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Abstract

We present a new generalized algorithm which allows the construction of B€acklund transformations (BTs) for higher
order ordinary differential equations (ODEs). This algorithm is based on the idea of seeking transformations that

preserve the Painlev�e property, and is applied here to ODEs of various orders in order to recover, amongst others, their
auto-BTs. Of the ODEs considered here, one is seen to be of particular interest because it allows us to show that auto-

BTs can be obtained in various ways, i.e. not only by using the severest of the possible restrictions of our algorithm.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

One area of research that for some time now has attracted considerable interest is the study of properties of the six

Painlev�e equations PI; . . . ; PVI [1–4]. One property that is generally considered to be of particular importance is the

existence of B€acklund transformations (BTs), that is, transformations relating a particular Painlev�e equation either to

itself (with possibly different values of the parameters appearing as coefficients), or to another equation with the

Painlev�e property. Various approaches to the recovery of BTs can be found for example in [5–14]; see [8] for a list of

references prior to 1980.

The Painlev�e equations, as is well known, resulted from the classification of second order ordinary differential

equations (ODEs), within a certain class, having what today is referred to as the Painlev�e property. This classification
was motivated by the search for new transcendental functions. The work of Painlev�e was extended to higher order

ODEs by authors such as Chazy [15], Garnier [16], Bureau [17], Exton [18] and Martynov [19], although no complete

classification has yet been given for a class of ODEs as general as that originally considered at second order. More

recent work that has continued this classical approach to Painlev�e classification can be found in [20–25]. An alternative
approach to the problem of obtaining new integrable ODEs, based on the use of non-isospectral scattering problems,

can be found in [26–29]. It is amongst the equations found in [20–29] that ODEs defining new transcendental functions

might be expected to be found. This then leads naturally to the problem of studying the properties of such new ODEs.

For the Painlev�e equations, the study of BTs has been undertaken by a great number of different authors (see the

references given above). One well-known approach is that adopted in [8]. In this approach, an ansatz is made relating
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the solutions of a Painlev�e equation in vðzÞ to those of a second order ODE in uðzÞ having the Painlev�e property; the
ansatz used in [8] relates vðzÞ and uðzÞ via
ðdv2 þ evþ f Þu� ðv0 þ av2 þ bvþ cÞ ¼ 0; ð1Þ
where a, b, c, d, e and f are all functions of z only. The algorithm presented in [8] then determines the precise forms

of both the BT (1) and the ODE in uðzÞ, this last by construction in [8] being at most quadratic in u00ðzÞ.
Various generalizations of this approach have since appeared in the literature. In [30,31] the same ansatz (1)

was used to obtain second order second degree ODEs related to PI; . . . ; PVI. In [32], instead of the ansatz (1), the

ansatz
X2
i¼0

civi
 !

v0
"

þ
X4
i¼0

divi
#
u� ðv0Þ2

"
þ

X2
i¼0

aivi
 !

v0 þ
X4
i¼0

bivi
#
¼ 0; ð2Þ
where all ai, bi, ci and di are functions of z only, was used to find further second order second degree ODEs related to

PI; . . . ; PVI. In [33] (2) was used to obtain second order fourth degree ODEs related to PI; . . . ; PIV.
Meanwhile in [34] it was noted, using as examples PIII and PIV, that the ansatz (1) can be used to obtain BTs to ODEs

of degree higher than two. In [35] a generalized version of the algorithm in [8] was given, allowing the construction of

BTs for nth order ODEs, in quite a general class, to ODEs of the same order but perhaps of higher degree; as an

example this generalized approach was applied to a particular fourth order ODE believed to define a new transcen-

dental function. This generalized algorithm has also been applied in [36] to the fourth order analogue of PI, and in [37]

to the generalized fourth order analogue of PII. In [38] the approach developed in [34,35] was applied to PI and PII to
obtain BTs to second order ODEs of degree greater than two. We note that an alternative approach to finding BTs

appears in [39–41].

The aim of the present paper is to consider further generalizations of the above approaches, in order to obtain BTs

for higher order Painlev�e equations. We begin in Section 2 by seeking BTs for fourth order ODEs using an ansatz first

suggested, though not actually used, in [35]. It is analogues of this ansatz that we use to seek BTs in subsequent sections.

We give here a general description of this approach. Further generalizations are of course always possible (see [35] for a

discussion).

We consider nth order equations with the Painlev�e property of the form
vðnÞ ¼ f ðz; v; v0; . . . ; vðn�2Þ; vðn�1ÞÞ; ð3Þ
where f is a rational function of vðn�1Þ; . . . ; v with coefficients functions of z. Here we consider, instead of (1), a

transformation of the form
G z; v; . . . ; vðn�2Þ
� �

u� vðn�1Þ þ F z; v; . . . ; vðn�2Þ
� �� 	

¼ 0; ð4Þ
where the functions F and G guarantee that the equation in u also has the Painlev�e property, i.e. that (4) is a trans-

formation that preserves the Painlev�e property. In the current paper we will take both F and G to be polynomial in

vðn�2Þ; . . . ; v, with coefficients functions of z only, such that each monomial is of maximum weight n under the rescaling
ðv; d=dzÞ ! ðkv; kd=dzÞ.

Differentiating (4) once and replacing vðnÞ using (3), and then vðn�1Þ using (4), yields a polynomial in

v; v0; . . . ; vðn�2Þ; u; u0 with coefficients functions of z. Elimination of v between this last and (4) then yields the nth order

ODE satisfied by u. This elimination process can be simplified by insisting on special choices of the coefficients in the BT
(4) such that the polynomial in v; v0; . . . ; vðn�2Þ; u; u0 reduces to a polynomial in v; v0; . . . ; vðpÞ; u; u0 for some p < n� 2;

in particular we might ask that it reduces to a polynomial in v; u; u0. In the special case n ¼ 2, which is that considered

in [8], this polynomial will already be a polynomial in v, u, u0 only.
The aim of the present paper is to show how the above algorithm can be used to derive BTs, and in particular auto-

BTs, for higher order Painlev�e equations. In Section 2 we apply this algorithm to two fourth order ODEs widely be-

lieved to define new transcendents; in Section 3 we consider two sixth order ODEs, higher order analogues of those in

Section 2. We limit ourselves in Sections 2 and 3 to the case where we reduce the polynomial whose derivation is

outlined above to one in v, u, u0 only. The reason for this is that this is enough to allow us to recover auto-BTs for the

ODEs considered. It is in Section 4 that we consider whether auto-BTs can be recovered without reducing this poly-

nomial to one in v, u, u0. Thus we consider the application of our algorithm to a third order ODE; we find that, in this
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case, a less severe restriction, to a polynomial in v, v0, u, u0 but linear in v0, can also be used in order to recover an auto-
BT. Section 5 is devoted to conclusions, to a consideration of possible generalizations of our approach, and also to a

discussion of the mathematical foundations underlying this kind of approach to deriving BTs.
2. Fourth order Painlevé equations

We consider in this section the application of the algorithm outlined above to two fourth order Painlev�e equations.
Thus we seek a BT of the form
Gðz; v; v0; v00Þu� ½v000 þ F ðz; v; v0; v00Þ	 ¼ 0; ð5Þ
where F and G are given by
F ¼ �ða01vþ a00Þv00 � b00ðv0Þ2 � ðc02v2 þ c01vþ c00Þv0 � ðd04v4 þ d03v3 þ d02v2 þ d01vþ d00Þ; ð6Þ

G ¼ ða11vþ a10Þv00 þ b10ðv0Þ2 þ ðc12v2 þ c11vþ c10Þv0 þ ðd14v4 þ d13v3 þ d12v2 þ d11vþ d10Þ ð7Þ
and where all aij, bi0, cij, and dij are functions of z only. In order to simplify the presentation of our results we rewrite the
BT (5) as
v000 ¼ ðA1vþ A0Þv00 þ B0ðv0Þ2 þ ½C2v2 þ C1vþ C0	v0 þ D4v4 þ D3v3 þ D2v2 þ D1vþ D0; ð8Þ
where
Aj ¼ a1juþ a0j; j ¼ 0; 1;

B0 ¼ b10uþ b00;

Cj ¼ c1juþ c0j; j ¼ 0; 1; 2;

Dj ¼ d1juþ d0j; j ¼ 0; 1; 2; 3; 4:

ð9Þ
The two fourth order Painlev�e equations dealt with in this section have the form
vð4Þ ¼ ½P1ðz; vÞv0 þ P0ðz; vÞ	v00 þ Q2ðz; vÞðv0Þ2 þ Q1ðz; vÞv0 þ Q0ðz; vÞ; ð10Þ
where all Pi and Qi are polynomial in v with coefficients functions of z. We assume that the BT to an ODE in u is as given
by (5), and follow the procedure outlined in Section 1. Differentiating Eq. (5) and using Eq. (10) to replace vð4Þ, and
Eq. (5) to replace v000, yields the relation
ðw1v
0 þ w0Þv00 þ /2ðv0Þ

2 þ /1v
0 þ /0 ¼ 0; ð11Þ
where all wi and /i are polynomials in v, u, u0 with coefficients functions of z. Elimination of v between this relation and
(5) leads to an ODE in u.

In this section we consider the following simplification of this elimination procedure: we choose Ai, B0, Ci, and Di (i.e.

aij, bi0, cij and dij) so that wj, j ¼ 0; 1 and /j, j ¼ 1; 2 are identically zero. In this case Eq. (11) reduces to a polynomial in
v (with coefficients polynomials in u, u0 with coefficients functions of z),
/0ðv; zÞ ¼ 0; ð12Þ
which then defines the inverse of the transformation (5). Elimination of v between this last equation and (5), in order

to find the ODE in u, is thus made much easier. We now turn to our examples.

2.1. Example 2.1

As our first example we consider the equation
vð4Þ ¼ 10v2v00 þ 10vðv0Þ2 � 6v5 � bðv00 � 2v3Þ þ zvþ a; ð13Þ
which is the second member of the generalized second Painlev�e or PII hierarchy; see [5] for the PII hierarchy, [21,25]
for the above fourth order ODE, and [42] for the generalized PII hierarchy. We find that wi and /i in (11) are given by
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w1 ¼ A1 þ 2B0;

w0 ¼ ðA2
1 þ C2 � 10Þv2 þ ð2A1A0 þ A0

1 þ C1Þvþ A2
0 þ A0

0 þ C0 þ b;

/2 ¼ ðA1B0 þ 2C2 � 10Þvþ A0B0 þ B0
0 þ C1;

/1 ¼ ðA1C2 þ 4D4Þv3 þ ðA1C1 þ A0C2 þ C0
2 þ 3D3Þv2

þ ðA1C0 þ A0C1 þ C0
1 þ 2D2Þvþ A0C0 þ C0

0 þ D1;

/0 ¼ ðA1D4 þ 6Þv5 þ ðD0
4 þ A1D3 þ A0D4Þv4

þ ðD3 þ A1D2 þ A0D3 � 2bÞv3 þ ðD0
2 þ A1D1 þ A0D2Þv2

þ ðD0
1 þ A1D0 þ A0D1 � zÞvþ D0

0 þ A0D0 � a:

ð14Þ
Imposing that wj, j ¼ 0; 1 and /j, j ¼ 1; 2 be identically zero, implies that A0 ¼ C1 ¼ D1 ¼ D3 ¼ 0, A1 ¼ �2�, B0 ¼ �,
C2 ¼ 6, C0 ¼ �b, D4 ¼ 3� and D2 ¼ ��b, where � ¼ 
1. Without loss of generality we may also set D0 ¼ u. The
resulting equation /0 ¼ 0 (12) then reads
ð2�uþ zÞv� ðu0 � aÞ ¼ 0 ð15Þ
and the transformation (5) becomes
u ¼ v000 þ 2�vv00 � �ðv0Þ2 � ð6v2 � bÞv0 � 3�v4 þ �bv2: ð16Þ
We now introduce, for reasons that will become clear shortly, the new variable yðxÞ ¼ 2�
2�uþz. Eq. (15) then becomes
v ¼ ��ðy0 þ my2Þ
2y

; ð17Þ
where m ¼ a þ �
2
, and Eq. (16) becomes
y ¼ 2

2v000 þ 4�vv00 � 2�ðv0Þ2 � 2ð6v2 � bÞv0 � 6�v4 þ 2�bv2 þ �z
: ð18Þ
Substituting v from (17) into (18) then yields the fourth order ODE in y,
yð4Þ ¼ 5y 0y000

y
þ 5ðy00Þ2

2y
� 25ðy0Þ2

2y2

"
� 5

2
m2y2 þ b

#
y00 þ 45ðy0Þ4

8y3
� 5

4
m2y2



� 3

2
b

�
ðy0Þ2

y
� 3

8
m4y5 þ 1

2
bm2y3 þ zy � 2�:

ð19Þ
Thus we obtain the BT (17), (18) between the second member of the generalized PII hierarchy (13), and Eq. (19). We

now use this result to derive auto-BTs for Eq. (13).

2.1.1. Auto-B€acklund transformations for Eq. (13)

We now use the BT obtained above to derive auto-BTs for Eq. (13). Here we make use of the fact that Eq. (19) is

invariant under m ! �m.
We begin by noting that the BT (17), (18) defines a mapping between solutions v of (13) for parameter value

a ¼ m � �
2
and solutions y of (19) for parameter value m. Changing the sign of m in this BT then yields an alternative BT

consisting of the two relations
v ¼ ��ðy0 � my2Þ
2y

ð20Þ
and (18), between solutions v of (13) for parameter value a ¼ �m � �
2
and solutions y of (19).

Thus given a solution y of (19) we can obtain two solutions v and �v of (13),
v ¼ ��ðy0 þ my2Þ
2y

; ð21Þ

�v ¼ ��ðy0 � my2Þ
2y

; ð22Þ
for parameter values a ¼ m � �
2
and �a ¼ �m � �

2
respectively. Since we are using the same solution y to obtain v and �v,

subtracting (21) and (22) gives
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�v ¼ vþ �my: ð23Þ
Substituting for y from (18) and noting that a þ �a ¼ �� yields the auto-BT
�v ¼ vþ 2�a þ 1

2v000 þ 4�vv00 � 2�ðv0Þ2 � 2ð6v2 � bÞv0 � 6�v4 þ 2�bv2 þ �z
; ð24Þ

�a ¼ �ða þ �Þ; ð25Þ
which relates two solutions v and �v of the same Eq. (13) for parameter values a and �a respectively. This BT is a

generalization of the BT first obtained by Airault [5] for the second member of the PII hierarchy; we note that the above
result for (13) was also obtained in [37] using the different ansatz (1). Thus we see that our approach allows us to derive

auto-BTs for Eq. (13).

2.2. Example 2.2

As a second example of the application of our method we consider the equation
vð4Þ ¼ �5v0v00 þ 5v2v00 þ 5vðv0Þ2 � v5 þ zv� 1

2
a; ð26Þ
which has recently been proposed as defining a new transcendent [21,25]. Proceeding as in our previous example, we

find this time that the coefficients wi and /i in (11) are given by
w1 ¼ A1 þ 2B0 þ 5;

w0 ¼ ðA2
1 þ C2 � 5Þv2 þ ð2A1A0 þ A0

1 þ C1Þvþ A2
0 þ A0

0 þ C0;

/2 ¼ ðA1B0 þ 2C2 � 5Þvþ A0B0 þ B0
0 þ C1;

/1 ¼ ðA1C2 þ 4D4Þv3 þ ðA1C1 þ A0C2 þ C0
2 þ 3D3Þv2

þ ðA1C0 þ A0C1 þ C0
1 þ 2D2Þvþ A0C0 þ C0

0 þ D1;

/0 ¼ ðA1D4 þ 1Þv5 þ ðD0
4 þ A1D3 þ A0D4Þv4 þ ðD0

3 þ A1D2 þ A0D3Þv3

þ ðD0
2 þ A1D1 þ A0D2Þv2 þ ðD0

1 þ A1D0 þ A0D1 � zÞvþ D0
0 þ A0D0 þ

1

2
a:

ð27Þ
In order to make wj, j ¼ 0; 1 and /j, j ¼ 1; 2 identically zero, we have to choose A0 ¼ C0 ¼ C1 ¼ D1 ¼ D2 ¼ D3 ¼ 0,

A1 ¼ �ð2B0 þ 5Þ, C2 ¼ 5� A2
1 and D4 ¼ � 1

4
A1C2. Also we have two possible values of B0, namely B0 ¼ �3 or B0 ¼ � 3

2
,

and, without loss of generality, we may set D0 ¼ u. We will now consider these two cases separately.

Case 1: B0 ¼ �3. In this case, we have A1 ¼ 1, C2 ¼ 4, D4 ¼ �1 and the equation /0 ¼ 0 becomes
ðu� zÞvþ u0
�

þ 1

2
a



¼ 0: ð28Þ
Moreover, the transformation (5) becomes
u ¼ v000 � vv00 þ 3ðv0Þ2 � 4v2v0 þ v4: ð29Þ
Introducing again a new variable yðzÞ, y ¼ 1
u�z, Eq. (28) becomes
v ¼ ðy0 þ my2Þ
y

; ð30Þ
where m ¼ � 1
2
a � 1, and Eq. (29) becomes
y ¼ 1

v000 � vv00 þ 3ðv0Þ2 � 4v2v0 þ v4 � z
: ð31Þ
Substituting v from (30) into (31) yields the following fourth order ODE in y:
yð4Þ ¼ 5y0y000

y
� 5

ðy0Þ2

y2

"
� m2y2

#
y00 � 5m2yðy0Þ2 � m4y5 þ zy þ 1: ð32Þ
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Case 2: B0 ¼ � 3
2
. In this case we have A1 ¼ �2, C2 ¼ 1, D4 ¼ 1

2
and therefore the equation /0 ¼ 0 becomes
ð2uþ zÞv� u0
�

þ 1

2
a



¼ 0; ð33Þ
and the transformation (5) reads
u ¼ v000 þ 2vv00 þ 3

2
ðv0Þ2 � v2v0 � 1

2
v4: ð34Þ
Let y ¼ 2
2uþz. Then Eq. (33) becomes
v ¼ �ðy0 þ my2Þ
2y

; ð35Þ
where m ¼ � 1
2
a þ 1

2
, and Eq. (34) becomes
y ¼ 1

v000 þ 2vv00 þ 3
2
ðv0Þ2 � v2v0 � 1

2
v4 þ 1

2
z
: ð36Þ
Substituting v from (35) into (36) we get
yð4Þ ¼ 5y 0y000

y
þ 15ðy00Þ2

4y
� 65ðy0Þ2

4y2

"
� 5

4
m2y2

#
y00 þ 135ðy0Þ4

16y3
þ 5

8
m2yðy0Þ2 � 1

16
m4y5 þ zy � 2: ð37Þ
Thus we obtain two BTs, namely the pairs of Eqs. (30), (31) and (35), (36), between Eq. (26) and Eqs. (32) and (37),

respectively. We now use these results to derive auto-BTs for Eq. (26).

2.2.1. Auto-B€acklund transformations for Eq. (26)

Proceeding analogously as in the case of Eq. (13), and using the fact that Eqs. (32) and (37) are invariant under

m ! �m, we obtain the following two auto-B€acklund transformations for Eq. (26):
�v ¼ vþ a þ 2

v000 � vv00 þ 3ðv0Þ2 � 4v2v0 þ v4 � z
; ð38Þ

�a ¼ �a � 4 ð39Þ
and
�v ¼ v� a � 1

2v000 þ 4vv00 þ 3ðv0Þ2 � 2v2v0 � v4 þ z
; ð40Þ

�a ¼ �a þ 2: ð41Þ
Thus we see, once again, that our approach allows us to derive auto-BTs for the equation under consideration, as

well as BTs to other ODEs (the above ODEs in y). We note that auto-BTs for the similarity reduction of the modified

Sawada-Kotera/Kaup-Kupershmidt equation, i.e. (26) have also been given in [43]; these results were later extended to

auto-BTs for the entire reduced modified Sawada-Kotera/Kaup-Kupershmidt hierarchy in [44].
3. Higher order Painlevé equations

We consider in this section the construction of BTs and auto-BTs for two sixth order Painlev�e equations, these being
higher order analogues of those considered in Section 2. The procedure is analogous to that outlined in Section 2, and

for this reason we do not give all details here.

The two sixth order Painlev�e equations we consider here are of the form
vð6Þ ¼ Pðz; v; v0; . . . ; vð4ÞÞ; ð42Þ
where P is a polynomial in v; v0; . . . ; vð4Þ, linear in vð4Þ, with coefficients functions of z. We seek a BT of the form
Gðz; v; v0; v00; v000; vð4ÞÞu�
h
vð5Þ þ F ðz; v; v0; v00; v000; vð4ÞÞ

i
¼ 0; ð43Þ
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such that u is the solution of another sixth order Painlev�e equation. As in the previous section we use an abbreviated

notation and rewrite this BT as
vð5Þ ¼ ðA1vþ A0Þvð4Þ þ B0v0v000 þ ðC2v2 þ C1vþ C0Þv000 þ D0ðv00Þ2 þ ðE1vþ E0Þv0v00 þ ðF3v3 þ F2v2 þ F1vþ F0Þv00

þ G0ðv0Þ3 þ ðH2v2 þ H1vþ H0Þðv0Þ2 þ ðK4v4 þ K3v3 þ K2v2 þ K1vþ K0Þv0

þ L6v6 þ L5v5 þ L4v4 þ L3v3 þ L2v2 þ L1vþ L0; ð44Þ
where each coefficient Aj;Bj; . . . ; Lj is linear in u with coefficients functions of z. Differentiating Eq. (44) and substituting
for vð6Þ from (42) and for vð5Þ from (44) we obtain an expression linear in vð4Þ, i.e. analogous to the relation (11) obtained
in the fourth order case. Elimination of v between this expression and (43) leads to an ODE in u.

Here, as in the previous section, we consider a simplification of this elimination procedure: we choose the coefficients

Aj;Bj; . . . ; Lj in the BT (44) in order that this expression reduces to a polynomial in v. We now turn to our examples.

3.1. Example 3.1

As our first example we consider the equation
vð6Þ ¼ 14v2vð4Þ þ 56vv0v000 þ 42vðv00Þ2 þ 70ðv0Þ2v00 � 70v4v00 � 140v3ðv0Þ2 þ 20v7

� cðvð4Þ � 10v2v00 � 10vðv0Þ2 þ 6v5Þ � bðv00 � 2v3Þ þ zvþ a; ð45Þ
which is the third member of the generalized PII hierarchy [42], i.e. it consists of a linear combination of members of the
original PII hierarchy given in [5].

In order that the expression linear in vð4Þ resulting from the compatibility of our Eq. (45) and the BT (44) reduce to a

polynomial in v, we have to make the following choice of coefficients: A0 ¼ C1 ¼ E0 ¼ F2 ¼ F0 ¼
H1 ¼ K3 ¼ K1 ¼ L5 ¼ L3 ¼ L1 ¼ 0, A1 ¼ �2�, B0 ¼ 2�, C2 ¼ 10, C0 ¼ �c, D0 ¼ ��, E1 ¼ 40, F3 ¼ 20�, F1 ¼ �2�c,
G0 ¼ 10, H2 ¼ 10�, H0 ¼ �c, K4 ¼ �30, K2 ¼ 6c, K0 ¼ �b, L6 ¼ �10�, L4 ¼ 3�c and L2 ¼ ��b, where � ¼ 
1. We can

also set, without loss of generality, L0 ¼ u. The resulting polynomial in v is in fact linear:
ð2�uþ zÞv� ðu0 � aÞ ¼ 0 ð46Þ
and defines the inverse of the BT (44) for this choice of coefficients.

Introducing the new variable yðxÞ ¼ 2�
2�uþz and setting m ¼ a þ �

2
, Eq. (46) becomes
v ¼ ��ðy0 þ my2Þ
2y

ð47Þ
and (43) becomes
y ¼ 1=C; ð48Þ
where
C ¼ vð5Þ þ 2�vvð4Þ � ð2�v0 þ 10v2 � cÞv000 þ �ðv00Þ2 � 2ð20v0 þ 10�v2 � �cÞvv00 � 10ðv0Þ3 � �ð10v2 þ cÞðv0Þ2

þ ð30v4 � 6cv2 þ bÞv0 þ 10�v6 � 3�cv4 þ �bv2 þ �z
2
: ð49Þ
Thus we obtain the BT (47), (48) between Eq. (45) and the sixth order equation in y,
yð6Þ ¼ 7
y0yð5Þ

y
� 63

2

ðy0Þ2yð4Þ
y2

þ 14
y00yð4Þ

y
þ 7

2
m2y2

�
� c



yð4Þ þ 21

2

ðy000Þ2

y
þ 231

2

ðy0Þ2

y

 
� 119y00 þ 5cy � 7

2
m2y3

!
y0y000

y2

� 49

2

ðy00Þ3

y2
þ 5

2

c
y

�
þ 7

4
m2y


ðy00Þ2 þ 973

4

ðy0Þ2ðy00Þ2

y3
þ 5

4
7m2
�

� 10
c
y2



ðy0Þ2y00 þ 5

2
cm2y2

�
� 35

8
m4y4 � b



y00

� 2499

8

ðy0Þ4y00
y4

þ 1575

16

ðy0Þ6

y5
þ 1

8
45

c
y3

�
� 105

2

m2

y



ðy0Þ4 þ 1

2
3
b
y

�
� 35

8
m4y3 � 5

2
m2cy



ðy0Þ2 þ 5

16
m6y7 � 3

8
m4cy5

þ 1

2
m2by3 þ zy � 2�: ð50Þ
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Moreover, a calculation analogous to that in Section 2.1.1 then provides the auto-BT for Eq. (45),
�v ¼ vþ 2�a þ 1

2C
; ð51Þ

�a ¼ �ða þ �Þ; ð52Þ
where C is as given previously. Thus we see that our approach allows the derivation of auto-BTs for Eq. (45). We note

that since this equation is a member of the generalized second Painlev�e hierarchy, its auto-BTs can also be constructed

from those of the standard hierarchy in [5].

3.2. Example 3.2

We now consider the equation
vð6Þ ¼ �7v0vð4Þ þ 7v2vð4Þ � 14v00v000 þ 28vv0v000 þ 21vðv00Þ2 þ 28ðv0Þ2v00 þ 14v2v0v00 � 14v4v00

þ 28

3
vðv0Þ3 � 28v3ðv0Þ2 þ 4

3
v7 þ zv� a

2
; ð53Þ
which corresponds to the similarity reduction of the seventh order member of the modified Sawada-Kotera/Kaup-

Kupershmidt hierarchy; see [44]. We proceed as in Section 3.1: in order that the expression linear in vð4Þ resulting from
the compatibility of Eqs. (53) and (44) reduces to a polynomial in v, we have to choose A0 ¼ C0 ¼ F0 ¼ 0, B0 ¼ �A1 � 7,

C2 ¼ 7� A2
1, C1 ¼ �A0

1, D0 ¼ 1
2
A1 � 7

2
, E1 ¼ 14þ 3A2

1 þ 7A1, E0 ¼ 2A0
1, F3 ¼ A3

1 � 7A1, F2 ¼ 3A1A0
1 and F1 ¼ A00

1, and, in

addition, we have two possible choices for A1, namely A1 ¼ 1 or A1 ¼ �2. We now consider these two different cases.

Case 1: A1 ¼ 1. In this case we find that G0 ¼ L6 ¼ 4=3, H2 ¼ 4, K4 ¼ �8 and H1 ¼ H0 ¼ K3 ¼ K2 ¼ K1 ¼
K0 ¼ L5 ¼ L4 ¼ L3 ¼ L2 ¼ L1 ¼ 0. We set, without loss of generality, L0 ¼ u. The resulting polynomial in v is then in

fact linear:
ðu� zÞvþ u0 þ 1

2
a ¼ 0: ð54Þ
Let y ¼ 1
u�z; then (54) becomes
v ¼ y0 þ my2

y
; ð55Þ
where m ¼ � 1
2
a � 1, and (43) becomes
y ¼ 1

C1

; ð56Þ
where C1 is given by
C1 ¼ vð5Þ � vvð4Þ þ 8v0v000 � 6v2v000 þ 3ðv00Þ2 � 24vv0v00 þ 6v3v00 � 4

3
ðv0Þ3 � 4v2ðv0Þ2 þ 8v4v0 � 4

3
v6 � z: ð57Þ
Thus we obtain the BT (55), (56) between (53) and the sixth order ODE
yð6Þ ¼ 7
y0yð5Þ

y
þ 7

y00

y

 
� 21

ðy0Þ2

y2
þ 7m2y2

!
yð4Þ þ 7

ðy000Þ2

y
þ 42

ðy0Þ3

y3

 
� 56

y0y00

y2
� 14m2yy 0

!
y000 � 14

3

ðy 00Þ3

y2

þ 63
ðy0Þ2ðy00Þ2

y3
þ 7m2yðy00Þ2 � 42

ðy0Þ4

y4

 
þ 14m4y4

!
y00 þ 4

3
m6y7 þ zy þ 1: ð58Þ
Case 2: A1 ¼ �2. In this case we have that G0 ¼ 16=3, K4 ¼ �2, H2 ¼ 10, L6 ¼ �2=3 and

H1 ¼ H0 ¼ K3 ¼ K2 ¼ K1 ¼ K0 ¼ L5 ¼ L4 ¼ L3 ¼ L2 ¼ L1 ¼ 0. We set, again without loss of generality, L0 ¼ u, and thus
obtain the following––again linear––polynomial in v,
ð2uþ zÞv� u0 � 1

2
a ¼ 0: ð59Þ
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Let y ¼ 2
2uþz; then (59) becomes
v ¼ �ðy0 þ my2Þ
2y

; ð60Þ
where m ¼ � 1
2
a þ 1

2
, and (43) becomes
y ¼ 1

C2

; ð61Þ
where
C2 ¼ vð5Þ þ 2vvð4Þ þ 5v0v000 � 3v2v000 þ 9

2
ðv00Þ2 � 12vv0v00 � 6v3v00 � 16

3
ðv0Þ3 � 10v2ðv0Þ2 þ 2v4v0 þ 2

3
v6 þ 1

2
z: ð62Þ
In this way we obtain the BT (60), (61) between (53) and the sixth order ODE
yð6Þ ¼ 7
y0yð5Þ

y
þ 1

2

7

2
m2y2

 
� 147

2

ðy0Þ2

y2
þ 35

y00

y

!
yð4Þ þ 49

4

ðy000Þ2

y
þ 1

2

7

2
m2yy 0

 
þ 609

2

ðy0Þ3

y3
� 301

y0y 00

y2

!
y000

� 217

6

ðy00Þ3

y2
þ 1

4
1365

ðy0Þ2

y3

 
þ 7m2y

!
ðy00Þ2 þ 1

8
42m2ðy0Þ2
 

� 7m4y4 � 3675
ðy0Þ4

y4

!
y00

þ 2457

16

ðy0Þ6

y5
� 63

16
m2
ðy0Þ4

y
� 21

16
m4y3ðy0Þ2 þ 1

48
m6y7 þ zy � 2: ð63Þ
In order to get auto-BTs for Eq. (53), we again exploit the fact that our equations in y, (58) and (63), are invariant

under m ! �m. We thus obtain the following BTs between two solutions v and �v of Eq. (53), with parameter values a and
�a, respectively:
�v ¼ vþ a þ 2

C1

; ð64Þ

�a ¼ �a � 4 ð65Þ
and
�v ¼ v� a � 1

2C2

; ð66Þ

�a ¼ �a þ 2: ð67Þ
Thus once again we see that our new approach allows the derivation of auto-BTs for the equation under consideration.

We note that the above auto-BTs for Eq. (53) were originally obtained in [44]; see also [45]. Also discussed in [44,45] are

special integrals of Eq. (53). We note, as is well known, that basic special integrals can be obtained by looking at where

auto-BTs, such as (64)–(67), break down. Similarly for the other equations considered in this and the previous section.
4. Further applications

In the previous two sections we have considered the application of our algorithm to ODEs of fourth and sixth order.

We have seen that in order to recover their auto-BTs, it is sufficient to consider the restricted case whereby the

polynomial encountered in v; v0; . . . ; vðn�2Þ; u; u0 reduces to a polynomial in v, u, u0. However we have not considered the

possibility that we might also be able to recover auto-BTs from a less severely restricted version of our approach. We

consider in this section an example of a third order ODE––for which the calculations are therefore sufficiently

uncomplicated that it serves as a genuinely illustrative example––for which this is indeed the case.

We take as our example the equation
v000 ¼ 3
v0v00

v
þ zv0 þ av ð68Þ
given in [22]. This equation is related to the second Painlev�e equation
y00 ¼ 2y3 þ zy þ a ð69Þ
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via the substitutions
v ¼ es; s0 ¼ y: ð70Þ
Since we know that (69) has auto-BTs, which must then induce auto-BTs for Eq. (68), the question naturally arises

of how to recover these last. We note that our interest here is in obtaining auto-BTs for Eq. (68) directly; it may not

always be the case that we know how to relate an equation, such as (68), to an ODE for which we know in advance its

auto-BTs. Since Eq. (68) has not been considered before, the BTs obtained here are in fact new.

We seek for Eq. (68) a BT of the form
Gðz; v; v0Þu� ½v00 þ F ðz; v; v0Þ	 ¼ 0 ð71Þ
or equivalently, in our abbreviated notation,
v00 ¼ ðA1vþ A0Þv0 þ ðB3v3 þ B2v2 þ B1vþ B0Þ; ð72Þ
where Aj and Bj are linear in u,
Aj ¼ a1juþ a0j; j ¼ 0; 1; ð73Þ

Bj ¼ b1juþ b0j; j ¼ 0; 1; 2; 3; ð74Þ
with coefficients aij and bij functions of z only.
Differentiating the BT (72) and using Eq. (68) to replace v000 and (72) to replace v00, we obtain
0 ¼ �ð2A1vþ 3A0Þðv0Þ2 þ ½A2
1v

3 þ ð2A1A0 þ A0
1 � B2Þv2 þ ðA0

0 þ A2
0 � 2B1 � zÞv� 3B0	v0 þ A1B3v5

þ ðB0
3 þ A1B2 þ A0B3Þv4 þ ðB0

2 þ A1B1 þ A0B2Þv3 þ ðB0
1 þ A0B1 þ A1B0 � aÞv2 þ ðB0

0 þ A0B0Þv: ð75Þ
We now consider two possibilities.
4.1. Reducing (75) to a polynomial in v

First of all, proceeding as in our previous examples, we ask that the above equation be polynomial in v, u, u0; setting
equal to zero the coefficients of ðv0Þ2 and v0 requires that A0 ¼ A1 ¼ B0 ¼ B2 ¼ 0 and B1 ¼ �z=2. In addition, without

loss of generality, we can set B3 ¼ u. The BT (72) then reads
u ¼
v00 þ 1

2
zv

v3
ð76Þ
and Eq. (75) factors to give
2u0v2 � 1� 2a ¼ 0; ð77Þ
which then defines the inverse of (76). Eliminating v between these last two equations then yields the ODE in u,
u000 ¼ 3

2

ðu00Þ2

u0
þ zu0 � uð1þ 2aÞ: ð78Þ
This is related to PXXXIV in [4] by a transformation similar to (70), followed by a further M€obius transformation, with
the transformations (76) and (77) then becoming the well-known relations between PII and PXXXIV. Having obtained

Eq. (78) it should now be possible to recover auto-BTs for Eq. (68), in the same way as in Sections 2 and 3 (see also [8]

for PII).

4.2. Allowing (75) to be linear in v0

We now consider the possibility where, instead of reducing (75) to a polynomial in v, u, u0, we eliminate only the term
in ðv0Þ2. This then requires only that A0 ¼ A1 ¼ 0; then (75) becomes
v0 ¼ vðB0
0 þ B0

1vþ B0
2v

2 þ B0
3v

3 � avÞ
3B0 þ B2v2 þ 2B1vþ zv

ð79Þ
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and the BT (72) takes the form
v00 ¼ ðB3v3 þ B2v2 þ B1vþ B0Þ: ð80Þ
Eliminating derivatives of v between (79) and (80) yields a polynomial in v of degree nine. Since our motivation here
is to explore the different ways in which BTs for Eq. (68) can be derived, rather than give a complete analysis, we

consider here only the following two possible choices of coefficients:

Case 1: B0 ¼ B2 ¼ 0 and B3 ¼ b where b is a constant. In this case we can also choose, without loss of generality,

B1 ¼ 1
2
ðu� zÞ. In this case the BT (72) reads
v00 ¼ bv3 þ 1

2
vðu� zÞ ð81Þ
and its inverse is defined by
v2 ¼ 2uu00 � ðu0Þ2 � 2u3 þ 2zu2 þ ð2a þ 1Þ2

4bu2
; ð82Þ
whereas u satisfies the third order ODE
u000 ¼ 3u0 � 2a � 1

u
u00 � 3

2

ðu0Þ3

u2
þ ð2a þ 1Þðu0Þ2

2u2
þ 2zu2 þ 3ð2a þ 1Þ2

2u2
u0 þ 2au� zð2a þ 1Þ � ð2a þ 1Þ3

2u2
: ð83Þ
The relation between this last and PII, as obtained here, would seem to be previously unknown.

Case 2: B0 ¼ B3 ¼ 0 and B1 ¼ � z
2
. We choose B2 ¼ u without loss of generality, and thus obtain the BT
v00 ¼ uv2 � 1

2
zv; ð84Þ
i.e.
u ¼ 2v00 þ zv
2v2

; ð85Þ
with inverse given by
v ¼ 2u00 þ zu
2u2

: ð86Þ
The equation satisfied by u is
u000 ¼ 3
u0u00

u
þ zu0 þ �au; ð87Þ
where �a ¼ �a � 1. We therefore conclude that the above BT is in fact an auto-BT for Eq. (68). Thus we see that

allowing (75) to be linear in v0 can also lead to the derivation of auto-BTs for our Eq. (68).

Making the change of variable (70), and similarly for u,
u ¼ et; t0 ¼ w; ð88Þ
the BTs (85), (86) become
w ¼ y þ 2a þ 1

2y0 þ 2y2 þ z
and y ¼ wþ 2�a þ 1

2w0 þ 2w2 þ z
ð89Þ
respectively. The above is of course the well-known BT for PII.
We note in addition that the discrete symmetry ðv; aÞ ! ð1=v;�aÞ of Eq. (68)––corresponding to ðy; aÞ ! ð�y;�aÞ

for (69)––can then be used along with the auto-BTs (85) and (86) to obtain the auto-BT
u ¼ 2v

4ðv0Þ2 � 2vv00 þ zv2
ð90Þ
together with its inverse
v ¼ 2u

4ðu0Þ2 � 2uu00 þ zu2
ð91Þ
of Eq. (68), where now the parameters a and �a in (68) and (87) are related by �a ¼ �a þ 1.
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Finally, it is worth commenting that whilst the auto-BTs (85) and (86) provide mappings between Eqs. (68) and (87)

with parameters related via a þ �a þ 1 ¼ 0, this does not mean that elimination between (85) and (86) yields (68) and (87)

in the usual way. Indeed, elimination between (85) and (86) yields two fourth order ODEs whose integration gives (68)

and (87) with a and �a two arbitrary constants of integration; the relation between these parameters is then fixed by

insisting that (85) and (86) are auto-BTs for these integrated equations.

However, if to the relations (85) and (86) we add Eq. (79), i.e.
2uv0 � 2vu0 þ 1þ 2a ¼ 0; ð92Þ
then these three relations together imply Eqs. (68) and (87) with parameters related by a þ �a þ 1 ¼ 0, without any need

for integration. In this way we have, unusually, a self-consistent triple of equations, whose differential consequence is

the two ODEs (68) and (87) with in this last �a ¼ �a � 1.
5. Conclusions

We have presented a new algorithm to derive BTs for higher order Painlev�e equations. We have successfully used

this algorithm in order to obtain, amongst other BTs, auto-BTs for a range of ODEs, including for generalized versions

of known ODEs and also for ODEs that have not been considered previously. We have also explored the various

possible ways that BTs can be obtained using this algorithm.

Generalizations of the approach presented here are of course possible; some possibilities have for example been

suggested in [35]. Here we consider further possible generalizations, and also discuss briefly the mathematical foun-

dations underlying this kind of approach to obtaining BTs.

Our main aim here is to clarify a possible misunderstanding of this family of methods of finding BTs. Thus for

example, it might be said that the form of Eq. (8), as an equation in v, corresponds to an ODE of the polynomial class

studied by Chazy [15]. In this way the BT (8) might be referred to as a BT in the polynomial class, and could even be

generalized by including against vð3Þ a coefficient linear in u, E ¼ e1uþ e0, with either e1 ¼ 1 or e0 ¼ 1.

However, instead of considering BTs in the polynomial class, we could also consider BTs in some non-polynomial

class. For example, in the case of third order ODEs, we might seek, instead of (72), a BT of the form
Dv00 ¼ A0

ðv0Þ2

v
þ B2v
�

þ B1 þ B0

1

v



v0 þ C4v3 þ C3v2 þ C2vþ C1 þ C0

1

v
; ð93Þ
where all coefficients are linear in u, and with either D ¼ uþ d0, or D ¼ d1uþ 1. In the same way we could seek, for a

fourth order ODE, a BT in the third order non-polynomial class of equation studied in [22].

However, whilst such a classification of BTs is perfectly legitimate––indeed, in later work, we will consider BTs in

certain non-polynomial classes––it should not lead to the conclusion that the class of BT considered has to be based on

equations which, as equations in v, would arise in a Painlev�e classification. That is, forms of BT based on non-Painlev�e
equations can still provide mappings between ODEs with the Painlev�e property. This can happen even when consid-

ering BTs based on first order equations. For example,
v0 ¼ v3u ð94Þ
is not a BT in what might be called the Riccati class. However, starting with the ODE
v00 ¼ 6v2; ð95Þ
which has general solution v ¼ }ðx� x0; 0; g3Þ, this BT leads to the polynomial in v,
3u2v3 þ u0v� 6 ¼ 0 ð96Þ
and thus to the second order third degree ODE in u,
9u2ðu00Þ3 � 24uðu0Þ2ðu00Þ2 þ 16ðu0Þ4u00 � 2916u2u0u00 þ 4032uðu0Þ3 þ 104976u3 ¼ 0: ð97Þ
The general solution of this last equation is the elliptic function given by u ¼ }0ðx� x0; 0; g3Þ=}ðx� x0; 0; g3Þ3.
Thus we have two ODEs with the Painlev�e property, (95) and (97), such that solutions of (95) are mapped into

solutions of (97) via a BT (94) not of some Painlev�e class. The inverse of the BT (94) is of course given by (96), or

equivalently by the relation v ¼ ½27uu00 � 48ðu0Þ2	=½6uu0u00 � 8ðu0Þ3 � 486u2	.
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