. First we

define
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τi =





R/ik

R ln(R/δ)/k

0

for i = 1, ..., k/R− 1

for i = k/R

for i = k/R + 1, ..., k

. (4.13)

Then, we add the Ideal Soliton distribution Ωi to τi and normalize with β to

obtain the robust soliton distribution µi as

β =
k∑

i=1

(Ωi + τi)

µi = (Ωi + τi) /β for i = 1, ..., k .

(4.14)

The Robust Soliton distribution µi is given in Table 4.1 for k = 500, c = 0.1,

δ = 0.01. There are two significant differences from the Ideal Soliton distribution;

first, an increase in the probability of degree-1 output symbols, second, the spike

at a high degree (i=21 in Table 4.1). The increase in the probability of a degree-1

symbol ensures that the decoding can start with a reasonable number of received

output symbols. The spike at a high degree ensures that all of the input symbols

are connected to an output symbol. The average degree of an output symbol

can be calculated as ln (k/δ). Thus, the complexity of encoder and decoder is

O (k ln (k/δ)).

4.2.2 Degree Distribution of Raptor Codes

The degree distribution of LT codes is slightly modified, so that the distribution

has a maximum degree of D, and degree one output symbols have an appropriate

weight. The asymptotic degree distribution is defined as [12]

ΩD (x) =
1

µ + 1

(
µx +

D∑
i=2

xi

(i− 1) i
+

xD+1

D

)
, (4.15)
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Table 4.2: The degree distribution of Raptor codes for different values of k
k 8192 65536 120000

η1 0.009766 0.007969 0.004807
η2 0.459042 0.493570 0.496472
η3 0.210964 0.166220 0.166912
η4 0.113392 0.072646 0.073374
η5 0.082558 0.082206
η8 0.056058 0.057471
η9 0.037229 0.035951
η10 0.111342
η11 0.079863
η18 0.001167
η19 0.055590 0.054305
η40 0.015627
η65 0.025023 0.018235
η66 0.003135 0.009100

η′ (1) 4.63 5.87 5.83

where D := d4 (1 + ε) /εe and µ = (ε/2) + (ε/2)2 for some ε larger than zero.

This degree distribution has the constant average degree 1 + H (D) / (1 + µ),

where H(D) is the harmonic sum up to D. The degree distribution is shown to

be sufficient to recover at least (1− δ) k input symbols via BP decoding when

(1 + ε/2) k + 1 output symbols are received, where δ = (ε/4) / (1 + ε). The

remaining δ constant fraction of the input symbols are recovered by the pre-code.

The degree distribution given in (4.15) is optimal in the asymptotic region. In

[12], optimal degree distributions for finite block lengths are also derived. Let

η(x) represent the degree polynomial of optimal distribution. Then, η(x) is

calculated by minimizing the average degree η′(1) over a set of constraints, so

that

min
ηd,d=1:k

η′ (1) (4.16)

η′ (x) ≥ − ln
(
1−x−c

√
1−x

k

)

1+ε
.

In Table 4.2, some results on the minimization in (4.16) are given for different

values of k.
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Figure 4.2: The overhead of LT codes

4.3 Performance of LT Codes

The performance of Fountain codes is measured by the curve that yields the av-

erage number of undetermined (or determined) input symbols versus the number

of received output symbols. If we denote k and n as the number input symbols

and output symbols respectively, then the ratio (n − k)/k can be called frac-

tional overhead. When Robust Soliton distribution is used, the required number

of output symbols for LT codes in order to succeed in decoding with probability

1− δ is given in [11] as

n = k + α · ln
(α

δ

)
+

k/α−1∑
i=1

(α

i

)
, (4.17)

where α = c ·
√

k · log (k/δ) for some c. Figure 4.2 shows this ratio as a function

of k for c = 1 and δ = 0.01, 0.001, 0.0001.
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Figure 4.3: The performance curve of LT codes with Robust Soliton distribution,
k = 500, c = 0.7 and δ = 0.001, (a) LT BP decoder, (b) LT ML decoder
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The overhead versus the number of input symbols is significant unless the

number of input symbols k is on the order of 107. Thus, LT coding as proposed

by Luby is asymptotically optimal but yields excessive overhead in the non-

asymptotic regime.

We also give practical simulation results of an LT code with BP decoder

in Figure 4.3(a). We use Robust Soliton distribution with k = 500, c = 0.7

and δ = 0.001. The thin curves show the exact results of several encoding

and decoding simulations. The bold black line represents the average of 100

simulations. In Section 2.4.2, the ML decoder of the LT coding is described.

The performance of LT ML decoder is given in Figure 4.3(b), similar to the BP

decoder case.

4.4 Performance of Raptor Codes

As mentioned in previous sections Raptor codes are more advanced than their

prior LT codes. The performance of Raptor can be observed in Figure 4.4(a),

where we provide the average of 100 simulations together with several exact

simulation results. The steep performance when 500 output symbols arrive is

zoomed in Figure 4.4(b).

In Figure 4.5 we provide the comparison of the average performance of LT

and Raptor codes. When the number of received output symbols is smaller than

the number of input symbols, Raptor codes can decode lower number of input

symbols. However, in the opposite side, Raptor codes perform significantly better

than the LT codes due to the two staged encoding.
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Figure 4.4: The performance curve of Raptor Codes with the Raptor distribution
in Table 4.2, k = 500, (a) Whole Performance, (b) Performance zoomed around
500 received output symbols
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Figure 4.5: The comparison of the performance of LT codes with ML and BP
decoder and Raptor codes

4.5 General Method for the Analysis of Foun-

tain Codes

The analysis of Fountain codes is an iterative process. In this section, we try to

obtain the analytical model of the LT codes and Raptor codes.

4.5.1 The Analysis of LT BP Decoder

The LT BP decoder operates according to the algorithm given in Section 2.4.2

whose progression can be tracked via the number of edges. Here, we only model

the progression of the number of edges throughout the decoding process when a

constant number of output symbols has arrived. This method will be used as an

intermediate step in the next section to model the performance curve of the LT

BP decoder. In [34] a method utilizing difference equations method is presented
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for the analysis of the elimination of the edges in the bipartite graphs. Let Ri(t)

and Li(t) represent the expected number of edges with degree i connected to a

right node and left node at the tth step of decoder, respectively.

A single step of this decoding process is given in Figure 2.3. At each step a

node of degree 1 on the right is chosen, if it exists, and the corresponding node

on the left and all of its adjacent edges are removed from the graph. We start by

analyzing the behavior of Li(t). Initially, as described in Section 2.4.2, a degree-1

output symbol is chosen and its corresponding edge is removed from the graph.

If the chosen degree-1 edge on the right is connected to a degree-i edge on the

left then the number of edges with degree-i on the left will decrease by i. Let

PL (i, t) denote the probability that the chosen edge is connected to a left node

with degree-i at step t. Then, the number of left nodes with degree-i at the next

step can be calculated as

Li (t + 1) = Li (t)− iPL (i, t) , i = 1, 2, ..., k , (4.18)

where

PL (i, t) =
Li (t)

E (t)
, i = 1, 2, ..., k (4.19)

E (t) =
∑

i

Ri (t) =
∑

i

Li (t) . (4.20)

Let A (t) =
∑

i iPL (i, t) denote the number of removed edges from left nodes.

The number of removed edges is used in the calculation of Ri(t), since those are

also removed from right nodes. However, one edge was already removed from

right nodes when a degree-1 output symbol was chosen. Thus, on the average

A(t)−1 edges will be removed from right nodes. If one of these edges is connected

to a degree-i node on the right then the number of edges with degree-i on the

right will decrease by i. Similarly the number of edges with degree-i will increase
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by i if the removed edge is connected to a degree-(i+1) node. Let PR (i, t) denote

the probability that the chosen edge is connected to a right node with degree-i

at step t. Then, the number of left nodes with degree-i at the next step can be

calculated as

Ri (t + 1) =





R1 (t) + [PR (2, t)− PR (1, t)] (A (t)− 1)− 1

Ri (t) + [PR (i + 1, t) i− PR (i, t) i] (A (t)− 1)

Rk (t)− PR (k, t) k (A (t)− 1)

i = 1

1 < i < k − 1

i = k

,

(4.21)

where

PR (i, t) =
Ri (t)

E (t)
, i = 1, .., k . (4.22)

The recursive equation for i = 1 is different from the others. Because an edge

from a degree-1 node on the right was removed at the beginning of a step. Hence,

for i = 1, 1 has to be subtracted for the recursive equation. Among all nodes, the

progression of R1(t) is the most important. Because it has to stay larger than 0

for the decoding process to succeed. Otherwise, the decoding fails, as stated in

Section 2.4.2.

Evaluation of the Iterative Analysis

Before initiating the iterations, Ri(0) and Li(0) have to be initialized for

1 ≤ i ≤ k, and the whole bipartite graph has to be constructed. In order

to achieve these, the edge degree distribution on both sides has to be calculated.

We start with the calulation of edge degree distribution on right. Assume right

node degree distribution is defined with the degree polynomial Γ(x) =
∑
i

Γix
i.

Then, the edge degree distribution polynomial on right can be easily calculated
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as ρ(x) = Γ′(x)/Γ′(1). The edge degree distribution on left needs more effort.

First we have to calculate the node degree distribution on left, and then the

edge degree distribution. An edge from a right node is connected to left node

according to uniform distribution. The probability that a node on left is the

neighbor of a node on right is Γ′(1)/k, where Γ′(1) is the average degree of a

right node. Let Λ(x) denote the left node degree distribution polynomial, then

it can be calculated as

Λ(x) =

((
1− Γ′(1)

k

)
+

Γ′(1)

k
x

)n

(4.23)

for n received output symbols. The corresponding edge degree distribution on

left can be calculated as λ(x) = Λ′(x)/Λ′(1). The total number of edges can be

calculated as E = nΓ′(1) = kΛ′(1). Finally, the initial conditions can be defined

as

Ri (0) = Eρi , Li (0) = Eλi , for i = 1, .., k . (4.24)

The iteration results for R1(t), R2(t) and R3(t) are shown in Figure 4.6 for k =

500 and n = 2000, where the analytical result is compared with the average

of 100 simulations. The vertical axis is the average number of edges, and the

horizontal axis is the iteration step. As seen from the results the analytical model

perfectly tracks the progression of the number of edges of a LT BP decoder.

4.5.2 Modeling the Performance Curve of LT BP Decoder

The analysis in Section 4.5.1 cannot yield the performance curve of the LT BP

decoder alone. Because the analysis only tracks the number of edges on left and

right nodes for a given number of output symbols. In this section, using the

previous analysis of LT BP decoder, we try to obtain the average number of
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Figure 4.6: The comparison of the analytical and simulation results on LT BP
decoder

decoded input symbols versus the number of received output symbols, namely

the performance curve.

We use the notation R̃i(n) and L̃i(n) to denote the number of edges remaining

after nth output symbol arrival. Thus, initially L̃i(0) = 0 and R̃i(0) = 0 for

i = 1, ..., k. The iterations start with the update of R̃i(n) as

R̃i (n) = R̃i (n− 1) + iΓi,n , i = 1, 2, ..., k , (4.25)

where Γi,n is the effective degree of an arriving right node at the nth output

symbol arrival. The degree of an arriving output symbol changes, since it may

contain previously determined input symbols. The effective degree distribution

coefficients can be calculated as
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Γi,n =
k∑

j=i

Γi,0

(
j

j − i

)
(Pdec (n))j−i (1− Pdec (n))i , (4.26)

where i = 1, ..., k, and Pdec(n) is the probability of decoding of an input symbol.

After algebraic manipulations, using the degree coefficients given in (4.26), we

can obtain the degree polynomial of nodes on the right at the nth output symbol

arrival as

Γ(x, n) = Γ (Pdec(n) + x (1− Pdec(n))) . (4.27)

The iterations for the number of edges on left nodes are calculated with

effective degree similar to that of right nodes. When the nth output symbol

arrives, Γ′(1, n) edges will be connected to left nodes on the average. The degree-

i on the left nodes is effected by two events. First, if an edge is connected to a

degree-i node, then the number of degree-i nodes decrease by i. Second, if an

edge is connected to a degree-(i − 1) node, then the number of degree-i nodes

increase by i. Thus, a new arriving node on the right effects the number of edges

on the left as

L̃i (n) = L̃i (n− 1) +

[(
L̃i−1 (n− 1)

i− 1
− L̃i (n− 1)

i

)
i

k

]
Γ′(1, n) (4.28)

for i = 1, ..., k. After every arrival of an output symbol the BP decoder modeled

in Section 4.5.1 has to run until R1(n) becomes less than 1. We set the initial

conditions as

Ri (0) = R̃i (n) , Li (0) = L̃i (n) , for i = 1, .., k . (4.29)

Assuming R1(t) becomes less than 1 just after step T we obtain L̃i(n) and R̃i(n)

as
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R̃i (n) = Ri (T ) , L̃i (n) = Li (T ) , for i = 1, .., k . (4.30)

The average number of eliminated equations, ∆(n), after the arrival of nth output

symbol can be calculated as

∆(n) =
∑

i

Ri (0)−
∑

i

Ri (T ) . (4.31)

The average number of eliminated equations includes redundant equations which

are dependent on other equations. Let Pred(n) denote the probability of an

equation being redundant. Then, the number of eliminated equations that are

not redundant after the arrival of nth output symbol, ∆1(n), can be defined as

∆1(n) =

b∆(n)c∑
i=0

[(b∆(n)c
i

)
(∆(n)− i) (Pred(n))i × (1− Pred(n))(b∆(n)c−i)

]
.

(4.32)

After the elimination of redundant equations, the equations are simply the num-

ber of decoded input symbols at nth output symbol. However, these input sym-

bols include previously decoded input symbols. The number of decoded input

symbols that are not previously decoded after the arrival of nth output symbol,

∆2(n), can be calculated as

∆2(n) =

b∆1(n)c∑
i=0

[(b∆1(n)c
i

)
(∆1(n)− i) (Pdec(n))i × (1− Pdec(n))(b∆1(n)c−i)

]
.

(4.33)

The number of decoded input symbols after the nth symbols arrival, Ndec (n),

can be updated as
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Ndec (n) = Ndec (n− 1) + ∆2(n) . (4.34)

The probability of decoding of an input symbol can be updated for the next step

as

Pdec (n + 1) = Ndec (n) /k . (4.35)

The probability of a redundant equation can be updated for the next step as

Pred (n + 1) =
n−∑

i R̃i(n)/i−Ndec(n)

n
. (4.36)

In (4.36), in the numerator, the term
∑

i R̃i(n)/i is the number of non-eliminated

equations, the term Ndec(n) is the number of decoded input symbols. Dividing

the number of redundant equations by the number of all received equations we

obtain the probability of an equation being redundant.

Evaluation of the Modeling

The steps (4.25) through (4.36) are executed iteratively starting from n = 0, the

initialization step. At the initial step, we set Ri(0) = 0 and Li(0) = 0 for i =

1, ..., k, Ndec(0) = 0, Pred(0) = 0, and Pdec(0) = 0. In Figures 4.7(a) and 4.7(b)

we present two different results on the modeling with different parameters. In

Figure 4.7(a), the modeling result does not exactly match the average of the sim-

ulations. However, the model approximates the behavior of a single simulation,

and the initial and final parts of the model accurately approximates the average

of simulations. On the other hand, in Figure 4.7(a), the modeling is satisfactory

for the stated parameters.

87



0 200 400 600 800 1000 1200
0

50

100

150

200

250

300

350

400

450

500

Number of Received Output Symbols

N
um

be
r 

of
 U

nd
ec

od
ed

 In
pu

t S
ym

bo
ls

(a)

0 500 1000 1500
0

50

100

150

200

250

300

350

400

450

500

Number of Received Output Symbols

N
um

be
r 

of
 U

nd
ec

od
ed

 In
pu

t S
ym

bo
ls

 

 

(b)

Figure 4.7: Modeling the performance of LT BP decoder. Black bold solid line:
model, black bold dashed line: the average of simulations. (a) c = 0.7, δ = 0.001,
(b) c = 0.02, δ = 0.001
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l 

A vector (symbol) with 
weight j in A(t). 

The new arriving vector 
(symbol) with weight l. 

: 1’s 

: 0’s 

k-j 

Figure 4.8: The representation of two vectors corresponding to two output sym-
bols with degrees j and l

4.5.3 Modeling the Performance Curve of LT ML De-

coder

The ML decoder is the optimal decoder for the LT codes. As shown in Section 2.4,

the output symbols actually denote equations generated from the input symbols.

Thus, ML decoding for LT codes is solving a set of linear equations. Although

there are many different algorithms, Gaussian elimination is the most common.

In order to analyze the performance of the ML decoder, we track the linear

combinations of the rows of the output symbols’ generator matrix, Ai, in GF(2).

In order to track the number of linear combinations we use an iterative anal-

ysis. Let w(i, n) represent the expected number of different vectors with weight i

after calculating all linear combinations of the generating vectors of the n output

symbols. We need to find w(i, n + 1) in terms of w(., n). When a new output

symbol arrives, all possible linear combinations and the weight of these combi-

nations has to be calculated. Assume a symbol with weight l has arrived; the

below vector in Figure 4.8. Without loss of generality we pick a vector with

weight j from A; the above vector in Figure 4.8. Assume that 1’s coincide at

m locations as shown in the figure. Then we obtain a new vector with weight

i = (j−m)+(l−m). The probability of m 1’s coinciding with j 1’s and (l−m) 0’s

coinciding with (k− j) 0’s can be represented with hyper-geometric distribution

as
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h (m, l, j, k) =

(
j
m

)(
k−j
l−m

)
(

k
l

) , (4.37)

where m = (j + l− i)/2, m integer. Summing over all vectors with degree-j, the

increase in the number of linear combinations with combined weight-i, when the

(n + 1)th output symbol has degree-l, can be calculated as

k∑
j=0

w (j, n) h

(
j + l − i

2
, l, j, k

)
. (4.38)

Then, summing over all possible values of degree-l, the final iteration can be

calculated as

w (i, n + 1) = w (i, n) +
k∑

l=1

Γl

k∑
j=0

w (j, n) h

(
j + l − i

2
, l, j, k

)
(4.39)

for i = 1, ..., k, (j + l− i)/2 integer, and Γl (1 ≤ l ≤ k) is the degree distribution

of the output symbols. The average number of weight-1 vectors after linear

combinations gives the number of determined input symbols that can be obtained

with w(1, n). However, the term w(1, n) is not enough to obtain the expected

number of determined input symbols. Because it includes linear combinations

with vectors of weight-0 that is given by w(0, n). Hence, the expected number

of decoded input symbols when n output symbols arrive can be calculated as

w(1, n)/w(0, n).

Evaluation of the Modeling

The result on the analytical method for ML decoder is given Figure 4.9 and

compared with the simulation results. The degree distribution is the Robust

Soliton distribution with parameters k = 500, c = 0.7 and δ = 0.001. The black
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Figure 4.9: The comparison of the analytical model and simulation results on
the LT ML decoder

bold solid line is the model and the black bold dashed line is the average of

simulations. There is a small difference between the curves that is caused by a

slight abuse on the expected value operator, where we assumed distribution over

division property. Though, the analytical result approximates the LT simulation

results accurately.

4.5.4 Modeling the Performance Curve of Raptor De-

coder

We investigate the performance of both non-systematic and systematic Raptor

codes for the algorithm described in [16]. For both of the cases, the modeling

of the performance of Raptor codes is based on observations on the simulation

results rather than theoretical iterations.

First, we focus on the non-systematic case. As easily observed from Fig-

ure 4.4(b), the number of undecoded input symbols decays exponentially when
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the number of received symbols exceeds the number of input symbols. Based on

this observation the performance of the Raptor code for this exponential decay

can be written as

Nundec(r, k) = k · β · αr−k , r ≥ k , (4.40)

where Nundec(r, k) is the number of undecoded input symbols when r ≥ k output

symbols are received. The parameters β and α can be found simply by line of

best fit to several simulations in the log scale plot. In [83], this method was

shown to yield accurate approximate results. When β = 0.42 and α = 0.54

the model yields an accurate approximation. Thus, the end-to-end model of the

Non-systematic Raptor code can be written as

Nundec(r, k) =





k r < k

k · 0.42 · (0.54)r−k r ≥ k
. (4.41)

We present the results on the modeling for k = 200 using (4.41) in Fig-

ure 4.10(a). We also provide the normalized performance in log-scale for r ≥ k

in Figure 4.10(b), where the vertical axis is the probability of failure, and the

horizontal axis is the code overhead; r − k for r ≥ k.

The modeling of the performance of the systematic Raptor codes is a similar

process to that of non-systematic Raptor codes. In order to form the model,

we investigate the performance curve in two separate regions; first in the region

with the number of received symbols less than the number of input symbols and,

second, in the remaining region. In the first region of the model, we assume

that the Raptor decoder cannot decode any lost symbols other than the received

systematic symbols. Whereas, in the second region, an exponential decrease in

the number of undecoded symbols is assumed. The performance in the second

region can be modeled as
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Figure 4.10: The results on modeling the performance of non-systematic Raptor
codes (a) whole performance for k = 200 (b) normalized log-scale plot for r ≥ k
for k = 100, k = 200 and k = 500
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Nundec(r, k, ρ) = k · β′ ρ

1 + ρ
· α′r−k , r ≥ k , (4.42)

where ρ = (n − k)/k denotes the ratio of parity symbols to the number of

systematic symbols (input symbols). When β′ = 0.68 and α′ = 0.545 accurate

approximation is achieved, and the model is obtained as

Nundec(r, k, ρ) =





k − r
1+ρ

r < k

k · 0.68 · ρ
1+ρ

· (0.545)r−k r ≥ k
. (4.43)

The results on the modeling of systematic Raptor codes are given in Fig-

ures 4.11 and 4.12. The modeling results for both systematic and non-systematic

Raptor codes are quite accurate. They can be used in bit rate optimizations for

joint source-channel coding systems as we used in Chapter 3.
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Figure 4.11: The results on modeling the performance of systematic Raptor codes
for ρ = 1.0 (a) whole performance for k = 200 (b) normalized log-scale plot for
r ≥ k for k = 100, k = 200 and k = 500
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Figure 4.12: The results on modeling the performance of systematic Raptor codes
for ρ = 0.5 (a) whole performance for k = 200 (b) normalized log-scale plot for
r ≥ k for k = 100, k = 200 and k = 500
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Chapter 5

Conclusions

This thesis proposes an error-resilient stereoscopic video streaming system and

places focus on the analysis and modeling of the performance of Fountain codes.

We demonstrate the benefits of FEC for video streaming by lossy transmission

simulations. The results clearly shows the significance of quality increase with the

use of FEC compared to other error resiliency tools. Motivated by this result, we

use the recently proposed Raptor codes for optimal stereoscopic video streaming.

Specifically, we propose an optimal streaming system for lossy channels based

on three layers of stereoscopic video where each layer receives different error

protection. The most important aspects are, respectively, basic partitioning

of the video according to unequal importance, obtaining rate-distortion (RD)

properties of these partitions, analysis of the utilized FEC scheme for UEP, and

end-to-end distortion minimization. The end-to-end distortion minimization and

the calculation of the corresponding encoder bit rates and protection rates are

performed once for each video separately.
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The partitions of video, called layers, are simply chosen according to the

referencing structure. The selection of layers according to the referencing struc-

ture complicates the modeling of their RD curves due to the inherent inter-

dependencies. For this purpose, we use a previously proposed RD model of

monoscopic single layer video and extend it for dependent layers. The detailed

results show the accuracy of RD models which can be separately used to obtain

optimal stereoscopic video quality for a given bit rate in lossless scenarios. The

RD modeling necessitates the use of a reliable curve fitting tool in order to de-

termine the model parameters, because the curve fitting process is dependent

on the algorithm and initial conditions. The aim in calculating the RD curves

is to obtain the distortion in video quality caused by the video compression.

After the calculation of RD properties of the layers we focus on the error cor-

rection scheme, namely Raptor codes. The performance model of Raptor codes

that gives the residual number of unrecovered packets, plays a crucial role in

the end-to-end distortion minimization, since each residual lost packet creates a

distortion in the video decoder deducing the other source of distortion, namely

the transmission distortion. Furthermore, we calculate the average transmission

distortion caused by the loss of a single packet including all possible propaga-

tions to subsequent frames. The propagation models for stereoscopic video are

heuristically extended from those of monoscopic video. We make an assumption,

which is valid for low number of residual loss rates, that the total distortion of a

single packet is independent of other packet losses. The distortion minimization

is a non-linear optimization problem with a single constraint. When the models

are obtained for a specific video, the distortion minimization can be instantly

performed for any channel bandwidth and loss rate. Fortunately, the only time

consuming part of this system becomes the modeling phase for a video, which

has to be performed only once. The results on the proposed system are presented

including comparisons with non-optimal schemes. The results demonstrate up

to 2dB increase in performance when the allocated channel bit rate increases.
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The distortion metric that we used is the mean squared error. Simply, we add

up the encoder distortion and transmission distortion to calculate the end-to-end

distortion. In case of utilizing any other metric to calculate the distortion, the

proposed minimization can still yield optimal results.

Another aim in this thesis is the analysis and modeling of the performance

of Fountain codes, which have become a promising candidate for the next gen-

eration communication systems. In this thesis we present detailed analysis of

the performance of two types of Fountain codes, LT and Raptor codes. We de-

scribe the iterative decoding of LT codes, the belief propagation (BP) decoder,

together with the ML decoder. Then, we demonstrate the performance of LT

codes with BP and ML decoders. Due to the random nature of LT codes, the

decoder yields different results for different sets of encoded symbols. Thus, we

defined performance curve of Fountain codes as the average number of undecoded

input symbols versus the number of received output symbols. Investigating the

performance results, we can clearly state that LT coding is not an efficient FEC

scheme for time limited applications, such as video streaming, owing to the ex-

cessive overhead for low number of output symbols. However, they can bring

efficiency to the communication systems with high loss rates when they are used

instead of ARQ type schemes.

The analysis and modeling of LT codes is iterative resembling their decoding

process. In this thesis, we studied towards obtaining mathematical models for the

performances of BP and ML decoders. The randomness of LT codes, especially

with BP decoder, prevents accurate modeling. Fortunately, taking advantage

of the ease of tracking the average number of edges in the decoding, the model

approximates the behavior of LT BP decoder. The model for ML decoder tracks

the number of linear combinations of the output symbols and achieves accurate

results. We expected the model of ML decoder to be better so that it would

exactly give the average performance. The difference is mainly caused by an
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assumption that the expectation operation is distributable on division operation.

Nevertheless, the results of the modeling of ML decoder are more accurate than

that of BP decoder; this is mainly caused by the reduction in the randomness.

Owing to the inefficiency of LT codes, Raptor codes are proposed. They eliminate

the tail effect in the performance of LT codes by inserting a pre-coding stage, in

return, complicating their analysis and modeling. We propose heuristic modeling

by inspection and, indeed, obtain quite accurate models with explicit functions.

Within the FP6 project 3DTV, we have implemented Raptor codes for multi-

view video streamer and achieved excellent results. The encoding and decoding

algorithm for Raptor codes is also very well defined in the standards and has

low complexity. Raptor codes are a promising candidate for next generation

communication systems.

The proposed stereoscopic video streaming system is practical and promises

optimal results for lossy channels. This system can be used as a base for layered

multi-view video streaming system with Raptor codes. The proposed methods

are easily applicable to any layered multi-view video streaming system. The

analysis of Fountain codes in this thesis provides valuable insight to understand

their structure. The mathematical models of LT and Raptor codes are useful for

optimal bit rate and channel rate allocation in communication systems.
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