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ABSTRACT

COUPLED SURFACE PLASMON STRUCTURES AND

APPLICATIONS

Kemal Gürel

M.S. in Materials Science and Nanotechnology

Supervisor: Assist. Prof. Dr. Mehmet Bayındır

September 2009

Surface plasmons have attracted great interest during past decades due to their

unique physical properties. In this thesis, we study grating-coupled surface plas-

mons for sensing and filtering applications. We first present simple physical

and chemical procedures that allow tuning and modification of the topography

of gratings present in optical storage discs into geometries optimal for grating

coupled plasmon resonance excitation. After proper metal coating, the tuned

surfaces exhibit sharp plasmon resonances that can be excited at wavelengths

ranging from 260 nm to over 2.7 µm with relatively high quality factors. As

an immediate exemplary application, use of such optimized gratings in aqueous

medium for refractive index measurement is demonstrated.

We also report another plasmonic component based on a pair of surfaces dis-

playing grating coupled plasmon enhanced transmission. We observe high quality

factor transmission peaks as high as 100 through our plasmonic filter based on

gratings obtained directly from optical storage disks. Wavelength and polar-

ization dependent transmission is also demonstrated in the visible and infrared

portions of the spectrum. The resonance wavelength of this filter can be tuned

by simply changing the angle of incidence. Numerical calculations agree well

iii



with measurements. Our work can open up directions toward disposable optical

components such as filters and polarizers.

Morever, we investigate plasmonic force between two coupled metallic layers.

We observe the mode splitting due to coupling between plasmonic surfaces by

using finite difference time domain simulations.

Keywords: Surface Plasmons, Grating Coupling, Optical Disks, Filter, Prism

Coupling, MIM Waveguide, Mode Splitting, Plasmonic Force.
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ÖZET

ÇİFTLENMİŞ YÜZEY PLAZMON YAPILARI VE

UYGULAMALARI

Kemal Gürel

Malzeme Bilimi ve Nanoteknoloji Yüksek Lisans

Tez Yöneticisi: Yar. Doç. Dr. Mehmet Bayındır

Eylül 2009

Yüzey plazmon yapıları kendilerine has karakteristik özelliklerinden ötürü son

yıllarda fizik ve mühendislik dalında her gün daha fazla ilgi toplayan bir konu

oldu. Bu tezde biz, öncelikle ızgaralı kuplaj metoduyla yüzey plazmonlarının

uyarılması, bu plazmon yapılarının da sensör ve filtre uygulamaları olarak

kullanılışı üzerine yaptığımız çalışmaları sununuyoruz. Izgaralı kuplaj meto-

dunda başlangıç malzemeleri olarak optik diskleri kullandık. Bu disklerin yüzey

yapılarını basit fiziksel ve kimyasal metodlarla modifiye ettik. Sonrasında bu

yüzeylere yeterli miktarda metal kaplamak suretiyle keskin rezonans figürleri

elde ettik. Izgaralı kuplaj yönteminde spektrum hem ızgara periyoduna hem de

elektromanyetik dalganın geliş açısına bağlı olduğu için dalgaboyu olarak 260

nm’den 2.7 µm’ye kadar uzanan geniş bir yelpazede çeşitli rezonanslar yakalaya-

bildik. Hemen akla gelebilecek bir uygulama olarak da ürettiğimiz bu yapıları

sulu ortamda kırılma indisi ölçümü uygulamalarında kullandık.

Ayrıca, bu tezde optik diskleri kullanarak yaptığımız yüzey plazmon uyarımı

üzerine çalışan bir geçirim filtresi de gösteriyoruz. Bu filtreden aldığımız

ölçümlerde oldukça keskin geçirim spektrumları elde ettik, öyle ki 100’e kadar

varan kalite faktörlerine ulaşabildik. Böylece dalgaboyu ve polarizasyona bağlı
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olarak değişkenlik göstererek çalışan bir optik filtre uygulamasını ortaya koymuş

olduk. Bu geçirim spektrumumuz görünür dalgaboylarından yakın kızılötesi

dalgaboylarına kadar uzanmaktadır. İstediğimiz dalgaboyunu geliş açısını

değiştirerek ayarlayabiliriz. Nümerik hesaplarımız da yaptığımız ölçümlerimizle

gayet uyumlu sonuçlar vermektedir. Bu çalışmamızın ileride kullan-at tarzında

filtre ya da polarizör benzeri optik öğeler olabileceğini göstermesi açısından önem

arz ettiğini düsünüyoruz.

Asıl iş olarak ızgaralı plazmon yapılar üzerine çalışmamıza rağmen, bir yan-

dan da prizmalı kuplaj metodundan başlayarak metal yalıtkan metal (MYM)

dalgakılavuzu yapılarının elektromanyetik olarak incelenmesi üzerine minör

çalışmalar yaptık. Bu çalışmalarımızda iki metalli plazmonik sistemlerin spek-

trum olarak tek metalli normal sistemlerden farkını inceledik ve sonuç olarak

spektrumda ciddi bir ayrışma gözlemledik. Bu ayrışma sonucu oluşan farklı mod-

ların da farklı elektrik alan dağılımlarını yansıttığını FDTD metoduyla gösterdik.

Bu dağılımlara dayanarak da metal yüzeyler arasında bir plazmonik kuvvet

öngördük.

Anahtar Kelimeler: Yüzey Plazmonları, Izgaralı Kuplaj, Optik Diskler, Filtre,

Prizmalı Kuplaj, MYM Dalgakılavuzu, Mod Ayrışımı, Plazmonik Kuvvet.
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Chapter 1

MOTIVATION

Optics, with its numerous vital technological applications in industry, is an in-

evitably integrated part of our daily life. Its evolution started with people’s usage

of light for specific purposes that are parallel to their needs in life. First optical

components that are worth mentioning are mirrors made by ancient Egyptians

using polished metals about 1900 BC [1]. Nowadays, optics is everywhere we

see. Any kind of imaging equipment, each movie we watch, most sensitive mea-

surement equipments and the speed of Internet are products of today’s optics

technology.

Quite possibly, preliminary improvements at optics technology were achieved

by trial and error method. First theories about the nature of light were put

forward by the Greek scientist/philosopher Euclid in 4th century BC. Originat-

ing from his geometry knowledge he came up with several self-evident axioms

explaining some properties, including reflection of light. After Euclid, until the

time of Al-Hazen (965-1040 AD), we see two more important people, who con-

tributed significantly to the field of optics. Hero of Alexandria claimed that

light propagates at infinite speed and it follows the shortest path between two

points. He also derived the law of reflection, firstly proposed by Euclid, using

1



this shortest path approach. About 150 years later Cladius Ptolemy stated a

primitive version of law of refraction, which works fine only for incidence angles

close to normal. Despite its inaccuracy for large incidence angles this formulation

stayed valid for about 1500 years, until Willebrord Snell (1580-1626) corrected it

in 1621. By many authorities Al-Hazen, also known as father of modern optics,

is considered the first person who studied optics according to scientific methods.

He showed that light rays propagate in straight lines. Using lenses and mirrors

he experimentally investigated refraction and reflection phenomena. He also re-

duced light rays into vertical and horizontal components, and obtained results

similar to Snell’s law. Following Al-Hazen’s initiative works, Roger Bacon (1214-

1294) described the magnification effect of convex lenses and used these lenses

for correcting eyesight. In 17th century Hans Lippershey, Galileo Galilei and Jo-

hannes Kepler used lenses to build telescopes, Zacharias Janssen and Francisco

Fontana for inventing the microscope. After Willebrord Snell formulated the cor-

rect law of refraction at 1609, this media dependent behavior of light has opened

the door to modern applied optics. Until the end of 17th century common belief

was that light propagates as ray in nature and that is why research on optics was

concentrated on geometric optics. Robert Hooke (1635-1703) was first to study

the colored interference pattern of light and can be count as the initiator of wave

theory. Later Christiaan Huygens (1629-1695), Thomas Young (1773-1829) and

Augustine Jean Fresnel (1788-1827) extended wave theory. Finally, James Clark

Maxwell (1831-1879), by summarizing and integrating all electromagnetic knowl-

edge that exists at that time, formulated his brilliant equations and today we

still use basically these equations to explain the behavior of light.

For hundreds of years people studied light propagating in dielectric materials,

because metals are lossy at optical wavelengths and skin depth of light was not

higher than a few tens of nanometers in these materials [2]. They were gener-

ally used as reflectors to manipulate the travelled path of light. Interesting case

about metals is their free electrons, which have their own oscillation frequency.
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In 20th century researchers pointed out that if the appropriate conditions were

satisfied, optical signals have the ability to generate resonant oscillations in met-

als, such as gold and silver. This phenomenon is named as plasmon resonance

by scientific authorities and has become a very popular research topic for recent

decades. First time observation of surface plasmons was reported by Wood [3] in

1902. He reported that when a metal diffraction grating is illuminated with poly-

chromatic light, dark narrow bands are observed in the spectrum of diffracted

light. He named these dark bands, which actually correspond to surface plas-

mon resonance excitations, as anomalies. His work was mainly experimental.

Theoretical work about this anomaly concept is first concluded by Fano [4]. He

proposed that these anomalies are results of evanescent electromagnetic waves

excited at the surface of diffraction grating. In 1958 Thurbadar set up an exper-

iment and measured reflection of light from thin metal films on substrates [5].

He observed high drops in reflectivity, but he did not relate this to surface plas-

mons. Otto worked on Thurbadar’s results and explained that this drop at the

attenuated total reflection is due to the excitation of surface plasmons [6]. Just

after Otto’s formulation, in the same year Kretschmann and Raether modified

the Attenuated Total Reflection configuration a little and proposed the surface

plasmon resonance system which is the most common commercially available

surface plasmon sensor today [7]. Following the pioneering works in 1960s peo-

ple used surface plasmons for thin metal film characterization, metal boundary

electromagnetic problems, waveguide and sensor applications.

Surface plasmon applications generally draw attention of the researchers due

to three main reasons. First and most important one is subwavelength applica-

tions of plasmonics [8]. Since surface plasmon oscillations originate from coupling

between electron plasma oscillations and optical waves, wavelength of plasmons

is generally less than the coupling wavelength. This feature is quite useful for

especially electronics industry [9]. People in electronics industry always desired

to integrate optics into electronics due to speed issues at the chips. However,
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fabrication technology in electronics has the capability for mass production of 45

nm gate transistors today. With conventional methods it is impossible to beat

the diffraction limit of light at devices [10]. For that reason most of the electro-

optic researchers directed their path to the plasmonics topic. Secondary reasons

for that much popularity are high intensity of the evanescent waves at the metal

dielectric boundaries and high quality factors achieved at the plasmon resonance

condition. High intensity at the surface opens way to nonlinear applications of

surface plasmons [11, 12]. On the other hand, sharp resonance condition lets

us to fabricate high sensitivity sensors which are generally used for biological or

chemical sensing [13, 14]. These sensors generally work with measurement of

refractive index change principle and the cutting edge ones have very high and

accurate sensitivities less than 1x10−5 relative index unit (RIU) [14].

Except these main applications surface plasmon waves are also used in trans-

mission and waveguiding applications. Since the pioneering work of Ebbessen

[15] plasmons are used for transmission of light through optically thick metal

films. Transmission property was demonstrated with several geometries. From

the scientific point of view beating the skin depth was quite new and interest-

ing. From engineering perspective however, a new polarization dependent optical

filter concept was demonstrated. Waveguiding is also very important from the

engineering perspective. With this property, light could be bent and lead through

subwavelength structures in integrated circuits. Also the investigation of layered

structured waveguides Metal-Insulator-Metal (MIM), Insulator-Metal-Insulator

(IMI) etc. for plasmonic applications has been an interesting topic for recent

decades’ optics research [16, 17, 18].

Plasmonics has entered the scientific world gradually. However, starting from

1980s people who work on surface plasmons’ fundamentals and applications grew

like an avalanche. It is a still growing subject and there is a lot to do in this
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topic. All these motivated us that plasmonics and its applications is a subject

worth to get a master’s degree on.

In this thesis, we study Surface Plasmon Resonance (SPR) nanostructures

and their applications. Our work consists of two main subjects, SPR on optical

storage disks and plasmonic force investigation at MIM waveguide structures.

Former one includes modification and usage of optical storage disks (CD, DVD,

Blu-Ray) as compact SPR devices, obtaining polarization and incidence angle

dependent optical filters with this structures. This work is realized experimen-

tally and it is supported with numerical simulations [19, 20]. On the other hand

MIM waveguide investigation for plasmonic force part of the subject could not

be performed experimentally. However, numerical simulations agree well with

our predictions.

SPR structures constitute a quite large research area for both engineers and

physicists. However, because of the nanostructured sizes it is hard to fabricate

and deal with these structures. In the beginning we defined our problem as

beating this difficulties and aimed to achieve a compact and user friendly work

environment for plasmonics. For that purpose we started to use corrugations

that already exist on optical storage disks. Later on, after optimization of this

procedure we wanted to see these devices in action. So, we designed a filter from

these structures and realized it as an optical device. At the MIM waveguide

case we wanted to see the effect of the interaction between the metals when we

perturb a Metal Insulator (MI) surface plasmon waveguide by bringing one more

metal closer to the system.

Our contributions can be summarized as follows:

• We proposed a new technique for usage of optical disks in plasmonics re-

search. We showed the importance of grating modification and how to

controllably modify the gratings by etching. Also due to different periods
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of optical disks we could achieve plasmon resonances ranging from UV to

NIR. A final remark about disk modification is this modification procedure

let us increase the quality factor of achieved resonances.

• Originating from the resonance phenomenon we prospected that thin silver

films could let the light pass through at resonance condition. We examined

this hypothesis by using pre-modified optical disks. We fabricated a device,

with optimum gratings at both sides which are metal-coated. So we ob-

tained an optical filter, the spectrum of which is wavelength, polarization

and incident angle dependent.

• In addition to the works mentioned above, we examined the perturbation

at single metal insulator waveguide. We expected to observe the splitting

phenomenon around the resonance wavelength which is determined at the

single metal case. This splitting would represent the bonding and anti-

bonding modes of the system. So we expected to observe different field

profiles at these separate modes. Investigation of these modes is an impor-

tant research topic by itself because symmetric and anti-symmetric field

distributions suggest an excited force between metals, which we will name

plasmonic force.

In Chapter 2, we first provide the basic theoretical background that is nec-

essary for study of plasmonics. Starting from Maxwell’s equations we will show

the surface plasmon resonance wave solutions and state the conditions needed

for this resonance. In Chapter 3 we will show how we dealed with optical stor-

age disks and converted them into compact SPR devices. Chapter 4 addresses

the coupled system that we encounter at the MIM waveguide case. Interaction’s

effect onto the spectrum is analyzed and the resulting force is suggested. Finally,

we conclude our work and list some future prospects about this research area in

the Chapter 5.
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Chapter 2

THEORETICAL

BACKGROUND

2.1 Surface Plasmons

Surface plasmons are the evanescent electromagnetic waves that are results of in-

teraction processes between electromagnetic radiation and conduction electrons

at metal-insulator interfaces. In this section we will give the basic theoretical

knowledge necessary for studying behaviors of these waves. For that purpose, we

will investigate the electromagnetic behavior of metals at optical wavelengths.

Starting from free electron gas model we will derive dielectric functions of metals.

Then we will show the solutions of Maxwell’s equations for surface plasmons at

metal insulator interfaces. We will examine the necessary conditions about mate-

rial selection, polarization of incoming light, momentum matching etc. necessary

for achieving the plasmon resonance. Finally, we will describe the methods used

to excite surface plasmons in detail.
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2.1.1 Dielectric Function of Metals

For optics research, metals have mostly been not that interesting. It is a common

fact that metals do not let optical waves pass through. Moreover, they reflect

most of incident wave at a large spectrum ranging from microwave up to visible

wavelengths. For these reasons, people generally used metals as cladding to

prevent escape of light from the system. For low frequency regime, metals act

like perfect or good conductors. When low frequency EM waves hit onto metals

they reflect back with little amounts of penetration depths and negligibly minor

loss of energy. In the visible part of the spectrum this penetration increases and

leads to more loss. As we approach the UV part of the spectrum, metals converge

to dielectrics and become transparent after a certain frequency threshold. This

highly dispersive behavior leads us to generate a dispersion model for metals. So

we need an ǫ(ω) formulation.

Optical properties of metals are generally modelled by plasma model. Plasma

does not deal with details of lattice potential and electron-electron interactions.

Instead, it considers that band structure properties are based on the effective

optical mass m of each electron. When electromagnetic waves penetrate into

the metal they oscillate free electrons. However, their oscillations damp due

to collisions occurring with a collision frequency γ = 1/τ . τ is named as the

relaxation time of free electron gas and at room temperature it is on the order

of 10 fs which corresponds to 1014 collisions at a second.

At the plasma model, motion equation of an electron with respect to an

applied electric field E

mẍ + mγẋ = −eE, (2.1)

Due to its harmonic time dependence, applied electromagnetic wave is in the

form E(t) = E0e
−iωt. So we expect the solution of the differential equation to
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be in the form of x(t) = x0e
−iωt as well. The particular solution of this equation

brings

x(t) =
e

m(ω2 + iγω)
E(t), (2.2)

Displacement of these electrons by applied EM wave causes macroscopic polar-

ization in the metal which is formulated as P = −nex i.e.

P = −
ne2

m(ω2 + iγω)
E, (2.3)

Also as a result of Maxwell’s equations we know that D = ǫ0E + P. Putting

this result in our equation we obtain

D = ǫ0

(

1 −
ωp

2

ω2 + iγω

)

E, (2.4)

where we named ωp
2 = ne2

ǫ0m
as the square of plasma frequency of free electron

gas. After all we get the equation we desired for dielectric function of metals

ǫ(ω) = 1 −
ωp

2

ω2 + iγω
. (2.5)

Say ǫ(ω) = ǫ1(ω) + iǫ2(ω), then real and imaginary parts of ǫ(ω) are

ǫ1(ω) = 1 −
ωp

2τ 2

1 + ω2τ 2
, (2.6)

ǫ2(ω) =
ωp

2τ

ω(1 + ω2τ 2)
. (2.7)
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When we work at frequencies close to ωp, ωτ >> 1. Imaginary part of the

dielectric constant vanishes and Equation 2.5 converges to

ǫ(ω) = 1 −
ωp

2

ω2
. (2.8)

However, for surface plasmon applications we stay at frequencies smaller than

plasma frequency and use Equation 2.5. This model is known as Drude model

[21] for dielectric function of metals and it is the most common mathematical

model used for characterization of metals at numerical tools. The constants ωp

and γ are determined with respect to the model fitted onto the actual dielectric

constant data [22]. A fitted data for gold and silver is given at Figure 2.1 [23] .

(a)

(b)

Figure 2.1: Dielectric constants of metals Au (a) and Ag (b) with respect to
photon energy. Dotted lines are actual data by Cristy, fitted lines are Drude
models for these metals.
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2.1.2 Suface Plasmons at Metal Dielectric Boundaries

As is well known, metal dielectric interfaces are able to sustain surface plasmon

polaritons. Coherent longitudinal charge oscillations of conduction electrons of

metal allows the propagation of the surface plasmons at the interface (Fig. 2.4).

The field distribution caused due to these oscillations has its maximum at the

boundary and its amplitude decays proportional with its distance to the bound-

ary.

Figure 2.2: Intensity and propagation schematic of a surface plasmon wave at a
metal-dielectric interface. The intensity decays exponentially with a maximum
at the interface. Predictably, intensity drop in the metal is much faster than the
drop in the dielectric. Also the propagation of the surface plasmon is parallel to
the interface.

The field distribution caused by surface plasmons is also explained by solution

of Maxwell’s equations. A convenient starting point would be the fundamental

equation of electromagnetic wave theory. When we work at a nonmagnetic media

and if ǫ does not differ significantly with distance, we get the wave equation

∇2E −
ǫ

c2

∂2E

∂t2
= 0. (2.9)

Due to the harmonic time dependence of electromagnetic waves we know that

E(t) = Ee−iwt, and putting this model into Equation 2.9 we obtain

∇2E + k2
0ǫE = 0. (2.10)
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With respect to Figure 2.4 propagating surface plasmon waves can be formulated

as E(z)eiβx. Here β = ksp is the propagation constant of the surface plasmon,

which propagates along x axis. Putting this last expression into Equation 2.10

we get

∂2E(z)

∂z2
+ (k2

0ǫ − β2)E = 0. (2.11)

Now we have the wave equation that should be satisfied. Note that this equa-

tion also holds for H field. However, we still do not have an explicit formulation

of the different field components of the electromagnetic wave. This expression

for surface plasmon waves can be achieved using Maxwell’s Curl Equations.

∇× E = −
∂B

∂t
, (2.12)

∇× H = Jext

∂B

∂t
. (2.13)

We assume that there is no surface current excited due to the electromagnetic

field’s interaction with materials. The operator ∂
∂t

is equal to multiplication with

−iω, and we have ∂
∂y

= 0 due to the homogeneity along y-axis. Finally, since

our field is in the form E(z)eiβx the operator ∂
∂x

= iβ. So the curl equations

again with respect to Figure 2.4 can be summed up as the following six scalar

equations.

∂Hy

∂z
= ωǫ0ǫEx, (2.14)

∂Hx

∂z
− iβHz = −iωǫ0ǫEy, (2.15)

iβHy = −iωǫ0ǫEz, (2.16)
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∂Ey

∂z
= −iωµ0Hx, (2.17)

∂Ex

∂z
− iβEz = −iωµ0Hy, (2.18)

iβEy = −iωµ0Hz. (2.19)

Transverse electromagnetic property of the waves could help at dealing with

the equations given above. We can take the transverse magnetic (p polarized)

and transverse electric (s polarized) modes into account separately. For TM mode

we will have Hy, Ex and Ez components. Likewise, our nonzero components for

TE mode are Ey, Hx and Hz. Consider the TE case first. Curl equations and

the wave equation to be satisfied are,

Hx = i
1

ωµ0

∂Ey

∂z
, (2.20)

Hz =
β

ωµ0

Ey, (2.21)

∂2Ey

∂z2
+ (k2

0ǫ − β2)Ey = 0. (2.22)

Similar equations also hold for TM waves,

Ex = −i
1

ωǫ0ǫ

∂Hy

∂z
, (2.23)

Ez = −
β

ωǫ0ǫ
Hy, (2.24)
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∂2Hy

∂z2
+ (k2

0ǫ − β2)Hy = 0. (2.25)

Having settled the basic equations, now we can investigate the boundary

conditions that should hold at the metal insulator interface for surface plasmon

propagation at a single metal layer case. Above we had stated that a wave,

which is uniform at y-direction and propagating at an interface along x-axis is

described as E(z)eiβx. This equation is of course valid also for the H field. In

our case, surface plasmons, the z-dependence is an exponential decay. So, if we

consider a TM wave propagating at the interface, our equations for z > 0 are

Hy(z) = Ade
iβxe−kdz, (2.26)

Ex(z) = iAd
1

ωǫ0ǫd

kde
iβxe−kdz, (2.27)

Ez(z) = −Ad
β

ωǫ0ǫd

eiβxe−kdz. (2.28)

Similarly, for z < 0 we have,

Hy(z) = Ameiβxekmz, (2.29)

Ex(z) = −iAm
1

ωǫ0ǫm

kmeiβxekmz, (2.30)

Ez(z) = −Am
β

ωǫ0ǫm

eiβxekmz. (2.31)

Continuity of Hy at the metal dielectric boundary requires that Am = Ad. Sim-

ilarly, we have a continuity requirement for ǫm,dEz at the metal and dielectric

layers respectively and this condition results to
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kd

km

= −
ǫd

ǫm

. (2.32)

This equation states that surface plasmons are sustained by the interfaces where

the electric permittivities of the two layers have opposite signs, i.e. conductor-

insulator interfaces. With respect to our metal-dielectric interface assumption

this result does not seem surprising at all. We also know that Hy should satisfy

Equation 2.25 for both z < 0 and z > 0.

k2
d = β2 − k2

0ǫd, (2.33)

k2
m = β2 − k2

0ǫm. (2.34)

Finally, when we introduce Equation 2.32 into Equations 2.33 and 2.34 we arrive

to the dispersion relation of surface plasmons at a metal dielectric interface.

β = k0

√

ǫmǫd

ǫm + ǫd

. (2.35)

Assuming that ǫm = ǫ
′

m + iǫ
′′

m and |ǫ
′

m| >> |ǫ
′′

m| we reach to

β = β
′

+ iβ
′′

= k0

√

ǫ′mǫd

ǫ′m + ǫd

+ ik0

ǫ
′′

m

2(ǫ′m)2

(

ǫ
′

mǫd

ǫ′m + ǫd

)3/2

. (2.36)

where β
′

corresponds to the real wavevector of surface plasmons and β
′′

represents

the decay of SPPs propagating at the interface due to the loss at the metal.

We have derived surface plasmon dispersion relation for TM waves at a metal

dielectric interface. Now, we should also investigate the TE modes whether we

might obtain something interesting. TE modes for the same geometry are,
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Ey(z) = Ade
iβxe−kdz, (2.37)

Hx(z) = −iAd
1

ωµ0

kde
iβxe−kdz, (2.38)

Hz(z) = Ad
β

ωµ0

eiβxe−kdz. (2.39)

for z > 0, and

Ey(z) = Ameiβxekmz, (2.40)

Hx(z) = −iAm
1

ωµ0

kmeiβxekmz, (2.41)

Hz(z) = −Am
β

ωµ0

eiβxekmz, (2.42)

for z < 0. In this set of equations continuity of Ey at the interface again requires

that Am = Ad. Furthermore, we know that Hx is also continuous at the interface

and this leads to

Am(k1 + k2) = 0, (2.43)

which is only satisfied for Am = Ad = 0. Therefore, we conclude that surface

plasmon modes occur only for TM waves. TE waves are not able to excite surface

plasmons.

Dispersion relation given at Equation 2.35 and drawn at Figure 2.3 gives us

significant information about behavior of SPPs. We have Re(ǫm) < 0 and for

realization of Equation 2.35 in real life we need real β
′

values. This requires
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Figure 2.3: Dispersion relation for the surface plasmon polaritons on metal-
dielectric interfaces.

that the expression in square-root needs to be positive. Thus, ǫ
′

m < −ǫd and so

is
√

ǫ
′

m

ǫ
′

m+ǫd

> 1. This final inequality mathematically proves that the wavevec-

tors of surface plasmons at metal-dielectric interfaces are higher than the wave

propagating at that dielectric. So it is not possible to directly couple light from

air to a propagating SPP. The figure representing the dispersion of SPPs agrees

with this statement as well. At this figure we see that defined β wavevectors

for desired ω frequencies always lie below the light line which is the dispersion

relation of electromagnetic waves at air. These curves do not have an intersec-

tion point where coupling of SPP could occur. Luckily, people developed some

tricks, to increase the wavevector of incoming wave and excite surface plasmons

at metal-air interfaces. In the following subsection we will discuss two of these

methods that we used for our plasmonic structures.
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2.2 SPP Coupling Techniques

2.2.1 ATR Prism Coupling

Prism coupling with usage of attenuated total reflection (ATR) is the most com-

mon method used for excitation of surface plasmons. The core idea is sending

the light from a high index prism to the thin metal film. When light enters

the prism its wavenumber becomes kp = k0np. The light line of the prism, has

an intersection point with the dispersion curve of surface plasmons on metal-air

interface (figure not given here). This means, if we can satisfy the necessary

conditions we can excite surface plasmons on metal-air interfaces with an optical

wave sent through a prism. There are two main geometries available for this

method, Kretschmann geometry [7] and Otto geometry [6].

Figure 2.4: Different coupling geometries for prism coupling, Kretschmann (a)
and Otto (b)

ATR part of this method is also worth mentioning. The incoming light is

totally reflected from a prism metal interface for Kretschmann geometry or from

a prism dielectric interface for Otto geometry. While it is being reflected it

evanescently penetrates into the thin metal layer. This penetrated field oscil-

lates free electrons of metal. If the interaction between the incident wave and

electrons cause coherent oscillations of electrons, surface plasmon resonance con-

dition occurs and the energy of the optical wave couples to surface plasmon waves
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propagating at the metal dielectric interface. This transfer of energy is monitored

as a dip at the reflection spectrum of incident wave.

The coupling condition for the geometry given at Figure2.4 is

k0npsinθ = kSPP = k0

√

ǫ′mǫd

ǫ′m + ǫd

(2.44)

which means that the horizontal momentum of the incident wave should match

the momentum of the surface plasmon on metal-air interface. The spectrum of

reflected light is given at Figure 2.5.

Figure 2.5: Typical prism coupling scheme. At the spectrum we see the resonance
dip, at the field distribution we see the exponential behavior.

2.2.2 Grating Coupling

For the geometries, at which we do not have appropriate geometry to use prism

coupling we use grating coupling instead. When an electromagnetic wave hits on
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a grating which has a wavelength compatible with grating period it diffracts to

different orders. Assume that we send a wave with wavevector k0 at an incidence

angle θ, horizontal wavevectors kd of diffracted orders are

kd = k0sinθ + m
2π

Λ
(2.45)

where m is an integer denoting the diffraction order and Λ is the period of the

grating. So, we see that we can increase the momentum of the incident wave using

the gratings. This property brings up the idea of shining light from a dielectric

directly onto a metal grating to excite surface plasmons at the dielectric metal

interface. If the momentum of diffracted light can be tuned by changing the

Figure 2.6: Typical grating coupling scheme. At the spectrum we see the res-
onance dips for different orders, at the field distribution we see the exponential
behavior.

angle of incidence and wavelength of incoming light, resonance condition can be

satisfied and surface plasmons are excited (Fig. 2.6). Therefore, surface plasmon

coupling condition at a dielectric metal interface for grating coupling method is

expressed as
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2π

λ
ndsinθ + m

2π

Λ
=

ω

c

√

ǫ′mǫd

ǫ′m + ǫd

(2.46)

ndsinθ + m
λ

Λ
= ±

√

ǫ′mǫd

ǫ′m + ǫd

(2.47)

At the prism coupling case the propagation direction of the surface plasmon

is same as the kx wavevector direction of the incident wave. However, for grating

coupling technique we have a number of diffracted orders and these orders can

couple to surface plasmons propagating along forward or backward directions.

This change in direction is represented with the ± sign at Equation 2.47. Oppo-

sitely propagating surface plasmons are shown as splitted resonance dips at the

reflectance spectrum (Fig. 2.6).
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Chapter 3

OPTICAL DISKS AS SPR

TOOLS

In the previous parts we have given the historical and theoretical background

of plasmonics. We also explained the methods to excite the surface plasmons.

Now it is time for applications. To state again, highly remarkable properties

of surface plasmons are subwavelength confinement of energy, highly sensitive

resonance spectrum based on the change of refractive index and excitation of free

electrons with optical waves. The mentioned properties make plasmonic devices

appropriate for a variety of applications in sensing, optics and optoelectronics.

Due to these potentials, plasmonics continues to draw attention and increasingly

wider availability of high precision fabrication and characterization methods for

submicron metallic structures allows further advances in the field of plasmonics.

For the fabrication and utilization of plasmonic structures there are a number of

methods, where certain geometric properties are dominant in determination of

the conditions for resonant coupling.

In this chapter, we present the method we developed to convert optical disks

(CD, DVD and Blu-Ray) into geometries optimal for study of high quality factor
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grating coupled plasmon resonances (Fig. 3.1a-b). Previously, CDs and DVDs

have been used in experiments involving grating coupled plasmons [24, 25]. How-

ever, to observe sharp resonances the depth and shape of corrugations must lie

within a restricted range. A sharper resonance improves the overall sensitiv-

ity of plasmonic devices for biomolecular sensing. Moreover, high-Q resonances

result in higher field enhancement factors which is important in a number of

applications such as surface enhanced Raman scattering [26].

(a)

(b)

Figure 3.1: (a) Plasmonic excitation observed on a silver coated DVD surface.
The observed coupling occurs at a single polarization and at a specific angle of
incidence. (b) Surface topography by AFM shows the grating structure with a
period Λ = 740 nm on the DVD.

From the methods described at the previous chapter we used grating coupling

to excite surface plasmons on optical disks. This is a tricky but also an expectable

method because most commercially available optical disks have corrugated im-

printed surfaces protected by external coatings. All we need to do is to tune
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(a)

(b)

Figure 3.2: (a) Theoretical peak absorption due to grating coupled plasmon reso-
nance on silver coated gratings on DVD with period Λ = 740nm at various angles
of incidence as a function of grating depth and shape. Red curve shows a DVD
that is not etched at an optimum level and it still has a rectangular type profile.
Blue curve shows a DVD that is etched at an optimum level and converges to
a sinusoidal grating (green curve). Peak absorption occurs at different wave-
lengths depending on the angle of incidence. (b) Full-width-at-half-maximum
of the absorption peak for a grating with a DVD profile. Curves are calculated
using rigorously coupled wave analysis.

these corrugations. By exposing the surfaces, simple chemical procedures can be

used to tune the surface profile to optimal geometries for sharp and deep plasmon

resonance peaks. The depth and shape of the grating affects the width (apparent

quality factor) of the plasmon resonance. Also, the amplitude and relative phases

of spatial Fourier components of the grating are important in determination of

the reflection spectrum of such gratings [27, 28]. For higher peak absorption,

which also means larger field enhancement due to stronger plasmon coupling,

the factors that need to be tuned are the depth and shape of the gratings. In our

case, we used rigorously coupled wave analysis (RCWA) to show the dependence
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of peak absorption and quality factor on grating depth for sinusoidal grating

profile and for a quasi-sinusoidal profile commonly observed in DVDs. Results of

calculations are shown in Fig. 3.2a. It is seen that the peak absorption depends

on the sinusoidality of the grating as well as the grating depth. For purely sinu-

soidal gratings, unity absorption is possible at normal incidence. For a grating

with higher order harmonics (as is in a rectangular profile grating), the peak ab-

sorption may never reach unity for certain angles of incidence. Normal incidence

of rectangular profile is shown in Fig. 3.2a where peak absorption can not exceed

0.65 due to coupling of different plasmon modes. However, as the angle is few

degrees away from normal incidence, the absorption can still be close to unity

for optimal grating depths, due to different dispersion of plasmon resonances

associated with higher order harmonics and the fundamental harmonic. Also,

presence of different spatial harmonics of the grating profile causes shifts in the

peak wavelength as denoted in the legend of Fig. 3.2a. The width of resonances

also depend on the grating depth as shown in Fig. 3.2b. Gratings with depths of

20 to 60 nm result in sharp resonances with full-width-at-half-maxima less than

10 nm. Unetched optical disk profiles (typically have 100 nm or more depth for

CD and DVDs) are not optimal for observing sharp and strong resonances. In

most applications it is desirable to have clean, sharp and strong resonances, the

grating depths need to be reduced to an optimal depth and shapes must be made

converged to a sinusoid.

3.1 Modification of optical disk profiles

Optical disks (CD, DVD and Blu-Ray) come in a wide variety of microscopic

structures and use a wide range of materials. In this work, a relatively large

number of disks (CD-R, CD-RW, DVD-R, DVD-RW, Blu-Ray recordable) from

different manufacturers are studied. The rewritable disks (CD-RW and DVD-

RW) generally use a hard chalcogenide material as the recording medium and
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Blu-Ray write-once disks also use a multilayer hard coating. However, the write-

once CD-R and DVD-R disks use a dye layer as the recording medium that can

be dissolved in weaker solvents. Therefore, we focused on write-once disks for

surface modification. Since different optical disk technologies have different layer

structures, slightly different methods were used to prepare the grating substrates.

CDs have a thin organic coating on top of a metal coating covering the dye layer

and the grating, whereas the DVD-R structure consists of two polycarbonate

disks with spiral grating surfaces in between. Blu-Ray disks have a relatively

thin layer of transparent coating covering the grating layer. Towards the edges

of the disks, the track spirals are well approximated by gratings with periods

of Λ=1600 nm for the CD-R, Λ=740 nm for the DVD-R, and Λ=320 nm for

Blu-Ray.

Figure 3.3: Peeling off procedure for top layer of a CD

For the case of the CD-R, the top protective layer was peeled off by exfoliation

using a tape after delineation of the surface with a sharp cutter. After peeling

off the top surface, the dye layer was removed by washing it with isopropanol.

This procedure was observed not to change the corrugations on the disk but to
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completely remove the dye. After cleaning, a 4:1 mixture of isopropanol and

acetone was used to etch the grating to the desired depth. Typical etch times

were found to be 10 seconds to few minutes. Slight agitation during etching was

observed to be important for uniform and repeatable etching. Different brands

of commercial CDs were used, and slight differences in corrugation depth and

grating shape as well as differences in etch rates were observed. The surfaces are

then coated with silver films of 50 to 100 nm thickness using thermal vacuum

evaporation. In the case of DVD-R, due to the thick layers that protect the

recording layer, instead of exfoliation by tape, the inner surface was exposed by

first mechanically cutting a notch into the side of the disk and then by applying

mechanical force to peel the two sides apart. Initial cut provides a location

Figure 3.4: Peeling apart procedure for separate layers of a DVD

for separation, which can be initiated from the side by a sharp cutter. The

same procedure that was used for CD-R was also used for cleaning, etching

and metal coating of DVD-R disks. Exposing the Blu-Ray disk gratings were

done by peeling off the transparent thin coating by tweezers after cutting with
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scissors. Unlike CD-R and DVD-R Blu-Ray disks have nearly sinusoidal grating

shape with 20 nm grating depth which we don’t need to modify and 320 nm

grating period. This grating period brings plasmon resonances at around 320

nm wavelength depending on the angle of incidence. Since silver has enhanced

absorption at this portion of the spectrum we used Al for metal coating of Blu-

Ray.

3.2 Surface plasmons on tuned optical disks

The effect of etching on the topography of CD surfaces are measured using an

AFM (PSIA XE100), as shown in Fig. 3.5a. It can be seen that unetched CD

surfaces have grating profiles nearly rectangular with typical depths of 150 nm.

Since the depth is important for the operation of the CD as an optical disk, dif-

ferent brand disks have similar corrugation depths. It is observed that, etching

in acetone solution reduces the depth of the CD, as well as clearing the higher

frequency components of the profile and changing it to a more sinusoidal shape.

Depending on the choice ambient refractive index, angle of incidence and wave-

length optimal depths for sharp and strong resonances will vary, and must be

calculated. However, typical optimal depths for visible and near infrared wave-

lengths lay in the vicinity of 50 to 90 nm for the CDs. Therefore, 30 to 90 seconds

of etching was found to be adequate.

The reflection spectra are measured using spectroscopic ellipsometry (J. A.

Woollam, VASE) in the visible and infrared wavelengths as shown in Fig. 3.5b,

where progressive appearance of sharp and strong plasmon resonance peaks can

be observed in the reflection spectra. For an unetched substrate, variations in

depth and width along the track lines and non-sinusoidal grating profiles cause

broad and not-so-well defined resonances. However, as the surface is tuned by

etching, sharper resonances appear in the reflection spectra. Also, measurements
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(a)

(b)

(c)

(d)

Figure 3.5: (a) Topographic profiles of the gratings on CD-R obtained by AFM
for various etching time. (b) Reflection spectra as a function of wavelengths for
various etching times measured on the CD-R disk coated with 50 nm Silver. (c)
Grating coupled plasmon resonance at infrared region observed on CD surfaces
coated with 50 nm of silver, at angles of incidence of 40, 45, 50, 55 and 60◦.
(d) Rigorously coupled wave analysis results for silver coated CD-R for angles
of incidence 0, 20, 30 and 40◦.

at different angles verify that the dips in the reflection spectra are due to grating

coupled plasmon resonance. The plasmon resonances can also be observed in the

infrared portion of the spectrum. An example of such resonances was observed

using CDs, etched for 30 seconds and coated with a thin (50 nm) layer of silver. In

this configuration, at angles of incidence of 40 to 60 degrees, plasmon resonances

can be observed between 2.4 to 2.8 µm with quality factors of 54 to 30 (Fig. 3.5c).

Figure 3.5d shows the calculated reflection spectra for various incidence angles by

using rigorously coupled wave analysis. The results agree well with measurements

at visible and infrared wavelengths.

For the DVDs, the etched profiles and corresponding reflection spectra are

shown in Fig. 3.6a. The profiles of CDs and DVDs are different in shape. For

most tested CDs, the unetched profiles show nearly symmetric rectangular profile,
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(a)

(b)

Figure 3.6: (a) Profiles of the gratings on a DVD-R disk obtained by AFM for
various etching time. (b) The measured reflection spectra for various incidence
angles on DVD-R disk coated with 50 nm Ag.

while the DVDs, have asymmetric profiles. Symmetric profile gratings as in CDs

have odd spatial harmonics, whereas asymmetric profiles observed as in DVDs

have both odd and even spatial harmonics. The relative intensities of harmonics

change after etching, however, are partially preserved. Such harmonics are known

to modify the plasmon band structure and can also lead to plasmonic band

gaps [27]. It is possible to further control the grating shape in order to control

relative intensities of spatial harmonics by using techniques such as evaporation

of metal at an elevated angle.

The changes in the reflection spectra as a function of wavelength for various

etch depths are shown in Fig. 3.6b. Similar to the CD, unetched DVDs show

unclear resonances at all orders, while etching significantly improves apparent
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quality factors of resonances. For example, the full width half maximum for 60

sec etched DVD substrates are from 5 nm to 25 nm for angles of incidence from

15 to 30 degrees. Again, experimentally observed angular dependence of the

resonances agree well with the predictions of Equation 2.45.

Blu-Ray disks have significantly smaller periods than CDs and DVDs, and this

makes them suitable for observing plasmon resonances at smaller wavelengths.

The topographic profile and reflection spectrum as measured by spectroscopic

ellipsometry is given in Fig. 3.7. Since the excitation wavelengths were near

the UV for the Blu-Ray disks, aluminum was chosen as the metal layer. The

(a) (b)

(c)

(d)

Figure 3.7: (a) AFM micrograph showing topography of Blu-Ray disk and (b)
typical line profile. (c) Reflection spectra measured on a Blu-Ray disk coated
with 50 nm Al at angles of incidence of 15, 18, and 21 degrees. (d) Calculated
reflection spectra agree well with measured results.

so-called wobble patterns Fig. 3.7b along the grating lines limits the quality

factors achievable with the untreated Blu-Ray disks, however small grating period
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allows excitation of well defined resonances in the UV. Using Al coated Blu-

Ray disks, plasmon resonances can be observed around 300 nm where DNA has

resonant absorption (Fig. 3.7c). Even though measurements are incomplete due

to limitation in the range of ellipsometer below 260 nm wavelengths, calculated

results show distinct plasmonic absorption at UV region (Fig. 3.7d).

3.3 Observation of plasmon resonances in fluids

Once the disks are tuned for sharp resonances, many plasmonic effects and de-

vices based on grating coupled plasmon resonance can be demonstrated. One of

the most common applications of plasmon resonance is in biomolecular sensing.

Such biosensors work by measuring the effective refractive index change due to

molecular adsorption in an aqueous medium . Once functionalized for specific

binding, the surfaces where the plasmon propagates can act as a biomolecular

sensor [13, 14]. We demonstrate such a refractive index measurement setup in a

simple fluid cell as shown in Fig. 3.8a. The shift of the plasmon resonance can

be measured in the angular or wavelength interrogation modes. Using rigorously

coupled wave analysis, reflection spectra of tuned DVD gratings in a fluid cell

geometry can be simulated as is shown in Fig. 3.8b for water and isopropanol as

fluid media for an angle of incidence 15◦. The data shown in Fig. 3.8b shows shift

of the plasmon resonance characterized by a spectroscopic ellipsometer for three

different media, namely deionized water and isopropanol. It is seen that the data

is in agreement with theoretical predictions. In the device configuration shown

in Fig. 3.8a, the refractive index measurement can be performed in the angular

interrogation scheme using a simple silicon photodiode and a simple laser diode.

Although less sensitive compared to prisms in a wavelength interrogation type

measurement [14], the advantage of the use of grating coupled plasmon resonance

for biomolecular sensors is that high index substrates or prisms need not be used,
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(a)

(b)

Figure 3.8: (a) Configuration used to observe grating coupled plasmon resonance
in fluid. (b) Theoretical prediction and experimental data for the fluid being
water and isopropanol.

and measurements can be performed at normal incidence. In this scheme, opti-

cal disks provide a disposable alternative for high sensitivity plasmon resonance

biomolecular sensors.

Up to now we have shown how to modify optical disks by etching. Alternative

procedures can also be used to modify the topography of optical disk gratings.

Heat treatment (e.g. 150 ◦C , 5 minutes on a hotplate or 140 ◦C, 30 minutes

in an oven) was observed to reflow the grating and produce extremely smooth

sinusoidal gratings of about 30 nm depth, adequate for sharp GCPR lines. How-

ever, unless the disks are placed on flat substrates and unless they are heated

and cooled slowly, flatness of the disks are compromised. As another alternative,

oxygen plasma etching in a parallel plate PECVD system, was also observed to

produce optimal corrugations without disturbing the disk flatness.

33



A pure sinusoidal metal coated grating has no spurious plasmon resonances

and, the presented procedure does not produce perfectly sinusoidal surfaces.

However, the tuned gratings are shown to behave like ideal sinusoidal gratings,

for a wide range of incidence angles. The deviations from ideal sinusoids, can be

observed in the reflection spectra. For example, the effect of wobble patterns and

deviations from a pure sinusoid have been observed as a limitation in the peak

absorption and widths of the resonances. Chemical etch tuning of the CD and

DVDs were observed to reduce the effect of such secondary patterns. It was also

observed that, a low surface roughness metal coating is important for observing

higher quality factors. The surface roughness of silver layers can be increased

by rapid metal evaporation. However, by reducing the evaporation rate or using

sputter coating, smoother silver surfaces can be obtained, increasing the quality

factors of resonances.

3.4 Demonstration of a Plasmonic Filter with

Optical Discs

Although plasmonic structures have been extensively studied for better un-

derstanding of fundamental physical phenomenon, optoelectronic device ap-

plications generally focused on sensors. Since the pioneering works of Ebbe-

sen [15] and Ghaemi [29] transmission of electromagnetic waves through thin

metal films via plasmons has widely been studied. Plasmon resonance en-

hanced transmission through subwavelength holes, hole arrays or periodically

corrugated metal surfaces have been investigated both theoretically and exper-

imentally [30, 31, 32, 33]. The resonant transmission peaks due to interacting

plasmonic structures (weak coupling regime) have been observed in Silver films

containing an array of Silicon spheres [34]. Optical properties of the periodic
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arrays of defects (voids) in mesoporous metals [35] and two-dimensional metallic

quasi-photonic crystals [36] have also been investigated.

In this section we will explain how we could obtain plasmonic filters, that

gives us sharp transmission peaks in coupled surface-plasmon on metallized grat-

ing structures. The grating structures are again obtained from optical storage

disks. A filter based on plasmon enhanced transmission (PET) in metal coated

coupled-grating structures is proposed and experimentally demonstrated. The fil-

ter consists of two metallized gratings placed back-to-back as shown in Fig. 3.9a.

In an optimized layer structure with sufficiently thin metal layer, light is partially

(a)

(b)

Figure 3.9: (a) Scheme of proposed filter structure. Top and bottom surfaces
are parallel to each other. Both have the same grating period and silver coated
on them is at the same thickness. (b) Calculated H field component of EM wave
through coupled plasmonic structure agrees well with proposed scheme. Inset
shows the plasmonic radiation from sinusoidal grating.
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transmitted through the metal layer and is partially diffracted or re-emitted into

different orders with different angles of propagation. For our proposed struc-

ture, the transmitted orders travel inside the substrate and are incident onto an

identical grating on the other face of the substrate. Due to the symmetry of

the device, components of the light wave that are generated through plasmonic

emission recouple to the plasmon mode and a second event of plasmon enhanced

transmission takes place at the second grating.

The distance between the two surfaces carrying the gratings, t, is very large

compared to the plasmon propagation length and free space wavelength (t ≫ ξ,

λ). Under this condition, the reflected waves from the second surface do not

interfere with (regenerate) the plasmons on the first surface, hence our analysis

remains valid.

Figure 3.9b shows the calculated field distribution through the device for

wavelength λ = 580 nm and angle of incidence θi = 15◦ (Λ = 740 nm and

Λ ≪ t). It can be seen that the electromagnetic (EM) waves are re-emitted from

second grating layer at the same angle of incidence as the incoming wave. Even

though the dielectric layer thickness between the gratings is order of 1mm in

real device structures, it is taken 10 µm to avoid computational difficulties in

the finite difference time domain (FDTD) simulations. In this case, t is much

larger than the wavelength of light of incident beam, but it is comparable to the

plasmon propagation length.

Since our aim in this research is filter design, we first examined the transmis-

sion intensity through a single layer of silver-coated grating with Λ = 740 nm as a

function of metal thickness (Fig. 3.10a) and wavelength (Fig. 3.10b) of incoming

wave by using rigorously coupled wave analysis (RCWA).

As shown in Fig. 3.10a, the transmitted power for +1st diffraction order

reaches its maximum value near 45 nm silver thickness for TM waves. On the
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Figure 3.10: (a) Transmitted fraction of light on resonance as a function of metal
thickness for incidence angle θ = 10◦ and λ = 630 nm. Since TE mode is not
resonantly transmitted, the filter also acts as a polarizer, transmitting mainly TM
polarization. Optimal Ag thickness is seen to be about 45 nm. (b) Transmitted
fraction of light as a function of wavelength for the −1st, 0th and +1st diffraction
orders, for incidence angle θ = 10◦ and tAg = 45 nm

other hand, the transmitted intensity for all the other diffracted orders for TE

and TM waves are an order of magnitude smaller. Figure 3.10b shows wavelength

dependence of transmitted power for different diffraction orders of both TE and

TM modes. The maximum value of the +1st diffraction order for TM mode for

incidence angle θi = 10◦ occurs at wavelength λ = 628 nm. The filter acts also

as a polarizer, with a TM/TE polarization ratio of about 100. This TM/TE

ratio lets us think that this transmission might be due to the excited plasmon

oscillations in the metal.
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In order to implement our filter structure, we again used gratings present on

optical storage disks. Surface modification of optical disks is again done with the

same method described above. After this grating depth modification treatment

two such surfaces are fixed back-to-back using a thin UV curable epoxy layer.

Then the surfaces are metallized by vacuum evaporation of a 45 nm thick silver

layer. A similar procedure was repeated using a CD, where the grating depth

was tuned to 60 nm. The transmission through the structures were measured

using spectrometric ellipsometers (J. A. Woollam VASE) in the visible and in

the near infrared.

Figure 3.11: (a) Calculated reflection, transmission and absorption spectra as a
function of wavelength for TM waves. Calculation parameters are grating period
Λ = 740 nm, silver thickness tAg = 45 nm and incidence angle θ = 15circ. (b)
Comparison of measured and calculated transmittance as a function of wave-
length. Finite resolution of the spectrometer partially explains the discrepancy
between calculations and measurement around 950 nm.

The total transmission through the coupled plasmonic grating structure as a

function of wavelength for 15◦ angle of incidence is calculated by using RCWA

and is shown in Fig. 3.11a, where Λ = 740 nm. The measured transmittance

through the filter for θi = 15◦ shows peak at wavelengths λ = 580 nm and

940 nm. As shown in Fig. 3.11b, the simulations explain the measured spectra

quantitatively if a finite spectrometer resolution is assumed.
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Besides the theoretical prediction of transmittance we also performed FDTD

simulations and experimentally measured the transmittance through the pro-

posed plasmonic filter for various incidence angles ranging from θi = 0◦ to 20◦

(Fig. 3.12). It can be seen that, a peak transmission of up to 0.17 can be achieved

(a)

(b)

Figure 3.12: Transmitted intensity of a device having a grating period of Λ = 740
nm and t = 1 mm at various angles of incidence, as measured with a spectroscopic
ellipsometer.(a) Simulation results, (b) Experimental measurements

experimentally over a broad wavelength range, with full width at half maximum

(FWHM) of 10 to 5 nm. The positions of the experimental peaks agree well

with the predictions of RCWA and FDTD simulations. For instance, the results

shown at Fig. 3.2 predicts the transmission peak to occur at λ = 628 nm for

45 nm thick Ag coated grating and 10◦ of incidence angle, at the experiment
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we obtain the transmission peak at λ = 635 nm for the same structure. At the

FDTD simulations 0◦ simulations is exactly the same as the experimental mea-

surements. However, when we move to higher angles we have a little deviation.

This deviation is the result of boundary conditions set for FDTD. For 0◦ we used

Bloch boundary conditions with only one period sample, when we increased the

incident angle we moved on to periodic boundary conditions with larger samples.

For the device fabricated using CDs with grating periods of Λ = 1600 nm,

plasmon enhanced transmission (PET) phenomenon can be observed in the near

infrared portion of the spectrum at angles of incidence close to normal, as shown

in Fig. 3.13. Due to finite transmission of the CD material (characterized by

Fourier Transform Infrared (FTIR) spectrometer, data not shown), and rela-

tively large thickness of the double CD substrate (3 mm), total transmission at

Figure 3.13: Measured transmitted intensity of a device having a grating period
of Λ = 1600 nm (built on a CD) at various angles of incidence

the resonant wavelength is reduced to few percent. However, well defined reso-

nances with widths of about 50 nm can be observed. This corresponds to a peak
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wavelength to width ratio of about 40, which compares favorably with previously

reported PETs at similar wavelengths.

In summary we proposed and demonstrated an optical filter that uses plas-

mon enhanced transmission through metallized gratings. The devices are real-

ized using optical disks as starting substrates. Sharp transmission peaks with

peak wavelengths dependent on the angle of incidence make the devices suitable

for applications in compact spectrometers. By fabricating the device using an

elastomeric substrate, peak wavelength can be tuned by applying strain. Theo-

retical calculations and measurements predict that such devices can be operated

at infrared wavelengths by proper scaling. When used to filter collimated ther-

mal emission, devices can be used to fabricate tunable, polarized infrared light

sources, or disposable infrared spectrometers. It would be interesting to investi-

gate an array of coupled plasmonic structures by varying the distance between

plasmonic gratings.
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Chapter 4

SURFACE PLASMONS AT

MIM WAVEGUIDES

The work we will show at this chapter contains excitation of surface plasmons

at metal-insulator-metal (MIM) systems. The question is, why should MIM

plasmonic systems be an interesting research topic and what do we aim by that

research?

4.1 An MIM Surface Plasmon Waveguide

From Chapter 2 we know that we have to have a resonance condition for exci-

tation of surface plasmons. Again at Chapter 2 we saw that this resonance is

observed as a single dip at the reflection spectrum. This single dip is the only

mode of surface plasmon waveguide. Also from waveguide theory we know that

if a system had more than one mode, each of these modes would correspond

to a different field profile distribution at the system. Basing on the work of

Bayindir [37], we presumed that if we perturb a stable system in some way and

increase its modes from one to two, these two modes correspond to bonding and
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anti-bonding modes of systems and the field profile observed becomes symmetric

and anti-symmetric for each of these modes.

Final justification is why we need symmetric and anti-symmetric field distri-

butions. By having such oppositely distributed field distributions we expected to

obtain attractive and repulsive forces between metal layers. If we could calculate

this force we would call it plasmonic force, but at this chapter we will just be

concerned with excitation of these modes with numerical tools.

Figure 4.1: Coupling scheme to MIM surface plasmon waveguide from prism.
TM wave is sent at incidence angle θ and the plasmon propagating at the first
metal couples to the second metal.

We know that at a single layer metal(Ag,Au etc.) coated prism we have a

metal insulator waveguide for the surface plasmon. From now on we consider

the dielectric of dielectric-metal interface to be air. This surface plasmon is an

inhomogeneous wave and it has a tail which is about one µm. This surface

plasmon is excited on the metal air interface. If any material other than air

enters to the one µm range this inhomogeneous wave will interact with that

material and the stable waveguide system will be perturbed. Inspiring of this

idea we assumed that we put a second silver interface 500 nm away from the

first silver interface (Fig. 4.1). The idea is that the tail of surface plasmon will
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penetrate into the second interface and it will oscillate the electrons of that silver

coherently as well. From the interaction of two excited electron oscillations we

might be able to excite more than one modes of the system.

For this system design we have some selection criteria. We took the prism

material as SiO2. We used silver as the metal due to its allowance for sharper

resonances. Thickness of first silver layer is 50 nm due to plasmon excitation,

second silver layer is taken as 300 nm thick. Why is the second layer thicker

question may arise here. If we took second layer as 50 nm as well, surface plasmon

wave penetrates all into the second metal and we get three modes excited (will

be shown at the following subsections). That is why we select it 300 nm in

our simulations. The 500 nm distance is predictably due to create a stronger

interaction between the layers.

4.2 Theoretical Simulations

For the investigation of this system we used two approaches. One is simulation

using Fresnel’s multilayer reflection theory, second is FDTD method. At the

Fresnel’s equations part we used the formula for reflection at a single interface and

we iteratively introduced it to multilayer reflection theory. Numerically speaking

for a two layer system with respect to Figure 3.1 with dielectric constants ǫi and

ǫj, wave numbers ki and kj which correspond to kd and km with respect to Eqn

3.33 and Eqn 3.34

rij =

(

ki

ǫi

−
kj

ǫj

)

/

(

ki

ǫi

+
kj

ǫj

)

(4.1)

This equation is valid if there is only one interface. For our case 4.2, due to

the interference effects we should take the third layer into account as well. This

gives us a reflection coefficient
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Figure 4.2: Fresnel coefficients for transmitted and reflected waves at the multi-
layered material geometries. The numbers of materials are given as a reference
to Equation4.2

r012 =
r01 + r12e

2iα

1 + r01r12e2iα
(4.2)

with α = k1d1.

We coded these formulas in MATLAB and obtained our theoretical simulation

results. For our simulations we started from the end, where we have infinite air,

and iteratively came to the prism part. So we have become able to simulate multi

layer structures without an upper limit e.g. IMI....MIM structures. A sample

graph taken for MIM case is given at Figure 4.3. For the single layer Ag part

we assumed 60 nm Ag coated on a prism with refractive index np = 1.8. The

wavelength of the incident light is set to λ = 500 nm. With these circumstances

we obtained the resonance at 36.1◦. Then we have put one more Ag layer 700

nm away from the first layer and we got the second graph. At this figure we can

clearly see that first stable mode is perturbed from new Ag and we can see the

splitting at the spectrum.
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Figure 4.3: Observation of splitting phenomenon at theoretical simulations.
Spectrum is scanned by changing incidence angle θ. Distance between layers
d = 700 nm, wavelength λ = 500 nm and np = 1.8.

From this figure we can also deduce that the mode at the beginning is com-

pletely disappeared. If we were to send light again with incidence angle 36.1◦ we

would get 80% reflectance i.e. non resonant situation.

A similar behavior is also seen at the frequency spectrum. While examining

wavelength dependence we can also verify that this change at modes is due to

perturbation. This is possible by looking at the spectrum change at different

dielectric distances. At the simulation results given at Figure 4.4 we examined

the dielectric thickness dependence from the wavelength spectrum perspective.

Incident angle for this simulation is set to θ = 43.6◦. When the system is

not perturbed we have a single dip at 633 nm. When we bring second Ag layer

closer we see the mode separation at about 1800 nm distance. When we shrink

the distance we create a more powerful interaction between second metal and
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the system. Due to this powerful interaction we see a wider separation of modes

at the spectrum.

Figure 4.4: Effect of distance between layers, to splitting amount between the
modes. As we see, while distance is decreasing, splitting at spectrum is increas-
ing. This is what we expected due to stronger interaction at closer distances.

Now, it is also a good time to verify what we claimed about the thickness of

the second metal. We said that for observing a more accurate splitting we had

better use a thick (more that 200-300 nm) metal. We also claimed that if we

used a thinner (50-100nm) metal as the second layer we would observe excitation

of fundamental mode again at the system. The graph at Figure4.5 explains the

situation better. At this figure the red curve shows the non-perturbed system.

When we introduce a thick (200 nm) Ag metal to the system we observe the

splitting (black curve) at the incident angle dependence. If we use a thin (70

nm) metal instead fundamental mode is again excited and this is not a case we

would like. If we used even thinner metals (50 nm) the fundamental mode also
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Figure 4.5: Observation of spectrum with respect to thickness of second metal
layer. As we see when it is not thick enough it sustains two plasmon modes and
one of them is the fundamental mode, and it perturbs the MIM splitting.

disturbs other modes’ resonance angles. For that reason we preferred using thick

metals.

4.3 FDTD Simulations

For the verification of what we theoretically presumed we need to show it exper-

imentally. However, fabrication of the proposed device was not that easy. We

have fabricated Ag bridge structures on a SiO2 glass. Before fixing these glasses

to the prism we etched the sacrificial layer to use air as the insulating material.

At our etching trials we could not obtain an optimum MIM waveguide. Since the

experiment way was partially closed we chose verification by FDTD simulations,

which I call experimental simulations.
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At this subsection I will give brief information and some results from our

FDTD simulations for the proposed geometry. Our aim is to obtain the same

spectrum with theoretical simulations and other than that observing the field

distributions at the desired resonance regions. To do these both actions in an

accurate and optimum way we searched for and tried a high number of FDTD

programs. Finally we decided to use Lumerical Software which gives very good

results at photonic spectrum.

Figure 4.6: Comparison of theoretical simulations and FDTD simulations. The
prism used at simulations is SiO2. np = 1.45, λ = 500 nm, d = 500 nm. Both
simulations are in good agreement with each other.

A typical spectrum comparison is as seen at Figure 4.6. This figure is the

result of an incident wave at 500 nm wavelength, hitting to an MIM (Ag-air-

Ag) with 500 nm distance in between the metals. At this figure we see some

deviation between what we expected based on MATLAB results and what we

obtained from FDTD simulations. This deviation look acceptable to us because

theoretical simulations base on algebraic equations and give ideal results. On
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the other hand, FDTD softwares divide the space into finite little areas and give

an approximation to the experiment. And this approximation might create little

deviations at both spectrum or intensity of electromagnetic waves.

(a)

(b)

Figure 4.7: Field profile results of FDTD simulations. We observe the excited

symmetric and anti-symmetric behaviors of surface plasmon waves clearly. (a)

symmetric distribution at θ = 44.4◦ and (b) anti-symmetric distribution at θ =

47.95◦

On the other hand the important thing is that the spectral places of the

resonance dips are very strongly correlated and there is very little deviation from
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expected resonance wavelength. This result encourages us to examine the modes

for possible symmetric and anti-symmetric field distributions. So we examine

the field distributions at θ1 = 44.4◦ and θ2 = 47.95◦ separately. The results are

shown at Figure 4.7

(b)(a)

Figure 4.8: Electric field vectors for symmetric and anti-symmetric modes. Di-
rections of these vectors give us information about excited force between layers.
(a) symmetric mode, attractive (b) anti-symmetric mode, repulsive.

From the simulation results seen at Figure 4.7 these separated modes cor-

respond to symmetric and anti-symmetric modes of the waveguide. The color

represents the distribution of both Hz and Ex in algebraic size. Red shows posi-

tive and blue shows negative. The directions of the electric field for these modes

are denoted by arrows and are shown in Figure 4.8. At the beginning we had said

that all this work is done to calculate the plasmonic force. The idea of plasmonic

force was based on these field lines. Electric field vectors are indicators of force

directions. For the symmetric case ((a) part) we see that the field lines cause at-

tractive force between layers. Similarly for the anti-symmetric case (((b) part))

we get repelling force between the layers. The magnitudes of these forces can be

calculated via different methods like Maxwell’s stress tensor or from derivative

of total energy. However, we left this subject at this point.

To conclude this chapter, we analyzed MIM surface plasmon waveguides. We

theoretically and experimentally simulated the behavior of these waveguides. We

saw that the stable single resonance spectrum changes when we bring a second

metal closer to the system. Due to this perturbation we see a splitting type
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behavior at the spectrum. When we have a closer look to these splitted modes

we see that they are symmetric and anti-symmetric field distributions. These

field distributions cause a force between the layers, calculation of which is left as

future work.
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Chapter 5

CONCLUSIONS

At this thesis we studied plasmonics at a number of different applications. First

of all we used surface modified optical disks for excitation of surface plasmons.

With this method we aimed to provide a compact working environment for plas-

monics. We could realize grating coupling method efficiently, without using an

interference lithography type fabrication procedure. We have shown how to etch

the surfaces of optical disks and how this etching procedure affects the resonance

quality. Since different disks have different grating periods we could achieve

plasmon resonances at a wide spectrum ranging from UV to NIR.

Then we tried an application with this modified optical disks. At the simu-

lations we have seen that light passes through thin layers of metal at resonance

condition. This gave us inspiration to design a filter from these disks. We fabri-

cated a device, with optimum gratings at both sides which are metal-coated. We

verified our design with numerical simulations and experimental measurements.

So we obtained an optical filter, the spectrum of which is wavelength, polariza-

tion and incident angle dependent. The transmission peaks of the filter could

achieve quality factors as high as 100.

53



We finally worked on MIM waveguides for surface plasmons. At this part we

examined the perturbation effect when we bring a metal close to a metal insulator

waveguide. We observed a splitting at the spectrum due to perturbation. This

splitting corresponded to bonding and antibonding modes of the system. So we

expected to observe different field profiles at these separate modes and at the

simulations we saw that these modes have symmetric and anti-symmetric field

distributions respectively. Different field distributions suggest an excited force

between metals, which we named plasmonic force.
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